LAUTERBACH A

UEFI Awareness Manual
TianoCore

UEFI Awareness Manual TianoCore

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
UEFI AWareness ManUAISccciiiiiemriiiissmnninssssssssisssssss s ssssssmss s ssssssss s sssssssss s essssnss s s snssnsss s snsssnnens r—~
UEFI Awareness Manual TIianOCOreccccccveeeeemmrrrssssmmeressssnmessessssneessssssmsssesssansessesssnesssasssns 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
ARM 32-Bit 6
ARM 64-Bit 7
Hooks & Internals in TianoCore 7
== LT == 8
Display of UEFI Resources 8
Symbol Autoloader 9
Autoloader Configuration 9
Scan the UEFI Module Table 10
Display the Autoloader Table 11
TianoCore Specific Menu 12
Debugging UEFI Phases of TIaNOCOrecccccirmmiinsmmsmmnisssssmnsissss s s sssssss s s sssssssssssnnsss 13
Debugging from Reset Vector 13
SEC Phase 13
PEI Phase 13
DXE Phase 13
BDS Phase 14
TianoCore COMMANAScccooimmmiiiirir i e s e s smmmmm s e s s e e s e e s s a s s ammmmms e e s s eessnnnnnnnnnnnn 15
EXTension.ConfigTab Display DXE configuration table 15
EXTension.DXEDRiVer Display loaded DXE drivers 15
EXTension.DXEModule Display DXE modules 16
EXTension.FV Display firmware volumes 17
EXTension.HOB Display HOBs 17
EXTension.Option Set awareness options 18
EXTension.PEIModule Display PEI modules 19
EXTension.PEISvc Display PEI services 19
©1989-2024 Lauterbach UEFI Awareness Manual TianoCore 2

EXTension.POST Display POST code 20

EXTension.PROTocol Display installed protocols 20
TianoCore PRACTICE FUNCLIONSccccoiiiirccrrrrrsecen s rns s e s s sssssme s sssssssm e sessssms e s senssame s nennsssas 21
EXT.DXEDRV.ENTRY() Entry address for DXE driver 21
EXT.DXEDRV.MAGIC() Magic of DXE driver 21
EXT.DXEDRV.PATH() Build path for DXE driver 21
EXT.DXEFILE.PATH() Build path for DXE module 22
EXT.PEIM.ENTRY/() Entry address for PEI module 22
EXT.PEIM.MAGIC() Magic of PEI module 22
EXT.PEIM.PATH() Build path for PEI module 22

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 3

UEFI Awareness Manual TianoCore

History

Version 06-Jun-2024

28-Aug-18

<X>".

Overview

The title of the manual was changed from “UEFI <x> Debugger” to “UEFI Awareness Manual

