LAUTERBACH A

Training Hexagon ETM Tracing

Training Hexagon ETM Tracing

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan
Training Hexagon ETIM ... s s m s e
Training Hexagon ETM TracCingcccccrrurvrmmrmmnissmssmmsismss s snssssss s s s s essssmsss s ssssnsss s sssssmssssnnas

Introduction Hexagon ETIM ... inems s s s s s s s smmn s e 5
Off-chip Trace Port 5
TRACES2 Hardware Configuration 6
Trace Display/Evaluation for All Hardware Threads in Common 8
Trace Display/Evaluation for a Single Hardware Thread 9
Basic Start-Up Sequence 10
Cycle-Accurate Tracing 14
On-chip Trace 17
TRACES2 Hardware Configuration 18
Trace Display/Evaluation for All Hardware Threads in Common 19
Trace Display/Evaluation for a Single Hardware Thread 20
Basic Start-up Sequence 21
Cycle-Accurate Tracing 23
Specifying the Trace Method 24
Trace Method Analyzer 25
Trace Method Onchip 27
FLOW ERROR 29
Description 29
Diagnosis 30
TARGET FIFO OVERFLOW 32
Description 32
Diagnosis 33
ETM Based Real-Time Breakpointsccccccuiiimmmmmnnnsmmmmmne s s s sssssssssssas 35
Introduction 35
TRACES32 Hardware Configuration 35
Requirements 36
Hint 36
Breakpoint Usage 37
Complex Program Breakpoints 37
Complex Data Breakpoints 43
Combining Program and Data Breakpoints 49
©1989-2024 Lauterbach Training Hexagon ETM Tracing 2

Saving the Breakpoint Settings as a PRACTICE Script 54
Displaying the Trace Contentscccccicicmmiiinimmminn s s 55
Fundamentals 55
Display Commands 57
Correlating Different Trace Displays 60
Correlating the Trace Display and the Source Code 61
Default Display Items 62
Additional Display Items 75
ASID and TID 75
Time.Zero 76
ETM Packets 77
Formatting the Trace Display 78
Changing the DEFault Display 80
The Autolnit Option 81
Searching in the Trace 82
Belated Trace Analysis 84
ASCII File 85
TRACES2 Instruction Set Simulator 86
Export the Trace Information as ETMv3 Byte Stream 89
Function RUN-TIimes ANAlYSIScccccccmimiiiimmmmminiinriinssss s s s s ssmss s sammsn s a0
Flat vs. Nesting Analysis 91
Basic Knowledge about the Flat Analysis 91
Basic Knowledge about the Nesting Analysis 92
Summary 93
Flat Analysis 94
Dynamic Program Behavior (no OS and OS) 94
Function Timing Diagram (no OS or OS) 100
Hot-spot Analysis (no OS or OS) 107
Nesting Analysis 113
Fundamentals 113
Analysis Details (no OS) 118

O3 e [T =1 = o 128
Filtering via the ETM Configuration Windowcccccoiiiiiininninemnninnssss s ssssssssssssssas 131
Hardware Thread Filter 132
Software Thread Filter 133
ASID Filter 133
Filtering/Triggering with Break.Setccccciiiiiimmininininnssnr s ses s 134
TraceEnable Filter 136
Standard Usage 136
Statistical Evaluations 142
TraceON/OFF Filter 144
TraceTrigger 148
©1989-2024 Lauterbach Training Hexagon ETM Tracing | 3

Filtering/Triggering via the ETM.Setcccccimiiimmmmninnmnnsss s smssss s 156
The ETM Registers 157
Actions Based on Sequencer Level 159
Actions Based on Sequencer Level and Condition 163

Benchmark COUNLEISooiiiceoieiieisecirresssmceressssmeerressssme e ressssmme s sesssmme s eesssmmnn e eassmmnseessssmmnnneas 167
Introduction 167
Standard Examples 169
Function Run-time Analysis - Cache Misses/Stalls 180

Summary: Trigger and Filler ... s 183

Y o 0T T G 184
The Calibration of the Recording Tool 184
Calibration Problems 186

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 4

Training Hexagon ETM Tracing

Version 06-Jun-2024

Introduction Hexagon ETM

The Hexagon ETM can export trace information
. Off-chip via dedicated pins for recording by TRACE32 PowerTrace.

. To the on-chip trace memory called ETB (Embedded Trace Buffer). The ETB has a size of 2 KB
and can store 512 entries, each 32-bits wide.

The Hexagon is using the ETMv3 protocol.

Off-chip Trace Port

The trace information exported by the Hexagon ETM is captured by TRACES32 and recorded into the trace
memory of the PowerTrace hardware.

The trace memory within the PowerTrace is maintained by the TRACE32 command group
Analyzer.<sub_cmd>.

Hexagon

JTAG —

ETM configuration

TRACECTL ™
Hexagon TRACECLK ™

execution core _>

triggering and filtering

compression and
packetization

TRACEDATA[0..n-1]

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 5

TRACE32 Hardware Configuration

The following TRACE32 hardware is required to record and analyze trace information exported off-chip:
. POWER TRACE / ETHERNET

. DEBUG CABLE

. PREPROCESSOR

" PREPROCESSOR

DEBUG CABLE

POWER TRACE / ETHERNET

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 6

POWER DEBUG Il and POWER TRACE Il / POWER TRACE lII
. DEBUG CABLE

. PREPROCESSOR

POWER DEBUG I

_Tx.. *

DEBUG CABLE

PREPROCESSOR

POWER TRACE 11/
POWER TRACE llI

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 7

Trace Display/Evaluation for All Hardware Threads in Common

The trace memory within the PowerTrace contains
trace information for all hardware threads

Trace packet from hardware thread 1

Trace packet from hardware thread 1

Trace packet from hardware thread 2

Trace packet from hardware thread 3

Trace packet from hardware thread 5

Trace packet from hardware thread 5

Trace packet from hardware thread 4

Trace packet from hardware thread 2

Trace packet from hardware thread 2

Trace packet from hardware thread 0

Trace packet from hardware thread 0

Trace packet from hardware thread 0

The Analyzer.List command displays the trace information for all hardware threads.

Analyzer.List ; Display a trace listing for
; all hardware threads

©1989-2024 Lauterbach Training Hexagon ETM Tracing

Trace Display/Evaluation for a Single Hardware Thread

Alternatively TRACES32 provides the possibility to display/evaluate the trace information for a single
hardware thread via the option /CORE <number>.

Analyzer.<sub_cmd>/CORE 0
Analyzer.<sub_cmd>/CORE 1 etc.

Analyzer.List /CORE 0 ; Display a trace listing for

; hardware thread 0

©1989-2024 Lauterbach Training Hexagon ETM Tracing

Basic Start-Up Sequence

The aim of the following start-up sequence is:

. To set up the ETM to export a maximum of trace information (full trace port width, maximum trace
speed)
. To configure the TRACES32 recording tool for an error-free recording

TRACE32 provides the following commands for enabling the ETM:

PER.Set.simple <address> [<format>] <value>

Data.Set <address> [<format>] <value>

Starting-up the ETM requires the following steps:
1. Enable the ETM.

Enabling the ETM is done by writing to memory-mapped configuration registers. For details, refer to
your Hexagon manual.

; Write the 32-bit value 0x00000002 in little endian mode to the
; configuration register at address 0xA9000208
PER.Set.simple 0xA9000208 %LE %Long 0x2

; Write the 32-bit value 0x00000001 in little endian mode to the
; address 0xA8100000
Data.Set 0xA8100000 %LE %Long 0x1

2. Enable the trace port pins for your target hardware.

Enabling the trace port pins for the ETM is done by likewise writing to memory-mapped configuration
registers. Refer to your Hexagon manual for details.

3. Select Analyzer as TRACE32 trace method.

Trace | Perf Cov Window He

CTS Settings...
& g

£ List

= Timing

* v v v

Select trace method Analyzer

g Chart

g Save trace data ... |

E Load reference data ... T EI@

=l ETHOD
@ Analyzer CAnzhzer Onchip ART LOGGER () SHO0Per FDX LA
I Probe IProbe
Trace.METHOD Analyzer ; Default if a TRACE32 pre-

; processor hardware is
; connected (see page>b)

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 10

This setting informs TRACES32 that you want to use off-chip tracing.
4, Define the ETM port size for the off-chip tracing.

Trace | Pef Cov Window Ht¢

] ﬁ Configuration...
| B CTS Settings...
F >
EH List 4
ﬂ Timing 4
£l Chart v | | & B:ETM felle =
etm trace selection configuration
Sy © OFF Trace [l ContextlD | - PortSize
R L s ® on Trace THUM —| | [C] Cydescarate
Reset [CIFilPort OFF
commands TraceASID [LoopTrace ES_
1 32 [
Trace TID
[& Trce |

i) List

By defining the ETM port size you inform TRACE32 how many TRACEDATA pins are used on your
target hardware to export the trace packets. Please refer to your target hardware’s schematics to get
the number of TRACEDATA pins.

5. Define the ETM port mode for the off-chip tracing.

& B:ETM [F=5 Eol 55
etm trace selection configuration
T OFF [¥] Trace [C] contextID PortSize
o oN Trace TNUM

PortMode
commands TraceASID
L2
TraceTID e
18
[©anc | o
[& Trace |

i) List

By defining the ETM port mode you inform TRACE32 about the TRACECLK (trace clock). Please
refer to your target hardware description for the trace clock information.

For the Hexagon ETM the trace clock is always a divided core clock.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 11

Calibrate the TRACE32 recording hardware.

Trace | Peff Cov Window He
| & CTS Settings... & BiTrace ==
' — METHOD
, @ Analyzer Cinzhzer) Onchip) ART () LOGGER () SNOORer () FDX D LA
21 Tirming . e Probe IProbe
g Chart 0 mte used ACCESS TDe'ay-
£3 Save trace data ... (0) DISable [0.
3 Load reference data .. @ OFF 0. | L——1 0% -
— Arm _SIFE————— - CLOCK ———
() trigger 1073741824 — THreshold —
() break 1.281.30 =
Mode ——— VCC
CDmn’EndS BLISTI’BCE .:_. CLOCK
Stack O ClockTrace | | @ autofocus
Leash © FlowTrace TERMination
©) STREAM
2 List PIPE Prestore
[¥] AutoArm RTS SLAVE
[¥] Autolnit 0] Showkoals |
DSelfArm

Push the AutoFocus button to set up the recording tool.

If the calibration is performed successfully, the following message will be displayed:

| (f=148. 0MHz) I

B::
L\na'lyzer data capture o.k.

J (Break] [Regster | [sw

(commion) ot oo im0 (sl (BB SR (oS s o

(f=148.MHz) displays the <trace_port_frequency>.

The <core_clock> can be calculated out of the <trace_port_frequency> as follows:

<core_clock>= 2 * <trace_port_frequency>* (1/<port_mode>)

e.g. <core_clock>=2*148MHz *(1/1/2) =148MHz * 4 =

592MHz

For details on the calibration of the TRACES32 recording tool, refer to “Appendix A”.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

12

Example for a start-up script:

7 eee

PER.Set.simple ..
Trace.METHOD Analyzer
Analyzer .RESet
ETM.RESet

ETM.CLEAR

ETM.PortSize 16.

ETM.PortMode 1/2

Analyzer.AutoFocus

Setup for the Hexagon debugger
Enable the ETM and the trace port
Select "Analyzer" as trace method
Reset the "Analyzer"

Reset ETM

Reset ETM registers

Target system provides 16 pins
for TRACEDATA

Target system is using
1/2 <core_clock> as trace clock

Calibrate the TRACE32 recording
tool

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 13

Cycle-Accurate Tracing

Trace | Pef Cov Window He
] W Configuration...
| & CTS Settings...

Trigger Dialeg... g

= Timing
fuf Chart

E Save trace data ...
E Load reference data ...

* v v v

Reset

&2 B:ETM
etm
) OFF
@ ON

commands

L

trace
Trace
TraceTHUM

TraceASID

TraceTID

[F=5 Eol 5
selection configuration
[] ContextlD PortSize
[CIFillPort PortMode
[C]LoopTrace 12 7
[f:1:e

If ETM.CycleAccurate is OFF, trace recording and time stamping is done as follows:

trace packets

timestamp

ETM is exporting

the addresses of the
executed instructions
in form of trace packets

|

trace packets

timestamp

trace packets

timestamp

trace packets

timestamp

trace packets

timestamp

trace packets

timestamp

trace packets

timestamp

trace packets

timestamp

The TRACE32 recording tool

- collects the trace packets

- stores the trace packets into the trace memory
- timestamps the trace packets

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

14

ETM.CycleAccurate OFF

ETM.FillPort OFF

The resolution of the timestamp is:

. 10 ns if a POWER TRACE / ETHERNET is used

Trace packets are organized in

; bytes

; As soon as a trace packet is

available, it is exported

. 5 ns if a POWER TRACE Il / POWER TRACE Il is used

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

15

Trace | Pef Cov Window He
] W Configuration...

| & CTS Settings...
Trigger Dialeg... g
B:ETM =]
, & [F=5 EoH 53
4 it > etm frace selection configuration
= *) OFF [¥] Trace [ContextD PortSize
= Timing L4
@ ON Trace THUM [V] ycecarate I (8 -]
¥ Chart ’
_|FilPort PortMode
E Save trace data ... commands TraceASID [[LoopTrace
E Load reference data ... RESet [FeBC
Reset & CLEAR TraceTID
«# Register
[& Trce |
£ List

If ETM.CycleAccurate is ON trace recording and time stamping is done as follows:

trace packets
o trace packets

ETM is exporting trace packets
the addresses of the trace packets
executed instructions trace packets
and the number
of stalls between the trace packets
instructions in form of trace packets

trace packets trace packets

The TRACE32 recording tool
- collects the trace packets
- stores the trace packets

TRACES2 is generating the time information for the trace display out of the exported trace information and
the <core_clock> provided by the command Analyzer.CLOCK.

Cycle accurate tracing provides a more detailed timing and allows a higher density of trace packets in the
trace memory, but generates a higher load on the trace port.

Analyzer.CLOCK 600.MHz ; Inform TRACE32 about the
; core clock

ETM.CycleAccurate ON

(ETM.FillPort ON) ; Automatically switched to ON if
; cycle accurate tracing is ON

; The ETM collects the trace

; packets and exports them as
soon as TRACEDATA/8 packets are
; available

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 16

On-chip Trace

Hexagon

Hexagon
execution core

JTAG

triggering and filtering

compression and
packetization

The trace information exported by the Hexagon ETM is stored in the on-chip trace memory (ETB).

The ETB is maintained by the TRACE32 command group Onchip.<sub_cmd>.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

17

TRACE32 Hardware Configuration

The following TRACE32 hardware is sufficient to analyze the trace information piped into the ETB:
. POWER DEBUG / ETHERNET
. DEBUG CABLE

DEBUG CABLE

POWER DEBUG / ETHERNET

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 18

Trace Display/Evaluation for All Hardware Threads in Common

The ETB contains
trace information for all hardware threads

Trace packet from hardware thread 1

Trace packet from hardware thread 1

Trace packet from hardware thread 2

Trace packet from hardware thread 3

Trace packet from hardware thread 5

Trace packet from hardware thread 5

Trace packet from hardware thread 4

Trace packet from hardware thread 2

Trace packet from hardware thread 2

Trace packet from hardware thread 0

Trace packet from hardware thread 0

Trace packet from hardware thread 0

The command Onchip.List displays the trace information for all hardware threads:

Onchip.List ; Display a trace listing for

; all hardware threads

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 19

Trace Display/Evaluation for a Single Hardware Thread

Alternatively TRACES32 provides the possibility to display/evaluate the trace information for a single
hardware thread via the option /CORE <number>.

Onchip.<sub_cmd>/CORE 0
Onchip.<sub_cmd>/CORE 1 etc.

Onchip.List /CORE 0 ; Display a trace listing for

; hardware thread 0

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 20

Basic Start-up Sequence

TRACE32 provides the following commands for enabling the ETM:

PER.Set.simple <address> [<format>] <value>

Data.Set <address> [<format>] <value>

Starting-up the ETM requires the following steps:
1. Enable the ETM.

Enabling the ETM is done by writing to memory-mapped configuration registers. Refer to your
Hexagon manual for details.

; Write the 32-bit value 0x00000002 in little endian mode to the
; configuration register at address 0xA9000208
PER.Set.simple 0xA9000208 %LE %Long 0x2

; Write the 32-bit value 0x00000001 in little endian mode to the
; address 0xA8100000
Data.Set 0xA8100000 %LE %Long 0x1

2. As soon as the trace method Onchip is selected, all settings for the ETB are automatically
done by TRACE32.

Trace | Perf Cov Window He

| CTS Settings...
& g

* v v v

224 Timing Select trace method Onchip
g Chart
g Save trace data ... |
=3
=% Load reference data W — El@
st METHOD
) Analyzer) ART _ LOGGER () SNOOPer () FDX. @ Onchip Probe
) Npndeg Chnahyzer - MergadOndhip O LA
Trace.METHOD Onchip ; Default if no TRACE32 pre-

; processor hardware is
; connected (see page 17)

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 21

Trace | Pef Cov Window He
] W Configuration...
| & CTS Settings...

Trigger Dialeg... g

= List
= Timing
fuf Chart

g Save trace data ...
E Load reference data ...

* v v v

Reset

Example for a start-up script:

PER.Set.simple ..
Trace.METHOD Onchip
Onchip.RESet
ETM.RESet

ETM.CLEAR

5’ B::etm
etm trace
© OFF Trace
@ 0N - Trace TNUM
TraceASID —
TraceTID —
!’m

[E=B[E=R(F=D
selection configuration
[C] contextID Portsize
Hlodesanate]| (22 automated setup
[CIFilPart PortMode —
0 LoopTrace ETB
DEBC

Setup for the Hexagon debugger
Enable the ETM and the ETB
Select "Onchip" as trace method
Reset the Onchip trace

Reset ETM

Reset ETM registers

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

22

Cycle-Accurate Tracing

trace packet

trace packet

ETM is exporting

trace packet

trace packets

trace packet

trace packet

trace packet

trace packet

trace packet

Trace information within the ETB is never time-stamped.

FillPort is automatically enabled for the ETB.

In order to get timing information, CycleAccurate tracing needs to be enabled (not fully supported yet).

7 eee

Onchip.CLOCK 600.MHz

ETM.CycleAccurate ON

Inform TRACE32 about the core

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

23

Specifying the Trace Method

Specifying the trace method has three effect:

1. Selection of the trace repository.
2. Admit the command group Trace.<sub_cmd> as an alias.
3. Program TRACES32 to use the trace information from the specified trace repository as source for

various trace evaluation commands.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 24

Trace Method Analyzer

| Trace | Perf Cov Window

P Configuration...

4B CTS Settings...
Trigger Dizalog..,

== Trigger Definition

) List

= Timing

72| Chart

ﬁ Save trace data ...
E:‘j; Load reference data ...

Rezet

W B:Trace

- METHOD

(=[O]

@ Analyzer

Chnahyzer @ Onchip © ART

) LOGGER) SNQORer (D FDX) LA
Integrator Probe IProbe

Trace.METHOD Analyzer

Trace.List

Perff Cov Window He

/- Configuration...

B CTS Settings...
Trigger Dialog...

Trigger Definition
List

= Timing

#2| Chart

g Save trace data ...
E Load reference data ...

* v v v

Reset

All commands in the Trace menu

apply to Analyzer

Trace repository

is the trace

memory of the TRACE32 PowerTrace

Trace is used as
Analyzer

an alias for

Means Analyzer.List

Cov Window Help

& Perf Configuration...
£ Perf List
E| Perf List Dynamic

O Perf OFf

Distribution L4
Duration Ato B L4
3

Distance trace records

Reset

Function Runtime ki Prepare

E Show as Tree

E Show Detailed Tree
#2| Show as Timing

i Show Nesting

E

All Function Runtime
apply to Analyzer

commands

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 25

The following commands analyze trace information stored into the PowerTrace hardware:

CTS.List

COVerage.List

ISTATistic.List

MIPS.PROfileChart.sYmbol

BMC.List

Read the trace information from
Analyzer and provide a high-level
language trace display

Read the trace information from
Analyzer and list which code
ranges were executed.

Read the trace information from
Analyzer and provide an detailed
instruction statistic

Read the trace information from
Analyzer and provide a MIPS
analysis for all executed
functions

Read the trace information from
Analyzer, display the instruction
flow including the benchmark
counters

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 26

Trace Method Onchip

[Trace | Perf Cov Window

He

/- Configuration...
2B TS Settings...
Trigger Dialog...

f-i; Load reference data ...

Trigger Definition L4
=7 List P
= Timing »
7| Chart
E Save trace data ...

Rezet

W BuTrace
METHOD

© Analyzer * CAnalyzer) ART

Trace.METHOD Onchip

Trace.List

B CTS Settings...
Trigger Dialog...
== Trigger Definition

List
= Timing
#2| Chart

g Save trace data ...
E Load reference data ...

* v v v

Reset

All commands in the Trace menu

apply to Onchip.

Integr

Trace repository

Trace is used as
Onchip

Means Onchip.List

) LOGGER () SNOOPer) FDX O LA

B
ator ' Probe IProbe

is the ETB

an alias for

Cov Window Help

& Perf Configuration...
£ Perf List
E| Perf List Dynamic

O Perf OFf

Function Runtime ki

Distribution L4
Duration Ato B L4
3

Distance trace records

Reset

Prepare |

E

E Show as Tree

E Show Detailed Tree
#2| Show as Timing
Show Nesting

All Function Runtime commands

apply to Onchip.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 27

The following commands analyze trace information stored into the ETB:

CTS.List

COVerage.List

ISTATistic.List

MIPS.PROfileChart.sYmbol

BMC.List

Read the trace information from
Onchip and provide a high-level
language trace display

Read the trace information from
Onchip and list which code
ranges were executed.

Read the trace information from
Onchip and provide an detailed
instruction statistic

Read the trace information from
Onchip and provide a MIPS
analysis for all executed
functions

Read the trace information from
Onchip, display the instruction
flow including the benchmark
counters

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

28

FLOW ERROR

Description

In order to provide an intuitive trace display the following sources of information are merged:

o The trace packets stored in the trace memory of the PowerTrace or the ETB. The trace packets
provide only the addresses of the executed instruction packets (instruction flow).

. The program code from the target memory read via JTAG.

. The symbol and debug information already loaded to TRACE32.

Trace packets from Program code from
the PowerTrace the target system memory

/A TRACE32 PowerView for Hexagon 2 [Power Trace Ethernet @]

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

(M d e[y w0 HuEsas @ i & LTLP)

£ BiTrace.List ===
8 setup...|[13 Goto... || 3 Find... || ﬂ!chart ‘ M| Frofile EMIPS % More|[I Lesd
record run address cvc e data symbol ti.back |
2 Jump (‘Xlé(‘ 02¢ -
2 (R1) e
-0000000165 |3 P: GISGDZFG - \BLASTK_puts_debug_buffer+0x90 271.875us _
3 | jump Ox180A528; dﬂaHG frame;
| 3 [R2=#0x0; -
-0000000148 |4 P:0180C02C ..img\Global\BLASTK wait_forever
4 [wait(R1);
-0000000133 |5 ..\Global\BLASTK_futex_wait+0x38
Bl
5 p:t O0x180C1AQ; if(!PO.new)R9=add(RE,#0x0
5 r R7
il (
5
it
5
s SR L ‘ Symbol and debug
5 ump Ox180C1F8; Rl-"ﬂxﬂ \GP+"0x5E— H H
i !nformatlon
in TRACE32
il BxTrace Chart.s¥mbol
(& setup... || 1ii Groups... |38 Config...|[¥ Goto... || #3Find... |[4» In |[»4 Out)[M Full
-2.502154500s -2.502154400s
| address [L |
BLASTK_handTe_trap0: 4/l EEEEEEEEEEEE R — N -
BLASTK _event_vectors : * <+l o] | L o
BLASTK_trap_angel : & | | o o
doangel : 5| - I .
printhexint: G . - I
/i - S -
W . I |
{
1L (P T - P _ | RE
oy« 3
‘B: :
emulate trigger ‘ devices ‘ | irace | ‘ Data ‘ | Var | ‘ List ‘ | PERF | ‘ SYStem ‘ | Step. | ‘ Go ‘ | Break | ‘ s¥Ymbol ‘ | other | ‘ previous
P:0180C030 \\bootimg\Global\BLASTK_wait_forever+0x4 1476444416. 0 |stopped MIX UP

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

29

If the program code does not match the captured instruction flow, FLOW ERROR is displayed:

s BuTrace.List EI@
&8 setup...|[13 Goto... || F3Find... | A chart || B Profile]L MIPS |[4# More|[X Lesd
ERRORS run address cycle |data symbol ti.back
memw (GP+#0xB0)=R0; -
FLOW ERROR

-0089226756 P:01803280 ptrace ‘YhootimgGlobal\fputs+0x50
RO=R25; call 0x1803580;

R3=R0; RO=memub(RO+#0x0); =

3
3
SERISROERCEmemubROCEDXDN G e
3 | PO=cmp.eq(RO,#0x0); if(PO.new) jump:nt Ox18035AC; R2=R3; RI1=R3; [H
3 | Rl=add(R1,#0x1); RE:add(Rz."le
-0089226740 |3 P:018035A0 ptrace boot'lmg\G'Ioba'I\str'len+0x20 0.425us
3 | RO=memub(R1+#0x0);
3 | PO=cmp.eq(RO,#0x0); if(!P0.new) jump:t Ox1803598;
3 r Rl=add(R1,#0x1); R2=add(RZ2,#0x1);
3 | RO=memub(R1+#0x0);

3 | PO=cmp.eq(RO,#0x0); if(!P0.new) jump:t Ox1803598; %

S|

Such an error can have the following reasons:
. The program code in the target memory has changed (e.g. by a faulty pointer)

. The off-chip trace recording is not working correctly (e.g. a single trace pin is permanently 0)

FLOW ERROR indicates that the trace information is not reasonable. Please solve problems first
and then continue to analyze/evaluate your trace information.

Diagnosis

In order to provide the user information quickly, TRACES32 uploads only a specific number of trace records
(currently 50 000). Thus FLOW ERRORSs are not always detected immediately.

For a FLOW ERROR detection for off-chip tracing proceed as follows:

Analyzer .FLOWPROCESS ; Upload the complete trace
; contents from the PowerTrace
; to the host and merge it
; with the
; program code/debug
; information

PRINT %Decimal Analyzer.FLOW.ERRORS () ; Print the number of FLOW
; ERRORs as a decimal number

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 30

To inspect single FLOW ERRORs proceed as follows:
Push the Find... button

s BuTrace.List EI
& setup...)| £ Goto... || #iFind... [i chart |[B Profile | B MPS |[# More|[X Less
TG0 run |address cycle |data symbol ti.back i
1] memw (GP+#0xB0)=R0; -
—— FLOW ERROR El
-0089226756 |3 P:01803280 ptrace ‘YhootimgGlobal\fputs+0x50 =
3 | RO=R25; call Ox1803580; i
3 F R3=RO; RO=memub(RO+#0x0); -
3 [}
3 | Rl=add(R1,#0x1); RZ=add(R2,#0x1);
-0089226740 |3 P:018035A0 ptrace “Whootimg\Globallstrlen+0x20 0.425us
3 | RO=memub(R1+#0x0);
3 | PO=cmp.eq(RO,#0x0); if(!P0.new) jump:t O0x1803598;
3 r Rl=add(R1,#0x1); RZ=add(R2,#0x1);
3 | RO=memub(R1+#0x0);
J3 PO=cmp. eq(RO,#0x0); if(!PO.new) jump:t Ox1803598; %
4 r

Type FLOWERROR into the Expert window
and push the appropriate Find button

race Find [=] ==
@ Expert ©) Cycle) Group () Changes @ Up
) Signal ©) Down
- items
| FLOWERROR -

[Find Ne)it] [Find fFirst| [Find Here| [Find All | [Clear | [Cancel |

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 31

TARGET FIFO OVERFLOW

Description

If more trace packets are generated than the ETM can export, the FIFO buffer within the ETM can overflow

and some trace packets can be lost. If this is the case TARGET FIFO OVERFLOW, PROGRAM FLOW

LOST is displayed:

£ BrTrace List

Lo [e

(& setup...|[I Goto... || 3 Find...

[A chart || B Profile]L MIPS |[4 More|[X Lesd

record run |address

cycle |data symbol ti.back i

-0140326244

o

O=memuh (RZ

-0140326227 (3
5)

—— TARGET

-0140326158

4 /J;///////////////-/_/—I/_////////////////////////////;}// E|

P:0180D27C ptrace
PO=cmp. eq(RO .‘—.'Elel,-;

puts

R2=memw (G

BLASTK_puts debug_buffer+0x1C 0.010us
R5=R27; R4=R27; R6=memw(GP+#0x410); -

FIFO OVERFLOW,
FIFO OVERFLOW,

FLOW LOST

PROGRAM

—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
-0140326160 |3 P:0180B2B0 ptrace .mg\Global\BLASTK _handle_trap0 0.850us
5 R9=55R;
5 RB=ELR;
5 R10=5GP;
3 | PO=bitsclr(R9,#0x3F); if(PO.new) jump:nt Ox180B470; R7=memw(R10+#0x0); R1l=memw(GP+#0x120);
3 P:0180B470 ptrace Wtimg\Global\BLASTK_trap_ange]l 0.050us -

TARGET FIFO OVERFLOWSs indicate that trace packets are lost. TARGET FIFO OVERFLOWSs are likely to
happen if cycle accurate tracing is used.

All commands that analyze the function nesting are sensitive with regards to TARGET FIFO

OVERFLOWS!

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

32

Diagnosis

In order to provide the user information quickly, TRACES32 uploads only a specific number of trace records
(currently 50 000). Thus TARGET FIFO OVERFLOWS are not always detected immediately.

For a TARGET FIFO OVERFLOW detection for off-chip tracing proceed as follows:

Analyzer .FLOWPROCESS ; Upload the complete trace
; contents from the PowerTrace
; to
; the host and merge it with
; the program code/debug
; information

PRINT %Decimal Analyzer.FLOW.FIFOFULL () ; Print the number of TARGET
: FIFO
; OVERFLOWs as a decimal
; number

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 33

To inspect single TARGET FIFO OVERFLOWS proceed as follows:

Push the Find... button

| Bu:Trace.List
(& setup...|[I Goto... || #3Find... | Adchart || B Proﬁle] H MIFS |[# More|[X Lesg
record run adcress Icyc'le |data sym o |t'| back =
-0140326244 3 }
40 |7 5 /////////// //////////////////////////////////// //|:|
O=memub 0x0 2=memw
-0140326227 |3 P:0180D27C ptrace .BLASTK_puts_debug_buffer+0x1C 0.010us
3 | PO=cmp.eq(RO,#0x0); R5=RZ7; R4— R27; R6=memw(GP+#0x410); =
3 f(P D2E
3 R3=R27; nop; nop; nop; 3
"~ |— TARGET FIFO OVERFLOW,
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
—— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST
-0140326160 |3 P:0180B2B0 ptrace .mg\Global\BLASTK _handle_trap0 0.850us
3 R9=55R;
3 RB=ELR;
3 R10=5GP;
3 | PO=bitsclr(R9,#0x3F); iT(P0.new) jump:nt Ox1B0B470; R7=memw(R10+#0x0); R1l=memw(GP+#0x120);
-0140326158 |3 P:0180B470 ptrace t'lmg\G'Ioba'I\E!LASTK_trap angel 0.050us -
] »

and push the appropriate Find button

Type FIFOFULL into the Expert window

@ Expert) Cycle) Group) Changes @ Up

) signal ©) Down

,Tlace Find [=|[E ==

items
’7 FIFOFULL

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

34

ETM Based Real-Time Breakpoints

Introduction

TRACE32 Hardware Configuration

The following TRACE32 hardware is sufficient to use ETM based real-time breakpoints:
. POWER DEBUG / ETHERNET
. DEBUG CABLE

DEBUG CABLE

POWER DEBUG / ETHERNET

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 35

Requirements

In order to use ETM based real-time breakpoints, the ETM has to be enabled. For details refer to:
J “Basic Start-Up Sequence” (training_hexagon_etm.pdf) on page 10 or

J “Basic Start-up Sequence” (training_hexagon_etm.pdf) on page 21.

The examples in this section are given on the assumption, that you are familiar with the breakpoint handling
in TRACE32.

If your aren’t, please refer to the chapters “Breakpoints” and “Breakpoint Handling” in “Training Basic
Debugging” (training_debugger.pdf).

Hint

ETM based real-time breakpoints can be set while the program execution is running.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 36

Breakpoint Usage

Complex Program Breakpoints

Complex breakpoint: Stop the program execution after n hits of a program breakpoint.

To illustrate the handling of complex program breakpoints, the following examples are provided:

. Example 1: Stop the program execution at the nth call of a particular function.

J Example 2: Stop the program execution at the nth call of a particular function in a particular

hardware thread.

Example 1

Stop the program execution at the 20th call of the function BLASTK_mutex_lock (etm_break1.cmm).

1. Choose Break menu > Set.

Break | Run CPU Misc Tr

m

éylmplementation...

2K Delete All

ZF Trigger Bus...
& OnChip Trigger...

Trigger Reset

a B::Break.5et = | 2]

address / expression

- [CTHLL
type options implementation
@ Program EXclude || Temporary autoiv
_! ReadWrite "] NOMARK DISable action Push the advanced
' Read || DISableHIT stop ~
™ vate DATA butto.n_ for_the
) defautt | === specification of a

complex breakpoint
ST | [F—— [Delete | [cancel |
memory / reqgister / var

+~ & |FlHL
) MemorfRaadiintz TASK COUNT
_) MemonyRead 1.
_) MemonyWritz

R rie CONDition
[¥IHLL
CMD
+ [VIresme

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

37

2. Specify the breakpoint.

a B::Break.Set El@
- address / expression
BLASTK_mutex_lock - (2] OHL
— type — options ——— |- implementation —|
@ Program [[] EXclude [l Temporary
() ReadWrite [CInoMARK [T D1Sable Gimeay
©) Read [T D1SableHIT | | |stop -
(0 Write -~ DATA
© default [~]| | [A advanced]

ok | [add | [Deete | [cancel |
— memory / reqgister / var

ProgramPass hd [I] HLL
ProgramFail

(0 Memnfizadfiite | — TASK I COUNT

() MemonyRead - 20.

() MemanyWrite
g e — CONDition

[VIHLL
-~ CMD

+ [VIRsME

- Specify the program address in the address / expression field.
- Specify the implementation Onchip.
- Specify the COUNTer value.

3. Display a breakpoint listing.

fBleak] Run CPU Misc Tr

il Set.. i
éb Implementation...
2K Delete All
ZF Trigger Bus...
& OnChip Trigger...
Event Trigger..,
External Trigger..,
) B:Break List [E=| o)
[Lngacaest (3 Delete Al][O Disabie Al @ Enabie Al @ Init. || (2 Sekct.. | 52 Store..) (52 Load...) I Set... |
address |[types impl count |
C:0180A510][Program ONCHIP [0./20. BLASTK_mutex_Tock -
4 3

4. Start the program execution.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 38

ETM-based breakpoints are not cycle-exact, some logic needs to be passed in order to stop the

program execution. As a result the program execution stops shortly after the specified event.

