LAUTERBACH A

Establish Your Debug Session

Establish Your Debug Session

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Debugger Getting Startedcccoccciiiiinminr e r=
Establish Your Debug SeSSION ... sinmms s s smss s s ssmss s s ssmmss s 1
L 1= (o 4
Establish your Debug SeSSIONcccccciiiiiismmiiiismsriinssss s s sss s s sssssss s snnsses 5
Key TRACE32 Setup Commands 5
The PER.view/PER.Set Command 5
The Data.LOAD Command 7
Debug Scenarios 9
Establish the Debug Communicationccciciiiciiiinnnn e 11
(9 1Y o1 TR T o= 4T T Lo T 17
Onchip/NOR Flash Programming 18
The Flash Programming File 18
On-chip Flash Programming 19
Off-chip NOR Flash Programming 24
Configure the TRACE32 OS Awareness 35

[1= W T ST T =T 4T T 4 o 36
Typical Boot Sequence 36
Flash Programming (NAND/Serial/leMMC) 41
The Flash Programming File and the Debug Symbol File 41
NAND Flash Programming (non-generic NAND Flash Controller) 42
eMMC Flash Programming 54
Establish the Communication 55
Load the Debug Symbols 55

[1Y o T o TR =T 4T T Lo T 56
Run the Boot Loader 57
Load Application (and/or OS) Code and Debug Symbols 58
Load Debug Symbols only 58
Configure the TRACE32 OS Awareness 58
Complete Setup Example 58

[1Y o T a TR =T 4T T Lo 59
Write a Script to Configure the Target 60
Load Application (and/or OS) Code and Debug Symbols 60
Configure the TRACE32 OS Awareness 60
©1989-2024 Lauterbach Establish Your Debug Session 2

Start-Up Scripts
Write a Start-Up Script
Run a Start-up Script
Automated Start-up Scripts

61
61
62
62

©1989-2024 Lauterbach

Establish Your Debug Session

3

Establish Your Debug Session

Version 06-Jun-2024

History

16-Oct-2014 Initial version of the manual.

23-Jan-2020 Full revision of the manual.

©1989-2024 Lauterbach Establish Your Debug Session | 4

Establish your Debug Session

Before you can start debugging, you need to set up the debug environment. The necessary configurations
depend significantly on the specific debug scenario.

Key TRACE32 Setup Commands

The PER.view/PER.Set Command

A debug setup requires configuring various core/chip-related registers. The main commands to perform
these configurations are:

PER.Set.simple <address>|<range> [% <format>] <string> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [%<format>] <string> Modify memory-mapped
configuration register/on-chip
peripheral

The main command to inspect the configurations is:

PER.view <file> [<tree_search_item>] ISpotLight Display the configuration registers/on-
chip peripherals, highlight changes

©1989-2024 Lauterbach Establish Your Debug Session | 5

Example: Disable Watchdog

; Display “Watchdog Timer” configuration registers, highlight changes
; a comma is used instead of the <file>
PER.view , "Watchdog Timer" /SpotLight

" B:PER.view, "Watchdog Timer" /SpotLight ===
iatchdog Timer
B0Z1 PV 80 WT EnabTed €5 16 IG Disabled FRE Enabled
8000 CRv 8000 E
6429 Cv 6429

4 | i +

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0

B:PER.view, "Watchdog Timer" /SpotLight =Nl <
B Watchdog Timer

R PV 00 WT Disabled (S 16 1G Disabled RE Dasabled
8000 CRvV 8000 i
#4458 Cv 4458

4| 1] L

©1989-2024 Lauterbach Establish Your Debug Session | 6

The Data.LOAD Command

Setting up a debug environment involves loading the code to be debugged and the associated debug
symbols. TRACE32 PowerView supports a wide range of compilers and compiler output formats. You can
find a list of supported compilers on the Lauterbach website.

The most important commands for loading the code to be debugged and the associated debug symbols are:

Data.LOAD.<sub_cmd> <file> [I<option> Load code and debug symbols
Data.LOAD.Binary <file> [<option> Load only code
Data.LOAD.<sub_cmd> <file> INOCODE /<option> Load only debug symbols
Examples:
Data.LOAD.E1f demo-flash.elf ; Load code and debug symbols from
; ELF file
Data.LOAD.AIF demo.axf ; Load code and debug symbols from
; AIF file
Data.LOAD.E1f * ; Load code and debug symbols from
; ELF file

; open file browser to select file
Data.LOAD.El1f demo.elf /NoCODE ; Load debug symbols from ELF file

Data.LOAD.Binary my_app.bin ; Load code from binary file

A in-depth introduction to the Data.LOAD command is given in the chapter “Load the Application
Program?” (training_hll.pdf).

©1989-2024 Lauterbach Establish Your Debug Session | 7

The TASK.CONFIG Command

Today most applications use an operating system. TRACE32 PowerView includes a configurable target-OS

debugger to provide symbolic debugging of operating systems.

Lauterbach provides ready-to-run configuration files for most common available OSes.

To get the appropriate information on your OS, proceed as follows:

1. Open the online help and deactivate the help filter.

o Index l!

4 Find
-E; Tree

Operating Systern User Manual

Jet

Processor Architecture Manual

LSRN

D
9 B HELP

(=[O sl

; ? Contents " 4 Index ” 4 Find

[E5openal | [Bhcoseal | [@ more| [@ less |

I [T use fitter: bdmarm;icrstr;icretm;

B i+ e
=l
=)

Jis
HEE

= About the TRACE3Z OnTine Help
TRACE3Z Glossary
RACE32 Debugger Getting Started
RACE32 Documents
AAh RACE3Z Training
TRACE32 Installation
TRACE32 Technical Support
= TRACE3Z Index
= TRACE3Z Directory
4

m |>|_

1

2. Open the TRACE32 OS Awareness Manual for your operating system.

B HELP

(=[O sl

? Contents " 4 Index ” #3Find

[open al] [5 close all] [more] [2 less] [use fiter: bdmarm;icrstm;icretm;

® Custom Trace User's Guide

AutoFocus User's Guide

PowerTrace Serial User's Guide
System Trace

@ Bootloader Awareness Manuals
IEFI Debuggers

@05 Awareness Manua

@05 Awareness Manual ARTK

@05 Awareness Manual Atomthreads
@05 Awareness Manual ARTX-166

@05 Awareness Manual Chibi0S/RT

@ 05 Awareness Manual Chorus Classic
@05 Awareness Manual Chorus Micro
@05 Awareness Manual Cmicro

@05 Awareness Manual CMX

@05 Awareness Manual CMX-TINY+

@05 Awareness Manual D5P/BIOS

[# TRACE3Z Extension Development
1 AMX

|

©1989-2024 Lauterbach

Establish Your Debug Session

8

Debug Scenarios

The necessary setup for your debug session depends crucially on the debug scenario. The graphic below
shows you that there are mainly four debug scenarios.

Establish the communication between
the debugger and core(s)

YES Is the software NO

running out of flash?

Is the software
running out of
Onchip/NOR flash?

YES

Debug Debug
Scenario 1 Scenario 2
Is a boot loader
available?
Debug Debug
Scenario 3 Scenario 4

©1989-2024 Lauterbach Establish Your Debug Session | 9

After the communication between the debugger and the core(s) is established, there a four debug
scenarios. Each debug scenario requires a different setup.

L Debug Scenario 1

The boot loader or the application (and/or the operating system) under debug is running out of
Onchip/NOR flash.

L Debug Scenario 2

The boot loader under debug is running out of a flash e.g. a NAND or serial flash.

. Debug Scenario 3

The application (and/or the operating system) under debug are running out of RAM and a ready-
to-run boot loader configures the target system and especially the RAM for this debug scenario.

. Debug Scenario 4

The application (and/or the operating system) under debug are running out of RAM. The target
configuration, especially the RAM configuration has to be done by TRACE32 commands,
because there is no ready-to-run boot loader.

