LAUTERBACH A

Training Basic SMP Debugging

Training Basic SMP Debugging

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
[1T 01U T o T gl I = 11 11 4T r—~
Training Basic SMP DebUgQingc.cccccuurerminimmmisnnissssssssss s sssssssssssssssssssssssssssssssssass sasamsnss 1
85353 (=0 €T o g =Y o) 6
On-chip Debug Interface 7
Debug Features 7
TRACES32 Tools 8
On-chip Debug Interface plus On-chip Trace Buffer 10
On-chip Debug Interface plus Trace Port 12
NEXUS Interface 13
Starting a TRACE32 PowerView INStanCe ... nnssssss s s ssssssmssnns 14
Basic TRACES32 PowerView Parameters 14
Configuration File 14
Standard Parameters 15
Examples for Configuration Files 16
Additional Parameters 20
Application Properties (Windows only) 21
Configuration via T32Start (Windows only) 22
About TRACE32 23
Version Information (SMP) 23
Prepare Full Information for a Support Email 24
Establish your Debug SeSSIiONcccccciimiiismmmmniisssrnsss s s sss s s smsss s 25
TRACE32 POWEIVIEW ...cciciiiiinnemcmmnnnisisssssssssssssmsnsssssssssssssssssssmmsssssnssesssssssssnmmnsnssssssessnssssssnnnnns 26
SMP Concept 26
TRACES32 PowerView Components 29
Main Menu Bar and Accelerators 30

Main Tool Bar 32
Window Area 34
Command Line 37
Message Line 40
Softkeys 41
State Line 42
Basic Debugging (SIMP) ...t s s s n s s nn e 44
©1989-2024 Lauterbach Training Basic SMP Debugging | 2

Go/Break 44
Single Stepping on Assembler Level 46
Single Stepping on High-Level Language Level 48
=T 1= (=T 50
Core Registers 50
Display the Core Registers 50
Colored Display of Changed Registers 51
Modify the Contents of a Core Register 52
Special Function Register 53
Display the Special Function Registers 53
Details about a Single Special Function Register 58
Modify a Special Function Register 59
The PER Definition File 60
Memory Display and Modificationcccciiimmiininninsrss s 61
The Data.dump Window 63
Display the Memory Contents 63
Modify the Memory Contents 68
Run-time Memory Access 69
Colored Display of Changed Memory Contents 79
The List Window 80
Displays the Source Listing Around the PC 80
Displays the Source Listing of a Selected Function 81

ST = 14 o Lo 10| 83
Breakpoint Implementations 83
Software Breakpoints in RAM 83
Onchip Breakpoints in NOR Flash 85
Onchip Breakpoints on Read/Write Accesses 89
Onchip Breakpoints by Processor Architecture 90
ETM Breakpoints for ARM or Cortex-A/-R 91
Breakpoint Types 94
Program Breakpoints 95
Read/Write Breakpoints 97
Breakpoint Handlingccccccciiiiiiinrincir s ssss s s smms s s smss s s smmss s ssmmnn s 99
Breakpoint Setting at Run-time 99
Real-time Breakpoints vs. Intrusive Breakpoints 100
Break.Set Dialog Box 104
The HLL Check Box - Function Name 105
The HLL Check Box - Program Line Number 107
The HLL Check Box - Variable 109
The HLL Check Box - HLL Expression 111
Implementations 114
Actions 115
©1989-2024 Lauterbach Training Basic SMP Debugging | 3

Options 119

DATA Breakpoints 123
Advanced Breakpoints 126
TASK-aware Breakpoints 127
Intrusive TASK-aware Breakpoint 127
Real-time TASK-aware Breakpoint 129
COUNTer 132
Software Counter 132
CONDition 135
CMD 142
Display a List of all Set Breakpoints 145
Delete Breakpoints 146
Enable/Disable Breakpoints 146
Store Breakpoint Settings 147
9 1= 41U T e T] 4T R 148
Debugging of Optimized Code 148
Basic Debug Control 151

©1989-2024 Lauterbach Training Basic SMP Debugging | 4

Training Basic SMP Debugging

Version 06-Jun-2024

©1989-2024 Lauterbach Training Basic SMP Debugging | 5

System Concept

A single-core processor/multi-core chip can provide:

J An on-chip debug interface
. An on-chip debug interface plus an on-chip trace buffer
J An on-chip debug interface plus an off-chip trace port

J A NEXUS interface including an on-chip debug interface

Depending on the debug resources different debug features can be provided and different TRACES32 tools
are offered.

©1989-2024 Lauterbach Training Basic SMP Debugging | 6

On-chip Debug Interface

The TRACES2 debugger allows you to test your embedded hardware and software by using the on-chip
debug interface. The most common on-chip debug interface is JTAG.

A single on-chip debug interface can be used to debug all cores of a multi-core chip.

Debug Features

Depending on the processor architecture different debug features are available.

Debug features provided by all multi-core chips:

. Read/write access to the registers of all cores
. Read/write access to memories

. Start/stop of the program execution

. Start/stop synchronization for all cores

Debug features specific for each multi-core chip:

o Number of on-chip breakpoints
. Read/write access to memory while the program execution is running
. Additional features as benchmark counters, triggers etc.

©1989-2024 Lauterbach Training Basic SMP Debugging | 7

TRACE32 Tools

The TRACE32 debugger hardware always consists of:
J Universal debugger hardware

J Debug cable specific to the processor architecture

For SMP debugging the debug cable needs to provide a License for Multicore Debugging.

This is not required for the following debug cables:

. ARMvS-A
. Intel Atom/x86
. Hexagon

. PowerArchitecture QorlQ 32- and 64-bit
because all these cores are always implemented in a multi-core chip.

Debug Only Modules

PC or
Workstation

Target

[Ep—— Debug Cable

POWER DEBUG E40
LAUTERBACH.

usB Omo e BN
=4

Cable ! H g

Debug
Connector

POWER DEBUG E40

- Wall Mount
Power Supply

Current module:

. POWER DEBUG E40

©1989-2024 Lauterbach Training Basic SMP Debugging | 8

Deprecated modules:

. POWER DEBUG INTERFACE / USB 3
. POWER DEBUG INTERFACE / USB 2

Debug Modules with Option for Off-chip Trace Extension

SWITCH PC or
Workstation
1 GBit Ethernet
L 7
F— remmssne —7 power pEBUG x50
ernet (@7
o ni
j o ronnn i %
o L]
]li wwwwww LAUTERBACH — P —
POWER DEBUG X50
- Desktop

Power Supply

Debug Cable

Target

Debug
Connector

Current module:

. POWER DEBUG X50

Deprecated modules:

. POWER DEBUG PRO (USB 3 and 1 GBit Ethernet)

. POWER DEBUG Il (USB 2 and 1 GBit Ethernet)
. POWER DEBUG / ETHERNET (USB 2 and 100 MBit Ethernet)

©1989-2024 Lauterbach

Training Basic SMP Debugging

9

On-chip Debug Interface plus On-chip Trace Buffer

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface an on-
chip trace buffer.

On-chip Trace Features

The on-chip trace buffer can store core-trace information:

J On the executed instructions.
J On task/process switches.
J On load/store operations if supported by the on-chip trace generation hardware.

System trace information and bus trace information is also possible.

In order to analyze and display the trace information the debug cable needs to provide a Trace License. The
Trace Licenses use the following name convention:

J <core>-TRACE e.g. ARM-TRACE
. or <core>-MCDS) e.g. TriCore-MCDS

% Contents
& Index
4 Find
) Tree /A B:VERSION == EcE
ﬁ TRACE32 PowerView User Manual
ﬁ Processor Architecture Manual TRACE32 PowerView for ARM A
ﬁ Debugger User Guide
MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2012 Lauterbach GmbH
ﬁ Linux Awareness Manual
Software: Interim Build (32-bit) mare...
Software Version: S.2012.08.000038874
Build: 38874, 08/2012
@Trammg Manuals ’ License: maore...
#4 Demo Scripts Cable: ARM (Cor‘te 01/2014
& Welcome to TRACE32
Lauterbach Homepage Hardware: PowerDebug-II via USBE 2.0 more...
Support 4 Debug Cable: C12100165970 ARM Debug Cable v4d
Environment: Windows 7 maore...
SYS: C:\T32_ARM
TMP: C:\TMP
CONFIG: C:\TMP\andT32_1000004.t32 [edit...

©1989-2024 Lauterbach Training Basic SMP Debugging | 10

The display and the evaluation of the trace information is described in the following training manuals:

“Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).
“Training Cortex-M Tracing” (training_cortexm_etm.pdf).
“Training AURIX Tracing” (training_aurix_trace.pdf).

“Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

“Training Nexus Tracing” (training_nexus.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging

11

On-chip Debug Interface plus Trace Port

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface a so-
called trace port. The most common trace port is the TPIU for the ARM/Cortex architecture.

Off-chip Trace Features

The trace port exports in real-time core-trace information:

J On the executed instructions.
J On task/process switches.
J On load/store operations if supported by the on-chip trace generation logic.

System trace information and bus trace information is also possible.

The display and the evaluation of the trace information is described in the following training manuals:

J “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf)
J “Training Cortex-M Tracing” (training_cortexm_etm.pdf)

. “Training AURIX Tracing” (training_aurix_trace.pdf)

J “Training Hexagon ETM Tracing” (training_hexagon_etm.pdf)

©1989-2024 Lauterbach Training Basic SMP Debugging | 12

NEXUS Interface

NEXUS is a standardized interface for on-chip debugging and real-time trace especially for the automotive
industry.

NEXUS Features

Debug features provided by all single-core processors/multi-core chips:

J Read/write access to the registers of all cores

J Read/write access to all memories

. Start/stop synchronization for all cores

. Read/write access to memory while the program execution is running

Debug features specific for single-core processor/multi-core chip:
o Number of on-chip breakpoints

. Benchmark counters, triggers etc.

Trace features provided by all single-core processors/multi-core chips:
. Information on the executed instructions.

J Information on task/process switches.

Trace features specific for the single-core processor/multi-core chip:

. Information on load/store operations if supported by the trace generation logic.