A TRACE32 PowerView for Hexagon 2 [Power Trace Ethernat

File Edit View WVar Break Run

CPU Misc Trace Probe Pedf Cov Window Help

B

I

Li

7

(Hmid e/ rn H TR O DB Ses @ Lo L]
] Bdllist
[Mstep || Mover | $next [Retun| G up | »Go || N Break || ¥ mode | Find: interrupt.c
addr/Tine |code |Tabel mnemonic |comment =
P:01B0A500 |[78DF7FEQ529FCO.. BLASTK_1.. RO #— Oxl Jumpr LR; -
P:0180A508 |7F0040007F00CO.. nop;
P:0180A510f9200C002 BLASTK_m. :R2= mem 'Iocked(RO)
P:0180A514 |750240005CFFES.. PO=cmp. eq(R2, #0){0), if(!1PO.new) jump:nt Ox180A510;
EQ0 mﬁ ig;kgd!gﬂ,ﬁﬂ! =LR;
P:0180A520 |S5CFFEQOFE 'P0) jump Ox180A510;
P:0180A524 |529FC000 jumpr LR;
P:0180A528 |7800C002 BLASTK_m. :R2=#0x0;
P:0180A52C |9200C001 R1=memw_Tlocked(RO); F |
P:0180A530 |A0A0C200 memv_Tocked(RO,PO)=R2;
P:0180A534 |535FC000 if PO jumpr LR; T
4 1l 3
|B: |
emulate trigger [devices][frace][Data][Var][List][PERF][SYStem][other][previous]
P:0180A51C \\bootimg\Global\BLASTK_mutex_lock+0: 1476444416. 3 Jstopped =t breakpoint |—|—| MD{ UP

Delete the breakpoint when you are done with your test.

3 B::Break.List
|[XMEH][OMH]LQMH]L® Tnit_][&m |E2 store... (2 Load...) | K Set... |

count |
|0.

dress
= 0180A510|Program

/20, | BLASTK_mutex_Tock

Breakpoint

a Change...
|T Enable E!

here

|DNCHIP

Display a source listing
st

Display a break listing

Break.List

I

I

I

Br

7

Go

I

Br

Set breakpoint, select symbol via symbol browser
Break.Set * /Program /Onchip /COUNT 20.

Set the breakpoint
eak.Set BLASTK mutex lock /Program /Onchip /COUNT 20.

Start the program execution

Delete breakpoint
eak.Delete BLASTK mutex_lock

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 39

Example 2

Stop the program execution at the 10th call of the function BLASTK_writec in hardware thread 0x0
(etm_break2.cmm).

1. Specify the breakpoint.

-

@ B::Break.5et [==]=]
- address | expression
BLASTK_writec ~ [2)0OHL
~type ——— options —4m8M8Mm ———— implernenta‘tbn
@ Program [[] EXclude [Temporary Onchip v
() ReadWrite [CInomARK [C] D1Sable - action ———]
(©) Read [C] D1sableHIT | | |stop -
©) Write ~ DATA
) default [~]| | [A advanced]
 F—— [—r— [Delete | [cancel |
ProgramPass | hd [I] HLL
ProgramFail
. :'. MJMN!}& TASK - CDUNT
©) MemonyRead - 10.
) Memonyirite
R feadirite — CONDition
HLL
= [“Iresme

- Specify the program address in the address / expression field.
- Specify the implementation Onchip
- Specify the COUNTer value.

2. Specify the hardware thread in the ETM.state window.

Trace | Pef Cov Window He

1 W Configuration...
| & CTS Settings...
Trigger Dialeg... g & LE il [F={Hom ()
» etm - trace 1 selection configuration
List » ©) OFF [¥] Trace [¥| ContextID | - PortSize ——
2 Timing v || @on - TraceTNUM —] | £ Gyedcawate
M Chart » EE— 0x0 D FilPort - PortMode ——|
RESet - TraceASID — | [[]LoopTrace 1/2)
52 Save trace data ... FlBac — |
E Load reference data ... - TraceTID . __ |
Reset
[& Trace |

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 40

Start the program execution.

r ——
A TRACE32 PowerView for Hexagon 2 [Power Trace Ethernet @u

File Edit View VYar Break Run CPU Misc Trace Probe Pef Cov Window Help
[Mw|+ el Elew ol 5y s Sea @z <ie|
B:List.Asm
[Mstep |[B over |[¥ next][4’ Retwrn [e up | »Go |[W Break || #¥]mode | Find:
addr/line |code bel mnemonic |comment =
P:0180D1EC ?U?B4DUOS‘3FF69.. RO=R27; jump Ox180A528; RZ/=memw(FP+#-Ox4); deallocframe;: .
P:0180D1FC |[7FOOCO00 ﬂoﬁl;
P:0180D200fA09DC001 BLASTK writec: allocframe(#0x8);
P:0180D0204 |7060401A498060.. RZE RO; R27= mevmv(GP+#Ox4—US), memd(FP+# OXS)—RZ? 26;
EES, 0=R27; call Ox180 RO e
P:01800218 |[70784000498060.. =R27
| e:o1sop224 [9185c002 R2= mevmv(R5+#Dx0),
P:0180D228 |B0024023F302C1.. R3=add(R2,#0x1); R2=add(R2,R1);
P:0180D230 |[8CO35F04706340.. R4=asr(R3, #OXLF), R1=R3; R2=#-0x2000; memb(R2+#0x0)=R26;
P:0180D0240 |SE04D3AL Rl+=1sr(R4,#Dxl3);
P:01800244 |F101C201 Rl=and(R1,R2);
P:0180D248 |F321C303 R3=sub(R3,R1);
P:0180D24C |4185C300 menn-.l(R5+#0x0) R3
P:0180D250 |59FF696C97DE7F.. Jump 0x180A528; R27 26=memd (FP+#-0x8); deallocframe;
II P:0180D25C [7F00CO00 ﬁ;
P:01800260 |A09DCO0L BLASTK_puts_debug_buffer: allocframe(#0x8);
P:0180D264 |7060401B5BFF69.. R27=R0; call Ox180A510; RO=memw(GP+#0x408); memw(FP+#-0x4)=
P:0180D274 |913B40004980C4.. RO=memub (R27+#0x0); R2=memw{GP+#0x80);
i P:0180D27C |75004000707B40.. PO=cmp. eq(RO,#0x0); R5=R27; R4=R27; RE=memw(GP+#0x410);
| P:0180D28C |5C00C0O2E TF(POg Jump DKLSUDZEB
“ P:0180D0290 |707B40037F0040.. R3=R27; nop; nop;
P:0180D2A0 |F3024600800240.. RO= add(RZ R6); R2—add(R2 #0x1); R3=add(R3,#0x1); R5=memb(R5
P:0180D2B0 [8C025F01706240.. Rl=asr(R2,#0x1F); RO=R2; Rd4=add(R4,#0x1); memb(RO+#0x0)=R5;
P:0180D2C0 |SE0153A0780040.. RO+= 1sr(Rl #Dx}j), R1=#-0x2000; R5=R4;
NN T | 3
B::
I
emulate trigger [devices][trace][Data][var][List][PERF][SYStem][Step][other][previous]
P:01800210 \\bootimg\mem_console\BLASTK_writec+0x10 1476444415. Jo stopped at breakpoint I [] MIX UP

Delete the breakpoint and remove the hardware thread selection when you are done with your
test.

t
J10. | BLASTK_writec

Breakpoint

a Change...
|T Enable !

here

== O:LSODZOO |F‘r~|:lqr'a.m |l)NCHIF‘ |0. /

— trace ———— — selection configuration —
JTrace ContextID PortSize
- TraceTNUM CydeAcaurate
| FillPort PortMode
— commands —— |~ TraceASID —— LoopTrace 12 7
RESet BBC
& CLEAR — TraceTID ———
Register

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 41

; Set the breakpoint
Break.Set BLASTK writec /Program /Onchip /COUNT 10.

; Display the ETM settings
ETM.state

; Specify hardware thread 0x0 for the breakpoint and the trace
; exporting
ETM.TraceTNUM 0x0

Go

; Delete breakpoint
Break.Delete BLASTK writec

; Remove hardware thread setting
ETM.TraceTNUM

Summary

Use the following command to stop the program execution after the specified instruction was executed a

specified number of times. You can specify up to 4 to single instruction addresses and up to 4 instruction
address ranges.

I Break.Set <address> | <range>/Program /Onchip /COUNT <number>

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 42

Complex Data Breakpoints

Complex data breakpoint: Stop the program execution after the specified address was read/written,

specification of data value possible.

To illustrate the handling of complex data breakpoints, the following examples are provided:

J Example 1: Stop the program execution after a write access to a specific integer variable.

J Example 2: Stop the program execution after a specific value was written to a specific integer
variable.

. Example 3: Stop the program execution after a specific data value was written to a specified address
n-times.

Example 1 - Complex Data Breakpoints

Stop the program execution after a write access to the integer variable BLASTK_wait_mask

(etm_break3.cmm).

1. Specify the breakpoint.

il B::Break Set [=][]
address / expression
BLASTK_wait_rmask ~ [&]FIHL
type options implementation
Program EXclude Temporary |aut0 -
ReadWrite NOMARK DISable action
DISableHIT | | [stop =
defau | || | [¥ advanced|
 —T— [aAdd | [Deete] [cancel]

- Specify the variable in the address / expression field and enable the HLL check box.

- Specify Write as breakpoint type.

2. Start the program executio

n.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

43

ile Edit View WVar Break Run CPU Misc Trace

robe Perf Cov Window Help

(MW Ll vu|E 2RO e @2 2T

= BuList
[M Step][W Over][+ Next][4 Return][¢ up][b Go][11 Break] %] Mode] Find:
addr/line |code 1abel mnemonic |comment
P:0180C1ES [6221C00A UGP=R1;
P:0180C1EC |70614000528240.. RO=R1; jumpr R2; memw(SP+#0x0)=R1;
Z80040014980DC i x39C);

:0180C200 [4880C14E
0180C204 |6701C006
0180C208 |6ES0CO1D
0180C20C [59FF7EFAAL9DCS..
0180C214 |5C00C108
0180C218 [9181C5E2
0180C21C |6EB0CO1D
0180C220 [5282C000
0180C224 |6ES0COLD
0180C228 |780040014980DC..
0180C230 |[4880C14B

VUDUUTLUDWLDD

SP=5GP:
jump 0x180C000; memw(SP+#0x0)=R3;
1 (P1) jump Ox180C224;

RZ=mem« {R1+#0xBC) ;

SP=5GP;

jumpr R2;

; R3=memw{GP+#0x39C);
memw (GP+#0x12C)=R1;

<

.

Gj BuWar.View %Hex %Decimal BLASTK wait_mask

i ’-_|BLASTK_wa1t_ma5k = b2 = Dx3E

4

IB: i
emulate trigger [devices] [trace] [Data] [Var] [List] [PERF] [SYStem] [Step] other previous
P:0180CIF8 \\bootimg\Global\BLASTK_thread_switch+0x38 [1476444416. B |stopped by riwbreak | [|| M |UF

NOTE: The instruction that performed the write access and so caused the program stop,
cannot be detected automatically since
. ETM-based breakpoints are not cycle-exact
. register indirect addressing is used

Var.View %$Hex %$Decimal BLASTK_ _wailt_ mask ; Display contents of variable

; BLASTK wait_mask
Var .Break.Set BLASTK wait_mask /Write ; Set the breakpoint
Go ; Start the program execution

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

44

Example 2 - Complex Data Breakpoints

Stop the program execution after the value 0x24 was written to the integer variable BLASTK_wait_mask
(etm_break4.cmm).

1. Specify the breakpoint.

il B::Break Set =@ ==
- address | expression
BLASTK_watt_mask ~ [2]¥IHL
-type ———— options ———————————— implernenta‘tbn
©) Program [C Exclude [T Temporary
() ReadWrite | | [C]NOMARK [C] D1Sable i
|| DISableHIT stop hd
@) Write - DATA
© default 0x24 (~|| | [advanced]
 —T— i) [Delete | [cancel]

- Specify the variable in the address / expression field and enable the HLL check box.
- Specify Write as breakpoint type.
- Specify the DATA value.

2. Start the program execution.

e Edit View Var Break Run CPU Misc Trace Probe Ped Cov ndow Help

(ME[+eee|rn|Ee o danedcs @2 »&[LTLR|

Buxdllist = (==
M Step || M over |[4 next][d’ Return [@up || »Go | Wereak || ¥ mode | Find:
addr/Tine |code mnemonic |commert I
P:0180C2B0 [6419C000 swi(R25); -
P:0180c2B4 |7800400059FF7F.. RO=#0x0; jump 0x180C23C; R1=RO0; nelT-"GP+:’0><BEO‘—R21'
P:0180C2C4 |C6954115A100C1.. RZ eth‘lt (R21,R1); nenb R0+70x15
P:0180C2CC |7800400059FF7F.. RO=#0x0; jump OxlSO(_Z}(_ Rl RO; memw \GP+"O><BEO\ R21;
) 03IDE57. R23=clrbit(R23,R24); E
P:0180C2EQ [671/7C003 IMASK=R23;
P:0180C2E4 |7800400059FF7F.. RO=#0x0; jump 0x180C23C; RI=R0; memb(RO+#0x15)=R1; |=
P:0180C2F4 |7F0040007F0040.. nop; nop; nop;
P:0180C300 |6900492278DF/F.. BLASTK_schedule_new: Toop0(0x180C390, #0x6); R26=#-0x1; R21= memub (R1+#0x14
P:0180C310 |F25549005C2048.. PO=cmp. gt (R21, R9,, 'nc"'PO new) jump:nt OxlSOC-r]. ; R7
P:0180C320 |C4154545879543.. R5=addas1(R5, R2]. #0x2 4= tab'\e‘lclx\ (R21,#0x3,#0x3):
P:0180C330 |8C154506761543.. R‘S:asr-'\REl,ﬁ.OxS; R3=and(R21,#0x1F) Rll memw \R5+—.Ox
P:0180C340 |C684430AC68746.. R10-sethit(R10,R3); R7 —setbwt R7,R6); R23:22-memd(GP ~
4 | [| r
&ofl BiVarView %Hex %Decimal BLASTK wait_mask (=R EcR(=<"|
-|[BLASTK _wait_mask = 36 = Ox24 ,
4 »
IB: i
emulate trigger [devices] [trace I [Data] [Var] [List I [PERF] [SYStem] [other I [previous]
[I| P:0180c2DC \\bootimg\Global\BLASTK_schedule_ 1476444416. 1 Jstopped by uw break I [Mpc Jup

Var .Break.Set BLASTK wait_mask /Write /DATA.auto 0x24

Go

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 45

Summary

; Set memory access breakpoint, data value possible
; (up to 4 accesses to single addresses, up to 2 accesses to address ranges)

Break.Set <address> | <range>/ReadWrite | /Read | /Write
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write

Break.Set <address> | <range> |<access> /DATA.auto <data> | /IDATA.Byte <data>
Break.Set <address> | <range> |<access> /DATA.Word <data> | IDATA.Long <data>

Var.Break.Set <hll_expression>/<access> [DATA.auto <data>

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 46

Example 3 - Complex data breakpoint

Complex data breakpoint: Stop the program execution after a specific data value was read/written from/to

a specified address n-times.

Stop the program execution after the value 0x36 was written 3. times to the integer variable
BLASTK wait_mask (etm_break5.cmm).

1. Specify the breakpoint.

I3 B::Break.Set =B e
address / expression
BLASTK_wait_mask ~ [2]¥IHL
type options implementation
©) Program [exclude [T Temporary
() ReadWrite [CInomMARK [C] D1Sable action
[”] DISableHIT stop hd
© Write DATA
) default 0%36 [~|| | [A advanced]
 —TI— [wtdd.) [Delete | [cancel |
memory / reqgister / var
ProgramPass - [I]HLL
ProgramFail
() Memanzadiirte TASK COUNT
() MemanyRead - 3.
(©) Memanyiite
R rte CONDition
[¥]HLL
CMD
+ [“Iresme

- Specify the variable in the address / expression field and enable the HLL check box.

- Specify Write as breakpoint type.

- Specify DATA value.
- Specify the COUNTer value.

Start the program execution.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

47

File Edit View Var

Break Run

CPU Misc

Trace Probe

Perf Cov Window Help

[M|+ e v 2o =N sEs

| @z &|LTLP|

=] Bud.list

¢ up][PGo |1 Break || #Mode | Find:

addr/Tine

code

[M Step |[® over |[¥ Next][JRe_lturn Il

|mnemoni c

|comment

P:0180C2B0
P:0180C2B4
P:0180C2C4
P:0180C2CC

:0180C2EQ
:0180C2E4
:0180C2F4
:0180C300
:0180C310
:0180C320
:0180C330
:0180C340
:0180C350
:0180C360
:0180C370
:0180C380
:0180C390
:0180C3A0
:0180C3B0
:0180C3BC
:0180C3C8
:0180C3CC
:0180C3D0

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

6419C000

7800400059FF7F..
C6954115A100C1..
7800400059FF7F..

Swil(R25);

RO=#0x0; jump Ox180C23C; R1=R0O; memw(GP+#0x8B0)=R21;
R21=setbit(R21,R1); memb(RO+#0x15)=R1;

RO=#0x0; jump Ox180C23C; R1=R0O; memw(GP+#0x8B0)=R21;
R23=clrbit(R23,R24);

6717C003

7800400059FF7F..
7F0040007F0040..
690049227 8DF7F..
F25549005C2048..
C4154545879543..
8C154506761543..
C68A430AC68746..
75174002F3E248..
C4024D50800242..
C71642005C2042..
7079400E5C2040..
FZ24EBF01742F60..
5C20590EC69253..
F500410059FF7F..
C65B5CIBC6915C..

6712C003
641BC0O00

F500410059FF7F..

BLASTK s..:

IMASK=R23;

RO=#0x0; jump Ox180C23C; R1=R0O; memb(RO+#0x15)=R1;

nop; nop; nop;

Toop0(0x180C390,#0x6); R26=#-0x1; R2l=memub(R1+#0x14); —
PO=cmp. gt (R21,R9); if(!P0.new) jump:nt Ox180C410; R7=m|
R5=addas1(R5,R21,#0x2); R4=tableidxw(R21,#0x3,#0x3):ra
Rb6=asr (R21,#0x5); R3=and(R21,#0x1F); R1l=memw(R5+#0x0)|_
R10=setbit(R10,R3); R7=setbit(R7,R6); R23:22=memd(GP+#~
P2=cmp. eq(R23,#0x0); RZ25=combine(R9.L,R2.L); R13=memw(
Rl6=addas1(R13,R2,#0x2); R19=add(R2,#0x13); R18=#-0x1;
PO=tstbit(R22,R2); if(!P2) jump Ox1B0C3FO; R27=memw(GP—
R14=R25; 1f(!P0) jump 0x180C3DC; R1S5=memw(R13++#0x4);
Pl:cmp.gt(Rldr,Rng; if(P1. new)R14=add(R15,#0x0); R17=#
if(!Pl.new) jump:t Ox180C3BC; R18=clrbit(R18,R19); RZ8
R1:0=combine(R0O,R1); jump Ox180C1D8; memb(R1+#0x15)=R2
R27=as1(R27,R28); R17=setbit(R17,R28); memb(R1+#0x15)=
IMASK=R18;

swi(R27);

R1:0=combine(RO,R1); jump Ox1B0C1DE; memw(GP+#0x8B0)=R ~

<

T | +

8 B::Break List

(=[O e

[Delete A1l][O Disable Al (@ Enable All][@ it |[(2 mpl... |[52 Store..][SLoad [& set...

ress types

|count

I add
1] C: 01880884——0188088??W1te

[imp
JONCHIP

| =
0. /3. |TrnE 0x36 | BLASTK _wait_mask -
F

IB::|

emulate trigger [devices][

trace

] previous

P:0180C2DC \\bootimg\Global\BL¢ 5147644441 6.

Data] [Var] [List] [other
3 stopped by rfw break [

Var.View %$Hex %Decimal BLASTK wailt_mask

Var .Break.Set BLASTK_wait_mask /Write /DATA.auto 0x36 /COUNT 3.

Go

Summary

; Set memory access breakpoint, data value possible, one counter

(upto 1)

Break.Set <address> | <range> |<access> <data_def> [ICOUNT <number>
Var.Break.Set <hll_expression>|<access> <data_def> ICOUNT <number>

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

48

Combining Program and Data Breakpoints

Complex breakpoint: Stop the program execution after the specified instruction has read/written the
specified data value from/to the specified address (negation of the instruction address possible).

To illustrate the combination of program and data breakpoints, the following examples are provided:

. Example 1: Stop the program execution after an instruction from a <function> has written a <value>
to an <integer variable>.

J Example 2: Stop the program execution if any <function>, but not <function X>, writes to the
<variable Y>.
Example 1

Stop the program execution after an instruction from the function BLASTK_schedule_new_fromsleep has
written the value 0x34 to the integer variable BLASTK_wait_mask (etm_break6.cmm).

1. Specify the breakpoint.

a B::Break.5et

L= [

address / expression

BLASTK_schedule_new_fromsleep++0xb4 [I] ETHLL
type options implementation -
©) Pragram [Exclude [T Temporary
() Readwrite | | [C]NOMARK [C] D1Sable action ———|
) Read [C] DISableHIT | | |stop -
-:-Wr'rte DATA - B
) default 0x34 [~|| | [A advanced]
ST [F—— [Delete | Cancel
memorv,l' register,l' i S
BLASTK_watt_mask (2] MIHL
() Memonfizadiirte TASK COUNT
() MemonyRead - 1.
R g CONDition
[¥]HLL
= [VIresve

Specify the function’s address range in the address / expression field.

Specify DATA value.

Select MemoryWrite.

Specify the variable in the memory / register / var field.

2. List the breakpoint settings.

a B::Break.List

(===

3 Dotz Al (O Disabie Al @ Eabie][@ Init | (2 sekat.. |52 Store..|[52 Load... [€3 Set...
imp1

address |types imp data
c:0150(240——0180(2F4Temory1-rrwte |UNCHIP |BYTE 0x34

| C:0x180C240--0x180C2F4 | “\bootimg'\GlobaT\BLASTK wait_mask

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 49

3.

Start the program execution.

MRl d e v E e O Hu W oeds @z 2 LTI

=] Bududist

[M step || W over || & Next || ¢ Retur ||

eu |

b Go][11 Break]ﬂmde Find:

addr/Tine

code

Tabel

mnemonic comment

:0180C2B0
:0180C2B4
:0180C2C4
:0180C2CC

:0180C3D0

6419C000

e

7800400059FF7F..
C6954115A100C1..
7800400059FF7F..

swi(R25); o
RO=#0x0; jump Ox1B80C23C; R1=R0O; memw(GP+#0x8B0)=R21;
R21=setbit(R21,R1); memb(RO+#0x15)=R1;

RO=#0x0; jump OXISQCZSC; R1=R0O; memw(GP+#0x8B0)=R21;

6717C003

7800400059FF7F..
7F0040007F0040..
690049227 8DF7F..
F25549005C2048..
C4154545879543..
8C154506761543..
C68A430AC68746..
75174002F3E248..
C4024D50B00242..
C71642005C2042..
7079400E5C2040..
F24EBF01742F60..
5C20590EC69253..
F500410059FF7F..
C65B5COBC6915C..

6712C003
641BC0O00

F500410059FF7F..

BELASTK_schedule_new:

IMASK=R23;

RO=#0x0; jump Ox180C23C; R1=R0O; memb(RO+#0x15)=R1;
nop; nop; nop;

loop0(0x180C390,#0x6); R26=#-0x1; R2l=memub(R1+#0x14
PO=cmp. gt (R21,R9); if(!P0.new) jump:nt Ox180C410; RV
R5=addas1(R5,R21,#0x2); R4=tableidxw(R21,#0x3,#0x3):
R6=asr (R21,#0x5); R3=and(R21,#0x1F); Rll=memw(R5+#0x
R10=setbit(R10,R3); R7=setbit(R7,R6); R23:22=memd(GP
P2=cmp. eq(R23,#0x0); RZ25=combine(R9.L,R2.L); R13=mem
R16=addas1(R13,R2,#0x2); R19=add(R2,#0x13); R18=#-0x
PO=tstbit(R22,R2); if(!P2) jump Ox1BOC3FO; R27=memw(
R14=R25; 1f(!P0) jump O0x180C3DC; R1S5=memw(R13++#0x4)
Pl:cmp.gt(Rl4,R15g; if (P1. new)R14=add(R15,#0x0); R17
if(!Pl.new) jump:t Ox180C3BC; R18=clrbit(R18,R19); R
R1:0=combine(RO,R1); jump Ox1B80C1D8; memb(R1+#0x15)=
R27=as1(R27,R28); R17=setbit(R17,R28); memb(R1+#0x15
IMASK=R18;

swi(R27);

ol

R1:0=combine(RO,R1); jump Ox1B0C1D8; memw(GP+#0x8B0) ~
| .

- BLASTK_watt_mask = 54 = Ox36

|B::

. emulate trigger [devices][

trace J[Data J|

Y | —r——— -

other] previous

P:0180C;

Break. Set

0x180C240--0x180C2F4 /VarWrite

/DATA.auto 0x34

[[] M

}(] opped by rfw break

BLASTK_ _wait_mask;

o

Go

50

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

Example 2

Stop the program execution if any function, but not BLASTK_schedule_new_fromsleep, writes to the

variable BLASTK_wait_mask (etm_break7.cmm).

1. Specify the breakpoint.

3 B::Break.Set =n R
address / expression
BLASTK_schedule_new_fromsleep++0xb4 - [I] ETHLL
type options implementation
©) Pragram [¥] Exclude [T Temporary
() ReadWrite [“TNOMARK [T] D1Sable action {
©) Read [C] D1SableHIT | | |stop -
©) Write DATA {
©) default [~|| | [A advanced]
G Ccaaad F—rr— [Delete | [cancel |
memow;reg‘Mr
BLASTK_wait_mask -| (2] ®IHL
TASK COUNT
- 1.
CONDition
[¥]HLL
CMD 1
+ [“Iresme

- Specify the function’s address range in the address / expression field.

- Select EXclude to negate the function’s address range.

- Select MemoryWrite.

- Specify the variable name in the memory / register / var field.

2. Start the program execution.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

51

FileEditmVicwmVarmErcakmRonmmEPUnm MiscmiliscemProbemPerdasCovmWindowmbelp

[»istep |[M over || dnext | Return|[@ up |[»Go |[M Break |[¥ Mode | Find:
addr/line |code 1abel mnemonic |comment |
P:0180C1DC (9181450291 81C5.. R18=memw{R1+#0xB8); RZ=memw(RI+#0xB .
P:0180C1E4 |6712C006
P:0180C1ES (6221C00A
P:0180C1EC [70614000528240.. (SP+#0x0)=R1;
DC 90);
P:0180C200 [4880C14B
P:0180C204 |6701C006 i
P:0180C208 [6ES0CO1D
P:0180C20C |59FF7EFAALIDC3.. jump 0x180C000; memw(SP+#0x0)=R3;; |2
P:0180C214 |5C00C108 1F(P1) jump Ox1B0C224; F
P:0180C218 |9181C5E2 R2=memw{R1+#0xBC);
P:0180C21C (6ES0CO1D SP=5GP;
P:0180C220 (5282C000 j
P:0180C224 [6ES0CO1D
P:0180C228 |780040014980DC..
P:0180C230 [4880C14B !
P:0180C234 |59FF7EEGAL9DC3.. jump 0x180C000; memw(SP+#0x0)=R3;
P:0180C23C |59FFFFCE Jjump 0x180C1DE; -
4 1] v

B::|
|f'i'|e I:\EVB\QDSP\QDSP6000YSURFES00 b ast \build\Training'etm_break?.cmm saved.

emulate trigger [devices][

trace

[pata

)

Lst || PERF || other |[previous |

P:0180C1F8 \\bootimg\Global\BLAST} |14

76444416.

|1 stopped by r/w break

[MX WP

Break.Set BLASTK_schedule_new_ fromsleep++0xB4
/VarWrite BLASTK_wait_mask /EXclude

Go

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

52

Summary

; Set combined instruction/data access breakpoint, data value possible, negation possible
(upto 1)

Break.Set <i_address> | <i_range>/MemoryReadWrite <d_address> | <d_range> <data_def> [[EXclude]
Break.Set <i_address> | <i_range>/MemoryRead <d_address> | <d_range> <data_def> [[EXclude]
Break.Set <i_address> | <i_range>/MemoryWrite <d_address> | <d_range> <data_def> [[EXclude]

Var.Break.Set <function> /[VarReadWrite <variable> DATA.auto <value> [[EXclude]
Var.Break.Set <function> /VarRead <variable> DATA.auto <value> [[EXclude]
Var.Break.Set <function> /[NVarWrite <variable> DATA.auto <value> [[EXclude]

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 53

Saving the Breakpoint Settings as a PRACTICE Script

You can save breakpoint settings via the TRACE32 PowerView GUI or via the TRACE32 command line. To
save them via the GUI, take the following steps:

1. Choose Break menu > List to open a breakpoint listing.
Break | Run CPU Misc Tr

il Set..
éylmplementation...
2K Delete All
e B::Break.List =B]
(3% Dekete Al Dissbie All[@ Enable][@ Init][2 Sekect., |[S2 Store..) (52 Load...| [Kl Set... |
address |[types impl data |
C:01EB08E4--01E808E7 [[Write QONCHIP FYTE Ox24 ‘ bootimg\GlobaT\BELASTE _wait_mask o

2. Click the Store button to generate a PRACTICE script for all set breakpoints.

3. Specify the name for the PRACTICE script, and then click Save.
JA B:B:STOre * Break l&

OO [« SURFE900 » mB8200 » blastv2 » + | 42 ||| search P

File name: | breakljemm -

Save as type: ’Current (*.cmm) v]

~ Browse Folders [Save] [Cancel]

4, To display the contents of the PRACTICE script, choose File menu > Edit Script.

/A TRACE32 ARM SIMULATOR
Edit View Var Break Run CPU

#I Run Script... |

#3 Search for Script... f>
B B:CD.PEDIT I\EVB\QDSP\QDSPG000\SURFBI00\ blast\build\ Training\\breakl.cmm = | B[]
[save |[save As...|[save+Close|[Quit+Close|[Save+Do || Do | Debug |
S/ andT32_1000012 wed May 27 17:06:06 2009

B::

BREAK. RESET

V.B.5 ‘\bootimg'Global\BLASTK _wait_mask; /W /DATA.auto 0x24;
ENDDO

The following commands are available to save breakpoint settings via the TRACE32 command line:

STOre <file> Break Save breakpoint settings to file.

ClipSTOre Break Save breakpoint settings to clipboard.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 54

Displaying the Trace Contents

Fundamentals

In order to provide an intuitive trace display the following sources of information are merged:

o The trace packets stored in the trace memory of the PowerTrace/ETB. The trace packets provide
only the addresses of the executed instruction packets (instruction flow).

. The program code from the target memory read via JTAG.

. The symbol and debug information already loaded to TRACE32 from a file.

Trace packets from
the PowerTrace/ETB

Program code from
the target system memory

[P TRACEZ2 Poweriew for Hexagon 2 [Pawer Trace Ethernet @] - =)
File Edit View Var Break Run CPU Misc Trace Probe Peff Cov Window Help
ik beelrulE[PR O HEN SEE @ LS L
i#Y BuTrace.List
& setup...|[R Goto... || #1 Find... |[Ad chart || B profile || HMIPS |[# More|[X Lesq
record run [address cycle |data symboTl ti.back
2 Jump Ox180C02C; -
2 r wait(Rl); E
-0000000165 |3 P:0180D2F0 ..\BLASTK_puts_debug_buffer+0x90 271.875us
3 | jump Ox180A528;
I 3 r R2=#0x0; . : -
-0000000148 |4 P:0180C02C ..img\Global\BELASTK wait_forever
i 4 | wait(R1);
|| [-0000000133 |5 P:0180C178 ..\Global\BLASTK_ futex_wait+0x38
5
5 t 0x180C1AQ; if(!PO.new)R9=add(R8,#0x0
5
5
5
5
5
: Symbol and debug
5 . .
IE information
] B:Trace Chart.s¥mbel in TRACE32
(& setup... [i Groups... |@ Config...][Mt Goto... || #iFind... || 4» In][4 out|[MM Full
i -2.502154500s -2.502154400s
| address L |
BLASTK _handTe_trap0: (il I] -
ELASTK event_vectors: - |/l .
BLASTK_trap_angel: 2 . |
7 doangel: 1y .]
printhexint : |) |
[——
W | . I
|
| - -
<l v« B
‘B: :
emulate trigger ‘ devices H trace H Data H Var H List PERF H SYStem H Step. H Go H Break H s¥Ymbol H other H previous
P:0180C030 \\bootimg\Global\BLASTK_wait_forever+0x4 1476444416, 0 |stopped MIX UP

©1989-2024 Lauterbach

Training Hexagon ETM Trac

ing

The following functional units have an effect on the trace recording:

Benchmark counters

profile

) BiBMC.state
-~ profiling tter0. it draw
OFF (Disabled)
Filter via the ETM.Set command il Lot
.
BiETM Register RESet OFF (Disabled)
PEM (OFF (Disabled)
ETCLICEN [&Trace || | [oFF (Disabled) -
DF Not generated AN Disabled TR 8-bits jCidesenod rians
™ : 1000. [spur

Filter breakpoints

@ oseaklit

configuration
Portsize

PortMode
12

Trace/Analyzer configuration in TRACE32

-~ Mode
BusTrace
ClockTrace

FlowTrace

Prestore
SLAVE

[selfarm

& BiTrace
weTHoD
Analyzer CAnalyzer (SNOOPer) FDX LA
Integrator ©) Probe TProbe
used | [ACCESS Toelay

() | | 0.
o E—
sz aock

1073741824 ’7 [~ THreshold ——

ETM trace packet
generation

[0..n-1]

\

Trigger breakpoints

@ oiseaklit

address ~_tvpes S action
S0180c190]

Trace memory
of PowerTrace/ETB

Trigger via the ETM.Set command

BETMRegister =l
5 £ (enbedded Trace wacrocell o
ETCECEn 0000 E
EMV-CTRL 00000018 ErvA Disabled QosPErG Disabled Disabled
T5htkc Disapled o b Terw Disabl
1507 Kot dgnored GBL Not pemerated TIDASID Not included
0 Not generated Cui Disabied s Bbits
Tor A%z
x 00000000 TR o reset TNGR No reset
EMVERsIon PRRRO00Z
TRIGO_SACO_ADDR 00000000
TRIGO SACIADDR 00000000
TRICO DC DATA 00000000
TRICODCHASC 00000000
TRICOCTRLO 00000000 RTWM O o0 00 w00
o0 TUME Disabled TIE Disabled
K510 Disabled
TRIGOCTRLL 00000000 CRSE csacse - sacase ---
Sicose S o SCar pisabled
S0 AT saebits bccr OCCk Low word
SACUT Load-or-stare sacicT Sicins #e -

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

| 56

Display Commands

The following commands are available to display a trace listing:

Trace.List

Trace.List /CORE 0

Trace.List /CORE 1

Trace.List /CORE 2

Trace.List /CORE 3

Trace.List /CORE 4

Trace.List /CORE 5

Display a trace listing by merging the trace information of all
hardware threads

Display the trace listing based on the trace information generated for
hardware thread 0

Display the trace listing based on the trace information generated for
hardware thread 1

Display the trace listing based on the trace information generated for
hardware thread 2

Display the trace listing based on the trace information generated for
hardware thread 3

Display the trace listing based on the trace information generated for
hardware thread 4

Display the trace listing based on the trace information generated for
hardware thread 5

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 57

| Trace| Probe Perff Cov Wind
W Configuration...
B CTS Settings...
ETM Settings...
== Trigger Definition 4

Al

= Timing

g Save trace data ...

fuf Chart b 2 Tracking with Source
& List Context Tracking System

E Load reference data ...