©1989-2024 Lauterbach Establish Your Debug Session | 10

Establish the Debug Communication

1. Select the core/chip

¢

2. Adjust the JTAG clock if required

'

3. Set the required options for your
core/chip

4. Establish the communication

©1989-2024 Lauterbach Establish Your Debug Session | 11

Select the target core/chip

Misc Trace Perf Cov (

Change Frame L4
8 CPU Registers
FPU Registers
o Peripherals

In Target Reset
Reset CPU Registers

éy Bu:5YStem
Mode
@ Down
(©) NoDebug
() Prepare
7 Go
7 Attach
() StandBy
Up (StandBy)
D Up

reset

RESetOut

CFU

—
L3

Inform the debugger about the core/chip on your target, if an automatic detection of the core/chip is

[E=H =R X1
MemAccess Option Option DisMode
DAP [C] masKasMm [[Ipacr @ AUTO

) TSMON3 [Tl MASKHLL [CIMMUSPACES | | () ACCESS

©) RealMON TURBO [CImPu ©) ARM

) TrkMON [“]BigEndian [¥] cFLUSH) THUMB

*) GdbMON [¥] ResBreak

@ Denied [ClmTpIs [T amea

CpuAccess DBGACK [NODATA
© Enable [7] EnReset [FExEC
@ Denied W TRST [EspLIT

) Nonstop [C] PwRDWN

WaitReset
OFF

JtagClock

10.0MHz ~
Hesvscrl (o=@ ==

CortexR™*
CortexR4 -
CortexR4F

ortexR7MPCore

4

not possible. Wild card symbols * or ? are allowed.

SYStem.DETECT CPU
SYStem.CPU <cpu>

SYStem.CPU CortexR5

SYStem.CPU CortexR5*

Auto detection of CPU
Select the CPU/chip

©1989-2024 Lauterbach

Establish Your Debug Session

12

2. Adjust the JTAG clock

The debugger uses a default JTAG clock of 10 MHz. Adjusting the JTAG clock might be necessary:

- if a fixed relation between the core clock and the JTAG clock is specified.

éy B::5YStem
Mode
@ Down
~) NoDebug
() Prepare
© Go
() Attach
_) StandBy

Dup

reset

RESetOut

CPU

CortexR5

Up (StandBy)

Option
DACR
[C] MMUSPACES
[C1mPU
[¥] CFLUSH

[C]AMBA
[[InoDATA
[ExEC
[CspLIT

=0 E=H =
DisMode

@ AUTO

©) ACCESS

) ARM

) THUMB

CONFIG
DETECT

MemAccess Option
DAP [Clmaskasm
©) TSMON3 [C] MASKHLL
©) RealMON TURBO
) TrkMON [“]BigEndian
) GdbMON [#] ResBreak
@ Denied [CmTpIs
CpuAccess DBGACK
©) Enable [¥] EnReset
@ Denied [TRST
) Nonstop [PwWRDWN
WaitReset
OFF

JtagClock

10.0MHz]

5.0MHz

10.0MHz

25.0MHz

Rick

ARtck10.0MHz

Ctck 10.0MHz

CRtck 10.0MHz

<other>

I SYStem.JtagClock <frequency>

SYStem.JtagClock 1.MHz

SYStem.JtagClock 100.kHz

Select the JTAG clock

©1989-2024 Lauterbach

Establish Your Debug Session

13

3.

Set the required options for your core/chip

Some cores/chips require additional settings before the communication can be established.

éy B::5YStem
Mode MemAccess
@ Down DAP
©) NoDebug (£ TSMON3
() Prepare) RealMON
_) Go) TrkMON
*) Attach ~) GdbMON
() Standey @ Denied
Up (StandBy) CpuAccess
D Up Z Enable
@ Denied
reset (2 Nonstop
CPU JtagClock
10.0MHz

-

=R |EeH
Option Option DisMode
[C] IMASKASM DACR @ AUTO
[T IMASKHLL [CIMMUSPACES | |) ACCESS
TURBO [CImPu) ARM
[C] BigEndian [¥] CFLUSH ©) THUMB
ResBreak
[ClmrpIs [C]AMBA
DBGACK [T NODATA
EnReset [CExEC
TRST [CspLIT
[Tl PWRDWN
WaitReset
OFF

<—— Additional settings

For details refer to the Processor Architecture Manual.

[Fee]

i 72 Contentsu .

$9Find

-E; Tree

ﬁ TRACE32 PowerView User Manual

voe Processor Architecture Manual

ﬁ Debugger Users Guide

Demo Scripts

Lauterbach Homepage
Support
JA About TRACE32...

©1989-2024 Lauterbach

Establish Your Debug Session |

14

Establish the communication

The most common way to establish the communication between the debugger and the core(s) is Up.

éy B::5Y5tem
Mode
) Down
~) NoDebug
() Prepare
) Go
() Attach
_) StandBy
Up (StandBy)

» @ Up

reset

RESetOut

CFU

55PV310

MemAccess

() DAP

) TSMON3

©) RealMON
) TrkMON

©) GdbMON
@ Denied

CpuAccess

©) Enable
@ Denied

(©) Nonstop

JtagClock
12.0MHz

-

Option

[C] mASKASM
[C] MASKHLL

TURBO

[“]BigEndian
[[] ResBreak
[ClmTpIs
[V] DBGACK
[¥] EnReset
[VITRST
[Tl PWRDWN
WaitReset
100.000ms

Option

[pACR

[C] MMUSPACES
[C1mPu

[¥] CFLUSH

[C]AmBA
[CInoDATA
[CExEC
[CspLIT

f=lle =
DisMode

@ AUTO

©) ACCESS

©) ARM

) THUMB

CONFIG
DETECT

If Up is selected, the following steps are performed:

Reset of the core/chip

- Initialization of the communication between the debugger and the core(s)

- Stop of the core(s) at the reset vector

SYStem.Up

Establish the communication between the debugger and the

core(s)

©1989-2024 Lauterbach

Establish Your Debug Session

15

A second useful way to establish the communication between the debugger and the core/chip is
Attach. Attach allows to connect the debugger to an already running core/chip.

ébB::S\"Stem

Mode

@ Down

_) NoDebug

_ Prepare

' Go
9’ -IL"}Attach
_"StandBy

Up (StandBy)
D up

reset

RESetOut

CPU

CortexA8

MemAccess
_ DAP

_) TSMOM3
_! RealMON
' TrkMON
! GdbMON
@ Denied
CpuAccess
_! Enable
@ Denied

_) Nonstop

JtagClock
12.0MHz

-

Option
[l MASKASM
[Tl MASKHLL
TURBO
[“]BigEndian
[[] ResBreak
[ClmToIs
[¥] pBGACK
[¥] EnReset
[ZITRST
[C] PWRDWN
WaitReset
100.000ms

Option
[CIpacr
[T MMUSPACES
[CImPu
[¥] CFLUSH

[C]aMBA
[CInopaTA
[Clexec
[ClspLr

=0 =
DisMode

@ AUTO

*) ACCESS

) ARM

) THUMB

CONFIG
DETECT

If Attach is selected, the following step is performed:

1. Initialization of the communication between the debugger and the core(s).

SYStem.Mode Attach

SYStem.Mode Attach

Break

target core(s) (without reset)

stop the program execution

Establish the communication between the debugger and the

©1989-2024 Lauterbach

Establish Your Debug Session

16

Debug Scenario 1

The boot loader or the application (and/or the operating system) under debug is running out of the on-chip
flash or out of a NOR flash device.

Establish the debug communication

¢

Program the software to on-chip/NOR flash

(this includes the loading of the debug
symbols)

'

YES
Is an OS used?

Configure the TRACES32
OS Awareness for your OS

v

*Ready for debug

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

©1989-2024 Lauterbach Establish Your Debug Session | 17

Onchip/NOR Flash Programming

The debugger supports the programming of on-chip flash and off-chip NOR flash devices.

NOTE:

Flash programming requires that data cache is disabled for the address range

covered by the FLASH.

The Flash Programming File

On-chip flash and off-chip NOR flash programming allows to load any output file generated by your compiler.

©1989-2024 Lauterbach

Establish Your Debug Session

18

On-chip Flash Programming

Videos about the on-chip flash programming can be found here:
support.lauterbach.com/kb/articles/flash-programming

Ready-to-run scripts for most on-chip flashs can be found in ~~/demo/<architecture>/flash/<cpu>.cmm
e.g. ~~/demo/arm/flash/mk20.cmm

e.g. ~~/demo/powerpc/flash/mpcSxxx.cmm

©1989-2024 Lauterbach Establish Your Debug Session | 19

https://support.lauterbach.com/kb/articles/flash-programming

To program the software to the on-chip flash of your processor/chip proceed as follows:

1. Start the script appropriate for your processor/chip.

Edit View Var Break |
< £ Run Batchfi
[Edit Batchfile...

g Open...

E Load...
Type...
144 Dump...

@ Stop Command

Print L4
Window Screenshot...