The display and the evaluation of the trace information is described in “Training Nexus Tracing”
(training_nexus.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging | 13

Starting a TRACE32 PowerView Instance

Basic TRACE32 PowerView Parameters

This chapter describes the basic parameters required to start a TRACE32 PowerView instance.

The parameters are defined in the configuration file. By default the configuration file is named config.t32. It

is located in the TRACE32 system directory (parameter SYS).

Configuration File

Open the file config.t32 from the system directory (default c: \T32\config. t32) with any ASCII editor.

File Edit Format View Help

; Environment variables -
05=

; Interface to TRACE3ZZ hardware
FEI=
TsB

; Font settings
SCEREEN=
s FONT=2MALL

; Printer settings
FRINTEE=WINDOWS

The following rules apply to the configuration file:
J Parameters are defined paragraph by paragraph.
. The first line/headline defines the parameter type.

. Each parameter definition ends with an empty line.

. If no parameter is defined, the default parameter will be used.

©1989-2024 Lauterbach

Training Basic SMP Debugging

14

Standard Parameters

Parameter

Syntax

Description

Host interface

PBI=
<host _interface>

PBI=ICD
<host_interface>

Host interface type of TRACES2 tool
hardware (USB or ethernet)

Full parameter syntax which is not in use.

(not required for new tools)

Environment 0S=
variables ID=<identifier> (ID) Prefix for all files which are saved by
TMP=<temp_directory> the TRACES32 PowerView instance into the
SYS=<system_directory> TMP directory
HELP=<help_directory>
(TMP) Temporary directory used by the
TRACES32 PowerView instance (*)
(SYS) System directory for all TRACE32
files
(HELP) Directory for the TRACES32 help
PDFs (**)
Printer PRINTER=WINDOWS All standard Windows printer can be used
definition from TRACE32 PowerView
License file LICENSE=<license_directory> Directory for the TRACES32 license file

(*) In order to display source code information TRACE32 PowerView creates a
copy of all loaded source files and saves them into the TMP directory.

(™) The TRACES32 online help is PDF-based.

©1989-2024 Lauterbach

Training Basic SMP Debugging

15

Examples for Configuration Files

Configuration File for USB

Single debugger hardware module connected via USB:

; Host interface
PBI=
USB

; Environment variables

0S=

ID=T32

TMP=C: \temp ; temporary directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
used from the TRACE32 user interface

Multiple debugger hardware modules connected via USB:

; Host interface

PBI=

USB

NODE=trainingl ; NODE name of TRACE32

; Environment variables

0S=

ID=T32_trainingl

TMP=C: \temp ; temporary directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
; used from TRACE32 PowerView

©1989-2024 Lauterbach Training Basic SMP Debugging | 16

Use the IFCONFIG command to assign a device name (NODE=) to a debugger hardware module. The
manufacturing default device name is the serial number of the debugger hardware module:

J e.g. E18110012345 for a debugger hardware module with ethernet interface, such as PowerDebug

PRO.

J e.g. C18110045678 for a debugger hardware module with USB interface only, such as PowerDebug

USB 3.

Trace Perf Cov CMM

™

P R]
& Frequency Counter

{7} Runtime
@ Mermory Map
* Flash Programming

% Choose Colors...

b~ Interface Config...
éb Tools 4

Japanese Menu

IFCONFIG

B BAIFCONFIG
- |p addreSS
10.2.0.208

— ethernet address
00-C0-8A-80-57-98

- de\fice name —————"———
MPC
— ethernet settings ——————
[CIRARP
[CJpooTP
[¥] DHCP (via device name)

[CTfull duplex

(=[O s

— host |p address ———— -

—EFE—— 0

1714,
send packets | 5219.

4369.
collisions 0.
retries 5

0

Brrors

configuration:

| Enter device name

Save device name to
~ debugger hardware module

Dialog to assign USB device name

Please be aware that USB device names are case-sensitive

©1989-2024 Lauterbach

Training Basic SMP Debugging | 17

Remote Control for POWER DEBUG INTERFACE / USB

TRACES32 allows to communicate with a POWER DEBUG INTERFACE USB from a remote PC. For an
example, see “Example: Remote Control for POWER DEBUG INTERFACE / USB” in TRACES32

Installation Guide, page 56 (installation.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging | 18

Configuration File for Ethernet

; Host interface
PBI=

NET
NODE=trainingl

; Environment variables

OS=

ID=T32 ; temp directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
; used from the TRACE32 user interface

Ethernet Configuration and Operation Profile

Trace Perf Cov CMM

& Frequency Counter éy B:IFCONFIG EI@
ip address host ip address
@ 10.2.0.208
Runtime
&l Memory Map ethernet address host ethernet address
* Flash Programming 00-C0-8A-80-57-98
“ Choose Colors... i
e rene R
errace Lonfig...
Japanese Menu 5219
ethernet settings 4369
[CIraRP 0.
[CsooTP 5.
[¥] DHCP (via device name) 0.
[T full duplex errors 0.
configuration: use2
I IFCONFIG Dialog to display and change information for the Ethernet interface

©1989-2024 Lauterbach Training Basic SMP Debugging | 19

Additional Parameters

Changing the font size can be helpful for a more comfortable display of TRACE32 windows.

; Screen settings

SCREEN=
FONT=SMALL ; Use small fonts

Display with normal font:

E=N Noh /)

= BuList
[Mistep |[M over]@Diverge][SRetun | @up || »Go | mBreak]%Mode | Find: demo.c
addr/1ine |code label mnemonic comment i

char TTags[SIZE+1];

int sieve(void) /* sieve of erathostenes */

416 |{
Lo NSR:4AZ26564. -0 05020 sieve: push {r4-r5,ri4}

422 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
NSR:4A326568 [ES9FCLTC ldr ri12,0x4A3266EC
register int i, primz, k;
int anzahl;

420 anzahl = 0;
NSR:4A32656C |E3 10 mow rQ,#0x0

422 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
NSR:4A326570 |E1A01000 cpy rl,r0

4 1

Display with small font:

=N Nl

i == SIZE ; flags[i++] = TRUE] ;
rl,ri

422
NSR:4A326570 |E

1 =TRLE I ;
NSR:4A32657
NSR:4A32657
NSR:4A32657

= BuList
[Mstep || W over |[Miverge| # Return| @up |[PGo | mBreak || ¥¥mode | Find: demo.c
addr/Tine |code Tabel mnemonic comment |
char TTags[SIZE+11; =
int siewve(void) * sieve of erathosteres *
416 |
Lo WSR:4A326564 |F5 204020 sieve: push fr4-r5,rl14}
422 for (1 =0 7 <= SIZE ; flags[i++] = TRUE J ;
NSR:4A326568 |ESSFC1TC Tdr rl2, dx4A3266EC
register int 1, primz, k;
int arzahl;
420 arzahl = 0;
NSR:4A32656C |E3ADDOO0 mov r0, E#0x0

©1989-2024 Lauterbach

Training Basic SMP Debugging

20

Application Properties (Windows only)

The Properties window allows you to configure some basic settings for the TRACE32 software.

To open the Properties window, right-click the desired TRACE32 icon in the Windows Start menu.

| | Movell Version I Previous Versions

General Shotcut | Compatibiity | Securty

\a t32mam exe

Target type: Application

Target location: windows

Target: vindows't 32mam exe ¢ JAANDVPODNcorfig 132 |~ Conﬁguration F|Ie

Start in: JAAND'POD Working Directory
Shortcut key: Mone

Run: [Maxm’zed ']‘ WindOW Size

Nomal window
Comment: Minimized

B izimized |
Open File Location Change lcon... Advanced...

Definition of the Configuration File

By default the configuration file config.t32 in the TRACE32 system directory (parameter SYS) is used. The
option -c allows you to define your own location and name for the configuration file.

C:\T32_ARM\bin\windows\t32marm.exe -c¢ j:\and\config.t32

Definition of a Working Directory

After its start TRACES32 PowerView is using the specified working directory. It is recommended not to work in
the system directory.

I PWD TRACE32 command to display the current working directory

Definition of the Window Size for TRACE32 PowerView

You can choose between Normal window, Minimized and Maximized.

©1989-2024 Lauterbach Training Basic SMP Debugging | 21

Configuration via T32Start (Windows only)

The basic parameters can also be set up in an intuitive way via T32Start.

A detailed online help for t32start.exe is available via the Help button or in “T32Start” (app_t32start.pdf).

4 -] Configuration Tree

> - Settings

s -fi] Example Configuration

4 43] MPCSxxx Debugger

a == 1: Podbus Device Chain

: 4) 1: Power Debug PRO
@] ConnectionT ppe: Ethermet

/A 1: Core
@] Target: PowerPC

: 1 Advanced Settings
> -] Ethernet Settings

Parameters — B>

b <3 TricoreDebugger

Delete
Up
Down
Instances...
Information...
Save and Exit
Save

Help

1D: //Configuration5

©1989-2024 Lauterbach

Training Basic SMP Debugging

22

About TRACE32

If you want to contact your local Lauterbach support, it might be helpful to provide some basis information
about your TRACES2 tool.

Version Information (SMP)

% Contents
;;Elndex
4 Find
8 Tree AsaveRson fo) e e
ﬁTRACBE PowerView User Manual .
TRACE32 PowerView for ARM A
ﬁ Processor Architecture Manual
] Debugger User Guide MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2012 Lauterbach GmbH
Software: Interim Build (64-bit) more...
Software Version: $.2012.05.000037010 1
Build: 37010. 05/2012
] Training Manuals 0 License: more...
4 Demo Scripts Cable: ARM___ (Cortex MULTICORE) 10/2013 2
A Welcome to TRACE32 Prepro: ARM (ARM-TRACE)
Lauterbach Homepage Hardware: PowerDebug-II via Ethemet MIONE...
EURRDLE : Debug Cable: C12070163091 ARM Debug Cable V4d 3
About TRACES2... Preprocessor: Cl0110138841 AutoFocus-II
Environment: Windows 7 More...
5YS: C:\T32_ARM
TMP: C:\TMP
COMFIG: C:\TMP\andT32_1000004.t32 edit...