Reset

sTrace.List

(& setup...|[1% Goto... || #3Find... || A chart || Bl Profile || B MIPS][v I'«'Iore][A Less

3
-0000000179 (3

-0000000173

3
3
3
3
-0000000153 (0
0
0
0
0
0
0
4

record ruru_'_dcress Icyc'le Idata Isym al [t1.back Ly

i

]umpr LR Bl

ub (R27+#0x0 R2=l
P: 0180D2?C ptrace A\BLASTK_puts_debug_buffer+0x1c 0.035us
PO= =cmp. eq(RO -)'FOXO) RS R27; R4— R27; R6=memw(GP+#0x410);

0 ////////////////2//// //////////////////{}////////2////////////////////////////

R3 RZ?, nop, nop, n p;
P:0180C180 ptrace .\Global\BLASTK futex_wait+0x40

PO=cmp. eq(R8,#0x0); T (PO. new) jump:t 0x180C1AD; if(!P0.new)RI=add(RE,#0x0);

R7=memub (R3+#0x15); memw(RI+#0x0)=R3;

R1:0=combine(R7, R3), jump Ox1B0C4B0; memw(R3+#0x0)=RE;

Toop0(0x180C55C,#0x6); R26=#-0x1; R1ll=memw(GP+#0xB8AS8); R9 8 memd(GP+#0x8A0),

R2=ctO(R11); 'nc(PO new) Jump:nt 0x180C650 PO=cmp. eq(Rll #0x0); R13= menm'(GP+#D

RlG:addas'I(RlS,Rl,#OxZ); RlS:comb'ine(RZG.H,Rl.L); R23:22:memd(GP+#OXSBO); mem ~
al

B:Trace List /CORE 3

(& Setup...][1Y Goto...][#3Find...][¢l Chart |[B Profile || B MIPS |[# More|[X Lesg

record run |address lcycle |data |symbaol [t1.back !

SSR=R4;
trap0(#0x0);

trap
jump Ox180B2BO;
-0000000245

L)

R9=S5R;
RE=ELR;
R10=5GP;

jump Ox180B334;
rte;

s

= |
RA4=clrbit (R4, #0x11); o~
RA4=cIrbit(R4,#0x12); =

-0000000259 P:0180B020 ptrace ..0baT\BLASTK_event_vectors+0x20 <0.005us

P:0180B2B0 ptrace j ..'i.mg:\G'I'oba"I \BLATK_hnd'I e_trap0 0.105us

PO=bitsclr(R9,#0x3F); if(P0.new) jump:nt Ox180B470; R7=memw(R10+#0x0); Rll=me

(3

Trace.List

Trace.List /CORE 3

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

58

Please Note

TRACER32 flushes all trace information stuck in the ETM fifos when the recording to the trace repository is

stopped because the program execution stopped. These delayed exported trace packets can be identified
by no Time.Back value or by a large Time.Back value.

File Edit View Var Break Run CPU Misc Trace Probe

Perf Cov Window Help

(M4 /v Zew o BHB sea @z 2LTLER|
5] [B:DatalList] =E=E]
M siep || W over || & Mext][.r Remrn JL@up J[»Go][W Break |[[mode | Find:
addr/Tine [code mnemonic |comment =
P:0180A524 [529FC000 jumpr LR; o
P:0180A528 |7800C002 BLASTK_ mutex_unlock: R2=#0x0; o
: 9200C001 Rl=m gqm_%gﬁlfggm L3
P:0180A530 (A0AOC200 memw_locked (RO, PO)=R2;
P:0180A534 |535FC000 if PO jumpr LR; ¥y
< i v
] BeTraceList =S Ho
& setup...|[ML Goto... || #1 Find... || Mchart | B Profile !MPS 4 wore)[X Lesg
record run\address [cycle [data [symboT [ti.back =

3
+096637583

////% /

us

+0966375846 P:0180C180 ptrace

Af (Pl ne\) jump: t 0x180C680;

Rl—:rOxO R3=memw (GP+¢0x39()
memw (GP+¢0x12()—R1

SP—SGP

c RO=IM
RZ—SSR
R1. H—:rOxlFS R3=#0x4;

RO=and(RO,R1);
R1=IAD;
RO—ur(RO R1);
IMASK=RO;
SSR=R2;
wait(R1);
P:0180C02C ptrace
wait(R1);
P:0180C030 ptrace
jump 0x180C02C;
wait(R1);
P:0180D2F0 ptrace
jump 0x180A528; deallocframe;
R2=#0x0;
P:0180C180 ptrace

+0966375862
+0966375878

+0966375896

+0966375911

R7=memub (R3+#0x15)
R1:0=combine(R7, R3

FRRRRLULNLNNN--ROOO0O0000000000000000000O W

I— 1 —r

PO—cmp eq(RO #OxO) 1F('PO0. ne\) Jump t 0x180D2A0

37
40
3 Rl— :R E R :a
3 RO+:“SF(R1 #0)(13) R1=#-0x2000; R5=R4;
3 RO=and (RO, Rl)
3 RO=sub(R2,R0);
3 R2=R0O; memw (GP+#OXSO)—RO
3 RO—memub(RBMrOxO)
3
42 |7

//f////////////////// ////{l/{“//////////// e e e e e o i e o s

PO=cmp. eq(R8,#0x0); if(PO. ne\) jump:t 0x180C1A0; if(!PO.new)R9=add(R8,#0x0); if(!PO.new) R10=memub(R8
R7=memub (R3+#0x15); memw (R9+#0x0D)=R3;

[R1:0=combine(R7, R3) jump 0x180C4B0; memw(R3+#0x0)=R8;
Toop0(0x180C55C, 30)(6) R26=#-0x1; Rll—menn (GP+#0x8A8); R9:8=memd (GP+#0x8A0);

[R2=ctO(R11); ‘H‘(PO ne\) jump:nt OXISOEGSO PO=cmp. eq(Rll #0x0);

[Rl6=addas] (R13 R1,#0x2); R18=combine(R26.H,R1.L); R23: 22—memd(GP+#OXSBO) memb(ROHrOxlS)—RZG

C

RO=RO; jump Ox180C1F8; Rl—#OxO; menw.'(GP+¢0x8Es4):R23;

jump OXISOEOOO memw (SP+#0x0)=R3;

R1.L=#0x0; RZ—‘msert(RB #0x3,#0x10);

PO=cmp. eg (RS, "Oxﬂj if (PO. new) Junp t Ox180C1A0; if(!PO.new)R9=add(R8,#0x0); if(!P0.new) R10=memub(RS8
memw (R9+#0xD)=R3;
Jump 0x180C4B0; memw \R3+:OXOJ—R8

" 0//

R, x ;mem R+¢x =R5;

\G'\ obal \ELASTqutEx_wa‘\ t+0x40

R13=memw (GP+¢0x8A()

RZB—setb‘\t(RZB R1); Pl=cmp.eq(R23,#0x0); memw(R16+#0x0)=R18;

..img\Global\BLASTK wait_forever

..Global\BLASTK _wait_forever+0x4
- \BLASTK_puts_debug_buffer+0x30 275.275us

\G'\ obal\BLASTK_futex_wait+0x40

ToanD {0y R0C 550 40 RIA=4_ Nl - BT =memul RL#0xRAR) - RO - Remamd P+ # 0y RAD) -
|B::\
emulate trigger [devioes][trace][Data][Var][List][FERF][SYStem][Step][other][previous]
P:0180A52C \\bootimg\Global\BLASTK_mutex_unlock+0x4 [1476442416. B |stopped [T e e

Flushed trace packets

On the one hand, flushing the ETM fifos is necessary to get the correct state of a hardware thread. In most
cases wait instructions are stuck.

On the other hand, run-time measurements can be falsified due to incorrect (too large) timestamps. Please

refer to “Did you know?” to learn how to exclude flushed trace packets from the run-time measurement.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

59

Correlating Different Trace Displays

The /Track option allows to establish a timing relation between different trace displays. The cursors of all
Trace.List windows with the option /Track track the cursor movement within the active window.

Example:

Trace.List
Trace.List /CORE 0 /Track

Trace.List /CORE 3 /Track

SEre=]

ti.back

—tOxl; nemd-;FPth—OxlO RZ25

;g// //

53 / ///
ootimg us

3 i 200221 ot g nc ~<a— Cursor movement

3?/// / / // m:]h(;rcl) vt/he active
§§////// ////////// //%

F); RI=R3; R2=#-0x2000; memb(R2+#0x0)=R26

& BTrace List /CORE D /Track SE=]
(& setup..][nGt...][an][MChr‘t]LP ofile] !M]PS £ More|[X Lesd i
I
50
52 ‘ / @E|
53 |75 ///(//
D aa mutex, - us

:|<<— Track cursor

menm deROPO R3

+0000000972 P UIBUBSCS pt ..img\Global\blast_mutex_lock+0x18 0.070us

% B:Trace.List /CORE 3 /Track EI@
[® Setup..][nar][#Find...][F‘_rIChr‘c]LF ofile] !MFS # More|| X Less

rrrrrrrrrrrrr ti.back

LR' =
+0000000650 trace ‘\\bootimgmem_console\BLASTK writec+0x18 0.075us =

g n race boot1mgimem_conso | e ritectOx E us _<— Track cursor

3%///// / I

If a trace record in the Trace.List window is selected, the cursors in the Trace.List /CORE 0 and
Trace.List /CORE 3 windows mark the record that was executed by their hardware thread nearly at the
same time.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 60

Correlating the Trace Display and the Source Code

The [Track option also allows to establish a logical relation between a trace listing and a source code listing.
If a trace record is selected in the Trace.List window, the corresponding source code line is automatically
highlighted with a blue cursor.

Example:

Trace.List
List /Track

| Trace| Probe Perff Cov Wind
& Configuration...
B CTS Settings...
ETM Settings...
=l Trigger Definition 4

Default
ﬂ Timing L4 All
M Chart 4B Tracking with Source
& List Context Tracking System

g Save trace data ...

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

MEldeern[E e DB acie @z 2 LTLP|
| B::Data.List E: /Track EI@

I Mstep | % over |[& next][qf Return | & up || P Go |[NN Break]ﬂ Mode | Find: I
|| addr/Tine [code |mnemonic |comment Ly
| 674
EP:0180E098 |5A0042EC498068 3 RO=memw (GP+# memw (SP+#0x
- DlsoEéﬂ ////////E//j/g/c/////////////////((////////////////////////////{//////////////////
g BA| E memw
EP:0180EQAC (97 DE7FFA97 9EFF.. R27 : 26=memd (FP+#-0x8); R25=memw(FP+#-0x0C);
EP:0180E0B4 [901ECOLE deallocframe;
EP:0180EQBSE |529FCO00 jumpr LR;
EP:0180EQBC |7FO0CO00 nop;
GR. ..
EP:0180E0CO (A09DC01A main: allocframe(#0xD0); Corre-
| EP:0180E0C4 |A7DEFAFF memd (FP+#-0x8)=R2/ : 26;
680 qube_imt i
EP:0180E0CS [5A0067 84A7DEFE.. call 0x1812FD0; memd(FP+#-0x10)=R25:24; Spondlng
0 | source
681 gtimer_init(); d
EP:0180E0DO |5A006E85A79EFD.. call Ox18137E0; memw(FP+#-0x20)=SP; 3 coade
GREY. . . g i
EP:0180E0DS [4980CEEL Rl=memw(GP+#0x17C); line
687 gthread_t threads [MAX_MUTEX_THREADS];
G . .
EP:0180E0DC [E00144828C0142.. RZ2=+mpyi (R1,#0x24); Rl=as1(R1,#0x2); RO=memw(GP+#0x ~
(e I] b [
=0 =R
I &% Ciod I md s | B mensitn B e [u,._..."V |
l r ress leycle |data symbo'l [td. backl 1
| H 00— e — e ————————— 5,
l 3t dea'l'locframe, Bl
| +0000000066 (3 P:0180986C ptrace otimghiGlobaliblast_writec+0x0C 0.885us
| 3 Jumpr LR
| +0000000068 (3 ptrace e\sys_wri =
i 44 |7 //////////// /////////// //////////;}//////////////////////////////////////I_I
I PO=cmp. gt .new) jump
| +0000000083 0 |— P: 0180EOC0 p"r ac \{boot'l mg\ma'l n\ma'ln
l 679 |.
I okt a'I'IocFrane(#OxDO}; Selected
record

For a description of the highlighted columns, see “Default Display ltems”.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 61

Default Display Items

Columns Description

record Record number (For details, click here.)

run Run-time information (For details, click here.)

address Logical address of the executed instruction packet.

cycle Cycle type.
The only available cycles type is ptrace. ptrace stands for program trace
information.

data (No data access information is exported by the Hexagon ETM)

symbol Symbolic address of the executed instruction packet

ti.back Distance of time between a trace record and its preceding trace record

(Time.Back) (For details, click here.)

record

Trace records are numbered consecutively in the trace display. The numbering scheme depends on the
selected trace mode. The following trace modes are available:

. Fifo Mode

] Stack Mode

. Leash Mode

J STREAM Mode

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

62

Trace.Mode Fifo

; Default mode

; When the trace repository is full

; the newest trace information

; overwrites the oldest

; The trace repository contains

; all information exported
; until the program execution

; stopped
RS o e Bt SummNind
F~Gontguaion- —— |
B CTS Settings...
»
, & BiTrace [E=H =R E55
ﬂliming » METHOD
fyl Chart 3 © Analyzer * CAnalyzer © Onchip © ART () LOGGER () SNOOPer) FDX oA
Integrator ' Probe IProbe
g Save trace data ...
E Load reference data ...
state used ACCESS TDelay
feset © Disable I x| | o
© OFF 454201600. 0% -
© Arm SIZE CLOCK
() trigger 1073741824, THreshold
) break 1.291.39 ~
Mode Mode ©vee
commands @ Fifo BusTrace) CLOCK
RESet ~) Stack 2 ClockTrace @ autofocus
() Leash @ FlowTrace [¥] TERMination
© STREAM
] List PIPE Prestore [Testrocus |
AutoArm RTS SLAVE
[[] selfarm
<Trace List =0 =R T
(& setup...|[13 Goto... || #3Find... || P chart || Bl Profile || HEMIPS |[% More|[X Lesg
record run |address lcycle |data |symbol [ti.back =i
3) R1=Tsr(R26,R27); RO=SP; RZ7=add(R27,#-0x4); memb(SP+#0x1)=R25; -
30?A%?Z%%?%ﬁ%ZZQ%ZZQ%ZQW%ZQ%ZZQ%ZZQW%ZQ@ZZQ@ZZ%a
=and(,#Ox0F) =
3 | Ri-add(R1.R24); i
-0000000111 |4 P:0180C030 p ..Global\BLASTK _wait_forever+0x4 =
4 | jump Ox180C02C;
4 - wait(R1);
-0000000090 |5 P:0180C030 ptrace ..GlobaT\BLASTK _wait_forever+0x4 _
o 5 | jump 0x180C02C; (4
________________ 5 F wait(R1); -
4

In Fifo mode negative record numbers are used.
The last record gets the smallest negative number.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

63

Trace.Mode Stack ; When the trace repository is full
; the trace recording is stopped

; The trace repository contains
; all information exported

; directly after the start of

; the program execution

[P=EEE)

ME|dee[rn[E e o 2umecs @ 2 2LTLP|

— METHOD
@ Analyzer = CAnalyzer (0 Onchip () ART () LOGGER (©) SNOOPer (0) FDX O LA
Integrator © ' Probe IProbe
— state — used — ACCESS — TDelay
() DISable - [- 0. [4F Tronchip |
- © OFF 1073741568, 0% - & ETM
© Arm - SIZE - €CLOCK
() trigger 1073741824, — THreshold ——
© break 129139 v
| — Mode ovee ¥ advanced
Il — commands — BusTrace © CLOCK
As soon as the trace RESet) ClockTrace @ autofocus
repository is fu”’ the @ Init @ FlowTrace [¥] TERMination
trace capturing is stopped -
OFF state) # List [IPrestore
(AutoArm SLAVE ¥ AutoFocus
] Autornit
SelfArm
B::
emulate trigger [devices] [trace] [Data] [Var] [other] [previous]
| > COTEG | hx o |

OFF in the Trace State Field
indicates that the trace
capturing is stopped

running in the Debug State Field
indicates that the program
execution is running

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 64

. [#Find... |[Al chart || B Profile || B MIPS |4 More| X Lesd

ress leycle |data |symbaol Ly

E|

7

L 3

Trace information can not be displayed while
the program is running, since TRACE32

has NOACCESS to the program code in the
target system memory

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 65

In order to display the trace information, you can either stop the program execution, or you can set up
TRACE32 for displaying the trace information while the program execution is running. This is done by
copying the program code to the TRACE32 Virtual Memory (VM:).

Trace packets from
the PowerTrace

/A TRACE32 PowerView for Hexagon 2 [Power Trace Ethernet @]

File Edit View Var Break Run CPU Misc Trace Probe Peff Cov Window Help
(M| ru|[E e O dumdcE @ L
Y BuTrace List
& setup...|[1L Goto... || #1 Find... |[A chart ‘ H Profile EMIFS % More|[X Lesq
record run [address cycle |data symboTl ti.back
2 |_ ju |‘|1 (‘Xl\’j(‘ 0 -
2 r wa G =
-0000000165 |3 [P'UIBUDZFU o . \BLASTK_puts_debug_buffer+0x90 271.875us —_
3 1lmp 0x180A5 ocframe;
3 [R2=OND; ol ‘ . Copy of the program
-0000000148 |4 P ..img\Global\BELASTK wait_forever d . TRACE32
4 | wait(RL);
-0000000133 |5 ..\Global\BLASTK_ futex_wait+0x38 code in
5| L g .
5 :t 0x180C1A0; F (1PO. new)RI=add (RS, #0x0 Virtual Memory
5 CR7 :
i
5|
5 [w2
5|
L
5
I Symbol and debug
4l B:Trace Chart s¥mbal information
(& setup... [3 Groups... |22 Config... [¥ Goto... || #4 Find... || 4» In |[»4 Out|[HM Ful i
-2.502154500s -2.502154400s in TRACE32
| address 4 L !
BLASTK_handTe_trap0: - /il IEEEEEEEEEEE IR R P
BLASTK _event_vectors : Il R | P N
BLASTK_trap_angel:Z{y[| I L o
doangel : 5| o I .
printhexint: 34| o o [
A/
e e . P -
L . I |
“—. . I _— I -
R P - B s
‘B: :
emulate trigger ‘ devices ‘ | irace | ‘ Data ‘ | Var | ‘ List ‘ | PERF | ‘ SYStem ‘ | Step. | ‘ Go ‘ | Break | ‘ s¥Ymbol ‘ | other | ‘ previous
P:0180C030 \\bootimg\Global\BLASTK_wait_forever+0x4 1476444416. 0 |stopped MIX UP

; Copy the program code from the target system memory into the TRACE32
; Virtual Memory (VM:) in order to get access to the program code

; while the program execution is running

Data.COPY 0x1800000--0x182afff VM:

Alternatively:

; Load the program code into the TRACE32 Virtual Memory (VM:)
Data.LOAD.Elf blast/bootimg.pbn /VM /NOREG /NOMAP

Loading the program code into the virtual memory is also recommended if the JTAG interface is very slow or
if there is no access to the target system memory due to any reasons.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 66

NOTE:

Please make sure that the TRACE32 Virtual Memory always provides an up-to-
date version of the program code.

Out-of-date program versions will cause FLOW ERRORs (see “FLOW ERROR”
(training_hexagon_etm.pdf) on page 29.

Back to Stack mode now: Since the trace recording starts with the program execution and stops when the
trace repository is full, positive record numbers are used in Stack mode. The first record in the trace gets the
smallest positive number.

£ BuTrace List

=N Noh=x)

record

|W Setup...” I Goto...]| #3 Find...]| el Chart]Ig Profile]I_ MIPS ”v More”A Les&i

run |address cycle |data symbol ti.back

r +0000000049

3

L

3

L

33 [0
35

—— TRACE ENABLE
—— TRACE ENABLE
—— TRACE ENABLE
—— TRACE ENABLE
—— TRACE ENABLE

/ OCF28 ptrace ‘errormsg'printhexint+0x
32 |7 //////////////)//I//////////////////////))///////} /}////////////////////////////////////

1=mem

///////((////////////]///(/////I///
/ //// // ///

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

67

Trace.Mode Leash

; When the trace repository is
; nearly full the program execution
; 1s stopped

; Same record numbering as for
; Stack mode

| — METHOD
| | @ aAnalyzer

CAnalyzer © Onchip

©) ART

© LOGGER (@) SNOOPer ©) FDX
Probe

Integrator

@A
IProbe

— used

966373440.
— SIZE

— ACCESS

— TDelay

[

- | o

[.&F Tronchip |

1073741824,

— THreshold ——

— Mode

— Mode

© Fifo
) Stack
@ Leash

AutoArm
AutoInit
SelfArm

(©) STREAM
FIPE
RTS

BusTrace
© ClockTrace
@ FlowTrace

[V sLavE

[Prestore

([cmuiate | [imigger] [devices |

trace

J[pata |

| P:0180D2B0 \\bootimg\mem_console\BLASTK_puts

1476444416.

[system ||

other

J [previous |

[[[]

Mx P

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

68

STREAM Mode (PowerTrace only)

Trace.Mode STREAM ; STREAM the recorded trace
; information to a file on the host
; computer

; STREAM mode uses the same record
; numbering scheme as Stack mode

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory of TRACE32 PowerTrace. This procedure extends the size of the trace memorytoupto 1 T
Frames.

Streaming mode requires 64-bit host computer and a 64-bit TRACE32 executable to handle the large trace
record numbers.

By default the streaming file is placed into the TRACES32 temporary directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specify a different name and location for the streaming
file.

Trace.STREAMFILE d:\temp\mystream.t32 ; Specify the location for
; your streaming file

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 69

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace

memory of the PowerTrace, which can be considered

to be operating as a large FIFO.

& BiTrace [F=5 Eol 5
METHOD
@ Analyzer CéAnalyzer © Onchip) ART () LOGGER (©) SNOOPer () FDX D LA
Integrator ' Probe IProbe
state l used ACCESS TDelay
) DISable | - 0. 4F TrOnchip
@ OFF 18494820288, 0% -
) Arm SIZE CLOCK) BMC
() trigger THreshold
) break 1.301.38 ~
Mode Mode Jvee
commands) Fifo BusTrace 0 CLOCK
RESet () Stack) ClockTrace @ autofocus
() Leash © FlowTrace [V TERMination
used indicates how | @ Snapshot | AR |
much trace information it Al HEENE
: AutoArm RTS SLAVE
is buffered by the @ g -
trace memory
[selfarm
(used FIFO)
£ BTrace List /CORE 3 e o]
(& setup... || i3 Goto... || #1Find... || Adchart || H Profile || EmPs |(4 more|[X Less
record [run |address cycle data symbol ti.back
T R2=memw_locked(R0O); =
memv_locked (RO, P0O)=LR; E
_> 1+00018494820032 P:0180A520 ptrace ‘\boot img'Global\BLASTK_mutex_lock+0x10 0.035us T
jumpr LR;
+00018494820042 P:0180D274 ptrace \boot img'mem_console'\BLASTK_puts_debug_buffer+0x14 0.075us
40 |27 /R/CI//////b/é/'/_//{\//CI/‘///R/"//////4/P//{\//B/C\////////////////////////J////////////////////////////////A
r =memub(RZ/+70UxU0); Z=memw{ GP+7Uxal) ;
+00018494820048 P:0180D27C ptrace \\bootimg'\mem_console\BLASTK_puts_debug_buffer+0x1C <0.005us
PO=cmp. eq(RO,#0x0); R5=R27; R4=R27; R6=memw(GP+#0x410);
R3=R27; nop; nop; nop;
+00018494820064 P:0180D2A0 ptrace “\bootimg'imem_console\BLASTK puts_debug_buffer+0x40 0.210us -

3

STREAM mode can
generate very large
record numbers

£ BuTrace.List /CORE 4

(o)[O

[W Setup...][13 Goto... || #3Find... | A chart || B Profile || B

esq

record run |address cycle |data symbo

MIPS |[4# More|[X L
3

t1.back

ririririr i irleke]

» 4[] »

1

If no trace information was exported by a hardware thread within 50.000 records, the record column shows

27?7,

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

70

run

Graphic elements provide a quick overview on the program flow

sequential instruction execution branch taken

; Display trace
; (List.ADDRESS)

Trace.List List.

information for hardware thread 3
display address information for all instruction packets
ADDRESS DEFault /CORE 3

B::Trace.List List. ADDRESS DEFault /CORE 3 o | &

(& setup...|| I} Goto... [#i Find...

][Pl chart || H Profile [T]PS (% More|[X Lesg

+0966372349
H+0966372351

record Irun [addrass leycTe |data T e ‘
0966372327 [P:0180B020 ptrace \bootimg\Global\BLASTK event_vectors+0x20 <0.005us .
—& trap =
= jump Ox180B2BE0; l:'

+0966372341 [P:0180B2B0 ptrace “Y\bootimg'Global \BLASTK _handle_trap0 0.105us

C
rt
+0966372343 [P:0180CE98 ptr
P}
P:0180CESC ptr
SP-a
4

P:0180CF44 ptrace \\bootimgierrormsg'printhexint+0x64 <0.005us -~

R9=55R;

RB=ELR;

R10=5GP;

PO=bitsclr(R9,#0x3F); if(P0.new) jump:nt Ox180B470; R7=memw(R10+#0x0); R1
jump Ox180B334;

“Y\bootimg'errormsg'doangel+0x38 <0.005us

\bootimg'errormsg\doangel+0x3C ~0.035us
(5P,#0x10); Jjumpr LR; R27:26=memd(SP+#0x8); R25:24=memd(SP+#0x0); (u

F

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 71

Interrupts/Traps are indicated in the run column.

| B:TracelList /CORE3
[setup...][1% Goto... |[#3Find...][¢l Chart |[B Profile |[B MIPS |[# More|[X Lesg
record run |address leycle |data |symbo [t1.back Ly
SSR=RZ; -
wait 'Rl,-; El
+0000006187 P:0180B04C ptrace ‘Ybootimg\Global\BLASTK event_vectors+0x4C <0.005us
b 1nterrupt

jump Ox180B514; -
P: 01%085149 -ace “YhootimgGlobal\BLASTK _handle_int 10.320us [

crswap(LR,5GP);

R1=LR; RO=memw(LR+#0x0); memd(LR+#0x28)=R1:0;

crswap(LR,SGP);

FP.H=#0x182; LR.H=#0x182; memd(RO+#0x20)=LR:30;

R28=P3:0; FP.L=#0x2F00; LR.L=#0x1180; memd(RO+#0x28)=5P:28;

PO:cn'E.eq{RO,FP}; R23.H=#0x182; R22=add(R0O,#0x40); memd(RO+#0x38)=R23:22;

+0000006497

1] eI

if(P0O) jump Ox1BOB6FC; R23.L=#0x3100; dczeroa(R22); -
4 3
| B:Trace.List /CORE 3 (== ==
[W Setup...][I} Goto...] #3 Find...][el Chart]L | Profile] | MIPS][v More][A Les&i
record run |address lcycle |data |symbaol [t1.back Ly
trap0(#0x4); o~
+0000007227 P:0180B020 ptrace \\bootimg'Global\BLASTK event_vectors+0x20 <0.005us [z
—* trap
L jump Ox180B2BE0; it
+0000007241 [P:0180B2B0 ptrace “Ybootimg'Global\BLASTK _handle_trap0 0.070us =
R9=55R; |
RB=ELR;
R10=5GP;
R12=GP; Pl=tstbit(R9,#0x12); R13=memw(GP+#0x380); memd(R7+#0x18)=R9:8
+0000007257 P:0180B20C ptrace “Ybootimg'Global\BLASTK _handle trap0+0x2c 0.075us
Rl5=extractu(R9,#0x8,#0x0); R9=insert(R7,#0x3,#0x10); memd(R7+#0xC0O)=R27:26; -
b

Pastel printed source code indicates that a branch was not taken.

BuTracelist /CORE3 |- e
(& setup...|[13 Goto... || #3Find... || P chart || H Profile || EEMIPS |[# More|[X Lesg
record run |address oy c]e |data |symbol [t1.back =
0000007241 P:0180BZB0 ptrace “\bootimg\GTobaT\BLASTK _handTe_trap0 0.070us .
r R9=55R; =
RB=ELR; =
R10=SGP;
R12=GP; Pl=tstbit(R9,#0x12); R13=memw(GP+#0x380); memd(R7+#0x18)=R9:8; |
+0000007257 P:0180B20C pfra’ﬂ \\boot1mg\G1oba1\BLASTK_hand]e trap0+0x2c 0.075us
MIo=exXiractULND, FUXD, FUX0); MO-TNSErTLR/ . FUK, FUXL0); Memg LR/ +FOKCOI=R27 :20;
+0000007276 P:0180B2F8 ptrace “Y\hbootimg'Global \BLASTK _handle_trap0+0x48 0.710us
GP=R13; Rll=addas1(R11,R15,#0x4); if(PD)sP=add(R10,#0x0); memw(R/+#0xBC)=R14;
SSR=R9;
__________________________________ FP=R7; callr R11l; memd(R7+#0x20)=LR:30; b
4 [3

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 72

Trace.List ; The run column indicates which
; hardware thread executed the
; exported instruction packet

B:Trace.List EI m
(& setup...|[¥Goto... || #3Find... || A chart || Bl Profile || EEMIPS |[% More|[X Lesg
record run |address leycle |data |symbal [t1.back Loy
-0109186185 [0 P:01812CH90 ptrace .thread'\gthread_root_setup+0x30 1.560us .
0 r deallocframe; =
0 | jumpr LR; ~
-0109186183 [0 P:0180E0DD ptrace ‘Yoot imgimainimain+0x10 0.035us
679 |... e
651 gtimer_init{}; E|
0 F call 0x18137E0; memw(FP+#-0x20)=5P;
-0109186173 |3 [P:0180B2B0 ptrace .. img'Global\BLASTK_handle_trap0 4.185us
3 R9=55R;
3 RB=ELR;
3 R10=5GP;
3 | PO=bitsclr(R9,#0x3F); iT(P0.new) jump:nt Ox180B470; R7=memw(R10+#0x0); RI11
3 - jump Ox1B0B334;
3 L rte;
-0109186171 |3 |— P:0180%4E4 ptrace ghsys_write\sys_writecreg+Ox14 <0.005us =~
‘ »

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 73

address/symbol

The address column shows the logical address of the executed instruction packet.
The symbol column shows the symbolic address of the executed instruction packet.

TIme.Back

i BuTrace.List EI
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || EEMIPS |[4 More|[X Lesg
record run address cycle |data symbo ti.back i
T R2=memw_]locked(RO); o~
3 | memw_locked(RO,P0)=LR =
-0061974328 |3 P:0180A520 ptrace ‘YWhootimgGlobal \BLASTK mutex_lock+0x10 0.035us 7
3 -~
3 1unpr LR
-0061974318 |3 / strace img\mem_console', /s
40 3/////////////// /// ///////////////////////////////////
O=memub 0); R2=memw(G
-0061974312 |3 P:0180D27C [ﬂ' ace \\boot'lmg\mem_conso'le\BLASTK_puts_debug_buﬁceHOxlC 0.035us m==——
3 | PO=cmp.eq(RO,#0x0); R5=R27; R4=R27; R6=memw(GP+#0x410);
3
3 R3=R27; nop; nop; nop;
—00619?4304J3 P:0180D2A0 ptrace “\bootimgmem_console\BLASTK_puts_debug_buffer+0x40 0.105us =
4 3
i) BuTrace.List EI
[W Setup...][3 Goto...][#3 Find...][el Chart]L Il Profile] Il MIPS][v More][A Lessﬂ
record run |address cycle |data symbol ti.back i
3 | GP=R13; Rll=addasT(R11,R15,#0x4); 1f(P0)SP=add(R1D,#0x0); memw(R7+#0xBC)=R14; o~
3 SSR:RQ: E|
3 | FP=R7; callr R11; memd(R7+# szfl =LR:30; =
-0163406687 |3 P: 018102E0 e boot'lmg\G'Ioba'I\BLASTK_ext _traptab+0x1E0 0.035us 4—
3 F R3=R7; jump 0; SODEUG; nop; nﬂnd R7+#0xC8)=R25 -
-0163406681 |0 [P:018095B0 ptrace \\boot'lmg\G'Ioba'I\b'Iast T Gl o e R e |
0 Rd4=memw_locked(RO);
0
0 | memw_locked(RO,P0)=R3
-0163406673 |0 P:018095C8 ptrac ‘MWhootimgiGlobaliblast_mutex_lock+0x18 0.035us
0
0 REI —Elel '|unpr LR; memw(RO+# EIXS“ Ru
-0163406663 |0 } read_create+(
54 a/{/R////////_////]///////////////////////// ///
0163406657 |3 | P: 01806260 ce \\bootimg\mem_console\BLASTK writec 0. 105U e

TIme.Back indicates the distance of time between a trace record and its preceding trace record on the same

core.

No TIme.Back information is displayed, if the preceding trace record on the same core is too far away.

Timestamp generation

J (ETM.CycleAccurate OFF): Trace records are time stamped when they are stored into the
PowerTrace’s memory. The resolution of the timestamp is 10 ns for PowerTrace and 5 ns for

PowerTrace Il / PowerTrace Ill.

J (ETM.CycleAccurate ON): The time information is calculated from the exported trace information

and the core clock provided by the command Trace.CLOCK <core_clock>.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

74

Additional Display Items

ASID and TID

If the ContextID check box is active in the ETM.state window, the ASID and TID are exported by the ETM.

& B:ETM |-]
etm trace selection configuration
©) OFF [Trace ContextD PortSize
@ ON TraceTNUM [CIcydeacarate 8 -
[CIFillPort PortMode
commands TraceASID [C]LoopTrace 12 7
Floac
TraceTID
£ { B::Trace.List /CORE 3 ==
(& setup...|[1% Goto... || #3Find... || P chart || H Profile || EEMIPS |[% More|[X Lesg
record run |address cycle |data symbol ti.back

-0141653372 |
—— TRACE ENABLE
-0141653313 P:0180D2C0 ptrace A\BLASTK_puts_debug_buffer+0x60 1.740us
RO+=1sr (R1,#0x13); R1=#-0x2000; R5=R4;

RO=and(RO,R1);

RO=sub(RZ,R0);

R2=R0; memw(GP+#0x80)=R0;

RO=memub (R3+#0x0) ;

PO=cmp. eq(RO,#0x0); if(!PO.new) jump:t Ox180D2A0;

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

75

TIme.Zero

In addition to Time.Back there is also a more global time information called Time.Zero.