¥ exit

Organize = New folder

. » Computer » System (C:) » T32_.MPC » demo » powerpc » flash » - || Search flash

5 Favorites
B Desktop
& Downloads

o
=l Recent Places

Bl Desktop

= Libraries

A amartin

- Computer
&, System (C)
L3 DVD RW Drive (D:)
S 5YS (W\OESL) (F)
S VOL_BUSINESS (\\OESI3) (G:)
S VOL_DEVEL (\\OESI2) (H:)
S VOL_MISCI (\WOESI2) (T)
5@ _HOME (\WOESIA\WVOL_DEVEL) ()

S T3ZNEW (\WOESLL) (T2)

I@ ZEMNworks Adaptive Agent
?; Network
[543 Control Panel

& Recycle Bin

MName

L byte

L long

L long_tle

L quad

. quad_tle

4 word

L word_tle

& apmB6icae-nand2gl8.cmm
& jpc560s_quadspi.cmm
& jpc560x.cmm

& jpcs63xm.cmm

& jpc563xm_revl.cmm
& jpc56dxa.cmm

& jpcs6dxbe.cmm

& jpc56dxl.cmm

& jpc56Txk.cmm

& jpc5Tdxk.cmm

& jpc5T7dxm.cmm

& jpc5TTxm.cmm

Date modified Type

10.06.2013 11:23
10.06.2013 11:23
10.06.2013 11:23
10.06.2015 11:23
10.06.2015 11:23
10.06.2013 11:23
10.06.2013 11:23
30.01.2015310:15
07.12.2011 10:35
28.03.2013 14:59
28.03.2013 14:59
2911.201215:38
28.03.2013 14:59
28.03.2015 14:59
28.03.2013 14:59
28.03.2015 14:59
28.03.2015 14:59
28.03.2013 14:59
28.03.2015 14:59

File folder
File folder
File folder
File folder
File folder
File folder
File folder
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File
CMM File

& mpchec.cmm

28.03.2013 14:59 CMM File

1

File name: mpcSioo.cmm

- ’ Current (*.crnm)

Rl

2. TRACE32 PowerView informs you when all preparations are done. Please confirm that you are
ready to choose the boot loader or the application to be programmed.

TRACE32 PowerView for PowerPC

@ Flash programming prepared. Program flash memory now?

Yes Mo

©1989-2024 Lauterbach

Establish Your Debug Session

20

3. Please select the boot loader or application to be programmed.

A B:DataLOAD.auto * E:0x00--(0x100000-1)

@ | % mpchBiox v mpc563x_spcbB3x -

Organize » New folder

k- : - MName Date modified
-0 Favorites

Bl Desktop & demo.cmm 09.02.2012 15:28
& Downloads || diabe.c 09.02.2012 15:28
&l Recent Places || diabex 09.02.2012 15:28
&' errata_e_5200.crmm 09.02.201215:28
4 Libraries & mmu_init.cmm 09.02.2012 15:28
@ Documents & sram_init.cmm 09.02.2012 15:28
J‘ Music
Pictures
B2 videos

M Comnuter |

File name: diabc.x - ’Cunent(*}(*} v]

’ Openlélv] ’ Cancel] .

TRACES32 PowerView informs you, that the programming is done.

B::|
|f'i'|e 'C:\T32_MPC\demo'\power pcihar dware'\mpc56xx \mpc563x_spc563xidiabc. x" (ELF/DWARF) Tloaded.

emulate trigger][devices |[trace |[Data [wvar [st |[Pere][svstem |[step

SF:40000004 \\diabc\Global_start

o = e e e e = =

If the boot loader/application is compiled with debug symbols they are automatically loaded into TRACE32

PowerView with the flash programming.

For details on the on-chip flash programming open the flash programming script.

; ~~ represents the TRACE32 installation directory
PEDIT ~~/demo/powerpc/flash/mpc5xxx.cmm

©1989-2024 Lauterbach Establish Your Debug Session | 21

If you create your own start-up script for your target hardware, please call the flash
programming script from there.

If you leave the flash programming script unchanged, you can always replace it
with its most current version.

The following parameters can be used, when the flash programming script is called:

CPU=<cpu> If a FLASH programming script supports a CPU family, you can
provide your target CPU as parameter.
PREPAREONLY Advise the FLASH programming script to prepare the FLASH

programming by declaring the FLASH sectors and by linking the
appropriate programming binary. The FLASH programming
commands are bypassed.

DUALPORT=0I1

Disable/enable DualPort FLASH programming.

For all processors/cores that allow to write to physical memory
while the CPU is running a higher FLASH programming
performance can be achieved by the use of DualPort FLASH
Programming

Not every script supports all parameters. The parameters relevant for your script are described in the meta

data section of the script.

; @Title: Generic script for Freescale ME20, ME2Z1 and MK22 internal flash

; @Description:

; Example for flash declaration of Freescale ME20, MKE21 and ME22 internal

; flash.

; Script arguments:

D0 mk20 [FPREPAREONLY]

; For example:

PREPARECNLY only declares flash but does not execute flash programming

CPU=«<cpu> selects CPU derivative =cpu>. <cpu> can be CPU name out of the
talble listed below. For these derivatives the flash declaration
ie done by the script.

DUALFORT default wvalue is O (disabled). If DualFort mode is enabled
flash algorithm stays rurming until flash programming is
finished. Data is tranferred wvia dual port memory access.

MASSERASE forces mass erase of device before establishing debug comnection

D0 --/demo/arm/ flash/mk20 CPU=MEZODNS12VLELD DUALFORT=1 PREPAREONLY

[CPU=<cpu>] [DUALPORT=0|1] [MASSERASE]

; List of ME20/ME21/ME22 derivatives and their configuration:

CPU-Type Flash
type
MEZODN32VEXS o
MEZODN32VFMS o
MEZODN32VFTS o

ProgFlash F1 exdVi EEPROM RamSize

[Byvtel [Bytel [Bytel [Bytel
32KB - - 8KB
32KB - - 8KB
32KB - - 8KB

©1989-2024 Lauterbach

Establish Your Debug Session |

22

The following framework can be used to call the flash programming script from your start-up script.

DO <flash script> [CPU=<cpu>] PREPAREONLY [DUALPORT=0|1]

; program file to on-chip FLASH
FLASH.ReProgram ALL /Erase
Data.LOAD.E1lf <file>
FLASH.ReProgram off

; reset processor/chip

; might be necessary to reset all target settings made by the flash
; programming script
SYStem.Up

; continue with start-up script

7 eee

More details on the on-chip flash programming can be found in “Onchip/NOR FLASH Programming
User’s Guide” (norflash.pdf).

©1989-2024 Lauterbach Establish Your Debug Session | 23

Off-chip NOR Flash Programming

TRACE32 PowerView provides two methods to program off-chip NOR flash:
1. Tool-based programming

Tool-based programming means that the flash programming algorithm is part of the TRACE32
software. Tool-based programming is easy to configure but slow.

2. Target-controlled programming

Target-controlled flash programming means that the underlying flash programming algorithm is
detached from the TRACES32 software. Target-controlled flash programming works as follows:

1. The flash algorithm is downloaded to the target RAM.
2. The programming data are downloaded to the target RAM.
3. The flash algorithm running in the target RAM programs the data to the flash devices.

Target-controlled flash programming minimizes the communication between the host and the
debugger hardware. This makes target-controlled flash programming fast.

NOTE: It is recommended to start with tool-based flash programming. If this works properly
you can switch to target-controlled flash programming.

Programming off-chip NOR flash requires the following steps (see next page):

©1989-2024 Lauterbach Establish Your Debug Session | 24

Establish the debug communication

Is the watchdog
disabled?

Disable watchdog

Is the data cache
disabled?

Disable data caches

NO

v

Make sure that the core has write
access to the flash

Do you want to use target- YES
controlled programming? ¢

NO Has the core

access to RAM?

YES

Enable RAM access

Program flash

©1989-2024 Lauterbach

Establish Your Debug Session |

25

1. Disable Internal and External Watchdog

Example

; Display “Watchdog Timer” configuration registers, highlight changes
PER.view , "Watchdog Timer" /SpotLight

" B:PER.view, "Watchdog Timer" /SpotLight ===
ndog Timer -
B0Z1 PV 80 WT EnabTed €5 16 IG Disabled FRE Enabled

WTD. 8000 CRv 8000 E
WTCNT G429 Cv 6429 =

4 11 | +

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0

B:PER.view, "Watchdog Timer" /SpotLight =Nl <
B Watchdog Timer -
T ERE PV 00 WT Disabled C5 16 IG Disabled FRE Dasabled
8000 CrRv 8000 M
4458 Cv 4458 (d
e 1 L

©1989-2024 Lauterbach Establish Your Debug Session | 26

2. Disable Data Cache

The data cache has to be disabled for the address ranges of all flash devices to enable TRACE32
PowerView to read the flash status information.