The VERSION window informs you about:
1. the version of the TRACE32 software

2. the debug licenses programmed into the debug cable, the multicore license, the expiration date
of your software guarantee respectively the expiration date of your software warranty.

3. the serial number of the debug cable.

VERSION.view Display the VERSION window.
VERSION.HARDWARE Display more details about the TRACES32 hardware modules.
VERSION.SOFTWARE Display more details about the TRACES32 software.

©1989-2024 Lauterbach Training Basic SMP Debugging | 23

Prepare Full Information for a Support Email

Be sure to include detailed system information about your TRACE32 configuration.

1.

2.
3.

% Contents
Tk Index
§1Find
-E; Tree

ﬁ TRACE32 PowerView User Manual

ﬁ Processor Architecture Manual
ﬁ Debugger User Guide

#3 Demo Scripts
J& Welcome to TRACE32

Lauterbach Homepage

To generate a system information report, choose Help > Support > Systeminfo.

Er e A

JA About TRACE3Z...

& Online Support
(=] Contact Lauterbach

Program maintenance license into cable...

éy Generate TRACE32 Support Information EI@

Press the following button to get help on how to generate Support Information:

Company: Lauterbach Department: Training

Prefix:

Firstname: Andrea

Surname: Martin

Street: Altlaufstr. 40 P.O. Box:

City: Hoehenkirchen-Siegertsbrunn ZIP Code: 85635

Country: Germany

Telephone: ++49-8104-9843-555

eMail: training@lauterbach.com

Product.: Power Debug Interface [USB 3

Target CPU: CortexA9

Hostsystem: | PC Windows 7 ']

Compiler: ARM

Realtime0S: Mone Safe Mode: [

Generate Support Information: ’ Save to Clipboard] ’ Save to File

Preferred: click Save to File, and send the system information as an attachment to your e-mail.

Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Training Basic SMP Debugging

24

Establish your Debug Session

Before you can start debugging, the debug environment has to be set up. An overview on the most common
setups is given in “Establish Your Debug Session” (tutor_setup.pdf).

©1989-2024 Lauterbach Training Basic SMP Debugging | 25

TRACE32 PowerView

SMP Concept

One TRACES32 PowerView GUI is opened to control all cores and to visualize all system information.

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

ME(deeru[E e oEumscs @ L2

= BzData.List |E”E“E| = B:TERM |E”E”E|
[Mstep || Mover || dnext [Return|| & up || »Go |[M Break | starting pid 547, tty "z 7/bin/sh’ -
addr/1in source i

43 ~ | lBusyBox v1.5.0 (2010-04-22 08:56:50 CEST)
Enter "help' for a list of built-in comma

int main()
. . -sh: can’t access tty; job control turned
int j, trace_fd, ondempg = 0; sieve &

char * p;

4 I

vitripplearray[0] [0] [0]
vitripplearray[1][0][0]
viripplearray[0][1][0]
vitripplearray[0][0][1]

B B::Register.view /CORE 0
I RO 3 RG6 COSCEB38 SP*
Rl COSCAEGD R9 411FC092 +04
func2(); C R2 0 RI1O 0 +08
/ R3 0029358 Ril 0 +0C
func2a(); 4 COSAC000 R12 0 +10
'S COSFE088 R13 COSADF9C +14
func2b(); : 0412938 Rr14 CO00292EC +18
R7 COSCEGAD PC CO0292FC +1C
func2d(); SPSR ADD00013 CPSR AO0000D3 +20

J 4 1}

ofa B:TASK.DTask 6ol B:Frame /CORED | = |[& [[e234]

command state uid pid spaceid [tty [flags eI
irq/363-rtco sleeping ~ | 499.7] 0000 0 |00208140] O. 3 Down

kworker /u:2 sleeping .| 517. | oooo 04208060 | 1. -000 [[omap_do_wfi({asm)
deferwg sleeping .| 528. | 0000 04208040 | 0. -001 |lomap_default_idle()
mmcgd,/ 0 sleeping . 531. | 0000 00208840 | 1. -002 |ldefault_idle()

sh sleepin .| 547. | 0223 00400000 | 0. -003 ||cpu_idle()

sieve current%l) .| 548, | 0224 00400000 | 1. -004 |start_kernel()
flush-1:0 sleeping . 549. | 0000 00400040 | 0. — |end of frame

4

emulate trigger | devices H trace H Data H H List H PERF H SYStem H other H previous

NUR:0224:000095CC \\sieve\sieve\main+0x4 sieve 1 |stopped at breakpoint HLL UP

©1989-2024 Lauterbach Training Basic SMP Debugging | 26

In the TRACE32 PowerView GUI one core is the selected one.

‘B::

emulate trigger [dev‘xces J[trace][Data J[Var][List J[PERF][SYStem J[Step.][other Hptewous

|| NSR:0000:€0099470 \Wwmlinud\timekeeping\getnstimeofday+0x3C |swapper 0 stopped HL P

The Cores field in the state line displays the
number of the currently selected core

The fact that one core is the selected one has the following consequences:

J By default system information is visualized from the perspective of the selected core.

; core 0 is the selected core

List ; display a source listing around
; the program counter of core 0

Register.view ; display the register contents of
; core O
. System information from the perspective of another core can be visualized by using the option
CORE <number>.
List /CORE 1 ; display a source listing around

; the program counter of core 1

Register.view /CORE 1 ; display the register contents of
; the core 1

The selected core can be change by selecting another core via the Cores pull-down menu or via the
CORE.select command:

‘B::

[emuiate | [trigger |[devices J[trace [pata][wvar][ust |[PerF][Svstem][steo][Go [Break |[svmbol |[Frame |[Register J[FPu][other][previous]

ZSR:00008614 0_system ready M [UP
?

T ="
v 0
1

I CORE.select <number> Select a different core

©1989-2024 Lauterbach Training Basic SMP Debugging | 27

TRACE32 PowerView distinguishes two types of information:

J Core-specific information which is displayed on a colored background.

Typical core-specific information are: register contents, source listing of the code currently

executed by the core, the stack frame.

TRACE32 PowerView uses predefined color settings for the cores.

Trace Probe Pef Cov

| & Frequency Counter - | 7 B=SETUP.COLOR EI@
r q b usage 1
45 default [_ change -—- default ——- -
46 default | _ change --- default ---
{#) Runtime 47 default | _ change --- default --- | Block marker
52 default | _ change - ge;auqt - W'in$ow bqrger bord
M M 53 default __change --- default --- Dralog window border
@ Memory Map 54 default | _ change - ge;auqt -—- | _Sticker Background
: 55 default | _ change -—- default --- | Core 0
B 56 default | _ change - ge;auqt -—— | Core 1
P7 o - 57 default | _ change -—- default ——- | Core 2
E.hoose(.olo... 58 default | _ change --- default --- | Core 3
&2 Interface Config.. 59 default | _ change --- default --- | Core 4 |E|
& Tools » 60 default change --- default --- | Core 5 .
61 default chanae -—— default --- | Core 6 %
Japanese Menu J | [l +
. Information common for all core which is displayed on a white background.

Typical common information are: memory contents, values of variables, breakpoint setting.

File Edit View War Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help
(k| +ecpnE R o0 sad Bz
Y B:Data.List B B::Register =
iy e A c— | 1 Rl AQD00DI RO COSIFEZC 0! COBFERS- Core-specific
1‘33 SOHRIEE ol Ilc ¢ R2 (CO5300C0 RO OFEA CO3DBSED= information
_ R3 0 RIL CO52FFLC CO96E250 1 1
i 2 i (“"1";;3‘3’55‘;)(& ing T RZ CO9E250 R1Z CO32FF20 €0578044
2 L RS €0578044 R1J CO52FEES CO96EOCO
goro:tepeat, _ RG6 CO96EOCO R14 COO49EAC CO5B316C (here for the
£ T R/ COSB3L6C FPC_ €0099470 -1C 8002CELC
e _ SPSR 60000053 CPSR 600000D3 -16 411FC092 currently
E return ret; = 00000000
j i Z UsR: FIQ: COS2FFSC - selected One)
6o B: '“'“"';EW fio_jdr 18] B:Data.dump (dev_attr_multicast)
o_1idr =
address 0 4
Pered 0, N5D:0000:C05706A0 | 00000000»COAFESE7
v -U X NSD:0000:C05706A8 | 00000000 00000124
33’2”5 ot NSD:0000:C05706B0 | €033€D74 00000000
H k”ee(c;‘ E e Tock = (lock = 0), break_Tock = 0)}) NSD:0000:C05706B8 | CO4FE571 00000000
oc riloc rav_fock = Llock = UJ, break_lock = NSD:0000:C05706€0 | 00000124 €033€D5C Information
NSD:0000:C05706C8 | 00000000 CO4FES57C
d 1, D NSD:0000:C05706D0 | 00000000 00000124 common
NSD:0000:C05706D8 | C033CD44 00000000
Bkl NSD:0000:C05706EQ | CO4FE58D 00000000
: NSD:0000:C05706E8 | 00000124 C033CD2C for all cores
WK Delsts Al |[O Disable All[@ Enable Al @ mit || & impl... |52 store... | 52 Load... || §d| [NSD:0000:C05706F0 | 00000000 CO4FE59C
ad =5 types Tmp] NSD:0000:C05706F8 | 00000000 00000124
R:0000: CUU?ASDUlProgram SOFT get_ Jaffﬂgsfﬁ%ﬂ :ggggggggg;g;gg Egiég?ﬂ gggggggg
NR:0000: COSB}IDC——CUSB}IDF Writ ONCHIP : :
rte TT01ER-TATTER | \Sh:0000:C0570710 | 00000124 CO33CCFC
NSD:0000:C0570718 | 00000000 CO4FESBA
NSD:0000:C€0570720 | 00000000 00000124
I B:Register /CORE1 = || @ || %2 | | & B:Frame /CORE1 ==
RO CG57/D14 RS 0 - p p p— e
S oL R e [taUp | 3 0own] [Mags [Clioals [lcaller | Task: Core-specific
P R 1 R10 0 ~-000|[omap4_enter_idTe(dev = 0xCO97E0CO, 7) . .
BT 0 RIl DC853F84 -001 |{omapd_enter_idle_bm(dev = 0xCO97E0CO, state = 0xCO97 information
— R4 CO97E250 R12 DCB53F30 -30 CO0428AC -002|[cpuidTle_idle_call()
RS 0578044 R13 DCB53F48 38604880 -003||cpu_idlaQ) (here for the
P s RE- C097E0CO Rl— C0041584 8 333E2BAF -004 |secondary_start_kernel()
15 C058316C €0049DCC 00000001 -005 |NSR : 0x0:0x80008080 (asm) core 1)
P Chor G0000ISS Lok 60000005 20 DCBSSPEd = || o= [and of frame
3 ; 3
|B::
emulate frigger | devices H frace H Data H Var H List H FERF H SYStem H other H previous
NSR:0000:C0099470 \\wmlinux\timekeeping\getnstir swapper o '*""C""‘ HLL UP
ores

al

©1989-2024 Lauterbach

Training Basic SMP Debugging

28

TRACE32 PowerView Components

File Edit View Var Break Run CPU Misc Trace Pef Cov Linux OMAP4430app Window Help -<@— Main Menu Bar
(MK A+ n|E 2% o dnmsae @ i@ -¢— Main Tool Bar

