
MANUAL

Training Hexagon ETM Tracing

Training Hexagon ETM Tracing

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training Hexagon ETM ... 

 Training Hexagon ETM Tracing .. 1

 Introduction Hexagon ETM ... 5

 Off-chip Trace Port 5

 TRACE32 Hardware Configuration 6

 Trace Display/Evaluation for All Hardware Threads in Common 8

 Trace Display/Evaluation for a Single Hardware Thread 9

 Basic Start-Up Sequence 10

 Cycle-Accurate Tracing 14

 On-chip Trace 17

 TRACE32 Hardware Configuration 18

 Trace Display/Evaluation for All Hardware Threads in Common 19

 Trace Display/Evaluation for a Single Hardware Thread 20

 Basic Start-up Sequence 21

 Cycle-Accurate Tracing 23

 Specifying the Trace Method 24

 Trace Method Analyzer 25

 Trace Method Onchip 27

 FLOW ERROR 29

 Description 29

 Diagnosis 30

 TARGET FIFO OVERFLOW 32

 Description 32

 Diagnosis 33

 ETM Based Real-Time Breakpoints ... 35

 Introduction 35

 TRACE32 Hardware Configuration 35

 Requirements 36

 Hint 36

 Breakpoint Usage 37

 Complex Program Breakpoints 37

 Complex Data Breakpoints 43

 Combining Program and Data Breakpoints 49
Training Hexagon ETM Tracing | 2©1989-2024 Lauterbach

 Saving the Breakpoint Settings as a PRACTICE Script 54

 Displaying the Trace Contents ... 55

 Fundamentals 55

 Display Commands 57

 Correlating Different Trace Displays 60

 Correlating the Trace Display and the Source Code 61

 Default Display Items 62

 Additional Display Items 75

 ASID and TID 75

 TIme.Zero 76

 ETM Packets 77

 Formatting the Trace Display 78

 Changing the DEFault Display 80

 The AutoInit Option 81

 Searching in the Trace 82

 Belated Trace Analysis 84

 ASCII File 85

 TRACE32 Instruction Set Simulator 86

 Export the Trace Information as ETMv3 Byte Stream 89

 Function Run-Times Analysis .. 90

 Flat vs. Nesting Analysis 91

 Basic Knowledge about the Flat Analysis 91

 Basic Knowledge about the Nesting Analysis 92

 Summary 93

 Flat Analysis 94

 Dynamic Program Behavior (no OS and OS) 94

 Function Timing Diagram (no OS or OS) 100

 Hot-spot Analysis (no OS or OS) 107

 Nesting Analysis 113

 Fundamentals 113

 Analysis Details (no OS) 118

 Cycle Statistic .. 128

 Filtering via the ETM Configuration Window .. 131

 Hardware Thread Filter 132

 Software Thread Filter 133

 ASID Filter 133

 Filtering/Triggering with Break.Set .. 134

 TraceEnable Filter 136

 Standard Usage 136

 Statistical Evaluations 142

 TraceON/OFF Filter 144

 TraceTrigger 148
Training Hexagon ETM Tracing | 3©1989-2024 Lauterbach

 Filtering/Triggering via the ETM.Set .. 156

 The ETM Registers 157

 Actions Based on Sequencer Level 159

 Actions Based on Sequencer Level and Condition 163

 Benchmark Counters .. 167

 Introduction 167

 Standard Examples 169

 Function Run-time Analysis - Cache Misses/Stalls 180

 Summary: Trigger and Filter .. 183

 Appendix A .. 184

 The Calibration of the Recording Tool 184

 Calibration Problems 186

Training Hexagon ETM Tracing | 4©1989-2024 Lauterbach

Training Hexagon ETM Tracing

Version 06-Jun-2024

Introduction Hexagon ETM

The Hexagon ETM can export trace information

• Off-chip via dedicated pins for recording by TRACE32 PowerTrace.

• To the on-chip trace memory called ETB (Embedded Trace Buffer). The ETB has a size of 2 KB
and can store 512 entries, each 32-bits wide.

The Hexagon is using the ETMv3 protocol.

Off-chip Trace Port

The trace information exported by the Hexagon ETM is captured by TRACE32 and recorded into the trace
memory of the PowerTrace hardware.

The trace memory within the PowerTrace is maintained by the TRACE32 command group
Analyzer.<sub_cmd>.

Hexagon
execution core

ETM

triggering and filtering

compression and
packetization

ETM configuration

TRACECTL

T
R

A
C

E
D

A
TA

[0
..n

-1
]

JT
A

GHexagon

TRACECLK
Training Hexagon ETM Tracing | 5©1989-2024 Lauterbach

TRACE32 Hardware Configuration

The following TRACE32 hardware is required to record and analyze trace information exported off-chip:

• POWER TRACE / ETHERNET

• DEBUG CABLE

• PREPROCESSOR

POWER TRACE / ETHERNET

DEBUG CABLE

PREPROCESSOR
Training Hexagon ETM Tracing | 6©1989-2024 Lauterbach

• POWER DEBUG II and POWER TRACE II / POWER TRACE III

• DEBUG CABLE

• PREPROCESSOR

POWER TRACE II /

PREPROCESSOR

POWER DEBUG II

DEBUG CABLE

POWER TRACE III
Training Hexagon ETM Tracing | 7©1989-2024 Lauterbach

Trace Display/Evaluation for All Hardware Threads in Common

The Analyzer.List command displays the trace information for all hardware threads.

Analyzer.List ; Display a trace listing for
; all hardware threads

Trace packet from hardware thread 1

Trace packet from hardware thread 1

Trace packet from hardware thread 2

Trace packet from hardware thread 3

Trace packet from hardware thread 5

Trace packet from hardware thread 5

Trace packet from hardware thread 4

Trace packet from hardware thread 2

Trace packet from hardware thread 2

Trace packet from hardware thread 0

Trace packet from hardware thread 0

Trace packet from hardware thread 0

The trace memory within the PowerTrace contains
trace information for all hardware threads
Training Hexagon ETM Tracing | 8©1989-2024 Lauterbach

Trace Display/Evaluation for a Single Hardware Thread

Alternatively TRACE32 provides the possibility to display/evaluate the trace information for a single
hardware thread via the option /CORE <number>.

Analyzer.<sub_cmd> /CORE 0
Analyzer.<sub_cmd> /CORE 1 etc.

Analyzer.List /CORE 0 ; Display a trace listing for
; hardware thread 0
Training Hexagon ETM Tracing | 9©1989-2024 Lauterbach

Basic Start-Up Sequence

The aim of the following start-up sequence is:

• To set up the ETM to export a maximum of trace information (full trace port width, maximum trace
speed)

• To configure the TRACE32 recording tool for an error-free recording

TRACE32 provides the following commands for enabling the ETM:

Starting-up the ETM requires the following steps:

1. Enable the ETM.

Enabling the ETM is done by writing to memory-mapped configuration registers. For details, refer to
your Hexagon manual.

2. Enable the trace port pins for your target hardware.

Enabling the trace port pins for the ETM is done by likewise writing to memory-mapped configuration
registers. Refer to your Hexagon manual for details.

3. Select Analyzer as TRACE32 trace method.

PER.Set.simple <address> [<format>] <value>

Data.Set <address> [<format>] <value>

; Write the 32-bit value 0x00000002 in little endian mode to the
; configuration register at address 0xA9000208
PER.Set.simple 0xA9000208 %LE %Long 0x2

; Write the 32-bit value 0x00000001 in little endian mode to the
; address 0xA8100000
Data.Set 0xA8100000 %LE %Long 0x1

Trace.METHOD Analyzer ; Default if a TRACE32 pre-
; processor hardware is
; connected (see page 5)

Select trace method Analyzer
Training Hexagon ETM Tracing | 10©1989-2024 Lauterbach

This setting informs TRACE32 that you want to use off-chip tracing.

4. Define the ETM port size for the off-chip tracing.

By defining the ETM port size you inform TRACE32 how many TRACEDATA pins are used on your
target hardware to export the trace packets. Please refer to your target hardware’s schematics to get
the number of TRACEDATA pins.

5. Define the ETM port mode for the off-chip tracing.

By defining the ETM port mode you inform TRACE32 about the TRACECLK (trace clock). Please
refer to your target hardware description for the trace clock information.

For the Hexagon ETM the trace clock is always a divided core clock.
Training Hexagon ETM Tracing | 11©1989-2024 Lauterbach

6. Calibrate the TRACE32 recording hardware.

Push the AutoFocus button to set up the recording tool.

If the calibration is performed successfully, the following message will be displayed:

(f=148.MHz) displays the <trace_port_frequency>.

The <core_clock> can be calculated out of the <trace_port_frequency> as follows:

<core_clock>= 2 * <trace_port_frequency> * (1/<port_mode>)

e.g. <core_clock> = 2 * 148MHz *(1 / 1/2) = 148MHz * 4 = 592MHz

For details on the calibration of the TRACE32 recording tool, refer to “Appendix A”.
Training Hexagon ETM Tracing | 12©1989-2024 Lauterbach

Example for a start-up script:

;… ; Setup for the Hexagon debugger

PER.Set.simple … ; Enable the ETM and the trace port

Trace.METHOD Analyzer ; Select "Analyzer" as trace method

Analyzer.RESet ; Reset the "Analyzer"

ETM.RESet ; Reset ETM

ETM.CLEAR ; Reset ETM registers

ETM.PortSize 16. ; Target system provides 16 pins
; for TRACEDATA

ETM.PortMode 1/2 ; Target system is using
; 1/2 <core_clock> as trace clock

Analyzer.AutoFocus ; Calibrate the TRACE32 recording
; tool

;…
Training Hexagon ETM Tracing | 13©1989-2024 Lauterbach

Cycle-Accurate Tracing

If ETM.CycleAccurate is OFF, trace recording and time stamping is done as follows:

ETM is exporting
the addresses of the
executed instructions
in form of trace packets

The TRACE32 recording tool
- collects the trace packets
- stores the trace packets into the trace memory
- timestamps the trace packets

trace packets timestamp

trace packets timestamp

trace packets timestamp

trace packets timestamp

trace packets timestamp

trace packets timestamp

trace packets timestamp

trace packets timestamp
Training Hexagon ETM Tracing | 14©1989-2024 Lauterbach

The resolution of the timestamp is:

• 10 ns if a POWER TRACE / ETHERNET is used

• 5 ns if a POWER TRACE II / POWER TRACE III is used

;…

ETM.CycleAccurate OFF

ETM.FillPort OFF ; Trace packets are organized in
; bytes

; As soon as a trace packet is
; available, it is exported

;…
Training Hexagon ETM Tracing | 15©1989-2024 Lauterbach

If ETM.CycleAccurate is ON trace recording and time stamping is done as follows:

TRACE32 is generating the time information for the trace display out of the exported trace information and
the <core_clock> provided by the command Analyzer.CLOCK.

Cycle accurate tracing provides a more detailed timing and allows a higher density of trace packets in the
trace memory, but generates a higher load on the trace port.

Analyzer.CLOCK 600.MHz ; Inform TRACE32 about the
; core clock

ETM.CycleAccurate ON

(ETM.FillPort ON) ; Automatically switched to ON if
; cycle accurate tracing is ON

; The ETM collects the trace
; packets and exports them as
; soon as TRACEDATA/8 packets are
; available

ETM is exporting
the addresses of the
executed instructions
and the number

The TRACE32 recording tool
- collects the trace packets
- stores the trace packets

trace packets

trace packets

trace packets

trace packets

trace packets

trace packets

trace packets

trace packets

of stalls between the
instructions in form of
trace packets
Training Hexagon ETM Tracing | 16©1989-2024 Lauterbach

On-chip Trace

The trace information exported by the Hexagon ETM is stored in the on-chip trace memory (ETB).

The ETB is maintained by the TRACE32 command group Onchip.<sub_cmd>.