Example

; Display the memory management configuration registers
; highlight changes
PER.view , "Core Registers,Memory Management Unit" /SpotLight

BuPER.view , "Core Registers Memory Management Unit" /SpotLight EI@
E Memory Management Unit -
SCTLR 00C5007C TE ARM AFE DisabTed TRE DisabTed |
NMF I Disabled EE Little RR Random »

vV 0x00000000 I Disabled i Disabled

SW Disabled C Enabled A Disabled
M Disabled -

] 1 | 2

; Disable Data Cache by configuring the control register SCTLR
PER.Set.simple C15:0x1 %Long 0x550078

B:PER.view , "Core Registers Memory Management Unit" /SpotLight il =] |£
=] ory Management Unit -
SCTLR 00550078 ARM AFE DisabTed TRE DisabTed |
NMFI Disabled EE Little RR Random =

Vv 0x00000000 I Disabled z Disabled

SW Disabled C Disabled A Disabled
M Disabled -

4 i | 3

©1989-2024 Lauterbach Establish Your Debug Session | 27

3.

Make sure that the core has write access to the flash

NOR flash programming requires that the core has write access to the flash device(s).

The following settings in the bus configuration have to be done for each NOR flash device:

Definition of the base address of the NOR flash device

Definition of the size of the NOR flash device

Definition of the bus size that is used to access the NOR flash device
The write access has to be enabled for the NOR flash device

Definition of the timing (number of wait states for the write access to the NOR flash device)

Use the PER.view command to check the settings in the bus configuration registers.

©1989-2024 Lauterbach Establish Your Debug Session

28

Example for ColdFire

Bus configuration after reset:

" B:PERview E=m[EcR)
= EBU External Bus Interface B
= Address Region A
ADDSEL® PPAPPARRA BASE PAPAAPAAR ANLTSEG @ MASK [31:271 ALTENAB dis REGEN dis
BUSCON® 88928008 LRITE dis AGEN demul WALT off
PORTW 32-bit BCGEM ctrl sig MWAITINY no PREFETCH no
DLOAD always EMDIANL little CHULT 32

CTYPE @ AALIGH chip-sel WEAKPREFETCH no MULTHMAP 8@

m

BUSAPB FFFFFFFF ADDRC 3 AHOLDC 3 CHDDELAY ¢ MWAITRDC 7
WAITHRC ¢ BURSTC 7 DATAC 3 RDRECOVC 7
WRRECOVYC 7 DTARDWR 15 DTACS 15

Address Region 1

4 | i 3

In order to have write access to the used off-chip NOR flash device the Address Region 0 has to be
configured for the following characteristics:

o Base address 0xa0000000
J Size 16 MByte

o Bus size 16 bit

PER.Set <address> %<format> <value>

Data.Set <address> %<format> <value>

PER.view , /SpotLight ; Highlight all changed
; configuration registers

PER.Set 0xf0000080 %$Long 0xA0000031 ; ADDSELO

PER.Set 0xf00000c0 %Long 0x00508637 ; BUSCONO

Correct bus configuration for NOR flash programming.

«# B:PER.view, /SpotLight (==][==]
= EBU External Bus Interface B
= Address Region A
ADDSEL® ABAAAA31 BASE ABBEEBBE AL TSEG @ MASK [31:241 ALTEHAB dis REGEH gna
BUSCON® BB508637 LRITE gna AGEH demul WALT off

PORTH A6shit DCGEH ctrl sig WAITINY no PREFETCH no
DLOAD ifuavailable ENDIANL little CMULT 32
CTYPE 4 AALIGN pomtwefld WEAKPREFETCH no MULTHAP B3

m

BUSAPA FFFFFFFF ADDRC 3 AHOLDC 3 CHDDELAY ¢ MWAITRDC 7
WAITHRC ¢ BURSTC 7 DATAC 3 RDRECOVC 7
WRRECOVC ¢ DTARDWR 15 DTACS 15

@ Address Region 1

4| 1 (3

©1989-2024 Lauterbach Establish Your Debug Session |

29

Framework for Tool-based Flash Programming

FLASH.RESet
FLASH.CFI <start_address> <data_bus_width>

FLASH.List
FLASH.UNLOCK ALL
FLASH.ReProgram ALL | OFF

Data.LOAD.<sub_cmd> <file> [<option>

Reset the FLASH declaration table

Generate a FLASH declaration by evaluating the

Common Flash Interface description inside the

FLASH device.

The command FLASH.CFI requires the definition

of

J the <start_address> of the FLASH device

. the <data_bus_width> that is used by the
core to access the FLASH device

List the FLASH declaration table
Unlock the FLASH sectors
Enable/disable the FLASH programming

Load code and debug symbols

More details on the concepts of the TRACE32 NOR flash programming can be found in “Onchip/NOR

FLASH Programming User’s Guide” (norflash.pdf).

If your FLASH device doesn’t provide CFI please refer to “Onchip/NOR FLASH Programming User’s
Guide” (norflash.pdf) for details on the FLASH programming procedure.

©1989-2024 Lauterbach

Establish Your Debug Session | 30

Example

FLASH.RESet

FLASH.CFI 0xa0000000 wWord

FLASH.List

FLASH.UNLOCK ALL

FLASH.ReProgram ALL

Data.LOAD.El1lf demo.elf

FLASH.ReProgram off

Data.LOAD.El1lf demo.elf /DIFF

IF FOUND()

Reset the FLASH declaration table

Generate a FLASH declaration via
CFI

Display the FLASH declaration
table

Unlock the FLASH device if
required

e.g. some FLASH devices are
locked after power on

Enable the FLASH for programming

Specify the file that contains
the code and the debug symbols

Program FLASH and disable
the FLASH programming afterwards

Verify the FLASH programming

PRINT "Verify error after FLASH programming"

ELSE

PRINT "FLASH programming completed successfully"

©1989-2024 Lauterbach

Establish Your Debug Session | 31

Framework for Target-controlled Flash Programming

FLASH.RESet Reset the FLASH declaration table
FLASH.CFI <start_address> <bus_width> ITARGET <code_range> <data_range>

Generate a FLASH declaration by evaluating the

Common Flash Interface description inside the

FLASH device.

The command FLASH.CFI requires the definition

of

] the <start_address> of the FLASH device

] the <data_bus_width> that is used by the
core to access the FLASH device

. the target RAM location <code_range> for
the flash programming algorithm
. the target RAM location <data_range> for
the flash programming data
FLASH.List List the FLASH declaration table
FLASH.UNLOCK ALL Unlock the FLASH sectors
FLASH.ReProgram ALL | OFF Enable/disable the FLASH programming
Data.LOAD.<sub_cmd> <file> [/<option> Load code and debug symbols

©1989-2024 Lauterbach Establish Your Debug Session | 32

Details on <code_range>

Required size for the code is size_of (file) + 32 byte

Flash programming algorithm Memory mapping for the <code_range>

32 byte

Details on <data_range>

The parameter <data_range> specifies the RAM location for the data, especially

J the <data_buffer_size> for the programming data. Recommended buffer size is 4 KByte, smaller
buffer sizes are also possible. The max. buffer size is 16 KByte

. the argument buffer for the communication between TRACE32 PowerView and the programming
algorithm

. the stack

<data_buffer_size> =
size_of (<data_range>) - 64 byte argument buffer - 256 byte stack

64 byte argument buffer Memory mapping for the <data_range>

Data buffer for data transfer
between TRACE32 and

flash programming algorithm
<buffer_size> calculated as
described above

256 byte stack

©1989-2024 Lauterbach Establish Your Debug Session | 33

4. Enable RAM Access

Target-controlled Flash Programming requires, that the core has access to the RAM locations specified for
<code_range> and <data_range>.

If this is not the case the following settings in the bus configuration have to be done for an off-chip RAM:
. Definition of the base address of the RAM

. Definition of the size of the RAM

. Definition of the bus size that is used to access the RAM

. Definition of the timing (number of wait states for the RAM access)

©1989-2024 Lauterbach Establish Your Debug Session | 34

Example

; reset the FLASH declaration table
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; display FLASH declaration table
FLASH.List

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL

; specify the file that contains the code and the debug symbols
Data.LOAD.El1lf demo.elf

; program the file and disable the FLASH programming afterwards
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.Elf demo.elf /DIFF

IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 8 for details.

©1989-2024 Lauterbach Establish Your Debug Session

Debug Scenario 2

The boot loader under debug is running out of a flash e.g. a NAND flash.

In contrast to NOR flash, code can not be executed out of NAND or serial flash. The code has always to be
copied to RAM before it can be executed.

Typical Boot Sequence

Before the setup for debug scenario 2 is described, it might be useful to have a look at a typical boot
sequence. If the boot loader is running out of flash the system start-up might include the following steps:

©1989-2024 Lauterbach Establish Your Debug Session | 36

1. Reset
At RESET the boot loader is copied from the flash to an on-chip SRAM, which is mapped to the reset
vector. The boot loader starts afterwards.