£l BDstatis] e
[Mstep | Mover |[JMDiverge| ¢ Return | @up || »Go || NBreak || #Mode | Find: _ demo.c
addr/Tine [source | o |
7726 il ik b N
428 : rimz = 1 + 1 + 3;
429 I.=_|‘i + primz; N
430 while (k <= SIZE .
, { ’ Window Area
I 432 flags[k] = FALSE;
I m__
Il) Program Address [
435 anza 3§ Go Till
436 abcc 2 =~ 2
T | ;
= . Breakpoints E 7777777777777777777777777777777
| 651 B:Frame /Locals /Caller EIE i Display Memory - E@
| g% Bookmark... 8
| "3 Down [Vlargs [Mllocals [V calle s Sookmar 5 E R? 44326081 55| [sStack f~
g Toggle Bookmark — R3 4A3260B4
-000][s1eve() c L RLO 3039 =
i=1 *SatPCHere o B Rr11 1
. Erimz =5 [Edit Source o R1Z 4A326DEO P
k=686 % View Inf R13 4A326FE4
| - anzahl = 1 4 Vewinta R14 4A3266B0
| . L R7 4A326DCC PC 4A326580
| -001lmain() gl |2 _ spsm 0 CPsR 800001D3
I = return = 1 L4 B -
4 _ USR: FIQ:
Il goto start; RS 4A326DB4 RE 0
| ‘ R9 4A326DB4 R9 0
| sieve(); I I RIO 3039 RILO 0
[[-002[[NSR: 0x314D70 (asm) ~ |FF Ril 1 Rl 0 -
| 4 | [0 [} 4 (3
;g <@— Command Line
~@— Message Line
trigger [devices] [trace] [Data] [Var] [List] [PERF] [SYStemn] [other] [previous] 4— SoftkeyLine
NSR:4A3265B0 \\demo\demo\sieve+0x4C |stopped at breakpoint T HLLUP 4— State Line

The structure of the menu bar and the tool bar are defined by the file t32.men
which is located in the TRACES32 system directory.

TRACE32 allows you to modify the menu bar and the tool bar so they will better
fit your requirements. Refer to “Training Menu Programming”
(training_menu.pdf) for details.

©1989-2024 Lauterbach Training Basic SMP Debugging | 29

Main Menu Bar and Accelerators

The main menu bar provides all important TRACES32 functions sorted by groups.

For often used commands accelerators are defined.

[M % A3 & & [» MsSte

W Step Over Call
WA Step Diverge Path

+ Go Next

& Go Return F5
¢ Golp Fé
+ GoTill..

Il Break F&
;'fﬂ;f Mode

File Edit View Var Break [Run] CPU Misc Trace Perf Cov Window Help

F2
=
F4

W els @ 1P

©1989-2024 Lauterbach

Training Basic SMP Debugging

30

A user specific menu can be defined very easily:

MENU.AddMenu <name> <command> Add a user menu

MENU.RESet Reset menu to default
; user menu
MENU.AddMenu "Set PC to main" "Register.Set PC main"

; user menu with accelerator
MENU.AddMenu "Set PC to main, ALT+F1l0" "Register.Set PC main"

A TRACE32 PowerView =NEEA X
File Edit View Var Break Run CPU Misc Trace Pef Cov MPCSXXX Window Help

R N IR Y ,-;.

= BuData.List
[Mistep |[M oOver]@Dlverge][SRetun | eup | o |[mBreak || #mode | |r1
| addr/1ine |source
| main()
5
nt 3;
char * p;
i while (TRUE)
592 |start:
593 vtripplearray[0][0][0] = 1; User Menu
[594 viripplearray[1][0][0] = 2;
595_] viripplearray[0][1][0] = 3;
L VSO UV SU UV UV UV UV UV U VON SN IIONeS e
‘B MENU. AddMenu "Set PC to main, ALT+F10" "Register.Set pc main"
!
SF:40001138 ‘\\diabc_int\diabc\main stopped at breakpoint

For more complex changes to the main menu bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization

©1989-2024 Lauterbach Training Basic SMP Debugging | 31

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Main Tool Bar

The main tool bar provides fast access to often used commands.

The user can add his own buttons very easily:

MENU.AddTool <tooltip_text> <tool_image> <command> Add a button to the toolbar
MENU.RESet Reset menu to default

; <tooltip text> here: Set PC to main

; <tool image> here: button with capital letters PM in black

; <command> here: Register.Set PC main

MENU.AddTool "Set PC to main" "PM,X" "Register.Set PC main"

TRACE32 PowerVi -5l
File Edit View WVar Break Run CPU Misc Trace Pef Cov MPC5XXX User Window Help

(MR] DN Eﬂﬁﬂll@@@leéﬂwt
= pa - Set PC to main Tt .
] BData.List T User specific

[Mistep |[M oOver |IéDi\.rerge [#Retun || ¢up || »Go | miereak | mode | Find: button
I addr/Tline |source I
M main()

M{ v t "

int 7J;
char * p;
a;.'h'i'le (TRUE)
592 sitart:
593 vtripplearray[0][0][0] = 1;
594 vtripplearray[1][0][0] = 2;
595J vtripplearray[0][1][0] = 3;
4 mn

‘B::MENU.AddToo'I "Set PC to main" "PM,X" "Register.Set PC main"

[ok] previous

SF:40001138 \\diabc_int\diabc\main stopped at breakpoint HLL UP

Information on the <tool image> can be found in Help -> Contents

TRACE32 Documents -> IDE User Interface -> PowerView Command Reference -> MENU ->
Programming Commands -> TOOLITEM.

©1989-2024 Lauterbach Training Basic SMP Debugging | 32

All predefined TRACES32 icons can be inspected as follows:

[Misc] Trace Perf Cov MPCSXx

& Frequency Counter

@ Runtime
Memo Ma
")’ F

* Flash Programmlng

‘ Choose Colors...

L ntedface Config... |
Japanese Menu Dlsplay internal icon library

File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help

(MR deee|rm|E 2RO HuNMeE @ LP o

| /A predefined TRACE32 icons - mouse click for displaying the icon name inside the message line EI-@

%...%..@.....%9..@@.@.@..@[

B::|
[:colorpurple]

emulate trigger [devices][trace][Data][Var

ST:00001BA4 \\thumble\arm\sieve+0x28 Estopped

Or by following TRACE32 command:
ChDir.DO ~~/demo/menu/internal_icons.cmm
The predefined icons can easily be used to create new icons.

; overprint the icon colorpurple with the character v in White color
Menu .AddTool "Set PC to main" "v,W,colorpurple" "Register.Set PC main"

For more complex changes to the main tool bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization

©1989-2024 Lauterbach Training Basic SMP Debugging | 33

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Window Area

Save Page Layout

No information about the window layout is saved when you exit TRACE32 PowerView. To save the window
layout use the Store Windows to ... command in the Window menu.

Window | Help
5 Cascade

= Tile Horizontally
00 Tile Vertically

oo Arrange Icons

Create Duplicate window
¥ Clear Windows on Page
2 Clear all Windows

E Load Windows from ...

Script example:

Store Windows to ... generates a script, that
allows you to reactivate the window-configuration
at any time.

Coli] < System(C) » T32ARM » demo » am » compiler » gnu |+ W Search gnu)

Organize * New folder G S |
it Favorites 4 Name Date modified Type
Links
My Documents
W My Music
=| My Pictures
B My Videos
B Saved Games
¥/ Searches
Virtualbox

CMM File
CMM File

] arm.cmm

&) cppdemo.cmm

1% Computer
i Network

File name: | window_configlemm -

Save as type: | Current (*.emm) vJ

// andT32_1000003 Sat Jul 21 16:59:55 2012

183 3

TOOLBAR ON

STATUSBAR ON

FramePOS 68.0 5.2857 107. 45.
WinPAGE.RESet

WinCLEAR

WinPOS 0.0 0.0 80. 16. 15. 1. w000

WinTABS 10.
List

10.

25. 62.

WinPOS 0.0 21.643 80. 5. 25. 1. w001

WinTABS 13.
Break.List

0.

0.

0. 0. 0. 0.

WinPAGE.select P000

ENDDO

©1989-2024 Lauterbach

Training Basic SMP Debugging

34

ﬁn Edit View Var Break Run
2 £ Run Script...
[Edit Script...
4 Search for Script...

Cl

% Open File...
2 Load File...
Type File...
4] Dump File...

@ Stop Command

¢ Printer Settings...
8 Window Print...
Window Screenshot to File...

¥ exit

KoM .« TZARM » demo b arm b compiler » gnu = [%3 Searchignu: 2
Organize New folder = 0l @
14 Downloads “ Name i Date modified Type
Faverit
- L“:” =] arm.cmm 300120121045 CMM File
- J‘ ;] cppdemo.cmm 300120121015 CMMFile
p .
il [&] window_config.cmm 21.07.201217:04 CMM File
i My Music
2] My Pictures
B My Videos |
1 Saved Games
1 searches =
1| Virtualbox
8 Computer u
€ Network =il i] v
File name: window_config.cmm -

Cancel

.