Trace.List DEFault TIme.Zero ; Add the TIme.Zero
; information to
; the default trace display

7 B:iTrace List DEFault TIme Zero EI@
(& setup...|[[Goto... || FFind... || Adchart || B Profile || B MIPS |[4 More|[X Lesd
record run |address leycle |data |symbol £1. back ti.zero
3 P
3 R27=R0; ca 0x180A510; RO=memw(GP+#0x408); memw(FP+#-0x4)=R27; =
3 ¢ R2=memw_locked(RO); =
3
3 | memw_locked(RO,P0O)=LR &
-0000000244 (3 P:0180A520 ptrace “Vbootimg'Global\BLASTK _mutex_lock+0x10 0.040us 681.710ms
3
3 | Jum pr LR
—-0000000234 |3 rac ; mem_console\BLASTK puts_d }
40 '3/(///////////////(///
2 mem +# R2=mem (G
-0000000228 (3 P:0180D27C ptrace W boot'lmg\merrLconso'Ie\BLAST}Lputs debug_buffer+0x1C 0.035us 681.710ms
3 | PO=cmp.eq(RO, *UXU R5=R27; R4 =R27 i Rb=memw (GP+#0x410)
3 :
3 R3=R27; nop; nop; nop: [
1-0000000212 (3 P: OIBODEAO ptrace “Vbootimgimem_console\BLASTK_puts_debug_buffer+0x40 0.105us 681.711lms ~
4 »

TRACE32 allows to mark a selected record as zero point within the trace. All other trace records are then
time referenced to this record.

i BuTrace List DEFault TIme.Zero EI
& setup... || 1% Goto... || #4Find... || Ad chart || B Profile | EEMIPS |4 More|[X Lesg
record run |address cycle |data symbol ti.back ti.zero |
35 7

] L R27=R0O; call Ox1I850A510; RO=memw(GP+#0x408); memw(FP+#-0x4)=R27;
3 - R2=memw_locked(RO);

» 4[]

memw_1locked(RO,PO)=LR;

3

3
-0000000244 |3 P:0180A520 Globa [\BLASTK_mutex_lock+0x10

3

3 1unpr LR
-0000000234 |3 }\me m_console\BLASTK puts_d } | LA Set Ref

40 g{//////////{//////////////////{p///////////////////////////////////// L Z
O=memub Z=memw (GP+#0x8 Toggle Baokmark

-0000000228 |3 P: U].BU[;2?C ptrace b boot'lmg\mem_conso]e\BLASTK_puts_debug_bu'F'Fer+0x].C ? e

3 | PO=cmp.eq(RO,#0x0); R5=R27; R4=R27; RE—memw(GP+%0x410); | g3 set CTS

3 _

3 R3=R27; nop; nop; nop; 4
0000000212]3 P:0180D2A0 ptrace “\bootimg'mem_console\BLASTK puts_debug_buffer+0x40 %

‘

| 4 First in Statistic
] ¥ Last in Statistic
| 4 Full Statistic

here L3

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 76

ETM Packets

Trace.List TP DEFault /CORE 0 ; Add the trace packet information
; to the default trace display

B::Trace.List TPC DEFault = & ==
[W Setup.. ” I} Goto... ” #3 Find... ” el Chart]L ProFIe] M MIPS ”v More”A Les&i
record tpc |run |address cycle |data symbol ti.back i
3 © jump Ox180B2R0; -
-0000000272 (AC 3 [P:0180B2B0 [:-"r ace ‘Yhootimg\Global\BLASTK _handle_trap0 0.105us =
3 HE=SSHS 0 0 B L e e !
3 | R8=ELR; =
5 R10=5GP; -
3 | PO=bitsclr(R9,#0x3F); if(PO.new) jump:nt O0x180B470; R7=memw(R10+#0x0); R1l=memw(GP+
3 [jump Ox180B334;
3 rte;
-0000000270 B3 3 [P:0180CE98 ptrace ““\bootimg'errormsg'doangel+0x38 <0.005us
3 SSR=R24;
-0000000264 (AC 3 P:0180CEIC ptrace \\boot'lm \errormsg\doange'|+0x3c 0.035us |
3 | SP=add(5P,#0x10); jumpr LR; Rz : 26=memd (SP+#0x8); R25:24=memd (SP+#0x0); L&
-0000000262 (38 3 P:0180CF44 ptrace ‘Yhootimgherrormsg'printhexint+0x64 =0. 005us -

; Display trace control and the lowest 8 trace port pins with timestamp
Trace.List $Timing TCTL TPO TPl TP2 TP3 TP4 TP5 TP6 TP7 TIme.Back

¥ B:Trace.List %Timing TCTL TPO TP1 TP2 TP3 TP4 TP5 TP6 TP7 TIme.Back = = =

[W Setup...” i} Goto... “ #1 Find... ” | Chart]L | Profile |L MIPS ”v More”A Lessi
record [t1 [p0 [pl p2 p3 [p4 p5 p' p7 [ti.back

-0000000274
-0000000273
-0000000272
-0000000271
-0000000270
-0000000269
-0000000268
-0000000267
-0000000266
-0000000265
-0000000264
-0000000263

-0000000262 —|

1 [»

»

] .| <0.005us

0.035us
i‘ <0.005us -

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 77

Formatting the Trace Display

The standard way to format the trace display is to use the More/Less buttons.

-0066952557 (0

gmutex_unlock(appl intra_mutex);

int main(int argc, char **argv)

679 [{
0 r allocframe(#0xD0);
0 |— memd (FP+"'—EIx8“ R27:26;
680 qube init
0 | call ElxlSL:FDU, memd (FP+#-0x10)=R25:24;

Bu:Trace.List EI@
(& setup...|| n, Goto... || #1Find... || Ad chart || B Profile || BB MPS | # more| X Leﬁl
record run |address cycle |data symbol ti.back
P:0180E0CO ptrac Hb_oot'lmg mainimain

-

1

Pushing one time the More button

Pushing one time the More button will add the so-called dummy records to the trace display. Dummy

records don’t provide information with regards to the program execution. They are just empty in most cases.

BuTrace.List

[E=N NCR/)

(& setup...|[13 Goto... ” #4 Find...

record run ad FESS

” fl Chart || Bl Profile |L MIPS |[4 more|[X Lesd

cyc'l e data symbo

ti.back i

—00669525?0
4

s

_\Rz JR26); 1T(PD.new) jump:t 0x1809530;
-0066952569
-0066952568
-0066952567
-0066952566
-0066952565
-0066952564
-0066952563
-0066952562
-0066952561
-0066952560
-0066952559
-0066952558
-0066952557 (0

P:0180E0CO ptrac
gmutex_unlock(app

e “bootimgimainimain
1_intr a_mutex):

int main(int argc, char **argv)
679 |{

J;

-

Trace.List DEFault List.NoDummy.OFF

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

78

Pushing for the first time the Less button

Pushing for the first time the Less button will remove the trace packet information (ptrace records) from the
trace display.

“,\
i ﬁ . H
mutex unloc ap - 'mtra mutex £

[eTracetis =
[W Setup...][L Goto...][#3 Find... [| Chart]L | Profile LM]PS][v More][A Les&i
record run |address cycle |data symbol ti.back i
3 C R13:12=memd(FP+#0x30); SP:26=memd(FP+#0x258) o~
3 | GP=R12; LR:50:n'en'd;FP+‘—fo20}; R9:8:n'en'd(FP+‘—r’0xlS}; =
3 | SSR=R9; =
3 ELR=R8;
3 rte; -
g dﬂqﬂo rr S

int main{int argc, char **argv)
679
allocframe(#0xD0);

memd (FP+#-0x8)=R27:26;

qube_init{J;

call 0x1812FD0; memd(FP+#-0x10)=R25:24; i

680

(=] [=T=To
— —r

Trace.List DEFault List.NoCycle

Pushing for the second time the Less button

Pushing for the second time the Less button will remove the assembly code from the trace display.

i) BuTrace.List EI@
(& setup...|[1% Goto... || #3Find... || P chart || Bl Profile || EEMIPS |[% More|[X Lesg
record run |address cycle |data symbol ti.back i

qmutex_un'lockk appl_intra_mutex);

Ay 4 [m s

int main(int argc, char **argv)
679 [{
680 qube_init(); 0.723us

4 [}

Trace.List List.H11Only List.TIme TIme.Back

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 79

Changing the DEFault Display

The command SETUP.ALIST allows to change the DEFault display of the trace information preset by

TRACE32.
Examples:

; Add the column TIme.Zero after the default display
SETUP.ALIST DEFault TIme.Zero

; Add time and address information for every instruction packet
SETUP.ALIST DEFault List.ADDRESS List.TIme

; Add ETM trace packet information before the default display

; See picture below
SETUP.ALIST TP DEFault

; Increase the width of the symbol column (60 characters)
SETUP.ALIST %LEN 60 DEFault

m_console

L=Memw

RO=memub
\\boot1mg\mem_conso]e\BLASTK_puts_debug_buffer+0xlc

&1 BuTracelList E@
(& setup...| 13 Goto... || #Find... || #d chart || B Frofile || HElMPS][v Mure][A Les

record [tp gun address cycle data symbol ti.back |

3 1unpr LR; ';

-0000000215 |E9
04%4Z%QZZQ%ZQ%%%2%Q%ZQ%ZQ%ZQ%%é%Z%Q%ZQ%ZQ%ZQ%ZQZZQZZQ%ZQ%ZQZZQZZV

<0.005us

0000000209 |aC 3 P: 0180D2?C pfr"ﬂ
3 PO=cmp. eq(RO,#0x0); R5=R27; R4=R27; R6=memw(GP+#0x410);
3 =
3 | R3=R27; nop; nop; nop; & |
-0000000193 |acC 3 P:0180D2A0 ptrace “\bootimgymem_console\BLASTK_ puts_debug_buffer+0x40 0.105us =
4 3
Training Hexagon ETM Tracing | 80

©1989-2024 Lauterbach

The Autolnit Option

While testing it might be helpful to clear the trace memory of the PowerTrace/ETB before a new test is
started. Instead of pushing manually the Init button in the Trace.state window, it is more convenient to

activate the Autolnit check box.

W B:Trace
METHOD
@ Analyzer CéAnalyzer © Onchip) ART (C) LOGGER
state used ACCESS
() DISable -
@ OFF 0.
) Arm SIZE CLOCK
() trigger 1073741824
() break
Mode Mode
commands @ Fifo BusTrace
*) Stack) ClockTrace
Init button —» *) Leash @ FlowTrace
©) STREAM
i FIPE Prestore
[¥] AutoArm RTS SLAVE
Autolnit check box == automit
[[] selfarm

[F=5 EoH 5

) SNOOPer) FDX O
Integrator ' Probe IProbe
TDelay

0
o -
THreshold

1.291.37
0 CLOCK
@ autofocus

[¥] TERMination

¥ AutoFocus
¥ ShowFocus

Trace.AutoInit ON

; The trace memory is

; automatically cleared before

; the program execution is started

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

81

Searching in the Trace

TRACE32 provides fast search algorithms to find a specific event in the trace quickly.
Push the Find... button

£ BuTrace.List [::].E.'&‘
(& setup...|[13 Goto... || #3Find... || P chart || I Profile || HEMIPS |[# More|[X Lesg

record |run |address lcycle |data |symbaol [t1.back Loy

-0058170955 |3 P:018102EQ ptrace “\bootimg\GlobaT \BLASTK _ext_traptab+0x1E0 <0.005us .

3 F R3=R7; jump 0x180D200; nop; memd(R7+#0xC8)=R25:24; E

-0058170939 P:0180D200 ' \bootimg\mem_console\BLASTK _writec .075us o

7
octrame (#0x 8 =

L=~ Tt}

7 —

:

memw (GP+#0x
8 //////////////{////////////// Obpert @qde OGowp OChanges Oup
3) Signal @ Down
3 F RZ2=memw_locked(RO);
3 — address [expression
3 | memw_locked(RO,PO)=LR : N
0058170931 [3 | | P:0180A520 pirace BLASTK writec B
3
3 LR;
-0058170921 3/ wnpr 1800218 ptrAe Pk F’ata
21 | -
i Ro=mgf (GP+#0x40C);
-0058170912 3 ’V P 0180!)2 ptrace
R2=memw (RF#0x0); [Find Next| [Find First] [Find Here] [Find AH] [Clear] [Cancel]
4

Use the Trace Find
dialog to specify
your event

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 82

Did yo

u know?

If no trace information is available for the hardware thread, you can get to a trace area with information as

follows:

1.

2
3.
4

Open the Trace Find dialog by pushing the Find button.
Select the Changes page.
Select either Up or Down as search direction.

Push Find Here to start the search.

Open the Trace Find dialog by pushing the Find button (1)

) Bu:Analyzer.List /CORE 4 [= =]rEz]

(& eup...][Goto...| #3Find... | &IChart][. Horg,][b4 ar)

r

riririrird

ecord |run |address data ti.back

7?7?77

Changes page (2)

$1 Trace Find [r=lE =] =
‘ ©) Expert) Cycle) Group @ Changes) Up _r|
*) Signal ©) DOWIN el—
... - SeIeCt Up or
Search for changes in addresses DOWH as Search

direction (3)

[Find Next [Find First Find Al

(4)

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

83

Belated Trace Analysis

There are several ways for a belated trace analysis:
1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACES32 Instruction Set Simulator and analyze it there.

3. Export the ETMv3 byte stream to postprocess it with an external tool.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 84

ASCII File

Saving part of the trace contents to an ASCI! file requires the following steps:

1. Choose File menu > Print, and then specify the file name and the output format.
" A TRACER
Edit View Var Break
¥ Run Batchfile...
[Edit Batchfile...
% Open...
E Load...
Type...
1] Dump... _ 4 Bu:PRinTer =] B[]
@ Stop Command Type
- - © Printer (Wi (windows Default) -]
X et 10 Hardeopy © CipBoard |ASCIIE (ASCI ENHANCED) -
[File Type |
@ File [ASCIE (ASCH ENHANCED) -
I:\EVB\QDSP\QDSP6000\SURFBS00\m | browse...
PRinTer.FileType ASCIIE ; Specify output format
; here (ASCII enhanced)
PRinTer.FILE testrunl.lst ; Specify the file name
2

It only makes sense to save a part of the trace contents into an ASClI-file. Use the record
numbers to specify the trace part you are interested in.

TRACER32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

; Save the trace record range (-8976.)--(-2418.)
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)

into the

3. Use an ASCII editor to display the result.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 85

TRACE32 Instruction Set Simulator

The following command allows you to save the trace information to a file:
I Trace.SAVE <file>

Analyzing the trace contents within a TRACE32 simulator requires the following three steps:

1. Save the contents of the trace memory to a file.

Trace.SAVE testrunl ; The following information
; 1s saved to file:

; - Raw data

; — Merged source code

; - Timing information

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 86

2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).

E-1 Configuration Tree
: 1 Settings
31 Example Configuration
E-F Simulators

/A

Hexagon

Delete
Start

Clear Subitems Down

Up

Saveto file... Instances...
Load from file and add...
Information...
Load from file and replace...
Copy Save and Exit
Paste and add Save

Paste and replace

Reset L4

Help

Show Start Environment ...
Create Config Files I::?
Create Start Link ...

Select Item by ID ...

EoD 5 @EFRELDRvE

1D: //Configuration3/Sim

Start Environment Viewer - Simulators/Hexago

Batch Job
c: -
cd C:\T32ARM E

C:\T32ARM\t32mgdsp6.exe -c C:\T32ARM\andT32_1000015.t32

i ¢ ;

T32 Configuration File C:AT328RMAandT32_1000015.632

;This configuration file is generated with T325tart2 -

sEnvironment Variables
05=

ID=T32_ 1000015
TMP=C:\T32ARM
5Y5=C:\T32ARM
HELP=C:\T32AEM

; Standard License File used

;T32 API Rccess
; not used

;T32 Intercom

; not used

sConnection to Host
EBI=5IM

;5creen Settings:

SCREEN=

FONT=5MALL

HEADER=TRACE32 Hexagon [SIM @]

;Printer Settings:
PRINTER=WINDCWS

Edit History Settings... | Save BatchJobAs.. | Save Config As... Cloze

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 87

3. Select your target CPU within the simulator.

Misc Trace Perf Cov 1\

Register Set Ch 4
| g2 e @ BSYStem (= o5
8 CPU Registers MemAccess — — Option ———
FPU Registers @ CPu [T masKasM

o PEplIels) Denied [IMASKHLL
| cpumccess —| L
)L System Settings... ~) Enable
A @ Denied

7 Nonstop

In Target Reset
Reset CPURegistes | || [rEsetout | | ———

4. Load the trace file.

Trace.LOAD testrunl

Trace.List ; Display a trace listing

i) BuTrace.List EI@
(& setup...|[X Goto... || #3Find... || P chart || H Profile || EEMIPS |[# More|[X Lesg
record run address cycle |data symbol ti.back i
-0000000236 P:0180CEBO ptrace 0.075us -~
allocframe(#0x8); =
3 [R27=R0; call ElxlSEIDESU, memw (FP+#-0x4)=R27; =
3 r allocframe(#0x8);
3 [RE. RO; call ElxlSG—\SlEI RO=memw(GP+#0x408); memw(FP+#-0x4)=R27; =
3 - R2=memw_locked(RO);
)
3 | memw_locked(RO,P0)=
-0000000228 (3 P: 0180A520 ptr ace 0.035us
5
3 | jumpr LR;
-0000000218 (3 P 0180D2?4 0.035us
3 O=memub (R27 R2=memw(GP+#0x80); :
-0000000212 (3 P:0180D27C ace 0.035us LS 1
3 | PO=cmp.eq(RO,#0x0); R5=R27; R4=R27; R6=memw(GP+#0x410); -
TT— :
4

LOAD indicates that the source for the trace information is the loaded file.

5. Load symbol and debug information if you need it.

Data.LOAD.El1f blast/bootimg.pbn /NoCODE

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACES32 debugger.

Please be aware that analyzing the trace in the TRACES32 Instruction Set
Simulator will require a more complex setup if the MMU is used.
(no example for testing available)

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 88

Export the Trace Information as ETMv3 Byte Stream

TRACE32 allows to save the ETMv3 byte stream into a file for further analysis by an external tool.

Trace.EXPORT testrunl.ad /ByteStream

; Export only a part of the trace contents
Trace.EXPORT testrun2.ad (-3456800.)--(-2389.) /ByteStream

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 89

Function Run-Times Analysis

All commands for the function run-time analysis introduced in this chapter use the contents of the trace
repository as base for their analysis.

For the function run-time analysis it is helpful to differentiate between three types of application software:

1. Software without operating system (abbreviation: no OS)
2. Software with an operating system without dynamic memory management (abbreviation: OS).
3. Software with an operating system that uses dynamic memory management to handle

processes/tasks (abbreviation: OS+MMU). If an OS+MMU is used, several processes/tasks run
at the same virtual addresses.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 90

Flat vs. Nesting Analysis

Basic Knowledge about the Flat Analysis

The flat analysis bases on the symbolic instruction addresses of the trace entries. The time spent by an
instruction packet is assigned to the corresponding function.

] [BrTrace List /CORE 3 /Track] o= ==
[setup...| N Goto... || #) Find... ||~ Chart][_ M Frofile || B MPS (% More|(X Lesg
record run [address cycle |data symbol t1.back |

T Ox 1504510 RO=memw (GP+#0x408); memw(FP+#-0x4)=R27 =
ked(RO)

ba | \BLASTK_mutex_ lock+0x10

Jumpr LR; -
4 13
M B:Trace.Chart.s¥Ymbol /CORE 3 /Track |?||EH?|
[W Setup...]@(;roups...][II Conﬁg...][I} Goto...][#3Find...][4 In][N Out][KN FuII]
-0.767391500s -0.767391000s -0.767390500s -0.767390000s
address 4 | .] L 1
BLASTK_mutex_unTock 4))))] []]]]]] [])]))) LA
BLASTK_handle_trapOky HEER| . mu
BLASTK_event_vectorshy B |] . . .] o | b
BLASTK_trap_angel i L |] . . . | . L] . .
LBLASTK mutex_Tlocki¥ . . - . . | | . i . | . . I . || B
o«] » 4 ’
£ | B:Trace STATistic.s¥mbol /CORE 3 [a[@][=]
(& Setup...]@Groups.‘. (=2 config...| R¥ Goto... ||| Detailed|[=|TREE || v Chart]L M Profile || ® mit |
items: 128. total: 1.491s samples: 106595683,
address [total min max avr count ratio¥ [1% 2% 5% 10 4
BLASTK mutex Tock][141.060ms 0.078us 15.921us 0.103us 1363472, 9.458% -
write 2.972us 0.014us 2.090us 0.424us e <0.001% |+
fflush 7.024us 0.035us 3.325us 1.003us e <0.001% |+
_Unlockfilelock | 10.680us 0.033us 0.553us 0.077us 138. <0.001% |+
sys_Mtxunlock 2.408us 0.005us 0.027us 0.017us 140. <0.001% |+
blast_rmutex_unlock | 14.024us 0.035us 0.150us 0.100us 140. <0. 001% |+ -
4 1 3
min max

| main + main + main

funci funci func1 funci funct

A func2 func3 A A func3 A

Entry of func1 Entry of func1
Exit of func1 Exit of func1
min shortest time continuously in the address range of a function/symbol
range
max longest time continuously in the address range of a function/symbol
range

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

91

Basic Knowledge about the Nesting Analysis

BuTrace.List /CORED /Track =] = |
(& setup...|[1% Goto... || #3Find... || P chart || Bl Profile || Bl MIPS |[% More|[X Lesg
record run aa_ddr]“l]ess cycle |data symbol ti.back |
eallocframe;

blast_writec+0x0C

4 [m|»

Jumpr LR;

| B:Trace.STAT func /CORE D

(& setup...| iii Groups... | % Config...| [Goto... |[=|Detailed||] Nesting || = chart || @ mit |
funcs: 120. total: B.707s intr: 5.826us 128 problems 13 workaround
range total min max avr count intern® [1% 2% i
86.438us 0.478us 1.968us 0.588us 147. <0.001% [+ -
STK_continuation_sysca 3.600us 0.070us 1.950us 0.240us 15. <0.001% |+
BLASTK_dummy_thread_hook 0.175us 0.035us 0.070us 0.044us 4. =0. 001% |+
ext_thread_context_alloc | 26.135us 3.620us | 10.245us 6.534us 4. <0.001% |«
BLASTK_ext_thread_id 0.035us 0.035us 0.035us 0.035us 1. <0. 001% |+
BLASTK_futex_resume | 11.758us 0.408us 9.363us 2.351us 5 <0.001% |+ -
4 1 3
% B:Trace.Chart.Func /CORE 0 /track
(& setup... IiiGroups... (== config...|[¥ Goto... || #3 Find... || 4» In |[»4 Out|[M Full]
s 604.000us 604.500us
range 4 | |
sys_writecregdy HE—E] IIE—a.))) -
BLASTK _writechy| . . . H——E. S m—
BLASTK_mutex_unlockiy| _ _ [_ _ -
T L] L

For the function run-time analysis with nesting, the TRACE32 software scans the trace contents in order to
find:

1. Function entries
The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications of function entries are implemented depending on the processor
architecture and the compiler used.

2. Function exits
A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications of function exits are implemented depending on the processor
architecture and the compiler used.

3. Entries to interrupt service routines (asynchronous)

Interrupts are identified as follows:

- An entry to the vector table is detected and the vector address indicates an
asynchronous/hardware interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a RETURN is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembler interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

4, Exits of interrupt service routines

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 92

5. Entries to TRAP handlers (synchronous)

6. Exits of TRAP handlers

Based on the results a complete call tree is constructed.

[l nesting || = chart |

£| B:Trace.STATistic. TREE

[setup...|[iii Groups... || 38 Config...][13 Goto... |[E] Detailed
funcs: 2296. total: 872.675us int
range tree
main = main -
qube_init | = qube_init
gthread_root_setup -l gthread_root_setup
s¥s_wr'itecreg . sys_writecreg
BLASTK_handle_trap0 - —#BLASTK_handle_trap0
blast_writec | = blast_writec
BLASTK_handle_trap0 [—= —#BLASTK _handle_trap0
gtimer_init = gtimer_init
strncpy t strncpy
BLASTK writec =] BLASTK_writec
BLASTK_mutex_lock = BLASTK_mutex_lock
BLASTK_mutex_unlock = BLASTK_mutex_unlock
s¥s_wr'itecreg —E= sys_writecreg
BLASTK_handle_trap0 — - —#BLASTK_handle_trap0
blast_writec = blast_writec
BLASTK_handle_trap0 = —#BLASTK_handle_trap0
BLASTK_writec = BLASTK_writec
BLASTK_mutex_lock = BLASTK_mutex_lock
BLASTK_mutex_unlock = BLASTK_mutex_unlock -
4 (1 [

| main main main
funci funci func1 func1 func
A func2 func3] A A func3 A
B max > B min -
Entry of func1 Entry of func1
Exit of func1 Exit of func1

min shortest time within the function including all subfunctions and traps
max longest time within the function including all subfunctions and traps

Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much
more sensitive then the flat analysis. Missing or tricky function exits for example result in a worthless nesting
analysis.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 93

Flat Analysis

Flat function run-time analysis is easy to use and error-tolerant. It provides analysis results at different levels:

. Overview on the dynamic program behavior
. Timing diagrams of function execution order (function timing diagram)
J Details on the execution of single instructions (hot-spot analysis)

Dynamic Program Behavior (no OS and OS)

Push the Profile button to get information on the dynamic behavior of the program.

£ BuTrace List EI@
(& setup...|[1Y Goto... || #iFind... ||] Chart ! H Profile | BwPs |[# Mare|[X Lesd
record run |address cycle ta symbol ti.back i
3 © jump Ox180B2R0; -
-0163390587 |0 [g P](]J1812C90 ptrace “M\bootimggthread\gthread_root_setup+0x30 1.310us [=
0 eal locframe;
0 ’V jumpr LR; =
-0163390585 |0 P:0180E0DOD ptr “Ybootimgimainmairm0x10 <0.005us =
679 |...
681 gtimer_init(
0 r call 0x18137E0; menmmw \FPT—'—zeG —:.P
-0163390571 |3 P:0180B2B0 ptrace “\bootimg'Global\BLASTK_handle_trap0 4.185us
3 R9=55R;
3 [R8=ELR: -
J X }
M B:Trace PROfileChart.s¥mbol e &=
(& setup...|[i Groups.;][ll Config...|[¥ Goto... || #} Findl]l 41 |[pe OUEJLKN Full [$m |[X Dut]g
10.000us [l (other):0 [(other):1 [(other):2 [(other):3
-1.471500000s
ratio | 1
200. 0 SRR : ;
200.0
0 O S o
Trace.PROfileChart.sYmbol [/SplitCORE] Graphic display of dynamic program behavior
. Analysis independently for each hardware
thread
. Individual results for all hardware threads
are displayed
] The number after “:” represents the hard-
ware thread
. Default option

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 94

Trace.PROfileChart.sYmbol /MergeCORE

Graphic display of dynamic program behavior
Analysis independently for each hardware

thread

Results are summarized and displayed as

a single result

| B:Trace.PROfileChart.sYmbol /MergeCORE

(=[O el

(& setup...|[i Group_“

Coan J[fY Goto... | 3‘3 Find... |[4» In |[»4 Out|[M Ful

& ” Dut” FuII” Fine |E

10.000us [l (other)
-1.471500000s

I BLASTK _mutex_unlock [BLASTK_hand'Ie _trap0

-1.471000000
|

ratio 1

o4 [m) »

4 [m

Trace.PROfileChart.sYmbol /CORE <n>

Graphic display of dynamic program behavior
J Analysis for specified hardware thread

B B::Trace.PROfileChart.sYmbol /CORE 3

(o[sl

(& setup...|[iid Group_][

Coan J[fY Goto... | 3‘3 Find... | 4» In |[»4 Out][MM Full

£][Dut][Full][Fine]E

10.000us [l (other)
-1. 4?15000005

ratio

BLASTK_mutex_unlock [l BLASTK_hand'Ie _trap0

-1.471000000

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

95

More Details

To draw the Trace.PROfileChart.sYmbol graphic, TRACES32 PowerView partitions the recorded instruction
flow into time intervals. The default interval size is 10.us.

For each time interval rectangles are drawn that represent the time ratio the executed functions/symbol
ranges consumed within the time interval. For the final display this basic graph is smoothed.

!B::Trace.PROfiIeChart.stbolJ’Steps!Track = || =@ | 22 | | &4 B:Trace PROfileSTATistic.s¥Ymbol /Track ===

& setup... || il Groups... || 2% Config..] I} Goto...][}ijd_][01r1][NOut] NFu [WSetup...]miGroups...][Config..][nGoto][41 Find...]EE

10.000us [l (other) 0 W (other):1 [(other) items: 432. t
-494. 880ms —494 S?Sms

ratio | | i address [494. 890ms

- BLASTK _futex_wait:+ | 10.000us [10.000us

= 1 BLASTK_futex_wait:1 | 10.000us | 10.000us

600.0 - eschedule_from_wait:? | 10.000us | 10.000us

1 BLASTK_futex_wait:0 | 10.000us | 10.000us

- BLASTK_wait_forever:5 | 10.000us | 10.000us

550.0 bug_buffer:2| 4.026us 8.473us

7" doange] : - 1.99%us 0.218us

- SLASTK_mutex_'Iock:'i 1.154us 0.230us

SLASTK_hand'Ie _trap0:2 | 0.740us 0.138us

rrormsgprinthexint : 2 0.687us 0.000us

SLASTK_mutex_un'I ock: - 0.682us 0.042us

rmsg \BLASTK_error : 2 0.145us 0.770us

BLASTK puts_debug_ buffer:3 SLASTK_event vectors: 3 | 0.187us 0.018us

E!LASTK_trap ange] : - 0.165us 0.02%us

pF"I ntstr :3 0.105us 0.082us

3 5 0.000us 0.000us

| BLASTK_handle_ nm 0.105us 0. 000us

2 0.000us 0.000us

SLASTK_hand'Ie error:':' 0.012us 0.000us

1 BLASTK_futex_wait: - 0. 000us 0.000us

1 E!LASTK_wa'lt forever :(0. 000us 0.000us

i ThreadMain2 : - 0. 000us 0.000us

BLASTK wait_- forever 1| 0.000us 0.000us

) er):] 0.000us 0.000us

BLASTK_wait_f 0.000us 0. 000us

0 0.000us 0.000us

BLASTK futex wait:0 1 SLASTK_hand'Ie trap[}:-'_ 0.000us 0. 000us

= — 2 fwrite: 2 0. 000us 0.000us

goto wait:0| 0.000us 0.000us

_Printf:- 0.000us 0.000us

_forever:4 | 0.000us 0.000us

2 fwrite: 0. 000us 0.000us

qube doangel:0 | 0.000us 0.000us

it next_interrupt:1 0.000us 0.000us

BLASTK futex_wait:4 g: BLASTK_writec:® | 0.000us| 0.000us

BLASTK_mutex_lock:0 | 0.000us 0.000us

i e al'malloc:C 0. 000us 0.000us

_Mbtowcx: 2 | 0.000us 0. 000us

E!LASTK_htSr$adhsw;1tch : 0. 000us 0.000us

q SLASTK_SC edule_highest:C 0.000us 0.000us

BLASTK_futex_wait:1 do_printf:0 | 0.000us 0.000us

2 E!LASTK_wr'ltec:-'_ 0.000us 0.000us

qthread create:0| 0.000us 0.000us

obal'_Printf:0 0.000us 0.000us

_________________________________ - BLASTK_goto_wait | 0.000us | 0.000us

m] v <] [b

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 96

M B:Trace PROfileChart.s¥mbol |l <
& setup... || fil Groups... |28 Conﬁg...]&Goto... [ES Findl][41 |[pe Duﬂ[KH Full[# in |[X out|[F rull]_Fine [[Coarse]

10.000us [l (other):0 [(other):1 [(other):2 | (other):3 [(other):4
-1.272000000s -1.271500000s
ratio | |
600.04

» o4 (] »

500.0]

400.01

300.07

200.0)

100.07] o=

Fine Decrease the time interval size by the factor 10

Coarse Increase the time interval size by the factor 10

The time interval size can also be set manually.

Trace.PROfileChart.sYmbol /InterVal 5.ms ; Change the time
; segment size to 5.ms

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 97

Color Assignment - Basics
J The tooltip at the cursor position shows the function color assignment (item) and the used
interval size.

B B::Trace.PROfileChart.sYmbol

(=[O el

& setup... || i Groups...

== Config..]LGoto J[# Find...][4» 1n |[p4 out/[MM Full] $ 1 || X Out]L

10.000us [l (other) I (other):1 | (other):2 [(other):3

-1.000s -500.000ms

ratio | I

600.0

500.0

200.0

100.0

400.0 | C-T:-821.428ms

C-Z: 2.225ks
scale: 100.000ms

interval: 10.000us

300.0 | item: BLASTK puts_debug_buffer3 |

» 4@>|_

e ml» < b
. Use the control handle on the right upper corner of the Trace.PROfileChart.sYmbol window to
get a color legend.
[M| B:Trace.PROfileChart.s¥mbol (=@]=]
[W Setup...]@(;roups‘..][II Conﬁg...][1 Goto...][$1 Find...][4 In][N Out][KN Full][$h][b [}ut][=3 Full][Fine][Coarse
C-T: -0091128409 -821.428ms | C-Z: +2.225ks scale: 100.000ms
Cother):0 (other):1 (other):2
(other):3 (other) :4 (other):5
BLASTK_mutex_unlock:3 BLASTK_handle_trap0:3 blast_writec:3
10.000us [l sys_write:3 B main:0 qube_init:0
) -1.000s -500.000ms 0.000us o) Control
ratio | | |
500.0 ; <_h(:ll'ldle
400.0 &
300.0 F
200.0
100.0
0.0 b
lia [m] v 4 3

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

98

Function Color Assighment - Statically or Dynamically

M B:Trace PROfileChart.s¥mbol ===
| & setup... || 1 Groups... [== Conﬂg...] 1} Goto...][i Findl][4 In][N Duﬂ[KH Full][4.0]LX Dut][= Full][Fine][Coarse]_ |
10.000us [l (other):0 [(other):1 [(other):2 | (other):3 [(other):4
i -1.000s -500.000ms 0.000us
t
0 : L1 22 Chart Config =8 (=R
Sor-t Sor-t CDLDR
@ OFF [Tl windows @ FixedColors
500.0 _) i i
() Nesting) Atematinglors
) GROUP
400.0 _
) Address
©) s¥mbol
300.0 () InternalRatio
() TotalRatio
200.0 () Ratio
©) Count
) TotalMAX
100.0 -
() RatioMAX
oo B
[l Al windows
FixedColors Colors are assigned fixed to functions (default).

Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong impression of
the dynamic behavior.

AlternatingColors Colors are assigned by the recording order of the functions, again and
again for each measurement.