Please be aware, that some core(s) require a correct ECC for this copy procedure.

Chip

Boot loader (max. 4 kByte)

On-chip SRAM
SDRAM
Copied by hardware Boot loader (max. 4 kByte)
at RESET boot.bin
Second stage boot loader
Kernel image kernel.bin
(compressed)
Flash

©1989-2024 Lauterbach Establish Your Debug Session |

37

2. Boot loader is running

The main task of the boot loader is to initialize the SDRAM and to copy the second stage boot loader
to SDRAM. When this is done the control is passed to the second stage boot loader.

Chip Second stage boot loader

Boot loader (max. 4 kByte)

On-chip SRAM
SDRAM
Boot loader (max. 4 kByte)
boot.bin
Second stage boot loader Copied by boot loader
to SDRAM
kernel.bin Kernel image
(compressed)
Flash

©1989-2024 Lauterbach Establish Your Debug Session | 38

3. Second stage boot loader is running

The main task of the second stage boot loader is to copy the kernel image to SDRAM. When this is
done the control is passed to the kernel.

Boot loader (max. 4 kByte)

On-chip SRAM

boot.bin

kernel.bin

Chip Second stage boot loader

Kernel image

SDRAM

Boot loader (max. 4 kByte)

Second stage boot loader

Kernel image
(compressed)

Copied by second stage
boot loader to SDRAM

Flash

©1989-2024 Lauterbach

Establish Your Debug Session

39

Setup for Debug Scenario 2

Is the boot loader
already in the
flash?

code to flash

Program boot loader

v

Establish the debug communication

¢

Load the debug symbols for the boot
loader into TRACE32 PowerView

¢

Ready for debug

©1989-2024 Lauterbach

Establish Your Debug Session

40

Flash Programming (NAND/Serial/eMMC)

NOTE: Flash programming requires that data cache and MMU are disabled.

The Flash Programming File and the Debug Symbol File

Flash programming can only program binary files. Therefore two output files have to be generated by the
compiler:

. A binary file (e.g. boot.bin)

. A file containing the debug symbols (e.g. boot.elf)

©1989-2024 Lauterbach Establish Your Debug Session | 41

NAND Flash Programming (non-generic NAND Flash Controller)

Ready-to-run flash programming scripts for most processors/chips can be found in the directory

~~/demo/<architecture>/flash

Folder and file name convention:

~~/demo/<architecture>/flash/<cpu_name>-<prefix of nand flash code>.cmm

Get <cpu_name> from the CPU column of the list of “Supported NAND/Serial Flash Controller” on the

Lauterbach home page (www.lauterbach.com) if the CONTROLLER column does not indicate generic.

[L ﬁ' fox ~ |

A\ TRACE32® Supported NAND/SERIAL FL.. | + | *

o 50 P S

=

€& A wwwlauterbach.com/frame

| |29~ englisch werterbuch

@) Disable- & Cookiesw # €55+

Laurersach

[links] [compile] [activate] [refresh] [get files] [show files] [report error]

l Freescale Semiconductor, Inc.

Forms- [Images” @ Information- [£] Miscellaneous- / Outline” & Resizer ¥ Tools- B View Sourcer [l Options~

www.lauterbach.com

| sitemap | print| login | impressum |

control panel

sie TR

STATE

s CPU CONTROLLER COMMENT
[#L11} Search for chip e = NAND
1.MX23 gpmimx23 NAND
OTIE = LMX25 imx25 NAND
e 1MX25 ecspi SPI(eCSPI)
B Tool Chain 1.MX27 imx NAND
I~ Supported Compilers L.Mx27 L SPICSPI)
[Supparted Hast 111X28 gpmimx28 NAND
Operating Systems I |.MX31 imx NAND I
" Supported Flash Devices £ 1.MX31 imx SPI(CSPI)
™ Supported NAND/Serial Flash 1 MX35 imx25 NAND
e) 1 MX35 ecspi SPI(eCSPI)
st ifancl 1MX51 imx51 NAND
Operating Systems
i 1.MX51 ecspl SPI(eCSPI)
Supported Tool Integrations "
bl - i L 1 MX51 imx51 eMMC/SDMMC
Supported Simulators/Virtual Z
Prototypes/Targst Servers | MX53 imx51 NAND
SPI(eCSPI)

NAND

(5|

ciipoit 1.MX6 ecspi
| MXA
http://www.lauterbach com/ylistnand.html |+ < |

L

If the CONTROLLER column indicates generic refer to “NAND Flash Programming (generic NAND

Flash Controller)”, page 45.

I
St B = -

©1989-2024 Lauterbach

Establish Your Debug Session

42

Get the prefix of the <nand_flash_code> from the CODE column of the list of “Supported Flash
Devices” on the Lauterbach home page (www.lauterbach.com).

i et et [E=SEE])
— _—
/A TRACE32® Supported FLASH Devices | + | <
€ /A wwwlauterbach.com/frames.htmPPheme htm <
LAUTERBACH/‘ [links] [compile] [activate] [refresh] [get files] [show files] [reporterror] W uterbach.com
— Ll |
Hynix semiconductor
Hi¥searchinste | TYPE COMPANY CODE COMMENT
@ilSsarchforchip | H27U5185 HYNIX NAND1208
HEKDSOUNOMER HYHIX NAND2G16 NAND Flash
HY275508561A HYNIX NANDSG0BL NAND Flash
Products - G o NANpECIEL |
heatures) IHYQ?UF%QGQA HYNIX NAND2GOE NAND—FIashI 1
HY27UF082G2M HYHIX NAND2GOSL NAND-Flash
Sppot e comn e HY27UF162G2A HYNIX NAND2G16 NAND-Flash
S;EE;T:;SH;;LWS HY27UF162G2B HYHIX NAND2G16 NAND-Flash
SAEmRe : HY27UF162G2M HYHIX NAND2G16L NAND-Flash
o NAND?{:)riEI Lot HY27UG082G28 HYNIX NAND2G08 NAND-Flash ||
Contraller HY27US08561A HYNIX NANDS60BL NAND Flash
Supported Target HY27US 165614 HYHIX NANDS616L NAND Flash ||
_____ Ao S HY29DL162 HYNIX AM29LV100 16bitmods
Supported Tool Integrations AM29LV100B 8-bit mode K
Supported Simulators/Virtual HY29DL163 HYNIX AM29LV100 16-bit mods
Prototypes/Target Servers AMZILVA00B a-bit mods W
HY29D5 162 HYNIX AM29LV100 16-bit mode [
hitp:/ o Jauterbach.com/ylist hirn! I~ « 0 S i

Name of flash programming script here ~~/demo/arm/flash/imx31-nand2g08.cmm

©1989-2024 Lauterbach Establish Your Debug Session | 43

To program the code to flash p

1. Start the script appropriate for your processor/chip and appropriate for your flash device.

m Edit View Var Break |

]

Edit Batchfile...

% Open...

roceed as follows:

E Load...
Type... v .« T32.ARM » demo » arm » flash » Search flash o
114 Dump...

_13_1_1 P Organize v New folder =~ 0 @
@ Stop Command Pl * Name & Date modified ||
Pri v I Deskiop =] imu25-nandlag0g.cmm 05.05.2011 13:43
L ot R, Downlosds] im27-nand2g08.cmm 15.09.2010 09:09 [T

Window Screenshot...] Recent Places] im28-nand2g08.cmm 16.12.2010 13:51
- =] im31-nand2q08.cmm 2112.20101531
X exit G Libraries &) im31-spi.cmm 02122010 20:36
[Documents =] im35-nand2g08.cmm 11.05.2011 11:06
& Music] irm35-spi.cmm 17.02.2011 14:54
el] imS1-emme.cmm 25.07.2011 16:08
) Videos] imus1-nanddg0.cmm 13.05.2011 17:01
|&=] imocS1-spi.cmm 200620111831
8 Comnuter s <1 e] 5
File name: im:31-nand2g08.cmm + | Current (*.cmm) -

2. TRACE32 PowerView informs you when all preparations are done. Please confirm that you are
ready to choose the boot loader binary to be programmed.

TRACE32 PowerView for ARM

@ Program flash memory?