Hexagon
execution core

ETM

triggering and filtering

compression and
packetization

JT
A

GHexagon

ETB
Training Hexagon ETM Tracing | 17©1989-2024 Lauterbach

TRACE32 Hardware Configuration

The following TRACE32 hardware is sufficient to analyze the trace information piped into the ETB:

• POWER DEBUG / ETHERNET

• DEBUG CABLE

POWER DEBUG / ETHERNET

DEBUG CABLE
Training Hexagon ETM Tracing | 18©1989-2024 Lauterbach

Trace Display/Evaluation for All Hardware Threads in Common

The command Onchip.List displays the trace information for all hardware threads:

Onchip.List ; Display a trace listing for
; all hardware threads

The ETB contains
trace information for all hardware threads

Trace packet from hardware thread 1

Trace packet from hardware thread 1

Trace packet from hardware thread 2

Trace packet from hardware thread 3

Trace packet from hardware thread 5

Trace packet from hardware thread 5

Trace packet from hardware thread 4

Trace packet from hardware thread 2

Trace packet from hardware thread 2

Trace packet from hardware thread 0

Trace packet from hardware thread 0

Trace packet from hardware thread 0
Training Hexagon ETM Tracing | 19©1989-2024 Lauterbach

Trace Display/Evaluation for a Single Hardware Thread

Alternatively TRACE32 provides the possibility to display/evaluate the trace information for a single
hardware thread via the option /CORE <number>.

Onchip.<sub_cmd> /CORE 0
Onchip.<sub_cmd> /CORE 1 etc.

Onchip.List /CORE 0 ; Display a trace listing for
; hardware thread 0
Training Hexagon ETM Tracing | 20©1989-2024 Lauterbach

Basic Start-up Sequence

TRACE32 provides the following commands for enabling the ETM:

Starting-up the ETM requires the following steps:

1. Enable the ETM.

Enabling the ETM is done by writing to memory-mapped configuration registers. Refer to your
Hexagon manual for details.

2. As soon as the trace method Onchip is selected, all settings for the ETB are automatically
done by TRACE32.

PER.Set.simple <address> [<format>] <value>

Data.Set <address> [<format>] <value>

; Write the 32-bit value 0x00000002 in little endian mode to the
; configuration register at address 0xA9000208
PER.Set.simple 0xA9000208 %LE %Long 0x2

; Write the 32-bit value 0x00000001 in little endian mode to the
; address 0xA8100000
Data.Set 0xA8100000 %LE %Long 0x1

Trace.METHOD Onchip ; Default if no TRACE32 pre-
; processor hardware is
; connected (see page 17)

Select trace method Onchip
Training Hexagon ETM Tracing | 21©1989-2024 Lauterbach

Example for a start-up script:

;… ; Setup for the Hexagon debugger

PER.Set.simple … ; Enable the ETM and the ETB

Trace.METHOD Onchip ; Select "Onchip" as trace method

Onchip.RESet ; Reset the Onchip trace

ETM.RESet ; Reset ETM

ETM.CLEAR ; Reset ETM registers

;…

automated setup
Training Hexagon ETM Tracing | 22©1989-2024 Lauterbach

Cycle-Accurate Tracing

Trace information within the ETB is never time-stamped.

FillPort is automatically enabled for the ETB.

In order to get timing information, CycleAccurate tracing needs to be enabled (not fully supported yet).

;…

Onchip.CLOCK 600.MHz ; Inform TRACE32 about the core
; clock

ETM.CycleAccurate ON

;…

ETM is exporting
trace packets

trace packet

trace packet

trace packet

trace packet

trace packet

trace packet

trace packet

trace packet
Training Hexagon ETM Tracing | 23©1989-2024 Lauterbach

Specifying the Trace Method

Specifying the trace method has three effect:

1. Selection of the trace repository.

2. Admit the command group Trace.<sub_cmd> as an alias.

3. Program TRACE32 to use the trace information from the specified trace repository as source for
various trace evaluation commands.
Training Hexagon ETM Tracing | 24©1989-2024 Lauterbach

Trace Method Analyzer

Trace.METHOD Analyzer ; Trace repository is the trace
; memory of the TRACE32 PowerTrace

Trace.List

; Trace is used as an alias for
; Analyzer

; Means Analyzer.List

All commands in the Trace menu
apply to Analyzer

All Function Runtime commands
apply to Analyzer
Training Hexagon ETM Tracing | 25©1989-2024 Lauterbach

The following commands analyze trace information stored into the PowerTrace hardware:

CTS.List ; Read the trace information from
; Analyzer and provide a high-level
; language trace display

COVerage.List ; Read the trace information from
; Analyzer and list which code
; ranges were executed.

ISTATistic.List ; Read the trace information from
; Analyzer and provide an detailed
; instruction statistic

MIPS.PROfileChart.sYmbol ; Read the trace information from
; Analyzer and provide a MIPS
; analysis for all executed
; functions

BMC.List ; Read the trace information from
; Analyzer, display the instruction
; flow including the benchmark
; counters
Training Hexagon ETM Tracing | 26©1989-2024 Lauterbach

Trace Method Onchip

Trace.METHOD Onchip ; Trace repository is the ETB

Trace.List

; Trace is used as an alias for
; Onchip

; Means Onchip.List

All commands in the Trace menu
apply to Onchip.

All Function Runtime commands
apply to Onchip.
Training Hexagon ETM Tracing | 27©1989-2024 Lauterbach

The following commands analyze trace information stored into the ETB:

CTS.List ; Read the trace information from
; Onchip and provide a high-level
; language trace display

COVerage.List ; Read the trace information from
; Onchip and list which code
; ranges were executed.

ISTATistic.List ; Read the trace information from
; Onchip and provide an detailed
; instruction statistic

MIPS.PROfileChart.sYmbol ; Read the trace information from
; Onchip and provide a MIPS
; analysis for all executed
; functions

BMC.List ; Read the trace information from
; Onchip, display the instruction
; flow including the benchmark
; counters
Training Hexagon ETM Tracing | 28©1989-2024 Lauterbach

FLOW ERROR

Description

In order to provide an intuitive trace display the following sources of information are merged:

• The trace packets stored in the trace memory of the PowerTrace or the ETB. The trace packets
provide only the addresses of the executed instruction packets (instruction flow).

• The program code from the target memory read via JTAG.

• The symbol and debug information already loaded to TRACE32.

Trace packets from
the PowerTrace

Program code from
the target system memory

Symbol and debug
information

JTAG

in TRACE32
Training Hexagon ETM Tracing | 29©1989-2024 Lauterbach

If the program code does not match the captured instruction flow, FLOW ERROR is displayed:

Such an error can have the following reasons:

• The program code in the target memory has changed (e.g. by a faulty pointer)

• The off-chip trace recording is not working correctly (e.g. a single trace pin is permanently 0)

FLOW ERROR indicates that the trace information is not reasonable. Please solve problems first
and then continue to analyze/evaluate your trace information.

Diagnosis

In order to provide the user information quickly, TRACE32 uploads only a specific number of trace records
(currently 50 000). Thus FLOW ERRORs are not always detected immediately.

For a FLOW ERROR detection for off-chip tracing proceed as follows:

Analyzer.FLOWPROCESS ; Upload the complete trace
; contents from the PowerTrace
; to the host and merge it
; with the
; program code/debug
; information

PRINT %Decimal Analyzer.FLOW.ERRORS() ; Print the number of FLOW
; ERRORs as a decimal number
Training Hexagon ETM Tracing | 30©1989-2024 Lauterbach

To inspect single FLOW ERRORs proceed as follows:

Type FLOWERROR into the Expert window

Push the Find... button

and push the appropriate Find button
Training Hexagon ETM Tracing | 31©1989-2024 Lauterbach

TARGET FIFO OVERFLOW

Description

If more trace packets are generated than the ETM can export, the FIFO buffer within the ETM can overflow
and some trace packets can be lost. If this is the case TARGET FIFO OVERFLOW, PROGRAM FLOW
LOST is displayed:

TARGET FIFO OVERFLOWs indicate that trace packets are lost. TARGET FIFO OVERFLOWs are likely to
happen if cycle accurate tracing is used.

All commands that analyze the function nesting are sensitive with regards to TARGET FIFO
OVERFLOWs!
Training Hexagon ETM Tracing | 32©1989-2024 Lauterbach

Diagnosis

In order to provide the user information quickly, TRACE32 uploads only a specific number of trace records
(currently 50 000). Thus TARGET FIFO OVERFLOWs are not always detected immediately.

For a TARGET FIFO OVERFLOW detection for off-chip tracing proceed as follows:

Analyzer.FLOWPROCESS ; Upload the complete trace
; contents from the PowerTrace
; to
; the host and merge it with
; the program code/debug
; information

PRINT %Decimal Analyzer.FLOW.FIFOFULL() ; Print the number of TARGET
; FIFO
; OVERFLOWs as a decimal
; number
Training Hexagon ETM Tracing | 33©1989-2024 Lauterbach

To inspect single TARGET FIFO OVERFLOWs proceed as follows:

Type FIFOFULL into the Expert window

Push the Find... button

and push the appropriate Find button
Training Hexagon ETM Tracing | 34©1989-2024 Lauterbach

ETM Based Real-Time Breakpoints

Introduction

TRACE32 Hardware Configuration

The following TRACE32 hardware is sufficient to use ETM based real-time breakpoints:

• POWER DEBUG / ETHERNET

• DEBUG CABLE

POWER DEBUG / ETHERNET

DEBUG CABLE
Training Hexagon ETM Tracing | 35©1989-2024 Lauterbach

Requirements

In order to use ETM based real-time breakpoints, the ETM has to be enabled. For details refer to:

• “Basic Start-Up Sequence” (training_hexagon_etm.pdf) on page 10 or

• “Basic Start-up Sequence” (training_hexagon_etm.pdf) on page 21.

The examples in this section are given on the assumption, that you are familiar with the breakpoint handling
in TRACE32.

If your aren’t, please refer to the chapters “Breakpoints” and “Breakpoint Handling” in “Training Basic
Debugging” (training_debugger.pdf).

Hint

ETM based real-time breakpoints can be set while the program execution is running.
Training Hexagon ETM Tracing | 36©1989-2024 Lauterbach

Breakpoint Usage

Complex Program Breakpoints

Complex breakpoint: Stop the program execution after n hits of a program breakpoint.

To illustrate the handling of complex program breakpoints, the following examples are provided:

• Example 1: Stop the program execution at the nth call of a particular function.

• Example 2: Stop the program execution at the nth call of a particular function in a particular
hardware thread.

Example 1

Stop the program execution at the 20th call of the function BLASTK_mutex_lock (etm_break1.cmm).

1. Choose Break menu > Set.

Push the advanced
button for the
specification of a
complex breakpoint
Training Hexagon ETM Tracing | 37©1989-2024 Lauterbach

2. Specify the breakpoint.

- Specify the program address in the address / expression field.

- Specify the implementation Onchip.

- Specify the COUNTer value.

3. Display a breakpoint listing.

4. Start the program execution.
Training Hexagon ETM Tracing | 38©1989-2024 Lauterbach

5. ETM-based breakpoints are not cycle-exact, some logic needs to be passed in order to stop the
program execution. As a result the program execution stops shortly after the specified event.

6. Delete the breakpoint when you are done with your test.

; Display a source listing
List

; Display a break listing
Break.List

; Set breakpoint, select symbol via symbol browser
; Break.Set * /Program /Onchip /COUNT 20.

; Set the breakpoint
Break.Set BLASTK_mutex_lock /Program /Onchip /COUNT 20.

; Start the program execution
Go

; …

; Delete breakpoint
Break.Delete BLASTK_mutex_lock
Training Hexagon ETM Tracing | 39©1989-2024 Lauterbach

Example 2

Stop the program execution at the 10th call of the function BLASTK_writec in hardware thread 0x0
(etm_break2.cmm).

1. Specify the breakpoint.

- Specify the program address in the address / expression field.

- Specify the implementation Onchip

- Specify the COUNTer value.

2. Specify the hardware thread in the ETM.state window.
Training Hexagon ETM Tracing | 40©1989-2024 Lauterbach

3. Start the program execution.

4. Delete the breakpoint and remove the hardware thread selection when you are done with your
test.
Training Hexagon ETM Tracing | 41©1989-2024 Lauterbach

Summary

Use the following command to stop the program execution after the specified instruction was executed a
specified number of times. You can specify up to 4 to single instruction addresses and up to 4 instruction
address ranges.

; Set the breakpoint
Break.Set BLASTK_writec /Program /Onchip /COUNT 10.