/A TRACE32 UEFI Debugger for TianoCore
File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP3Sx TianoCore Window Help
+ = & 3
[Mk & e =R T R Ry R e
&% BEXT.PEIModule [= |[= |[5= o B:EXT.HOB DXE (=& =]
agic name type |baseaddr |entry build path address type content |
0008068 |ArmPTatformPreriUniCo [boot |BOD0A1B0 |BOODSIBA |/storcenter/UEFT | [© 8783C010 [handoff — [version 9. . -
i bootmode Ffull config
memory top 88000000
&b B:EXT.DXEDRVer =S memory bottom |87000000
— free memory top [87B54000
name baseaddr |entr build path free memory bot |87000BDO
DxeCore B7B54240 [BrB54241 [/storcenter/UEFI/Tian , end of hob 1ist |87000BCS
ArmCpuDxe B7AB0240 |B7ABO271 ,f:stnr"center'/:UEFI/T{an
RuntimeDxe B7ADF240 (BTADF271 |/storcenter/UEFI/Tian 87B3C048 |resource [type: system memory, base: 80000000, length
SecurityStubDxe B7AA4240 (BTAA4271 |/storcenter/UEFI/Tian 87B3C078 |resource [type: system memory, base: 80008000, length
EmuVariableRuntimeDxe |87AD2240 |87AD2271 ,ftsturcenter/'UEFI/Tlan 87B3COAB |resource |type: system memory, base: 80088000, length
EmbeddedvonotonicCoun [B7ACA240 |87ACA271 |/storcenter/UEFI/Tian 87B3CODB |mem alloc [type: none, base: B7FEFD00, length: 0000100
SerialDxe 87A9A240 |B7ASA271 |/storcenter/UEFI/Tian 87B3C108 |mem alloc |type: none, base: BFFE7000, length: 0000800
Reset 85C0B240 |85C0B271 |/storcenter/UEFI/Tian 87B3C138 |guid ext |guid: EfiMemoryTypelnformation, type: EF1AC
MetronomeDxe 87ABF240 |BTABF271 |/storcenter/UEFI/Tian 87B3C1A0 |mem alloc |type: stack, base: 87FF0000, length: 000100
MandFlash B7AB4240 |BTAB4271 |/storcenter/UEFI/Tian 87B3CID0 |guid ext |guid: ARM g'luba'l variable,
_ B87B3C1F8 |cpu size mem: 20, size ifo: 00,
I base 80008000
&4 B:EXT.FV , 0:87B7D000 &= =] Tength 00080000
imagic length guid | |quid ext |guid: PerformanceProtocol,
87E7D000 [0022B4F8 |Ef1 FirmwareFilesystem? » |mem pool -
Files: magic size tvpe name U ’
87670048 0Z3D30 dxe core |DxeCore
B7BASDDB 0131DC driver (rmCpubxe e —
87BBBFES 00C13E |driver |RuntimeDxe o BEXT.FV DXE [= =] =]
B7BC50FB 006183 driver SecurityStubDxe
agic type [Tength uid i
87800280 009234 dr;‘fer ::ffhdc'g'r‘ mer 0005000 brot 00080000 e FirmwareET Tesyetans "
S7ED0S95 000016 e depex EFiTimerArchProtoco 87870000 |hob |0022B4F8 |EfiFirmwareFileSystem2
B7EDO2B0 (009244 pe32 /storcenter /UEFI/TianoCore/EBeagleBoard/edk2/Build/ o
B7ED34F4 (000020 ui watchdogTimer -
B7BD9518 007C7C driver CapsuleRuntimebxe
S7BE1198 00C9F4 driver EmuVariableRuntimeDxe o B:EXT.PROTocol [=[=][=]
B7BEDE20 007254 driver EmbeddedMonotonicCounter mamie gy ‘
87BF4DF0 00C37E driver ‘ConPlatformDxe
87C01170 |0L0BSE |driver |ConSplitterDxe g7851P90 [ETiLoadedImageProtacal B
B7C11CD0 013F06 dri ver GraphicsConsoleDxe B 37E51710 EfiDecompressPratocol
87B51690 EfiSecurityArchProtocol
& BoEXT ConfigTab == 87851590 EfiCpuArchProtocol
87851490 EfiMetronomeArchProtocol
[address _ type pointer 87851390 EfiTimerArchProtocol
87B3BD90 [EfiDxeServicesTable B37674A40 87851280 EfiBdsArchProtocol
8783BDA4 EfiHoblist 87B3C010 87851190 EfiWatchdogTimerAr chProtocol
87B3BDE8 |EfiMemoryTypeInformation 87B77880 87851090 EfiRuntimehrchProtocol
87B3BDCC [EfiDebugImagelnfoTable 87875570 87930F30 1E5668E2 8481 11D4 BC F1 00 80 C7 3C 88 B1
— B7930E90 6441F818 6362 4E44 B5 70 70 BA 31 DD 24 53 &
d il = 1 - b
B::EXTension.|
[Fv | [pEmodule] [HOB | [ConfigTab | [DXEDRWVer| [DXEModule| [PROTacol | [Option | previoss
5T:87A84270 \\NandFlash\DriverEntryPoint_ModuleEntryPoint system ready MIX UP

The UEFI Awareness for TianoCore contains special extensions to the TRACE32 Debugger. This chapter
describes the additional features, such as additional commands and debugging approaches.

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore 4

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

“UEFI Awareness Manuals” (uefi_<x>.pdf): TRACES32 PowerView can be extended for UEFI-
aware debugging. The appropriate UEFI manual informs you how to enable the UEFI-aware
debugging.

Supported Versions

Currently TianoCore is supported for the following versions:

TianoCore on ARM32 and ARM®64 architectures

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore |

5

Configuration

The UEFI Awareness for TianoCore is configured by loading an extension definition file called “tiano.t32”
from the demo directory with the EXTension.CONFIG command. The command takes two parameters that
specify the memory base address and size of the UEFI package. See the file <board>Pkg/<board>Pkg.dsc
of your UEFI implementation. “PcdSystemMemoryBase” rsp. “PcdSystemMemorySize” are the needed
values.

Additionally, load the “tiano.men” menu file (see “TianoCore specific Menu”) and configure the Symbol
Autoloader.

ARM 32-Bit

A full configuration for ARM 32-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

; Specify the memory base address and size,
; see <board>Pkg/<board>Pkg.dsc:

; PcdSystemMemoryBase = 0x80000000

; PcdSystemMemorySize = 0x08000000

; Load the TianoCore Awareness:
EXTension.CONFIG ~~/demo/arm/bootloader/uefi/tiano/tiano.t32 \
0x80000000 0x08000000

; In a TrustZone/Hypervisor environment, you may need to
; specify the access class where the UEFI BIOS runs.