[ves DA’ No

3. Please select the boot loader to be programmed.

A B FLASHFILE.LOAD * 0x0

B\ < T32ARM » demo b am

¥ flash » Search lash- B

Organize » New folder =~ M @
A e * Name & Date modified ~ “
P Desktop = at91sam9263-nand2g08.cmm 211220101531
& Downloads | [bootbin Bosm21612
9] Recent Places % & dm355-nendlgld.cmm 211220101531
i &) dm365-emmec.cmm 02022011 16:49
3 Libraries =] dm6443-nand2g08.cmm 211220101531
% Documents | efm32g.cmm 22.03.2011 1202
& Music E| em773.cmm 1612201013:41
=) Pictures) hartm310.cmm 05122011 14:06
B videos =] im:23-nand2g08.cmm 16.12.201013:51

=] im:x25-nand2g08.cmm 050520111343 .

‘M Comnirter ~]

m] »

File name: boot.bin

- |current (™ -

Detail on NAND flash programming can be found in “NAND FLASH Programming User’s Guide”

(nandflash.pdf).

©1989-2024 Lauterbach

Establish Your Debug Session

44

NAND Flash Programming (generic NAND Flash Controller)

The CONTROLLER column of the list of “Supported NAND/Serial Flash Controller” on the Lauterbach
home page (www.lauterbach.com) indicates “generic”, if a processor/chip has a generic NAND flash
controller.

/A TRACE32® Supported NAND/SERIAL L.

€ /A v lauterbach.com/fram ?heme.htm < | |2 - englisch worterbuch Plal B & -
@) Disabler & Cookiess # CSS* [Forms- [Images~ @ Information~ [Miscellaneous- #* Outliner & Resizer ¥~ Tools~ [View Source- |1L| Options-
LA ERBACH / [links] [compile] [activate] [refresh] [get files] [show files] [reporterror] www.lauterbach.com | sitemap |print| login| impressum |
D U1 ! ‘ « > control panel Y
MSM7500 qsd8650 NAND &
oachnste | ascevts ek At
(Wil Search for chip Qsce2XX qsd8650 NAND
QSD8650 qsd8650 MNAND
Product: -
st l Renesas Technology, Corp. A
Features
B Tool Chain CcPU CONTROLLER COMMENT STATE
Supported Compilers SH7264 sh7264 NAND
Supported Host SH7264 sh7264 SPI
Operating Systems E
Supported Flash Devices l Samsung Semiconductor A
Supported NAND{Serial Flash
R) CPU CONTROLLER COMMENT STATE
- e
Supported Target | s3coaaxx eneric NAND | E
Operating Systems T S3C6410 536410 OneNAND
Supported Tool Integrations S3C6410 s3c6410 eMMC/SD/MMC
Supported Simulators/Virtual S3CEANK generic NAND
PrototypesiTarget Servers i
Support v d L http://www.lauterbach.com/ylistnand.htm|
> Suchen: generic ¥ Abwarts & Aufwarts & Hervorheben [| GroB-/Kleinschreibung

Programming script for generic NAND flash controller have to be written by the user.

©1989-2024 Lauterbach Establish Your Debug Session | 45

Programming a flash device with the help of a generic NAND flash controller requires the following steps:

Establish the debug communication

'

Prepare flash controller and flash for
programming

NO Has the core

access to RAM?

YES

Enable RAM access

Is the watchdog
disabled?

Disable watchdog

Y

Program flash

©1989-2024 Lauterbach Establish Your Debug Session | 46

1. Prepare the NAND FLASH Controller and the NAND FLASH for Programming

Programming a flash device requires a proper initialization of the flash controller and the bus interface. The

following settings might be necessary:

. Power up the flash clock domain.

. Enable the flash controller or bus.

. Configure the communication signals (clock, timing, etc.).

. Inform the flash controller about the flash device (large/small page, ECC, spare, etc.).
J Configure the flash pins if they are muxed with other functions of the processor/chip.
J Disable the write protection for the flash.

Use the PER.Set/PER.view commands for this setup.

Example for s3c2410X (ARM920T):

PER.view , "NAND Flash Controller"

/SpotLight

" B:PER.view , "MAND Flash Controller” /SpotLight ==
=l NAND Flash Controller -
NFCONF 00004800 ENAELE DisabTed INIECC Not initialized NFMCEN Inactive TACLS O
TWRPHO 0 TWRPHL 0
00000000 D 00
00000000 S5 00
00000000 D 00
00008301 RNEB Ready
00559595 ECC2 55 ECCT 95 ECCO 95
4 m [3
; enable and configure NAND flash controller
PER.Set 0x4E000000 %Long 0xE030
" B:PER.view, "MAND Flash Controller” /SpotLight = =
5] Flash Controller -
INIECC Not initialized NFWCEN Ackimewy TACLS O
00000000 o
00000000
00000004
00008301
00C0co0c S ECCO 0C
4 11 L

©1989-2024 Lauterbach

Establish Your Debug Session

47

2. Enable RAM Access

TRACES32 PowerView runs the flash programming algorithm in target RAM. It requires at least 16 KByte of
RAM for this purpose.

This requires that the core has access to target RAM.
If the core has no access to target RAM, the access to target RAM has to be set up.

Correct settings in the bus configuration registers are key for the RAM access. The following settings in the
bus configuration have to be done:

o Definition of the RAM base address
o Definition of the RAM size

o Definition of the bus size that is used to access the RAM
o The write access has to be enabled for the RAM
. Definition of the timing (number of wait states for the write access to the RAM)

Use the PER.Set/PER.view commands for this setup.

©1989-2024 Lauterbach Establish Your Debug Session | 48

Example SDRAM configuration on an s3¢2410X (ARM920T):

Bus configuration after reset:

" B:PER.view, /Spotlight [E=]=]
= ARM Core Registers
= M / Controller
BWSCON 00000000 sT77 No UB/LB Disabled 8-bit
ST6 No UB/LB Disabled 8-bit
5 No UB/LB Disabled 8-bit
No UB/LB Disabled 8-bit
No UB/LB Disabled 8-bit
No UB/LB Disabled 8-bit
ST1 No UB/LB Disabled 8-bit
D0 Reserved
BANK _CONTROL REGISTER CONN:nGCS0-nGCSS5) 3
BANKCONO 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
1 data
BANKCOWL 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
1 data
BANKCONZ2 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
1 data
BANKCON3 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
1 data
BANKCON4 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
1 data
BANKCONS 00000700 0 clock 0 clock 14 clocks
0 clock 0 clock 2 clocks
PMC 1 data
BANKCONG 00018008 MT sync DRAM TRCD 4 clocks SCAN 8-bit
BANKCON? 00018008 MT sync DRAM TRCD 4 clocks SCAN 8-bit
REFRESH CONTROL REGISTER
REFRESH 00ACO000 REFEN EnabTed TREFMD Auto TRP 4 clocks
TSRC 7 clocks REFCNT 0000
BANKSTZE REGISTER
BANKSIZE 00000002 BURST_EN Disabled SCKE_EN DisabTed SCLK_EN DisabTed
BK76MAP 128MB/128MB
SDRAM MODE REGISTER SET REGISTER
MRSRBE 00000030 WBL Burst ™ Test mode cL 3 clocks
BT Sequential BL
MRSRB7 00000030 wBL Burst ™ Test mode cL 3 clocks
BT Sequential BL 1
PN i »

PER.Set 0x48000000 %Long 0x2222D222
PER.Set 0x48000004 %Long 0x00000700
PER.Set 0x48000008 %Long 0x00007f£0
PER.Set 0x4800000C %Long 0x00000700
PER.Set 0x48000010 %Long 0x00001F4C
PER.Set 0x48000014 %Long 0x00000700
PER.Set 0x48000018 %Long 0x00000700
PER.Set 0x4800001C %Long 0x00018005
PER.Set 0x48000020 %Long 0x00018005
PER.Set 0x48000024 %Long 0x008e0459
PER.Set 0x48000028 $%$Long 0x00000032
PER.Set 0x4800002C %$Long 0x00000030
PER.Set 0x48000030 %$Long 0x00000030
PER.Set 0x53000030 %$Long 0x00000000

©1989-2024 Lauterbach Establish Your Debug Session | 49

Correct bus configuration for SDRAM usage:

o B:PER.view, /Spotlight

ARM Core Registers

= Memory Controller

af

n

BWSCON ST7 No UB/LB WS7 Disabled D7
ST6 No UB/LB WS6 Disabled DW6
STS No UB/LB WS5 Disabled DW5
ST4 No UB/LB WS4 Disabled D4
sT3 % wWs3 D3
sST2 No UB/LB ws2 Disal D2
sT1 No UB/LB wsl Disabled pwl
D0 Reserved

BANK CONTROL REGISTER(BANKCONN:nGCSO-nGCS5) =

BANKCONO 00000700 TACS 0 clock TCOS 0 clock TACC 14 clocks
TCOH 0 clock TCAH 0 clock TACP 2 clocks
PMC 1 data