Run the script to reactivate the stored

window-configuration

©1989-2024 Lauterbach

Training Basic SMP Debugging

35

Modify Window

TRACE32 PowerVi
File Edit View Var Break Run CPU Misc Trace Pef Cov MPC5XXX Window Help

(M AMl+ e |2 O N saEs @ 2 2

SR R N A AN AR = = >
[Mstep |[M over]@DWRJ&%&FM L »Go || mBreak]%Mode]
u addr/1ine |source |
main() The window header
L e displays the command
char* p; which was executed to
| . N .
| while (TRUE) open the window
| 592 |start:
B 593 viripplearray[0][0][O] = 1; [|
| 2ok vtripplearray[1][0][0] =2;
i 595 vtripplearray[0][1][0] = 3;
i 596 _ viripplearray[0][0][1] = 4; -
B::B::List /SOrder
[[ok]] [Mark] [Track] [TDrder\H\Slmier] [other] [previous
SF:40001138 \\diabc_int\diabc\main |stopped at breakpoint HLL UP

By clicking with the right
mouse button to the window
header, the command which
was executed to open the
window is re-displayed in the
command line and can be
modified there

©1989-2024 Lauterbach Training Basic SMP Debugging | 36

Command Line

File Edit View Var Break Run CPU Misc Trace Pef Cov MPC5XXX Window Help

(M Al+ e B2 O N scs @ 2 2

while (TRUE)

| g Folle) |
[Mstep |[M over]@Diverge][Retun|[¢up || »Go || IBreak]%Mode |
addr/1ine |source i
main() ‘
ﬂ{ v t v
int J;
char]* p;

SF:40001138 ‘\\diabc_int\diabc\main

592 |start:
593 viripplearray[0][0][0] = 1; [
594 viripplearray[1][0][0] = 2;
595 viripplearray[0][1][0] = 3;
596 viripplearray[0][0][1] = 4; v
J 4| i 3
‘B:: -
emulate trigger [devices] [trace] [Data] [other] [previous
stopped at breakpoint HLL UP

Command line

Command Structure

Device prompt: the default device promptis B: :. It stands for BDM which was the first on-chip debug

interface supported by Lauterbach.

A TRACES32 command has the following structure:

Data.dump 0x1000--0x1fff /Byte

—— Com

‘ L Option(s)
Parameter(s)

Subcommand

mand group

©1989-2024 Lauterbach

Training Basic SMP Debugging

37

Command Examples

Data Command group to display, modify ... memory
Data.dump Displays a hex dump

Data.Set Modify memory

Data.LOAD.auto Loads code to the target memory

Break Command group to set, list, delete ... breakpoints
Break.Set Sets a breakpoint

Break.List Lists all set breakpoint

Break.Delete Deletes a breakpoint

Each command can be abbreviated. The significant letters are always written in upper case letters.

Examples for the parameter syntax and the use of options will be presented throughout this training.

©1989-2024 Lauterbach Training Basic SMP Debugging | 38

The Online Help for a Specific Command

B

[File Edit View Window Help

|Ree- BEOE 2802300

|FI: :’ﬂ.&v' 3 V:_' ;' @ @ 1166 @ | @ @ | @ Tools Comment Share
mar -

i ‘Bwk i Data.dump Memory dump

B- (X

={F General Commands
@ Reference Guide D

[Data <option>: Byte | Word | Long | Quad | TByte | TWord

{format) BE ILE
% ¥ DTM (Data Trace Decimal | Decimalll

Module)

Format: Data.dump [<address> | <ranges] [[<option> ...]

NoHex | Hex
MNoAscii | Ascii

<Option>: DIALOG
(standard) Track
CORE <number=

Orient | NoQrient
SpotLight | NoSpotLight
STRING

WIDTH [<cofumns=]

ICache | DCache | L2Cache

Mark <breaks

L

|B: :|Data. dump

| i e i | I)| I)| | [previous]
| NSR:4A326580 \demolemo\sieve+oxiC stopped at breakpoint__ | | | b op

Enter the command to the command line.
Add one blank.
Push F1 to get the online help for the specified command.

©1989-2024 Lauterbach Training Basic SMP Debugging | 39

Message Line

A TRACE32 Poweﬂﬁew

~9|@|_J::;::m|w@w|e

Referenced Var
Locals
Stackframe with Locals
Stackframe

" Peripherals

= | BiAREA Message Area

ripplearray = (((1, 4, 0, 0), (3, 0, 0, 0), (0O, O, O, 0)), ((2, 0, O, 0), (O, -
ast = (word = 0x0, count = 2346 ieft = ox4 {)004240 r1ght Z 0x0, fieldl = 1, £l
ile C: \BZJIPC\de-o\pmterpc\harduare\-pcSSxx\-pcSSxxde-o\-y elf not found -
£ n ro

Message Line

G demo'\power pc‘\hardware'\mpc)) elt not touna
_emulate][t [devices][T v | F - |] [previous |
SF:40001138 \\dlabc_lnt\dlabc\mam ktopped at breakpomt |—|—|— HLL ,F i
. Message line for system and error messages
J Message Area window for the display of the last system and error messages

©1989-2024 Lauterbach Training Basic SMP Debugging | 40

Softkeys

The softkey line allows to enter a specific command step by step. Here an example:

Select the command group, here Data.

IB::|

trigger][devices |[trace [Data [war |[st |[PERF][svstem

Select the subcommand, here dump.

‘B: :|DATA.|

[.[o.k]][.d.l.{r.np. [view].[Print].[List .].[Set][Assemble.][PRDGRAM.

Angle brackets request an entry from the user,
here e.g. the entry of a <range> or an <address>.

B: :DATA. DUMP |

(ot (wcrmpene] |soddmssn) (woptinose)

The display of the hex. dump can be adjusted to your needs by an option.

IB: :[DATA. DUMP 0x1000--0x1fff

[[ok]][options]

Select the option formats to get a list of all format options.

IB: :[DATA. DUMP 0x1000--0x1fff /|

[[okl |[formats |[™ark][Track][wmtH |[orient |[NoOrient |[STRING

Select a format option, here Byte.

IB: :[DATA. DUMP 0x1000--0x1fff /

[[ok]][HoHex][Decimal][Decimalu][Hex][Byte][Waord][Long

The command is complete now.

IB::|DATA. DUMP 0x1000--0Ox1fff /BYTE |

[[ok]][options]

©1989-2024 Lauterbach Training Basic SMP Debugging | 41

State Line

‘B::j

(ominte) [srigpes,. | [dovicss | timco J{ Dot J[Vor Jlobee . Porr). other][pesvious

P:70100000 \\triboard-tc275_multisieve_intmem\cstart_START [0 |system ready ' MIX [uP

Cursor Debug Mode
field field field

Cores
field

The Cursor field of the state line provides:
. Boot information (Booting ..., Initializing ... etc.).

. Information on the item selected by one of the TRACE32 PowerView cursors.

The Cores field shows the currently select core.

J TRACE32 PowerView visualizes all system information from the perspective of the selected core

if not specified otherwise.

The Cores pull-down allows to change the selected core.

‘B: ;|
emulate trigger [devices][trace][Data][Var][List][PERF][other][previous
P:70100000 \\iriboard-tc275_multisieve_intmem\cstart\ START [0 lsvstemready | | | | x|
Cores
e
| 1
2
The Debug field of the state line provides:
J Information on the debug communication (system down, system ready etc.)
J Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

©1989-2024 Lauterbach Training Basic SMP Debugging

42

The Mode field of the state line indicates the debug mode. The debug mode defines how source code
information is displayed.

. Asm = assembler code
. HIl = programming language code/high level language
J Mix = a mixture of both

It also defines how single stepping is performed (assembler line-wise or programming language

line-wise).

‘B: |
emulate trigger [devices][trace][Data][Var][List][other][previous
_————— T “;Id ______
ocde
Asm
v Hil

The debug mode can be changed by using the Mode pull-down.

©1989-2024 Lauterbach Training Basic SMP Debugging | 43

Basic Debugging (SMP)

Go/Break

On an SMP systems the program execution on all cores is started with Go and stopped with Break.

File Edit View Var Bresk Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

ME deelpnEew o N sscs @il

Mstep || W over [4 et [Retun|[@up || »Go |[10 Break || ®IMode | Find: sieve.c
addr /1ine |source |
void func2() -
163)|{
int autovar;
register int regvar;
static int fstatic = 44; /* initialized static variable */
static int fstatic?; /* not initialized static variable %/
169 autovar = regvar = fstatic;
170 autovar++;
172 funcl(&autovar); /* to force autovar as stack-scope */
174 funcl(&fstatic); /* to force fstatic as static-scope */
B e e (= 3 (5
Mstep || W over | 4 Mext | Retun | e up || »Go || NN Break |[¥ Mode | Find: irgflags.h
addr /Tine |source |
static inTine void arch_Tocal_irq_enabTe(void) o
@ 26| asm volatile
2 cpsie 1 @ arch_local_irq_enable" 1
_ L remnt Ty
J': i .
‘B: :
emulate trigger ‘ devices H trace H Data H Var List H PERF H other H previous

)
o T o

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

(MK dee/vn|EH W o Hubsee @ o
i Batist = o=l

[Mstep | Mover || 4 Next [Return] @up || »Go | mnBresk [[Mode | Find: sleep4dix.
d

addr/1ine |source |

wii @ wait For Interrupt
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
< i G

] BList /CORE L. (===
[Mstep || Mover || $next [Retun| @ up || P Go | N Breask ||] mode | Find: sleap44xx.

addr /Tine |source |
359 wii @ Wait For Interrupt -

nop
nop
nop
nop
nop
nop
nop

|B::

emulate trigger [dew:es][trace][Data][Var][List][FERF][other][preﬂous

NSR:0000:C00292FC \\vmlinwd\Global\or |swapper/0 0 |stopped HLL UP

©1989-2024 Lauterbach

Training Basic SMP Debugging

44

If a breakpoint is hit, TRACE32 makes the core the selected one on which the breakpoint occurred.