; E.g. 1f TianoCore runs in hypervisor zone:
EXTension.ACCESS H:

; Load the additional menu:
MENU.ReProgram ~~/demo/arm/bootloader/uefi/tiano/tiano.men

; Configure symbol autoloader:
sYmbol .AutoLOAD.CHECKUEFI "do ~~/demo/arm/bootloader/uefi/tiano/autoload "

See also the example scripts in ~~/demo/arm/bootloader/uefi/tiano

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore |

ARM 64-Bit

A full configuration for ARM 64-bit can look like this (the path prefix ~~ expands to the system directory of
TRACE32.):

; Specify the memory base address and size,
; see <board>Pkg/<board>Pkg.dsc:

; PcdSystemMemoryBase = 0x80000000

; PcdSystemMemorySize = 0x08000000

; Load the TianoCore Awareness:
EXTension.CONFIG ~~/demo/arm/bootloader/uefi/tiano/tiano.t32 \
0x80000000 0x08000000

; In a TrustZone/Hypervisor environment, you may need to
; specify the access class where the UEFI BIOS runs.
; E.g. 1f TianoCore runs in hypervisor zone:

EXTension.ACCESS H:

; Load the additional menu:
MENU.ReProgram ~~/demo/arm/bootloader/uefi/tiano/tiano.men

; Configure symbol autoloader:

sYmbol .AutoLOAD.CHECKUEFI "do ~~/demo/arm/bootloader/uefi/tiano/autoload "

See also the example scripts in ~~/demo/arm/bootloader/uefi/tiano

Hooks & Internals in TianoCore

IMPORTANT:
When using GCC on ARM:

The ELF->COFF converter (GenFw) may spoil the debug information when using several text/data sections
(check with "-v"). The linker must combine all sections into one text section and one data section. The
edk2/BaseTools/Scripts directory contains a suitable linker script (GeeBase.lds or previously gec4.4-1d-
script). Please ensure that this script is used when linking a module, e.g. by adding it to the linker flags in the
edk2/BaseTools/Conf/tools_def.template:

--script=$ (EDK_TOOLS_PATH) /Scripts/GccBase. lds

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 7

Features

The UEFI Awareness for TianoCore supports the following features.

Display of UEFI Resources

The extension defines new commands to display various UEFI resources. Information on the following UEFI
components can be displayed:

PEI phase:
EXTension.FV PEI PEI firmware volumes
EXTension.PEIModule PEI modules in FVs
EXTension.HOB PEI PEI HOBs

DXE phase:
EXTension.FV DXE DXE firmware volumes
EXTension.DXEModule DXE modules in FVs
EXTension.DXEDRiVer Loaded DXE drivers
EXTension.HOB DXE DXE HOBs
EXTension.PROTocol DXE Installed DXE protocols
EXTension.ConfigTab DXE configuration table

For a description of the commands, refer to chapter “TianoCore Commands”.

If you want to display the UEFI objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. Enable SYStem.MemAccess or SYStem.CpuAccess (CPU
dependent), but be aware of the limitations (no cache reading, real-time intrusion).

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 8

Symbol Autoloader

The UEFI code is provided by the boot FLASH, but debugging becomes more comfortable when debug
symbols are available.

TRACE32 contains an “Autoloader”, which can be set up for automatic loading of symbol files. The
Autoloader maintains a list of address ranges, corresponding UEFI components and the appropriate load
command. Whenever the user accesses an address within an address range known to the Autoloader, the
debugger invokes the load associated command. The command is usually a call to a PRACTICE script, that
handles loading the symbol file.

The TRACE32 Autoloader has to be set up. This includes the following steps:
1. Autoloader configuration.
2. Scan of the UEFI module table to the Autoloader table.

3. Display of the Autoloader table.

Autoloader Configuration

The command sYmbol.AutoLOAD.CHECKUEFI </oad_command> specifies the command that is
automatically used by the Autoloader to load the symbol information. Typically the script autoload. cmm
provided by Lauterbach is called.

The command sYmbol.AutoLOAD.CHECKUEFI implicitly also defines the parameters that TRACE32 uses
internally for the Autoloader.

The script is provided in the TRACE32 demo directory:

o 32-bit: ~~/demo/arm/bootloader/uefi/tiano/autoload. cmm.
o 64-bit: ~~/demo/arm/bootloader/uefi/tiano/autoload. cmm.
Example:

; Configure symbol Autoloader for 32-bit TianoCore
sYmbol . AutoLOAD.CHECKUEFI "DO ~~/demo/arm/bootloader/uefi/tiano/autoload.cmm"

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 9

Scan the UEFI Module Table

When the Autoloader is configured, the command sYmbol.AutoLOAD.CHECK can be used to scan the
UEFI module table into the Autoloader table and to activate the Autoloader.

Since the UEFI module table is updated by UEFI a re-scan might be necessary.

The point of time at which the UEFI module table is re-scanned can be set very flexibly:

I sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

The default setting is sYmbol.AutoLOAD CHECK OFF. With this setting TRACE32 re-scans the UEFI
module table only on request by using the sYmbol.AutoLOAD.CHECK command.

With sYmbol.AutoLOAD.CHECK ON, TRACES32 re-scans the UEFI module table after every single step
and whenever the program execution is stopped. This significantly slows down the speed of TRACE32.