BANKCON] QOOOZEER TACS TCos TACC 14 clocks
TCOH TCAH TACP 2 clocks
PMC 1 data

BANKCONZ 00000700 TACS 0 clock TCOS 0 clock TACC 14 clocks
TCOH 0 clock TCAH 0 clock TACP 2 clocks
PMC 1 d_‘atak Tock

BANKCONS QOOOLE4E TACS 0 clocl TCOS % TACC 14 clocks
TCOH TCAH 0 clocl TACP 6 clocks
PMC 1 data

BANKCON4 00000700 TACS 0 clock TCOS 0 clock TACC 14 clocks
TCOH 0 clock TCAH 0 clock TACP 2 clocks
PMC 1 data

BANKCONS 00000700 TACS 0 clock TCOS 0 clock TACC 14 clocks
TCOH 0 clock TCAH 0 clock TACP 2 clocks
PMC 1 data

BANKCONG DOOLBOOS VT Sync DRAM TRCD Buclocks SCAN Debrid

BANKCON? DOOLBOOS VT Sync DRAM TRCD Buclocks SCAN Db

REFRESH CONTROL REGISTER

REFRESH DOSED4SS REFEN Enabled TREFVD Auto TRP Z.clocks..
TSRC 7 clocks REFCNT 0459

BANKSTZE REGISTER

BANKSIZE BURST_EN Disabled SCRE_EN Emableds SCLR_EN Emableds
BK7EMAP 128MB/128MB

SDRAM MODE REGISTER SET REGISTER

MRSRBE 00000030 WEL Burst ™ Test mode L 3 clocks
BT Sequential BL 1

MRSRB7 00000030 weL Burst ™ Test mode L 3 clocks
BT Sequential BL 1

©1989-2024 Lauterbach

Establish Your Debug Session

50

3. Disable internal and external watchdog

Example (ARM920T):

; Display “Watchdog Timer” configuration registers, highlight changes
PER.view , "Watchdog Timer" /SpotLight

" B:PER.view, "Watchdog Timer" /SpotLight ===
ndog Timer -
B0Z1 PV 80 WT EnabTed €5 16 IG Disabled FRE Enabled

WTD. 8000 CRv 8000 E
WTCNT G429 Cv 6429 =

4 11 | +

; Disable Watchdog timer by configuring Watchdog Timer Control Register
; (WTCON)
PER.Set.simple 0x53000000 %Long 0x0

B:PER.view, "Watchdog Timer" /SpotLight =Nl <
B Watchdog Timer -
T ERE PV 00 WT Disabled C5 16 IG Disabled FRE Dasabled
8000 CrRv 8000 M
4458 Cv 4458 (d
e 1 L

©1989-2024 Lauterbach Establish Your Debug Session | 51

Generic NAND Flash Programming Framework

The following commands are useful, if a generic NAND flash controller is used to program a flash. For details

refer to “NAND FLASH Programming User’s Guide” (nandflash.pdf).

FLASHFILE.RESet

More details on the FLASHFILE.TARGET command:

FLASHFILE.Erase <range>
FLASHFILE.LOAD <file> <address>

FLASHFILE.CONFIG <cmd_reg> <addr_reg> <io_reg>

FLASHFILE.TARGET <code_range> <data_range> <file>

Reset NAND flash programming to

default.

NAND flash registers

details about flash programming

algorithm.

Erase NAND flash.

The name of the flash programming algorithm depends on the NAND flash to be programmed (e.g.
nand5608.bin for the KIF5608 NAND flash from Samsung).

[l Firetox =] (B
/A TRACES2® Supported FLASH Devices | + |/ o @ " * & @ =
&
€ /A vwowlauterbach.com/frames. bt Phome html & | | - englisch wirterbuch Pla B =
@) Disabler & Coekies # €55 [Forms- [E Images @ Information- [Miscellaneous- # Outliner #” Resize 3 Tools+ 8 View Source- || Options~
l‘ [links] [compile] [activate] [refresh] [get files] [show files] [reporterror] www .lauterbach.com | sitemap |[print| login| impressum |
DEV 00LS > control panel 5§
K8P6415 SAMSUNG AM29LV100 -
Searchinsite | K8Q2815 SAMSUNG AM29LV100
Wi Search for chip 852815 SAMSUNG AM291V100
K853215 SAMSUNG AM29LV100
K8S5615 SAMSUNG AM29LV100
HEiEs = K3S6415 SAMSUNG AM29LV100
Features K9F1208 SAMSUNG NAND1208 NAND Flash
[T oli i S KIF1G08 SAMSUNG NAND1GOB NAND Flash N
T EnTnEE K9F2G08 SAMSUNG NAND2GO03 NAND Flash
Supported Host Pl
Operating Systems 3 e e
" Supported Flash Davices = N
;U K9F5616 SAMSUNG NANDSE16 NAND Flash
Supported NAND/S4#ialFHash @ | @@ —— " >IssSsmasaaa s ummmreman s mL a e e s
i KIFBG08 SAMSUNG NANDEGOE NAND Flash, 4KB Page
Supported Target KIGBG08 SAMSUNG NAND2GO3 NAND Flash, 2KB Page
Operating Systems K9GAGOBUOD SAMSUNG NANDLBGOBXS NAND Flash, 4K/2188
Supported Tool Integrations KIHBGOBL SAMSUNG NANDLAGOB NAND Flash |
Supported Simulators/Virtual KIHCGOU SAMSUNG NANDLBGOB NAND Flash
0 BRI T KIHCGO8UTM SAMSUNG NANDLBGOBXS NAND Flash, 4K/2188
Support K9K1208X0C SAMSUNG NAND1208L NAND Flash -
Sales = 0 hitp://www.lauterbach.comyylist.html i
x Suchen: 5608 ¥ Abwarts # Aufwarts & Hervorheben [GroB-/Kleinschreibung

Inform TRACE32 PowerView on the

Inform TRACE32 PowerView on all

Program binary file to NAND flash.

Its location in the TRACE32 demo folder is defined by the number of data I/O pins between the NAND flash
controller and the flash device. E.g. is there are 8 data I/O pins between the NAND flash controller and the

flash device the algorithm can be found in:

~~/demo/<architecture>/flash/byte/<nand_flash code>.bin

©1989-2024 Lauterbach

Establish Your Debug Session

52

This flash programming algorithm is downloaded to a target RAM when flash programming is performed.
Therefore TRACE32 PowerView needs to be informed about an appropriate RAM location by the
<code_range> parameter of the FLASH.TARGET program

required size for the code is size_of (file) + 32 byte

FLASH algorithm Memory mapping for the <code_range>

32 byte

The parameter <data_range> specifies the RAM location for the data, especially

. the <data_buffer_size> for the programming data. Recommended buffer size is 4 KByte, smaller
buffer sizes are also possible. The max. buffer size is 16 KByte

. the argument buffer for the communication between TRACES32 PowerView and the programming
algorithm

i the stack

<data_buffer_size> =
size_of (<data_range>) - 64 byte argument buffer - 256 byte stack

64 byte argument buffer Memory mapping for the <data_range>

Data buffer for data transfer
between TRACE32 and
NAND FLASH algorithm

<buffer_size> calculated as
described above

256 byte stack

Example

FLASHFILE.RESet
FLASHFILE.CONFIG 0x4E000004 0x4E000008 0x4E00000C

FLASHFILE.TARGET 0x30000000++0x1FFF 0x30002000++0x3FFF
~~/demo/arm/flash/byte/nand5608.bin

FLASHFILE.Erase 0x0--0x1FFFF

FLASHFILE.LOAD boot.bin 0x0

©1989-2024 Lauterbach Establish Your Debug Session |

53

eMMC Flash Programming

Folder and file name convention:
~~/demo/<architecture>/flash/<cpu_name>-emmc.cmm

Get <cpu_name> from the CPU column of the list of “Supported NAND/Serial Flash Controller” on the
Lauterbach home page (www.lauterbach.com).

