LAUTERBACH A

Training Source Level Debugging



Training Source Level Debugging

TRACE32 Online Help
TRACE32 Directory

TRACE32 Index
TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training Source Level DEbUGQING ....cccccriiiirmmmmmmnssmssisissssssnsssssssssssssssmsssssssssmssssssssmmsssssssammssseas 1
Load the Application Program .........cccccucceeemmmissmmsmmmssssrmnsss s ssssss s s ssssssssssesssssss s ssssssssess snnssas 5
The Symbol Database ........ccccciccecmiiiiinrir s s 22
Structure of the Internal Symbol Database 22
General Information on the Symbol Database 23
Symbol Browser 24
Details about a Selected Symbol 29
Searching in Source Files 31
Display Variables ... s s s s s e sss s s s enssnns s snnnnas 33
Watch Window 33
View Window 35
Referenced Variables 36
Local Variables 37
Stack Frame 38
Special Display for Arrays 39
Linked Lists 42
Change a Variable Value ... s sssss s s sssssssessssmsss s 44
Format Variable ... isnsssssssssss s s en s e s ss s s s ssms s s s s s s s n e e s s s s s s smmmmmmn e e s e e nnsnnnann 47
Format a Variable using the Format Dialog Box 47
Format a Variable Using the Command Line 57
General SETUPs 58
Variable MONItOrING ....cceeiiiiicmiiiiies s s s s s s m s e e amm e s 59
Basics 59
Preparation 60
Format Option %E 62
Var.PROfile Command 64
RV =TT o (=T e Yo o g ' 66
SNOOPer Trace 66
Basics 66
The Logging Interval 75
Display Options 77
Logging of Multiple Variables 80

©1989-2024 Lauterbach Training Source Level Debugging | 2



Logging in an SMP System 83

Document the Logging Results 84
Summary 84
Script Example 85
Var.LOG Command 86
Testing Of FUNCLIONS ... n e s s e s s s smmmmmn e e e s e e e snn s nmmnnns 88

©1989-2024 Lauterbach Training Source Level Debugging | 3



Training Source Level Debugging

Version 06-Jun-2024

©1989-2024 Lauterbach Training Source Level Debugging | 4



Load the Application Program

Data.LOAD <filename> [[<option>] General load command

Data.LOAD.<sub_cmd> <filename> [/<option>] Compiler specific load command

It is recommended to use the compiler/format specific Data.LOAD command thereby all compiler/format
specific options can be used.

Which actions are performed by TRACE32 when the Data.LOAD command is executed?

. All symbol and debug information already available in TRACE32 is removed.

. The code/data provided by <file> is loaded to the target memory.

. The symbol and debug information provided by <file> is loaded into TRACE32.
J The paths for the HLL source files provided by <file> are loaded into TRACES32.

J A TRACE32 symbol database is generated out of the loaded information.

©1989-2024 Lauterbach Training Source Level Debugging | 5



Options that refer to Code/data

The options that refer to code/data are mainly used for the following tasks:

J to verify that code/data is loaded correctly.
. to suppress the loading of code/data if the correct code/data is already in the target.
DIFF Data in the memory is compared against the file, the memory is not

changed.

. FOUND() returns TRUE, when a difference between the file and the
memory is found.

. FOUND() returns FALSE, when no difference between the file and the
memory is found.

NoCODE

Symbol and debug information plus source path information gets loaded to
the debugger, but do no code/data is downloaded to the target memory.
Useful if the code/data is already in memory.

Data.LOAD.El1f demo.elf
Data.LOAD.El1f demo.elf /DIFF

IF FOUND()

PRINT %ERROR "Loading of program failed"

Data.LOAD.El1f demo.elf /NoCODE

©1989-2024 Lauterbach

Training Source Level Debugging |

6



Options that Refer to the Symbol and Debug Information

The options that refer to the symbol and debug information are mainly used to relocate the symbol
information.

; relocate all symbols by 2000
symbol .RELOCate.shift 2000

Load the symbol and debug information from the file t_1i elf.axf and
; relocate all symbols of the section t_li_elf.axf to address 3000
sYmbol .List.SECTion

Data.LOAD.El1f thumble.axf /RELOC t_1li_elf.axf AT 3000 /NoCODE

7

sYmbol.RELOCate.shift <offset> Relocate code and data
symbols by <offset>

Data.LOAD.EIf <file> /RELOC <sector> AT <address> Relocate the specified sector
to the defined address

Data.LOAD.EIf <file> /RELOC <sector> AFTER <sector_other> Relocated the specified
sector after an another sector

sYmbol.List.SECtion List the section information of
the TRACES32 symbol
database

©1989-2024 Lauterbach Training Source Level Debugging | 7



Options that Preserve the Already Available Symbol and Debug Information

NoClear By default, whenever a new Data.LOAD command is started, the already
available symbol and debug information is removed. With this option the
already available symbol and debug information is not removed. This option is
necessary if more than one program is loaded.

More This option speeds up the downloading of large projects consisting of several
programs. This option suppresses the generation of the internal symbol
database when using the Data.LOAD command.

Data.LOAD filel /More

Data.LOAD file2 /NoClear /More

Data.LOAD file3 /NoClear /More

Data.LOAD filen /NoClear

load filel but suppress the
generation of the internal
symbol database

load file2 but don‘t remove the
already available symbol and
debug information before
loading and suppress the
generation of the internal
symbol database

load filen but don’t remove the
already available symbol and
debug information before
loading, this is the last file
so generate the internal symbol
database now

©1989-2024 Lauterbach

Training Source Level Debugging |

8



Option and Commands to Get the Correct Paths for the HLL Source Files

A video tutorial about the source path correction can be found here:

support.lauterbach.com/kb/articles/displaying-the-source-code

] [BrListauto] ===
[ Pistep |[ M over ]LDwerge][ SRetun | @up || »co | mEBreak ]%Mode | Find: diabc.c
addr/1ine |code abel mnemonic comment i
| SF:4000105C [ main: stwu rl, 0x28(r1) ;orl,-400r1) -
SF:40001060 mt [r ri )
SF:40001064 stw r30,0x20(r1)
SF:40001068 stw r31,0x2
SF:4000106C stw ro .Elxz-'._
7 / _
SF:40001070 2,0x4000
SFigggig;g C H rll Elxl
SF:40001078 [996Cc4110  stb  rll,0x4110(r12) ; ril,16656(r12)0 L4
o _40001352 7 /////////////1////////////|//u//_/|/|/|////////////////////////////////////////////
SF :40001080 r9,0x2
SF:40001084 |2 sth r9,0x411C(r10) -
- T 3

If the Source Listing displays hatched areas instead of the source code information, the source code paths
provided by the loaded program have to be corrected. These corrections become necessary because the
compile environment differs from the debug environment. The graphic below shows a very simple example.

Compile environment

demo

[ |
sample.c sample.c

Debug environment

©1989-2024 Lauterbach

Training Source Level Debugging | 9


https://support.lauterbach.com/kb/articles/displaying-the-source-code

To inspect the paths for the source code files provided by the loaded program proceed as shown below:

Var Break Run CPU I
¥ Registers

{4 Dump...

E’J List Source

ﬁﬂ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

® Peripherals

Browe
il Groups Browse Modules
I Bookmarks Browse Functions

Trace List Browse Variables

Message Area Browse Types

Symbols Tree View

i Source

Details of Symbol Search Paths

3 BusYmbol.List. SOURCE

module |source
diabcdiabc [T:\T32DEMO\POWERPC",55xx" code_0x40000020_data_0x40004000%d7 abc. c
<

The compile paths provided by the loaded program are
listed in the source column

|s1ze [time

error
in the state column indicates that a required file was
not found in the current debug environment

I sYmbol.List. SOURCE Display source file details.

©1989-2024 Lauterbach Training Source Level Debugging | 10



TRACE32 provides the following ways to correct the compile paths so they fit the paths in the debug
environment:

Example 1: Provide the source paths directly

+ Quick and easy
+ Recommended for small project
+ Source paths can be corrected without reloading the program

Example 2: Translate compile path to debug path

+ Recommended for large projects
+ Source paths can be corrected without reloading the program
+ Not flexible enough for a generic script

Example 3: Personalized debug paths

+ Recommended for large projects
+ Flexible for generic scripts
+ Requires a fixed location for the script that loads the program

Example 4: Convert cygdrive paths to Window paths

Example 5: Load EIf file with relative paths only

©1989-2024 Lauterbach Training Source Level Debugging | 11



Example 1: Provide the source paths directly

File Edit View Var Break Run CPU Misc Trace

Perf Cov MPC5XXX Window Help

(M Ald e B2 O S sdcs @ 1 2

|l =l Butist [E=0 B T
[ Mistep |[ M over ]@Diverge][ SReturn [ @up | ][ 1n Break ]%Mode | Find: diabc.c
addr/1ine |code label mnemonic comment i
| / 2 Z
I feuSE M2 LIEEDE _ main; S rl ...924.23.(21 .......... sl Lo DR )i
I SF 40001060 nd ro
l SF:40001064 r30,0x2

SF:40001068 | :’
SF:4000106C | stw r0,0xEC{rl

/

57

5
SF:40001070 130504000149
SF:40001074 139600001
SF:40001078 (9964

Py}

rll Oxl

[X=]
N
§
§
\\

trigger [ devices ][

trace ][ Data ][ Var ][ List ][ PERF ][ SYStem ][ Step ][ other ][ previous
SF:4000105C \\diabc\diabc\main stopped at breakpoint MIX UP

TRACE32 displays a warning when a required source file was not found and the source listing displays
hatched areas instead of the source code information. One way to solve this issue is to directly provide the
correct path for the source file.

1. Open a sYmbol.SPATH.List window.

Var Break Run CPU I
¥ Registers

144 Dump...

E’J List Source

@Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

® Peripherals

Browse

il Groups

M Bookmarks
i Trace List

= | Message Area

Browse Modules
Browse Functions
Browse Variables

Browse Types

Symbols Tree View

Details of Symbol

............................................

File Names

3 BusYmbol.SPATH.List

[$&Delete All|[ (=Reload || Verbose ]Lgstore... ]ECache...][ S Load... || +AddDir...|

dir |base |cach [rec

dyn |hit |directory i

OO,
] Add Dir... ll

11 | 2

©1989-2024 Lauterbach

Training Source Level Debugging

12



2.

Use the +AddDir ... button in the sYmbol.SPATH.List window to open a folder browser. Select

the directory in which the missing source file is located.

-

§ B:sYmbol SPATH.List [o=]=]
(& Delete All|[ CxReload || Verbose ]Lgstore... ]ECache...][ S Load... | + Addoir... |
dir |base |cach [rec |dyn |hit |directory Ly

-
Browse for Folder

U B::B::s¥Ymbol.SourcePath *

C:T32_MPC'demo'powerpcthardware ympc5exxympc563xm's

4

mpcSExx -
mpc560x

mpc560x_spc5aix
mpc563xm E
|, source 3

. mpcSa3x_spcSe3x
. mpc5a43l
. mpc5&43l-dualcore

. mpc5&643Hsm -
] [T

 F——

§ BusYmbol SPATH.List ==

(& Delete All|[ CxReload || Verbose ]Lgstore... ]LECache][ ZLoad... || +AddDir...|

dir |base |cach [rec |dyn |hit |directory Ly
W | | [C:\T32_MPC\demo'\power pc’har dwar e\, mpc56xx \mpc563xmisource -

" 2

The sYmbol.SPATH.List window lists all provided directories.

©1989-2024 Lauterbach

Training Source Level Debugging |

13



As soon as the required source file was found, its source code is visible in the Source Listing.

= Bulist =5 EeR
[ Mistep |[ M over ]@Diverge | #Return ][ @ up || »Go || mBreak || FMode | Find: diabc.c
addr/1ine |code label mremonic comment
main() -
571 |{
i |94 21EEDS. . main; stwu rl,-0x28(r1) ;orl,-40(rl1)
SF:40001060 |7 mt r0
SF:40001064 (S stw r30,0x20(r1)
SF:40001068 (9 stw r31,0x24(r1)
SF:4000106C |9 stw r0,0x2C(r1)
int j;
char * p;
yhi]e (TRUEY
577 gtart:
S?SJ viripplearray[0][0][0] = 1; -
' m 3

If you want to check if the correct source file was used, proceed as shown below:

Var Break Run CPU I
¥ Registers

{4 Dump...

E’J List Source
@ﬂatch

@ Referenced Var
ﬂl:ocals

@ Stackframe with Locals
@ Stackframe

® Peripherals

- Symbols » Browse
il Groups Browse Modules
I Bookmarks Browse Functions

Browse Variables
= | Message Area Browse Types

Symbols Tree View

“souce — B FieNmes |

Details of Symbol Search Paths
4 BusYmbol List.SOURCE
module source
wdiabchdiabc |T:%\T32DEMOYPOWERPC", 55xx" code_0x40000020_data_0x40004000%d1abc. c
4

The compile paths provided by the loaded program are
listed in the source column

(o )[O sl

file state
|C:\T32_MPCh\demo'\power pcihar dwar e\mpc56xx\mpc563xmisource’diabc. ¢ [Toaded

¥

The path from which a source file was actually loaded is
listed in the file column.

sYmbol.SourcePATH.List List source file search information.
sYmbol.SourcePATH.SetDir <directory> Define directory as direct search path.
sYmbol.List. SOURCE Display source file details.

©1989-2024 Lauterbach Training Source Level Debugging | 14



Example 2:Translate compile paths to debug paths

If you have a large project with a lot of subdirectories it is work-intensive to provide all source paths directly.