; Display the ETM settings
ETM.state

; Specify hardware thread 0x0 for the breakpoint and the trace
; exporting
ETM.TraceTNUM 0x0

Go

; …

; Delete breakpoint
Break.Delete BLASTK_writec

; Remove hardware thread setting
ETM.TraceTNUM

Break.Set <address> | <range> /Program /Onchip /COUNT <number>
Training Hexagon ETM Tracing | 42©1989-2024 Lauterbach

Complex Data Breakpoints

Complex data breakpoint: Stop the program execution after the specified address was read/written,
specification of data value possible.

To illustrate the handling of complex data breakpoints, the following examples are provided:

• Example 1: Stop the program execution after a write access to a specific integer variable.

• Example 2: Stop the program execution after a specific value was written to a specific integer
variable.

• Example 3: Stop the program execution after a specific data value was written to a specified address
n-times.

Example 1 - Complex Data Breakpoints

Stop the program execution after a write access to the integer variable BLASTK_wait_mask
(etm_break3.cmm).

1. Specify the breakpoint.

- Specify the variable in the address / expression field and enable the HLL check box.

- Specify Write as breakpoint type.

2. Start the program execution.
Training Hexagon ETM Tracing | 43©1989-2024 Lauterbach

NOTE: The instruction that performed the write access and so caused the program stop,
cannot be detected automatically since
• ETM-based breakpoints are not cycle-exact
• register indirect addressing is used

Var.View %Hex %Decimal BLASTK_wait_mask ; Display contents of variable
; BLASTK_wait_mask

Var.Break.Set BLASTK_wait_mask /Write ; Set the breakpoint

Go ; Start the program execution
Training Hexagon ETM Tracing | 44©1989-2024 Lauterbach

Example 2 - Complex Data Breakpoints

Stop the program execution after the value 0x24 was written to the integer variable BLASTK_wait_mask
(etm_break4.cmm).

1. Specify the breakpoint.

- Specify the variable in the address / expression field and enable the HLL check box.

- Specify Write as breakpoint type.

- Specify the DATA value.

2. Start the program execution.

Var.Break.Set BLASTK_wait_mask /Write /DATA.auto 0x24

Go
Training Hexagon ETM Tracing | 45©1989-2024 Lauterbach

Summary

; Set memory access breakpoint, data value possible
; (up to 4 accesses to single addresses, up to 2 accesses to address ranges)

Break.Set <address> | <range> /ReadWrite | /Read | /Write
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write

Break.Set <address> | <range> /<access> /DATA.auto <data> | /DATA.Byte <data>
Break.Set <address> | <range> /<access> /DATA.Word <data> | /DATA.Long <data>

Var.Break.Set <hll_expression> /<access> /DATA.auto <data>
Training Hexagon ETM Tracing | 46©1989-2024 Lauterbach

Example 3 - Complex data breakpoint

Complex data breakpoint: Stop the program execution after a specific data value was read/written from/to
a specified address n-times.

Stop the program execution after the value 0x36 was written 3. times to the integer variable
BLASTK_wait_mask (etm_break5.cmm).

1. Specify the breakpoint.

- Specify the variable in the address / expression field and enable the HLL check box.

- Specify Write as breakpoint type.

- Specify DATA value.

- Specify the COUNTer value.

2. Start the program execution.
Training Hexagon ETM Tracing | 47©1989-2024 Lauterbach

Summary

Var.View %Hex %Decimal BLASTK_wait_mask

Var.Break.Set BLASTK_wait_mask /Write /DATA.auto 0x36 /COUNT 3.

Go

; Set memory access breakpoint, data value possible, one counter
(up to 1)

Break.Set <address> | <range> /<access> <data_def> /COUNT <number>
Var.Break.Set <hll_expression> /<access> <data_def> /COUNT <number>
Training Hexagon ETM Tracing | 48©1989-2024 Lauterbach

Combining Program and Data Breakpoints

Complex breakpoint: Stop the program execution after the specified instruction has read/written the
specified data value from/to the specified address (negation of the instruction address possible).

To illustrate the combination of program and data breakpoints, the following examples are provided:

• Example 1: Stop the program execution after an instruction from a <function> has written a <value>
to an <integer variable>.

• Example 2: Stop the program execution if any <function>, but not <function X>, writes to the
<variable Y>.

Example 1

Stop the program execution after an instruction from the function BLASTK_schedule_new_fromsleep has
written the value 0x34 to the integer variable BLASTK_wait_mask (etm_break6.cmm).

1. Specify the breakpoint.

- Specify the function’s address range in the address / expression field.

- Specify DATA value.

- Select MemoryWrite.

- Specify the variable in the memory / register / var field.

2. List the breakpoint settings.
Training Hexagon ETM Tracing | 49©1989-2024 Lauterbach

3. Start the program execution.

Break.Set 0x180C240--0x180C2F4 /VarWrite BLASTK_wait_mask;
 /DATA.auto 0x34

Go
Training Hexagon ETM Tracing | 50©1989-2024 Lauterbach

Example 2

Stop the program execution if any function, but not BLASTK_schedule_new_fromsleep, writes to the
variable BLASTK_wait_mask (etm_break7.cmm).

1. Specify the breakpoint.

- Specify the function’s address range in the address / expression field.

- Select EXclude to negate the function’s address range.

- Select MemoryWrite.

- Specify the variable name in the memory / register / var field.

2. Start the program execution.
Training Hexagon ETM Tracing | 51©1989-2024 Lauterbach

Break.Set BLASTK_schedule_new_fromsleep++0xB4
 /VarWrite BLASTK_wait_mask /EXclude

Go
Training Hexagon ETM Tracing | 52©1989-2024 Lauterbach

Summary

; Set combined instruction/data access breakpoint, data value possible, negation possible
(up to 1)

Break.Set <i_address> | <i_range> /MemoryReadWrite <d_address> | <d_range> <data_def> [/EXclude]
Break.Set <i_address> | <i_range> /MemoryRead <d_address> | <d_range> <data_def> [/EXclude]
Break.Set <i_address> | <i_range> /MemoryWrite <d_address> | <d_range> <data_def> [/EXclude]

Var.Break.Set <function> /VarReadWrite <variable> DATA.auto <value> [/EXclude]
Var.Break.Set <function> /VarRead <variable> DATA.auto <value> [/EXclude]
Var.Break.Set <function> /VarWrite <variable> DATA.auto <value> [/EXclude]
Training Hexagon ETM Tracing | 53©1989-2024 Lauterbach

Saving the Breakpoint Settings as a PRACTICE Script

You can save breakpoint settings via the TRACE32 PowerView GUI or via the TRACE32 command line. To
save them via the GUI, take the following steps:

1. Choose Break menu > List to open a breakpoint listing.

2. Click the Store button to generate a PRACTICE script for all set breakpoints.

3. Specify the name for the PRACTICE script, and then click Save.

4. To display the contents of the PRACTICE script, choose File menu > Edit Script.

The following commands are available to save breakpoint settings via the TRACE32 command line:

STOre <file> Break Save breakpoint settings to file.

ClipSTOre Break Save breakpoint settings to clipboard.
Training Hexagon ETM Tracing | 54©1989-2024 Lauterbach

Displaying the Trace Contents

Fundamentals

In order to provide an intuitive trace display the following sources of information are merged:

• The trace packets stored in the trace memory of the PowerTrace/ETB. The trace packets provide
only the addresses of the executed instruction packets (instruction flow).

• The program code from the target memory read via JTAG.

• The symbol and debug information already loaded to TRACE32 from a file.

Trace packets from
the PowerTrace/ETB

Program code from
the target system memory

Symbol and debug
information

JTAG

in TRACE32
Training Hexagon ETM Tracing | 55©1989-2024 Lauterbach

The following functional units have an effect on the trace recording:

Benchmark counters

Trace memory
of PowerTrace/ETB

ETM trace packet
 generation

[0..n-1]

Filter breakpoints

Filter via the ETM.Set command

Trace/Analyzer configuration in TRACE32

Trigger breakpoints

Trigger via the ETM.Set command

ETM configuration
Training Hexagon ETM Tracing | 56©1989-2024 Lauterbach

Display Commands

The following commands are available to display a trace listing:

Trace.List Display a trace listing by merging the trace information of all
hardware threads

Trace.List /CORE 0 Display the trace listing based on the trace information generated for
hardware thread 0

Trace.List /CORE 1 Display the trace listing based on the trace information generated for
hardware thread 1

Trace.List /CORE 2 Display the trace listing based on the trace information generated for
hardware thread 2

Trace.List /CORE 3 Display the trace listing based on the trace information generated for
hardware thread 3

Trace.List /CORE 4 Display the trace listing based on the trace information generated for
hardware thread 4

Trace.List /CORE 5 Display the trace listing based on the trace information generated for
hardware thread 5
Training Hexagon ETM Tracing | 57©1989-2024 Lauterbach

Trace.List

Trace.List /CORE 3
Training Hexagon ETM Tracing | 58©1989-2024 Lauterbach

Please Note

TRACE32 flushes all trace information stuck in the ETM fifos when the recording to the trace repository is
stopped because the program execution stopped. These delayed exported trace packets can be identified
by no TIme.Back value or by a large TIme.Back value.

On the one hand, flushing the ETM fifos is necessary to get the correct state of a hardware thread. In most
cases wait instructions are stuck.

On the other hand, run-time measurements can be falsified due to incorrect (too large) timestamps. Please
refer to “Did you know?” to learn how to exclude flushed trace packets from the run-time measurement.

Flushed trace packets
Training Hexagon ETM Tracing | 59©1989-2024 Lauterbach

Correlating Different Trace Displays

The /Track option allows to establish a timing relation between different trace displays. The cursors of all
Trace.List windows with the option /Track track the cursor movement within the active window.

Example:

If a trace record in the Trace.List window is selected, the cursors in the Trace.List /CORE 0 and
Trace.List /CORE 3 windows mark the record that was executed by their hardware thread nearly at the
same time.

Trace.List

Trace.List /CORE 0 /Track

Trace.List /CORE 3 /Track

Cursor movement
within the active
window

Track cursor

Track cursor
Training Hexagon ETM Tracing | 60©1989-2024 Lauterbach

Correlating the Trace Display and the Source Code

The /Track option also allows to establish a logical relation between a trace listing and a source code listing.
If a trace record is selected in the Trace.List window, the corresponding source code line is automatically
highlighted with a blue cursor.

Example:

For a description of the highlighted columns, see “Default Display Items”.

Trace.List
List /Track

Selected
record

Corre-
sponding
source
code
line
Training Hexagon ETM Tracing | 61©1989-2024 Lauterbach

Default Display Items

record

Trace records are numbered consecutively in the trace display. The numbering scheme depends on the
selected trace mode. The following trace modes are available:

• Fifo Mode

• Stack Mode

• Leash Mode

• STREAM Mode

Columns Description

record Record number (For details, click here.)

run Run-time information (For details, click here.)

address Logical address of the executed instruction packet.

cycle Cycle type.
The only available cycles type is ptrace. ptrace stands for program trace
information.

data (No data access information is exported by the Hexagon ETM)

symbol Symbolic address of the executed instruction packet

ti.back
(TIme.Back)

Distance of time between a trace record and its preceding trace record
(For details, click here.)
Training Hexagon ETM Tracing | 62©1989-2024 Lauterbach

Trace.Mode Fifo ; Default mode

; When the trace repository is full
; the newest trace information
; overwrites the oldest

; The trace repository contains
; all information exported
; until the program execution
; stopped

In Fifo mode negative record numbers are used.
The last record gets the smallest negative number.
Training Hexagon ETM Tracing | 63©1989-2024 Lauterbach

Trace.Mode Stack ; When the trace repository is full
; the trace recording is stopped

; The trace repository contains
; all information exported
; directly after the start of
; the program execution

As soon as the trace
repository is full, the
trace capturing is stopped
(OFF state)

OFF in the Trace State Field
indicates that the trace
capturing is stopped

running in the Debug State Field
indicates that the program
execution is running
Training Hexagon ETM Tracing | 64©1989-2024 Lauterbach

Trace information can not be displayed while
the program is running, since TRACE32
has NOACCESS to the program code in the
target system memory
Training Hexagon ETM Tracing | 65©1989-2024 Lauterbach

In order to display the trace information, you can either stop the program execution, or you can set up
TRACE32 for displaying the trace information while the program execution is running. This is done by
copying the program code to the TRACE32 Virtual Memory (VM:).

Alternatively:

Loading the program code into the virtual memory is also recommended if the JTAG interface is very slow or
if there is no access to the target system memory due to any reasons.

