
MANUAL

UEFI Awareness Manual
TianoCore

UEFI Awareness Manual TianoCore

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 UEFI Awareness Manuals ... 

 UEFI Awareness Manual TianoCore ... 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 ARM 32-Bit 6

 ARM 64-Bit 7

 Hooks & Internals in TianoCore 7

 Features ... 8

 Display of UEFI Resources 8

 Symbol Autoloader 9

 Autoloader Configuration 9

 Scan the UEFI Module Table 10

 Display the Autoloader Table 11

 TianoCore Specific Menu 12

 Debugging UEFI Phases of TianoCore .. 13

 Debugging from Reset Vector 13

 SEC Phase 13

 PEI Phase 13

 DXE Phase 13

 BDS Phase 14

 TianoCore Commands .. 15

 EXTension.ConfigTab Display DXE configuration table 15

 EXTension.DXEDRiVer Display loaded DXE drivers 15

 EXTension.DXEModule Display DXE modules 16

 EXTension.FV Display firmware volumes 17

 EXTension.HOB Display HOBs 17

 EXTension.Option Set awareness options 18

 EXTension.PEIModule Display PEI modules 19

 EXTension.PEISvc Display PEI services 19
UEFI Awareness Manual TianoCore | 2©1989-2024 Lauterbach

 EXTension.POST Display POST code 20

 EXTension.PROTocol Display installed protocols 20

 TianoCore PRACTICE Functions ... 21

 EXT.DXEDRV.ENTRY() Entry address for DXE driver 21

 EXT.DXEDRV.MAGIC() Magic of DXE driver 21

 EXT.DXEDRV.PATH() Build path for DXE driver 21

 EXT.DXEFILE.PATH() Build path for DXE module 22

 EXT.PEIM.ENTRY() Entry address for PEI module 22

 EXT.PEIM.MAGIC() Magic of PEI module 22

 EXT.PEIM.PATH() Build path for PEI module 22
UEFI Awareness Manual TianoCore | 3©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “UEFI <x> Debugger” to “UEFI Awareness Manual
<x>”.

Overview

The UEFI Awareness for TianoCore contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and debugging approaches.
UEFI Awareness Manual TianoCore | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• “UEFI Awareness Manuals” (uefi_<x>.pdf): TRACE32 PowerView can be extended for UEFI-
aware debugging. The appropriate UEFI manual informs you how to enable the UEFI-aware
debugging.

Supported Versions

Currently TianoCore is supported for the following versions:

• TianoCore on ARM32 and ARM64 architectures
UEFI Awareness Manual TianoCore | 5©1989-2024 Lauterbach

Configuration

The UEFI Awareness for TianoCore is configured by loading an extension definition file called “tiano.t32”
from the demo directory with the EXTension.CONFIG command. The command takes two parameters that
specify the memory base address and size of the UEFI package. See the file <board>Pkg/<board>Pkg.dsc
of your UEFI implementation. “PcdSystemMemoryBase” rsp. “PcdSystemMemorySize” are the needed
values.

Additionally, load the “tiano.men” menu file (see “TianoCore specific Menu”) and configure the Symbol
Autoloader.

ARM 32-Bit

A full configuration for ARM 32-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

See also the example scripts in ~~/demo/arm/bootloader/uefi/tiano

; Specify the memory base address and size,
; see <board>Pkg/<board>Pkg.dsc:
; PcdSystemMemoryBase = 0x80000000
; PcdSystemMemorySize = 0x08000000

; Load the TianoCore Awareness:
EXTension.CONFIG ~~/demo/arm/bootloader/uefi/tiano/tiano.t32 \
 0x80000000 0x08000000

; In a TrustZone/Hypervisor environment, you may need to
; specify the access class where the UEFI BIOS runs.
; E.g. if TianoCore runs in hypervisor zone:
EXTension.ACCESS H:

; Load the additional menu:
MENU.ReProgram ~~/demo/arm/bootloader/uefi/tiano/tiano.men

; Configure symbol autoloader:
sYmbol.AutoLOAD.CHECKUEFI "do ~~/demo/arm/bootloader/uefi/tiano/autoload "
UEFI Awareness Manual TianoCore | 6©1989-2024 Lauterbach

ARM 64-Bit

A full configuration for ARM 64-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

See also the example scripts in ~~/demo/arm/bootloader/uefi/tiano

Hooks & Internals in TianoCore

IMPORTANT:

When using GCC on ARM:

The ELF->COFF converter (GenFw) may spoil the debug information when using several text/data sections
(check with "-v"). The linker must combine all sections into one text section and one data section. The
edk2/BaseTools/Scripts directory contains a suitable linker script (GccBase.lds or previously gcc4.4-ld-
script). Please ensure that this script is used when linking a module, e.g. by adding it to the linker flags in the
edk2/BaseTools/Conf/tools_def.template:

--script=$(EDK_TOOLS_PATH)/Scripts/GccBase.lds

; Specify the memory base address and size,
; see <board>Pkg/<board>Pkg.dsc:
; PcdSystemMemoryBase = 0x80000000
; PcdSystemMemorySize = 0x08000000

; Load the TianoCore Awareness:
EXTension.CONFIG ~~/demo/arm/bootloader/uefi/tiano/tiano.t32 \
 0x80000000 0x08000000

; In a TrustZone/Hypervisor environment, you may need to
; specify the access class where the UEFI BIOS runs.
; E.g. if TianoCore runs in hypervisor zone:
EXTension.ACCESS H:

; Load the additional menu:
MENU.ReProgram ~~/demo/arm/bootloader/uefi/tiano/tiano.men

; Configure symbol autoloader:
sYmbol.AutoLOAD.CHECKUEFI "do ~~/demo/arm/bootloader/uefi/tiano/autoload "
UEFI Awareness Manual TianoCore | 7©1989-2024 Lauterbach

Features

The UEFI Awareness for TianoCore supports the following features.

Display of UEFI Resources

The extension defines new commands to display various UEFI resources. Information on the following UEFI
components can be displayed:

PEI phase:

DXE phase:

For a description of the commands, refer to chapter “TianoCore Commands”.

If you want to display the UEFI objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Enable SYStem.MemAccess or SYStem.CpuAccess (CPU
dependent), but be aware of the limitations (no cache reading, real-time intrusion).

EXTension.FV PEI PEI firmware volumes

EXTension.PEIModule PEI modules in FVs

EXTension.HOB PEI PEI HOBs

EXTension.FV DXE DXE firmware volumes

EXTension.DXEModule DXE modules in FVs

EXTension.DXEDRiVer Loaded DXE drivers

EXTension.HOB DXE DXE HOBs

EXTension.PROTocol DXE Installed DXE protocols

EXTension.ConfigTab DXE configuration table
UEFI Awareness Manual TianoCore | 8©1989-2024 Lauterbach

Symbol Autoloader

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available.

TRACE32 contains an “Autoloader”, which can be set up for automatic loading of symbol files. The
Autoloader maintains a list of address ranges, corresponding UEFI components and the appropriate load
command. Whenever the user accesses an address within an address range known to the Autoloader, the
debugger invokes the load associated command. The command is usually a call to a PRACTICE script, that
handles loading the symbol file.

The TRACE32 Autoloader has to be set up. This includes the following steps:

1. Autoloader configuration.

2. Scan of the UEFI module table to the Autoloader table.

3. Display of the Autoloader table.

Autoloader Configuration

The command sYmbol.AutoLOAD.CHECKUEFI <load_command> specifies the command that is
automatically used by the Autoloader to load the symbol information. Typically the script autoload.cmm
provided by Lauterbach is called.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader.

The script is provided in the TRACE32 demo directory:

• 32-bit: ~~/demo/arm/bootloader/uefi/tiano/autoload.cmm.

• 64-bit: ~~/demo/arm/bootloader/uefi/tiano/autoload.cmm.

Example:

; Configure symbol Autoloader for 32-bit TianoCore
sYmbol.AutoLOAD.CHECKUEFI "DO ~~/demo/arm/bootloader/uefi/tiano/autoload.cmm"
UEFI Awareness Manual TianoCore | 9©1989-2024 Lauterbach

Scan the UEFI Module Table

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table into the Autoloader table and to activate the Autoloader.

Since the UEFI module table is updated by UEFI a re-scan might be necessary.

The point of time at which the UEFI module table is re-scanned can be set very flexibly:

The default setting is sYmbol.AutoLOAD CHECK OFF. With this setting TRACE32 re-scans the UEFI
module table only on request by using the sYmbol.AutoLOAD.CHECK command.

With sYmbol.AutoLOAD.CHECK ON, TRACE32 re-scans the UEFI module table after every single step
and whenever the program execution is stopped. This significantly slows down the speed of TRACE32.

With sYmbol.AutoLOAD.CHECK ONGO, TRACE32 re-scans the UEFI module table whenever the
program execution is stopped.

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

NOTE: The Autoloader can load the symbol information for the SecCore, the PeiCore, all
PEI modules and the DXE core as soon as the memory mode (e.g. 32-bit protected
mode) used by UEFI is activated.