Trace.PROfileChart.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program
J Graphical display

Trace.PROfileSTATistic.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program

J Numerical display for export

as comma-separated values

Trace.STATistic. COLOR FixedColors | AlternatingColors Color assignment method

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 99

Function Timing Diagram (no OS or OS)

Push the Chart button to get a function timing diagram for the captured instruction flow.

i BuTrace.List EI
(& setup...|[13 Goto... || #3Find... | v chart | B Profile || B MIPS |[# More|[X Lesg
record run address cycle |data symbo ti.back i
g} jump Ox180BZED; o
-0163390587 |0 [P:01812C90 ¢ “M\bootimggthread\gthread_root_setup+0x30 1.310us [z
0 r deallocframe .
0 | jumpr LR;
-0163390585 |0 P:0180E0DOD ¢ “Ybootimgimainmairm0x10 <0.005us =
679 |...
681 gtimer_init(
0 - call Ox181 mw (FP+#-0x20) -—:.P
-0163390571 |3 [P:0180B2B0 | “\bootimg'Global\BLASTK_handle_trap0 4.185us
3 R9=55R;
f [R8=ELR: -
4 }
¥4 B:Trace.Chart.sYmbol EI@

|W Setup...

EGroups... |l== config...|| ¥ Goto... || &4 Find...

[4» 10][»4 Out|[m Full]

-1.272074000= -1.272073000s=

addressy| |

BLASTK_handTe_trap0
blast_writec
sys_write
sys_writecreg
BLASTK event_wvectors
BLASTK_trap_ange]l
gtimer_init
strncpg

BLASTK ext_traptal

-1.272072000s
| |

¥ |
L
o
4M n
4M]

]

Trace.Chart.sYmbol [/SplitCORE]

Graphic display of function timing

. Analysis independently for each hardware
thread

J Individual results for all hardware threads
are displayed

J The number after “:” represents the
hardware thread

] Default option

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

100

Trace.PROfileChart.sYmbol /MergeCORE Graphic display of function timing

] Analysis independently for each hardware
thread
J Results are summarized and displayed as

a single result

¥y B:Trace.Chart.s¥mbol /MergeCORE EI@

[setup...|| iii Groups... (38 Config...|[13 Goto... || #3Find... |[4» In |[»4 Out)[M Full]
-1.272074000s= -1.272073000s= -1.272072000s

address i

BLASTK mutex_unlockiy

BLASTK _handle_trap0&| = = | S

blast_writecwy 0.
sys_writeds| 1

mai n </ I
qube_inmitey
gthread_root_setupiy|
sys_writecregil B
BLASTK_event_vectorsdy I
i »

Graphic display of function timing

Trace.PROfileChart.sYmbol /CORE <n>
. Analysis for specified hardware thread

fu] BiiTrace.Chart.sYmbol /CORE 3 =] ==

(& setup... || i Groups... (88 Config...|[¥ Goto... || 3 Find... || 4» In |[»4 Out|[M Full]
-1.272074000s= -1.272073000s= -1.272072000s
address | 1 I L I

Ak
BLASTK_mutex_unlockis
BLASTK _handle_trapOidl |

blast_writeciy| 1.
sys_writedy) 1
sys_writecregil . B
BLASTK event_vectors@y .
BLASTK_trap_angel INEEG_—
BLASTK ext_traptaby) A

BLASTK writecqy
< [mlr « 3

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 101

Did you know?

(here BLASTK_futex_wait).

£ BTrace List /CORE D |-]
(& setup...|[13 Goto... |[#3Find... | Mchar‘t [B Profile || HE M]PS |[# more)[X Lesd
record run |address cycle |data ti.back i
= 7; jump Ox180C140; nop; (R7 "OxMS =RZ25:24 o~
-0141151660) E \\boot'mg\G'Ioba'I\BLASTK_Futex wait 0.035us (g
1 v); RE8=memw(GP+#0x394); .
R20=memw. il
memw_locked (R TR LR e b R e
-0141151651 P:0180C15C prrace “Ybootimg'Global\BLASTK futex_wait+0x1C 0.035us
nop; nop;
-0141151642 P:0180C180 ptrace ‘YWhootimg'Global\BLASTK futex_wait+0x40 0.035us
Pl=cmp.gt(R23,R10); if(Pl.new) jump:nt Ox180C178; RB=memw(R9+#0x0); memw(R3+#0x8)=R
2722272772 -
J 4 I3

Did you know?

If the Window check box is selected in the Chart Config window, the functions that are active at the
selected point of time are visualized in the Trace.Chart.sYmbol window. This is helpful especially if you

scroll horizontally.

¥4 B:Trace.Chart.sYmbol /CORED.

(=[O el

J[4» 10 |[»4 Out][MM Full]

-1.271895000= -1.2718940

BLASTK event_vectorNa|l
BLASTK_handle_trapON/m|
BLASTK_ext_traptabi¥ _
BLASTK_mutex_locky|
sys_writely|
sys_writecreghy|
BLASTK_trap_ange | 4y
blast_writecky|

[W Setup... ”ijiGroups Kﬁ: Config... Goto... [#1 Find...
\5 2718960005 . .
addre¥s 4 I I I

_ InternalRatio
_ TotalRatio

_! Ratio

) Count

! TotalMAX

_! RatioMAX

[Tl Al windows

SR 22 Chart Config EI@ -
S Sort Sort
@ OFF [V]window _
_ Nesting \
- GROUP S_Switch Window
~) Address on
_ s¥mbol

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

102

Numerical Display

Some trace analysis commands that provide a graphical result have a numerical counterpart.

Trace.Chart.sYmbol Graphic display of function timing
Trace.STATistic.sYmbol Numerical display of function timing
Trace.STATistic.sYmbol [/SplitCORE] Numerical display of function timing
. Analysis independently for each hardware
thread
. Individual results for all hardware threads
are displayed
J The number after “:” represents the hard-
ware thread
. Default option
= | B:Trace STATistic.s¥mbol = | = |-
(& setup...[iii Groups... | 3% Config...| [Goto... |[=|Detailed|| £[Tree || fl chart |[Bl Profile |
items: 385. total: 1.272s samples: 90953773.
address |[total min max avr count ratio¥% [1% i
BLASTK_futex_wait 1.272s 66.091us 1.271s | 423.903ms 3: 99, 970% |me—
BLASTK_futex_wait 1.272s 0.145us 1.271s | 181.664ms 7. 99. 966% |m—
BLASTK_futex_wait T2 71s T2 71s T2 f1s T2271s 1 99, 939% |———
BLASTK_futex_wait 1.271s 17.286us 1.270s | 158.851ms 8. 99. 899%
BLASTK_wait_forever 1.261s 0.035us 1.261s 1.261s 0.(0/1) | 99.141% |———
BLASTK_puts_debug_buffer 616.567ms 0.000us | 366.095us 0.542us | 1136699, (0/1) | 48.469% |e————
doange] 209.780ms 0.02%us 0.425us 0.180us | 1162532. 16.491% |e—
BLASTK_mutex_lock 119. 979%ms 0.074us | 15.505us 0.103us | 1162751. 9.431% |e—
BLASTK_handle_trap0 85. 892ms 0.000us 3.078us 0.074us | 1162973 6.752% |e——
printhexint 80. 608ms 0. 000us 0. 502us 0.780us 103336. 6. 336K |m——
BLASTK_mutex_unlock 72.614ms 0.00%us 0.363us 0.062us | 1162743. 5.708% |me—
BLASTK_ error J 27.601ms 0.000us 4. 260us 1.068us 25835. 2.169% |m—
'H| 1 b

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 103

= | B:Trace STATistic.s¥mbol = | = |-
[W Setup...][iiiGroups... =2 confin [0 cotn IS 1 natailad [=17raa || Al chart || Bl profila |
items: 385. total: 1.272s samples: 90953773.
address |[total min max avr count ratio¥% J[1% i
BLASTK_fut e e RV v v R) B yeprpr e - e e -
BLASTK_futex_wait 1.272s 0.145us 1.271s | 181.664ms e 99. 966% |mm—
BLASTK_futex_wait T2 71s T2 71s T2 f1s T2271s 1 99. 939% |—
BLASTK_futex_wait 1=271s 17.286us 1.270s 158. 851ms 8. 99. 599% |—
BLASTK_wait_forever 1.261s 0.035us 1.261s 1.261s 0.(0/1) | 99.141%
BLASTK_puts_debug_buffer 616.567ms 0.000us | 366.095us 0.542us | 1136699, (0/1) | 48.469% |e————
doange] 209.780ms 0.02%us 0.425us 0.180us | 1162532. 16.491% |e—
BLASTK_mutex_lock 119.979ms 0.074us 15.505us 0.103us 1162751. 9. 431% |——
BLASTK_handle_trap0 85. 892ms 0.000us 3.078us 0.074us | 1162973 6.752% |e——
printhexint 80. 608ms 0. 000us 0. 502us 0.780us 103336. 6. 336K |m——
BLASTK_mutex_unlock 72.614ms 0.00%us 0.363us 0.062us 1162743, 5.708% |m——
BLASTK error J 27.601ms 0.000us 4.260us 1.068us 25835. 2.1659% |e—
4 | I F

For a description of the list summary and the highlighted columns, see tables below.

List Summary

item Number of recorded functions/symbol regions

total Time period recorded by the trace

samples Total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a function/symbol
region)

Columns with function details

address Function name
(other) program sections that can not be assigned to a function/symbol
region

total Time period in the function/symbol region during the recorded time
period

min Shortest time continuously in the address range of the function/symbol
region

max Longest time continuously in the address range of the function/symbol
region

avr Average time continuously in the address range of the function/symbol
region (calculated by total/count)

count Number of new entries into the address range of the function/symbol
region (start address executed)

ratio Ratio of time in the function/symbol region with regards to the total time
period recorded

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 104

Pushing the Config button provides the possibility to specify a different

sorting criterion or a different column layout

-

Trace.STATistic.sYmbol /MergeCORE

Trace.STATistic.sYmbol /CORE <n>

E| B:Trace STATistic.sY\fbol [=)=
(& setup...| 1ii Groups... | 3% Config...| [Goto... |[=|Detailed|| £[Tree || fl chart || B Profile |
items: 385. total: 1.272s samples: 90953773.
address tota'l min max avr count ratio¥
BELASTK_futex_walt 1.272s 66.091us 1.271s | 423.903ms 3. 99. 970%
BLASTK_futex_wait 12725 0.145us 17 181. 664ms 7 99. 966%
BLASTK_futex_wait 1.271s 1.271s 1.271s 1.271s 1 99.939%
BLASTK_FutEX_wa'it 15271 17.286us 1.270s 158. 851ms 8. 99. 899%
BLASTK_wait_forever 1.261s 0.035us
BLASTK_puts_debug_buffer 616.567ms 0.000us | =R Statistic Config |-
doange] 209.780ms 0.029us)
BLASTK_mutex_Tlock 119.97%ms 0.074us Sort available selected
BLASTK_handle_trap0 85.892ms 0.000us | | @ oFF NAME Total
0-000us_ CORE NN
BLASTK_mutex_unloc 72.614ms 0.009us | | ' Nesting TotalMI MAX
BLASTK_error 27.601ms 0.000us | | = group TotalMAX AVeR
BLASTK_event_vectors 19.215ms 0. 000us - ota erage
BLASTK_trap_angel 19.023ms 0.000us | | © Address RatioMIN Count
printstr 16. 385ms 0.000us | | = cvihol RatioMAX Ratio
10.930ms 10.930ms - BAR.LIN BAR.LOG
BELASTK_handle_nmi 2. 966ms 0.020us | | © InternalRatio CountRatio
722.058us | 722.058us - : CountBAR.LOG
BLASTK_handle_error 329. 604us 0.002us | | © TotalRatio CountBAR.LIN
BLASTK_futex_wait 279.341us | 10.261us | | @ Ratio i
BLASTK_wait_forever 233. 860us 0. 000us _ CountMIN
Threnga'i n2 204.657us 0.007us | | © Count CountMAX
BLASTK_wait_forever 182.178us 0.000us | | =~
143.348us | 143, 348us | | = 1OEMAX
135.050us | 135.050us | |) RatioMAX
BLASTK_handle_trap0 67.926us 0. 000us
furite 61. 803us 0. 000us
Ml [Al windows

Numerical display of function timing
Analysis independently for each hardware

thread

Results are summarized and displayed as
a single result

Numerical display of function timing

Analysis for specified hardware thread

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

105

Did you know?

TRACE32 flushes all trace information stuck in the ETM fifos when the recording to the trace repository is
stopped because the program execution stopped. These delayed exported trace packets can be identified

by no Time.Back value or by a large Time.Back value.

These delayed exported trace packets can falsify the run-time analysis. So it is recommended to exclude
them from the analysis. This is done by tagging the last not-delayed trace packet as “Last in Statistic™:

[W Setup..-][¥ Goto...]

#3Find... || A chart || Bl Profile || B MIPS (4 More|| X Lesd

-0000000195 P:0180C180 pfrq_e
PO=cmp. eq\RS +0x0,,
R7=memub (R3+#0x15)

R1:0= conb1ne\Ra R3,, 1unp 0x180C4B0; memw(R3+#0x0)=R8;
Toop0(0x180C55C,#0x6); R26=#-0x1; Rll=me
R2=ctO(R11); if(PO. ne., Jump :nt OXISOCGSO PO=cmp. eq(R11,#0x0)

if(PO. new) Jump:t 0x180CLAQ;
nenl\R9++0x0 =R3;

;’GP+*0x8A8], R9: 8= nend GP+

record run |address lcycle |data |symbo [t1.back =
rte; o~
-0000000221 |3 [P:0180CE98 ptrace ‘Y bootimg'errormsg'doangel+0x38 =0.005us =
3 SSR=R24; -
-0000000215 |3 P:0180CEIC ptrace \\boot1mg\errormsg\doange1+0x3c 0.035us
3 | sP=add(sP,#0x10); jumpr LR; R27:26=memd(SP+#0x8); R25:24=memd(5P+#0x0); B
-0000000213 |3 P:0180D068 verrormsg\BLASTK_error+0x108 T
181 race
call Dx1BOCEED; RO=memw(SP+#0x3); ¥ Set Ref

\\boot1mg\G]oba]\BLASTK_futex_wa1t+0x4 2+ Set Zero
if (!PO. new)R9=add(R

#E Toggle Bookmark
o] Set CTS

R13= @@ View

RlG:addas]{Rl3,Rl,#0x2}; RlS:conbine{REG.H,Rl.L}; R23:22=nend{GP+#0x List

if (1P1. new)
RO=RO; jump Ox1B0C1F8; R1=#0x0;
R1=#0x0; R3I=memw(GP+#0x39C);
memw (GP+#0x12C)=R1;

TID= Rl

5P=5G

Jump OXISOCOOO, memw (SP+#0x0)=R3;
RO=IMASK;

R2=55R;

R1.H=#0x1F8; R3I=#0x4;

R1.L=#0x0; R2=insert(R3,#0x3,#0x10);
RO=and(RO,R1);
R1=IAD;

RO=or (RO,R1);
IMASK=R0;

SSR=R2;

wait(R1);

P:0180C180 ptrace
PO=cmp. eq(R8,#0x0);
R7=memub (R3+#0x15);
R1:0=combine(R7,R3);
Toop0({0x180C55C, #0x6);

memw (GP+#0x8B4)=R23;

T

-0000000179
if(PO. new) jump:t Ox180C1AD;
memw (R9+#0x0)=R3;

if(!P1. new)

RO=RO; jump Ox1B0C1F8; R1=#0x0;

R1=#0x0; R3I=memw(GP+#0x39C);

memw (GP+#0x12C)=R1;

TID= Rl

5P=5G

Jump OXISOCOOO, memw (SP+#0x0)=R3

RO=IMASK;

R2=55R;

R1.H=#0x1F8; R3=#0x4;

R1.L=#0x0; R2=insert(R3,#0x3,#0x10);

RO=and(RO,R1);

R1=TAD;

RO=or (RO,R1);

IMASK=R0;

SSR=R2;

wait(R1);
P:0180C030 ptrace

2 jump 0x180C02C;

.a1t Rl,,

memw(GP+#0x8B4)=R23;

T r

-0000000164

rame (#0x1

jump:t Ox180C680; RZ23I=setbit(R23,R1); Pl=cmp.eq(RZ23,#0x0

‘YhootimgGlobal \BLASTK futex_wait+0x40
if (!PO. new)R9=add(R8,#0x0); if(!PO.new)

jump Ox1B80C4B0; memw(R3+#0x0)=RE;

R26=#-0x1; Rll=memw(GP+#0xB8A8); R9:8=memd(GP+#0x8A0);
RZ2=ctO(R11); if(P0.new) jump:nt Ox180CE50; PO=cmp.eq(R11,#0x0);
R16=addas1(R13,R1,#0x2); Rl8=combine(R26.H,R1.L); R23:22=memd(GP+#0x8B0); memb(RO+#0x15)
jump:t Ox180C680; RZ23I=setbit(R23,R1); Pl=cmp.eq(R23,#0x0); memw(R16+#0x0)=R1

‘Mbootimg'Global\BLASTK wait_forever+0x4

0000000152 //[trace img\errorm
70 [///{/ // //////;////////////////////////}////////&1 /}////////////////////////////////////// |—|

M Chart

Ignaore in Statistic

Use in Statistic
4 First in Statistic
E Lot |
¢ Full Statistic

here L4

R13=memw (GP+#0x8AC);

3

Trace.STATistic.LAST -213.

Specify the last record that
should be included into the
statistic analysis, the rest
will be ignored

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 106

Hot-spot Analysis (no OS or OS)

If a function seems to be very time consuming, details on the run-time of single instruction packets can be
displayed with the help of the ISTATistic command group.

£ | B:ISTATistic ListFunc [a=]l=]
& setup...|[[Goto... || Efust || + Add [T Load... [save.. | @it |
address tree coverage |count time clocks |
P :0180CEBD--0180CED7 [printstr 100.000% 426802, 17.073ms | 7683043, | .
P:0180CEEQ--0180CF5B [printhexint 100. 000% 142267, 81.576ms | 36709288,
P:0180CF60--0180D1AB [BLASTK_error 40.816% 35567. 3.803ms | 1711140
P:0180D1B0--0180D1FB] BLASTLE‘iebug_‘i nfo_msg 0.000% 0 0.000us
P:0180D200--0180D2F7 = mem_consolq
P:0180D200--0180D258 & BLASTK_wi BuList.Asm P:0:180CEED /ISTAT TCLOCKS] [E=m =
P:0180D260--0180D2F7 [BLASTK_|
P:0180D300- 01800333 | = blast_cont] | M Step |[W over | 4 next |[# Return][@ up]| b Go || IN areak [1] mode | Find:
P:0180D300--0180D303 @ BLASTK_e count tclocks tcpi addr /Tine d Tabel mnemonic comment |
P:0180D310--0180D313 [BLASTK_ e 426802. 426802. | 1.00 P:0180CEB4 |7 4] R27=R0; call 0x180D260; memw(FP+#-0x4)=R27;; =
P:0180D320--0180D333 [BLASTK_e 426799. 104. | 0.00 P:0180CECO (78 RO=#0x4; R1=R27; R2=#0x0; R27=memw(FP+#-0x4);
g PPrem—e——e—— 426801. 426800. | 1.00 P :0180CEDO jump Ox180CE60; deallocframe;
0. 0. = P:0180CED8 nop; nop;
142267. 142266. | 1.00 P :0180CEED | printhex.:allocframe(#0x18);
142267. 142267. | 1.00 p:0180CEE4 R26=R0; R 0x1C; RO=memw(GP+#0x3A4); memd(F
142267. 142264. | 1.00 P:0180CEF4 1 Ox180CEBO; R24 i (GP+#0x3A8); memd(FP+|=
142265. 34. | 0.00 P:0180CFO0 R25=#0x0; nop; nop; nop;
1138136, 1138129. | 1.00 P:0180CF10 [C R1=1sr(R26,R27); RO=SP; R27=add(R27,#-0x4); m
1138136. 1138135. | 1.00 P:0180CF20 Rl=and(R1,#0x0F);
1138136. 1138109. | 1.00 P:0180CF24 Rl=add(R1,R24);
1138136. 1138136. | 1.00 P:0180CF28 |9 Rl=memb (R1+#0x0);
1138136. 1138136. | 1.00 P:0180CF2C call 0x180D260; memb(SP+#0x0)=R1; -
« i B
Preparation

The run-time results on single instruction packets are more accurate if cycle-accurate tracing is used.

ETM.CycleAccurate ON ; Switch cycle accurate tracing on

Trace.CLOCK 600.MHz ; Inform TRACE32 about your core
; frequency

A high number of local FIFOFULLs might affect the result of the instruction statistic.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 107

Processing

The command group ISTATistic works with a database. The measurement includes the following steps:

1. Enable cycle-accurate tracing.
Specify the core clock frequency.
Clear the database.

Fill the trace repository.

Display the result.

N o g M 0 DN

(Repeat step 4-6 if required).

Main commands:

ETM.CycleAccurate ON
Trace.CLOCK <core_clock>
Trace.FLOWPROCESS

ISTATistic.RESet

ISTATistic.ADD [/MergeCORE]

ISTATistic.ADD /CORE <n>

ISTATistic.ListFunc

Data.List <address> /ISTAT TCLOCKS

Transfer the contents of the trace repository to the database.

Switch cycle-accurate tracing on.
Inform TRACE32 about your core frequency.

Upload the complete trace contents to the host and
merge it with the program code/debug information

Clear the Instruction Statistic database.

Transfer the trace information of all hardware threads
from the trace repository to the Instruction Statistic
database.

Default

Transfer the trace information of the specified hardware
thread from the trace repository to the Instruction
Statistic database.

List flat function run-time analysis based on the added
trace information.

List flat run-time analysis for the single instruction
packets.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 108

A detailed flat function run-time analysis for all hardware threads can be performed as follows:

ETM.CycleAccurate ON ; Switch cycle accurate tracing on
Trace.CLOCK 600.MHz ; Inform TRACE32 about your core
; frequency
ISTATistic.RESet ; Reset Instruction Statistic Data
; Base
Trace.Mode Leash ; Switch trace to Leash mode
Go ; Start program execution
WAIT !RUN() ; Wait until program stops
Trace.FlowProcess ; Process the trace information

IF Trace.FLOW.FIFOFULL>6000.
PRINT "Warning: Please control the FIFOFULLS"

ISTATistic.ADD ; Add trace information for all
; hardware threads to Instruction
; Statistic database

ISTATistic.ListFunc ; List flat function run-time
; statistic

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 109

= | B:ISTATistic.ListFunc = =& =

l)ﬁ e om0 i | G == [k 4 add =T nad I[€3 Save I £ it |

| address tree coverage |count time clocks ratio cpi ! i
P:01809140--01809173 0.000% 0. 0.000us 0. 0.000% - 1
P:01809180--018091D3 0.000% - 0.000us 0. 0.000% - | =
P:01809180--018091D3 0.000% 0. 0.000us 0. 0.000% -
P:018091E0--018092A8B 60.784% - 0.003us 1. 0.000% | 0.00
P:018091E0--01809233 76.190% 2. 0.000us <1. 0.000% | 0.01
P:01809240--01809263 0.000% 0. 0.000us 0. 0.000% -
P:01809270--0180928F 100. 000% 2. 0.000us <1. 0.000% | 0.00
P:01809290--018092A8B 100. 000% 210. 0.003us 1. 0.000% | 0.00
P:018092B0--01809377 _ 8.000% - 6.69%4us 3012. 1.876% | 5.86
P:018092B0--01809343 sys_Mtxinit 0.000% 0. 0.000us 0. 0.000% -
P:01809350--0180935F sys_Mtxdst 0.000% 0. 0.000us 0. 0.000% -
P:01809360--01809367 sys_Mtxlock 100. 000% 256. 3.293us 1482. 0.923% | 5.79
P:01809360--0180936F sys_mutex.c53 50.000% 256. 3.293us 1482. 0.923% | 5.79
P:01809360--0180936F sys_mutex.c 50.000% 256. 3.293us 1482. 0.923% | 5.79
P:01809370--01809377 ® sys_Mtxunlock 100. 000% 258. 3.400us 1530. 0.953% | 5.93| -

4 13

For a description of the highlighted columns, see table below.

Columns Description

address Address range of the module, function or HLL line

tree Flat module/function/HLL line tree

coverage Code coverage of the module, function or HLL line

count Number of module/function/HLL line executions

time Total time spent by the module, function or HLL line

clocks Total number of clocks spent by the module, function or HLL line

ratio Percentage of the total measurement time spent in the module, function
or HLL line

cpi Average clocks per instruction packet for the function or the HLL line

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

110

List.Asm /ISTAT TCLOCKS

List instruction packet run-time

statistic

- Display time information per

thread

i£{ BuList.Asm P:0x180CEBO /ISTAT TCLOCKS o] @ =5

L Moo Lo I %f Return “ ¢ up][» Go][|| Break]Q Maode] Find:
count tclocks tcpi addr/line code Tabel /mnemonic comment =
= = —= P:0180CEBO [A09DCO01 pr'mtstr octrame(#0x8); -
355253. 355251. 1.00 P:0180CEBE4 |7060401E54004 R27=R0; call 0x180D260; memw(FP+#-0x4)=R27;
355249. 86. | 0.00 P:0180CECQ |78004080707 E— = RO=#0x4; R1=R27; R2=#0x0; R27=memw(FP+#-0x4
355253. 355252. | 1.00 P :0180CEDO |59FF7FC8901ECO.. jump Ox180CE60; deallocframe;

0. 0. = P:0180CEDS8 |7/F0040007F00CO.. ; mop;
118417. 118416. 1.00 P:0180CEEOQ |A09DCO printhexint: a'lﬁlocfran.e{.tﬂxlS};
118417. 118417. | 1.00 P:0180CEE4 |/ R26=R0; R27=#0x1C; RO=memw(GP+#0x3A4); memd—
118417. 118402. 1.00 P:0180CEF4 call Ox180CEBO; R24=memw(GP+#0x3A8); memd(F
118417. 28. | 0.00 P:0180CFQO0 |7 SOG Ol\J FOG i R25=#0x0; nop; nop; nop;
947330. 947322, 1.00 P:0180CF10 |Cb ‘RE 1707D40.. Rl:‘|sr‘{R26 R27); RO=SP; R27=add(R27 ,~—Ux4,-; 3
947330. 947329. | 1.00 P:0180CF20 |76 Rl:aﬂd{Rl,:‘?OxOF,';
947330. 947309. | 1.00 P:0180CF24 FSOlDSOl Rl=add(R1,R24);
947330. 947330. | 1.00 P:0180CF28 |9101C001 Rl=memb (R1+#0x0);
947330. 947330. 1.00 P:0180CF2C |5A00419Aa11DC1T.. call Ox180D260; memb(SP+#0x0)=R1;
947328. 231. 0.00 P:0180CF34 |750040805BFF7F.. RO=#0x4; call 0x180CE60; R1=5P; R2=#0x0;
947328. 289. 0.00 P:0180CF44 |757B7FEQOSCDFFS.. PO=cmp. gt (R27 ,#-0x1); if(P0.new) jump:t Ox1
118416. 28. 0.00 P:0180CFAC |97DE7FFA97DEFF.. R27 :26=memd (FP+#-0x8); R25:24=memd (FP+#-0x1
118416. 118416. 1.00 P:0180CF54 |901ECO1E deallocframe; -
4 m | 3

For a description of the highlighted columns, see below.

Columns Description

count Total number of instruction packet executions

tclocks Total number of thread clocks for the instruction packet
(tclocks = 1/6 clocks)

tepi Average thread clocks per instruction packet

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

111

Data.ListAsm /ISTAT COVerage ; List instruction packet coverage

= B:Data.ListAsm P:0x180C9C0 /ISTAT COVerage =3
| e ————————— Return][¢up [»Go]L Break]L;| Mode] Find:
exec nutexec cuverage dr/Tine |code |mnemonic omment =

= :0180C3C0 '33344uu E e BLASTk_t :PO=cmp. gtu(R3,#0x20); a oc?r‘aqe(0x20) ; =
7 0. |100. 000% P:0180C9C8 (70634016 A R27=R3; memd(FP+#-0x8)=R27:
7 0. |100. 000% P:0180C9D0 [F50445158 R25 :R24= CD1b1nE(R4 R5); 'IE1d(FF‘+~—Dx10) R25:R24;
7 0. |100. 000% P:0180C9D8 |A190C1 T +#0x4)=R1
7. 0. |100. 000% P:0180C9DC |919040214190C0.. emw (SP+# Dx4) memw (SP+#0x0)=R0;
0. 7. | 0.000% P:0180C9E4 |760140E05C0040.. RO=and(R1,#0x7); if(P0) jump Oxl1BOCBOC; memw(SP+#OxB)=R2;
o 7. | 0.000% P:0180C9F0 |759944005C00C8.. PO=cmp. gtu(R25 #0x20); if(PO.new) jump:ni O>xdBOCBIC;
0 7, 0. 000% P:0180C3F8 ?50040005(20(8.. PO0=cmp.eq(RO, H]xi]), 1F(IPD.new) jump:nt Ox1B0CBIC; -
7 0. |100. 000% 3 7 0D7.. R2=#0x0; RD=1'E1".';(EF‘+=DXZFC)_: T
7. 0. [100.000% P: R1=R0; jump Ox180CA20; R3=add(RO,#-0x16);
19. 0. |100. 000% &3 RZ= dd(R7 #0x1);

|0 S 0. 000% | P 02, F0x
26. 0. |100. 000% 3 R .
19. 6. [100.000% P: 40005CFFF8.. PO= cmp. eq (RO, 20x0) ; 1'F(|PD new) jump: t 0x180CAL4;
0. 6. | 0.000% P:0180CA3E ?5424?E05CUU48.. PO=cmp.gt(R2,#0x3F); if(P0.new) jump:nt Ux.‘l.B[[B‘_IC R0=mem
6. 0. |100. 000% P:0180CA44 |5A00C7DE ca 0x180D9F0;

4 1 | +

For a description of the highlighted columns, see below.

Columns Description

exec Conditional instructions: number of times the instruction packet was
executed because the condition was true.
Other instructions: number of times the instruction packet was executed

notexec Conditional instructions: number of times the instruction packet wasn’t
executed because the condition was false.

coverage Instruction packet coverage

If exec or/and notexec is 0 for an instruction packet with condition, the instruction packet is bold-printed
against a yellow background. All other instruction packets are bold-printed on a yellow background if they

were not executed.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 112

Nesting Analysis

Fundamentals

1. The nesting analysis analyses only HLL functions.
2. The nesting analysis expects common ways to enter/exit functions.

3. The result of the nesting analysis is sensitive with regards to FIFOFULLs.

No OS
Trace.Chart.Func Graphic display of nested function run-time
analysis
Trace.STATistic.Func Numerical display of nested function run-time
analysis

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

113

The TRACE32 software scans the trace contents in order to find:

. Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor

architecture and the used compiler.

Trace.Chart.Func /CORE 1

Trace.List /CORE 1 /Track

I

; BLASTK_continuation_syscall

Function

as example

] B:Trace.Chart.Func /CORE 1 [=&E]=]
[WSetup...]miGroups...][Config..][nGoto][#1 Find...][01!1][’4 Dut][KNFull]
-482.817ms -482.816ms -482.815ms -482.814ms
i ranQEEE ! e I — |
ead \gthread start@y [W& R
1 BLASTK_handWe intl o B @y
1 BLASTK_"""IE”UPtEd _waitmodefy . . M——— .
1 BLASTKTreschEdUWE _from waity 0 N
ti BLASTLmutex_1ockEE_, == |
BLASTK_SChedu]e new, froms]eeq s
I'BLASTK_continuation_syscallwy =
(root)m = %
<(ml vl
£ (B Trace List /CORE1 /Track] = ECR5
(& Setup...][1L Goto...][#3 Find...][¢l Chart | B Profile |[B MIPS][# More][X Lesq
record run |address lcycle |data |symbo [ti.back '
UGP=R1; -
RO=R1; jumpr R2; memw(SP+#0x0)=R1; B
-0052902519 P:0180B370 ptrace '\ bootimg\Global\BLASTK_continuation_syscall 0.035us _
FP=R0; R9=#0x0; R&=memw(GP+#0x388
-0052902507 P:0180B37C ptrace pootimg\Global\BLASTK_continuation_syscal |+0x0C 0.110us *

memw (R8+#0x0)=R9;
R13:12=memd (FP+#0x30);
R25:24=memd (FP+#0xC8);
RO=memw(FP+#0x90) ;
GP=R12;
SSR=R9;
ELR=R8;
rte;

SP:28=memd (FP+#0x28);
R27 : 26=memd (FP+#0xC0);

LR:30=memd (FP+#0x20); R9:8=memd(FP+#0x18);

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

114

Function exits
A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.

-

% B:Trace.Chart.Func /CORE 1

(= [==]

(& setup...| iii Groups... | 58

Config...|[% Goto... | #3Find...

J[4p 10 |[»4 Out][MM Full]

nge iy

-0.482065000=
|

-0.482064000=
|

-0.482063000=
|

BLASTK_cont'l nuati on_sysca 1
g | BLASTK_handle_trapOi¥

i-

| BLASTK_futex_wait |
1 BLASTK_futex_resumey
|\ BLASTK_schedule_newy|

I\blast_anysignal_setfp}———-———————————————————W—

< [m] » 4|:|'

i [BuTrace.List /CORE 1 /Track]

[W Setup...][% Goto... || #3Find... || A chart || Bl Profile || EEMIPS |[% More|[X Lesg

record run |address lcycle |data |symbaol

-0052789768 P:0180B37C ptrace " \bootimg\GTobal \BLASTK_continuation_syscal 1+0x0C
memw (R8+#0x0)=R9;

R13:12=memd (FP+#0x30); 5SP:28=memd(FP+#0x28);

R25:24=memd (FP+#0xC8); R27:26=memd(FP+#0xC0);

RO=memw(FP+#0x90) ;

GP=R12; LR:30=memd(FP+#0x20); R9:8=memd(FP+#0x18);

SSR=R9;

ELR=R8;

_set+0x3C

-0052789766

Bl o [m»[

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

115

Entries to interrupt service routines (asynchronous)

Interrupts are identified as follows:

- An entry to the vector table is detected and the vector address indicates an

asynchronous/hardware interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a RETURN is detected before the entry to this HLL function, TRACES32 assumes that there is an

assembler interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create

FENTRY/FEXIT).

Trace.Chart.Func /CORE 1

Trace.List /CORE 1 /Track

I

; as example

= B:Trace.Chart.Func /CORE 1

[E=0 Eol X

Config...|| T Goto... |[#3Find...