With sYmbol.AutoLOAD.CHECK ONGO, TRACE32 re-scans the UEFI module table whenever the
program execution is stopped.

NOTE: The Autoloader can load the symbol information for the SecCore, the PeiCore, all
PEI modules and the DXE core as soon as the memory mode (e.g. 32-bit protected
mode) used by UEFI is activated.

The Autoloader can only load symbol information for DXE modules that are
already loaded.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 10

Display the Autoloader Table

The command “sYmbol.AutoLOAD.List” shows a list of all known address ranges/components and their
symbol load commands.

2 BusYmbol AutoLOAD.List

S Delete All || & Check

address

N:0000000079585000--00000000795B7ASF

N:0000000079588000--00000000795B90FF
N:000000007958A000--00000000795BE7 9F
N:00000000795BC000--00000000795BCE3F
N:0000000079580000--00000000795BE21F
N:(0000000079/B3000--00000000/9/B3E1F

name
JpegDecoder
Scriptsave
StatusCodeReport W
RestoreMtrr i
EmuPeiGate

{.m

N:0000000079784000--00000000797B707F |PchspiRuntime
N:0000000079788000--00000000797B897F |CpuTo S
N: 000000007 97E89000--00000000797BA77F |Runtime
N:00000000797BE000--000000007 97BECFF |OemServicesDriver Set
N:00000000FFF40064--00000000FFF419A3 |PeiMain Clear
N:00000000FFF41AAC--00000000FFF42E4B [MonoStatusCode L M—
N:00000000FFF42F3C--00000000FFF4323B |PeiEventLog W
N:UUUUUUUUFFF4332C——UUUUUUUUFFF4368BJPeiEVentHand]er W >
rl (i1} 3

Module address range

Module name

Module status
dyn: (no meaning)

+

4

load: symbols for module are loaded
2 BisYmbol AutoLOAD.List folr®| =)
2K Delete All | € Check
name dyn |load [cmd i
IpegDecoder W ¥ |do ..\..\..\x86-64\autoload " IpegDecoder"” Ox7/CO6F1& 0x2 0x79585000 0x0 -
ScriptSave W do ..\, .\, \x86-64\autoload "ScriptSave" 0x77C08398 0x2 0x79588000 0x0
StatusCodeReport W do ..\..\..\x86-64\autoload "StatusCodeReport" 0x77C08D18 0x2 0x795BA000 Ox0
RestoreMtrr W do ..\..\..\x86-64 autoload "RestoreMtrr" O0x77CAG018 0x2 Ox795BC000 0x0
EmuPeiGate do Y.\ \x86-64\autoload "EmuPeiGate" 0x77CA6398 0x2 Ox7958D000 0x0

0x77803018 0x2 0x797B3000 0x0

PchSpiRuntime W do ..\..%.. \x86-64\autoload PchSpiRuntime” 0x77803918 Ox2 0x797B4000 0x0
Cpulo W do ..\ N \x86-64\autoload "CpuIo" 0x77C04698 0x2 0x797B8000 0x0

Runtime W do ..\..\..\x86-64\autoload "Runtime" Ox77CO4F18& 0x2 0x797B9000 0x0
NemServicesDriver W do ..%\..%\..\x86-64 autoload "OemServicesDriver" 0x77C08918 0x2 0x797BBO00 0x0
PeiMain W W |do LN\ L \x86-64\autoload "PeiMain" OxFFF40048 0x1 OxFFF40064 0x0

onoStatusCode W do ..\..\..\x86-64 autoload "MonoStatusCode" OxFFF41C18 Ox1 OxFFF41AAC 0x0
PeiEventLog W do Y.\ . \x86-64%\autoload "PeiEventLog" OxFFF430B0 Ox1 OxFFF42F3C 0x0
PeiEventHandler W do Yot \x86-64%autoload "PeiEventHandler" OxFFF434A0 O0x1 0xFFF4332C 0x0 -

Load command

Parameters for load command

Autoload context menu

Touch Advise TRACE32 to load the symbols for the selected module now.
Set Mark selected module as loaded.
Clear Delete symbols for the selected module in TRACE32.

©1989-2024 Lauterbach

UEFI Awareness Manual Ti

anoCore

11

TianoCore Specific Menu

The menu file “tiano.men” contains a menu with TianoCore specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called TianoCore.

. Use the PEI submenu to launch windows displaying PEI specific resources.
. Use the DXE submenu to launch windows displaying DXE specific resources.
J Use the Symbol Autoloader submenu to configure the symbol autoloader.

See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Set Loader Script allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 12

Debugging UEFI Phases of TianoCore

UEFI runs in several “phases”. It starts with the “Security” (SEC) phase which immediately switches to the
“Pre-EFI Initialization Environment” (PEI) phase. After this phase ended, control is given to the “Driver Exe-
cution Environment” (DXE) phase. Shortly, before the OS is booted, the “Boot Device Selection” (BDS)
phase is running.