An easier solution works as follows:

Path information from the compile environment

4 BusYmbeol.List. SOURCE

module

source

Sowm T Tnux\msdos
owm ] nux\msdos
YAowmlinuxblock/sesi_joct]
bvwm]dnuxabTked pher
owm i nuxtaead
Cowm ] nuxt ahash

hometuser’ JTinux-kernel’ Tinux-3. 4\bJock'\partitions’check.h
“home'user' 1inux-kernel’ 1inux-3.4block"partitions'msdos. c

Jhomehuser’ [Mnux-kerne [N [1nux-3.4 b lock'\scsi_toct . c
Yhomehuser' 1inux-kernel Tinux-3. 4\ crypto‘ablkcipher. c
Yhomeuser' Tinux-kernel’ 1inux-3. 4\ crypto‘aead. c

Jnometuser’, [Tnux-kerne ' [1nux-3. 4\ crypto'\ahash. c

4

Source file directories in the current debug environment

k B:DIR CAT32_ARM\debug\sources EI@

bilock
bluetooth
char

clk
crypto -
4

If we take a closer look e.g. to the files msdos.c and aead.c, we can see that the following command can

solve the issue easily.

sYmbol.SourcePATH. Translate "\home\user\linux-kernel\linux-3.4" \

"C:\T32_ARM\debug\sources"

The invalid part of the source file paths (" \home\user\linux-kernel\linux-3.4") istranslated to

the correct part ("C:\T32_ARM\debug\sources").

The sYmbol.SPATH.List window shows this translation.

3 BusYmbol.SPATH.List

(& Delete All|[ CxReload || Verbose || £2store... |52 cache... || ELoad... || + AddDir...|
dir |base |cach [rec |dyn |hit |directory

"homehuseri linux-kernel’Tinux-3.4" -= "C:\T3Z2_ARM‘\debug'sources"

4 I

The source files can now be loaded from the correct location.

=0 =
file state |
Jhome'user’ Tinux-kerneT  T1nux-3. 4\bTock\partitions'check.h
C:\T32_ARM‘\debug‘sources‘block\\partitionsimsdos. c loaded
“hometusert 1inux-kernel' Tinux-3.4block scsi_joctl.c
“home'user Tinux-kernel’ 1inux-3. 4\crypto\ablkcipher. c
C:\T32_ARM‘\debug'sources'crypto‘aead. c loaded
“home'user Tinux-kernel' Tinux-3. 4\cryptoahash. c -

©1989-2024 Lauterbach

Training Source Level Debugging

15



Translate <invalid_part> of source file paths to <correct part>.

sYmbol.SourcePATH.Translate <invalid_part> <correct_part>

sYmbol.SourcePATH.List List source file search information.

sYmbol.List. SOURCE Display source file details.

©1989-2024 Lauterbach Training Source Level Debugging | 16



Example 3: Personalized debug paths

Translating the compile paths to the debug paths is not flexible enough, if each user has its own debug
environment. The following example shows a generic solution for a personalized debug paths.

For this generic solution it is required that the script that loads the program (here load.cmm) is part of the
project, as shown in the example below.

Compile environment Debug environment

C:/Projects < D:/home/peter/own )

control

control

m45_k78.elf m45_k78.elf

start start

diagnosis diagnosis

interface interface

display display

T32_scripts T32_scripts

load.cmm load.cmm

The idea is now the following:

1. When the program is loaded, the start of the compile path including the project name (here:
control) is stripped by the command:

I Data.LOAD.<file_format> <file> IStripPART <project_name>

2. Now the new personalized start of the debug path has to be provided.

The presented solution takes advantage of the fact that TRACES32 includes shortcuts that represent
directories and that these shortcut can be used as path prefixes. The shortcut needed for our solution
is ~~~~ and it represents the directory where the currently running script is located.

~~~~/[.. represents exactly the start of all source paths (including the project name) in the debug
environment. This new start for all source paths can be specified by the following command.

I sYmbol.SourcePATH.SetBaseDir ~~~~/..

©1989-2024 Lauterbach Training Source Level Debugging | 17



The script load.cmm has to include the following:

; cut the following from the source paths:
; C:/Projects/control
Data.LOAD.Elf ~~~~/../m45 k78.elf /StripPART "control"

; specify new base directory (here d:/home/peter/own/control)
; for relative paths
; s¥Ymbol.SourcePATH.SetBaseDir ~~~~/..

©1989-2024 Lauterbach Training Source Level Debugging | 18



Example 4: Convert cygdrive paths to window paths

If the source files are compiled in a cygdrive enviroment, cygdrive paths are provided by the loaded program.

Data.LOAD.Elf sieve_pic_thumb_ii_v7.elf

% BusYmbol List. SOURCE (= R

moduTle source file state |
\As1eve pl c,thumbq 1,\/7 \crlthmc \cygdm ve\c\ProjectsiMyCygwinProject ‘cr‘thp‘lc. s ‘cygdr‘!ve vc\Projects \MyCygwinProject ‘crthfmc. s E
“sieve_pic_thumb_ii_w7\sieve cygdrivec\Projects \MyCygwinProjectsieve. c cygdrive\c\Projects\MyCygwinProjecthsieve. c

)i v

The option /CYGDRIVE advises TRACE32 to convert the cygdrive paths to Windows paths.

Data.LOAD.Elf sieve_pic_thumb_ii_v7.elf /CYGDRIVE

4 B:s¥mbol List. SOURCE ol ® =
module source file state |
\\sTeve_pic_thumb_ii_v7\crt0-pic [\cygdrive\c\Projects \MyCygwinProject\crt0-pic.s [c:\Projects MyCygwinProject'crtO-pic.s -
“\sieve_pic_thumb_ii_v7\sieve “cygdrive\c\Projects\MyCygwinProject'sieve. c c:\Projects\MyCygwinProject'\sieve. c -
4 »

Data.LOAD.EIf <file> /CYGDRIVE Load .elf file, convert cygdrive paths to Window paths.
sYmbol.List. SOURCE Display source file details.

©1989-2024 Lauterbach Training Source Level Debugging | 19



Example 5: Load Elf file with relative paths

If source files are compiled with relative paths, the resulting .elf file contains both, all <relative_path> as well
as the <compile_directory>. By default TRACE32 performs as follows:

// Load Elf file, construct source file paths by
// combining <compile_directory><relative_path>
Data.LOAD.E1lf C:/T32_ARM/demo/arm/compiler/gnu/sieve.elf

3 BusYmbol.List. SOURCE

module source

s1evencrtD D:%Software'demo’demo’arm’,comp1 Jergnuisrcicrtl. sx
‘\sievelisr D:%Software'demo’demo'arm',compiler’gnuisrciisr.c
“Asieveitm D:%Software'demo’demo'arm',compiler’gnuisrciitm. c
\\sieveymonitor D:%Software'demo’demo'arm',compiler’gnusrcimonitor. c
‘\sievelsieve D:%Software'demo’ demo'arm',compiler’ignuisrcisieve. c

w1

The option /RelPATH advises TRACE32 to not use the <compile_directory>.

// Load E1f file, provide only all <relative_path> for source files
Data.LOAD.E1lf C:/T32_ARM/demo/arm/compiler/gnu/sieve.elf /RelPATH

3 BusYmbol.List. SOURCE

source
Cwsrohert0. sx
Asrchisr.c
Asrchitm.
LA\srchmonitor. ©
A\srchsieve. c

TRACE32 is trying to load the source files now relatively to the location of the ELF file.

5 BusYmbol.List. SOURCE |- ]
source file state i
Cwsrohert0. sx Cwsrohert0.sx
Asrchisr.c C:\T3Z2_ARM‘\demo'armcompiler‘gnuisrciisr.c loaded
Asrchitm. Asrchitm.
srchmonitor. c |C:\T32_ARM\demo‘arm'compilerignulsrcimonitor. c loaded
A\srchsieve. c A\srchsieve. c -

If this does not work, you can provide the start of the source paths directly:

sYmbol .SourcePATH. SetBaseDir C:\T32_ARM\demo\arm\compiler\gnu

Data.LOAD.EIf <file> /RelPATH Load .elf file with relative paths only.
sYmbol.SourcePATH.SetBaseDir <base_directory> Provide start of source paths directly.
sYmbol.List. SOURCE Display source file details.

©1989-2024 Lauterbach Training Source Level Debugging | 20



Loader Options for the Virtual Memory

TRACE32 provides a so-called virtual memory on the host. With the following options the code is loaded into

this virtual memory.

VM

Load the code/data into the virtual memory.

PlusVM

Load the code/data into the target and into the virtual memory.

Data.LOAD.COFF arm.abs /VM ; load code/data from <file> into the

; virtual memory

Data.LOAD.COFF arm.abs /PlusVM ; load code data from <file> into the

target memory and into the wvirtual
; memory

A detailed description of the use cases for the TRACES32 virtual memory are given in “TRACE32 Virtual
Memory” in TRACE32 Glossary, page 54 (glossary.pdf).

©1989-2024 Lauterbach

Training Source Level Debugging |

21



The Symbol Database

Structure of the Internal Symbol Database

The symbol and debug information loaded with the Data.LOAD command is organized in an internal symbol
database by TRACE32.

Program

~

Module

N

Function

Variable

Variable
(static)

L

Global

s

o

Source

Variable
(dynamic)

'

Line

'

Column

©1989-2024 Lauterbach

Training Source Level Debugging |

22



General Information on the Symbol Database

I sYmbol.STATE

EBV (o[ 5 sl

statics
functions
locals
modules
types
macros
sources
Tines
stacks
frames
attribute
mar ker
maps
sections
locdescs
programs
compilers
prefix
postfix
case
strip
Frame
static
MSP-stack
CFA-stack
TL5-base

385.
34.

185.
2.

253.
0.

)
(=
T oa-

| WwHEOoOmMNO-O

Display general information about symbol database

©1989-2024 Lauterbach

Training Source Level Debugging

23



Symbol Browser

Var Bresk Run CPU I
{iil Registers i
142 Dump...

List Source

& Watch

&) Referenced Var

ﬁ Stackframe with Locals
ﬁ Stackframe

® Peripherals |
Brome

iif Groups | Browse Modules

M Bookmarks

Browse Functions

Details of Symbol

Trace List Browse Variables
Message Area Browse Types

“i Symbols Tree View

E Source L4

% BusYmbol Browse.symbol EI@
WA= Symbols v] [[]source

symbol address I

ast D:400040F8--40004108 .

aun D:40004420--40004437

background P:40001368--400013AF

background P:40001368--400013AF

|_cleanupfp D:400040E0--400040E3

cstrl (unsigned char [17]) D:400013B0--400013C0

| d_add P:40001748--40001A08
d_dtof P:40001A4C--40001ADF ||

| d_fge P:40001AE0--40001BA3
d_itod P:40001BA4--40001C1B

| d_mul P:40001C458--40002157

| d_sub P:40001A0C--40001A48

def D:400040C0--400040C7

enumvar ( ) D:40004000--400040D3 -
4 [ 3

I sYmbol.Browse [<name_pattern> [<type_pattern>]] Browse symbol information

sYmbol .Browse a*

sYmbol .Browse a* struct*

sYmbol .Browse * *struct*

©1989-2024 Lauterbach Training Source Level Debugging | 24



Global Browsing

Global Up Global Down

% BusYmbol.Browse.symbol v

:400040C0--400040C7
:400040D0--400040D3 -~

WA
symbol
ast D:400040F8--40004108 .
aun D:40004420--40004437
background P:40001368--400013AF
background P:40001368--400013AF
|_cleanupfp D:400040E0--400040E3
cstrl ( 10 ar [17]) D:40001380--400013C0
| d_add P:40001748--40001A08
d_dtof P:40001A4C--40001ADF
| d_fge P:40001AE0--40001BA3
d_itod P:40001BA4--40001C1B
| d_mul P:40001C458--40002157
d_sub P:40001A0C--40001A48
D
D

\V\¥\* (all functions, all global variables) Function Gl9bal
Variable

\WNV\* (all local variables) Variable Variable
(static) (dynamic)

©1989-2024 Lauterbach Training Source Level Debugging | 25



Narrowed Browsing

% BusYmbol.Browse.symbol EI@
WA= Symbels v | []Source
symbaol
ast Variables 40FE--4000410B .
aun i 4420--40004437
background oS 101368--400013AF
background . 1368--400013AF
| cleanupfp :400040E0--400040E3
cstrl unsigned char [17] :400013B0--400013C0[ |
| d_add :40001748--40001A08
d_dtof :40001A4C--40001ADF
d_fge :40001AE0--40001BA3
d_itod :40001BA4--40001C1B ~
4 F
Select display type
Symbols Display all symbols
Variables Display all variables
Functions Display all functions
Modules Display all modules

If the browsing is narrowed to

z B::s¥Ymbol Browse.symbol ' EI@ the |Oca| VariableS Of the Selected
W (2] (3] Type: Variables | [C] Source function are displayed
ﬁy_‘nf_lbo'l type address
e (struct abc) D:400040C0--400040C7 .

enumvar ) ) D:400040D0--400040D3

flags 1signed char [19]) D:40004128--4000413A |

funch

funcl

Tuncll

funcl3

;: ::Ei; % Bus¥Ymbol Browse.symbol EI

J M WA S\func1o\® Variables v | [C]Source
_s';_\@b'o"l ..................... e =
1 -
j R30 i ...... :
return R3 |
vl R29 =
v10 R20 L&
v1l R19
v12 R18
v13 R17
w14 R16
v1l5 R15 5
IK ;

Variables and a function is selected,

©1989-2024 Lauterbach

Training Source Level Debugging

26



If the browsing is narrowed to
Functions and a function is selected,
the source code of the selected function

is displayed
T — V oo es
W= [Functions v] [[]source
symbol address "
background P:40001365--400013AF o
funch P:40000030--40000048B E
funcl P:4000004C--4000007F |E|
P:40000798--40000BEF =
uncll P:40000BF0--40000C&7
funcl3 P:40000C88--40000CEB
funcl4 P:40000CEC--40000D17
funcls p:40000018--40000047
Foncts | o)e s
funcl? :
| « [ Mstep || % over |[AiDiverge| ¢ Return | e up | ][ 11 Break |[ 'mode ]@E]
addr/1ine |source
funcl0()
355 [{
reg'lster i, ],
reg'lster vl, v2, v3, v4, v5, vb6, v/, v,
register v9, v10, v11, w12, v13, vl4, vlS, vie, vi7; [
360 vl7 = 0;
361 for (=031 <3 ; i++ )
362 vl7 += 1;
4 2

[View] var Break Run CPU |
{iil Registers
142 Dump...

List Source

' Referenced Var

" Locals

ﬁ Stackframe with Locals
ﬁ Stackframe

® Peripherals

Browse Modules

Browse Functions

Browse

| Symbols
i Groups
M Bookmarks

Browse Modules

Browse Variable

Browse Functions

i Trace List

Message Area

Browse Types

Symbols Tree View
Source 4
Details of Symbol

sYmbol.Browse
sYmbol.Browse.Function
sYmbol.Browse.Var

sYmbol.Browse.Modules

Browse symbol information
Browse functions
Browse variables

Browse modules

©1989-2024 Lauterbach

Training Source Level Debugging

27



Browsing for a Specific Type

Display all variables of the type
unsigned int

% BusYmbol.Browse.symbol ' EI@
W [t.] (3] Type: unsigned |variables ~| [[JSource
symbol type address
vuint |(unsigned int) | D:40004088--4000408E -

4

sYmbol .Browse.Var * unsigned int

Display all variables where the type

name contains the keyword char

(*char*)

% Bus¥Ymbol.Browse.symbol ' EI@
W= E] E] Type: *char® Variables ~| [C]Source

symbol type address i
cstrl (unsigned char [17]) D:40001380--400013C0 -
flags (unsigned char [19]) D:40004128--4000413A

func24

func2é

char nsigned ch D:40004068--40004068

darray nsigned ch D:400040B8--400040BC
dblarray nsigned ch D:400041A8--400041C5

diarray nsigned ch D:40004040--40004044

pchar nsigned ch D:40004074--40004077

ppuchar nsigned ch D:400040A0--40004043

puchar nsigned ch D:40004090--40004093
wvtripplearray unsigned ct D:40004110--40004127

uchar (unsigned ck D:40004084--40004084
J 4 13

sYmbol .Browse.Var * *char*

Display all variables of the type
pointer to char (*char ™)

% B:sYmbol.Browse.symbol

W

=0 EeH =
*char " |Variables «| [C]Source
address
D:40004074--40004077 -
D:40004090--40004093

sYmbol .Browse.Var * *char

[ ]

©1989-2024 Lauterbach

Training Source Level Debugging | 28



Details about a Selected Symbol

Var Break Run CPU

b

{iill Registers

142 Dump...

EE'J List Source

@ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

® Peripherals

i1 Groups
A Bookmarks
Trace List

= | Message Area

Browse

Browse Modules
Browse Functions
Browse Variables

Browse Types

Symbols Tree View

Source L4

Details of Symbol

r B
2 BisYmbolINFO * [E=NEER™
W [(t.] 3] Type: Variables | [ Source
isymbol type address | !
ast (strtypel) D:400040F8--40004108 -
aun (struct unionl) D:40004420--40004437 E
background
cstrl (unsigned char [17]) D:400013B0--400013C0
def (struct abc) D:400040C0--400040C7
enumvar (int) D:400040D0--40004003
ags unsigned char [19 D:40004128--4000413A
uncO

funcl -
[l b

% BusYmbolINFO flags

[ 2 symbols || tipump || EiList || O view | $8mmu |

4arial

bTe
1abc\GTobaT T Tags

D:40004128--40004134 global static

type

(unsigned char [19]) array (unsigned char, 19 bytes, indexed by int, 0..18)

(int) signed integer (32 bits)
(unsigned char) unsigned integer (8 bits)

©1989-2024 Lauterbach

Training Source Level Debugging |

29



= [BaList]

(=[O el

addr/1ine |source | |
677

[ Mstep |[ ® over |[ADiverge| ¢ Retun|[ eup || PpGe | ||| Break || "% Mode |l&][ 2] i

k=1+

Select the variable you are
interested in

rimz;
CIZE.Q

Variable

&% Add to Watch Window
ol View in Window

&% Set Value...

&5 Modify Value...

& Go Till

ﬁ Breakpoint...

@ Advanced Breakpoint
. Breakpoints

Display hemony

i Display Trace

#3 Grep in Sourcefiles
Copy Expression

* v v v

3

fof View Detailed
| view Base

M| view Constant
B view Table

B view Fixed Table
B view Chain

B view Fized Chain
W iew Graphical
B view Dump

QU Wiew Bytes