Not possible for all processor architectures (e.g. not possible for Aurix chips).

File Edit View War Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

Mkl +eepn e O Dunadad @ L2

B:List /COREQ \Gck

[Mstep | HDver L $next [Return| @ up || oo | N Break || ¥ mode Fmd:. -

addr /Tine |source |

char * p; =~

vtripplearray[0][0][0]
vtripplearray[1][0][0]
[1170]
folf1]

i

vtripplearray[0]
vtripplearray[0]
nr. L3

List /CORE1.]

Mstep || W over | 4 Mext | Return | ¢ up || »Go || NN Break |[¥ mode Fmd:‘

addr /Tine source

* Use ktime_set/ktime_add_ns to create a proper ktime on -
* 32-bit architectures without CONFIG_KTIME_SCALAR.

268 | return ktime add _ns(ktime set(secs, 0), nsecs);
269 |;
EXPORT_SYMBOL_GPL (ktime_get); %
| 1« M v
| @ putreskLie e
i 3K Delete All|[O Disable All[@ Enable Al @ Init || & Impl... |52 store... || 5 Load... || E# Set..
| address types imp
| NR:GGGG:(GGEMEGHPrugram [SOFT [ktime_get =
| « »
|B:
|
| emulate trigger [devices][trace] Data [Var][List][other][previous
; NUR:0225:000095EC \\siev sieve 0 | stopped HLL UP

File Edit View Var Breal

(MR + v RO HEE e @ L2

Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

=

::List /COREO B =]

Mstep || W over | 4 Mext | Retun | @ up | »Go || NN Break || ¥ Mode | Find:

addr/Tine source

& nhen we_convert to jiffies then we interpret incoming values
the following way:

* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)

g i »

[Bx:List /COREL.] EI@

|

MStep || W oover || dNext |[# Retun|[@ up | P Go || NN Break || ¥ Mode | Find:

addr /Tine |source |
24

2[5 -
EXPORT_SYMBOL (getnstimeofday); @

246fktime_t ktime_get(void)
24 {

< i '

B B:Break list [==]=]

(9% Delete Al [Disable AI\][Q Enable Allj[® It | & mpl...][E store... || £ Load... || &J Set...
addr

]
NR.OOOO.(OOGMGO‘T’rugrm I_EFr [ktime_get -
/i

‘B::

emulate trigger [devices][trace] L[AY/:1d - other previous
NSR:0000:C006A160 \\wml swapper/1 1 |stopped at breakpoint HLL UP

Core 0 was the selected one
when the program execution
started.

The breakpoint occurred on
core 1. So core 1 is the selected
one after the program exection
stopped.

©1989-2024 Lauterbach

Training Basic SMP Debugging |

45

Single Stepping on Assembler Level

Assembler single steps are only performed on the selected core.

Prabe Perf Cov OMAP&30app Linux Window Help

il =N

Break Run CPU Misc Trace
ICIEE R IR

File Edit View Var i .

[=][5=]

[Mstep || ﬁ over || 4 Next [4’ Returﬂ][¢up | kGo | N EBreak | Mode | Find:
r/line |code mnemonic comment |
int ma1n(-

546
NUR:0225:000095C8 (E1

main: cpy. rl2 s
push. {r4,ril-r12,ri4,pc} ‘_
NUR :0225:000095D0 sub ril,ri2 3

NUR :0225:00009504 sub ri3,ri3

T r

[slE)=]
[Mstep || ﬁ Over Il J Next I 4’ Returﬂ][¢up | kGo | W EBreak || P mode | Fina:
dr/1ine mnemonic comment |
360 up -
E320£000 nop
361 nop
NSR:0000:C0029300 [E320F000 nop
362 nop i
« i v

[B:Register /CORE 0 /Spotlight |

[Bu:Register /CORE 1. .'Spotught (=] ()

RO il [V N N RO COSCES38 .
R1 BEB95EC4 0 1 i (OSEAEGO 411FC092
R2 BEBI5SECC BEFFDO00 1 cC C 0
R3 95C8 0 il (002‘3358 0
{ B6FFCEOS BEB35D78 0 DC866000 0
0 BEB35D78 COSFE08S DCB67FCC
0 BEECE300 0 _ €0412938 C00292EC
0 95CC L CO5CEBAD €00292FC
R 60000010 ~ 2 R A00001D3 -
N— T sl ’] ’
emulate frigger [devices] [frace Data] [Var] [other] [previous
NUR:0225:000095 sieve 0 fstopped at breakpoint MIX§ UP

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

ELIERES || Hus sas @ L2
List /COREQ o [=)=
| Mstep | M over | Jv Next I 4’ Retum][@up || pGo | M Break || [E]Mode | Find:
addr/1ine mnemonic comment |
546 -
NUR:0225:000095C8 main: cpy (g LA
NUR:0225:000095CC push {rd,ril-ri2,ri4, p-
e Bub iz o itz < ONIy the program counter
NUR:0225:000095D4 sub lli‘ll‘ #0x4C
547 ‘mt j, trace_fd, ondempg = 0; - Of core 0 haS Changed
« i ’
::List /CORE 1. (=1 T [
[Mstep |[M over || & mext | 4’ Retum][@up || pGo | M Break || [E]Mode | Find:
addr /1ine |code mnemonic comment |
360 -
nop
361 nop
NSR:0000:C0029300 |E320F000 nop
362 nop -
« i ’
1 B:Register /COREO /Spotlight | o | @ || 22 | 1 B Register /CORE 1. !Spotnght =] (|
N _ RO 1 R8 0 N RE CO5CEB38 .
Iz Z R1 BEBISEC4 RO 0 1 (DS(AEGD 411FC092 1
C € R2 BEBYSECC R10 B6FFDO0OD — 0
vV _ R3 95c8 R11 C0029358 0
R _ R4 B6FFCEO8 R1Z BEB95D78 DC866000 0
R13 COSFE0&8 DCBBTFCC
0 0 Rl— B6ECE900 C0412938 C00292EC
1l 0 COSCEBAD C00292FC
2 PJR 60000010 ~ 60000110 AD0001D3 ~
] m r S 3
|E:
emulate irigger [devices] [irace] [Data] [Var] [other] [previous
NUR:0225:000095 sieve 0 |stopped MIX UP

©1989-2024 Lauterbach Training Basic SMP Debugging | 46

Mode.Mix Select Mix mode for debugging and perform a single step on the
Step selected core.

Step.Asm Perform an assembler single step on the selected core.

©1989-2024 Lauterbach Training Basic SMP Debugging | 47

Single Stepping on High-Level Language Level

An HLL single step is performed on the selected core. All other cores are started and will stop, when this
HLL single step is done.

File Edit View Var Break Run OPU Misc Trace Probe Paf Cov OMAPM3Dapp Linux Window Help

LIRS 2 [Ham sas @ L2
{ single Step preD) [oE] =]
M step || ﬁ over | 4 Mext | Retun || @ up | »Go || I Break || % Mode | Find:
dr/1ine source |
void funcZa() -
187)\{
auto char autovar;
register char regvar; /* char register variable */ —
i 1 autovar = regvar = mstaticl;
| 192 autovar++; -
I « ik »
|
iList /COREL] EEEE]
M step || ﬂ' over || & Mext |« Return | @ up || »Go || NN Break |[¥ Mode | Find:
r/Tine [source
int Teap; -

timekeeper.xtime_nsec -= nsecps;
timekeeper.xtime.tv_sect+;

leap = second_overflow(timekeeper.xtime.tv_sec); ||
timekeeper.xtime.tv_sec += Tleap;

[l M B::Regicter.view /CORED /!
i — ro oooiisos

B::Register.view /CORE L /Spomgm =N
RO 38?16433 CUGllGBU

> _ r1 BEC89EC4 0 g
[< 03F3 BEFAF00D Y] ?6360000 FFFFFFEB
iV _ 00011803 BECS9D14 D DCBOE0CO
il B6FAEEOS BEC8ID1S _ ra cauuuuuu 38716432
0 BECBICFS RS 3894 DCB67EGS
o _ 0 R6 COE11680 CA000000

0 C006AD0O

e
I

R 8
SPSR 60000110

20000010 5 i 0193
« ’ i >
‘B: :
emulate trigger [devices] [trace] [Data] [Var] [List] other previous
NUR:0225:00008474 | sieve 0 |stopped HLL | UP

File Edit View Var Break Run CPU Misc Trace Probe ov DMAPMBUapp Linux Window Help

(k[veelrujEew o dun daE @ Lo

e

List /CORE 0

Mstep || W over | 4 Mext | Retun | ¢ up || »Go || 1N Break |[¥ mode .Fmd:
ad

dr /Tine |source i

auto char autovar; * char stack variable *
register char regvar; * char register variable #
191 autovar = regvar = mstaticl; L
1.5. autovar++;
194 for (regvar = 0; regvar < (char) 5 ; regvar++) -
< I] v
List /CORE 1.
Mstep || M over [4 Mext | Retun|[@ up || »Go |[nnBreak || ®IMode | Find:
addr /1ine |source 5
) 83 BNl MOl ALRd e L
| EilE Tdrex %0, [%1]\n [
i teg %0, #0\n"
WFE("ne")
i strexeq ¥0, %2, [¥1]\n" -
o i] b
¥ B:Registerview /CORED /Spo. [B::Register.view /CORE 1 /SpotLight
N _ RO OOOL1B08 RS — RO T LOBLLI0E
g 1k BEC89EC4 RS9 0 m N 76F9
CC R} sl RI0 BGFAFODD — _ R2 76360000 FFFFFFES
vV _ R3 sl R11 BECB9D14 T ORI b DCE060CO
o - R4 BOFAEEO8 R12 BEC89D18 _ R4 38716432
RS 0 R13 BECBICF8 RS 389A DCBGTE3S
fl°c - RE 0 R14 9618 _ R6 CO611680
L PR 0 PC | eeasldSN LCRT
li]2 _ sSPsR CPSR 20000010 ~ _ SPSR 60000110
| [P —————— r [I ’
‘B:
emulate trigger [devices] [frace] [Data] [Var] [List] [other] [previous
NUR:0225:00008420 \ sieve 0 |stopped HLL |UP

©1989-2024 Lauterbach Training Basic SMP Debugging | 48

Mode.HIl Select High-level language mode for debugging and perform a

Step single step.