Each of this phases needs a different debugging environment. See below for a detailed description of each
phase.

Debugging from Reset Vector

TRACE32 is a JTAG-based debugging tool and, as such, allows the user to start debugging their system
right from the reset vector. It is possible to walk through the very first steps of the start-up to detect FLASH
problems or faulty reset behavior.

Shortly after reset, the system switches into the SEC phase.

SEC Phase

TianoCore itself does not provide an SEC phase. It is up to the developer to implement a custom SEC
phase, and as such out of the scope of this document

PEI Phase

If you want to debug the PEI phase right from the start, halt the system at the reset vector. Then load the
symbols of your PEI core module with the symbol autoloader, and go until the desired entry point, e.g:

sYmbol .AutoLOAD.CHECK
sYmbol .AutoLOAD.Touch "ArmPlatformPrePiUniCore"
Go PrePiMain

Inspect the PEI resources with the menu items in the “PEI” submenu.

DXE Phase

After PEI phase completed, it hands off control to the DXE core. To debug the DxeCore from start, load the
symbols of “DxeCore” just before PEI jumps into the DxeCore and set a breakpoint at “DxeMain”. DxeMain
then starts the DXE dispatcher.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 13

For debugging a DXE driver from its entry point, a special script “go_dxedrv” is available in the ~~/demo
directory. Call this script with the name of the DXE module before the module is started. E.g. to debug the
DXE driver “Metronome”:

DO go_dxedrv Metronome

This script sets a breakpoint in the DXE core code and waits until the specified DXE module is loaded. Then
it sets a breakpoint onto the module entry point and halts there. You can then start debugging the module

from scratch.

BDS Phase

TianoCore implements the BDS phase as DXE driver. To debug the BDS phase, debug the “ArmPlat-
formBds” module like shown in “DXE Phase”.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 14

TianoCore Commands

EXTension.ConfigTab

Display DXE configuration table

Format:

EXTension.ConfigTab

Displays the DXE configuration table.

M

o B:EXT.ConfigTab =n| Wl <
addrezs |[type pointer
debug agent 3FAL5000 L
DXE services 3FAGLACS
HOB Tist 3FA12010
memory type information |3FAG1438
image table 3FABLCED
ACPI 1.0 3F87AQDOD
ACPI 2.0/3.0 3F37A0L4
SMBIOS table 3F194000

EXTension.DXEDRiVer

Display loaded DXE drivers

Format:

EXTension.DXEDRiVer

Displays a table with all DXE drivers that DxeCore already loaded into the system.

o B:EXT.DXEDRiVer =n| Wl <
magic name baszeaddr |entry build path |
3FAZAALD [DxeCore 3FA4ADODD [3FA4DZE0 [e:\bTdk\Build CrownBa .
3F948810 |PcdDxe 3F8FO000 |3FBF0260 |e:\bldk\Build' CrownBa
3F9AB190 |[CpuloDxe 3F8DA0D00 |3FBDAZ60 |e:'\bldk\Build“CrownBa
3F955C10 |[Cpulo2Dxe 3F8DS000 |3F8D8260 |e:'\bldk\Build'CrownBa
3F955690 |ReportStatusCodeRoute |3FBD5000 |3F8D5260 |e:'\bldk'\Build\CrownBa
3F955010 |SectionExtractionDxe |3FSCO000 |3F8C0260 |e:'\bldk'\Build\CrownBa
3FBEFA90 |[SecurityStubDxe 3F8D3000 |[3F8D3260 |e:bldk\Build" CrownBa
3FBEF590 |[CpuArchDxe 3FBE1000 |[3F8B1260 |c:‘\src'Build\CrownBay
3FBBEBF10 |Metronome 3FBEBO00 |3FB8B6260 |e:'\bldk‘\Build CrownBa
3FBEBALD |RuntimeDxe 3FBEB000 |[3F8E8260 |e:'.bldk\Build CrownBa
3FBEB510 |FaultTolerantwriteDxe |3F839000 |3F839260 |e:'\bldk'\Build\CrownBa
3FBEBO10 |ResetSystemRuntimeDxe |3F834000 |3F834260 |c:‘\src\Build\CrownBay
3FB91E10 |DevicePathDxe 3F889000 |[3F889260 |e:'bldk\Build" CrownBa
3F891390 |FvbRuntimeDxe 3F884000 |[3F884260 |c:'\src'\Build\CrownBay
3F892E90 |DataHubDxe 3F882000 |3F882260 |e:'\bldk\Build CrownBa =
4 M 3

You can sort the window to the entries of a column by clicking on the column header.

ur11€1€;k:1

is a unique ID, used by the UEFI Awareness to identify a specific driver.

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore | 15

EXTension.DXEModule

Display DXE modules

Format:

EXTension.DXEModule

Displays a table with all DXE modules found in the system (firmware volumes or HOBs).