(& setup... || i Groups... | 22

Il 0 1r1][N out|[MM Full|

-0.482816000=

range<> |

-0.482815000=

BLASTK_1nterrupted waitmod

- BLASTK_mutex_]loc|
BLASTK_schedu1e new_fromsleg
BLASTK_continuation_: sysca1
(root

ut

Lockf11e oc|

=ad gthread_starti|
BLASTK_handle_int |

BLASTK_FESEhedu]e from_wait |

e sys_MtxTock o)
blast_rmutex_Tlock 4

=R
ki

I

)|

SHm

k [

« [m] v (Al

Function BLASTK_handle_int

&9 BuTrace List /CORE 1 /Track EII:EIZ
(& setup...[1Y Goto... || #3Find... [A chart |[Bl Profile || B MIPS |4 More] X Lesd
record run address cycle |data symbal |

[Jump OXlGOCOEC
wait(R1)
-0052902614 [P:0180B04C ptrace
1nterrupt
E jump Ox180B514;
| P:0180B514 ptrace
crsw ap LR, bGP;

LR+#0x0);

82; LR.H=#0x182;

memd (]

memd (RO+#0x20)=LR: 30;
R28=P3: 0; FP.L=#0x2F00; LR.L=#0x1180;

“\bootimg'Global\BLASTK event_vectors+0x4C

LR+#0x28)=R1:0;

menidl(R0+*0x28}:SP:28;

I

Exits of interrupt service routines

A RETURN / RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded

as exit of the interrupt service routine.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

116

. Entries to TRAP handlers (synchronous)

If an entry to the vector table is identified and if the vector address indicates a synchronous
interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

Trace.Chart.Func /CORE 0 ; Function BLASTK_ handle_trapO

; as example

Trace.List /CORE 0 /Track

% B:Trace.Chart Func /CORE 1 /Track (== =]

(& sSetup... || ii Groups... (38 Config...|[13 Goto... || #3Find... || 4» In |[»4 Out|[M Full]

480000s -1.2739470000s
range < |

-2 gthread_start iy

(root) Gl—— S

; rex'\sys_Mtxlock®
BLASTK_hand'Ie _trap0H
C c qthread get_attr 4|
thread trampolinely| o
56\ BLASTK_set_tid _ugp_gp_prefetchiy|

i [B::Trace.List /CORE 1 /Track] EI

[W Setup..][I} Goto...] jFlnd][el Chart]@ Profile L MIFS][v More][A Les&i

record run |addres cy c'Ie data symbo

ti.bac

P: 01808020 ptrace ..1mg"Globa T BLASTK event_vectors+0x20
—a trap

jump 0x180B2EOQ;
-0140175362 | | P:0180B2B0
R9=55R;
RB=ELR;
R10=5GP;

-0140175384

R12=GP; Pl=tstbit(R9,#0x12); R13=memw(GP+#0x380); memd(R7+#0x18)=R9:8;

(=]
[=]
[
|
1=
0

»

[v 4 [m]

. Exits of TRAP handlers

A RETURN/RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the

TRAP handler.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

117

Analysis Details (no OS)

Numerical Analysis

Trace.STATistic.Func [/MergeCORE]

Trace.STATistic.sYmbol /CORE <n>

. analysis for all hardware threads

Numerical display of function timing

Numerical display of nested function run-time
analysis

. analysis for specified hardware thread

Cov Window Help
& Perf Configuration...

E Perf List

E| Perf List Dynamic

Function Runtime

Distribution
Duration Ato B

Distance trace records

-

- v ¥

=3 Show Mumerical
E Show as Tree

E Show Detailed Tree
#uef Show as Timing

Reset 1
R] Show Nesting List Summary
= | B:Trace STATistic. FUNC ol @ ==
(B setup... || §ii Groups.. |58 Config...|[1E Goto... |5 c———
IFuncs: 92. total: 4.203ms 1ntr: 20.665ms I
range [total min max avr count intern¥% 1% 2% |
(root) 4,554ms - 4, 554ms 4.554ms 1. 0.013% [+ ~
main 4.550ms - 4. 550ms 4.550ms 1. 0.076% +
gqube_init | 15.672us| 15.672us| 15.672us | 15.672us 1. 0.020% + E|
gthread_root_setup | 10.390us | 10.390us | 10.390us | 10.390us 1. 0.028% + -
sys_writecreg 3.326ms 0.088us 3.287ms | 17.103us 391. 1.550% em—
gtimer_init | 66.146us | 66.146us | 66.146us | 66.146us 1. 0.053% +
BLASTK_writec 3.098ms 0.070us 2.983ms 8.605us 391. 1.195% e
gthread_create 4.416ms 0.273us 4.416ms 1.257ms 7. 0.086% [+
blast_malloc 3.428ms 0.343us 3.307ms | 478.543us 24, 1.632% |m—
sys_Mtxlock 4.386ms 0.053us 4.384ms | 262.988us 268, 4. 251% | e—
sys_Mtxunlock 4,396ms 0.048us 4.395ms | 286.178us 269. 2.571% | e—
blast_pipe_alloc | 10.309us | 10.309us| 10.309uss | 10.309us 1. 0.012% |+
gtimer_lib_init 4.43%ms 0.763us 4.439ms 2.220ms 2. 0.009% +
gthread_start 4.437ms | 34.640us 4.437ms 1.496ms 8. 0.979% |+
hw_timer_init 7.001us 0.487us 6.513us 3.500us 2. 0.018% |+
hw_write_reg 1.277us 0.025us 0.314us 0.106us 12. 0.005% |+ -
| 1 [3
funcs: 92. total: 4.203ms 1ntr: 20.665ms

For a description of the list summary, see table below.

List Summary

func Number of functions in the trace
total Total measurement time
intr Total time in interrupt service routines

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

| 118

= | B:Trace. STATistic.FUNC

i
4
i

(& Setup...]@i Groups... || 38 Config...|[¥ Goto... |[E] Detailed|| _EJ Nesting]@ Chart |

L

funcs: 92. total: 4.203ms dntr: 20.665ms ‘
range [otal imin |max avr count intern% 1% 2% -
(root) 4, 554ms - 4, 55ms 4, 554ms 1. 0.013% [« -
mainimain 4.550ms - 4.550ms 4.550ms 1. 0.076% |+
b qube_init | 15.672us| 15.672us | 15.672us| 15.672us 1. 0.020% + H
' gthread_root_setup | 10.390us | 10.390us | 10.390us | 10.390us 1. 0.028% +
ite'\sys_writecreg 3.326ms 0.088us 3.287ms | 17.103us 391. 1. 550% mm—
it gtimer_init | 66.146us | 66.146us | 66.146us | 66.146us 1. 0.053% |+
— BLASTK_writec 3.099ms 0.070us 2.983ms 8. 605us 391. 1.195%
gthread_create 4.416ms 0.273us 4.416ms 1.257ms 7. 0.086% |+
c'blast_mallec 3.428ms 0.343us 3.307ms | 478.543us 24, 1.632% |
ex'\sys_Mtxlock 4. 386ms 0.053us 4.384ms | 262.988us 268. 4.251% | e—
2x\ sys_Mitxunlock 4, 396ms 0.048us 4.395ms | 286.178us 269. 2. 571Y | —
blast_pipe_alloc | 10.309us | 10.309us | 10.30%s | 10.309us 1. 0.012% |+
timer_lib_init 4.439ms 0.763us 4.439ms 2.220ms 2. 0.009% +
gthread_start 4.437ms | 34.640us 4.437ms 1.496ms 8. 0.979% +
hw_timer_init 7.001us 0.487us 6.513us 3.500us 2. 0.018% |+
\hw_write_reg 1.277us 0.025us 0.314us 0.106us 12. 0.005% [+ -
n | [

For a description of the highlighted column, see table below.

Columns Description
range (NAME) Function name, sorted by their occurrence by default
. (root)

The function nesting is regarded as tree, root is the root of the function nesting.

. HLL function

. HLL interrupt service routine

—Ir'st'xuuhmgﬁ obal\BLASTE_ andle_int

o HLL trap handler

—BLASTE_handle_t rapd

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

119

= | B:Trace. STATistic.FUNC

i
4
i

(& setup... || iii Groups... | 28 Config... [¥ Goto... |[Z] Detailed|| _EJ Nesting || % Chart |

funcs: 92. total: 4.203ms dntr: 20.665ms
ranqeltota'l min max avr I count intern% 1% 2% |
(root — — ——l 1. 0.013% '« -
main 4. 550ms - 4. 550ms 4. 550ms 1. 0.076% +
qube_init | 15.672us| 15.672us | 15.672us| 15.672us 1. 0.020% + E
gthread_root_setup | 10.390us | 10.3%0us | 10.390us | 10.390us 1. 0.028% +
sys_writecreg 3.326ms 0.088us 3.287ms | 17.103us 391. 1.550% —
gtimer_inmit | 66.146us | 66.146us | 66.146us | 66.146us 1. 0.053% |+
BLASTK_writec 3.099ms 0.070us 2.983ms 8. 605us 391. 1.195% jmem
gthread_create 4.416ms 0.273us 4.416ms 1.257ms 7. 0.086% |+
blast_malloc 3.428ms 0.343us 3.307ms | 478.543us 24, 1.632% |
sys_Mtxlock 4. 386ms 0.053us 4.384ms | 262.988us 268. 4.251% | e—
sys_Mtxunlock 4, 396ms 0.048us 4.395ms | 286.178us 269. 2.571% | e——
blast_pipe_alloc| 10.309us | 10.309us| 10.30%s | 10.309us 1. 0.012% |+
gtimer_lib_init 4.439ms 0.763us 4.439ms 2.220ms 2. 0.009% +
gthread_start 4.437ms | 34.640us 4.437ms 1.49%ms 8. 0.979% +
hw_timer_init 7.001us 0.487us 6.513us 3. 500us 2. 0.018% |+
hw_write_reg 1.277us 0.025us 0.314us 0.106us 12. 0.005% [+ -

m

~

For a description of the highlighted columns, see below.

Columns (cont.) Description

total Total time within the function

min Shortest time between function entry and exit, time spent in interrupt
service routines is excluded.
No min time is displayed if a function exit was never executed.

max Longest time between function entry and exit, time spent in interrupt
service routines is excluded.

avr Average time between function entry and exit, time spent in interrupt
service routines is excluded.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

120

£ | B:Trace STATistic FUNC o= ==
(& setup... || 1ii Groups... | 82 Config... [4 Goto... |[E] Detailed|[] Nesting | %] chart |
funcs: 92. total: 4.203ms dntr: 20.665ms
range [total min max avr I count intern¥ I]_% 2% |
(root] 4. 554ms - 4, 554ms 4, 554m; k= z e— -
main 4. 550ms - 4. 550ms 4. 550ms 1. 0.076% +
qube_imit | 15.672us | 15.672us | 15.672us| 15.672us 1. 0.020% + =
gthread root_setup | 10.390us | 10.390us | 10.390us | 10.390us 1. 0.028% +
sys_writecreg 3.326ms 0.088us 3.287ms | 17.103us 391. 1. 550% m—
gtimer_init | 66.146us | 66.146us | 66.146us | 66.146us 1. 0.053% +
BLASTK_writec 3. 099ms 0.070us 2.983ms 8.605us 391. 1.195%
gthread_create 4.416ms 0.273us 4.416ms 1.257ms 7. 0.086% [+
blast_malloc 3.428ms 0.343us 3.307ms | 478.543us 24. 1.632% |m—
sys_Mtxlock 4, 386ms 0.053us 4.384ms | 262.988us 268. 4. 251% | e—
sys_Mtxunlock 4. 396ms 0.048us 4.395ms | 286.178us 269. 2.571% | e—
blast_pipe_alloc| 10.309us | 10.309us | 10.309uss | 10.309us 1. 0.012% |+
gtimer_lib_init 4.439ms 0.763us 4.439%ms 2.220ms 2. 0.009% +
gthread_start 4.437ms | 34.640us 4.437ms 1.496ms 8. 0.979% |+
hw_timer_init 7.001us 0.487us 6.513us 3. 500us 2. 0.018% |+
hw_wirite_reg 1.277us 0.025us 0.314us 0.106us 12. 0.005% |+ -
4 n 3

For a description of the highlighted columns, see below.

Columns (cont.)

Description

count

Times within the function

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

count

2. (2/8)

Interpretation examples:

1. 2. (2/0): 2. times within the function, 2 function entries missing
2. 4. (0/3): 4. times within the function, 3 function exits missing
3. 11. (1/1): 11. times within the function, 1 function entry and 1 function exit is missing.

If the number of missing function entries or exits is higher the 1. the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

Columns (cont.)

Description

intern%
(InternalRatio,
InternalBAR.LOG)

Ratio of time within the function without subfunctions, TRAP handlers,
interrupts

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

121

Pushing the Config... button allows to display additional columns.

£ B:Trace STATistic FUNC =8 EERE=2
(& Setup... || 1i Groups... | 22 Config... [¥ Goto... ||| Detailed|[] Nesting || = chart |
funcs: 92. total: 4.203ms dntr: 20.665ms
range |[total min max avr count intern¥% 1% 2% |
(root) 4, 554ms - 4, 554ms 4, 554ms 1. 0.013% '« o~
main 4.550ms - 4. 550ms 4. 550ms 1. 0.076% +
qube_init | 15.672us| 15.672us| 15.672us| 15.672us 1. 0.020% + E
gthread_root_setup | 10.390us | 10.3%0us | 10.390us | 10.390us 1. 0.028% +
sys_writecreg 3.326ms 0.088us 3.287ms | 17.103us 391. 1.550% —
gtimer_imit | 66.146us | 66.146us | 66.146us | 66.146us 1. 0.053% +
BLASTK writec 3. 099ms 0.070us F
gthread_create | 4.416ms| 0.273us| 4 &N Statistic Config o=
blast_malloc 3.428ms 0.343us 3
sys_Mtx]ock 4. 386ms 0.053us Sort available selected
sys_Mtxunlock 4.3%ms 0.048us 4| _
blast_pipe_alloc| 10.309us | 10.309us| 1 | @ OFF NAME - Total
gtimer_lib_init 4.439ms 0.763us 4 ’ TASK MIN
gthread_start 4.437ms | 34.640us 4 | © Nesting TotalRatio MAX
hw_timer_init 7.001us 0.487us) GROUP |
hw_write_reg 1.277us 0.025us 4 = TotalBAR.LOE AVeRage
:) Address TotalBAR.LIN -> Count
5 evmbol Internal = InternalRatio
- IAVeRage InternalBAR.LOG
) InternalRatio | || MIN
*) TotalRatio MAX
:) InternalBAR.L
- Ratio External
~) Count EAVeRage
= EMIN
TotalMAX
- ol EMAX
- RatioMAX ExternalINTR | ~
[C] Al Windows

For a description of the additional columns, see tables below.

Columns (cont.) - times only in function

Internal Total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage Average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN Shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX Longest time spent in the function between function entry and exit
without called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

122

Columns (cont.) - times in sub-functions and TRAP handlers

External Total time spent within called sub-functions/TRAP handlers
EAVeRage Average time spent within called sub-functions/TRAP handlers
EMIN Shortest time spent within called sub-functions/TRAP handlers
EMAX Longest time spent within called sub-functions/TRAP handlers

Columns (cont.) - interrupt times

INTR Total time the function was interrupted

ExternalINTRMAX Max. time one function pass was interrupted

ExternalINTRCount Number of interrupts that occurred during the function run-time

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 123

The following graphic give an overview how times are calculated:

—— Start of measurement

N - Entry to funci

-]

- —— Exit of funci

-T- Entry to func1

func2

TRAP1

Total of (root)

ExternalINTR of func1
External of func1i
Total of funci

func3

= =

interrupt 1

Exit of func1i

— Entry to funci

- i —— Exit of funci

—— End of measurement

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 124

Further Analysis Commands

Cov Window Help
& Perf Configuration...

E| Perf List

E| Perf List Dynamic

Function Runtime k

Distribution L4
Duration Ato B

Distance trace records

3
3

E Show Numerical
E Show as Tree
E Show Detailed Tree

Show as Timing

Reset
= {F Show Mesting
% B:Trace.Chart.Func EI@
(& setup...|| 1ii Groups... |38 Config...][1% Goto... || #3Find... |[4» In |[»4 Out)[M Full]
480460000s -1.480458000s -1.480
range | ! L1
gthread_startiy))] s
(root) i — . . . —[3
sys_MtxTock 4| - - _ 4
gthread_get_attriy|)) _ _
trampoTne | — - S R
BLASTK_set_ti d_ugp_gﬁ_pr efetchiy|)) [)
BLASTK_set_thread_name¥ 1 e
R o ;
Legend

solid black bar

Function running

thin black line

Subfunction or TRAP handler running

Trace.Chart.Func [/MergeCORE]

Trace.Chart.Func /CORE <n>

Graphical display of nested function run-time
analysis
. Analysis for all hardware threads

Graphical display of nested function run-time
analysis
. Analysis for specified hardware thread

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 125

Cov Window Help

& Perf Configuration...
£ Perf List
E| Perf List Dynamic

-

Function Runtime

Distribution
Duration Ato B

- v ¥

Distance trace records

Reset

E Show Numerical

show as Tree

E Show Detailed Tree
#uef Show as Timing

{F] Show Mesting

= | B:Trace STATistic. TREE = =@ ==
(& setup... || ii Groups... |38 Config...|[A Goto... |[=] Deta||ed]L|:_| Nesting || % Chart |
funes: total: 4.203ms dntr: 20.665ms
range [tree total |min |max avr !
(root) [= (root) 4.554ms - 4.554ms 4.554dms .
Tmain == main 4.550ms - 4.550ms 4.550ms[—
qube_init = qube_init 15.672us | 15.672us | 15.672us | 15.672us
C qtf‘lread root_setup = gthread_root_setup 10.390us | 10.3%us | 10.390us | 10.390us
e\ sys_writecreg . sys_writecreg 3.175us 3.175us 3.175us 3.175us
i gtimer_init = gtimer_init 66.146us | 66.146us | 66.146us | 66.146us
& =\ BLASTK_writec E —#BLASTK_writec 52.55%us 3.58%us | 48.970us | 26.279%us
gthread_create - gthread_create 0.273us 0.273us 0.273us 0.273us
=\ sys_writecreg - sys_writecreg 0.963us 0.175us 0.215us 0.193us
i BLASTK_writec [—#BLASTK_writec 36.587us 0.273us | 35.453us 7.317us
blast_malloc = blast_malloc 0.343us 0.343us 0.343us 0.343us
sys_writecre Bl sys_writecre 10.132us 0.175us 6. 546us 0.533us
=1\ sys_Mtxloc . sys_MtxToc 0.213us 0.213us 0.213us 0.213us
— BLASTK_writec [—#BLASTK_writec 15.755us 0.23%us 8.073us 0.829%us
\sys_Mtxunlock . sys_Mtxunlock 0.133us 0.133us 0.133us 0.133us
=\ sys_writecreg - sys_writecreg 0.215us 0.215us 0.215us 0.215us -
4| i | b

Trace.STATistic.TREE [/MergeCORE]

Trace.STATistic. TREE /CORE <n>

Analysis for all hardware threads

Analysis for specified hardware thread

Tree display of nested function run-time analysis

Tree display of nested function run-time analysis

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

126

Cov Window Help

£ Perf List

& Perf Configuration...

E| Perf List Dynamic

Distribution

Duration Ato B

Distance trace records

Function Runtime L4 Prepare

4 E Show Mumerical
L4 E Show as Tree
4 E Show Detailed Tree

Reset
{E] BuTrace.ListMNesting
(& setup...|[13 Goto... || #3Find... || =|TREE || Al chart || = chart || B Profile || BB MIPS |[4 More|[X Lesq
record [| | | | 1=
-0164382940 & = ma re main. c\675——a v—— -
-0164382940 = = qube_init qube.c\l——a v—— 16.097us (g
-0164382940 gthread_root_setup qthread.c\164——a v—— 10.815us
-0164382925 |—,—sys_wr'itecreg sys_write.c\l——a v—— 3.175us
—& trap =
-0164382905 ‘ ‘ |_‘—‘—qthread_root_setup+0x34 awv—— 10.815us [
-0164382881 sys_writecreg+0Ox14 a wv—— 16.097us
—& trap
-0164382832 |® =@ gtimer_init qTimerInit.c\52——a v—— 66.146us
-0164382549 BLASTK_writec mem_console.c\l1——a v—— 3.58%us
-0164382501 BLASTK_mutex_unTlock+0x0C awv—— 3.589%us
-0164382466 —sys_writecreg sys_write.c\l— a v—— 0.215us
—& trap
-0164382440 ||| “sys_writecreg+0x14 awv—— 0.215us
—& trap
-0164382392 BLASTK_writec mem_console.c\l——a wv—— 48.970us
-0164382368 | =2 l:qthread_creatc qthread.c'\46——a v—— 0.273us
-0164382355 BLASTK_mutex_unTlock+0x0C av—— 0.273us |~
4 3

Trace.ListNesting [/MergeCORE]

Nesting display of nested function run-time

analysis

] Analysis for all hardware threads

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

127

Cycle Statistic

To perform a cycle statistic proceed as follows:

1. Activate cycle-accurate tracing.

ETM.CycleAccurate ON

Trace.CLOCK 600.MHZ

2. Start and stop the program execution to fill the trace repository.

3. Display the resuit.

Trace.STATistic.CYcle

List Summary

-

DetailS am

] B:Trace STATistic.C¥cle (= =]=]
(& setup...|| EvPs |E0 rwmsT| Ean |
records: 966374400 tlow cycles: 969989035
time: 6.926s bus cycles: 0
clocks: 18661079268 cpi: 6.30
cycles bytes cycles/second |bytes/second
TTow execute 494058840. 3879.eb 71.328999MHz 560.162809MB .
flow read 0. 0. 0.Hz 0.8
flow write 0. 0. 0.Hz 0.8
cycles bytes cycles/second |bytes/second
bus fetch 0. 0. 0.Hz 0.B
bus read 0. 0. 0.Hz 0.8
bus write 0. 0. 0.Hz 0.8
instructions ratio freguency
instr 494058840. 100. 000% 71.328999MHz
slot instr 0. 0. 000% 0.Hz
fail cond 26414685 5.346% 3.813579MHz
pass cond 467644155, 94.653% 67.515418MHz
fail branch 26414671 5.346% 3.813577MHz
dir branch 72914870. 14.758% 10. 52697 3MHz
indir branch 32031530. 6.483% 4.624503MHz
load instr 0. 0. 000% 0.Hz
store instr 0. 0. 000% 0.Hz
modify instr 0. 0. 000% 0.Hz
traps 6321276. 1.279% 912. 624KHz
interrupts 140472, 0.028% 20. 28KHz
clocks ratio frequency number
1dTes 52. 0.007% 7.Hz 1477326.
core 0 16. 0.007% 2.Hz 225156.
core 1 6. 0.010% 0.Hz 322716.
core 2 1. 0.010% 0.Hz 327798,
core 3 15. 0.004% 2.Hz 133290.
core 4 14. 0.015% 2.Hz 468366.
core 5 0. 0.000% 0.Hz 0.
trace gaps 0. 0.000%
J 4 I3

For a description of the list summary and the details, see tables below.

List Summary

Description

records

Number of records in the trace

time

Time period recorded by the trace

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

List Summary

Description

clocks Number of clock cycles in the trace
flow cycles Number of ptrace packages
bus cycles 0 (no recording of bus cycles)
cpi Average clocks per instruction packet
(cpi/6 average thread clock per instruction packet)
Details Description

flow execute

Number of cycles that executed instructions

flow read Number of cycles that performed a read access
(not implemented yet)
flow write Number of cycles that performed a write access
(not implemented yet)
bus fetch 0 (no recording of bus cycles)
bus read 0 (no recording of bus cycles)
bus write 0 (no recording of bus cycles)
instr number of instruction packages
slot instr —
fail cond Number of conditional instruction that failed (failed branch instructions
included)
pass cond Number of conditional instruction that passed (branch taken included)
fail branch Number of failed branches
dir branch Number of direct branches
indir branch Number of indirect branches
load instr Number of load instructions (not implemented yet)
store instr Number of store instructions (not implemented yet)
modify instr —

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

129

Details Description

traps Number of traps
interrupts Number of interrupts
idles Number of idle states
. Wait instruction, under the assumption that the hardware thread
put itself to idle state
] More the 1000. clock cycles without trace information
core 0 Number of idle states for hardware thread 0
trace gaps Number of trace gaps (FIFOFULLSs, filtered trace information ...)

Trace.STATistic.CYcle [/[MergeCORE] Cycle statistic

] Analysis for all hardware threads
Trace.STATistic.CYcle /CORE <n> Cycle statistic
J Analysis for specified hardware thread
Analyzer.STATistic.CYcle /CORE 3
] B:Trace. STAT.CVcle /CORE 2 o = =
(& setup...|| EmPs |[H RwinsT|| HHALL |
records: 966374400 flow cycles: 969904288
time: 6.926s bus cycles: 0
clocks: 3116916233 cpi: 6.30
cycles bytes cycles/second |bytes/second
TTlow execute | 494013340. 3879.eb 71.32243MHz 560.113868MB
flow read 0. 0. 0.Hz 0.8
flow write 0. 0. 0.Hz 0.8
cycles bytes cycles/second |bytes/second
bus fetch 0. 0. 0.Hz 0.B
bus read 0. 0. 0.Hz 0.8
bus write 0. 0. 0.Hz 0.8
instructions ratio frequency
instr 494013340. 100.000% 71.32243MHz
slot instr 0. 0. 000% 0.Hz
fail cond 26409730, 5.345% 3.812864MHz
pass cond | 467603610. 94.654% 67.509565MHz
fail branch 26409718, 5.345% 3.812862MHz
dir branch 72905494, 14.757% 10.525619MHz
indir branch 32026516. 6.482% 4.623779MHz
load instr 0. 0. 000% 0.Hz
store instr 0. 0. 000% 0.Hz
modify instr 0. 0. 000% 0.Hz
traps 6320647. 1.279% 912.533KHz
interrupts 140456. 0.028% 20.278KHz
clocks ratio frequency number
1dles 15 0.004% 2.Hz 133290.
trace gaps 0. 0.000%
J 4

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

130

Filtering via the ETM Configuration Window

Filtering means to reduce the generated trace information to the information of interest.

Some basic filtering can be done via the ETM configuration window.

ETM configuration

& B:ETM = (=5

etm trace selection configuration

@ OFF Trace [C] contextID PortSize

@ ON TraceTHUM [cydeAcnrrate

[CTFillPort PortMode

commands TraceASID [[]LoopTrace
Flac

TraceTID

Trace repository*

* trace memory of PowerTrace
or ETB

The following setups in the ETM configuration window can be done to reduce the generation of the trace

information:

ETM.state Display the ETM configuration window

ETM.TraceTNUM <hardware_thread> Program the ETM to export the instruction flow
only for the specified <hardware_thread>

ETM.TraceASID <asid> Program the ETM to export the instruction flow
only for the specified <asid>

ETM.TraceTID <tid_number> | <bitmask> Program the ETM to export the instruction flow
only for the specified software thread(s)

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 131

Hardware Thread Filter

To restrict the exported instruction flow to the specified hardware thread proceed as follows:

1. Open the ETM configuration window and specify the hardware thread.
Trace | Probe Pef Cov Wind
WConfiguration_
B CTS Settings...
pre B
4 etm trace selection configuration
£ List i’ © OFF V] Trace [7] ContextID ~ PortSize ———
2 Timing D @ oN - TraceTNUM [l cydeacourate
] Chart ' 03 [FillPort - PortMode ——|
£3 Save trace data ... commands —— — TraceASID [T LoopTrace 1/2 7
E:j; Load reference data ... Fec | —
i
2. Start and stop the program execution.
3. Display the result.
Trace.List
£ BaTrace List EI@
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || BEMIPS |[4 More|[X Lesg
record run |address cycle |data symbaol ti.back

(R4 ,#0x1); memb(RO+#0x0)=R5;

PO=cmp. eq(RO,#0x0); if(!PO.new) jump:t Ox180D2A0; 3

3 | Ri=asr(R2,#0x1F); RO=RZ; Rd=a
3 | RO+=1sr(R1,#0x13); R1=#-0x2000; R5=R4;
3 | RO=and(RO,R1);
3 | RO=sub(RZ2,R0);
3 | R2=R0O; memw(GP+#0x80)=R0;
3 | RO=memub(R3+#0x0);
3
-0000000136 (3 P

:0180D2A0 ptrace . \BLASTK_puts_debug_buffer+0x40 0.430us |
37 [///;}///////////////////////// i

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

132

Software Thread Filter

To restrict the exported instruction flow to the specified software thread proceed as follows:

1. Open the ETM configuration window and specify the software thread.

&2 B:ETM =[]
etm trace selection configuration
©) OFF [Trace [¥] ContextID ~ PortSize ———
@ ON ~ TraceTNUM — | [C]CydeAcarate 8 -

— : [CIFillPort ~ PortMode ———|

— commands —— — TraceASID - | [[]LoopTrace 1/2 ~

RESet DBBC N i

& CLEAR — TraceTID
000000020

List

2. Start and stop the program execution.

3. Display the result.

Trace.List

£ BTrace List EI@
(& setup...|[13 Goto... || #3Find... || P chart || H Profile || EEMIPS |[# More|[X Lesg
record run |address cycle |data symbo ti.back i
-00000378E87 [4] context 00000020 -
—— TRACE ENABLE =
-0000037878 |4 | P:018098Av:-tr3.-:e LK _set_ti d_Lﬁa_};}arefethOxlﬁr 0.035us
380 4/// ///////L/R//// i o b
Jumpr E -
-0000037876 |4 P:0180B318 ptrace .. Tobal\BLASTK_handle_trap0+0x68 <0.005us [|
4 © R13:12=memd(FP+#0x30); SP:28=memd(FP+#0x28);
-0000037868 |4 P:0180B320 ptrace .. Tobal\BLASTK_handle_trap0+0x70 0.040us
4 | GP=R12; LR:30=memd(FP+#0x20); R9:8=memd(FP+#0x18);
4 SSR=R9;
4 ELR=RE; b

ASID Filter

(no example available)

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 133

Filtering/Triggering with Break.Set

Filtering means to reduce the generation of trace information to the information of interest.

Filtering helps to prevent TARGET FIFO OVERFLOWSs and enables a more effective utilization of the trace
memory.

Triggering means to stop the recording to the trace repository.

Break | Run CPU Misc T1

m

éylmplementation...

a B::Break.5et [= | B =S
address | expression

9 Delete Al -~ [3) B

“F Trigger Bus... type options implementation
[OnChip Trigger... @ Program [Exclude [Cl Temporary
") ReadWrite [NOMARK [T p15able action
* Read [7] DISableHIT
Trigger Reset - Wirite DRI op
_) default [:J illjpohta

Beta

ok)] [Add] [Dpeete] S';?é"r‘

Echo

WATCH
TraceON k
TraceOFF
TraceTrigger

The following actions provide filters:

TraceEnable Program the ETM to generate only trace information if the specified event
matches.
TraceON Program the ETM to start the generation of trace information if the

specified event matches.

TraceOFF Program the ETM to stop the generation of trace information if the
specified event matches (restart possible).

The following action provides triggers:

TraceTrigger Stop the recording of trace information into the trace repository if the
specified event matches (no restart possible). The stop can be delayed.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 134

The filter/trigger breakpoints and the filters provided by the ETM configuration window can be combined.

Filter breakpoints

B B:Breaki List (=5 EaR| 53
xmu[omu}[&m»\ﬂ[®1mt][fﬁmm]EEStﬂre Emad 3 Set...
address |t =

C:0004DABC Pr‘Dgr"am DMCHIP Tr‘acEEna Te ‘ MCLum_G -

] 3

ETM configuration
P BETM (E=5 EoB
— etm — trace selection configuration
© OFF V| Trace [”] ContextlD FortSize
@ oN TraceTNUM —fi | [C]Cydecaurate 8 -
[CIFillPort PortMode ‘> ETM trace paCKet
— commands —— [TraceASID —f | [*|LoopTrace 1/2 -
e generation
TraceTID ——|
< Register
@ BMC
Trigger breakpoints
8 B::BreakiList =5 =]
3% Decte Al (O Disabie All[@ B Al|[@ Init.][2 et |53 Store..)[53 Load... ﬁSet . . *
= gzd.socmo‘\ipmgrm iDNCHIP iTracengger i BLASTK futex_wait = Trace reposltory

* trace memory of PowerTrace
or ETB

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 135

TraceEnabile Filter

Standard Usage

To illustrate the standard usage of the TraceEnable filter, the following examples are provided:

o Example 1: Program the ETM to export only trace information, if the instruction at a particular

symbolic address is executed.

. Example 2: Program the ETM to export only trace information, if the instruction at a particular

symbolic address is executed by a particular hardware thread.

J Example 3: Program the ETM to export only information about the instruction that writes to a

particular variable.

Example 1

Program the ETM to export only trace information, if the instruction at the symbolic address
BLASTK_futex_waitis executed (etm_filter1.cmm).

1. Specify the event in the Break.Set dialog.

il B::Break Set =& =
address / expression
BLASTK_futex_wait (2] EHL
Type implementation
@ Program Temporary |aut0 7
_ ReadWrite DISable action
~ Read DISableHIT Traebnable v
O Write DATA
* default | || | [¥ advanced|
 —T— [Add [Delete | [cancel |

- Specify the program address in the address / expression field.

- Specify the type Program (default).

- Specify the action TraceEnable.

2. Start and stop the program execution.

3. Display the resuit.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

136

m

BuTrace.List EI
(& setup...|[3 Goto... || #3Find... || P chart || B Profile || HMMIPS |[4 More|[X Lesg
record run |address lcycle |data |symbaol 1. back !
-0000000310 [0 P:0180C140 ptrace “ibootd mg\G'I obaT"BLASTK_futex_wait 126.700us
0 | RZ1=memw(GP+#0x390); R8=memw(GP+#0x394);
0 | R20=memw_locked(R21);
—— TRACE ENABLE
-0000000287 |4 P:0180C140 ptrace “Y\bootimg'\Global\BLASTK futex_wait 244.920us
4 | R21=memw(GP+#0x390); R8:menn-.'(GP+#Ox394%;
4 | R20=memw_locked(R21);
—— TRACE ENABLE
-0000000264 |5 P:0180C140 ptrace “M\booti mg\G'I obal“BLASTK_futex_wait
5 | R21=memw(GP+#0x390); R8=memw(GP+#0x394);
5 | R20=memw_locked(R21);
—— TRACE ENABLE
-0000000247 [0 P:0180C140 ptrace “Mbooti mg\G'I obal%BLASTK_futex_wait 122.300us
0 | RZ1=memw(GP+#0x390); R8=memw(GP+#0x394);
0 | RZ20=memw_locked(R21);
—— TRACE ENABLE
-0000000221 |3 P:0180C140 ptrace \\boot'img\G'Ioba'l\BLASTK_futex_wa‘it 249.140us
3 | RZ1=memw(GP+#0x390); R8=memw(GP+#0x394);
3 | R20=memw_locked(R21);
—— TRACE ENABLE
4

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

137

Example 2

Program the ETM to export only trace information, if the instruction at the symbolic address BLASTK_writec
is executed by hardware thread 0x0 (etm_filter2.cmm).

1. Specify the event in the Break.Set dialog.

a B::Break.Set El@

address / expression

BLASTK_writec ~ 2] CHL
Type options implementation
@ Program [EXclude] Temporary auto -
) Readwrite | | [C] NOMARK DISable action
) Read [T] p1sableHIT
) Write DATA
© default | || | [¥ advanced|
 om—T— [—y— [Delete | [cancel |

- Specify the program address in the address / expression field.
- Specify the type Program (default).
- Specify the action TraceEnable.