= | Logto AREA

llllm] Profile

Ml Step Till Change

2 B:VarINFO k

o[- s
[ % symbols || @tioump || Slust || O view || $8 mmu |
ariable -
“hdiabchdiabchsieve'k
R29 block-Tocal register alive: P:0x400012AA--0x40001367
module info

anguage: ELF-C

producer: Diab Data, Inc:dcc Rel 4.0b:PPCE03
source:

type

I:4T32DEMONPOWERPCY,55xx Y code_0x40000020_data_0x40004000diabc. c

(int) signed integer (32 bits)

sYmbol.INFO

Var.INFO
function

Display symbolic address, location, scope and layout of a symbol

Display symbolic address, location, scope and layout of a variable or

©1989-2024 Lauterbach

Training Source Level Debugging

30



Searching in Source Files

Search a String in the Current Source File

If debug mode HLL is active, the entered string is searched in the current source file.

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MPCSXXX Window Help
MR A S e rn[E 2R 0 B S B 2

| [BuList.auto]

[ M Step || M Over |[AsDiverge|| ¢ Return [ ¢ up |[ P Go || I Break || ! Mode ]@E] 1 | Find: mstaticl

addr/1ine |source
166 autovar++;

for ( regvar = 0; regvar < 5 ; regvar++ )
mstaticl += regvar®autovar;

fstatic += mstaticl;
fstatic2 = 2*fstatic;

funcl( &fstatic? );

funcl( &autovar ); /* to force autovar as stack-scope */

funcl( &fstatic ); /* to force fstatic as static-scope */

‘B::

[components| [ trace ][ Data || i PERF || svstem |[ step

J

SF:4000105C \\diabc\diabc\main stopped at breakpoint

Debug Mode HLL is active

current source file

©1989-2024 Lauterbach

Training Source Level Debugging

31



Search a String in all Source Files

|2 View Var Break B

) Undo Ttz
% cu Chie Enter the string here
Qopy Chil+C
Easte Chil+
Delete Del Mword /Case
j‘jFind... CilsF Search IpWord W Case  File I
Beplaces. hits: 11 |source | | | =
T Ginio Line diabcl.c =
249 int i:1;
Stare Position 319 register i, j;
Recall Position 324 for ( i=0;1i<3; i++ )
—_— 325 17 += i;
gs.avegllsditor.ﬁles 360 i=j= :1?; b
[ List all Editor Files 616 register int i, primz, k;
621 for ( i = 0 ; i = SIZE ; flags[ i++ ] = TRUE ) ;
623 for ( i = 0 ; i {= SIZE ; i++ )
625 if ( flags[ i 1)
627 primz = 1 + i + 3;
628 k = i + primz;
2| | AV

TRACE32 searches in all source files for the defined string.

©1989-2024 Lauterbach

Training Source Level Debugging

32



Display Variables

Watch Window

Adds the selected variable to the top of the Variable Watch window. If no Watch Window exists, a new

Watch Window is created.

mBreak Run  CPU
(SN
o View...

Q Data View...

a Breakpoint. ..

E’J Show Function. ..
ﬁﬂ Shows Wakch

ﬂ Show Locals

ﬂ Show Stack.

@ Show Current Yars

i, B::Var.AddWatch *

The selected variable is added to the top
of the Variable Watch window

ﬁ Farmat...

{struct unionil)

{unsigned char [171}
{struct abc)
{enum enunt
{unsigned char [191)

s:Var.AddWatch cstr1

=1

e @R e | e
type addi/ess o
(strtypel) [y: ABAASE3C—-BARASBAF ~

) : AAASARG——APARSABF
D :BRAAS5H8—PPPRS510
D :BABAS624-—PPPAS6ZB
D : BAAAS634—PPPAS634
D : IAAAGER1—PPPAGE B6|

p)

I

# flags = (1, 1, 1, @&, 1, 1, 8, 1, 1, 8, 1,8, 68,1, 1,08, 8,1, &)

= enumvar =

= cstrl = (67, 111, 11@, 115, 116, 97, 11@, 116, 32, 83, 116, 114, 185, 118, 1@3

<

enunl

2

::Data.List

E addr/line  source

Add the variable to the

687

{

if ( f'lgm

Watch Window by using

1N
Vari

B

i=2

= enumvar = enuml

<

#flags = (1, 1, 1, 8, 1, 1,

. #iGrep in Sourcefiles

@ Advanced Breakpoint

the Variable pull down

o] | (%)

other

'8, 1,1, 0,0, 1, ®

= cstrl = (67, 111, 11@, 115, 116, 97, 11@, 116, 32, 83, 116, 114, 185, 118, 183

A

©1989-2024 Lauterbach

Training Source Level Debugging | 33



Data.List

Ml Step || M Over || & Mest || Retum|| ¢ Up B Go M Break

addr/line  source
687

Drag variable to the
the Watch Window

ags[ k ] = FALSE;
k += primz;

|
[.i=2

flags = (1, 1, 1, 8, 1, 1,8, 1, 1,8, 1,8, 08, 1,1, 8,08, 1, &)
enumvar = enuml
cstrl = (67, 111, 118, 115, 116, 97, 118, 116, 32, 83, 116, 114, 1@5, 118, 183

| >
E B::Var.AddWatch cstr1
v
i=2
® flags = (1, 1, 1, @8, 1, 1, 8, 1, 1, 4, 1, 8,8, 1, 1, 8, 8, 1, @)
@estr] e 15, 116, 97, 118, 116, 32, 83, 116, 114, 1@5, 118, 103
ﬁﬂ Add ko Watch Window
| view in Window I i | ]
85 Set Yalue. ..
&5 Modify Yalus. ..
¥ Go il »
aBreakpoint...
@Advanced Breakpoint  *
eBreakpoints 4 )
] Display Memary v Remove the selected variable
FGrep in Sourcefiles from the Watch Window
other 4
=R Format,..
X EET
Var.Watch [Y%<format>] [<variable>) Open a watch window and display variable
Var.AddWatch [%<format>] <variable> Add variable to watch window

©1989-2024 Lauterbach Training Source Level Debugging | 34



View Window

Opens a new Variable View window for the selected variable.

Var Break Run CPU
&k Watch...
e,
3y, Data View...
] ﬁ Breakpoint...

1 £ Show Function...

1 6% Show Watch
{ e show Watc 2 B:VarView*

1 5{9}’ Show Locals

) ﬂ Show Stack | )
i &5 Show Current Vars =

] aun
:& Format... —close
- | cstrl

(strtypel)
{unionl)

(static char

[171)

(o] 2 )

:l:l Variables  ~ | (] Source

address
D:0001E24C--0001E25F|N
D:0001E4B8--0001E4CF

D:0001AESC--0001AESC ¥

&l BuVar.View ast

(o8 s

# ast = (word = 0x0, count = 12346, left = Ox0001E24C, right = 0x0, fieldl = -1, TieldZz = 2)

>
A new Variable View Window is opened
to display the selected variable
I Var.View [%<format>] <variable> Display variable in a separate window
o If a formula is entered, it is interpreted and the result is displayed.
B::Var.View flags[ 2]+ast.count [ZI[EI[S_TI
- flags[2]+ast.count = 12347
[ ermilate ][ [rata ][ War ][ trigger ]E
SR:0000227C M\armleharmbsieve+0x54
Training Source Level Debugging | 35

©1989-2024 Lauterbach



Referenced Variables

Opens a Var.REF window. The variables referenced by the current source line are automatically added to
this window.

mBreak Run  CPU

ﬁﬂ Watch...
ﬁﬁ Wigw. ..
Q Data View... e
Eflereskooit... B::Data.List |- [D]X]
G Show Wt addr/line  source | [ | e
ﬁﬁ Show Locals |
g show Stack flags[ k ] = FALSE; "
[:=57 Show Current: Yars k k += primz;
afs Trace on War ... ¥ ;nzah1++'
Clear Trace Setup 1 4
W Farmat...
-k =16
Li=2
Var.Ref [Y%<format>] Display the variables referenced by the current code

line

©1989-2024 Lauterbach Training Source Level Debugging | 36



Local Variables

Open a window to display the local variables of the current function.

mBreak Run  CPU

| i watch, .
ﬁﬁ View, .
Q Draka Yiew, ..
a Breakpoint. ..
E’J Show Function. ..
ﬁﬂ Show Watch
&3
@ Show Stack B4 B::Var.Local |._||E|P5__<|
@‘ Show Current: Vars sieve() -
3 -i=2 T
= prinz = 7 L
-k =16
Frormat... . anzahl = 2 v
I Var.Local [Y%<format>] Display local variables

sieve() ~
= {register int) i = 2

= {register int) primz = 7

= {register int) k = 16 —
= {register int) anzahl = 2

£

< e

©1989-2024 Lauterbach Training Source Level Debugging | 37



Stack Frame

Display a “stack trace’

Var Break Run CPU

" to show the functions” nesting.

&k Watch...
! Bl View...
3y, Data View...
ﬁ Breakpoint... o B . EI@
{ =4 Show Function... ¢ B::Frame.view /Locals /Caller
:51; Show Watch +. Up Down  MArgs  [Mlocals [ caller Task:
| 6% Show Locals —oool enoggg = Ox0001E0LC) ~
e )
|k5f Show Current Vars tes
-001|main()
i . = 55
b 3 = Ox0001E0LC
gendif
1697 encodeip);
-002||gomain(asm)
64 b1 main
—— |end of frame
W
Args Display the arguments.
Local Display the local variables.
Caller Display of the high level language block from which the function
was called.
I Frame.view [%<format>] [/option] Display a ‘stack trace”

©1989-2024 Lauterbach

Training Source Level Debugging |

38




Special Display for Arrays

Graphical Display

I Var.DRAW [%<format>] <array> Display the contents of an array graphically

Var .DRAW sinewave

Var.View sinewave |'._||'E|r$__<|
= sinewave = (

.8,
.4991670832341408,
.6622311026502039,
.73880A516653349,
. 778836684617301,
.7999425643403384 ,
.BAGG321A4850A505 ,
.8A52721@908471139, ‘ B::Var.DRAW sinewave
. 7978623232216919,

. 7833269A96274834 , {3 Goto... || #3Find.. 4 In P4 Out MM Full o X Out !x Full
.7649736225526331, 8. 1688. 208. 368.

. 742672000A511961, | 1 1

.716953143A517125,
.6882558467265664 , 8.75
.6569664866589734,
.6234343666275339,
.5879844723773558,
.55A9248946958157, 8.5

a.25

©1989-2024 Lauterbach Training Source Level Debugging | 39



Display Array with Indices and Pointers

Var.TABle [%<format>] <array> <index>| ... | Display an array together with indices and
pointers
Var.TABle flags 1 k vpchar i and k are indices,

vpchar is a pointer

#=i B::Var. TABle flags i k vpchar |‘._|[’E|r'5__<|
0 (=] (=] [ Compress
ox0 (0) |- 1, ~
.
0x2 (2) (-1, + i
0x3 (3) |- @,
x4 (4) |- 1,
0x5 (5) |- 1,
ox6 (6) |- @,
ox7? (7 |- 1,
0xB (8) |- 1,

oxoc (12) (- @, « vpchar

Display nth element on
top of the window

Display first element on
top of the window

Display last element on

L B::Var. TABle flags k vpchar LEX top of the window
|B | [ = ] [ = ] [ $#3Find.. ] [] Compress

0x8 (8) |- 1, 2

0x9 (9} - Ej + k

©1989-2024 Lauterbach Training Source Level Debugging | 40



Compress the array

CBX

v @ @ [ﬂ] [ Compress

g (=] (=] [ Compress
0x0 . Allxz (0. 2)[-1, «i=2 3
0x3 (3) |- @,
x5 (4..5)|- 1,

0x9 (9) (-8, + k

(11..12) (- @, « vpchar = BxPAAAGERA

|<

Var.FixedTABle [%<format>] <array> <index>| ... ] Display an array together with
indices and pointers in a fixed
format

Var .FixedTABle stra2 vpchar

::var.table stra2 vpchar

L | == e

0x0 (0) @, ppstructS = @x1A88, pastruct5 = (Bx@, BxB))), ~
0x1 (1) | BxAAREAA35, ppstructS = BxA, pastructSs = (@xA, Bx@))),

0x2 (2) | @x@, ppstructs = Bx4B2249EF, pastruct5 = (Bx@, B8x@))), <+ vpchar

0x3 (3) [ruct5 = Bx@, ppstructs = Bx@, pastruct5 = (BxB, BxAA298977))), —
0x4 (4) @, ppstructS = @x@, pastructS = (Bx@, Bx@))),

index | | pstruct5 | ppstructS | pastructS | '
0x0 (0) #A@)), (AxAPAAAARAR, AxAPPA1ASA, (AxPRAAAAPR, AxAPAARARR))), ~
0x1 (1) @@@)), (AxARBEAA3S, AxAPPAARRA, (AxPAAAARRR, AxAPAAAAAA))),
0x2 (2) @A), (PxAAARAARA, Ax4B2249EF, (AxPAAAAAAA, AxAPAAAEAA))), + vpchar
0x3 (3) #9@)), (AxAPAAAAAR, AxPPPAARRA, (AxPAAAARRB, AxABZ298977))), =
0x4 (4) @9@)), (AxAPAAAAAR, AxPPPAARRA, (AxARRAARRR, AxAPAAAAAA))),

©1989-2024 Lauterbach Training Source Level Debugging | 41



Linked Lists

I Var.CHAIN [Y%<format>] <first> <next>| ... ] Display a linked list

Var .CHAIN ast ast.left ast is the first element of the
linked list,
ast.left provides the pointer to
the next element

B B::Var. CHAIN ast ast. left (=13

@ @ Scar: () Full O Partial (3 Auto
0x0 (0) |® (word = Bx@, count = 12346, left = Bx5B3C, right = Bx@, fieldl = 1, field2 = 2),
0x1 (1) [® {word = Bx@, count = 12346, left = Bx583C, right = @x@, fieldl = 1, field2 = 2),
0x2 (2) [® (word = Bx@, count = 12346, left = Bx583C, right = @x@, fieldl = 1, field2 = 2),
0x3 (3) [® (word = Bx@, count = 12346, left = Bx583C, right = @x@, fieldl = 1, field2 = 2),
0x4 (4) [® (word = Bx@, count = 12346, left = Bx583C, right = @x@, fieldl = 1, field2 = 2),
0x5 (5) [® (word = Bx@, count = 12346, left = Bx583C, right = @x@, fieldl = 1, field2 = 2),
0x6 (6) @ (word = @x@, count = 12346, left = @x583C, right = @x@, fieldl = 1, field2 = 2), 5
< >

Display the nth element on
top of the window

Display the first element on
top of the window

Display the last element on
top of the window

% [B::¥ar.CHAIN ast ast. left]

] @ @ Scar: () Full O Partial (&) Auto

0x23 (35) |® (word = Bx@, count = 12346, left = Bx583C, right
0x24 (36) |® (word = Bx@, count = 12346, left = Bx583C, right

x@, fieldl
@x@, fieldl

1, field2
1, field2

©1989-2024 Lauterbach Training Source Level Debugging | 42



Scan Modes

The linked list is permanently scanned to keep it up to date. This
may reduce the performance of the TRACES32 user interface. 3
different scan modes are supported

Full The linked list is scanned completely. This may reduce the
performance of the TRACE32 user interface considerably.

Partial The linked list is only scanned from the record at the top of the
screen. The influence on the performance of the TRACES32 user
interface is very small.

Auto This mode provides a compromise between an up to date linked

list and a fast TRACES32 user interface. For a specific time (20-50
ms) the list is updated and for the same time user inputs are
served. The number beside the Auto button is the number of the
last updated record.

| Var.FixedCHAIN [%<formats] <first> <next>| ... |

Display a linked list in a fixed format

Var .FixedCHAIN ast ast.left

% B::Van.FixedCHAIN ast ast.left

1 = (=] Scan

EBX

O Full O Partial (3 Auto

0x4 (4) |(BxPAAAAAAA,

index word count left right fieldl field2 -
0x0 (0} [(AxARAAARGR , 12346, PxP@ARS83C, OxPAPORERA, 1, 2}, ~
0x1 (1) [(AxAAAAARGR , 12346, PxP@ARS83C, OxPAPORERA, 1, 2},
0x2 (2) [(AxAAARARGR , 12346, PxP@ARS83C, OxPAPORERA, 1, 2y,
0x3 (3) [(AxAAARARAR , 12346, PxP@ARS83C, OxPAPORERA, 1, 2},
12346, PxP@AP583C, OxPPPARERA, 1, 2}, b

©1989-2024 Lauterbach

Training Source Level Debugging