&% B:EXT.DXEModule

(=[O el

magic name baszeaddr |entry build path

3FAB507E |DxeCore 3FAB5094 [3FAB52ZF4 [e:\bTdk\Euild CrownBayPlat .
3FA7C198 |PcdDxe 3FA7CLBC |3FA7C41C |e:'\bldk\Build“CrownBayPlat
3FAB1820 |CpuloDxe 3FAB1854 |3FAB1AB4 |e:\bldk\Build CrownBayPlat
3FAB3478 |[CpuloZDxe 3FAB34AC |3FAB370C |e:\bldk\Build CrownBayPlat
3FAB4C10 |ReportStatusCodeRoute |3FAB4C44 |3FAB4EA4 |e:\bldk\Build\CrownBayPlat
3FABBF98 |StatusCodeHandlerRunt |3FABGFDC |3FAB723C |e:\bldk\Build\CrownBayPlat
3FABELCE |SectionExtractionDxe |3FABE20C |3FABE46C |e:\bldk\Build\CrownBayPlat
3FA05ES |[SecurityStubDxe 3FA9061C |3FA9087C |e:\bldk\Build CrownBayPlat
3FA92090 |[CpuArchDxe 3FA920C4 |3FA92324 |c:\src'\Build\CrownBayPlatf
3FA96590 |CpuMpDxe 3FA96630 |3FA96890 |c:\src'\Build\CrownBayPlatf
3FAAZEES |Metronome 3FAAZEEC |3FAA314C |e:\bldk\Build CrownBayPlat
3FAA41D0D |BdsDxe 3FAAAZ38 |3FAA4498 |c:'\srch\Build\CrownBayPlatf
3FABE1138 |watchdogTimer 3FAB117C |3FAB13DC |e:\bldk\Build CrownBayPlat
3FAE2488 |RuntimeDxe 3FAB24BC [3FAB271C |e:\bl1dk\Build“CrownBayPlat ~
] 1 ¢

You can sort the window to the entries of a column by clicking on the column header.

“magic” is a unique ID, used by the UEFI Awareness to identify a specific module.

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them

opens appropriate windows.

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore

16

EXTension.FV Display firmware volumes

Format: EXTension.FV [PEI | DXE [<fv_address>]]

Displays a table with the firmware volumes of the PEI or DXE phase.

If an address of a firmware volume is specified, the command displays the contents of this FV.

&b B:EXT.FV DXE [F=5EoR 5
type [length quid i
boot [000CO000 [Firmware file system -
hob |00032000 |system nv data FV
hob |00010000 |[firmware file system
hob |00CO0000 |[firmware file system
1 L2
oo BHEXT.FV, 0x74377010 = = =)
magic Tength quid |
74377010 [00C00000 [Firmware File system -
files: magic size type name
1 74377058 000F22 peim SmmReTocPeim
= 74377FB0 |0OF750 dxe core [DxeMain
sect: magic |size type name
74377F98 |[DOF724 pe32 X:\Project’\Insyde\Sabinoluefi64'\X64" DxeMain. pdb
743876BC 000014 ui DxeMain
+ 74387600 005FAS peim PpisNeededByDxeCore
+ 7438D678 00127C driver
= 7438E8F8 |00089C |driver
sect: magic |size type name
7438E910 |D00&84 uid def [FCIBCDBO 7D31 49AA 93 6A A4 60 0D 9D DO 83
+ 7438F198 001808 river
+ 74390940 0009C8 driver %
4 m 13

“magic” is a unique ID used by the UEFI Debugger to identify a specific firmware volume or file.

The “magic” fields are mouse sensitive, double clicking on them opens appropriate windows. Right-clicking
on them will show a context menu.

The debugger tries to detect the address of the boot firmware volume automatically. If this fails, specify the
address of the boot FV manually with the EXTension.Option BOOTFV command.

EXTension.HOB Display HOBs

Format: EXTension.HOB [PEI | DXE]

Displays a table with the hand off blocks of the PEI or DXE phase.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 17

&% B:EXT.HOB DXE

(=[O el

3FA1Z2048 |guid ext
3FA1Z6A8 |guid ext
3FA1ZBD0 |guid ext
3FA12C08 |guid ext
3FA12D20 |mem pool
3FA1ZD30 |mem pool
3FA1ZDAS |guid ext
3FA1ZE30 |guid ext
3FA1ZEBB |resource