The Autoloader can only load symbol information for DXE modules that are
already loaded.
UEFI Awareness Manual TianoCore | 10©1989-2024 Lauterbach

Display the Autoloader Table

The command “sYmbol.AutoLOAD.List” shows a list of all known address ranges/components and their
symbol load commands.

Autoload context menu

Touch Advise TRACE32 to load the symbols for the selected module now.

Set Mark selected module as loaded.

Clear Delete symbols for the selected module in TRACE32.

Module address range Module name Module status
dyn: (no meaning)
load: symbols for module are loaded

Load command Parameters for load command
UEFI Awareness Manual TianoCore | 11©1989-2024 Lauterbach

TianoCore Specific Menu

The menu file “tiano.men” contains a menu with TianoCore specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called TianoCore.

• Use the PEI submenu to launch windows displaying PEI specific resources.

• Use the DXE submenu to launch windows displaying DXE specific resources.

• Use the Symbol Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.
UEFI Awareness Manual TianoCore | 12©1989-2024 Lauterbach

Debugging UEFI Phases of TianoCore

UEFI runs in several “phases”. It starts with the “Security” (SEC) phase which immediately switches to the
“Pre-EFI Initialization Environment” (PEI) phase. After this phase ended, control is given to the “Driver Exe-
cution Environment” (DXE) phase. Shortly, before the OS is booted, the “Boot Device Selection” (BDS)
phase is running.

Each of this phases needs a different debugging environment. See below for a detailed description of each
phase.

Debugging from Reset Vector

TRACE32 is a JTAG-based debugging tool and, as such, allows the user to start debugging their system
right from the reset vector. It is possible to walk through the very first steps of the start-up to detect FLASH
problems or faulty reset behavior.

Shortly after reset, the system switches into the SEC phase.

SEC Phase

TianoCore itself does not provide an SEC phase. It is up to the developer to implement a custom SEC
phase, and as such out of the scope of this document

PEI Phase

If you want to debug the PEI phase right from the start, halt the system at the reset vector. Then load the
symbols of your PEI core module with the symbol autoloader, and go until the desired entry point, e.g:

Inspect the PEI resources with the menu items in the “PEI” submenu.

DXE Phase

After PEI phase completed, it hands off control to the DXE core. To debug the DxeCore from start, load the
symbols of “DxeCore” just before PEI jumps into the DxeCore and set a breakpoint at “DxeMain”. DxeMain
then starts the DXE dispatcher.

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.Touch "ArmPlatformPrePiUniCore"
Go PrePiMain
UEFI Awareness Manual TianoCore | 13©1989-2024 Lauterbach

For debugging a DXE driver from its entry point, a special script “go_dxedrv” is available in the ~~/demo
directory. Call this script with the name of the DXE module before the module is started. E.g. to debug the
DXE driver “Metronome”:

This script sets a breakpoint in the DXE core code and waits until the specified DXE module is loaded. Then
it sets a breakpoint onto the module entry point and halts there. You can then start debugging the module
from scratch.

BDS Phase

TianoCore implements the BDS phase as DXE driver. To debug the BDS phase, debug the “ArmPlat-
formBds” module like shown in “DXE Phase”.

DO go_dxedrv Metronome
UEFI Awareness Manual TianoCore | 14©1989-2024 Lauterbach

TianoCore Commands

EXTension.ConfigTab Display DXE configuration table

Displays the DXE configuration table.

EXTension.DXEDRiVer Display loaded DXE drivers

Displays a table with all DXE drivers that DxeCore already loaded into the system.

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific driver.

Format: EXTension.ConfigTab

Format: EXTension.DXEDRiVer
UEFI Awareness Manual TianoCore | 15©1989-2024 Lauterbach

EXTension.DXEModule Display DXE modules

Displays a table with all DXE modules found in the system (firmware volumes or HOBs).

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

Format: EXTension.DXEModule
UEFI Awareness Manual TianoCore | 16©1989-2024 Lauterbach

EXTension.FV Display firmware volumes

Displays a table with the firmware volumes of the PEI or DXE phase.

If an address of a firmware volume is specified, the command displays the contents of this FV.

“magic” is a unique ID used by the UEFI Debugger to identify a specific firmware volume or file.

The “magic” fields are mouse sensitive, double clicking on them opens appropriate windows. Right-clicking
on them will show a context menu.

The debugger tries to detect the address of the boot firmware volume automatically. If this fails, specify the
address of the boot FV manually with the EXTension.Option BOOTFV command.