43



Change a Variable Value

To change the content of a variable, you can use the Set Value... command from the variable pull-down or
simply double-click on the variable. In either case, the command Var.set appears in the command line

together with the name of the variable.

/A TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov TC2%T Window Help
(M AT rn | 28 0 EnEscs @22
&% BuVar.Watch EI@
V| i &4 Watch e View x®
Blnstaticl = 111606970 -
. m?‘_ti.at‘ch =0 Variable
- vfloat = 1.6 % Add to Watch Wind
® ast — (word = 0x0, ¢ & AddtoNatehindow ) g right = 0x0, fieldl = 1, field2 = 2)
mflags = (1, 1, 1, 0,|éef Viewin Window T, 0, 1,1, 0,1, 1, 0)
< ; >
_ &5 Modify Value... -
* com R (o )(@ =]
M Step . B Over || A & Breakpoint.. » Go Il Break | % Mode &2 t. Find: taskc.c
addr/Tine |source . i
@ Advanced Breakpoint  » =
2z Breakpoint: v | flags[ k ] = FALSE;
697 ? MRS k += primz;
o Display Memory 2
. 099 Display Trace y Ea
1 #3 Grep in Sourcefiles
703 r Copy Expression
704 [} other 4
int backg me pormat.. * job for background-demo *
{ v
- ¥ Remove
B::V |mstaticl =
[ok] formats “Vars previous
D:7000000C \\triboard-tc29x_sieve_intmem\taskc\mstaticl stopped HLL Up

Here are a few examples for the use of the Var.set command:

Var.set mstaticl = 111609970
Var.set mstaticl = k+3
Var.set mstaticl = k+i
Var.set flags[3] =1

Var.set ++k

; assign a decimal value to the
; variable mstaticl

; add 3 to the content of the
; variable k and assign the result
; to the variable mstaticl

; add the contents of the variables
; k and i and assign the result
; to the variable mstaticl

; assign decimal value 1 to the 4th
; element of the array flags

; increment the content of the
; variable k

©1989-2024 Lauterbach

Training Source Level Debugging | 44



The command Var.set can also be used to evaluate a high-level language expression. The expression and
its result are then displayed in the message area.

A TRACE32 PowerView = =R
File Edit View Var Break Run CPU Misc Trace Perf Cov TC2%T Window Help
(MM IO Euieadas @2

o [ ==

55
| V| z 5 Watch ot View ®

- [D:0x70000018] vlong = 4620

- mstatic? = 879

- vfloat = 1.6

- mstaticl = 567834

®ast = (word = Ox0, count = 2, left = 0x70000038, right = Ox0, fieldl = 1, field2 = 2)
®flags = (1, 1, 1, 0,1, 1,0,1,1,0,1,0,0,1,1,0,1,1, O

<

B:AREA EI@

vlong/2 = 2310

mstaticl-mstatic2 = 566955
*((unsigned int*)0x70000018) = 4620
<

B::var.set *((unsigned int*)0x70000018)

[ok] previous

P:70100F2A \\triboard-tc29x_sieve_intmem\taskc\sieve+0x4A |stopped (inside line) HLL Up

At this point it should be pointed out again that the Var command group uses as parameter syntax the
syntax of the used high-level language (usually C/C++). While all other TRACE32 commands must use the
TRACE32 parameter syntax, which is based on C but has some special features and handles debug
symbols more like a compiler's linker does. The following table illustrates this:

High-level expression TRACE32 expression
Value of C/C++ Variable myvar Var.VALUE(myvar)
myvar
Address of C/C++ &myvar myvar
Variable myvar
Size of C/C++ Variable sizeof(myvar) Var.SIZEOF(myvar)

myvar

Value of 32-bit word at
address 0x2000

*((unsigned int*)0x2000)

Data.Long(D:0x2000)

Decimal constant 42 42.

5th element of array myarray[5] Var.VALUE(myarray[5])
myarray

Data of element val in mystruct.val Var.VALUE(mystruct.val)

struct mystruct

©1989-2024 Lauterbach

Training Source Level Debugging

45



Value of core register R7

\Register(R7)

Register(R7)

String containing host
oS

\WVERSION_ENVironment(OS)

VERSION.ENVironment(OS)

Value on APB bus
address 0x4000

\Data_Long((APB:0x4000))

Data.Long(APB:0x4000)

Here are some examples:

Var.set mstatic2 = mstaticl

Data.Set mstatic2

Var.set mstatic2=*( (unsigned int*)0x7000004C)

$Long Var.VALUE (mstaticl)

Data.Set mstatic2 %Long Data.Long (D:0x7000004C)

Var.set mstatic2=\Register (D8)

Data.Set mstatic2 %Long Register (D8)

Var.Set mstatic2++

Data.Set mstatic2 %Long Var.VALUE (mstatic2)+1

; result as a decimal number
Var.PRINT \Data_Long((D:0x7000000C))

; result as a hex number
PRINT Data.Long(D:0x7000000C)

©1989-2024 Lauterbach

Training Source Level Debugging |

46



Format Variable

Format a Variable using the Format Dialog Box

= B::Var.View ast

=k S
ol Variable
= COl g add to Wakch Windaw
lf_’ | View in Windaw
P e=r set value. .

!I &5 Modify value...

- Fi) + GoTil v
aBreakpoint...
&l Advanced Breakpoint > Select the variable and press
Bsresiconts ’ the right mouse button to open
M Display Memary 4 N
#9Grep in Sourcefiles the Change Val'lable Format
ather 4 dlalog box

£: EET

Sast = (

word = Bx8, tH Change Variable Format

* count = 12346, radiz farmat pointer

left = Bx583C, : -

r ight = @xA, [ Decimal Compact [ Stiing

- fieldl = 1, [JHex [ Fixed ['wideString

- field2 = 2) I BINary [¥] TREE [ #¥mbol
[ i [CIPDUMP
[l oumpP Open Fecursive
SCALED | v|||[oFF 1w
dizplay ather
[ Index IMherited [ 5Paces
[ Type [ HIdden e
[ Location [ MEthods [ SpotLight
Mame

[ Ok ] [ Apply ] [ Cancel

©1989-2024 Lauterbach Training Source Level Debugging |

47



Radix

. Numeric formats

By default integers are displayed in decimal format and pointers in hex format.

Radix

Decimal All numeric values are displayed in decimal format.
Hex All numeric values are displayed in hex format.
BINary All numeric values are displayed in binary format.
Ascii All numeric values are displayed as ASCII characters.

Sast = (
FHword = Bx@,

Select thg radix, more than e — =) 3] - count = 12346 2 Bx303A,
one possible ; ] - Lo L~ 0083,
™ radis format painter FHright = Bx8,
[#] Decimal [¥] Compact [ Stiing - Fifﬂdi =1 f Bx1,
[ Hex [ Fised Dlwidesting || = Fi€1d2 = 2 = Bx2)
[ BIMary [¥] TREE [ #vmbol i S
J:‘Ascii [ POUMP -
[l oumpP Open Recursive
[¥] SCALED | v|| |[oFF 1w
dizplay ather
[ Index IMherited [ 5Paces
[ Type [IHidden FlE
[ Location [ MEthods [] SpotLight
[#] Mame
[ Ok ] [ Apply ] [ Cancel
. &of BuVar.View ast EIIEI
Click to the small dot on Sast = ¢
. = d= '
the left side of the ¥ vount =OI2346,
. . left = Ox0001E24C,
variable to display a right = 0x0,
. . . = fieldl = -1,
numeric value in different - Fieldz = 2)
formats

©1989-2024 Lauterbach Training Source Level Debugging | 48



o Dump
Display the contents of the variable additionally as a hex dump.

East = (
™ " = + yord = Bx@ = <00 B0 A0 60>,
5 SIS F it - count = 12346 £ <30 30 0@ 08>,
o Y T left = Bx583C 2 <3C 58 80 88>,
! : Hright = 8x@ = <0 00 A0 94>,
ClDecimal | | [Compect || [IStiha |} pig1dq = 1 2 <1 0@ 0@ 08>,
WLES LFired ClwideSting || . field2 = 2 £ <82 @@ B8 B8>)
[ BIMary [¥] TREE [ #vmbol
[ i [CIPDUMP
; ¥
DUMP Open Recursive ——
[¥] SCALED | v|| | [oFF v
dizplay ather
[ Index IMherited [ 5Paces
[ Type [JHidden FlE
[ Location [ MEthods [] SpotLight
[#] Mame
[ Ok ] [ Apply ] [ Cancel
. Scaled

Display the variable in the defined scaling

sYmbol.AddInfo.Var <var> Scaled <multiplier> <offset> <format> Define a scaling for a

variable
sYmbol.AddInfo.List List all defined scalings
sYmbol.AddInfo.RESet Reset list

sYmbol .AddInfo.Var vfloat Scaled 1.3 4 " mVolt"

sYmbol .AddInfo.List

info
|Scaled #1.3 +4.0AAPAAAPPAAAAEAAAL " nVolt"

¥ B::Var.View vfloat |:||§”X|

- vfloat = 1.6 = 6.A8000003899 nVolt

©1989-2024 Lauterbach Training Source Level Debugging | 49



display

. Index
tH Change Variable Format =l =
: : - [21 =1,
radix format painter . [31 = 8,
[ Decimal [¥] Compact [ Stiing - [4]1 = 1,
[JHex [ Fixed [wideSting (| = [51 = 1,
ClBiNay [ TREE O bl {?} = ?'
Display array with indices [ s CeoumP |, gy = 1.
[C]oUmMP Open Recursive - [9]1 = @,
[¥] SCALED | v|| | o v| |- (e = 1,
[111 = @,
: - [121 = 8,
dizplay ather S[131 =1,
[#] Irdes [#] INhesited []5Paces - [14]1 = 1,
O Tvpe [ Hidden e - [151 = @,
[ Location [ MEthods [] SpotLight Eig} f ?‘
- . 1181 = B
[, Ok ] [ Apply ] [ Cancel ]
s Type

i B::Var.View ast IZHE@

{static strtypel} ast = (
tunsigned char #) word = Bx@,
» (int) count = 12346,
radix format pointer (struct structl *) left = Bx583C,
- - (struct structl #) right = 0x8,
. . . D | C 5
Display variable with Ellen orpact | | LlStg  § - G0tio) Feldd = 1,
: : Ll Hex L] Fited ClwideStingll . (ynsigned int:3) field2 = 2)
type information [ BiNary [V] TREE [ s¥mbal
[ A [C1PDUMP
[l oumP Open Fecursive < | 24
[¥] SCALED | v|||[oFF v
dizplay ather
ﬁ Index IMherited [ 5Paces
Type [ HIdden FliE
[ Location [ MEthods [] SpotLight
[#] Mame
[ Ok ] [ Apply ] [ Cancel

©1989-2024 Lauterbach Training Source Level Debugging | 50



. Location

Display variable
with location
information

& B::Var.View ast
= [D:8x583C1 ast =

[D:8x583C1 word = BxA@,
- [D:@x58481 count = 12346,

radix format pointer [D:8x58441 left = Bx583C,
[ Decimal Compact [ Stiing Eg gigg:g] E';l‘ 1%’:; lslﬂfai
[Hex L1 Fired Clwidestingl . [:gx584C.21 field2 = 2)
[ BIMary [¥] TREE [ #vmbol
[ i [CIPDUMP

[l oumP Open Recursive 41 >
SCALED v|| |[oFF 1w

dizplay ather

[ Index IMherited [ 5Paces

[ Type [IHidden e

Location [ MEthods [] SpotLight

Mame
[ Ok [ Apply [ Cancel

51

©1989-2024 Lauterbach

Training Source Level Debugging



format

. Fixed

Display all numeric values in a fixed format.

CBX

= B::Var.View vdblarray

S vdblarray =

Use fixed space between the
numeric elements of an array

(@, 218, B, 31, 148, 148,
=8, @, @, 8, 8, @),
(@, 138, @, 61, B, @,
@, @, 8, 8, 8, 97,
(@, @, 148, 8, 149, @)
< |
tH Change Variable Format
radiz farmat
[ Decimal Compact
[ Hex Fixed ['wideString
[ BIMary [¥] TREE [ #vmbol
[ i [CIPDUMP
] oumpP Open Fecursive
SCALED | v|| |[oFF 1w
dizplay ather
[ Index IMherited [ 5Paces
[ Type [IHidden e
[ Location [ MEthods [ SpotLight
Mame
[ Ok [ Apply ] [ Cancel
. Tree

Display a structure in a tree

12346, left = Bx583C, right = 8x0,

@8, left = Bx@, right = Bx@, fieldl

@8, left = Bx@, right = Bx@, fieldl
@8, left = Bx@, right = Bx@, fieldl —

B8, left = Bx@, right = Bx@, fieldl
¥4

H

— format ~ painter / d|Sp|ay
[ Decimal Compact [ Stiing ||
[IHex [ Fixed S tring
[ BIMary [¥] TREE [ #vmbol
[ A [CIPDUMP
[l oumpP — Open - — Recursive d Ox@ NULL
| = wor x4 — )
V| SCALED |
§|DFF v | low b | - count = 12346,
| = left = Bx583C - (
— dizplay — ather ' ® word = BxA,
[ Index [#] IMherited [ 5Paces B ?m;r;t =1311qu6,
[ Tvpe 9] Hidden Oe | e paft o (
; : Content gﬂ, count
[ Location [ MEthods [] SpotLight ' Content Line tﬂ , count
[#] Mame y @, count
I @, count
CED () (o) | O ot
| First 100 !
joi] e
Decimal
Hex
Ascii

©1989-2024 Lauterbach

Training Source Level Debugging

52



pointer

. String/WideString

This format can be used for arrays or pointer to characters.

String Each character is a byte.

WideString Each character is a word e.g. for some DSPs or unicode.

= B::Var.View csir1 X

< bsad

Display the array as a string

radiz farmat ointer

[ Decimal Compact Shing

[ Hex [ Fixed ['wideString

[ BIMary [¥] TREE [ #vmbol

[ i [CIPDUMP

[l oumpP Open Fecursive

[7] SCALED [oFF v |oFF v

dizplay ather

[ Index IMherited [ 5Paces

[ Type [IHidden ]

[ Location [ MEthods [] SpotLight 5 B::Var.View cstr1

L cstrl = "Constant.Stringl"

[ Ok ] [ Apply ] [ Cancel ] ) |
sYmbol.AddInfo.Var <var>ZSTRING Define variable contents as a zero-terminated
string

sYmbol.AddInfo.List List all definitions
sYmbol.AddInfo.RESet Reset list

sYmbol .AddInfo.Var cstrl ZSTRING The contents of cstrl is a zero-
terminated string

sYmbol .AddInfo.List Display definition list

©1989-2024 Lauterbach Training Source Level Debugging | 53



r B::sYmbol.Addinfo.List

{variable) [2STRING
| & .

::Mar.View cstr1
# cstrl = "Constant.Stringl"

] 1 T

©1989-2024 Lauterbach Training Source Level Debugging | 54



o sYmbol

tH Change Variable Format |:||§||z| B B::Van. View vpchar |-_||E”Z|

radix format pointer upl:har' = Bx6EAB
[ Decimal Compact [ Stiing
[ Hex [ Fixed [1'wideString
[ BIMary [¥] TREE [#] £mbol
[ A [CIPDUMP
[l oumpP Open Recursive
[7] SCALED |oFF v|| oFF v .
Displays the contents of a
display other pointer also symbolically
[ Index IMherited [ 5Paces
[ Type []Hidden e
[ Location [ MEthods [] SpotLight 5 B::Var.View vpchar
e vpchar = Bx6EAB = Flags[7]
[ Ok ] [ Apply ] [ Cancel ] 4 | E]
. PDUMP
Display a 16 byte hex dump starting at the address where the pointer is pointing to.
F Change Variable Format E|E|E|
radix format painter
[ Decimal Compact [ Stiing
[ Hex [ Fixed ['wideString
[ BIMary [¥] TREE [#] #vmbol
[ i FOUMP
[l oumpP Open Recursive
[7] SCALED |oFF v oFF v
dizplay ather
[ Index IMherited [ 5Paces
[ Type [IHidden e
[ Location [ MEthods [ SpotLight
Mame
L Ok ] [ Apply ] [ Cancel ]

o B::Var.View vpchar
- vpchar = Bx6EAB = flags[7]1 — <81 P1 AA A1 0@ 99 B1 A1 A A A1 @9 VO OO PA AA>

L] | 2

©1989-2024 Lauterbach Training Source Level Debugging | 55



other

. SpotLight

hange able Format L
radix format painter
[ Decimal Compact [ Stiing
[ Hex [ Fixed ['wideString
[ BIMary [¥] TREE [ #vmbol