IEEEEEEEE

3FA1ZEES |cpu

3FALZEFE |resource
3FALZF28 |resource
3FALZF58 |resource
3FA1ZF88 |resource

NEEEEE

address |[type content
= 3FA12010 |handoff version EN L
bootmode full config
memory top 3FEFOOO0

memo
free
free
end

guid: performance protocol,

guid: EA296D392 0B69 423C 8C 28 33 B4 EO A9 12 68 ,

guid: 9B3ADA4F AES6 4C24 8D EA FO 3B 75 58 AE 50

guid: BCFDESCS D6E2 40F3 8E 97 02 30 7C C9 8B 7C ,

guid: HT BIST HOB,

guid: 6FBC2E35 FEF4 448D 82 56 E1 1B 19 D6 10 77 ,

type memory-mapped I,/0

base FECE0000

Tlength 00080000

attributes present initialized uncachable

=ize mem: 20, size i/o: 10,

type: system memory, base: 3CAE0000, length: 03410000, at
type: system memory, base: 00000000, length: 000ADQDO, at
type: reserved memory, base: 00040000, Tength: 00060000,
type: system memory, base: 00100000, length: 3C9E000D0, at ~

ry bottom |3CAEQO0QD
memory top |3FAZDOOO
memory bot |3CEOL1718
of hob Tist [3CBO1710

1 3

The “address” fields are mouse sensitive, double-clicking them opens appropriate windows. Right-clicking

on them will show a context menu.

EXTension.Option

Set awareness options

Format:

<option>:

EXTension.Option <option>

BOOTFV <address>
PEIHOBS <address>
SYSTABLE <address>
UCODE <address>

Sets various options to the awareness.

BOOTFV

PEIHOBS

SYSTABLE

UCODE

Set the base address of the boot firmware volume.
Set the base address of the HOB list in PEI phase.
Set the base address of the EFI System Table

Set the base address of the microcode table.

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore

18

EXTension.PEIModule

Display PEI modules

Format:

EXTension.PEIModule

Displays a table with all PEI modules found in the system.

&% B:EXT.PEIModule

(=[O el

4

M

type |baseaddr [entr build path

boot [FFFEFF44 [FFFCO1A4 [e:ly Build\CrownBayPT

boot |FFFCE91C |FFFCEE7C |e:bldk“Build\CrownBayP1
FFFCBDCO |StatusCodePei boot |FFFCBCE4 |FFFCBEC4 |e:'bldk“Build\CrownBayP1
FFFCADFO |PeiVariable boot |FFFCACSC |FFFCAEFC |e:'bldk“Build\CrownBayP1
FFFCC2CE |[CpuPei boot |FFFCC164 |FFFCC3C4 |c:hsrc’Build“CrownBayPla
FFFCEG88 |CapsulePei boot |FFFCES44 |FFFCE7A4 |c:hsrc’Build“CrownBayPla
FFFDO790 |MemoryInitPei boot |FFFDO&34 |FFFD0O834 |c:‘src'\Build'CrownBayPla
FFFD13E0 |SmmAccessPel boot |FFFD129C |FFFD14FC |c:“src'Build'CrownBayPla
FFFD2668 |PlatformPeim boot |FFFD2538 |FFFD2798 |c:‘src'\Build“CrownBayPla
FFFDE6SE |Dxelpl boot |FFFD8558 |FFFD&7BS |e:\bldk‘\Build\CrownBayP1
FFFFDEES |SecCore boot |FFFFD548 |FFFFFBCE |c:‘src'\Build“CrownBayPla

3

You can sort the window to the entries of a column by clicking on the column header.

“magic”

The “magic” fields are mouse sensitive. Right-click on them to get a local menu. Double-clicking on them
opens appropriate windows.

EXTension.PEISvc

is a unique ID, used by the UEFI Awareness to identify a specific module.

Display PEI services

Format:

EXTension.PEISvc

Displays a table with all available PEI services.

o BHEXT.PEISve = ==
service address Tabel

Tnstall ppl FFF40D06 [PeiInstallPpi -
reinstall ppi FFF40D91 PeiReInsta]qppi

locate ppi FFF40C06 |PeilLocatePpi

notify ppi FFF40DF7 |PeiNotifyPpi

get boot mode FFF40B43 |PeiGetBootMode

set boot mode FFF40B63 |PeiSetBootMode

get hob Tist FFF40A2F |PeiGetHobList

create hob FFF40A42 |PeiCreateHob

ffs find next volume |FFF409CC |PeiFvFindNextVolume

ffs find next file FFF409B5 |PeiFfsFindNextFile E
ffs find section data |FFF40943 |PeiFfsFindSectionData 3
install pei memory FFF406E3 |[PeiInstallPeiMemory

allocate pages FFF40557 |PeiAllocatePages

allocate pool FFF40610 |PeiAllocatePool

copy memory FFF41510 |CopyMem

set memory FFF40638 |PeiCoreSetMem

report status code FFF40514 |PeiReportStatusCode

reset system FFF404E2 |PeiCoreResetSystem

cpu io

pci config

4 m 3

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore

19

EXTension.POST

Display POST code

Format: EXTension.POST

(Only available on x86/x64 targets.)

Displays the Power-On Self-Test code.
o BEEXT.POST [= | & |[=23)

POST code

4 T

89 pei1 enter DXE IPL -

EXTension.PROTocol

Display installed protocols

Format:

EXTension.PROTocol

Displays the list of installed DXE protocols.