EXTension.HOB Display HOBs

Displays a table with the hand off blocks of the PEI or DXE phase.

Format: EXTension.FV [PEI | DXE [<fv_address>]]

Format: EXTension.HOB [PEI | DXE]
UEFI Awareness Manual TianoCore | 17©1989-2024 Lauterbach

The “address” fields are mouse sensitive, double-clicking them opens appropriate windows. Right-clicking
on them will show a context menu.

EXTension.Option Set awareness options

Sets various options to the awareness.

Format: EXTension.Option <option>

<option>: BOOTFV <address>
PEIHOBS <address>
SYSTABLE <address>
UCODE <address>

BOOTFV Set the base address of the boot firmware volume.

PEIHOBS Set the base address of the HOB list in PEI phase.

SYSTABLE Set the base address of the EFI System Table

UCODE Set the base address of the microcode table.
UEFI Awareness Manual TianoCore | 18©1989-2024 Lauterbach

EXTension.PEIModule Display PEI modules

Displays a table with all PEI modules found in the system.

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

EXTension.PEISvc Display PEI services

Displays a table with all available PEI services.

Format: EXTension.PEIModule

Format: EXTension.PEISvc
UEFI Awareness Manual TianoCore | 19©1989-2024 Lauterbach

EXTension.POST Display POST code

(Only available on x86/x64 targets.)

Displays the Power-On Self-Test code.

EXTension.PROTocol Display installed protocols

Displays the list of installed DXE protocols.

Format: EXTension.POST

Format: EXTension.PROTocol
UEFI Awareness Manual TianoCore | 20©1989-2024 Lauterbach

TianoCore PRACTICE Functions

There are special definitions for TianoCore specific PRACTICE functions.

EXT.DXEDRV.ENTRY() Entry address for DXE driver

Returns the entry address for the specified DXE driver.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.DXEDRV.MAGIC() Magic of DXE driver

Returns the “magic” of the specified loaded DXE driver.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.DXEDRV.PATH() Build path for DXE driver

Returns the build path for the specified DXE driver.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: EXT.DXEDRV.ENTRY(<dxedrv_magic>)

Syntax: EXT.DXEDRV.MAGIC("<dxedrv_name>")

Syntax: EXT.DXEDRV.PATH(<dxedrv_magic>)
UEFI Awareness Manual TianoCore | 21©1989-2024 Lauterbach

EXT.DXEFILE.PATH() Build path for DXE module

Returns the build path for the specified DXE module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.PEIM.ENTRY() Entry address for PEI module

Returns the entry address for the specified PEI module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.PEIM.MAGIC() Magic of PEI module

Returns the “magic” of the specified PEI module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.PEIM.PATH() Build path for PEI module

Returns the build path for the specified PEI module.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: EXT.DXEFILE.PATH(<dxem_magic>)

Syntax: EXT.PEIM.ENTRY(<peim_magic>)

Syntax: EXT.PEIM.MAGIC("<peim_name>")

Syntax: EXT.PEIM.PATH(<peim_magic>)
UEFI Awareness Manual TianoCore | 22©1989-2024 Lauterbach

	UEFI Awareness Manual TianoCore
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	ARM 32-Bit
	ARM 64-Bit
	Hooks & Internals in TianoCore

	Features
	Display of UEFI Resources
	Symbol Autoloader
	Autoloader Configuration
	Scan the UEFI Module Table
	Display the Autoloader Table

	TianoCore Specific Menu

	Debugging UEFI Phases of TianoCore
	Debugging from Reset Vector
	SEC Phase
	PEI Phase
	DXE Phase
	BDS Phase

	TianoCore Commands
	EXTension.ConfigTab Display DXE configuration table
	EXTension.DXEDRiVer Display loaded DXE drivers
	EXTension.DXEModule Display DXE modules
	EXTension.FV Display firmware volumes
	EXTension.HOB Display HOBs
	EXTension.Option Set awareness options
	EXTension.PEIModule Display PEI modules
	EXTension.PEISvc Display PEI services
	EXTension.POST Display POST code
	EXTension.PROTocol Display installed protocols

	TianoCore PRACTICE Functions
	EXT.DXEDRV.ENTRY() Entry address for DXE driver
	EXT.DXEDRV.MAGIC() Magic of DXE driver
	EXT.DXEDRV.PATH() Build path for DXE driver
	EXT.DXEFILE.PATH() Build path for DXE module
	EXT.PEIM.ENTRY() Entry address for PEI module
	EXT.PEIM.MAGIC() Magic of PEI module
	EXT.PEIM.PATH() Build path for PEI module