[ i [CIPDUMP
[l oumpP Open Recursive
SCALED | vl| |[oFF v
dizplay aljer

Index IMherited SPaces
[ Type [ HIdden E
[ Location [ MEthods SpotLight
Mame

[ Ok ] [ Apply /] [ Cancel

Highlight all changed variable elements:
The variable elements changed by the last step are marked

in dark red. The variable elements changed by the step

before the last step are marked a little bit lighter. This works
up to a level of 4.

©1989-2024 Lauterbach

Training Source Level Debugging

56



Format a Variable Using the Command Line

If a variable is formatted using the Change Variable Format dialog box, the
format information will not be stored when the windows configuration is saved in

a PRACTICE file.

The format information will be stored only, if the variable was formatted using
the command line.

I Var.View [%<format>] <variable>

. Format definitions are valid for all variables used in the command after the format definition.

. B::Var.View %lLocation %SpotLight vpchar, flags
[C:8xDAAAAASC] wpchar = Bxd

# [C:8xDABBAIAB] flags = (1, 1, 1, 8, 1, 1, 8, 1, 1, 4, 1, 4, 4, 1, 1, 1, 1, 1,

b3 >

F::Var‘.'«'ieu YLocation XSpotlight vpchar flags

[ [ok] ][ formats ][ et ]
F:DO0091BE “hiel FPBhtaskchsieve+ 034 stopped HLL UF
. Format definitions can be switched off selectively.

CBX

™ B::Var.View %Location %Index flags %Index.OFF cstr1

[C:AxDAAAAIAB] flags = ([@1 =1, [11 =1, [21 =1, [31 =@, [41 =1, [51 =1, [6]1 =@, [
[C:@xDBBAg2@8]1 cstrl = (-7, -17, 26, -125, -48, 94, 33, -25, -25, 117, 57, -122, -29, 18

>

< I

F::Var‘.'«'ieu /Location XIndex flags “Index.0FF cstri

[ [ok] ][ formats ][ Pt ]
F:DO00S1BE Mhiel 7PBhtaskchsieve+0x3d stopped HLL UF
Training Source Level Debugging | 57

©1989-2024 Lauterbach



General SETUPs

mBreak Run  CPU

(5 watch. ..

ﬁﬁ Wigw. ..

Q Data View...

a Breakpoint. ..

E’J Show Function. ..
ﬁﬂ Shows Wakch

ﬂ Show Locals

@ Show Stack.

@ Show Current Yars

ot K

/~ B::setup.var

9((=1E

radix format painter
[ Decimal Compact [ Stiing
[ Hex [ Fixed [1'wideString
[ BIMary [¥] TREE [ #vmbol
[ i [CIPDUMP
[l oumpP Open Fecursive
[¥] SCALED [oFF | [[oFF v
dizplay ather

[ Index IMherited [ 5Paces
[ Type [ HIdden FliE
[ Location [ MEthods [] SpotLight
Mame

[ Ok ] [ Apply ] [ Cancel

I SETUP.Var [Y%<format>...]

Change default display format for variables

©1989-2024 Lauterbach

Training Source Level Debugging

58



Variable Monitoring

Basics

TRACES2 provides the possibility to monitor variable changes while the program execution is running.
Monitoring the variable changes is only possible for variables with a fixed address.

File Edit View Var Break Run CPU Misc Trace Pef Cov MPCSXXX Window Help
M AN pn B e O BB M @2
The content of the variable is ot} Bi:Var View %E mstaticl
|| updated every 100.ms while the | |- mstaticl = 1583713540
| program execution is running. P

|l B::Var.PROfile %E mstaticl

[ ®mnit || OHold |[ ¢ |[pdout] #m |[ X out|ZE Aut
-2.55
value | | \ \ , |

The graph is updated every 2000000000.
100.ms while the program 1500000000.
execution is running. 1000000000.

500000000.

0.

-500000000.

-1000000000.

-1500000000.

-2000000000.

B::

| emulate || trigger || devices || trace || Data || | [skist || PERE || other || previous

TR e

Run-time memory access: If the processor architecture in use allows the debugger to read the target's
physical memory while the program execution is running, variables can be monitored without any impact on
the program execution. For details, refer to “Run-time Memory Access” in TRACES32 Glossary, page 42
(glossary.pdf).

StopAndGo mode: If the processor architecture allows the debugger to read the target's memory only
when the program is stopped or if other restrictions don‘t allow the debugger to read the variable while the
program execution is running, the debugger can be configured to stop the program execution every 100 ms
in order to read the variable content. For details, refer to “StopAndGo Mode” in TRACE32 Glossary, page
52 (glossary.pdf).

©1989-2024 Lauterbach Training Source Level Debugging | 59



Preparation

No preparation is required if run-time memory access (SYStem.MemAccess) is enabled by default.

ébB::S\"Stem

Mode

_ Down

_) MoDebug
Prepare

) Go

_ Attach

_) StandBy
Up (StandBy)

@ Up

CFU

SPC56EC74

MemAccess
CFU

@ NEXUS

_) Denied

CpuAccess
_) Enable
@ Denied

_ Nonstop

BdmClock
4.0MHz -

Option
IMASKASM
IMASKHLL
ICFLUSH
ICREAD
DCREAD
FREEZE

Vectors

[E=3 B =5
Option Option DisMode
WATCHDOG @ AUTO
MMUSPACES ) ACCESS
DUALPORT = FLE
ETK JVLE
LPMDebug
OFF i
ResetDetection
[oFF ||| [_conFic |

NEXUS

If run-time memory access is denied (SYStem.MemAccess Denied) by default, please refer to your

Processor Architecture Manual before you enable it by selecting one of the radio buttons.

éy B::5YStem
Mode
~) Down
(©) NoDebug
() Prepare
) Go
*) Attach
() StandBy
Up (StandBy)
@ up

reset

RESetOut

CPU

OMAP4430

MemAccess
*) DAP

) TSMON3
(©) RealMON
) TrkMON
~) GdbMON
@ Denied

CpuAccess
(©) Enable
@ Denied

(©) Nonstop

JtagClock
Ctck 20.0MHz -

Option
[C] mASKASM
[C] MASKHLL
[C1TurBO
BigEndian
ResBreak
[ClmrpIs
DBGACK
EnReset
TRST
[Tl PWRDWN
WaitReset
OFF

Option
[[IpACR

[C] MMUSPACES
[C1mPu

[¥] CFLUSH

[C]AMBA
NODATA
[CExEC
[CspLIT

felfe =S
Option DisMode

@ AUTO

©) ACCESS

) ARM

() THUMB

CONFIG
DETECT

SYStem.MemAccess DAP

architecture)

Enable run-time memory access via Debug Access Port (ARM/Cortex

©1989-2024 Lauterbach

Training Source Level Debugging

60



If run-time memory access is not supported by the processor architecture in use or if other restriction don‘t

allow the debugger to read the variable while the program execution is running, you can configure the

debugger for StopAndGo mode.

éy B::5YStem

Made

@ Down

) NoDebug
Prepare

© Go

7 Attach
StandBy
Up (SandB,

©up

CPU

PPC405EP

MemAccess
CPU
MNEXUS

@ Denied

CpuAccess

© Enable
@ Denied
@) Nonstop

BdmClock
10.0MHz

-

Option
[l mMAsKASM
[T MASKHLL
ICFLUSH
[C11cREAD
DCREAD
DCFREEZE
TURBO
FREEZE
[Cl pmaLow
FOLDING
FlowTrace
[ pataTrace
cLOCKx2
[CInoTRAP
HOOK
0x0

=0 ESH =
Option
[T MMUSPACES
ResetMode
@ SYSTEM
© CHIP
© CORE

CONFIG

I SYStem.CpuAccess Enable

Allow StopAndGo mode to read variables.

SYStem.CpuAccess Enable is not recommended for complex multicore chips

that use caches and MMU.

©1989-2024 Lauterbach

Training Source Level Debugging

61



Format Option %E

The option %E can be used for most commands that display variables. It advises the debugger to update the
display for all variables with a fixed address 10 times per second.

Var.View %E fstatic2 vbfield vdouble

Bofl B:VarView %E fstatic2 vbfield vdouble [ = |[ 2 |[=23]
- fstatic2 = -727362047 -

Evbfield = (
-a=1,
- h ,
. 7,

c
d
e

- f

-
E
k
1
m
)

S
[y RSER ol syl ol = w
o=
L
[vE}
[l

35)
e = 1.6000000000000001 v

=
puat}

Var .DRAW inputA ; Displays the contents of an HLL
; array graphically

Var.DRAW inputZA inputB mixed

| B:Var.DRAW inputA 10000.0 -1500000.0 =n| Wl <

[ R Goto... || #iFind... [ ¢ | p4out] MFull] £ |[ X out| F Full]

1000000. |
500000. 7
0.7

-500000. 4

-1000000. J;

-1500000. i

mer( 3

| B:Var.DRAW inputA inputB mixed 10000.0 -1500000.0 =n| Wl <

[ R Goto... || #iFind... [ ¢ | p4out] MFull] £ |[ X out| F Full]

1000000.

500000.

0.

-500000.

-1000000.

-iso0000. (T
Jf ml o o« 1 b

©1989-2024 Lauterbach Training Source Level Debugging | 62



Processor architectures used in the automotive industry provide the option DUALPORT in the System
window. If DUALPORT is checked run-time memory access is automatically enabled for all windows that

display memory (e.g. source listing, memory dumps, variable displays, displays of SFR). The format option
%E can be omitted in this case.

éy Bu:5YStem

) Down

~) NoDebug
Prepare

) Go

() Attach

_) StandBy
Up (StandBy)

@ up

= Tl —

SPC56EC74

MemAccess
CPU

@ NEXUS

©) Denied
— CpuAccess ——|
©) Enable
@ Denied

(©) Nonstop

- BdmClock ——
4.0MHz -

Option ———

[C] mMASKASM
[C] MASKHLL
[T ICFLUSH
[T 1CREAD
DCREAD
FREEZE
[CNOTRAP

Vectors —————

[E=H E=E )
Option Option DisMode
[ClwATCHDOG @ AUTO
[| MMUSPACES | | () ACCESS
[CTETK OVLE
- LPMDebug —— —
OFF -
—ResetDetection —
" | [oeF || | [_conFig ]

I SYStem.Option.DUALPORT ON

©1989-2024 Lauterbach

Training Source Level Debugging

63



Var.PROfile Command

The command Var.Profile allows to monitor numeric variables and display their changes graphically.

Var .PROfile %E fstatic2

L] B::Var.PROfile %E fstatic2 o = =

[ ®mit || OHold |[ ¢ |[p4out] %1 |[ X out|[F Auto|
value I I I I —|5.0s I I I I —T.Ss I I I I Ol. |

2000000000. N
1500000000.
1000000000,
500000000.

0.

-500000000.

-1000000000.

-1500000000.

-2000000000. = B

Var .PROfile %E vdouble

Il B::Var.PROfile %E vdouble =23

[ ®mnit || OHold |[ #m |[pdout] #m |[ X out|=E Aut
-15.0s -12.5s -10.0s -7.5s -5.0s -2.5s 0.
valwe |, | ., . |0y
20.0e+9 -

10.0e+9

0.0

m

-10.0e+9

-20.0e+9 ¥

©1989-2024 Lauterbach Training Source Level Debugging | 64



Up to three variable can be superimposed if required. The following color assignment is used: first variable

value red, second variable value green, third variable value blue.

lluul B::Var.PROfile %E mstaticl fstatic fstatic2 =n ol <

| ©nt | Otold || #n |[peout]| $m | X out|[F Autol
-3.0s -2.5s -2.0s -1.5s -1.0s -0.5s 0.0

1V =3 O PP | O P | P P P I I =

2000000000. 1

1500000000. L —LE
1000000000. —
500000000. | Iy

0.

-1000000000. | ]
-1500000000.
_-2000000000. — o
_J 7]

L [
-500000000. = N — |_ — J | ﬁ

I Var.PROfile %E <variable1> [<variable2> | [<variable3>]

©1989-2024 Lauterbach

Training Source Level Debugging

65



Variable Logging

Variable changes can be logged in the following way:
. SNOOPer trace

. Var.LOG command

SNOOPer Trace

A video tutorial about the SNOOPer trace can be found here:

support.lauterbach.com/kb/articles/trace32-variable-logging-using-the-snooper-trace

Basics

Some processor architectures allow the debugger to read the target's physical memory while the program
execution is running. For details refer to “Run-time Memory Access” in TRACE32 Glossary, page 42
(glossary.pdf).

TRACES32 implements the so-called SNOOPer trace based on this feature. Memory content is read
periodically or as fast as possible and stored with timestamp information into a trace memory. The trace
memory for the SNOOPer is allocated on the host.

©1989-2024 Lauterbach Training Source Level Debugging | 66


https://support.lauterbach.com/kb/articles/trace32-variable-logging-using-the-snooper-trace

First example:

The following steps are required to set up the SNOOPer trace:

3. Open the SNOOPer configuration window.

I SNOOPer.state

W B::SMOOPer.state EI@
state used SELect
@ DISable E]
© OFF
) Arm SIZE TValue
© trigger 52428, ]
() break
Mode Mode Mode TOut

commands @ Fifo @ Memory [C] AddressTrace @ Trace
(0 Stack DCC [T changes (Z) Program

& Init BMC SLAVE ) PULSE

@& SnapShot Rate @ PC [7] StopAndGo (Z) BUSA

£ List 1.000us ) PC+HMMU
[¥] AutoArm 1000000. TDelay
[T Autolnit max 0.
[C] seffarm 0.000us

Reading memory in the specified Rate is the default
setting for the SNOOPer trace.

SNOOPer.Mode Memory

©1989-2024 Lauterbach Training Source Level Debugging | 67



4, Specify the SNOOPer size as <number of trace records>.

W B:SMOOPer.state

state used
@ DISable
© OFF
) Arm SIZE
() trigger 500000.
) break
Mode
commands @ Fifo
) Stack
1 List 1.000us
[¥] AutoArm 1000000,
[ AutoTnit max
[C] selfarm 0.000us

SElect

TValue

Mode

@ Memory

DCC
BMC

2 PC

) PC+HMMU

Mode

[T AddressTrace
[T changes
SLAVE

[7] StopAndGo

=N SR
@

= Caea)

TOut

@ Trace
() Program
() PULSE
) BUSA

TDelay
0.

TRACES2 allocates memory on the host for the requested size.

The SNOOPer size is only limited by the size of RAM on the host. It is recommended to stay far below

this limit so that sufficient free memory is available for TRACE32 and other applications.

I SNOOPer.SIZE <number of records>

SNOOPer.SIZE 500000.

©1989-2024 Lauterbach

Training Source Level Debugging

68



5. Specify the variable you are interested in.

It is best to read variables via the SNOOPer whose sizes are smaller or equal the data bus width of

the core in use.

To specify the variable:

3.1. Use the select... button in the SNOOPer configuration window to open the SNOOPer.SELect

dialog.

3.2. Use the List Symbols button in the SNOOPer.SELect dialog to get a list of all variables.

3.3. Select the variable you are interested in.

D:40004438--40004448
D:40004450--4000445F
D:400041C8--4000428F
D:40004290--4000441F

& B:SNOOPerstate ==
state used SELect

@ DISable E] 3.1
©) OFF

) Arm SIZE TValue

) trigger 500000. ]
() break

Mode Mode Mode TOut

commands @ Fifo @ Memory [C] AddressTrace @ Trace

(0 Stack Dcc [T changes (Z) Program

BMC [7] SLAVE © PULSE

Rate @®FC [stopAndGo | | € BUSA

Y List 1.000us ) PC+HMMU