€& /A lauterbach.com/frames.htmi?home htm! [Google

@) Disable: & Cookies™ # €55+ [Forms: [l Images” @ Information- o] Miscellaneouss # Outlines o Resizer 7 Tools- B View Sourcer || Options” o

[links] [compile] [activate] [refresh] [get files] [show files] [reporterror] www.lauterbach.com

Marvell, Inc.
GlWSearchinsite | cPu CONTROLLER COMMENT
(#11:] Search for chip 8BF5082 generic NAND
geFat1a1 generic NAND
T 88F5281 generic NAND
5 o
ek 88F6192 generic NAND
5
Lontes 88F6192 marvell SPI
= T'C"“'“ e 88F6281 generic NAND
Suppmd H“mp‘ o 83F6281 manell SPI
upported Host .
Operating Systems MV76100 generic NAND
Supported Flash Devices E)T LY mame.l\ £5
Supported NAND/Serial Flash MV78100 generc NAND 3
Controller MV78100 marvell SPI 5
Supported Target MV78200 generic NAND
CrErm BmEE MV78200 manell SPI
Supported Tool Integrations PXA3XK Za MAND
Supported Simulators/Virtual IF‘XASZU 5 MMC I
Prototypes/Targst Servers == e
PXAS78 pxa eMMC/SD/MMC
Support
PXAS78 pxa eMMC/SD/MMC -
htp://www.lauterbach.com/ylistnand.html |~ < i v

Name of flash programming script here
~~/demo/arm/flash/pxa920-emmc.cmm

Detail on eMMC flash programming can be found in “eMMC FLASH Programming User’s Guide”
(emmcflash.pdf).

©1989-2024 Lauterbach Establish Your Debug Session | 54

Establish the Communication

It is required to establish the communication between the debugger and the core by SYStem.Up. This
advise the processor/chip to reset before the communication is established (details can be found on
“Establish your Debug Session”, page 5).

Load the Debug Symbols
; load debug symbols for boot loader and second stage boot loader
; address of boot loader: 0x0--0x3fff
; address of second stage boot loader: 0x33f80000++0x3ffff

; symbol mapping has to be accordingly
Data.LOAD.El1lf boot.elf /NoCODE

If you want to debug only the second stage boot loader you can set an on-chip breakpoint to its start
address:

Break.Set start_boot2 /Onchip

©1989-2024 Lauterbach Establish Your Debug Session

55

Debug Scenario 3

The application (and/or the operating system) under debug are running out of RAM and a ready-to-run boot

loader configures the target system and especially the RAM for this debug scenario.

Establish the debug communication

¢

Run the boot loader until the target
configuration is done

¢

Does the boot loader
YES load the application NO
(and/or the OS)
to RAM?

Load debug symbols Load application (and/or OS)
for application (and/or OS) code to RAM

(this includes the loading of

the debug symbols)

YES

Is an OS used?

Configure the TRACE32
OS Awareness for your OS

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

'

*Ready for debug

©1989-2024 Lauterbach

Establish Your Debug Session

56

Run the Boot Loader

The most important command to run the boot loader are:

Go
Break
WAIT <time>

Go <address>

Break.Set <address>

Example 1

Go

Break

Example 2

7 eee

Go
WAIT 0.5s

Break

Example 3

Go 0xc0001000

Example 4

Break.Set 0xc0001000

Go

WAIT !STATE.RUN()

Start program execution

Stop program execution

Wait the defined time (for scripts only)

Run the program until the specified address is reached

Set a breakpoint to the specified address

; start the program execution

; stop the program execution after
; the target initialization is done

; script example

; start the program execution
; wait 500. ms

; stop the program execution

; continue with other setups

; run the program until the
; complete setup is done

; set a breakpoint to the end
; of the boot loader

; start the program execution

; wait until the program stops
; at the end of the boot loader

; continue with other setups

©1989-2024 Lauterbach

Establish Your Debug Session | 57

Load Application (and/or OS) Code and Debug Symbols

If the boot loader does not load the application (and/or OS) you can perform the loading by the following
command:

Data.LOAD.E1f my_app.elf

Load Debug Symbols only

If the boot loader loads the application (and/or OS) code to RAM you need only to load the debug symbols.

Data.LOAD.E1f my app.elf /NoCODE

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 8 for details.

Complete Setup Example

Example for a boot loader that loads the application to RAM.

SYStem.CPU

SYStem.Up

Go ; start the program execution
WAIT 0.5s ; wait 500. ms

Break ; stop the program execution

Data.LOAD.E1f my_app /NoCODE

©1989-2024 Lauterbach Establish Your Debug Session |

58

Debug Scenario 4

The application (and the operating system) under debug are running out of RAM. The target configuration,
especially the RAM configuration has to be done by TRACE32 commands, because there is no ready-to-run

boot loader.

Establish the debug communication

¢

Use TRACE32 commands to configure
the target, especially the target RAM and
the UART

Load application (and OS) code to RAM
(this includes the loading of the debug
symbols)

¢

YES
Is an OS used?

Configure the TRACE32
OS Awareness for your OS

Y

* Ready for debug

*Considering the circumstance that a process has to be started manually e.g. via a TERMinal window

©1989-2024 Lauterbach Establish Your Debug Session | 59

Write a Script to Configure the Target

A minimum target configuration has to configure all used memories and the serial interface.

Use the PER.Set/PER.view commands for this setup.

Load Application (and/or OS) Code and Debug Symbols

Data.LOAD.E1f my app.elf

Configure the TRACE32 OS Awareness

Refer to “The TASK.CONFIG Command”, page 8 for details.

©1989-2024 Lauterbach Establish Your Debug Session | 60

Start-Up Scripts

Itis strongly recommended to summarize the commands used to set up the debug environment in a start-up
script. For this purpose, the script language PRACTICE is provided.

The standard extension for a script file is . cmm.

Write a Start-Up Script

The debugger provides an PRACTICE script editor, that allows to write, to run and to debug a start-up script.
The editor window provides syntax highlighting, configurable auto-indentation as well as multiple undo and
redo.

I PEDIT <file> Open <file> with the script editor

PEDIT my_startup.cmm

The debugger provides two commands, that allow you to convert debugger configuration information to a

script.
STOre <file> [<item>] Generate a script that allows to reproduce the current settings
ClipSTOre [<item>] Generate a command list in the clip-text that allows to reproduce the
current settings
STOre system settings.cmm SYStem ; Generate a script that allows you
; to reproduce the settings of the
; SYStem window at any time
PEDIT system settings.cmm ; Open the file system_settings.cmm
ClipSTOre SYStem ; Generate a command list that

; allows you to reproduce the

; settings of the SYStem window

; at any time

; The generated command list can be
; pasted in any editor

©1989-2024 Lauterbach Establish Your Debug Session | 61

Run a Start-up Script

You can run a PRACTICE script from the TRACE32 PowerView interface by selecting the menu “File” >
“Run Script...”. This action corresponds to using the TRACE32 command DO with the script name as

parameter.

I DO <file> run PRACTICE script

Example:

DO my_startup.cmm

Alternatively, you can select the “File” > “ChangeDir and Run Script...”. The difference here is that
TRACE32 PowerView will change the current working directory to the directory of the selected file before
running the script.

I ChDir.DO <file> Change directory and run script
Example:

ChDir.DO C:\my_ scipts\my_startup.cmm

Automated Start-up Scripts

When a TRACE32 instance starts, the PRACTICE script autostart.cmm is executed, which then calls the
following scripts:

. system-settings.cmm (from the TRACE32 system directory, usually C:\T32)

J user-settings.cmm (from the user settings directory: on Windows %APPDATA%\TRACES32 or
~/.trace32 otherwise)

J work-settings.cmm (from the current working directory)

With the command line option -s <startup_script> you can specify an additional PRACTICE script (*.cmm)
which is automatically started afterwards.

Example:

C:\T32\t32arm.exe -s C:\my_scripts\start.cmm

©1989-2024 Lauterbach Establish Your Debug Session | 62

	Establish Your Debug Session
	History
	Establish your Debug Session
	Key TRACE32 Setup Commands
	The PER.view/PER.Set Command
	The Data.LOAD Command
	The TASK.CONFIG Command

	Debug Scenarios

	Establish the Debug Communication
	Debug Scenario 1
	Onchip/NOR Flash Programming
	The Flash Programming File
	On-chip Flash Programming
	Off-chip NOR Flash Programming

	Configure the TRACE32 OS Awareness

	Debug Scenario 2
	Typical Boot Sequence
	Flash Programming (NAND/Serial/eMMC)
	The Flash Programming File and the Debug Symbol File
	NAND Flash Programming (non-generic NAND Flash Controller)
	NAND Flash Programming (generic NAND Flash Controller)
	eMMC Flash Programming

	Establish the Communication
	Load the Debug Symbols

	Debug Scenario 3
	Run the Boot Loader
	Load Application (and/or OS) Code and Debug Symbols
	Load Debug Symbols only
	Configure the TRACE32 OS Awareness
	Complete Setup Example

	Debug Scenario 4
	Write a Script to Configure the Target
	Load Application (and/or OS) Code and Debug Symbols
	Configure the TRACE32 OS Awareness

	Start-Up Scripts
	Write a Start-Up Script
	Run a Start-up Script
	Automated Start-up Scripts