2. Specify hardware thread 0x0 in the ETM configuration window.

& B:ETM [r= |-]
etm trace selection configuration
©) OFF [V Trace [C] contextD — PortSize ———
@ oN TraceTNUM [l cydeAcaurate
=] oxo [CIFillPort ~ PortMode ———
commands —— - TraceASID - | [[]LoopTrace 1f2 7
Flesc —
— TraceTID - —
£ List

3. Start and stop the program execution.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 138

4. Display the result.

i) BuTrace.List EI@
(& setup...|[13 Goto... || #3Find... || P chart || Bl Profile |L MIPS |[4# More|[X Lesd
record run |address cycle |data sym o ti.back

-0000000148 mem_conso]

=~

[=-Tat |

////////////

0 | RZ26=R =menw
= TRACE ENABLE

i

—ﬁ ﬁ‘Cl

/)//////////////E/////////////////////////;}///////////////////////////////////////

e \BLASTK_write

77/

-0000000122 ‘ymem_conso]l

[=-Tat |

memd (FP+#-0x8)=

== TRACE ENABLE

7 /////{{//1//////)////////////////////////))///////////////////////////////////////

e\BLASTK_write

-0000000104 |0 | P:0180D200 ptrace “\bootimgmem_consol

e\ BLASTK_writec 0.850us -
13

Summary

; Export only the execution of the specified instruction packets
; (up to 8 single instructions or up to 4 instruction ranges)

Break.Set <address> | <range> /Program /TraceEnable

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

139

Example 3

Program the ETM to export only information about the instruction that writes to the variable
BLASTK_wait_mask (etm_filter3.cmm).

1.

2.
3.

Specify the event in the Break.Set dialog.

a B::Break.Set El@
address / expression
BLASTK _wait_mask ~ [2]¥HL
type options implementation
_) Program =l auto v|
_) ReadWrite action
Read TraceEnable ~
DATA
) default | || | [¥ advanced|
 —Ta— [—y— [Delete | [cancel |

- Specify the data address in the address / expression field. Activate the HLL check box to

specify the breakpoint for the complete address range of the variable.
- Specify the type Write.
- Specify the action TraceEnable.
Start and stop the program execution

Display the result.

24 BxTracelList ===
|2 setup... || 13 Goto... || #3Find... || A chart "_ il Profile | ! MIPS ||% Mare Les%
record run |address cycle |data symbol ti.back |

“\bootimg\Global\BLASTK_schedule_new_froms1leep+0x30

-0000000248
; if(1P2.new) jump:nt 0x180C2DC; RLS=memw(R11++#0x4); memw(GP+#0x884)=R22;

‘\bootimg\Global\BLASTK_schedule_new_froms1eep+0x30 243.895us

-0000000221 |4 -
4 | P2 if(!1P2. new) jump:nt 0x180C2DC; R15=memw(RL1++#0x4); memw(GP+#0x8B4)=R22;
4 r R23
TRACE ENABLE
-0000000194 |0 P:0180C680 \\boot'lmg\G1oba1‘BLASTK_schedMe_hw‘ghest+0xlDO
0 RO=R0; jump O C1F8; Rl= #0x0; memw(GP+#0x8B4)=R23;
0 r RL :—OxO R3=memw(GP+£0x3)

» 4[] »

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

140

Summary

; Export only the instructions that perform the specified data access
; no data value allowed
; (up to 6 single address accesses or up to 3 access ranges)

Break.Set <address> | <range>/ReadWrite | /Read | /Write /TraceEnable
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write /TraceEnable

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 141

Statistical Evaluations

To illustrate statistical evaluations, the following examples are provided:

J Example 1: Analyze the intervals of a particular function.

. Example 2: Analyze the time between function A and function B.

Example 1: Time Interval of a Single Event

Analyze the intervals of BLASTK _handle_trapO.

1. Program the ETM to export only the entry to the function BLASTK_handle_trapO.

2.
3.

a B::Break.Set El@
address / expression
BLASTK_handle_trap0d » [£]0OHL
type options implementation
@ Program [Exclude [C] Temporary auto -
*) ReadWrite [T NOMARK "I DISable action
") Read [Z] D1SableHIT TraceEnable >
I Write DATA
» default | v| [¥ advanced|
 —rT— [F—— [Delete | [cancel |

- Specify the program address in the address / expression field.

- Specify the type Program (default).
- Specify the action TraceEnable.
Start and stop the program execution.

Display the resulit.

Trace.List

Trace.STATistic.AddressDIStance BLASTK_handle_trap0

= | B:Trace STATistic. AddressDIStance BLASTK_handle_trapl =&
[W Setup...]m Chart][& Zoom][Y Zoom][+ Move][T Move
samples: 3118044, avr: 1.093us min: 0.350us max: 10.625us
total: 3.407s in: 3.407s out: 0.035us ratio: 99.999%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 0.000us 0. 0.000% i
1.280us 2702306. | 86.666%
2.560us 346446, | 11.111%
3.840us 2. | <0.001% |+
5.120us 0. 0.000%
6.400us 1. | <0.001% |+
7.680us 0. 0.000%
8.960us 0. 0.000%
10. 240us 0. 0.000%
11.520us 69289. 2.222% |—
12. 800us 0. 0.000%
14.080us 0. 0.000%
15.360us 0. 0.000%
16. 640us 0. 0.000%
17.920us 0. 0.000%
19.200us 0. 0.000%
20.480us 0. 0.000%
= J 0. 0.000% -
4 2

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

142

Example 2: Time between Two Events

Analyze the time between BLASTK_mutex_lock and BLASTK_mutex_unlock.

1. Program the ETM to export only the entry to the functions BLASTK_mutex_lock and

BLASTK_mutex_unlock.

e B::Break.List =l ==
(9 Dekete Allj[(© Dissbie All[@ Enable][@ Init][2 Sekect. |[S2 Store..) (S Load...| [Kl Set... |
address |[types impl action |
ONCHIP [TraceEnable | BLASTK_mutex_Tock n

C:0180A528

C:OlSOASlOﬂProgra.m

4

Program

ONCHIP

TraceEnable

BLASTK_mutex_unlock

2. Start and stop the program execution.

3. Display the resuit.

Trace.List

Trace.STATistic.AddressDURation BLASTK_mutex_lock \

BLASTK_mutex_unlock

= | B:Trace STATistic. AddressDURation BLASTK_mutex_lock BLASTK mutex_unlock ol = =
(& setup...][[l Chart || Zoom || X Zoom || 4 Move || T Move
samples: 2977458, avr: 0.6l6us min: 0.228us max: 10.183us
total: 3.3285 in: 1.835s out: 1.493s ratio: 55.138%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 i
< 0.000us . 0.000% 7
0.640us 2571441, | 86.363%
1.280us 203007, 6.818%
1.920us 67670. 2. 272% | e—
2.560us 67670. 2. 2725 | e——
3.200us 1. | <0.001% |+
3.840us 0. 0.000%
4.480us 0. 0.000%
5.120us 0. 0.000%
5.760us 0. 0.000%
6.400us 0. 0.000%
7.040us 0. 0.000%
7.680us 0. 0.000%
8.320us 0. 0.000%
8.960us 0. 0.000%
9.600us 0. 0.000%
10.240us 67669. 2. 2725 |e—
> J 0. 0.000% -
4 I3

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

143

TraceON/OFF Filter

To illustrate the TraceON/OFF filter, the following example is provided:

. Program the ETM to start the exporting of trace information, whenever the instruction at the
address BLASTK _puts_debug_buffer was executed.

. Program the ETM to stop the exporting of trace information, whenever the instruction at the
address BLASTK_ puts_debug_buffer+0x90 was executed (etm_filter4.cmm).

1. Open a source listing at the label BLASTK_puts_debug_buffer.

; List *

List.Asm BLASTK_puts_debug_buffer

{=] BrList.Asm BLASTIC puts_debug_buffer =
[M ostep || M over || 4 mext | qf Retwrn |[@ up [» Go [NN Break]g Mode | Find:
addr/1ine code bel mnemomc comment |
P:0180D260 [A09DC (I(\l E.LA:TK_putS_debuq_buﬁcer: octrame(#0x8);
P:0180D264 |7 2 =R0; call Oxl&OASlO RO=memw (GP+# Ox4083, memw{ FP+#-0x4)=R27
P:0180D274 RO=memub (R27+#0x0); R2=memw(GP+#0x80);
P:0180D27C PO=cm eq\RO #0x0); R5=R27; R4=R27; R6 memw (GP+#0x410) ;
P:0180D28C |5¢ if(P0) jump OxlSODzES;
P:0180D290 |7 R3=R27; nop; nop; nop;
P:0180D2A0 [F3 RO=add(R2,R6); RZ=add(R2,#0x1); R3=add(R3,#0x1); R5=memb(R5+#0x—
P:0180D2B0 [8C02 Rl=asr (R2,#0x1F); RO=R2; R4=add(R4,#0x1); memb(RO+#0x0)=R5;
P:0180D2C0 (8 RO+= 1sr‘\R]. #0x13): R1=#-0x2000; R5=R4; E
P:0180D2CC RO=and (RO, Rl], T
P:0180D2D0 RO=sub (R2,RO)
P:0180D2D4 R2=R0; memw \GP+"'0><80‘-=R0'
P:0180D2DC (2 RO=memub R3+"0x0,,
P:0180D2E0 PO=cmp. eq\RO #0x0); if(!P0.new) jump:t Ox180D2A0;
P:0180D2ES |9 7FFB4980EQ.. R27=memw (FP+#-0x4); RO=memw(GP+#0x408);
P:0180D2F0 [59FF691CI01ECO.. jump 0x180A528; dea'l'lmcfrane,
P:0180D2F8 [7F0040007F00CO.. nop; nop;
P:0180D300 [5800CBES BLASTK_ext_preinit: jump 0x180EA7O; 5
< | I 3

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

144

2. Set a TraceON breakpoint to the instruction packet at the label BLASTK_puts_debug_buffer.

{ N Step || M Over][Jv Next][{fRemrn Il ¢up || »cGo | mereak |[#]Mode | Find:
addr/Tine [code bel mnemonic
P:0130D0260 [A09DCO0L ELA<Tk_ut;_debu | al o -
P:0180D264 |/060401E5BFF6Y.. Program Address =R27/;
P:0180D274 |913840004980C4.. + GoTill
P:0180D27C |75004000707840..
P-0180D28C |5C00C02E 3 Dreakpoint..
P:0180D290 |707840037F0040.. Program
S e e S
P:0180D2C0 [8E0153A0780040.. g Tosgle Beokmark PragrarmFail P i
P:0180D2CC [F100C100 ..‘l} Set PC Here [
P:0180D2D0 [F320C200 - Spot
P:0180D2D4 |706040024880C0.. B £dit Source
P:0180D2DC |9123C000 i ViewInfo Alpha
P:0180D2EQ |750040005CFFF8.. ! |peta
P:0180D2ES |979E7FFB4980EQ.. & Go Till There e
P:0180D2F0 [59FF691CI0LECO.. =l Charly sch
P:0180D2F8 |[7F0040007F00CO.. £ -5t Tnere Delta
P:0180D300 [5800CBES BLASTK ext_preinit: Assemble here ... — f -
gl Modify here .. - r
Patch here ... WATCH
TraceEnable
TraceOFF
TraceTrigger
BusTrigger
BusCount

3. Set a TraceOFF breakpoint to the instruction packet at the address
BLASTK_puts_debug_buffer+90.

[M Step][W Over][+ Next][JReturn][¢ up][» Go][11 Break] ¥ Mode] Find:
addr/Tine [code [Tabel mnemonic |comment '_,
P:0180D260 [209DCO0T BLASTK_puts_debug_buffer: ocframe(#0x8);
P:0180D264 [7060401B5BFFB9.. R27=R0; call O0x180A510; RO=memw(GP+#0x408); memw(FP+#-0x4)=R27;
P:0180D274 (913840004980C4.. RO:memub(R2?+#Ox0) RZ-mem(GP+#Ox80)
P:0180D27C [75004000707B40.. PO=cm| .eq(RO,#DxO); R5=R27; R4=R27; RG:mem\v(GP+#0x410);
P:0180D28C |5C00CO2E if(P0) jump DXISODZES
P:0180D25%0 |[707B40037F0040.. R3=R27; nop; nop;
P:0180D2A0 [F3024600800240.. RO= add(R2 R6); R2= add(R2 #0x1); R3=add(R3,#0x1); RS5=memb(R5+#0x
P:0180D2B0 [8C025F01706240.. Rl=asr(R2, #OxlF) RO=RZ; Rd= add(m #0x1); memb(R0+#0x0)—R5
P:0180D2C0 |8E0153A078D040.. RO+='ISP(R1,#0X13); Rl:#*ﬂ)(zﬂﬂﬂ; R5=R4;
P:0180D2CC [F100C100 RO=and(RO,R1);
P:018002D0 [F320C200 RO=sub(R2,R0);
P:0180D2D4 |706040024880C0.. R2=R0; mem(GP+#0x80) RO;
P:0180D2DC (9123000 RO= memub(R3+#0x0)
P:0180D2E0 750040005CFFF8.. PO=cmp. eq(RO, #OxO) if(!P0.new) jump:t Ox180D2A0;
P:0180D2E8 [379E7FFR4980ED.. R27=1 merm-t?FP+# Ox4), RD—mem(GP+#Ox408)
P: 59FF691CI01ECO.. iEaabe 2 NAG 2 B
P:0180D2F8 |7F0040007F00CO.. Program Address
P:0180D300 [5E00CBEE BLASTK_ext_prei % GoTill EA70; BLASTK_pre i
Ll ﬁBreakpomt... | %
E Display Memory L3 FrogramPass
‘Togg\aBookmark FragrarmFail
A5 Set PC Here Spot
gﬁdrt%urce
£ ViewInfo Alpha
Go Till Th L=
'aTei‘ LO T‘h - Charly
.;J ist There Delta
Assemble here ...
Echo
Modify here ...
Patch here ... WATCH
TraceEnable
TraceON
TraceTrigger
BusTrigger
BusCount

4. Start and stop the program execution.

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

145

5. Display the result.

Trace.List

| BuTracelList EIIEI
[ﬁ Setup..][I} Goto...][34 Find...][iyl Chart][2 Profile] E MIPS [A Mure][v Lesﬁi
record run |address cycle |data |symbo] ti.back |

3 RZ=R0; memw(GP+#0x80)=R0;
3 RO= nenub R3+#0x0);

///(////////////////////////]/g//

4 [m] »

4

]

-0196338337 |3 P:0180D2F0 ptrace \bootimg'mem_console\BLASTK puts_debug buffer+0x30 0.035us (1
3 | jump 0x180A528; deallocframe;
3 [R2=#0x0;

-0196338316 |3 _| T 81800260 \mem_console\BLASTK_puts_de|
3317 ////{(//////////////////////////////////}/////////////////////////////}////////////////////////// 4

= #0x408); " memw (FPY#-0x4)=R27

=memw
3 ,- Rc nem 1ogked RO" \ -
13

Proceed as follows, if you want to search for the ON/OFF transitions:
1. Select the Trace.List window as active window.

2. Specify Enable for the global TRACE32 Find.

View Var Break Run CF

%} Undo Ctrl+Z

% Cut Ctrl+X Find X
Copy Ctrl+C —_—m——
Paste Ctrl+V Find what: Enable]

[] Match case 1 Up @ Down

Curl+F ||

£3 Save All Editor Files
[List all Editor Files

4 Grep in Source Files...

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 146

Summary

; Export only the execution of the instructions between TraceON/TraceOFF
; (Uup to 2 pairs)

Break.Set <address> | <range> /Program /TraceON
Break.Set <address> | <range>/ReadWrite | /Read | /Write /TraceON
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write /TraceON

Break.Set <address> | <range> [Program /TraceOFF
Break.Set <address> | <range>/ReadWrite | /Read | /Write /TraceOFF
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write /TraceOFF

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 147

TraceTrigger

There are two use cases for TraceTrigger.

To illustrate the two use cases, the following examples are provided:

. Example 1: A TraceTrigger can be used instead of a breakpoint, if it is not allowed to stop the
program execution.

. Example 2: A TraceTrigger can be used to get the prologue and the epilog of an event in the
trace.

Example 1

Stop the trace recording after 0x24 was written as a byte to the variable BLASTK_wait_mask

(etm_trigger1.cmm).

1. Specify the event in the Break.Set dialog.

a B::Break.Set El@
address / expression
BLASTK _wait_mask ~ [&2]¥IHL
type options implementation
) Program EXclude Temporary auto ']
~) ReadWrite NOMARK DISable action
) Read DISableHIT TraceTrigger ™
_) default 0x24 [B\fte '] [advanced|
 —r— Add [Delete | [cancel |

- Specify the data address in the address / expression field. Activate the HLL check box to
specify the breakpoint for the complete address range of the variable.

- Specify the type Write.

- Specify DATA value and access width.

- Specify the action TraceTrigger.

2. Start the program execution.

‘B::|

emulate trigger [devices H

trace H Data H Var H List H other H previous
lrurning (voitng) | | Mx_up

green in the Trace State Field
indicates that trace information
is being captured

running in the Debug State Field
indicates that the program
execution is running

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 148

3. The recording to the trace repository is stopped soon after the event happened.

- The state field in the Trace Configuration window changes to break (1) to indicate that the
recording to the trace repository is stopped.

- The Trace State field in the TRACES32 State Line changes to BRK accordingly (2).

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

(M K[+ »u[Z 280 MA@ 2 2[LTLP

W B:Trace E@
— METHOD
@ Analyzer Chnalyzer © Onchip O ART () LOGGER () SNOOPer () FDX LA
Integrator) Probe TProbe
— state — used — ACCESS — TDelay
Il | © Disable | - . [P Tronchip |
© OFF 8704. & ETM
© Arm - sIzE
) trigger 1073741824,
1 @ break

— Mode

— commands —— | @ Fi BusTrace
() ClockTrace
@ FlowTrace TERMination

[IPrestore
AutoArm SLAVE
Autolnit
[T Selfarm

I IQI][][g-amuem]l @ mnit || & mpl... |[52 store... || 52 Load... || B Set... | 7

address [types imp1 action data =
C:01E808e4--01E808E [Write [ONCHIP [TraceTrigger [BYTE 0OxZ4 BLASTK _wait_mask -
“ »)

B::f
Ifi1e I:\EVB\QD5P\QDSP6000\SURFEI00 \blast \build\Training\etm_triggerl.cmm loaded.
[emulate |[trigger |[devices |[trace |[paa [wvar [wst [PeRF | other |[previous |

[=~ [T

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 149

4. Display the

result.

BeTrce i =5
(& setup...|[(L Goto... || #) Find... || d chart || B Profile || EE MIPS |[# More| X Lesg
record |run |address leycle |data |symbol |£1. back =]
1 - ciad(R12); -
-0000000044 (1 P:0180C774 ptrace \\bootimg'Global \BLASTK_ reschedule_from_wait+0x14 0.035us B
1 | R7=memw(GP+#0x8A8); R5:4=memd(GP+#0x8A0); -
1
1 | R4=addas](R4,R1,#0x2); RS5=addas](R5,R1,#0x7); -
-0000000023 (1 P:0180C790 ptrace \\booUmg\G'Ioba'\\BLASTLreschedu'\e _from_wait+0x30 0. 070us
1 | R6=memw(R4+#0x0);
1 R2=ct0(R6);
1 | R5=addas]l \RS R2,#0x2); R6=clrbit(R6,R2);
1 | R8=cIrbit(R7, R].,, R9=memw \R5+«Ox0,,
1 | R3=memw \R9+-0)<O:,
1
1 | PO=cmp.eq(R6,#0x0); if(PO.new)R7=add(R8,#0x0); memw(R4+#0x0)=R6; |
+‘.‘.“.‘.“'—‘.“'—‘.“.‘.“.‘.“.‘.“.‘.“.‘.“.‘.‘ -
4

Please be aware that the result can only be displayed while the program execution is running if the
program code was copied into the TRACES32 Virtual Memory before.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

150

Example 2

Stop the trace recording when a write access to the variable BLASTK_wait_mask occurred and another
50% of the trace repository was filled.

Event

50%

Trace repository

1. Specify the event in the Break.Set dialog.

il B::Break Set =[5
address | expression
BLASTK_wait_mask + [&]FHL
type options implementation
~) Program [T Exclude | Temporary auto hd
_) ReadWrite NOMARK DISable action
© Read DISableHIT
* default [|| | [¥ advanced|
 o—— [—r— [Delete | [cancel |

Specify the data address in the address / expression field. Activate the HLL check box to
specify the breakpoint for the complete address range of the variable.

- Specify the type Write.

- Specify the action TraceTrigger.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 151

2.

3.

Specify the fill of the trace repository after the event (TDelay counter).

W B:Trace @
— METHOD
@ Analyzer CéAnalyzer © Onchip) ART () LOGGER () SNOOPer) FDX © LA
Integrator ' Probe IProbe
— state — used — ACCESS — TDelay
(0 DISable v] 536870912, & Tronchip
© OFF 0. [emM |
) Arm — SIZE — CLOCK &) BMC
() trigger 1073741824,
) break
— Mode — Mode
— commands —— | @ Fifo BusTrace 0 CLOCK
() Stack) ClockTrace @ autofocus
() Leash @ FlowTrace TERMination
©) STREAM
ki PIPE Prestore TestFocus
AutoArm RTS SLAVE ¥ AutoFocus
Autolnit
[C] selfarm

Start the program execution.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

152

4. As soon as the event occurred
- The state field in the Trace Configuration window changes to trigger (1).

- The Trace State Field in the TRACE32 State Line changes to TR accordingly (2).

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help

Mkl d e v E e O Hu NS @z 2 LTI

W B:Trace EI@
— METHOD
@ Analyzer =~ CéAnalyzer © Onchip) ART () LOGGER () SNOOPer () FDX © LA
Integrator ' Probe IProbe
— used — ACCESS — TDelay
| || | s36870912. [3F Tronchip |
156381112. & ETM
- SIZE
1 i 1073741824, — THreshold ——

— Mode — Mode
@ Fifo BusTrace
©) stack) ClockTrace
©) Leash @ FlowTrace [¥] TERMination
© srrean
£ List PIPE [prestore
AutoArm RTS SLAVE ¥ AutoFocus
Autolnit

Selfarm

B £:Breakc List [= =]

(3% Delete All|[© Disable Al (@ Enable All|[@ Init [& Impl... || 52 store... || 2 Load... |[B Set... |
| address [types [imp1 Fction Loy
C:01BE808E4[lWrite [ONCHIP [TraceTrigger [BLASTK _wait_mask -
< r

[O A [W st | other |[p

| l-:)_ runmin

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 153

5. As soon as the TDelay counter ran down

- - The state field in the Trace Configuration window changes to break.

- - The Trace State field in the TRACE32 State Line changes to BRK accordingly.

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Ip

MRl deernE e D Hu N SMdS @z 2T

W B:Trace

— METHOD
@ Analyzer

CAnalyzer © Onchip © ART

) LOGGER (©) SNOOPer () FDX

Integrator

(@7

Probe IProbe

4 List
AutoArm
AutoInit
SelfArm

— used ————

— ACCESS

— TDelay

536876992,
— SIZE

7]

536870912,

[& Tronchip |

1073741824,

— Mode

— Mode
BusTrace
() ClockTrace
@ FlowTrace

& ETM

TERMination

[Prestore
SLAVE

TestFocus

¥ Autol
gshow oCus

alie e |

types

[impl

[O o AT @ e @ i & i 153 v (s]

address

C:01B808B4[[write

4

[ONCHIP

ction
TraceTrigger | BLASTK _wait_mask
3

—1

trace ||

Data ||

Var

[m_“h'e]%][devices | |

IO_ running

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

154

After the TDelay counter elapsed the trace information can be displayed.

Push Trigger in the Trace Goto dialog for the display of the trigger point. All records recorded after
the trigger event have a positive record number.

r

£ BuTrace.List
[W Setup...][nGoto..] #3 Find...][el Chart]L Profle Il MIPS][v More][A Lessﬂ
record [run adcress cycle |data symbol ti.back i
0 '|r\ 'PO) memw Rl+"0x-".=_R:, -
0 1 =|
0 11' PCI new) jump:mt 0x18013D4; if(!PD) memw(R27+#0x0)=R26;
0 -
0
0
0 il ,'
0 ¥ it (PO. new) .<|‘.'p nt Clxl:SCl C; PO=cmp.gt(R1,R2);
0 uﬂ
64 |77
68 ///// ///%
[b O=memw (RO+# iz
0 UGP R—.:l e| W \R0+*0x0 RE RO+#0x8);
0 [PCI cmp. gt (R6,#0x1); iF(! PCI n mp:t Ox1809838; Pl=cmp.eq(R4,R3); R4=#0x0;
0
0
0
+0000000003 (0 \\boot'lmg\G'Ioba'l\ma'|'|0c+0xl?8 =0. 005us
0 S=memw (FP+#-0x0C); R27:26=memd(FP+#-0x8)
+0000000010 [0 P:018013F4 pt \\bootim \Glohalimalloc.0x184 0.035us
0 | deallocframe;
0 Jum p[|_R % Trace Goto EI@
+0000000012 10 OE%O poct Record / Time / Bookmark
22 0/ {/R//////_/////////////////////////////// —
+0000000023 |0 I: P:0180965C ptr \\boot‘lm -
0 R3=UGP; R4=memw()F RG |'e|‘"r‘,"\RCl+‘—."
8 [PO=cmp. gt (R6,#0x1) First] [Tr|gger] [Zero
0 Track
0 trap0(#0x3); .
+0000000033 (0 P: 01808020 trace Vbootim
o ? =

Summary

; Counter possible
Break.Set <address> | <range> I<access> <data_value> [TraceTrigger /COUNT <value>
Var.Break.Set <hll_expression> /<access> <data_value> [TraceTrigger /COUNT <value>

; Stop trace recording when the specified address is executed
; (up to 4 single instructions or up to 4 instruction ranges)

Break.Set <address> | <range> /Program /TraceTrigger

; Stop trace recording when the specified data access occurred
; (up 4 single data accesses or up to 2 data access ranges)

Break.Set <address> | <range>/ReadWrite | /Read | /Write /TraceTrigger
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write /TraceTrigger
Break.Set <address> | <range> /<access> [Data.auto <data> | /Data.Byte <data> [TraceTrigger

Break.Set <address> | <range> /<access> /Data.Word <data> | /Data.Long <data> [TraceTrigger
Var.Break.Set <hll_expression>/ReadWrite | /Read | /Write /Data.auto <data> /TraceTrigger

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

| 155

Filtering/Triggering via the ETM.Set

The ETM.Set commands allow a low-level programming of the triggering/filtering resources of the ETM.

The low-level programming of the ETM filters and trigger requires at least some basic knowledge about the
so-called “event resources” provided by the Hexagon ETM. Please refer to your ETM Architecture
Specification.

The event resources consist basically of 4 trigger blocks and a three state sequencer.

sequencer

trigger block

trigger block

trigger block

trigger block

anai

The low-level programming adds the following features:
J More sophisticated breakpoints than the Break.Set dialog.

J The sequencer allows to combine a series of events to form a breakpoint

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 156

The ETM Registers

The trigger block/sequencer configuration registers can be displayed as follows:

[Trace] Probe Perf Cov Wind
& Configuration... '
B CTS Settings...

3
3
= Timing L4
fuf Chart 4
g Save trace data ... & BETM EI@
E Load reference data ...
etm trace selection configuration
= © oFF Trace [Contextd Partsize
@ oN TraceTNUM [cydeAcourate
[CIFillPort PortMode
commands TraceASID [T LoopTrace 12 7
[ssc
. . . ® CLEAR TraceTID
Click Register to display the
. . . —» egister
ETM configuration registers
%3 BMC
o B:ETM.Register = |[E][]
Click here to
. _>>E| ETM (Embedded Trace Macrocell) il
get details ETM_CLK_EN CE
ETM_CTRL 00000098 ETMA Disabled QDSPEIG Disabled ETG Disabled
ISDEEG Disabled TPG Disabled TPFEWM Disabled
150 Not ignored GBA Not generated TIDASID Included
DB Not generated CaM Disabled TRS B-bits
TPM 1:2
ETM_RESET 00000000 ETMUR Mo reset ETMGR No reset =
ETM_VERSION FFFFOO02 1
H TRIGO_SACO_ADDRE 00000000
Trlgger bIOCk 0 TRIGO_SACI_ADDRE 00000000
TRIGO_DC_DATA 0ooo0000
TRIGO_DC_MASK 0ooo0000
TRIGO_CTRLO 0ooo0000 RTHNUM O TIOM 0 RTID oo
RASID O THUME Disabled TIDE Disabled T
ASIDE Disabled
TRIGO_CTRL1 0o0o0000 CRSE -—= CSACSE --- SACISE ---
SACOSE --- SACCM AND DCAT Disabled
EABM A1l 32-bits DCCT == DCCW Low word
SACIAT Load-or-store SACICT == SACIMS
SACOAT Load-or-store SACOCT == SACOMS PC
TRIGO_COUNT 00000001 COUNT 0001
TRIGI_SACO_ADDE 00000000
TRIGI_SACI_ADDR 00000000
TRIGL_DC_DATA 0ooo0000
TRIGL_DC_MASK 0ooo0000
TRIG1_CTRLO 0ooo0000 RTHNUM O TIOM oo RTID oo
RASID O THUME Disabled TIDE Disabled
ASIDE Disabled
TRIGI_CTRL1 0o0o0000 CRSE -—= CSACSE --- SACISE ---
SACOSE --- SACCM AND DCAT Disabled
EABM A1l 32-bits DCCT == DCCW Low word
SACIAT Load-or-store SACICT == SACIMS
SACOAT Load-or-store SACOCT == SACOMS PC
TRIGL1_COUNT 00000001 COUNT 0001
4

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

157

If the contents of an ETM configuration register is selected, the address and a short description of the ETM
register is displayed in the TRACES32 state line. For detailed information on the particular register, refer to the
ETM architecture specification.

A TRACE32 Hexagon [Power Trace Ethernet @i _ =NACHL X,

|| File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help

w3 ee/pu[E e ol aumscs @22/ LTLP
B:ETM.Register [E=H Hol(=T)

-~

(Embedded Trace Macrocell)

JOCO0O0C
00000098

ETMA Disabled 5IG Disabled ETG Disabled
I G Disabled Disabled TPFwM Disabled =
150 Not ignored Not generated TIDASID Included
DE Not generated Dizabled TRS B-bits
TPM 1:2

00000000 ETMUR No reset No reset

FFFFOO02

00000000

00000000

00000000

00000000

00000000 o TIDM oo RTID oo

TNUME [EERSEG TIDE Disabled

o
Disabled
00000000

-—= Disabled
A1l 32-bits Low word
Load-or-store PC
Load-or-store PC
00000001 o001
»
Data J[var J[st][PERF [other |[previows
ST T | T 0 Eopped [[= o

The ETM configuration registers can be read while the program execution is running. For an extensive
usage of the ETM registers the following command is recommended:

; Display the ETM configuration registers

; - mark changes by color (SpotLight)

; - update register display while program execution is running
g (DualPort)

ETM.Register , /SpotLight /DualPort

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 158

Actions Based on Sequencer Level

Most trigger/filters are programmed as follows:

Specify the condition(s) Specify the transitions Specify actions
for the trigger block(s) > for the sequencer > for sequencer level(s)

ETM.Set TNUM TO 3. ETM.Set SO0TOl TO ETM.Set STOP Sl

The following graphic shows the relevant ETM.Set commands:

Commands to program Commands to trigger an action
a trigger block

ETM.Set Address ...

ETM.Set Data ... — ETM.Set Trigger <seq_level>
ETM.Set COUNT ... TO e

ETM.Set ASID ... — ETM.Set STOP <seq_level>
ETM.Set TID ...
ETM.Set TNUM ... — ETM.Set EXTOUT <seq_level>
° — ETM.Set INTERRUPT <seq_level>
T1

__ 13 |
Commands to change the
sequencer level

ETM.Set SOTO1 ...
ETM.Set SOTO2 ...
ETM.Set S1TOO ...

To illustrate actions based on sequencer level, the following examples are provided:

U Example 1: Stop the program execution if a value other than the specified one is written to the
<variable X>.
J Example 2: Stop the program execution if a particular function was first executed by the hardware

thread 1 and then by the hardware thread 3.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 159

Example 1 - Actions based on Sequencer Level

Stop the program execution if a value other than 0x24 is written to the variable BLASTK_wait_mask

(etm_set1.cmm).
; Display command history
HISTory.type
ETM.Register , /SpotLight /DualPort

; Reset all ETM registers
ETM.CLEAR
; Sequencer level 0 is active after ETM.Clear

; Program the address range of the variable mutex lock into the
; address comparator of the trigger block 0, specify write access

ETM.Set Address TO Write Var.RANGE (BLASTK_ _wait_mask)

:

A TRACE32 Hexagon ?ower Trace Ethernet @]
File Edit View Var Break Run CPU Misc Trace Pef Cov Window Help

(Ml see|rn e o Hussas @z TR

T

I Eid BaHisTory type [S=E=]

. -
E::HISTory.type | 4l
E::ETM.Register , /SpotLight /DualPort b
B::ETM.Clear
BE::ETM.Set Address TO Write V.RANGE(BLASTK_wait_mask) hd
4 | n | +

|« B:ETM.Register, /SpotLight /DualPort [=|[E =

-
| |2 ETM (Embedded Trace Macrocell)

(l ETM_CLE_EN JOOOCOO0 CE

ETM_CTRL 00000098 ETMA Disabled QDSPEIG Disabled ETG Disabled
ISDEEG Disabled TPG Disabled TPFWM Disabled E
150 Not ignored GBA Not generated TIDASID Included
DB Not generated CAM Dizabled TRS B-bits
TEM 1:2

ETM_RESET 00000000 ETMUR No reset ETMGR No reset

ETM_VERSION FFFFOO02

TRIGO_SACO_ADDR QABS0SE4

TRIGO_SACI_ADDR @LBB0SBS

TRIGO_DC_DATA 0oooo000

TRIGO_DC_MASK 0ooo0000

TRIGO_CTRLO 0oQo0000 RTHUM O TIDM oo RTID oo
RASID O THUME Disabled TIDE Disabled
ASIDE Disabled

TRIGO_CTRL1 20002E5 CRSE ==0 CSACSE ——- SACISE -—-
SACOSE --- SACCM AND DCAT Disabled
EAEM A11 32-bits DCCT == DCCW Low word
SACIAT SACICT SACINS Datawaccess
SACOAT SACOCT pm SACOMS Datagpsccess

TRIGO_COUNT 0o000001 COUNT 0001

Fl b

B::[ETM.Set Address TO Write V.RANGE(BLASTK_wait_mask)

[T | T | P | e | e pravious
P:0180EOCO \\bootimg\main\ma[1476444416. o stopped ~ mx we

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

160

; Program the data !0x24 into the data comparator of the trigger block 0

ETM.Set Data TO != 0x24

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set SO0TO1 TO

; Stop the program execution is sequencer level 1 is active

ETM.Set STOP S1

Please be aware, that this program stop is a one time stop. In order to stop
the program execution for the same condition again, the same programming

sequence needs to be reprogrammed.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 161

Example 2 - Actions based on Sequencer Level

Stop the program execution if the function BLASTK_ futex_wait was first executed by the hardware thread 1
and then by the hardware thread 3 (etm_set2.cmm).