&% B:EXT.PROTocol

(=[O el

magic

uid

| magic
- 791BEF93
if: magic
791EDF13
77CA7I18
77CATT71S
77CA7518
77CA7118
77C0O7018
77C0O7B18
77C07818
77C07518
77C07218
77COSF13
77C0O5B13
77C05518
77C05113
77802018
77802418
77802618
77802318
-1 791BEE93
if: magic
791EDELS
791BE193
791BED93
791BCESS
791BCD93
791BCC93
791BCE93
791BCASSE

NEEEEEEE

g
EfiloadedImageProtocoT L
a1 |baze name

pro o base
74168BCE |7415D000 |DxeMain

77EBEE40 |795BD0O00 |EmuPeiGate
77FFOE40 |795BCO00 |RestoreMtrr
78025E40 |795BA000 |StatusCodeReport
781EBE40 |797BB0O00 |OemSerwvicesDriver
781EDE40 |795B8000 |ScriptSave
78220E40 |795B5000 |JpegDecoder
78232E40 |795B4000 |TgaDecoder
7828CE40 |795B3000 |PcxDecoder
7828DE40 |795B1000 |GifDecoder
782AFE40 |797B9000 |Runtime

78325E40 |795AC000
7913BE40 |[797B8000 |Cpulo
7917FE40 |795A8000 |Ebc

79180E40 |795A7000 |ActiveBios
791A9E40 |797B4000 |PchSpiRuntime
77801E40 |795A6000 |PchSerialGpio
77801C40 |797B3000 |SmmControl
EfiloadPeImageProtocol

74168690

EfiDecompressProtocol

EB4CF29C 191F 4EAE 96 E1 F4 64 EC EA EA 0B

9A44198E A4AZ 44E6 BA 1F 39 BE FD AC 89 6F

EfiSecurityArchProtocol

EfiCpuArchProtocol

EfiMetronomeArchProtocol

EfiTimerArchProtocol v
1 3

©1989-2024 Lauterbach

UEFI Awareness Manual TianoCore | 20

TianoCore PRACTICE Functions

There are special definitions for TianoCore specific PRACTICE functions.

EXT.DXEDRV.ENTRY() Entry address for DXE driver

Syntax: EXT.DXEDRV.ENTRY (<dxedrv_magic>)

Returns the entry address for the specified DXE driver.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.DXEDRV.MAGIC() Magic of DXE driver

Syntax: EXT.DXEDRV.MAGIC(" <dxedrv_name>")

Returns the “magic” of the specified loaded DXE driver.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.DXEDRV.PATH() Build path for DXE driver

Syntax: EXT.DXEDRV.PATH(<dxedrv_magic>)

Returns the build path for the specified DXE driver.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 21

EXT.DXEFILE.PATH() Build path for DXE module

Syntax: EXT.DXEFILE.PATH(<dxem_magic>)

Returns the build path for the specified DXE module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

EXT.PEIM.ENTRY() Entry address for PElI module

Syntax: EXT.PEIM.ENTRY(<peim_magic>)

Returns the entry address for the specified PEI module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

EXT.PEIM.MAGIC() Magic of PEI module

Syntax: EXT.PEIM.MAGIC(" <peim_name>")

Returns the “magic” of the specified PElI module.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

EXT.PEIM.PATH() Build path for PEI module

Syntax: EXT.PEIM.PATH(<peim_magic>)

Returns the build path for the specified PEI module.
Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

©1989-2024 Lauterbach UEFI Awareness Manual TianoCore | 22

	UEFI Awareness Manual TianoCore
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	ARM 32-Bit
	ARM 64-Bit
	Hooks & Internals in TianoCore

	Features
	Display of UEFI Resources
	Symbol Autoloader
	Autoloader Configuration
	Scan the UEFI Module Table
	Display the Autoloader Table

	TianoCore Specific Menu

	Debugging UEFI Phases of TianoCore
	Debugging from Reset Vector
	SEC Phase
	PEI Phase
	DXE Phase
	BDS Phase

	TianoCore Commands
	EXTension.ConfigTab Display DXE configuration table
	EXTension.DXEDRiVer Display loaded DXE drivers
	EXTension.DXEModule Display DXE modules
	EXTension.FV Display firmware volumes
	EXTension.HOB Display HOBs
	EXTension.Option Set awareness options
	EXTension.PEIModule Display PEI modules
	EXTension.PEISvc Display PEI services
	EXTension.POST Display POST code
	EXTension.PROTocol Display installed protocols

	TianoCore PRACTICE Functions
	EXT.DXEDRV.ENTRY() Entry address for DXE driver
	EXT.DXEDRV.MAGIC() Magic of DXE driver
	EXT.DXEDRV.PATH() Build path for DXE driver
	EXT.DXEFILE.PATH() Build path for DXE module
	EXT.PEIM.ENTRY() Entry address for PEI module
	EXT.PEIM.MAGIC() Magic of PEI module
	EXT.PEIM.PATH() Build path for PEI module