; Copy the program code from the target system memory into the TRACE32
; Virtual Memory (VM:) in order to get access to the program code
; while the program execution is running
Data.COPY 0x1800000--0x182afff VM:

; Load the program code into the TRACE32 Virtual Memory (VM:)
Data.LOAD.Elf blast/bootimg.pbn /VM /NOREG /NOMAP

Trace packets from
the PowerTrace

Copy of the program
code in TRACE32

Symbol and debug
information
in TRACE32

Virtual Memory
Training Hexagon ETM Tracing | 66©1989-2024 Lauterbach

Back to Stack mode now: Since the trace recording starts with the program execution and stops when the
trace repository is full, positive record numbers are used in Stack mode. The first record in the trace gets the
smallest positive number.

NOTE: Please make sure that the TRACE32 Virtual Memory always provides an up-to-
date version of the program code.
Out-of-date program versions will cause FLOW ERRORs (see “FLOW ERROR”
(training_hexagon_etm.pdf) on page 29.
Training Hexagon ETM Tracing | 67©1989-2024 Lauterbach

Trace.Mode Leash ; When the trace repository is
; nearly full the program execution
; is stopped

; Same record numbering as for
; Stack mode
Training Hexagon ETM Tracing | 68©1989-2024 Lauterbach

STREAM Mode (PowerTrace only)

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory of TRACE32 PowerTrace. This procedure extends the size of the trace memory to up to 1 T
Frames.

Streaming mode requires 64-bit host computer and a 64-bit TRACE32 executable to handle the large trace
record numbers.

By default the streaming file is placed into the TRACE32 temporary directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specify a different name and location for the streaming
file.

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

Trace.Mode STREAM ; STREAM the recorded trace
; information to a file on the host
; computer

; STREAM mode uses the same record
; numbering scheme as Stack mode

Trace.STREAMFILE d:\temp\mystream.t32 ; Specify the location for
; your streaming file
Training Hexagon ETM Tracing | 69©1989-2024 Lauterbach

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace
memory of the PowerTrace, which can be considered to be operating as a large FIFO.

If no trace information was exported by a hardware thread within 50.000 records, the record column shows
????.

used indicates how
much trace information
is buffered by the
trace memory
(used FIFO)

STREAM mode can
generate very large
record numbers
Training Hexagon ETM Tracing | 70©1989-2024 Lauterbach

run

; Display trace information for hardware thread 3
; (List.ADDRESS) display address information for all instruction packets
Trace.List List.ADDRESS DEFault /CORE 3

sequential instruction execution branch taken

Graphic elements provide a quick overview on the program flow
Training Hexagon ETM Tracing | 71©1989-2024 Lauterbach

Interrupts/Traps are indicated in the run column.

Pastel printed source code indicates that a branch was not taken.
Training Hexagon ETM Tracing | 72©1989-2024 Lauterbach

Trace.List ; The run column indicates which
; hardware thread executed the
; exported instruction packet
Training Hexagon ETM Tracing | 73©1989-2024 Lauterbach

address/symbol

The address column shows the logical address of the executed instruction packet.
The symbol column shows the symbolic address of the executed instruction packet.

TIme.Back

TIme.Back indicates the distance of time between a trace record and its preceding trace record on the same
core.

No TIme.Back information is displayed, if the preceding trace record on the same core is too far away.

Timestamp generation

• (ETM.CycleAccurate OFF): Trace records are time stamped when they are stored into the
PowerTrace’s memory. The resolution of the timestamp is 10 ns for PowerTrace and 5 ns for
PowerTrace II / PowerTrace III.

• (ETM.CycleAccurate ON): The time information is calculated from the exported trace information
and the core clock provided by the command Trace.CLOCK <core_clock>.
Training Hexagon ETM Tracing | 74©1989-2024 Lauterbach

Additional Display Items

ASID and TID

If the ContextID check box is active in the ETM.state window, the ASID and TID are exported by the ETM.
Training Hexagon ETM Tracing | 75©1989-2024 Lauterbach

TIme.Zero

In addition to TIme.Back there is also a more global time information called TIme.Zero.

TRACE32 allows to mark a selected record as zero point within the trace. All other trace records are then
time referenced to this record.

Trace.List DEFault TIme.Zero ; Add the TIme.Zero
; information to
; the default trace display
Training Hexagon ETM Tracing | 76©1989-2024 Lauterbach

ETM Packets

Trace.List TP DEFault /CORE 0 ; Add the trace packet information
; to the default trace display

; Display trace control and the lowest 8 trace port pins with timestamp
Trace.List %Timing TCTL TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TIme.Back
Training Hexagon ETM Tracing | 77©1989-2024 Lauterbach

Formatting the Trace Display

The standard way to format the trace display is to use the More/Less buttons.

Pushing one time the More button

Pushing one time the More button will add the so-called dummy records to the trace display. Dummy
records don’t provide information with regards to the program execution. They are just empty in most cases.

Trace.List DEFault List.NoDummy.OFF
Training Hexagon ETM Tracing | 78©1989-2024 Lauterbach

Pushing for the first time the Less button

Pushing for the first time the Less button will remove the trace packet information (ptrace records) from the
trace display.

Pushing for the second time the Less button

Pushing for the second time the Less button will remove the assembly code from the trace display.

Trace.List DEFault List.NoCycle

Trace.List List.HllOnly List.TIme TIme.Back
Training Hexagon ETM Tracing | 79©1989-2024 Lauterbach

Changing the DEFault Display

The command SETUP.ALIST allows to change the DEFault display of the trace information preset by
TRACE32.

Examples:

; Add the column TIme.Zero after the default display
SETUP.ALIST DEFault TIme.Zero

; Add time and address information for every instruction packet
SETUP.ALIST DEFault List.ADDRESS List.TIme

; Add ETM trace packet information before the default display
; See picture below
SETUP.ALIST TP DEFault

; Increase the width of the symbol column (60 characters)
SETUP.ALIST %LEN 60 DEFault
Training Hexagon ETM Tracing | 80©1989-2024 Lauterbach

The AutoInit Option

While testing it might be helpful to clear the trace memory of the PowerTrace/ETB before a new test is
started. Instead of pushing manually the Init button in the Trace.state window, it is more convenient to
activate the AutoInit check box.

Trace.AutoInit ON ; The trace memory is
; automatically cleared before
; the program execution is started

Init button

AutoInit check box
Training Hexagon ETM Tracing | 81©1989-2024 Lauterbach

Searching in the Trace

TRACE32 provides fast search algorithms to find a specific event in the trace quickly.

Push the Find… button

Use the Trace Find
dialog to specify
your event
Training Hexagon ETM Tracing | 82©1989-2024 Lauterbach

Did you know?

If no trace information is available for the hardware thread, you can get to a trace area with information as
follows:

1. Open the Trace Find dialog by pushing the Find button.

2. Select the Changes page.

3. Select either Up or Down as search direction.

4. Push Find Here to start the search.

Open the Trace Find dialog by pushing the Find button (1)

Changes page (2)

Select Up or
Down as search
direction (3)

(4)
Training Hexagon ETM Tracing | 83©1989-2024 Lauterbach

Belated Trace Analysis

There are several ways for a belated trace analysis:

1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACE32 Instruction Set Simulator and analyze it there.

3. Export the ETMv3 byte stream to postprocess it with an external tool.
Training Hexagon ETM Tracing | 84©1989-2024 Lauterbach

ASCII File

Saving part of the trace contents to an ASCII file requires the following steps:

1. Choose File menu > Print, and then specify the file name and the output format.

2. It only makes sense to save a part of the trace contents into an ASCII-file. Use the record
numbers to specify the trace part you are interested in.

TRACE32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

3. Use an ASCII editor to display the result.

PRinTer.FileType ASCIIE ; Specify output format
; here (ASCII enhanced)

PRinTer.FILE testrun1.lst ; Specify the file name

; Save the trace record range (-8976.)--(-2418.) into the
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)
Training Hexagon ETM Tracing | 85©1989-2024 Lauterbach

TRACE32 Instruction Set Simulator

The following command allows you to save the trace information to a file:

Analyzing the trace contents within a TRACE32 simulator requires the following three steps:

1. Save the contents of the trace memory to a file.

Trace.SAVE <file>

Trace.SAVE testrun1 ; The following information
; is saved to file:
; - Raw data
; - Merged source code
; - Timing information
Training Hexagon ETM Tracing | 86©1989-2024 Lauterbach

2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).

Training Hexagon ETM Tracing | 87©1989-2024 Lauterbach

3. Select your target CPU within the simulator.

4. Load the trace file.

5. Load symbol and debug information if you need it.

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACE32 debugger.

Trace.LOAD testrun1

Trace.List ; Display a trace listing

Data.LOAD.Elf blast/bootimg.pbn /NoCODE

Please be aware that analyzing the trace in the TRACE32 Instruction Set
Simulator will require a more complex setup if the MMU is used.
(no example for testing available)

LOAD indicates that the source for the trace information is the loaded file.
Training Hexagon ETM Tracing | 88©1989-2024 Lauterbach

Export the Trace Information as ETMv3 Byte Stream

TRACE32 allows to save the ETMv3 byte stream into a file for further analysis by an external tool.

Trace.EXPORT testrun1.ad /ByteStream

; Export only a part of the trace contents
Trace.EXPORT testrun2.ad (-3456800.)--(-2389.) /ByteStream
Training Hexagon ETM Tracing | 89©1989-2024 Lauterbach

Function Run-Times Analysis

All commands for the function run-time analysis introduced in this chapter use the contents of the trace
repository as base for their analysis.

For the function run-time analysis it is helpful to differentiate between three types of application software:

1. Software without operating system (abbreviation: no OS)

2. Software with an operating system without dynamic memory management (abbreviation: OS).

3. Software with an operating system that uses dynamic memory management to handle
processes/tasks (abbreviation: OS+MMU). If an OS+MMU is used, several processes/tasks run
at the same virtual addresses.
Training Hexagon ETM Tracing | 90©1989-2024 Lauterbach

Flat vs. Nesting Analysis

Basic Knowledge about the Flat Analysis

The flat analysis bases on the symbolic instruction addresses of the trace entries. The time spent by an
instruction packet is assigned to the corresponding function.

min shortest time continuously in the address range of a function/symbol
range

max longest time continuously in the address range of a function/symbol
range

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

maxmin

Entry of func1 Entry of func1

Exit of func1 Exit of func1
Training Hexagon ETM Tracing | 91©1989-2024 Lauterbach

Basic Knowledge about the Nesting Analysis

For the function run-time analysis with nesting, the TRACE32 software scans the trace contents in order to
find:

1. Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications of function entries are implemented depending on the processor
architecture and the compiler used.

2. Function exits

A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications of function exits are implemented depending on the processor
architecture and the compiler used.

3. Entries to interrupt service routines (asynchronous)

Interrupts are identified as follows:

- An entry to the vector table is detected and the vector address indicates an
asynchronous/hardware interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a RETURN is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembler interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

4. Exits of interrupt service routines
Training Hexagon ETM Tracing | 92©1989-2024 Lauterbach

5. Entries to TRAP handlers (synchronous)

6. Exits of TRAP handlers

Based on the results a complete call tree is constructed.

Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much
more sensitive then the flat analysis. Missing or tricky function exits for example result in a worthless nesting
analysis.

min shortest time within the function including all subfunctions and traps

max longest time within the function including all subfunctions and traps

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

Entry of func1 Entry of func1

Exit of func1 Exit of func1

max min
Training Hexagon ETM Tracing | 93©1989-2024 Lauterbach

Flat Analysis

Flat function run-time analysis is easy to use and error-tolerant. It provides analysis results at different levels:

• Overview on the dynamic program behavior

• Timing diagrams of function execution order (function timing diagram)

• Details on the execution of single instructions (hot-spot analysis)

Dynamic Program Behavior (no OS and OS)

Push the Profile button to get information on the dynamic behavior of the program.

Trace.PROfileChart.sYmbol [/SplitCORE] Graphic display of dynamic program behavior
• Analysis independently for each hardware

thread
• Individual results for all hardware threads

are displayed
• The number after “:” represents the hard-

ware thread
• Default option
Training Hexagon ETM Tracing | 94©1989-2024 Lauterbach

Trace.PROfileChart.sYmbol /MergeCORE Graphic display of dynamic program behavior
• Analysis independently for each hardware

thread
• Results are summarized and displayed as

a single result

Trace.PROfileChart.sYmbol /CORE <n> Graphic display of dynamic program behavior
• Analysis for specified hardware thread
Training Hexagon ETM Tracing | 95©1989-2024 Lauterbach

More Details

To draw the Trace.PROfileChart.sYmbol graphic, TRACE32 PowerView partitions the recorded instruction
flow into time intervals. The default interval size is 10.us.