[¥] AutoArm 1000000. TDelay

[T Autolnit max 0.

[C] seffarm 0.000us
<& B:SNOOP.SEL /DIALOG = E =]

SELect

- HLL 3.2

|

& Browse Symbols EI
WA= E]E]T‘fpe: Variables +| [C]Source
symbol type address i
uncptr (1nt D:40004004--40004007 -
main

-—— 3.3

©1989-2024 Lauterbach

Training Source Level Debugging

69



The selected variable is listed in the SELect field of the SNOOPer configuration window.

& B:SNOOPerstate = & ==
state used SELect
© DISable V.RANGE(mstatic1) i)
@ OFF 0.
) Arm SIZE Tvalue
© trigger 500000. i)
() break
Mode Mode Mode TOut
commands @ Fifo @ Memory [7] AddressTrace @ Trace
(0 Stack DCC [T changes (©) Program
BMC SLAVE © PULSE
Rate (G): [stopAndGo | | O BUSA
£ List 1.000us (2 PC+MMU
[¥] AutoArm 1000000. TDelay
[C] AutoInit max 0.
[[] selfarm 0.000us

I SNOOPer.SELect Var.RANGE(<variable>)

Var.RANGE(<variable>)

This TRACE32 function returns the
address range used by a variable

©1989-2024 Lauterbach

Training Source Level Debugging

70



SNOOPer.Mode StopAndGo

& B:SNOOPer.state
state
() DISable
@ OFF
) Arm
() trigger
() break

commands

A List
AutoArm
[C] AutoInit
[ selfarm

[F=5 EoH 55
used SELect
V.RANGE(mstatic1) i)
0.
SIZE TValue
500000. i)
Mode Mode Mode TOut
@ Fifo @ Memory [7] AddressTrace @ Trace
(0 Stack DCC [T changes (©) Program
BMC [V] SLAVE ) PULSE
Rate 7 PC [C] StopAndGo ©) BUSA
1.000us ) PC+HMMU
1000000, TDelay
max 0.
0.000us

TRACE32 checks/unchecks the StopAndGo checkbox automatically.

OFF

The processor architecture in use allows the debugger to read physical
memory while the program execution is running and this debugger
feature is enabled.

©1989-2024 Lauterbach

Training Source Level Debugging |

71



B B:SNOOPer state = e ==
state used SELect
© DISable V.RANGE(mstatic1) ]
@ OFF 0.
) Arm SIZE TValue
© trigger 500000. ]
) break
Mode Mode Mode TOut
commands @ Fifo @ Memory [7] AddressTrace @ Trace
(0 Stack DCC [T changes (©) Program
@ it BMC [V] SLAVE ) PULSE
@& SnapShot Rate o PC StopAndGo (C) BUSA
2 List 1.000us £ PC+MMU
[¥] AutoArm 1000000. TDelay
[T Autolnit max 0.
[[] selfarm 0.000us
ON The processor architecture in use does not allow the debugger to read
physical memory while the program execution is running or this debugger
feature is disabled.
If the SNOOPer is working in StopAndGo mode, the program execution is
stopped in the specified Rate in order to read the variable content. Such
a stop can take more than 1 ms in the worst case scenario.

Open the SYStem settings window to check if reading the physical memory while the program

execution is running can be enabled for your debugger.

Misc  Trace Perf Cov (

Change Frame 4 ég B::SYStem
8 CPU Registers Mode MemAccess
FPU Registers ©) Down ©) DAP
o Peripherals () NoDebug ) TSMON3
() Prepare (2 RealMON
© Tevon
(©) Attach ©) GdbMON
() StandBy @ Denied
Up (StandBy) Cpuhccess
In Target Reset @ Up () Enable
Reset CPU Registers @ Denied
reset (2) Nonstop
CPU JtagClock
Ctck 20.0MHz ~

If there are beside Denied other selectable radio buttons in the MemAccess field refer to your

Option Option
[C] mASKASM [[IpACR
[T IMASKHLL [C] MMUSPACES
[CITurRBO [CImPu
BigEndian [¥] cFLUSH

ResBreak
[ClmrpIs [C]AMBA
DBGACK NODATA
EnReset [CExEC
TRST [CspLIT
[Tl PWRDWN

WaitReset

OFF

felfe =S
Option DisMode

@ AUTO

©) ACCESS

) ARM

() THUMB

CONFIG
DETECT

Processor Architecture Manuals before you select one.

©1989-2024 Lauterbach

Training Source Level Debugging

72



6. Start the program execution.
7. Stop the program execution.
Please be aware that the contents of the SNOOPer trace can not be read while recording.

8. Display the result by pushing the List button.

& B:SNOOPer.state

State ..... used ..... q SELect ...............

© DISable P || v.RANGE(mstaticl)

@ OFF 500000. =

© Arm _SIFE—— - Tvalee ——

() trigger 500000.

© break
""""" Mode Mode Mode TOut

- commands —— | @ Fifo @ Memory [C] AddressTrace @ Trace

() Stack Dcc [T changes () Program

———— | @BMC [7] SLAVE © PULSE

- Rate ———— | @ PC [ stopAndGo ) BUSA

1.000us ) PC+MMU - - |

[¥] AutoArm 1000000. = - TDelay ———

[T Autolnit - max 1 0.

[Flse

Bu:SMOOP. List
(& setup... || 11 Goto... || #iFind... [ pdchart || Adbraw || EProfile |
record run |address cycle |data symbol
-0000000134 SD:40004058 snoop  OB4F7ELC wdiabchdiabcymstaticl
-0000000133 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000132 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000131 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000130 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000129 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000128 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000127 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000126 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000125 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000124 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000123 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl
-0000000122 SD:40004058 snoop  OB4FTVELC “Mdiabchdiabcmstaticl
-0000000121 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl
-0000000120 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl
-0000000119 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl
4 »

I SNOOPer.List

©1989-2024 Lauterbach Training Source Level Debugging | 73



Check Mode Changes, if the read variable content should only be stored to the SNOOPer trace when it has

changed.

& B:SNOOPer.state
state
(0 DISable
@ OFF
O Arm
() trigger
) break

commands

RESet
& SnapShot

AutoArm
[C] AutoInit
[ selfarm

[E=H E=E =)
used SELect
[ V.RANGE(mstatic1) i)
16101.
SIZE TValue
=
Mode Mode Mode TOut
@ Fifo @ Memory [7] AddressTrace @ Trace
() Stack pcc ) Program
BMC SLAVE © PULSE
Rate (@) ¢ [7] StopAndGo ©) BUSA
1.000us - PC+MMU
1000000, TDelay
| BSNOOP List ===
(& setup... || 11 Goto... || #iFind... || Adchart || Adbraw || EFrofile |
record run |address cycle |data symbol ti.back
-0000000014 SD:40004058 snoop  7FBCBAF2Z wdiabchdiabc\mstaticl 1.538ms .
-0000000013 SD:40004058 snoop  EBDDF996 “Adiabchdiabcmstaticl 1.458ms |z
-0000000012 SD:40004058 snoop  GAAB4820 “Adiabchdiabcmstaticl 1.488ms
-0000000011 SD:40004058 snoop  172967F4 “Adiabchdiabcmstaticl 1.483ms
-0000000010 SD:40004058 snoop  AB45975A “Adiabchdiabcmstaticl 1.484ms +
-0000000009 SD:40004058 snoop  FOL9BO4E “Adiabchdiabcmstaticl 1.483ms
-0000000008 SD:40004058 snoop  95EEACSS “Adiabchdiabcmstaticl 1.485ms
-0000000007 SD:40004058 snoop  171663DC “Adiabchdiabcmstaticl 1.487ms
-0000000006 SD:40004058 snoop  7FLE0202 “Adiabchdiabcmstaticl 1.424ms
-0000000005 SD:40004058 snoop  DES1B446 “Adiabchdiabcmstaticl 1.486ms
-0000000004 SD:40004058 snoop  ECBE7150 “Adiabchdiabcmstaticl 1.490ms
-0000000003 SD:40004058 snoop 3A3B9B84 “Adiabchdiabcmstaticl 1.482ms
-0000000002 SD:40004058 snoop  CEL14D8EA “Adiabchdiabcmstaticl 1.488ms L
-0000000001 SD:40004058 snoop  GEBEBFTE “Mdiabchdiabcmstaticl 1.483ms -

I SNOOPer.Mode Changes ON

©1989-2024 Lauterbach

Training Source Level Debugging

74



The Logging Interval

The time interval (SNOOPer.Rate) at which TRACES32 reads the physical memory at program runtime is set
to 1.us by default.

W B:SMNOOPer.state

state used
* DISable 1
@ OFF 500000,
_LArm SIZE
_ trigger 500000,
_ break
Mode

commands @ Fifo

@ it
& SnapShot Rate

£ List 1.000us
[¥] AutoArm 1000000.
[T Autolnit max
[C] selfarm 623.880us

[F=3 EoR =X
SElLect
V.RANGE(mstatic1) ]
Tvalue
M
Mode Mode TOut
@ Memory [C] AddressTrace @ Trace
DCC [T changes *) Program
BMC [VsLave O PULSE
I PC [C] stopandGo “) BUSA
I PC+MMU
TDelay
0.

The rate at which the debugger can actually read the physical memory is bigger.

The actual rate might be increased by a higher JTAG clocks (SYStem.JtagClock <frequency>). Please

refer to your processor/chip manual to find out what the max. JTAG clock can be.

In the example recording below the average time interval is about 85.us. So it is recommended to use the

SNOOPer only for variables that are changed at a higher rate by the application program.

£ B1SNOOP List =N Eoh
(& setup.... [ 13 Goto... || FiFind... || Aeichart || Adpraw || ElProfile |
record run |address cycle |data symbol ti.back
-0000000134 SD:40004058 snoop  OB4F7ELC wdiabchdiabcymstaticl 82.330us .
-0000000133 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 81.930us
-0000000132 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 82.300us
-0000000131 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 81.920us 7
-0000000130 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 82.280us  *
-0000000129 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 379. 890us
-0000000128 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 87.150us
-0000000127 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 106. 330us
-0000000126 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 90. 610us
-0000000125 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 85.570us
-0000000124 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 86.480us
-0000000123 SD:40004058 snoop  OB4F7ELC “Mdiabchdiabcmstaticl 82.820us
-0000000122 SD:40004058 snoop  OB4FTVELC “Mdiabchdiabcmstaticl 89. 845us
-0000000121 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl 84.935us
-0000000120 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl 82.290us L
-0000000119 SD:40004058 snoop  1FCBE442 “Mdiabchdiabcmstaticl 82.640us -
4 »

©1989-2024 Lauterbach

Training Source Level Debugging

75



Both, the host and the debugger are no real-time systems, so individual time intervals can be longer then the

average interval. The longest snooping interval for the current recording is displayed in the max field of the
SNOOPer.state window.

Rate
1.000us
1000000

max
623.880us

©1989-2024 Lauterbach

Training Source Level Debugging | 76



Display Options

In addition to the default SNOOPer.List display various other display options are provided.

B:SNOOP.List o ==

(& setup... || 11 Goto... || #iFind... [ pdchart || Adpraw || EFrofile |
record run |address cycle |data symbol ti.back
-0000000009 SD:40004038 snoop 3FF9999599959959a \\diabc\Global\wdoubTe 97.150us .
-0000000008 SD:40004038 snoop  C1D044656359999A ‘\\diabc\Global‘vdouble 1.152ms
-0000000007 SD:40004038 snoop  ClEB6698156CCCCD \\diabc\Global‘vdouble 97.580us
-0000000006 SD:40004038 snoop  ClFB669815866666 ‘\\diabc\Global‘vdouble 97.980us
-0000000005 SD:40004038 snoop 3FF999999999999A ‘‘\diabc'\Global‘wvdouble 97.760us  *
-0000000004 SD:40004038 snoop  41C67902734ccccD \h\diabch\Global'wvdouble 1.157ms
-0000000003 SD:40004038 snoop  41E0DACIDE133333 \\diabc\Global‘vdouble 97.440us
-0000000002 SD:40004038 snoop  41FODACIDS5F9999A '\ diabc\Global‘vdouble 97.720us L
-0000000001 SD:40004038 snoop  41FC17430F39999A ‘\\diabc\Global‘vdouble 97.640us -
4
SNOOPer.List Var TIme.Back ; list the recorded variable in

; i1ts HLL representation together
; with the time relative to the

; previous record

SMOOPer.List Var TIme.Back

(= [=)=]

(& setup... || 11 Goto... |

#3Find... |[ Adchart || Adpraw || EProfile |

-0000000006 |

-0000000005 |vdouble

-0000000004 |vdouble

-0000000003 |vdouble

-0000000002 |vdouble

-0000000001 |vdouble
4

record |var

ti.bac

-6.5500286323999
1. 60000000000000
754.058470600000
2.26217540859999
4.52435081560000
7.54058469160000

97.980us

97.760us
1.157ms

97.440us

97. ?ZOUS:

97.640us

SNOOPer.List TIme.Back Var Data

; rearrange the column layout so
; 1t fits your requirements

B::SNOOPer.List TIme.Back Var Data ===
(& setup... || 11 Goto... || #iFind... || Adchart || Adbraw || EFrofile |
record [ti.back var data
-0000000005 | 97.760us vdouble = 1.6000000000000001 3FF999999999999a .
-0000000004 1.157ms vdouble = 754.05847060000002e+6 41C67902734CCCCD (7
-0000000003 | 97.440us vdouble = 2.2621754085999999e+9 41EODACID6133333
-0000000002 | 97.720us vdouble = 4.5243508156000004e+9 41FODACID5F9999A
-0000000001 | 97.640us vdouble = 7.5405846916000004e+9 41FC17430F399994 -
TO000000000 | 97.180us wdouble = 1.6000000000000001 3FF999999999999a -
4 F

©1989-2024 Lauterbach

Training Source Level Debugging

77



SNOOPer .DRAW.Var %$DEFault vdouble ; display the changes of the
; variable over the time as a graph

2| B::SNOOPer. DRAW.Var %DEFault vdouble [r= |- ]
(& setup... [ 13 Goto... || FiFind... || fichart || 4»In || p4out |[WnFul| £ |[ X out|[ Z Full]
-6.240s -6.230s -6.220s -6.210s |
I I I I =1
20.0e+9

<[mr o« ™| '

©1989-2024 Lauterbach Training Source Level Debugging | 78



If you are analyzing a variable that maintains a state, the following display options might be useful:

SNOOPer.List Var TIme.Back

; display the statistical distribution of a variable value over the time
; Data advise the command to analyze the recorded data information
; Address informs the command for which address the data

; should be analyzed