; Display command history
HISTory.type

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 i1s active after ETM.Clear

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 0
ETM.Set Address TO0 Program BLASTK futex wait

; Program the hardware thread 0 into the TNUM comparator of the trigger
; block 0
ETM.Set TNUM TO 1.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set SO0TO1l TO

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 1
ETM.Set Address Tl Program BLASTK futex wait

; Program the hardware thread 3 into the TNUM comparator of the trigger
; block 1
ETM.Set TNUM T1 3.

; Change from sequencer level 1 to 2 if the event specified in trigger
; block 1 becomes true
ETM.Set S1TO2 T1

; Stop the program execution is sequencer level 2 is active
ETM.Set STOP S2

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 162

Actions Based on Sequencer Level and Condition

Some trigger/filters are programmed as follows:

Specify the condition(s) > Specify the transitions : Specify actions

for the trigger block(s) for the sequencer for sequencer level(s)
and condition
ETM.Set TNUM TO 3. ETM.Set Filter TO SO

The following graphic shows the relevant ETM.Set commands:

Commands to program Commands to trigger an action
a trigger block

ETM.Set Address ...

ETM.Set Data ... — ETM.Set Filter <trigger_block> <seq_level>
ETM.Set COUNT ... | TO

ETM.Set ASID ... — ETM.Set _

ETM.Set TID ... CountReload <trigger block> <seq_level>

ETM.Set TNUM ...

T1

T2

T3

Commands to change the
sequencer level

ETM.Set SOTO1 ...
ETM.Set SOTO2 ...
ETM.Set S1TOO ...

To illustrate actions based on sequencer level and condition, the following examples are provided:

J Example 1: Program the ETM to export only trace information for <hardware_thread x> and
<hardware_thread_y>.

U Example 2: Program the ETM to export five times the entry to the <function_x> and one time the
entry to the <function_y> repeatedly.

J Example 3: Stop the program execution after the <function_x> was called 10. times by hardware
thread 0. Export only the function call.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 163

Example 1 - Actions based on Sequencer Level and Condition

Program the ETM to export only trace information for hardware thread 0x0 and hardware thread 0x3
(etm_set3.cmm).

ETM.CLEAR ; Reset all ETM registers

ETM.Set TNUM TO 0xO0 ; Program the hardware thread 0x0
; into the TNUM comparator of the
; trigger block 0

ETM.Set TNUM T1 0x3 ; Program the hardware thread 0x3
; into the TNUM comparator of the
; trigger block 1

ETM.Set Filter TO ALL ; Export trace information in
; all sequencer levels if the
; condition specified for trigger
; block 0 is true

ETM.Set Filter T1 ALL ; Export trace information in
; all sequencer levels if the
; condition specified for trigger
; block 1 is true

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 164

Example 2 - Actions based on Sequencer Level and Condition

Program the ETM to export five times the entry to the function blast_mutex_unlock and one time the entry to
the function blast_mutex_lock repeatedly (etm_set4.cmm).

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 is active after ETM.Clear

Program the start address of the function blast_mutex_unlock into the
; address comparator of the trigger block 0

Export the start address of the function blast_mutex _unlock if
; sequencer level 0 is active (alternative way to ETM.Set Filter ..)
ETM.Set Address TO Program blast_mutex_unlock SO

’

; Program the counter of trigger block 0 to 5.
ETM.Set Count TO 5.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set S0TO1 TO

Program the start address of the function blast_mutex_lock into the
; address comparator of the trigger block 1

; Export the start address of the function blast_mutex_lock if
; sequencer level 1 is active (alternative way to ETM.Set Filter ..)
ETM.Set Address T1 Program blast_mutex_lock S1

; Change from sequencer level 1 to 0 if the event specified in trigger
; block 1 becomes true
ETM.Set S1TOO0 T1

; Reload all counters if the event specified in trigger block 1 becomes
; true in the sequencer level 1
ETM.Set CountReload T1 S1

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 165

Example 3 - Actions based on Sequencer Level and Condition

Stop the program execution after the function BLASTK_writec was called 10. times by hardware thread 0.
Export only the function call (etm_set5.cmm).

; Display command history
HISTory.type

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 i1s active after ETM.Clear

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 0

; Export this instruction as long as the sequencer level 0 is
; active
ETM.Set Address TO0 Program BLASTK writec SO

; Program the hardware thread 0 into the TNUM comparator of the trigger
; block 0
ETM.Set TNUM TO O.

; Program the event counter of trigger block 0 with 10.
ETM.Set Count TO 10.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set SO0TO1l TO

; Stop the program execution is sequencer level 1 is active
ETM.Set STOP S1

; Display the result
Trace.List

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 166

Benchmark Counters

Introduction

The ETM provides six 16-bit counters which can count one of the following events:

DCMISS data cache misses
DCCONFLICT data cache conflicts

ICMISS instruction cache misses
ICSTALL instruction cache stall-cycles
ITLBMISS itlb misses

DTLBMISS dtlb misses

STALLS all stall cycles

TRACE32 PowerView enables you:

o to count the occurrence of up to six events summarized for all hardware threads
(BMC.SPLIT OFF).
. to count the occurrence of a single event separately for each hardware thread (BMC.SPLIT ON).

The counters count their assigned event for a fixed number of clock cycles.

Profile packets containing the current counter values are exported by the ETM after this fixed number of

cycles.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

167

The benchmark counters, the filters provided by the ETM configuration window and the filter breakpoints can
be combined.

Benchmark counters

© B:BMC =N Nl
— profiling — Counter0..Counters — SELect — draw — profile
© oFF ICMISS (Instruction Cache Misses) - @ Counterd [countero ||| [countero |
@ on OFF (Disabled) -7 ©) Counterl [Counterl] [Counterl]
OFF (Disabled) -3) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) -3) Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) -3) Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) -7) Counter5 [Counter5] [Counters]
— CyclePeriod —— — options
1000. [EIspLm
Filter breakpoints
183 B::Break.List == |
(3% Dekete Al Dissbie Al @ Enable][@ Init][2 sekect.. |[S2 Store..) (52 Load... [€@ Set... |
address types impl action '
Wjﬁ%m ONCHIP ’Tr‘ aceEnabTe | MCLum_G 7
4 3
ETM configuration v v
& BETM = EoH
— etm — trace selection configuration —
© OFF Trace [7 ContexttD PortSize
@ oN - TraceTHUM — | [CydeAcaurate
[CIFillPort PortMode
— commands —— |- TraceASID — | [C LoopTrace 1/2 M > ETM trace paCket
| racer | generation
i List

Trace repository*

* trace memory of PowerTrace
or ETB

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 168

Standard Examples

To illustrate the handling of benchmark counters, the following examples are provided:

. Example 1: Count the total number of stall cycles and the number of instruction cache stall cycles
summarized for all cores. Export this information every n clock cycles.

J Example 2: Count the total number of stall cycles separately for each hardware thread. Export
this information every n clock cycles.

J Example 3: Count the instruction cache misses for hardware thread 0. Inspect the peak areas.

. Example 4: Count the total number of stalls between the entry to a particular function and the

instruction at a particular address.

Example 1 - Benchmark Counters

Count the total number of stall cycles and the number of instruction cache stall cycles summarized for all
cores. Export this information every 500. clock cycles.

1. Open the benchmark counter configuration window.
BMC.state
© B:BMC (=]l@]
profiling Counter0..Counter5 SELect draw profile
@ OFF OFF (Disabled) "3 @ Counter0 [Counter0] [Counter(]
I ON OFF (Disabled) "3 _ Counterl [Counterl] [Counterl]
OFF (Disabled) "3 _ Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) "3 _ Counter3 [Counter3 | [Counter3 |
[& ETM] OFF (Disabled) "3 _ Counterd [Counterd] [Counter4]
[& Trace] OFF (Disabled) & _ Counter5 [Counter5] [Counters]
CyclePeriod options
1000. B spur
2, Configure the benchmark counters.
© B:BMC [=]lE s
profiling Counter0..Counter5 SELect draw profile
© OFF [sTALLS (Stalls) ~|| | ® countero [countero ||| [countero |
© oN [oFF (pisabled) ~| | | © counter1 [countert ||| [counter1 |
OFF (Disabled) ©) Counter2 [counterz ||| [counterz |
DCMISS (Data Cache Misses) -

RESet DCCONFLICT (Data Cache Conflicts) : Counter3 [Counter3] [Counter3]
ICMISS ilnstruction Cache Misses% () Counterd [Counter4] [Counter4]
ICSTALL (Instruction Cache Stalls ©) Counter5 [counters || |[counters |

ITLBMISS (Instruction TLB Misses)
DTLBMISS (Data TLB Misses)
CyclePeriod STALLS (Stalls)
1000. SPLIT

- Counter0 counts the total number of stall cycles

- Counter1 counts the number of instruction cache stall cycles

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 169

3. Specify the exporting rate.

) B:BMC = ==
profiling Counter0..Counter5 ———— SELect draw profile
@ OFF STALLS (Stalls) ~|| | @ countero [countero ||| [countero |
Cron OFF (Disabled) -3) Counterl [Counterl] [Counterl]
OFF (Disabled) i) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) i) Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) i () Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) - 3 () Counter5s [Counter5] [Counters]
- CyclePeriod — - options ———
500. [Clspum

- The counter contents are exported by the ETM all 500 clock cycles.

4. Enable the TRACE32 BenchMark Counter functionality (BMC.ON).

() BzBMC ===
profiling Counter0..Counter5 ————— SELect draw profile
@® OFF STALLS (Stalls) n © Counterd [Counter0] [Counter0]
_> @ 0N OFF (Disabled) -) Counterl [Counterl] [Counterl]
- - 1| | OFF (Disabled) -) Counter2 [Counter2] [Counter2]
[Reset || ||oFF (pisabled) || | © counter3 [counters || | [counters |
[& ETM] OFF (Disabled) N) Counter4 [Counter4] [Counter4]
[B Trace] OFF (Disabled) - () Counter5 [Counters] [Counters]
- CyclePeriod — - options ————
500. ElspuLr

5. Start and stop the program execution.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 170

6. Display the result.

Trace.List Counter0 Counterl DEFault

Push the More button to get the counter display

7 BuTrace.List Counterd Counterl DEFault =R =
B setup...|[13 Goto... || #Find... || Ad chart || B Profile !MIPS £ More|[X Lesg
a

record |counter0 |counterl run address cycle dat symbol ti.back 5
—0000002571 P:0180D2F0 ptra \\bootimg\mem_conso e \BLASTK_puts_debug_buffer+0x30 0.070us .
ump Ox180A528; dﬂaWWG frame;

‘((

S|

0000002570

0000002567
0000002566
0000002565
0000002564
0000002563
0000002562
0000002561
0000002560
0000002559
0000002558
0000002557
0000002556
0000002555
0000002554
0000002553
0000002552
0000002551 |000009DB
0000002550
0000002549
0000002548
0000002547 00000000 s el el e i e
0000002546 |
0000002545 -
‘

W

w
W

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 171

Example 2 - Benchmark Counters

Count the total number of stall cycles separately for each hardware thread. Export this information all 500.
clock cycles.

1.

Open the benchmark counter configuration window.

BMC.state
@) B:BMC ==
profiling - Counter0..Counter5 ——— SELect - draw - profile
@ oFF OFF (Disabled) "3 @ Counterd [Counter0] [Counter(]
I oN OFF (Disabled) "3) Counterl [Counterl] [Counterl]
— OFF (Disabled) "3) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) "3) Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) "3) Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) & () Counter5 [Counter5] [Counters]
- CyclePeriod —— — options ————
1000. [CIspum

Activate the SPLIT option to program the ETM to count the specified event separately for
each hardware thread.

) B:BMC
profiling Counter0..Counter5 SELect
@ OFF OFF (Disabled) - @ Counter0
) ON OFF (Disabled) -) Counterl
—— OFF (Disabled) ¥| | | © Counter2
[Reset || ||oFF (pisabled) ~| | | © counter3
[&Eem || |oFF (Disabled) ~| | | © counters
[ETrace | OFF (Disabled) A (©) Counter5
- CyclePeriod — |- options ———
1000. [¥]spLIT

(o] &)
draw 1 profile
Counter0] [Counter0]
Counterl] [Counterl]
Counter2] [Counter2]
Counter3] [Counter3]
Counter4] [Counter4]
Counter5] [Counter5]

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

172

3. Configure the benchmark counter Counter0.

% B:BMC =N IR =T
profiling Counter0..Counter5 SELect draw 1 profile
@ OFF STALLS (Stalls) ~ || | @ countero [countero ||| [countero |
roN OFF (Disabled) i) Counterl [Counterl] [Counterl]
----------- OFF (Disabled) -3) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) -3) Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) -3 () Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) -7 () Counter5 [Counter5] [Counters]
= CycIePeriod — [options ———
1000. SPLIT

- Counter0 counts the total number of stall cycles

4. Specify the exporting rate.

% B:BMC [E]]
profiling Counter0..Counter5 SELect draw 1 profile

@ OFF STALLS (Stalls) ~|| | @ countero [countero || | [countero |
I oN OFF (Disabled) -3) Counterl [Counterl] [Counterl]
————— OFF (Disabled) -3) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) -3) Counter3 [Counter3] [Counter3]

[& ETM] OFF (Disabled) -3 () Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) -7 () Counter5s [Counter5] [Counters]
- CyclePeriod — — options ————
500. [¥lspLT

- The counter contents are exported all 500 clock cycles.

5. Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

% B:BMC [E]]
profiling Counter0..Counter5 SELect draw 1 profile
© OFF STALLS (Stalls) ~|| | @ countero [countero || | [countero |
—» @ 0oN OFF (Disabled) A) Counterl [Counterl] [Counterl]
— | | | OFF (Disabled} -3) Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) -3) Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) -3 () Counter4 [Counterd] [Counter4]
[& Trace] OFF (Disabled) -7 () Counter5s [Counter5] [Counters]
= CycIePeriod — options ————
500. [¥lspLT

6. Start and stop the program execution.

7. Display the result.

Trace.List Counter0 Counterl DEFault

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 173

Push the

More button to get the counter display

B:Trace.List Counter) Counterl DEFault EI@

(& setup... | ¥ Goto... || #1Find... || Adchart || Bl Profile || B MPSs][4 more|[X Less

counter(counterl run [address cycle |data |symbol [ti.back '

record
16

16

]

171

=1

-0184496316
-0184496315
-0184496314
-0184496313
-0184496312
-0184496311
-0184496310
-0184496309
-0184496308
-0184496307
-0184496306

-0184496303
-0184496302
-0184496301
-0184496300
-0184496299
-0184496298
-0184496297
-0184496296
0184496295
-0184496294
-0184496293
-0184496292
-0184496291
-0184496290
-0184496289
-0184496288
-0184496287
-0184496286
-0184496285
-0184496284
0184496283
-0184496282
-0184496281
-0184496280
-0184496279
-0184496278
-0184496277

7 .

0 [R24=#0x1; memd(FP+#-0x10)=R25:24; =
///////////////////g//l//../e/"/d/-/{;%/:/_/‘g/j/lg/./=/R/*/:/-/*/5/T//lfl
7/////////////////{)//{{é{{\é{_/./{{{{%{é_/(‘.///E///Alil

000001EF 0
000001F4 1
000001F4 2
000001E6 3
000001F4 4
000001F4 5
0 P:01812C7C ptrace \\bootimg\gthread\gthread_root_setup+0x1C 0. 315us
0 -
4 13

©1989-2024 Lauterbach Training Hexagon ETM Tracing |

174

Example 3 - Benchmark Counters

Count the instruction cache misses for hardware thread 0. Inspect the peak areas.

1. Configure the benchmark counter.
BMC.state
© B:BMC (=]l E s
profiling Counter0..Counter5 SELect draw profile
) OFF ICMISS (Instruction Cache Misses) n @ Counter0 [Counterd] [Counter0]
@ ON OFF (Disabled) "3 _ Counterl [Counterl] [Counterl]
OFF (Disabled) "3 _ Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) "3 _ Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) "3 _ Counterd [Counters | [Counter4 |
[& Trace] OFF (Disabled) "3 _ Counter5 [Counter5] [Counters]
CyclePeriod options
500. ¥l spLT

- Program the ETM to count the specified event for each hardware thread separately
(BMC.SPLIT ON)

- Specify that Counter0 counts Instruction Cache Misses

- The counter contents is exported all 500. clock cycles

- Enable the TRACES32 BenchMark Counter functionality (BMC.ON)

2. Program the ETM to export trace information only for hardware thread 0.

ETM. state

&2 B:ETM
etm
~) OFF
@ ON

commands

List

selection
[C] contextD

trace
Trace

— TraceTNUM

[Clcydeacarate
0x0 [CIFillPort

— TraceASID

— TraceTID

1 | [[]LoopTrace
[ClsBC

=N HCR =X

configuration

— PortSize

— PortMode ————

3. Start and stop the program execution.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

175

4,

Display the result.

Push Counter0
in the draw field
to get a graphical

display of the

counter values

SELect

@ Counter0
©) Counterl
©) Counter2
*) Counter3
*) Counter4

[V sPLIT

©) Counter5

3 B:BMC
profiling Counter0..Counter5
) OFF ICMISS (Instruction Cache Misses)
@ ON OFF (Disabled)
- - OFF (Disabled)
[Reset ||| |oFF (Disabled)
[&emm || | |OFF (Disabled)
[&2 Trace] OFF (Disabled)
= CycIePeriod — options ————
500.

[E=E e =5

draw profile

[Counter0] [Counter0]
[Counterl] [Counterl]
[Counter2] [Counter2]
[Counter3] [Counter3]
[Counter4] [Counter4]
[Counter5] [Counter5]

Use the zoom buttons in the display

2| B:Trace.DRAW %du.w Counterd

g@l

(& setup...|[13 Goto... || #3Find... || P chart || 4 1n |4 out|[MFull]| $ I |[X out|[F Ful]

Counter0

000s

-2.399000000=

16.

14.

13

10.

<l v o« [

L

y 4 [

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

176

5. Open a trace listing to inspect peak areas.

Trace.List /Track

[W Setup...|[L Goto... |[#3 Find... |[M chart |[b In |[p4 Out[MM Full][£ 1 |[X out] F Full]
-2.399200000s —2.3991000005|
Counter(| | '
10. . %‘
8. B
6.
4.
2. o
o. | f . . . _ | |~
i ™ P
Bu:Trace.List /Track EI@
(& Setup...][1Y Goto... |[#3Find...][l Chart |[M Profile |[W MPS |[# More|[X Lesq
record run |address lcycle |data |symbaol [t1.back =
-0014513111 [0 P:01803800 ptrace “\bootimg\GTobaT'_PrintT+0xAD 0.035us .
0 | RO=memw(SP+#0x34); =
0
0 | memw(SP+#0x34)=R0; i
-0014513103 [0 P:01803810 ptrace “Yhootimg\Globall_Printf+0xB0 0.035us é
0 :
0 PO:cm.e(R4 #OXO), if (1PO. new) jump:t 0x18037A0;
[1] CHOE] \G
0 © RA=#0x0; RO=add(SP #0x34); RL=R25; R2=memw(GP+#OXOED);
0 R3:add(SP,#0x40) call OXISO?OEO, memw (SP+#0x94)=R4;
0 - a'I'IocFrame(#OxlO)
0 | R27:26=combine(R0O,R1); memd(FP+#-0x8)=R27:2
0 | R25:24=combine(R2,R3); call Ox1804A20; memd(FP+# 0x10)=R25:24;
0 - R1=#0x1; RO= merm-.'(GP+#0x260), a'I'IocFrame(#OxS),
0 | memw(FP+#-0x4)R27: -
Fl b

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 177

6. Reset all settings when you are done with your test.

%) B:BMC -5 |[E]
— profiling — Counter0..Counters — SELect — draw — profile
@ OFF OFF (Disabled) ~|| | @ countero [countero ||| [countero |
© oN OFF (Disabled) ~|| | © counter1 [counters || |[countert |
OFF (Disabled) ~|| | © counter2 [counterz ||| [counterz |
=B Riset | | [OFF (Disabled) ~| | | © counter3 [counters || |[counters |
[&Em || |oFF (Disabled) ~|| | © counters [counters || |[counters |
[& Trace] OFF (Disabled) & () Counter5 [Counter5] [Counters]
— CyclePeriod —— — options
1000. [CIspLT

— etm — trace selection

configuration —

) OFF Trace [C] ContextID PartSize

@ oN - TraceTNUM — | [Tl cydeacaurate
[CIFillPort PortMode
— commands —— |- TraceASID —— | [C]LoopTrace 1f2 =

RESet [CIBBC
& CLEAR — TraceTID ——
Register
T BMC

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 178

Example 4 - Benchmark Counters

Count the total number of stalls between the entry to the function BLASTK_writec and the instruction at
address BLASTK_mutex_unlock+0xO0C.

1.

5.

Specify TraceON/TraceOFF breakpoints for the program range of interest.

3 B:Break List (=B s
(3K Dekete Allj (O Disabie Al @ Enabie Alj[@ Init]|43¢5elect |@ Store...)[S2 Load... [I3l Set...
address |[types impl acti |
C:0180A534[[Program QONCHIP Tr‘aceOFF BLASTE_mutex_unTock+0x0C -
3 OISODZOONPr‘Dgr‘a.m ONCHIP TraceON BLASTK_writec -
Configure the benchmark counters.
© Biamc B
profiling [~ Countery..Counters SElect draw profile
© OFF STALLS (Stalls) ~ || | @ countero [countero || | [countero |
—» @ 0N OFF (Disabled) -3 _ Counterl [Counterl] [Counterl]
OFF (Disabled) i _ Counter2 [Counter2] [Counter2]
[RESet] OFF (Disabled) i _ Counter3 [Counter3] [Counter3]
[& ETM] OFF (Disabled) i _ Counterd [Counterd] [Counter4]
[& Trace] OFF (Disabled) - 3 _ Counter5 [Counter5] [Counters]
CyclePeriod options
100. [spur
- Counter0 counts the total number of stalls
- The counter contents is exported all 100. clock cycles.
- Enable the TRACE32 BenchMark Counter functionality (BMC.ON)
Start and stop the program execution.
Display the resuit.
Bu:Trace.List Counter) DEFault EI@
(& setup...|[13 Goto... || #3Find... || A chart | B Profile || HH MIPS][v More][A Les
record |counter([run |address cycle |data symbol ti.back i
0 + RZ=memw_Tocked(RO}; ~
0 [PO eq(R2, "Cle,, if(!PD.new) jump:nt Ox180A510; =
0 FR w_locked(RO); -
0 .eq(R2,#0x0); if(!PD.new) jump:nt Ox180A510;
-0000000574 -
-0000000573 |000001AD O
-0000000572
-0000000571
-0000000570
-0000000569
-0000000568
-0000000567
-0000000566
-0000000565
-0000000564
-0000000563
-0000000562
-0000000561
-0000000560
-0000000559
-0000000558
-0000000557 E
-0000000556 3 P:0180D2EQ ptrace A\BLASTK_puts_debug_buffer+0x80 0.245us —
_J 3 F PO=cmp.eq(RO,#0x0); if(!P0.new) jump:t Ox1B0D2A0; -
4 3

Reset the benchmark counters and delete the breakpoints when you are done with your

test.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

179

Function Run-time Analysis - Cache Misses/Stalls

Function run-times increase with the number of stalls or/and cache misses. It makes sense to check such

events.

Example

Analyze the number of Instruction Cache Misses for all function.

1. Configure the Benchmark Counter.
BMC.state ; Open the benchmark counter
; configuration window
© Baac | B
profiling Counter0..Counter5 SELect draw profile
) OFF ICMISS (Instruction Cache Misses) @ Counter0 CounterQ Counter0
—»9' ON OFF (Disabled) _ Counterl Counterl Counterl

OFF (Disabled)

[REset OFF (Disabled)

]
[&emm || | |oFF (Disabled)
J

[& Trace OFF (Disabled)
CyclePeriod options
500. [¥] spLIT

_ Counter2
_ Counter3
_ Counter4
_ Counters

Counter2

Counter2

Counter3

Counter3

Counterd

Counterd

[
[
[
[
[
[

Counters

[
[
[
[
[
[

Counters

I
I
I
)
|
I

Program the ETM to count the specified event for each hardware thread separately

(BMC.SPLIT ON)

Specify Instruction Cache Misses for Counter0.

The counter contents is exported all 500 clock cycles.

Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

SELect Counter0 as source for the benchmark counter statistic.

2. Start and stop the program execution.

©1989-2024 Lauterbach

Training Hexagon ETM Tracing |

180

3. Display the result.

BMC.STATistic.sYmbol

= | B:BMC.STATistic.s¥mbol

[E=N e

[ﬁ Setup.--][1ii Groups...][== Cnnﬂg..-][13 Goto

ll=lntoitoall =lTn [adrtn | EWoai. |
—

items: 413. total: 248136. samples: 142001277.
address [total min max avr count ratio% 1% 2% |
BLASTK walt_Tre— e e T Ty -
BLASTK_wait_forever 41321. 45. 40630. 13773. 3.(0/1) | 99.915% |e———————
BLASTK_futex_wait 40919. 9. 40472. 8183. 5 98. 94 3% | e————
BLASTK_futex_wait 40743, 40743 40743, 40743, 13 98, 517% |me—
BLASTK_wait_forever 40573. il 40156. 5071. 8.(0/1) | 98.106%
BLASTK_puts_debug_buffer 27468 0. 6. 0. 1775336. (0/1) | 66.418% |e————————
BLASTK error 6468 0. 8. 0. 40349. 15.039% |m—
BLASTK_event_vectors 2778. 0. 10. 2778. 0. 6. 717% |—
printstr 2104. 0. 6. 0. 484184. 5. 087% |we—
BELASTK_mutex_lock 991. 0. 18. 0. 1815902. 2. 396 |m—
doange] 650. 0. 1k 0. 1815683. 1.571% |—
603. 0. 603. 603. 0. 1.458% |mmmm—mm
190. 0. 190. 190. 0. 0.459% [+ T
jER 1 3

For a description of the list summary and the columns, see tables below.

List Summary

item number of recorded functions/symbol regions
total total number of stalls during measurement period
samples number of recorded profiling packets

Columns with function details

address function name/name of symbol region
(other) program sections that can not be assigned to a
function

total total number of stalls for the function during the recorded
period

min smallest number of stalls in a continuous address range of the
function

max largest number of stalls in a continuous address range of the
function

avr average number of stalls in a continuous address range of the
function

count number of new entries into the address range of the
function/symbol region (start address executed)

ratio ratio of stalls for the function with regards to the total number

of stalls

©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 181

Background

0000 Obb7

Profiling packet

number of stalls is evenly split up on all
instructions executed between 2 profiling packets

0000 09e8

Profiling packet

0000 09et

Profiling packet

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 182

Summary: Trigger and Filter

A set of functions has an effect on the ETM trace packet generation. But at the end all these functions are
using the same resources (the four trigger blocks and the sequencer provided by the ETM).

ETM configuration

& B:ETM =3 |EoR)
etm trace selection configuration
OFF Trace [”] Context PortSize
@ on TraceTNUM [Ccydeacarate
[CIFillPort PortMode
commands — |- Trocens> —| | Eltooprace
[Cesc
TraceTDd

The filter and trigger breakpoints

8 BBreak List =5 Ecn o
2 Load...) & Set...

< B:ETM Register (E=8Ecn o]

0000¢

00000000 ETHUR
FFFF0002

00000000

The benchmark counters

© BBMCstate ==
profiling Counter0..Counter5 SELect draw profile
© oFF OFF (Disabled) @ Countero Counter0 Counter0

Countert Countert. Countert.
Counter2 Counter2 Counter2
Counter3 Counter3 Counter3
Counters Counters Counters

on OFF (Disabled)

OFF (Disabled)
RESet OFF (Disabled)
[&Em™ OFF (Disabled)

B

[PTrace | | | [oFF (oisabled) Counters | | (oot | | [mGomies
CyclePeriod options.
1000. Cspur

In the case of a resource conflict, prioritization is done as follows:
1. ETM.Set commands
2. Break.Set commands

3. Benchmark counters

Please do not program the ETM resources via
. Data.Set
. PER.Set.simple

TRACE32 may overwrite your settings.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 183

Appendix A

The Calibration of the Recording Tool

TRACE32 provide the AutoFocus button in the Trace configuration window to calibrate the recording tool.

Trace | Perf Cov Window He

| & CTS Settings... & BiTrace ==
' METHOD
1 List . @ Analyzer JART (O LOGGER) SMDOPer (D FDX LA
e N Integrator Probe IProbe
= Timing L4
£ Chart ’ state used ACCESS TDefay
£3 Save trace data ... (0) DISable [= 0.
E Load reference data ... @ OFF 0. 0% -
— [) Arm SIZE CLOCK [&@BMC |
() trigger 1073741824 THreshold
() break 1.281.3 =
Mode Mode @ vee
commands @ Fifo BusTrace 0 CLOCK
©) stack O ClockTrace | | @ autofocus
@) Leash © FlowTrace [¥] TERMination
©) STREAM
= List PIPE Prestore
[¥] AutoArm RTS [V]SLAVE [3 AutoFocs | |
[¥] Autolnit
[C] selfarm

Trace.AutoFocus

In order to perform the calibration TRACES32 loads a test program to the memory addressed by the PC or
the stack pointer. It is also possible to define an <address_range> for the test program.

If the calibration is performed successfully, the following message will be displayed:

B::|
L\na'lyzer data capture o.k. (f=112.0MHz)

emulate | [trigger | [devices][traee][Dam [wvar][st |[PERF][S¥Stem][Step

P:0180E0CO \\bootimg\main\main

[|| Break || Register ||:
1476

Frequencies smaller then 6 MHz result in f=0.0 MHz, since the frequency is maintained by TRACE32 as an
integer.

©1989-2024 Lauterbach Training Hexagon ETM Tracing | 184

The ShowFocus button in the Trace configuration window allows to inspect the result of the calibration.

g B::Analyzer.ShowFocus EI@
(& setup...| Scan || Scan+t |[MdAutorocss|| x{Eve | CIockEye]Lg Store... || 2 Load...]mm
| -2.500 +0. 000 +2.500 +5. 000
: — — — .
. i e T
”

Data channel delay

Trace.ShowFocus

Sampling points (red lines)

©1989-2024 Lauterbach

Training Hexagon ETM Tracing

185

Calibration Problems

If the calibration of the recording tool fails, the following error message is displayed:

File Edit View WVar Break Run CPU Misc Trace Perf Cov Window Help

(M d /v e o 8umNicds | @ 2 2LTLP|
£ | B:AREA.view SEEE]

Warning: PIN TP11 connected to GND D
Warning: Trace test failed: pin connection error
Trace test failed.

< i | Y

4

B::

[emslate |[tigeer || geview |[mee [Data J[var J[st [PERF |[svstem |[other ||

P:0180E0CO \\bootimg\main\main [1476444416. [0 |stopped []
I A i TR

The TRACE32 message area displays further diagnosis information.

AREA.view

©1989-2024 Lauterbach Training Hexagon ETM Tracing

186

If the diagnosis information of TRACES32 is not sufficient to identify the problem, make sure that the following

preconditions are fulfilled before you start a more detailed diagnosis:
. The ETM is enabled on your target board.

. The ETM pins are enabled on your target board.

A helpful tool for further diagnosis can be the Trace.ShowFocusEye window.
Push Scan to get diagnosis data

30 B Analyzel.Sh*FocusEye EI@
& setup...|[Scan || Scan+][ﬂAutoFoms][gg'omes][‘ channel || 3 _channel|[4 |[» |
lmmmﬁ:ﬂ -2.50 +0. 000 +2.500 +5.000
a | | =
3.0 |} L. .
.................................... 0.0 . . P A |t P -
= 4 3

Push Channel to check the data eyes of the
trace channels

X B::Analyzer.ShowFocusEye EI
(& setup...]| Scan | Scan+ |[MMAutoFocus| 0§ Swowroass || 4 channel || 3 Channel|[4 |[» |
=113. OMHz -2.500 +0.000 +2.500 +5.000
all 1 1 1 1 I
3.0 -

| S

The recording tools can not dectect a data eye for TP11

X B:Analyzer.ShowFocusEye EI
(& setup...|[Scan][Scan+][ﬂAutoFoms][ggnmes][‘ channel || 3 _channel|[4 |[» |
f=113. 0MHz +0.000 +2.500 +5.000
TP11 I I I | I
3.0 S -
2.0

©1989-2024 Lauterbach Training Hexagon ETM Tracing

187

	Training Hexagon ETM Tracing
	Introduction Hexagon ETM
	Off-chip Trace Port
	TRACE32 Hardware Configuration
	Trace Display/Evaluation for All Hardware Threads in Common
	Trace Display/Evaluation for a Single Hardware Thread
	Basic Start-Up Sequence
	Cycle-Accurate Tracing

	On-chip Trace
	TRACE32 Hardware Configuration
	Trace Display/Evaluation for All Hardware Threads in Common
	Trace Display/Evaluation for a Single Hardware Thread
	Basic Start-up Sequence
	Cycle-Accurate Tracing

	Specifying the Trace Method
	Trace Method Analyzer
	Trace Method Onchip

	FLOW ERROR
	Description
	Diagnosis

	TARGET FIFO OVERFLOW
	Description
	Diagnosis

	ETM Based Real-Time Breakpoints
	Introduction
	TRACE32 Hardware Configuration
	Requirements
	Hint

	Breakpoint Usage
	Complex Program Breakpoints
	Complex Data Breakpoints
	Combining Program and Data Breakpoints

	Saving the Breakpoint Settings as a PRACTICE Script

	Displaying the Trace Contents
	Fundamentals
	Display Commands
	Correlating Different Trace Displays
	Correlating the Trace Display and the Source Code
	Default Display Items
	Additional Display Items
	ASID and TID
	TIme.Zero
	ETM Packets

	Formatting the Trace Display
	Changing the DEFault Display
	The AutoInit Option
	Searching in the Trace
	Belated Trace Analysis
	ASCII File
	TRACE32 Instruction Set Simulator
	Export the Trace Information as ETMv3 Byte Stream

	Function Run-Times Analysis
	Flat vs. Nesting Analysis
	Basic Knowledge about the Flat Analysis
	Basic Knowledge about the Nesting Analysis
	Summary

	Flat Analysis
	Dynamic Program Behavior (no OS and OS)
	Function Timing Diagram (no OS or OS)
	Hot-spot Analysis (no OS or OS)

	Nesting Analysis
	Fundamentals
	Analysis Details (no OS)

	Cycle Statistic
	Filtering via the ETM Configuration Window
	Hardware Thread Filter
	Software Thread Filter
	ASID Filter

	Filtering/Triggering with Break.Set
	TraceEnable Filter
	Standard Usage
	Statistical Evaluations

	TraceON/OFF Filter
	TraceTrigger

	Filtering/Triggering via the ETM.Set
	The ETM Registers
	Actions Based on Sequencer Level
	Actions Based on Sequencer Level and Condition

	Benchmark Counters
	Introduction
	Standard Examples
	Function Run-time Analysis - Cache Misses/Stalls

	Summary: Trigger and Filter
	Appendix A
	The Calibration of the Recording Tool
	Calibration Problems