For each time interval rectangles are drawn that represent the time ratio the executed functions/symbol
ranges consumed within the time interval. For the final display this basic graph is smoothed.

BLASTK_wait_forever:5

doangel:3

BLASTK_puts_debug_buffer:3

BLASTK_error:3

BLASTK_reschedule_from_wait:2

BLASTK_futex_wait:0

BLASTK_futex_wait:4

BLASTK_futex_wait:1

BLASTK_mutex_lock:3
Training Hexagon ETM Tracing | 96©1989-2024 Lauterbach

The time interval size can also be set manually.

Fine Decrease the time interval size by the factor 10

Coarse Increase the time interval size by the factor 10

Trace.PROfileChart.sYmbol /InterVal 5.ms ; Change the time
; segment size to 5.ms
Training Hexagon ETM Tracing | 97©1989-2024 Lauterbach

Color Assignment - Basics

• The tooltip at the cursor position shows the function color assignment (item) and the used
interval size.

• Use the control handle on the right upper corner of the Trace.PROfileChart.sYmbol window to
get a color legend.

Control
handle
Training Hexagon ETM Tracing | 98©1989-2024 Lauterbach

Function Color Assignment - Statically or Dynamically

FixedColors Colors are assigned fixed to functions (default).

Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong impression of
the dynamic behavior.

AlternatingColors Colors are assigned by the recording order of the functions, again and
again for each measurement.

Trace.PROfileChart.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program
• Graphical display

Trace.PROfileSTATistic.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program
• Numerical display for export

as comma-separated values

Trace.STATistic.COLOR FixedColors | AlternatingColors Color assignment method
Training Hexagon ETM Tracing | 99©1989-2024 Lauterbach

Function Timing Diagram (no OS or OS)

Push the Chart button to get a function timing diagram for the captured instruction flow.

Trace.Chart.sYmbol [/SplitCORE] Graphic display of function timing
• Analysis independently for each hardware

thread
• Individual results for all hardware threads

are displayed
• The number after “:” represents the

hardware thread
• Default option
Training Hexagon ETM Tracing | 100©1989-2024 Lauterbach

Trace.PROfileChart.sYmbol /MergeCORE Graphic display of function timing
• Analysis independently for each hardware

thread
• Results are summarized and displayed as

a single result

Trace.PROfileChart.sYmbol /CORE <n> Graphic display of function timing
• Analysis for specified hardware thread
Training Hexagon ETM Tracing | 101©1989-2024 Lauterbach

Did you know?

Periods of time for which no trace information is exported (?????) are assigned to the last running function
(here BLASTK_futex_wait).

Did you know?

If the Window check box is selected in the Chart Config window, the functions that are active at the
selected point of time are visualized in the Trace.Chart.sYmbol window. This is helpful especially if you
scroll horizontally.

Switch Window
on
Training Hexagon ETM Tracing | 102©1989-2024 Lauterbach

Numerical Display

Some trace analysis commands that provide a graphical result have a numerical counterpart.

Trace.Chart.sYmbol Graphic display of function timing

Trace.STATistic.sYmbol Numerical display of function timing

Trace.STATistic.sYmbol [/SplitCORE] Numerical display of function timing
• Analysis independently for each hardware

thread
• Individual results for all hardware threads

are displayed
• The number after “:” represents the hard-

ware thread
• Default option
Training Hexagon ETM Tracing | 103©1989-2024 Lauterbach

For a description of the list summary and the highlighted columns, see tables below.

List Summary

item Number of recorded functions/symbol regions

total Time period recorded by the trace

samples Total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a function/symbol
region)

Columns with function details

address Function name
(other) program sections that can not be assigned to a function/symbol
region

total Time period in the function/symbol region during the recorded time
period

min Shortest time continuously in the address range of the function/symbol
region

max Longest time continuously in the address range of the function/symbol
region

avr Average time continuously in the address range of the function/symbol
region (calculated by total/count)

count Number of new entries into the address range of the function/symbol
region (start address executed)

ratio Ratio of time in the function/symbol region with regards to the total time
period recorded
Training Hexagon ETM Tracing | 104©1989-2024 Lauterbach

Trace.STATistic.sYmbol /MergeCORE Numerical display of function timing
• Analysis independently for each hardware

thread
• Results are summarized and displayed as

a single result

Trace.STATistic.sYmbol /CORE <n> Numerical display of function timing
• Analysis for specified hardware thread

Pushing the Config button provides the possibility to specify a different
sorting criterion or a different column layout
Training Hexagon ETM Tracing | 105©1989-2024 Lauterbach

Did you know?

TRACE32 flushes all trace information stuck in the ETM fifos when the recording to the trace repository is
stopped because the program execution stopped. These delayed exported trace packets can be identified
by no TIme.Back value or by a large TIme.Back value.
These delayed exported trace packets can falsify the run-time analysis. So it is recommended to exclude
them from the analysis. This is done by tagging the last not-delayed trace packet as “Last in Statistic”:

Trace.STATistic.LAST -213. ; Specify the last record that
; should be included into the
; statistic analysis, the rest
; will be ignored
Training Hexagon ETM Tracing | 106©1989-2024 Lauterbach

Hot-spot Analysis (no OS or OS)

If a function seems to be very time consuming, details on the run-time of single instruction packets can be
displayed with the help of the ISTATistic command group.

Preparation

The run-time results on single instruction packets are more accurate if cycle-accurate tracing is used.

A high number of local FIFOFULLs might affect the result of the instruction statistic.

ETM.CycleAccurate ON ; Switch cycle accurate tracing on

Trace.CLOCK 600.MHz ; Inform TRACE32 about your core
; frequency
Training Hexagon ETM Tracing | 107©1989-2024 Lauterbach

Processing

The command group ISTATistic works with a database. The measurement includes the following steps:

1. Enable cycle-accurate tracing.

2. Specify the core clock frequency.

3. Clear the database.

4. Fill the trace repository.

5. Transfer the contents of the trace repository to the database.

6. Display the result.

7. (Repeat step 4-6 if required).

Main commands:

ETM.CycleAccurate ON Switch cycle-accurate tracing on.

Trace.CLOCK <core_clock> Inform TRACE32 about your core frequency.

Trace.FLOWPROCESS Upload the complete trace contents to the host and
merge it with the program code/debug information

ISTATistic.RESet Clear the Instruction Statistic database.

ISTATistic.ADD [/MergeCORE] Transfer the trace information of all hardware threads
from the trace repository to the Instruction Statistic
database.

Default

ISTATistic.ADD /CORE <n> Transfer the trace information of the specified hardware
thread from the trace repository to the Instruction
Statistic database.

ISTATistic.ListFunc List flat function run-time analysis based on the added
trace information.

Data.List <address> /ISTAT TCLOCKS List flat run-time analysis for the single instruction
packets.
Training Hexagon ETM Tracing | 108©1989-2024 Lauterbach

A detailed flat function run-time analysis for all hardware threads can be performed as follows:

ETM.CycleAccurate ON ; Switch cycle accurate tracing on

Trace.CLOCK 600.MHz ; Inform TRACE32 about your core
; frequency

ISTATistic.RESet ; Reset Instruction Statistic Data
; Base

Trace.Mode Leash ; Switch trace to Leash mode

Go ; Start program execution

WAIT !RUN() ; Wait until program stops

Trace.FlowProcess ; Process the trace information

IF Trace.FLOW.FIFOFULL>6000.
PRINT "Warning: Please control the FIFOFULLS"

ISTATistic.ADD ; Add trace information for all
; hardware threads to Instruction
; Statistic database

ISTATistic.ListFunc ; List flat function run-time
; statistic
Training Hexagon ETM Tracing | 109©1989-2024 Lauterbach

For a description of the highlighted columns, see table below.

Columns Description

address Address range of the module, function or HLL line

tree Flat module/function/HLL line tree

coverage Code coverage of the module, function or HLL line

count Number of module/function/HLL line executions

time Total time spent by the module, function or HLL line

clocks Total number of clocks spent by the module, function or HLL line

ratio Percentage of the total measurement time spent in the module, function
or HLL line

cpi Average clocks per instruction packet for the function or the HLL line
Training Hexagon ETM Tracing | 110©1989-2024 Lauterbach

For a description of the highlighted columns, see below.

List.Asm /ISTAT TCLOCKS ; List instruction packet run-time
; statistic
; - Display time information per
; thread

Columns Description

count Total number of instruction packet executions

tclocks Total number of thread clocks for the instruction packet
(tclocks = 1/6 clocks)

tcpi Average thread clocks per instruction packet
Training Hexagon ETM Tracing | 111©1989-2024 Lauterbach

For a description of the highlighted columns, see below.

If exec or/and notexec is 0 for an instruction packet with condition, the instruction packet is bold-printed
against a yellow background. All other instruction packets are bold-printed on a yellow background if they
were not executed.

Data.ListAsm /ISTAT COVerage ; List instruction packet coverage

Columns Description

exec Conditional instructions: number of times the instruction packet was
executed because the condition was true.

Other instructions: number of times the instruction packet was executed

notexec Conditional instructions: number of times the instruction packet wasn’t
executed because the condition was false.

coverage Instruction packet coverage
Training Hexagon ETM Tracing | 112©1989-2024 Lauterbach

Nesting Analysis

Fundamentals

1. The nesting analysis analyses only HLL functions.

2. The nesting analysis expects common ways to enter/exit functions.

3. The result of the nesting analysis is sensitive with regards to FIFOFULLs.

No OS

Trace.Chart.Func Graphic display of nested function run-time
analysis

Trace.STATistic.Func Numerical display of nested function run-time
analysis
Training Hexagon ETM Tracing | 113©1989-2024 Lauterbach

The TRACE32 software scans the trace contents in order to find:

• Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

Trace.Chart.Func /CORE 1 ; Function
; BLASTK_continuation_syscall
; as example

Trace.List /CORE 1 /Track
Training Hexagon ETM Tracing | 114©1989-2024 Lauterbach

• Function exits

A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.
Training Hexagon ETM Tracing | 115©1989-2024 Lauterbach

• Entries to interrupt service routines (asynchronous)

Interrupts are identified as follows:

- An entry to the vector table is detected and the vector address indicates an
asynchronous/hardware interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a RETURN is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembler interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

• Exits of interrupt service routines

A RETURN / RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded
as exit of the interrupt service routine.

Trace.Chart.Func /CORE 1 ; Function BLASTK_handle_int
; as example

Trace.List /CORE 1 /Track
Training Hexagon ETM Tracing | 116©1989-2024 Lauterbach

• Entries to TRAP handlers (synchronous)

If an entry to the vector table is identified and if the vector address indicates a synchronous
interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

• Exits of TRAP handlers

A RETURN / RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the
TRAP handler.

Trace.Chart.Func /CORE 0 ; Function BLASTK_handle_trap0
; as example

Trace.List /CORE 0 /Track
Training Hexagon ETM Tracing | 117©1989-2024 Lauterbach

Analysis Details (no OS)

Numerical Analysis

For a description of the list summary, see table below.

Trace.STATistic.Func [/MergeCORE] Numerical display of nested function run-time
analysis
• analysis for all hardware threads

Trace.STATistic.sYmbol /CORE <n> Numerical display of function timing
• analysis for specified hardware thread

List Summary

func Number of functions in the trace

total Total measurement time

intr Total time in interrupt service routines

List Summary
Training Hexagon ETM Tracing | 118©1989-2024 Lauterbach

For a description of the highlighted column, see table below.

• (root)

The function nesting is regarded as tree, root is the root of the function nesting.

• HLL function

• HLL interrupt service routine

• HLL trap handler

Columns Description

range (NAME) Function name, sorted by their occurrence by default
Training Hexagon ETM Tracing | 119©1989-2024 Lauterbach

For a description of the highlighted columns, see below.

Columns (cont.) Description

total Total time within the function

min Shortest time between function entry and exit, time spent in interrupt
service routines is excluded.