SNOOPer.STATistic.DistriB Data /Filter Address Var.RANGE(flags[3])

; display a time chart of the variable values
SNOOPer.Chart.DistriB Data /Filter Address Var.RANGE(flags[3])

£ BSNOOP List Var TIme.Back

[-WSetup...][ i Goto... || #iFind...

J[ echart | adpraw | EProfile |

-0000000003 [flags[3]
4

record |var ti.back i
0000000007 [fTags[3] = 1 964.030us
-0000000006 [flags[3] = 0 163.710us
-0000000005 [flags[3] =1 1.605ms
-0000000004 [flags[3] = 0 240. 810us
=1 725.310us z

£ | B:SNOOPer. STATistic.DistriB data /Filter address var.range(flags[3]) |- ]
(& setup... || 52 Config.. ” 13 Goto... || =|petailed| Adchart || EFrofile |
items: 3. total: 15.492s  samples: 24943,
class [total n max avr count ratio¥% [1% 2% i
(other) 0.000us 0.000us - 0.000us 0. 0.000% -
data=0x0| 13.387s 81.165us | 27.103ms 1.073ms 12472.(1/1) | 86.408% |———
data=0x1 2.106s 80.070us | 684.570us | 168. 835us 12471. 13.591% |e—
Fl 1 »

#| B:SNOOPer.Chart.DistriB data /Filter address var.range(flags[3]) =N <
|WSetup... | i Groups... || = Conﬁg...“ I} Goto... || F3Find... || Ak In || &) 0ut|||0|FuII|
-12.055s -12.050s -12.045s
class | | | |
(other) ¥ i
eesornt | . g __ _ § _§ 1 7§ 7 7§ g | _--
data=Ox1@fl = 1.1 W = 1 = L L [
4| r 4 3

©1989-2024 Lauterbach

Training Source Level Debugging

79



Logging of Multiple Variables

TRACE32 PowerView allows the logging of up to 16 variables.

B B:SNOOPer.state =N Eoh=
state used SELect
©) DISable V.RANGE(plot1) E]
@ OFF 0.
=5 rE & B:SNOOP.SEL /DIALOG o B =]
-._-trigger 500000. SElect
IS plot2 + (2] #He
Mode
commands @ Fifo
© stack - =
m——
Rate ®rc W B:SNOOPer.state :?"E"?
£ List 1.000us ) PC+HMMU state used SElect
] AutoArm 1000000. ") DISable V.RANGE(plot1) V.RANGE(plot2) (] [select..
[T Autolnit max ® OFF 0.
[C] selfarm 0.000us 5 Arm SIZE Tvalue
_ trigger 500000. LJ clear
) break
Mode Mode TOut
commands @ Fifo @ Memory @ Trace
RESet _) Stack pDcc _ Program
. @mnt | BMC ) PULSE
& SnapShot Rate 2 PC I BUSA
i List 1.000us ) PCHMMU
1000000, TDelay
max 0.
0.000us

If you use the Add button in the SNOOPer.SELect dialog, additional variables that should be read by the
SNOOPer can be selected.

I SNOOPer.SELect Var.RANGE(<variable1>) Var.RANGE(<variable2>) ...

£ B:SNOOP List Var TIme.Back o3-S
(& setup... || 11 Goto... || #iFind... [ pdchart || adbraw || EFrofile |
record |var ti.back i
-0000000006 [plotl = -7370 83.340us -~
-0000000005 |plot2 = -25000 81.160us =)
-0000000004 |plotl = -7370 86.220us ™
-0000000003 |plot2 = -25000 82.580us
-0000000002 |plotl = -7377 19.609ms -
= -25000 88.430us =

-0000000001 |plot2

Please be aware that the time interval at which a single variable can be read by the debugger at program
run-time is growing with every selected variable.

©1989-2024 Lauterbach Training Source Level Debugging | 80



For the graphical display of variables changes over the time, you can:

. superimpose up to three variables
. establish a time- and zoom-synchronization between the different displays
SNOOPer .DRAW.Var %$DEFault plotl plot2 ; superimpose variables

2| B::SNOOPer. DRAW.Var %DEFault plotl plot2 o =@ =
(& setup... | [ Goto... || FiFind... || fdchart ][ 4b1n | »4out|[MFul][ # 1 ][ X out| Z Full]
M ‘sieve\Globaliplotl M ‘\sieve\Globaliplot2
25.000s -20.000s -15.000s -10.000s -5.000s 0.0
| | | | | |
40000. ;I
zoooo. [ | [ |1 [ 1- 1V 1T 1 -1 F 1 111 [ =
0.
-20000. ) | J [ b Lo b Lo L]l B L
_rf [m] v « b

©1989-2024 Lauterbach

Training Source Level Debugging

81



SNOOPer .DRAW.Var %DEFault plotl /ZoomTrack 9

SNOOPer .DRAW.Var $DEFault plot2

Active window

the option ZoomTrack
; establishes time- and
; zoom-synchronisation
; between display windows

/ZoomTrack

A B:SNOOPer.DRAW.Var %:DEFault plotl /ZoomTrack

(=[O sl

(& setup... [ 13 Goto... || FiFind... || fichart || 4 In || p4out | WHFul| £ |[ X out|[ F Full]

-25.000s -20.000s -15.000s

-10.000s -5.000s 0.000us

10000.

TAAARANAAAAN

Jf [m] » «

B YAYATRTAYATAYS

Windows with the option /ZoomTrack are time- and zoom-synchronized to the cursor

in the active window

-

ag| B:SNOOPer.DRAW.Var 3:DEFault plot2 /ZoomTrack

[=][=] =]

(& setup... [ 13 Goto... || F3Find... || fichart || 4»In || p4out|[MnFul| £ |[ X out|[ Z Full]

-25.000s -20.000s -15.000=
| | |

-10.000= -5.000s 0.000us
| | |

20000.

-20000.

m] v «

» 4[] »

4 [em |

©1989-2024 Lauterbach

Training Source Level Debugging | 82



Logging in an SMP System

The SNOOPer can also be used while debugging an SMP system. The debugger can read the shared

memory as an independent bus master .

File Edit View Var Break Run CPU Misc
R IR N R

Trace

Perf Cov OMAP4430app Window Help

Hulm see @2

& B:SNOOPer.state
state
DISable
@ OFF
Arm

used SELect

38141.
SIZE
500000.

TValue
trigger
break

Mode Mode
@ Fifo

Stack

commands

RESet
® it

& SnapShot
i List
7] AutoArm
| Autolnit
| selfArm

pDcc
BMC
Rate PC
1.000us
1000000, ETM
max

1.861ms

V.RANGE({mstatic1)

@ Memory

PC+MMU

ETM32 0.

(=[O el

l:l select...

Mode TOut

"] AddressTrace @ Trace
| Changes
V] SLAVE

| StopAndGo
CIFAST

| ContextID

Program
PULSE
BUSA

TDelay

‘B::

trace

emulate trigger l devices H

H Data H other H previous

NSR:40301E78 Vsieve_armisierelbackground+t |1 |stopped
Cores
0

vl

HLL  UP

£ B1SNOOP List = -2
(& setup... || 13 Goto... || #iFind... || pdchart || Adbraw || EFrofile |
record run |address cycle |data symbol ti.back i
-0000000007 [ O NSD:40302140 snoop OAF510ED ‘\“s1eve_arm\sieve\mstaticl  231.580us .
-0000000006 | O N5SD:40302140 snoop 7887B9AA \\sieve_arm\sieve\mstaticl 231.740us |z
-0000000005 | O N5SD:40302140 snoop 2DD4FAS8 \\sieve_arm\sieve\mstaticl 231.760us _
-0000000004 | O N5SD:40302140 snoop F826C1D2 ‘\sieve_arm\sieve‘\mstaticl 241.120us
-0000000003 n MEN-ANINITAN crnnnn AQAACATIN ‘\A\edawa :""l'lts'ie\"etmstat'icl 232.240us -
-0000000002 - : m\sieve'mstaticl  231.880us
-0000000001 | | i BSNOOPerist Var Time Back el N\ Tevenstaticl  232.100us
T0000000000 | | (& setup...| 3 Goto... || #3Find... | fwchart |[ adbraw | EProfile | Msievelmstaticl  20.304ms -
record |var ti.back i ’
-0000000011 [mstaticl = -702710350 232.460us .
-0000000010 [mstaticl = 860120752 232.160us  F
-0000000009 [mstaticl = 871393690 237.960us
-0000000008 [mstaticl = -1935545790 233.440us
-0000000007 mstatj' T e
-0000000006 |mstat{ o B:SNOOPer.DRAW.Var %DEFault mstaticl = ESR5
-0000000005 (mstat - =
-0000000004 |mstaty | ¢&Setup...|| I Goto... || #iFind... || Adchart || 41 [ p40ut|[MMFull]| £ 1 | X out|[ Z Full
-0000000003 |mstaty -6.568s ~6.566s -6.564s
-0000000002 |mstat1 | ; | |
-0000000001 |mstat 2000000000, : : : : N
TO000000000 |mstaty 3
4 1000000000. -
0. &
-1000000000. E
-2000000000. -

©1989-2024 Lauterbach

Training Source Level Debugging

83



Document the Logging Results

PRinTer .FILE snoop_plotl.lst ; specify documentation file name

PRinTer.FileType CSV ; specify Comma-Separated Value as
; output format

WinPrint.SNOOPer.List ; save result of the command
; SNOOPer.List to file

Summary

J Only recommended if your processor architecture allows the debugger to read physical memory
while the program execution is running.

J Recommended for variables whose sizes are smaller or equal to the core data bus width.

. Only recommended for variables that change with a lower frequency then the achievable
SNOOPer frequency.

. Up to 16 variables can be read while the program execution is running.

. Read values are timestamped and stored in the SNOOPer trace memory. The SNOOPer trace
size is only limited by the RAM on the host computer.

. SNOOPer trace can not be read while recording.

o Various display options are provided.

©1989-2024 Lauterbach Training Source Level Debugging | 84



Script Example

SNOOPer .RESet

SNOOPer.state

SNOOPer .SIZE 500000.

SNOOPer .Rate 500.us

SNOOPer .AutoInit ON

SNOOPer .SELect Var.RANGE (varl)

Go

WAIT 5.s

Break

SNOOPer.List Var TIme.Back

SNOOPer .DRAW.VAR %DEFault varl

reset the SNOOPer functionality
to its default settings

display a SNOOPer configuration
window

specify the size of the SNOOPer
trace

specify the SNOOPer sampling rate

advise TRACE32 to delete the
contents of the SNOOPer trace

; whenever the program execution is

started with Go or Step

specify the variable that should
be logged by the SNOOPer trace

start the program execution
wait 5 seconds

stop the program execution
display the result as a list

display the result as a time
graph

©1989-2024 Lauterbach

Training Source Level Debugging | 85



Var.LOG Command

The command Var.LOG advises TRACE32 PowerView to log the contents of the specified variables to the

TRACE32 PowerView Message AREA whenever the program execution is stopped. Any variable can be
logged.

Var.LOG fstatic2 i ast

Var Break Run CPU |
B Registers

144 Dump...

E’J List Source

@Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals

@ Stackframe

o Peripherals

& Symbols 4
il Groups

ﬁ Bookmarks

race List
B Message Area

— e e
file 'C:\T32_MPC\demo'powerpc'\hardwarempc56xx mpc563xmidiabec. x' (ELF/DWARF) loaded.
fstatic2 = 250559649 | 1 = 3 | ast = (word = Ox0, count = 12346, left = Ox400040F8, right = 0x0, fieldl = 1, field2 = 2)
fstatic2 = -1929615727 | i = 7 | ast = (word = Ox0, count = 12346, left = Ox400040F5 right = 0)(0 F'le'\dl =1, field2 = 2)
Fstatic?2 = 332190335 1=0 ast = (word = Ox0, count = 12346, left = Ox400040F8, r"lght = 0x0, 'F'|e1d]. =1, 'F'|e1d2 =2)
fstatic2 = 784729195 | i =4 | ast = (word = Ox0, count = 12346, left = 0x400040F8, right = 0x0, fieldl = l field? = 2)
Fstatic2 = 1477490049 | 1 = 9 | ast = (word = 0x0, count = 12346, left = 0x400040F8, right = 0x0, fieldl = l field2 = 2)
Fstatic?2 = -128439637 i=7 ast = (word = Ox0, count = 12346, left = 0x400040F8, r'lght = 0x0, fieldl =1, field2 = 2)
fstatic2 = 250329259 | 1 = 10 | ast = (word = 0x0, count = 12346, left = 0x400040F8, = 0x0, fieldl = 1, field2 = 2)
fstatic2 = 252540321 | i = 7 | ast = (word = Ox0, count = 12346, left = 0x400040F§, r"lgat = 0x0, Fieldl = 1, Field? = 2)
fstatic2 = -1808133727 | i = 7 | ast = (word = Ox0, count = ].2346 left = 0x400040F8, right = Ofo fieldl = 1, field2 = 2)
target power fail E
itarget power fail 5

AREA.view Display TRACE32 PowerView Message Area.

Var.LOG [%<format>] <variable1> ... Log specified variables to TRACE32 PowerView

Message AREA.
Var.LOG End logging.

©1989-2024 Lauterbach Training Source Level Debugging | 86



Since the TRACES32 PowerView Message AREA also includes all system and error messages it is
recommended to use a dedicated AREA for the variable logging.

AREA.Create <name> Set up an new AREA window.

Please be aware that <name> is case

sensitive.
AREA.view <name> Display AREA window.
AREA.CLEAR <name> Clear the AREA window.

Var.LOG [%<format>] <variable1> .../AREA <name> Log the specified variables to the area.

AREA.Create VarLogging
AREA.view VarLogging

Var.LOG fstatic2 i ast /AREA VarLogging

Var .LOG

The following command allow to redirect the area outputs to a file.

AREA.OPEN <name> <file> Save outputs to area <name> to <file>.

AREA.CLOSE <name> Stop output and close <file>.

AREA.Create VarLogging
AREA.OPEN VarLogging logl.txt
AREA.view VarLogging

Var.LOG fstatic2 i ast /AREA VarLogging

Var .LOG
AREA.CLOSE VarLogging

TYPE logl.txt

©1989-2024 Lauterbach Training Source Level Debugging | 87



Testing of Functions

I Var.set [%<format>] <var> Execute a function in the target

Var.set func5(4,8,17)

/A TRACE32 PowerView for ARM 0 [SIM @ ] EI@

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov ARMS  Window Help
(MM A I e »n |2 0 0 sdaa @2

B:Data.List funcs = =R
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go || NN Break || | Mode |6 - Find:
I

i

il

addr/1ine [source

int funcs( int a, char b, long c ) /* multiple arguments */ ~
1220 |{
1221 return atb*c;
1222 |}

B:: 41
func5(4,8,17) = 140

components trace Data Var List PERF SYStem Step other pravious
ST:0000186C \\cppdemo\cppdemofunce stopped at breakpoint HLL up

©1989-2024 Lauterbach Training Source Level Debugging | 88



	Training Source Level Debugging
	Load the Application Program
	The Symbol Database
	Structure of the Internal Symbol Database
	General Information on the Symbol Database
	Symbol Browser
	Details about a Selected Symbol
	Searching in Source Files

	Display Variables
	Watch Window
	View Window
	Referenced Variables
	Local Variables
	Stack Frame
	Special Display for Arrays
	Linked Lists

	Change a Variable Value
	Format Variable
	Format a Variable using the Format Dialog Box
	Format a Variable Using the Command Line
	General SETUPs

	Variable Monitoring
	Basics
	Preparation
	Format Option %E
	Var.PROfile Command

	Variable Logging
	SNOOPer Trace
	Basics
	The Logging Interval
	Display Options
	Logging of Multiple Variables
	Logging in an SMP System
	Document the Logging Results
	Summary
	Script Example

	Var.LOG Command

	Testing of Functions