Step.HlIl Perform an HLL single step.

SETUP.Step.WithinTASK ON When ON all HLL stepping is performed only in the currently
active task.

©1989-2024 Lauterbach Training Basic SMP Debugging | 49

Registers

Core Registers

Display the Core Registers

A TRACE22 PowerView on PandaBoard SRECE X
File Edit Var Break Run CPU Misc Trace Peff Cov CortexASMPCORE Window Help
BRI ==, EIEFLIFTTIL Y]
e 8 Dump..,
EjlistSource B8 B:Register |i”£”£|
& Watch N RO 30D4 FFFFFFFF JFFFFFFF
— z 6648 0 00000000
5| Referenced Var i 20 2 00000000
M| ocal ! FFFFFFFF 0 00000000
afjlocats Q 13900000 0 00000001
@ Stackframe with Locals 64 02020788 00000000
&= Stackframe 0 21 OF 00000000
Peripheral 1 FFFFFFFF 8614 00000000
¥ Peripherals 2 SPSR 380B6ICE . §00001D3 +20 00000000 -
& Symbols 4 4 »
i1 Groups
ﬁ Bookmarks [BrRegister.view /CORE 1 EI@
=4 Trace List N _ RO 09200003 FFFFFFFF F4F5DB53 -
= A Z _ Rl 701FEQ19 0 04 FDDEDALG r
= | Message Area C C RZ 02020000 2 08 OBOSC988 —
W 0 0)C DFEBEB82
1 _ R4 0 1 87ECTVE1F
R5 1E 02020988 S5FO78EAA
0 _ R6 3 70 AF762D72
i et FFFFFFFF 015C CA7D201B
2 _ SPSR F406AFEF R 200001D3 +20 977917D1 b
4 F
‘B: :
emulate trigger [devices] [trace] [Data] [Var] [List] [other] [previous
ZSR:00008614 0 |system ready MI{ UP

The core register contents is core-specific information. It is printed on a colored background.

Please be aware that all menus and buttons apply to the currently selected core.

Register.view

Register.view /CORE 1.

; display core register contents of
; currently selected core
; (here core 0)

; display core register contents of

; CO

re 1

©1989-2024 Lauterbach

Training Basic SMP Debugging | 50

Colored Display of Changed Registers

The option /SpotLight advises TRACE32 PowerView to mark changes.

Register.view /SpotLight

[} B:Register /SpotLight

[E=N NoR/)

RO 3004
R1 1E8DE6AB
20

R3 FFFFFFFF
R4 13900000
RS 64
RE 2.
R7 FFFFFFFF
_ SPSR 3BOB6SCE

11 m|
=
e

RE FFFFFFFF

R9

R10
R11
R12

0
2
0

0
R13 02020788

OF

CPSR 200001D3

SPy:{ EEEEEEE
+04 00000000
+08 00000000
+0C 00000000
+10 00000001
+14 00000000
+18 00000000

C 00000000
+20 00000000

-

Establish /SpotLight as default setting

Bresk Run CPU M
@Watch...

'ﬁﬁ‘u'iew...

Q Data View...

a Breakpoint...

E’J Show Function...

ﬁﬂ Show Watch

ﬂ Show Locals

@ Show Stack

@ Show Current Vars

W Busetup.var EI
radix format pointer
[7] Decimal [¥] compact [7] string
[T Hex [7] Fixed [T wideString
[T Bmary [V] TREE [C] sYmbol
[Ascii [¥] sHow [C]poUMP
[Cloump Open 1 Recursive
[7] SCALED s ||| [oFe -
display other
[T ndex [¥] INherited [C]sPaces
[CType [[]HIdden [
[Location [T] MEthods
[¥] Name
[Ok] [Apply] [Cancel]

SETUP.Var %SpotLight

7

The registers changed by the last
step are marked in dark red.

The registers changed by the
step before the last step are

marked a little bit lighter.

This works up to a level of 4.

Establish the option SpotLight as default setting for

- all Variable windows

- Register window
- PERipheral window

- the HLL Stack Frame

- Data.dump window

©1989-2024 Lauterbach

Training Basic SMP Debugging | 51

Modify the Contents of a Core Register

Power

File Edit View Var Break Run CPU Misc Trace Perf

[M B[+ & » | 2w

Cov CortexA9MPCORE Window Help

EHm N S @z P

[} B::Register

3004
1E8D66AB
20
FEFFFFFF
13900000

e |

1 _ R7 FFFFEFFF
2 _ SPSR 380B69CE

[E=8{EcR S
0 +04 00000000
+0& 00000000 —
+0C 00000000
+10 00000001
02020788 \¢14 00000000
0OF L& 00000000
8624 +1X 00000000
CPSR 200001D3 +20N\00000000 -~

3

E::R.5 [RE Ox459%b

[[okl | [<addess> || <vaiie=][<floar> |[options
0

ed

previous

MIX

upP

Enter the new value and press Return to modify the
register contents.

Register.Set <register> <value>

Register.Set <register> <value>/CORE <n>

By double clicking to the register contents
a Register.Set command is automatically displayed

in the command line.

Modify core register of selected core

Modify core register of specified core

©1989-2024 Lauterbach

Training Basic SMP Debugging

52

Special Function Register

Display the Special Function Registers

TRACE32 supports a free configurable window to display/manipulate configuration registers and the on-chip
peripheral registers at a logical level. Predefined peripheral files are available for most standard
processors/chips.

In an SMP system all cores have equal rights to use configuration registers, external interfaces and external
devices. So TRACES32 PowerView regards all these registers as common resources and thus displayed
them on a white background.

©1989-2024 Lauterbach Training Basic SMP Debugging | 53

But not all configuration registers are common resources: Exceptions are the core-related registers e.g.

CPUIDs, MMU translation tables ...

< BzPER

[=1==]

1 Configurat

ion

Unit
10C5387D 1t

ARM
Disabled
0xFFFFO000

A m
m
m|

Disabled
Enabled

9C9BC000
Back/allocated
80004000
eack/allocated

< B:PER.view, /COREL. E=n RS
ARM AFE DisabTed TRE EnabTed
Disabled EE Little RR Random
OxFFFFO000 I Enabled z Enabled
S Disabled C Enabled A Disabled
Enabled
I TTERO 9C9EUO4AI“BO 9CSEQD00 IRGN[1:0] Back/allocated
RGN Back/allocated 5 - Shared
TTERL 8000404A TTEL 80004000 IRGN[1:0] Back/allocated
RGN Back/allocated 5 Shared
TTBCR 00000000 FPDL Enable PD0 Enable off
« i v

Translation Table Base Register 0 contains a different contents on each core

TRACE32 PowerView provides the /CORE <n> option in order to display details on core-related

configuration registers:

PER.view ,

Tree Display

/CORE 1.

The individual configuration registers/on-chip peripherals are organized by TRACE32 PowerView in a tree
structure. On demand, details about a selected register can be displayed.

©1989-2024 Lauterbach

Training Basic SMP Debugging

54

Misc Trace Probe Perf
Change Frame L4

8 CPU Registers

FPU Registers

éb System Settings...

In Target Reset
Reset CPU Registers

E:PER =0 =R
@ Core Registers |
= PRCM
CORE_CM2
CAM_PRM
E:PER =0 =R
INSTR_PRM -
B Core Registers |
4| i
B ID Registers
MIDR 411FC092 IMPL 41 VAR 1 ARCH ARMT
PART 0co9 REV 2
CTR 83338003 FORMAT ARMvT CWG 3
ERG 3 DMINLINE 8 words
L1POLICY Virtual IMINLINE 8 words
TCMTR 00000000
TLETR 00000402 TILSIZE 00 DLSIZE 04 TLE_size 128
nu Unified
MPIDR 80000000 U Multiprocessor ClusterID 0O CPUID 0 -
4| i b

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 55

Full Display

Sometimes it might be useful to expand the tree structure from the start.

#* B:PER oo =
Flora Banictars -
ShDW | /]
f Use the right mouse and
m select Show all
Hide all
s mmsssssssssssssssssad
® INSTR_PRM
® DSP_
7 #* B:PER ===
Bl Core Registers !:I
B ID Registers
WMIDR 411FC092 TWPL 11 VAR il ARCH ARMVT
PART 0C09 REV 2
CTR 83338003 FORMAT ARMVT CWG 3
ERG 3 DMINLINE 8 words
L1POLICY Virtual IMINLINE 8 words
TCMTR 00000000
TLETR 00000402 TLSIZE 00 DLSIZE 04 TLE_size 128
nu Unified
MPIDR 80000000 U Multiprocessor ClusterID 0 CPUID 0
MMFRO 00100103 FCSE Not supported ACR Supported TCM Not supported -
4 | (1] | r
Commands:
I PER.view <filename> [<tree_item>] Display the configuration registers/on-chip peripherals

; Display all functional units in expanded mode

; , advises TRACE32 PowerView to use the default peripheral file
; * stands for all <tree-items>

PER.view , "*"

©1989-2024 Lauterbach Training Basic SMP Debugging | 56

; Display the functional unit "ID Registers" within "Core Registers"
; in expanded mode
PER.view , "Core Registers,ID Registers"

«# B:PER.view , "Core Registers,ID Registers" EI@
B Core Registers -
B ID Registers B
MIDR 411FC093 IMPL 41 1 ARCH ARMT
A 0co9 3
CTR 83338003 ARMvT 3
3 8 words
Virtual 8 words
TCMTR 00000000
TLBTR 00000402 00 04 TLE_size 128
Unified
MPIDR 80000000 Multiprocessor 0 0
MMFRO 00100103 Not supported Supported Not supported
Not supported Supported Not supported =
4 1] 3

; Display the functional unit "DMA_Channel_ 0" within "sDMA_Module, sDMA"
; in expanded mode
PER.view , "sDMA Module, sDMA,DMA_Channel 0"

BaPERview, "sDMA_Module sDMA DMA_Channel 0" fal= =

000063E8 83E8
00550C3A 550C3A
0000FOCE FOCH
0102A020 0 BUFFERING_DISABLE 0
0 SUPERVISOR 0
0 TRANSPARENT_COPY_ENABLE 1 ~

< I »

The following command sequence can be used to save the contents of all configuration registers/on-chip
peripheral registers to a file.