No min time is displayed if a function exit was never executed.

max Longest time between function entry and exit, time spent in interrupt
service routines is excluded.

avr Average time between function entry and exit, time spent in interrupt
service routines is excluded.
Training Hexagon ETM Tracing | 120©1989-2024 Lauterbach

For a description of the highlighted columns, see below.

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2. times within the function, 2 function entries missing

2. 4. (0/3): 4. times within the function, 3 function exits missing

3. 11. (1/1): 11. times within the function, 1 function entry and 1 function exit is missing.

Columns (cont.) Description

count Times within the function

If the number of missing function entries or exits is higher the 1. the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

Columns (cont.) Description

intern%
(InternalRatio,
InternalBAR.LOG)

Ratio of time within the function without subfunctions, TRAP handlers,
interrupts
Training Hexagon ETM Tracing | 121©1989-2024 Lauterbach

Pushing the Config… button allows to display additional columns.

For a description of the additional columns, see tables below.

Columns (cont.) - times only in function

Internal Total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage Average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN Shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX Longest time spent in the function between function entry and exit
without called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.
Training Hexagon ETM Tracing | 122©1989-2024 Lauterbach

Columns (cont.) - times in sub-functions and TRAP handlers

External Total time spent within called sub-functions/TRAP handlers

EAVeRage Average time spent within called sub-functions/TRAP handlers

EMIN Shortest time spent within called sub-functions/TRAP handlers

EMAX Longest time spent within called sub-functions/TRAP handlers

Columns (cont.) - interrupt times

INTR Total time the function was interrupted

ExternalINTRMAX Max. time one function pass was interrupted

ExternalINTRCount Number of interrupts that occurred during the function run-time
Training Hexagon ETM Tracing | 123©1989-2024 Lauterbach

The following graphic give an overview how times are calculated:

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f

fu
n

c1

In
te

rn
al

 o
f

fu
n

c1

E
xt

er
n

al
 o

f
fu

n
c1

E
xt

er
n

al
IN

T
R

 o
f

fu
n

c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
Training Hexagon ETM Tracing | 124©1989-2024 Lauterbach

Further Analysis Commands

Legend

solid black bar Function running

thin black line Subfunction or TRAP handler running

Trace.Chart.Func [/MergeCORE] Graphical display of nested function run-time
analysis
• Analysis for all hardware threads

Trace.Chart.Func /CORE <n> Graphical display of nested function run-time
analysis
• Analysis for specified hardware thread
Training Hexagon ETM Tracing | 125©1989-2024 Lauterbach

Trace.STATistic.TREE [/MergeCORE] Tree display of nested function run-time analysis
• Analysis for all hardware threads

Trace.STATistic.TREE /CORE <n> Tree display of nested function run-time analysis
• Analysis for specified hardware thread
Training Hexagon ETM Tracing | 126©1989-2024 Lauterbach

Trace.ListNesting [/MergeCORE] Nesting display of nested function run-time
analysis
• Analysis for all hardware threads
Training Hexagon ETM Tracing | 127©1989-2024 Lauterbach

Cycle Statistic

To perform a cycle statistic proceed as follows:

1. Activate cycle-accurate tracing.

2. Start and stop the program execution to fill the trace repository.

3. Display the result.

For a description of the list summary and the details, see tables below.

ETM.CycleAccurate ON

Trace.CLOCK 600.MHZ

Trace.STATistic.CYcle

List Summary Description

records Number of records in the trace

time Time period recorded by the trace

List Summary

Details
Training Hexagon ETM Tracing | 128©1989-2024 Lauterbach

clocks Number of clock cycles in the trace

flow cycles Number of ptrace packages

bus cycles 0 (no recording of bus cycles)

cpi Average clocks per instruction packet
(cpi/6 average thread clock per instruction packet)

Details Description

flow execute Number of cycles that executed instructions

flow read Number of cycles that performed a read access
(not implemented yet)

flow write Number of cycles that performed a write access
(not implemented yet)

bus fetch 0 (no recording of bus cycles)

bus read 0 (no recording of bus cycles)

bus write 0 (no recording of bus cycles)

instr number of instruction packages

slot instr —

fail cond Number of conditional instruction that failed (failed branch instructions
included)

pass cond Number of conditional instruction that passed (branch taken included)

fail branch Number of failed branches

dir branch Number of direct branches

indir branch Number of indirect branches

load instr Number of load instructions (not implemented yet)

store instr Number of store instructions (not implemented yet)

modify instr —

List Summary Description
Training Hexagon ETM Tracing | 129©1989-2024 Lauterbach

traps Number of traps

interrupts Number of interrupts

idles Number of idle states
• Wait instruction, under the assumption that the hardware thread

put itself to idle state
• More the 1000. clock cycles without trace information

core 0 Number of idle states for hardware thread 0

…

trace gaps Number of trace gaps (FIFOFULLs, filtered trace information …)

Trace.STATistic.CYcle [/MergeCORE] Cycle statistic
• Analysis for all hardware threads

Trace.STATistic.CYcle /CORE <n> Cycle statistic
• Analysis for specified hardware thread

Analyzer.STATistic.CYcle /CORE 3

Details Description
Training Hexagon ETM Tracing | 130©1989-2024 Lauterbach

Filtering via the ETM Configuration Window

Filtering means to reduce the generated trace information to the information of interest.

Some basic filtering can be done via the ETM configuration window.

The following setups in the ETM configuration window can be done to reduce the generation of the trace
information:

ETM.state Display the ETM configuration window

ETM.TraceTNUM <hardware_thread> Program the ETM to export the instruction flow
only for the specified <hardware_thread>

ETM.TraceASID <asid> Program the ETM to export the instruction flow
only for the specified <asid>

ETM.TraceTID <tid_number> | <bitmask> Program the ETM to export the instruction flow
only for the specified software thread(s)

Trace repository*

ETM trace packet
 generation

* trace memory of PowerTrace
 or ETB

ETM configuration
Training Hexagon ETM Tracing | 131©1989-2024 Lauterbach

Hardware Thread Filter

To restrict the exported instruction flow to the specified hardware thread proceed as follows:

1. Open the ETM configuration window and specify the hardware thread.

2. Start and stop the program execution.

3. Display the result.

Trace.List
Training Hexagon ETM Tracing | 132©1989-2024 Lauterbach

Software Thread Filter

To restrict the exported instruction flow to the specified software thread proceed as follows:

1. Open the ETM configuration window and specify the software thread.

2. Start and stop the program execution.

3. Display the result.

ASID Filter

(no example available)

Trace.List
Training Hexagon ETM Tracing | 133©1989-2024 Lauterbach

Filtering/Triggering with Break.Set

Filtering means to reduce the generation of trace information to the information of interest.

Filtering helps to prevent TARGET FIFO OVERFLOWs and enables a more effective utilization of the trace
memory.

Triggering means to stop the recording to the trace repository.

The following actions provide filters:

The following action provides triggers:

TraceEnable Program the ETM to generate only trace information if the specified event
matches.

TraceON Program the ETM to start the generation of trace information if the
specified event matches.

TraceOFF Program the ETM to stop the generation of trace information if the
specified event matches (restart possible).

TraceTrigger Stop the recording of trace information into the trace repository if the
specified event matches (no restart possible). The stop can be delayed.
Training Hexagon ETM Tracing | 134©1989-2024 Lauterbach

The filter/trigger breakpoints and the filters provided by the ETM configuration window can be combined.

Trace repository*

ETM trace packet
 generation

* trace memory of PowerTrace
 or ETB

Trigger breakpoints

ETM configuration

Filter breakpoints
Training Hexagon ETM Tracing | 135©1989-2024 Lauterbach

TraceEnable Filter

Standard Usage

To illustrate the standard usage of the TraceEnable filter, the following examples are provided:

• Example 1: Program the ETM to export only trace information, if the instruction at a particular
symbolic address is executed.

• Example 2: Program the ETM to export only trace information, if the instruction at a particular
symbolic address is executed by a particular hardware thread.

• Example 3: Program the ETM to export only information about the instruction that writes to a
particular variable.

Example 1

Program the ETM to export only trace information, if the instruction at the symbolic address
BLASTK_futex_wait is executed (etm_filter1.cmm).

1. Specify the event in the Break.Set dialog.

- Specify the program address in the address / expression field.

- Specify the type Program (default).

- Specify the action TraceEnable.

2. Start and stop the program execution.

3. Display the result.
Training Hexagon ETM Tracing | 136©1989-2024 Lauterbach

Training Hexagon ETM Tracing | 137©1989-2024 Lauterbach

Example 2

Program the ETM to export only trace information, if the instruction at the symbolic address BLASTK_writec
is executed by hardware thread 0x0 (etm_filter2.cmm).

1. Specify the event in the Break.Set dialog.

- Specify the program address in the address / expression field.

- Specify the type Program (default).

- Specify the action TraceEnable.

2. Specify hardware thread 0x0 in the ETM configuration window.

3. Start and stop the program execution.
Training Hexagon ETM Tracing | 138©1989-2024 Lauterbach

4. Display the result.

Summary

; Export only the execution of the specified instruction packets
; (up to 8 single instructions or up to 4 instruction ranges)

Break.Set <address> | <range> /Program /TraceEnable
Training Hexagon ETM Tracing | 139©1989-2024 Lauterbach

Example 3

Program the ETM to export only information about the instruction that writes to the variable
BLASTK_wait_mask (etm_filter3.cmm).

1. Specify the event in the Break.Set dialog.

- Specify the data address in the address / expression field. Activate the HLL check box to
specify the breakpoint for the complete address range of the variable.

- Specify the type Write.

- Specify the action TraceEnable.

2. Start and stop the program execution

3. Display the result.
Training Hexagon ETM Tracing | 140©1989-2024 Lauterbach

Summary

; Export only the instructions that perform the specified data access
; no data value allowed
; (up to 6 single address accesses or up to 3 access ranges)

Break.Set <address> | <range> /ReadWrite | /Read | /Write /TraceEnable
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write /TraceEnable
Training Hexagon ETM Tracing | 141©1989-2024 Lauterbach

Statistical Evaluations

To illustrate statistical evaluations, the following examples are provided:

• Example 1: Analyze the intervals of a particular function.

• Example 2: Analyze the time between function A and function B.

Example 1: Time Interval of a Single Event

Analyze the intervals of BLASTK_handle_trap0.

1. Program the ETM to export only the entry to the function BLASTK_handle_trap0.

- Specify the program address in the address / expression field.

- Specify the type Program (default).

- Specify the action TraceEnable.

2. Start and stop the program execution.

3. Display the result.

Trace.List
Trace.STATistic.AddressDIStance BLASTK_handle_trap0
Training Hexagon ETM Tracing | 142©1989-2024 Lauterbach

Example 2: Time between Two Events

Analyze the time between BLASTK_mutex_lock and BLASTK_mutex_unlock.

1. Program the ETM to export only the entry to the functions BLASTK_mutex_lock and
BLASTK_mutex_unlock.

2. Start and stop the program execution.

3. Display the result.

Trace.List

Trace.STATistic.AddressDURation BLASTK_mutex_lock \
BLASTK_mutex_unlock
Training Hexagon ETM Tracing | 143©1989-2024 Lauterbach

TraceON/OFF Filter

To illustrate the TraceON/OFF filter, the following example is provided:

• Program the ETM to start the exporting of trace information, whenever the instruction at the
address BLASTK_puts_debug_buffer was executed.

• Program the ETM to stop the exporting of trace information, whenever the instruction at the
address BLASTK_puts_debug_buffer+0x90 was executed (etm_filter4.cmm).

1. Open a source listing at the label BLASTK_puts_debug_buffer.

; List *
List.Asm BLASTK_puts_debug_buffer
Training Hexagon ETM Tracing | 144©1989-2024 Lauterbach

2. Set a TraceON breakpoint to the instruction packet at the label BLASTK_puts_debug_buffer.

3. Set a TraceOFF breakpoint to the instruction packet at the address
BLASTK_puts_debug_buffer+90.

4. Start and stop the program execution.
Training Hexagon ETM Tracing | 145©1989-2024 Lauterbach

5. Display the result.

Proceed as follows, if you want to search for the ON/OFF transitions:

1. Select the Trace.List window as active window.

2. Specify Enable for the global TRACE32 Find.

Trace.List
Training Hexagon ETM Tracing | 146©1989-2024 Lauterbach

Summary

; Export only the execution of the instructions between TraceON/TraceOFF
; (up to 2 pairs)

Break.Set <address> | <range> /Program /TraceON
Break.Set <address> | <range> /ReadWrite | /Read | /Write /TraceON
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write /TraceON

Break.Set <address> | <range> /Program /TraceOFF
Break.Set <address> | <range> /ReadWrite | /Read | /Write /TraceOFF
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write /TraceOFF
Training Hexagon ETM Tracing | 147©1989-2024 Lauterbach

TraceTrigger

There are two use cases for TraceTrigger.

To illustrate the two use cases, the following examples are provided:

• Example 1: A TraceTrigger can be used instead of a breakpoint, if it is not allowed to stop the
program execution.

• Example 2: A TraceTrigger can be used to get the prologue and the epilog of an event in the
trace.

Example 1

Stop the trace recording after 0x24 was written as a byte to the variable BLASTK_wait_mask
(etm_trigger1.cmm).

1. Specify the event in the Break.Set dialog.

- Specify the data address in the address / expression field. Activate the HLL check box to
specify the breakpoint for the complete address range of the variable.

- Specify the type Write.

- Specify DATA value and access width.

- Specify the action TraceTrigger.

2. Start the program execution.

green in the Trace State Field
indicates that trace information
is being captured

running in the Debug State Field
indicates that the program
execution is running
Training Hexagon ETM Tracing | 148©1989-2024 Lauterbach

3. The recording to the trace repository is stopped soon after the event happened.

- The state field in the Trace Configuration window changes to break (1) to indicate that the
recording to the trace repository is stopped.

- The Trace State field in the TRACE32 State Line changes to BRK accordingly (2).

1

2

Training Hexagon ETM Tracing | 149©1989-2024 Lauterbach

4. Display the result.

Please be aware that the result can only be displayed while the program execution is running if the
program code was copied into the TRACE32 Virtual Memory before.
Training Hexagon ETM Tracing | 150©1989-2024 Lauterbach

Example 2

Stop the trace recording when a write access to the variable BLASTK_wait_mask occurred and another
50% of the trace repository was filled.

1. Specify the event in the Break.Set dialog.

- Specify the data address in the address / expression field. Activate the HLL check box to
specify the breakpoint for the complete address range of the variable.

- Specify the type Write.

- Specify the action TraceTrigger.

Trace repository

Event

50%
Training Hexagon ETM Tracing | 151©1989-2024 Lauterbach

2. Specify the fill of the trace repository after the event (TDelay counter).

3. Start the program execution.
Training Hexagon ETM Tracing | 152©1989-2024 Lauterbach

4. As soon as the event occurred

- The state field in the Trace Configuration window changes to trigger (1).

- The Trace State Field in the TRACE32 State Line changes to TRG accordingly (2).

1

2

Training Hexagon ETM Tracing | 153©1989-2024 Lauterbach

5. As soon as the TDelay counter ran down

- - The state field in the Trace Configuration window changes to break.

- - The Trace State field in the TRACE32 State Line changes to BRK accordingly.
Training Hexagon ETM Tracing | 154©1989-2024 Lauterbach

6. After the TDelay counter elapsed the trace information can be displayed.

Push Trigger in the Trace Goto dialog for the display of the trigger point. All records recorded after
the trigger event have a positive record number.

Summary

; Stop trace recording when the specified address is executed
; (up to 4 single instructions or up to 4 instruction ranges)

Break.Set <address> | <range> /Program /TraceTrigger

; Stop trace recording when the specified data access occurred
; (up 4 single data accesses or up to 2 data access ranges)

Break.Set <address> | <range> /ReadWrite | /Read | /Write /TraceTrigger
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write /TraceTrigger
Break.Set <address> | <range> /<access> /Data.auto <data> | /Data.Byte <data> /TraceTrigger
Break.Set <address> | <range> /<access> /Data.Word <data> | /Data.Long <data> /TraceTrigger
Var.Break.Set <hll_expression> /ReadWrite | /Read | /Write /Data.auto <data> /TraceTrigger

; Counter possible
Break.Set <address> | <range> /<access> <data_value> /TraceTrigger /COUNT <value>
Var.Break.Set <hll_expression> /<access> <data_value> /TraceTrigger /COUNT <value>
Training Hexagon ETM Tracing | 155©1989-2024 Lauterbach

Filtering/Triggering via the ETM.Set

The ETM.Set commands allow a low-level programming of the triggering/filtering resources of the ETM.

The low-level programming of the ETM filters and trigger requires at least some basic knowledge about the
so-called “event resources” provided by the Hexagon ETM. Please refer to your ETM Architecture
Specification.

The event resources consist basically of 4 trigger blocks and a three state sequencer.

The low-level programming adds the following features:

• More sophisticated breakpoints than the Break.Set dialog.

• The sequencer allows to combine a series of events to form a breakpoint
Training Hexagon ETM Tracing | 156©1989-2024 Lauterbach

The ETM Registers

The trigger block/sequencer configuration registers can be displayed as follows:

Click Register to display the
ETM configuration registers

Click here to
get details

Trigger block 0
Training Hexagon ETM Tracing | 157©1989-2024 Lauterbach

If the contents of an ETM configuration register is selected, the address and a short description of the ETM
register is displayed in the TRACE32 state line. For detailed information on the particular register, refer to the
ETM architecture specification.

The ETM configuration registers can be read while the program execution is running. For an extensive
usage of the ETM registers the following command is recommended:

; Display the ETM configuration registers
; - mark changes by color (SpotLight)
; - update register display while program execution is running
; (DualPort)
ETM.Register , /SpotLight /DualPort
Training Hexagon ETM Tracing | 158©1989-2024 Lauterbach

Actions Based on Sequencer Level

Most trigger/filters are programmed as follows:

The following graphic shows the relevant ETM.Set commands:

To illustrate actions based on sequencer level, the following examples are provided:

• Example 1: Stop the program execution if a value other than the specified one is written to the
<variable X>.

• Example 2: Stop the program execution if a particular function was first executed by the hardware
thread 1 and then by the hardware thread 3.

Specify the condition(s)
for the trigger block(s)

Specify the transitions
for the sequencer

Specify actions
for sequencer level(s)

ETM.Set TNUM T0 3. ETM.Set S0TO1 T0 ETM.Set STOP S1

ETM.Set Address …
ETM.Set Data …
ETM.Set COUNT …
ETM.Set ASID …
ETM.Set TID …
ETM.Set TNUM …

Commands to program
a trigger block

TO

T1

T2

T3

ETM.Set Trigger <seq_level>

ETM.Set STOP <seq_level>

ETM.Set EXTOUT <seq_level>

ETM.Set INTERRUPT <seq_level>

Commands to trigger an action

S0

S1

S2

ETM.Set S0TO1 …
ETM.Set S0TO2 …
ETM.Set S1TO0 …
…

Commands to change the
sequencer level
Training Hexagon ETM Tracing | 159©1989-2024 Lauterbach

Example 1 - Actions based on Sequencer Level

Stop the program execution if a value other than 0x24 is written to the variable BLASTK_wait_mask
(etm_set1.cmm).

; Display command history
HISTory.type

ETM.Register , /SpotLight /DualPort

; Reset all ETM registers
ETM.CLEAR
; Sequencer level 0 is active after ETM.Clear

; Program the address range of the variable mutex_lock into the
; address comparator of the trigger block 0, specify write access
ETM.Set Address T0 Write Var.RANGE(BLASTK_wait_mask)
Training Hexagon ETM Tracing | 160©1989-2024 Lauterbach

; Program the data !0x24 into the data comparator of the trigger block 0
ETM.Set Data T0 != 0x24

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set S0TO1 T0

; Stop the program execution is sequencer level 1 is active
ETM.Set STOP S1

Please be aware, that this program stop is a one time stop. In order to stop
the program execution for the same condition again, the same programming
sequence needs to be reprogrammed.
Training Hexagon ETM Tracing | 161©1989-2024 Lauterbach

Example 2 - Actions based on Sequencer Level

Stop the program execution if the function BLASTK_futex_wait was first executed by the hardware thread 1
and then by the hardware thread 3 (etm_set2.cmm).

; Display command history
HISTory.type

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 is active after ETM.Clear

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 0
ETM.Set Address T0 Program BLASTK_futex_wait

; Program the hardware thread 0 into the TNUM comparator of the trigger
; block 0
ETM.Set TNUM T0 1.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set S0TO1 T0

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 1
ETM.Set Address T1 Program BLASTK_futex_wait

; Program the hardware thread 3 into the TNUM comparator of the trigger
; block 1
ETM.Set TNUM T1 3.

; Change from sequencer level 1 to 2 if the event specified in trigger
; block 1 becomes true
ETM.Set S1TO2 T1

; Stop the program execution is sequencer level 2 is active
ETM.Set STOP S2
Training Hexagon ETM Tracing | 162©1989-2024 Lauterbach

Actions Based on Sequencer Level and Condition

Some trigger/filters are programmed as follows:

The following graphic shows the relevant ETM.Set commands:

To illustrate actions based on sequencer level and condition, the following examples are provided:

• Example 1: Program the ETM to export only trace information for <hardware_thread_x> and
<hardware_thread_y>.

• Example 2: Program the ETM to export five times the entry to the <function_x> and one time the
entry to the <function_y> repeatedly.

• Example 3: Stop the program execution after the <function_x> was called 10. times by hardware
thread 0. Export only the function call.

Specify the condition(s)
for the trigger block(s)

Specify the transitions
for the sequencer

Specify actions
for sequencer level(s)

ETM.Set TNUM T0 3.

and condition

ETM.Set Filter T0 S0

ETM.Set Address …
ETM.Set Data …
ETM.Set COUNT …
ETM.Set ASID …
ETM.Set TID …
ETM.Set TNUM …

Commands to program
a trigger block

TO

T1

T2

T3

ETM.Set Filter <trigger_block> <seq_level>

Commands to trigger an action

S0

S1

S2

ETM.Set S0TO1 …
ETM.Set S0TO2 …
ETM.Set S1TO0 …
…

Commands to change the
sequencer level

ETM.Set
CountReload <trigger_block> <seq_level>
Training Hexagon ETM Tracing | 163©1989-2024 Lauterbach

Example 1 - Actions based on Sequencer Level and Condition

Program the ETM to export only trace information for hardware thread 0x0 and hardware thread 0x3
(etm_set3.cmm).

ETM.CLEAR ; Reset all ETM registers

ETM.Set TNUM T0 0x0 ; Program the hardware thread 0x0
; into the TNUM comparator of the
; trigger block 0

ETM.Set TNUM T1 0x3 ; Program the hardware thread 0x3
; into the TNUM comparator of the
; trigger block 1

ETM.Set Filter T0 ALL ; Export trace information in
; all sequencer levels if the
; condition specified for trigger
; block 0 is true

ETM.Set Filter T1 ALL ; Export trace information in
; all sequencer levels if the
; condition specified for trigger
; block 1 is true
Training Hexagon ETM Tracing | 164©1989-2024 Lauterbach

Example 2 - Actions based on Sequencer Level and Condition

Program the ETM to export five times the entry to the function blast_mutex_unlock and one time the entry to
the function blast_mutex_lock repeatedly (etm_set4.cmm).

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 is active after ETM.Clear

; Program the start address of the function blast_mutex_unlock into the
; address comparator of the trigger block 0

; Export the start address of the function blast_mutex_unlock if
; sequencer level 0 is active (alternative way to ETM.Set Filter …)
ETM.Set Address T0 Program blast_mutex_unlock S0

; Program the counter of trigger block 0 to 5.
ETM.Set Count T0 5.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set S0TO1 T0

; Program the start address of the function blast_mutex_lock into the
; address comparator of the trigger block 1

; Export the start address of the function blast_mutex_lock if
; sequencer level 1 is active (alternative way to ETM.Set Filter …)
ETM.Set Address T1 Program blast_mutex_lock S1

; Change from sequencer level 1 to 0 if the event specified in trigger
; block 1 becomes true
ETM.Set S1TO0 T1

; Reload all counters if the event specified in trigger block 1 becomes
; true in the sequencer level 1
ETM.Set CountReload T1 S1
Training Hexagon ETM Tracing | 165©1989-2024 Lauterbach

Example 3 - Actions based on Sequencer Level and Condition

Stop the program execution after the function BLASTK_writec was called 10. times by hardware thread 0.
Export only the function call (etm_set5.cmm).

; Display command history
HISTory.type

; Reset all ETM registers
ETM.CLEAR
; sequencer level 0 is active after ETM.Clear

; Program the start address of the function BLASTK_writec into the
; address comparator of the trigger block 0

; Export this instruction as long as the sequencer level 0 is
; active
ETM.Set Address T0 Program BLASTK_writec S0

; Program the hardware thread 0 into the TNUM comparator of the trigger
; block 0
ETM.Set TNUM T0 0.

; Program the event counter of trigger block 0 with 10.
ETM.Set Count T0 10.

; Change from sequencer level 0 to 1 if the event specified in trigger
; block 0 becomes true
ETM.Set S0TO1 T0

; Stop the program execution is sequencer level 1 is active
ETM.Set STOP S1

; Display the result
Trace.List
Training Hexagon ETM Tracing | 166©1989-2024 Lauterbach

Benchmark Counters

Introduction

The ETM provides six 16-bit counters which can count one of the following events:

TRACE32 PowerView enables you:

• to count the occurrence of up to six events summarized for all hardware threads
(BMC.SPLIT OFF).

• to count the occurrence of a single event separately for each hardware thread (BMC.SPLIT ON).

The counters count their assigned event for a fixed number of clock cycles.

Profile packets containing the current counter values are exported by the ETM after this fixed number of
cycles.

DCMISS data cache misses

DCCONFLICT data cache conflicts

ICMISS instruction cache misses

ICSTALL instruction cache stall-cycles

ITLBMISS itlb misses

DTLBMISS dtlb misses

STALLS all stall cycles
Training Hexagon ETM Tracing | 167©1989-2024 Lauterbach

The benchmark counters, the filters provided by the ETM configuration window and the filter breakpoints can
be combined.

Filter breakpoints

Trace repository*

ETM trace packet
 generation

ETM configuration

* trace memory of PowerTrace
 or ETB

Benchmark counters
Training Hexagon ETM Tracing | 168©1989-2024 Lauterbach

Standard Examples

To illustrate the handling of benchmark counters, the following examples are provided:

• Example 1: Count the total number of stall cycles and the number of instruction cache stall cycles
summarized for all cores. Export this information every n clock cycles.

• Example 2: Count the total number of stall cycles separately for each hardware thread. Export
this information every n clock cycles.

• Example 3: Count the instruction cache misses for hardware thread 0. Inspect the peak areas.

• Example 4: Count the total number of stalls between the entry to a particular function and the
instruction at a particular address.

Example 1 - Benchmark Counters

Count the total number of stall cycles and the number of instruction cache stall cycles summarized for all
cores. Export this information every 500. clock cycles.

1. Open the benchmark counter configuration window.

2. Configure the benchmark counters.

- Counter0 counts the total number of stall cycles

- Counter1 counts the number of instruction cache stall cycles

BMC.state
Training Hexagon ETM Tracing | 169©1989-2024 Lauterbach

3. Specify the exporting rate.

- The counter contents are exported by the ETM all 500 clock cycles.

4. Enable the TRACE32 BenchMark Counter functionality (BMC.ON).

5. Start and stop the program execution.
Training Hexagon ETM Tracing | 170©1989-2024 Lauterbach

6. Display the result.

Trace.List Counter0 Counter1 DEFault

Push the More button to get the counter display
Training Hexagon ETM Tracing | 171©1989-2024 Lauterbach

Example 2 - Benchmark Counters

Count the total number of stall cycles separately for each hardware thread. Export this information all 500.
clock cycles.

1. Open the benchmark counter configuration window.

2. Activate the SPLIT option to program the ETM to count the specified event separately for
each hardware thread.

BMC.state
Training Hexagon ETM Tracing | 172©1989-2024 Lauterbach

3. Configure the benchmark counter Counter0.

- Counter0 counts the total number of stall cycles

4. Specify the exporting rate.

- The counter contents are exported all 500 clock cycles.

5. Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

6. Start and stop the program execution.

7. Display the result.

Trace.List Counter0 Counter1 DEFault
Training Hexagon ETM Tracing | 173©1989-2024 Lauterbach

Push the More button to get the counter display
Training Hexagon ETM Tracing | 174©1989-2024 Lauterbach

Example 3 - Benchmark Counters

Count the instruction cache misses for hardware thread 0. Inspect the peak areas.

1. Configure the benchmark counter.

- Program the ETM to count the specified event for each hardware thread separately
(BMC.SPLIT ON)

- Specify that Counter0 counts Instruction Cache Misses

- The counter contents is exported all 500. clock cycles

- Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

2. Program the ETM to export trace information only for hardware thread 0.

3. Start and stop the program execution.

BMC.state

ETM.state
Training Hexagon ETM Tracing | 175©1989-2024 Lauterbach

4. Display the result.

Push Counter0

to get a graphical
display of the
counter values

Use the zoom buttons in the display

in the draw field
Training Hexagon ETM Tracing | 176©1989-2024 Lauterbach

5. Open a trace listing to inspect peak areas.

Trace.List /Track
Training Hexagon ETM Tracing | 177©1989-2024 Lauterbach

6. Reset all settings when you are done with your test.
Training Hexagon ETM Tracing | 178©1989-2024 Lauterbach

Example 4 - Benchmark Counters

Count the total number of stalls between the entry to the function BLASTK_writec and the instruction at
address BLASTK_mutex_unlock+0x0C.

1. Specify TraceON/TraceOFF breakpoints for the program range of interest.

2. Configure the benchmark counters.

- Counter0 counts the total number of stalls

- The counter contents is exported all 100. clock cycles.

- Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

3. Start and stop the program execution.

4. Display the result.

5. Reset the benchmark counters and delete the breakpoints when you are done with your
test.
Training Hexagon ETM Tracing | 179©1989-2024 Lauterbach

Function Run-time Analysis - Cache Misses/Stalls

Function run-times increase with the number of stalls or/and cache misses. It makes sense to check such
events.

Example

Analyze the number of Instruction Cache Misses for all function.

1. Configure the Benchmark Counter.

- Program the ETM to count the specified event for each hardware thread separately
(BMC.SPLIT ON)

- Specify Instruction Cache Misses for Counter0.

- The counter contents is exported all 500 clock cycles.

- Enable the TRACE32 BenchMark Counter functionality (BMC.ON)

- SELect Counter0 as source for the benchmark counter statistic.

2. Start and stop the program execution.

BMC.state ; Open the benchmark counter
; configuration window
Training Hexagon ETM Tracing | 180©1989-2024 Lauterbach

3. Display the result.

For a description of the list summary and the columns, see tables below.

BMC.STATistic.sYmbol

List Summary

item number of recorded functions/symbol regions

total total number of stalls during measurement period

samples number of recorded profiling packets

Columns with function details

address function name/name of symbol region
(other) program sections that can not be assigned to a
function

total total number of stalls for the function during the recorded
period

min smallest number of stalls in a continuous address range of the
function

max largest number of stalls in a continuous address range of the
function

avr average number of stalls in a continuous address range of the
function

count number of new entries into the address range of the
function/symbol region (start address executed)

ratio ratio of stalls for the function with regards to the total number
of stalls
Training Hexagon ETM Tracing | 181©1989-2024 Lauterbach

Background

0000 0bb7

0000 09e8

0000 09e1

Profiling packet

number of stalls is evenly split up on all

Profiling packet

Profiling packet

instructions executed between 2 profiling packets
Training Hexagon ETM Tracing | 182©1989-2024 Lauterbach

Summary: Trigger and Filter

A set of functions has an effect on the ETM trace packet generation. But at the end all these functions are
using the same resources (the four trigger blocks and the sequencer provided by the ETM).

In the case of a resource conflict, prioritization is done as follows:

1. ETM.Set commands

2. Break.Set commands

3. Benchmark counters

Please do not program the ETM resources via
• Data.Set
• PER.Set.simple

TRACE32 may overwrite your settings.

ETM trace packet
 generation

[0..n.1]

ETM configuration

The filter and trigger breakpoints

The filter and trigger set via the ETM.Set command

The benchmark counters
Training Hexagon ETM Tracing | 183©1989-2024 Lauterbach

Appendix A

The Calibration of the Recording Tool

TRACE32 provide the AutoFocus button in the Trace configuration window to calibrate the recording tool.

In order to perform the calibration TRACE32 loads a test program to the memory addressed by the PC or
the stack pointer. It is also possible to define an <address_range> for the test program.

If the calibration is performed successfully, the following message will be displayed:

Frequencies smaller then 6 MHz result in f=0.0 MHz, since the frequency is maintained by TRACE32 as an
integer.

Trace.AutoFocus
Training Hexagon ETM Tracing | 184©1989-2024 Lauterbach

The ShowFocus button in the Trace configuration window allows to inspect the result of the calibration.

Trace.ShowFocus

Sampling points (red lines)Data channel delay
Training Hexagon ETM Tracing | 185©1989-2024 Lauterbach

Calibration Problems

If the calibration of the recording tool fails, the following error message is displayed:

The TRACE32 message area displays further diagnosis information.

AREA.view
Training Hexagon ETM Tracing | 186©1989-2024 Lauterbach

If the diagnosis information of TRACE32 is not sufficient to identify the problem, make sure that the following
preconditions are fulfilled before you start a more detailed diagnosis:

• The ETM is enabled on your target board.

• The ETM pins are enabled on your target board.

A helpful tool for further diagnosis can be the Trace.ShowFocusEye window.

Push Scan to get diagnosis data

Push Channel to check the data eyes of the
trace channels

The recording tools can not dectect a data eye for TP11
Training Hexagon ETM Tracing | 187©1989-2024 Lauterbach

	Training Hexagon ETM Tracing
	Introduction Hexagon ETM
	Off-chip Trace Port
	TRACE32 Hardware Configuration
	Trace Display/Evaluation for All Hardware Threads in Common
	Trace Display/Evaluation for a Single Hardware Thread
	Basic Start-Up Sequence
	Cycle-Accurate Tracing

	On-chip Trace
	TRACE32 Hardware Configuration
	Trace Display/Evaluation for All Hardware Threads in Common
	Trace Display/Evaluation for a Single Hardware Thread
	Basic Start-up Sequence
	Cycle-Accurate Tracing

	Specifying the Trace Method
	Trace Method Analyzer
	Trace Method Onchip

	FLOW ERROR
	Description
	Diagnosis

	TARGET FIFO OVERFLOW
	Description
	Diagnosis

	ETM Based Real-Time Breakpoints
	Introduction
	TRACE32 Hardware Configuration
	Requirements
	Hint

	Breakpoint Usage
	Complex Program Breakpoints
	Complex Data Breakpoints
	Combining Program and Data Breakpoints

	Saving the Breakpoint Settings as a PRACTICE Script

	Displaying the Trace Contents
	Fundamentals
	Display Commands
	Correlating Different Trace Displays
	Correlating the Trace Display and the Source Code
	Default Display Items
	Additional Display Items
	ASID and TID
	TIme.Zero
	ETM Packets

	Formatting the Trace Display
	Changing the DEFault Display
	The AutoInit Option
	Searching in the Trace
	Belated Trace Analysis
	ASCII File
	TRACE32 Instruction Set Simulator
	Export the Trace Information as ETMv3 Byte Stream

	Function Run-Times Analysis
	Flat vs. Nesting Analysis
	Basic Knowledge about the Flat Analysis
	Basic Knowledge about the Nesting Analysis
	Summary

	Flat Analysis
	Dynamic Program Behavior (no OS and OS)
	Function Timing Diagram (no OS or OS)
	Hot-spot Analysis (no OS or OS)

	Nesting Analysis
	Fundamentals
	Analysis Details (no OS)

	Cycle Statistic
	Filtering via the ETM Configuration Window
	Hardware Thread Filter
	Software Thread Filter
	ASID Filter

	Filtering/Triggering with Break.Set
	TraceEnable Filter
	Standard Usage
	Statistical Evaluations

	TraceON/OFF Filter
	TraceTrigger

	Filtering/Triggering via the ETM.Set
	The ETM Registers
	Actions Based on Sequencer Level
	Actions Based on Sequencer Level and Condition

	Benchmark Counters
	Introduction
	Standard Examples
	Function Run-time Analysis - Cache Misses/Stalls

	Summary: Trigger and Filter
	Appendix A
	The Calibration of the Recording Tool
	Calibration Problems