; PRinTer.FileType ASCIIE ; Select ASCII ENHANCED as output
; format
; (default output format)

PRinTer.FILE Per.lst ; Define Per.lst as output file

WinPrint.PER.view ; Save contents of all
; configuration registers/on-chip
; peripheral registers to the
; specified file

©1989-2024 Lauterbach Training Basic SMP Debugging | 57

Details about a Single Special Function Register

| A TRACE32 PowerView F=rET
File Edit View Var Break Run

CPU Misc Trace

Perf Cov OMAP4430app Window Help

: gﬂ[|@@@|e },43?|

o B:PER

B Core Registers

ID Registers

System Control and Configuration

B Memory Management Unit

SCTLR 00C50078

9C3F004A

TE ARM
Disabled

NMF I
v
SW

M
TTBO

0x00000000

Disabled
Disabled

9C3F0000

AFE
EE

RGN Back/allocated

DisabTed DisabTed
Little Random

| Disabled
lad Nisabled
IRGN[1:0] Back/allocated
5 Shared

] [Data

Var

J

List

C15:00000001 12--12 Instruction Cache Enable

The access class, address, bit position and the full name of the selected item are
displayed in the state line; the full name of the selected item is taken from the

processor/chip manual.

][PERF][other][previous
vy — —

©1989-2024 Lauterbach

Training Basic SMP Debugging

58

Modify a Special Function Register

You can modify the contents of a configuration/on-chip peripheral register:

. By pressing the right mouse button and selecting one of the predefined values from the pull-
down menu.
" B:PER.view, "Core Registers Memory Management Unit" ===
E Memory Management Unit -
SCTLR 00C50078 TE ARM AFE DisabTed TRE DisabTed A
NMFI Disabled EE Little RR Random =
v 0x00000000 I b led 7 Disabled
SW Disabled C Disabled|v Disabled Disabled
W Disabled Enabled A
TTERD 65B32FD9 TTEO 65830000 IRGN[1:0] Back/not allocated
RGN Back/not allocated s Nonshared
TTBR1 7BF7C042 TTBL 7BF7C000 TRGN[1:0] Back/allocated
RGN Noncacheable S Shared
TTBCR 00000000 FPDL Enable PD0O Enable N off -
1 mmm——) s '
. By a double-click to a numeric value. A PER.Set command to change the contents of the

selected register is displayed in the command line. Enter the new value and confirm it with return.

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

(ML dee/ru[Eow o HuNdcs @i

| B:PER

B Core Registers

@ ID Registers

B System Control and Configuration

SCTLR DOCS0078 TE ARM A DisabTed DisabTed
NMF I Disabled Little : Random
v 0x00000000 I Disabled 7 Disabled
SW Disabled C Disabled A Disabled
M Disabled

ACTLR 00000041 PARON Disabled XC Disabled SMP 1
FOZ Disabled Disabled P2 Disabled
Fi Enabled

CPACR ASEDIS No 32DIS Denied
CP10 Denied

4 I

B::PER.Set C15:0x201 %Long

[[ok]][formats][<data=][<string=][options

C15:00000201 Coprocessor Access Control Register system ready MI{ UP

PER.Set.simple <address>|<range> [Y%<format>] <value> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [Y%o<format>] <value> Modify memory

Data.Set is equivalent to PER.Set.simple if the configuration register is memory mapped.

PER.Set.simple D:0xF87FFF10 %Long 0x00000b02

©1989-2024 Lauterbach Training Basic SMP Debugging |

59

The PER Definition File

The layout of the PER window is described by a PER definition file.

The definition can be changed to fit to your requirements using the PER command group.

The path and the version of the actual PER definition file can be displayed by using:

I VERSION.SOFTWARE

A B:VERSION.SOFTWARE

TRACE32 PowerView for ARM
Interim Build (32-bit)

Build: 40137.

Software Version: 5.2012.10.000040137

t32usbhamdé4. sys

Jun 24 2010 use
C:\T32_ARM\fcc.t32

Oct 24 2012 Podbus (40134)

Oct 24 2012 Host

Oct 24 2012 Operation System
Oct 24 2012 Debugger
C:\T32_ARM‘fccarm.t32

Oct 24 2012 cController

C:\T32_ARM'bin‘windows\t32marm. exe

IC: \T32_ARM‘peromap4430app. per
Aug 31 2011 Default Per File

(=[O el

PER.view <filename>

PER.view C:\T32_ARM\percortexa9mpcore.per

Display the configuration registers/on-chip peripherals specified by
<filename>

©1989-2024 Lauterbach

Training Basic SMP Debugging

60

Memory Display and Modification

This training section introduces the most often used methods to display and modify memory:

o The Data.dump command, that displays a hex dump of a memory area, and
the Data.Set command that allows to modify the contents of a memory address.

. The List (former Data.List) command, that displays the memory contents as source code listing.

Shared memory is a characteristics of an SMP system. This is the reason why the Data.dump window is
regarded as common information and is displayed therefore on a white background. TRACE32 PowerView
assumes that cache coherency is maintained in an SMP system.

Cache coherency: In a shared memory with a separate cache for each core, it is possible to have many
copies of one data: one copy in the main memory and one in each cache. When one copy of this data is
changed, the other copies of the data must be changed also. Cache coherence ensures that changes in the
values of a data are propagated throughout the system.

To provide flexibility the CORE <n> option is provided also for the Data.dump command.

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

(M I eee/pn/Eew ol das @22

144 B:Data.dump 0:11DCC

address 0 4 8 C
NUD:OZZ‘I—:OOOIIDCOJ 00000000 00000000 00000000+00010101

NUD:0224:000110D0
NUD:0224:00011DEQ

01000101 00010001 00010100 00000100
00000000 00000000 00000002 00000000

4

i01{ Bu:Data.dum |
i#] B:Data.dump 0:224:0:11DCC

address 0 4 8 C
NUD:0224:000110C0 | 00000000 00000000 00000000+00010101
NUD:0224:00011D00 | 01000101 00010001 00010100 00000100
NUD:0224:00011DEO | 00000000 00000000 00000002 00000000

4

144 B:Data.dump 0:224:0x11DCC /CORE 0

address 0 4 8 C
NUD:0224:000110C0 | 00000000 00000000 00000000+00010101
NUD:0224:00011D00 | 01000101 00010001 00010100 00000100
NUD:0224:00011DEO | 00000000 00000000 00000002 00000000

4

‘B::

emulate trigger [devices H

NSR:0000:C00292F(swapper/1

©1989-2024 Lauterbach Training Basic SMP Debugging | 61

Since the List (former Data.List) window is mainly used to display a source code listing around the
current program counter it is regarded as core-specific information and is therefore displayed on a
colored background.

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

[(ME[dee/pn/Eew aollsasdads @ 22|

=} B:Data.List =5 |EoR
[Mostep |[M over |[¥ mext | qf_lRT:uEln [e up][b Go |[I Break]ﬂ Mode | Find:

addr/1ine |code mnemonic comment
660 [;

NUR:0225:000098F0 [E1A)3 cpy D, r3
NUR:0225:000098F4) su rl3,rll,#0x0C

i i ldm ri13,.{ril,r13.pc}
NUR:0225:000098FC |0 DCC ded 0x11DCC

int background() /* job for background-demo
663 |1
NUR:0225: 00009900 backgrou..:cpy cl2bnl3
NUR:0225:00009904 push {r11l-r12,r14,pc}
NUR:0225:00009908 sub ril,rl2,#0x4
NUR:0225:0000990C 008 sub r13,rl3,#0x8
register long countl, count2;

J«g i r

i£] BuData.List /CORE 1. (= E]=]
[M Step][W Over][+ Mext][JReturn][¢ up][b Go][11 Break]ﬂ Mode] Find:

addr/1ine |[code label mnemonic comment

359 @ Wait For Interrupt
NSR:0000:C00292F8
360 n
E320E000
361 nop
NSR:0000:C0029300 [E3)

362
NSR:0000:C0029304
363

ﬂB::

emulate trigger [devices][trace][Data][

E NUR:0225:000098F8 \\siew: sieve stopped

A so-called access class is always displayed together with a memory address. The following access
classes are available for all processor architectures:

P:1000 Program address 0x1000

D:6814 Data address 0x6814

For additional access classes provided by your processor architecture refer to your “Processor
Architecture Manuals”.

©1989-2024 Lauterbach Training Basic SMP Debugging | 62

The Data.dump Window

Display the Memory Contents

Va_r _Bre_al_(R_un _CP

[Registers

M {#4] B:Data.dump ===

i List Source Address /Expression——8 S

&4 Watch | - [CIHLL

@ Referenced Var R i C i S |

ﬂ Locals idth —————— — ACCESs ——— - Options ———— - Flag ——— .

[S e @ default @ default [Track Fead

ol Stackirame O Byte ©E [¥] Orient Whirite

? Peripherals © Word -

& Symbols 4 - ;

iii Groups © Long [SpotLight

g Bookmarks L e) O O —
= Trace List

= | Message Area

©1989-2024 Lauterbach Training Basic SMP Debugging | 63

Use an Address to Specify the Start Address for the Data.dump Window

144! B:Data.dump =l ==
Address { Expression
0x6814 «| (2] EHL
Width Access Options Flag
@ default @ default Track Fead
Byte E J| Orient YWhrite:
Word V| Ascii
Long SpotLight
[Cancel
144 B:Data.dump (0x6814) /DIALOG =1 | e I >
C:0x6514 [#iFind.. | [Modity.. | | [Long =] CIE Track [Hex
address] 4 8 C_0123456789ABCDEF
SD:AAPAGE1M | 8342178A+A6MA4185 M38255CH A44M4D68 3:BseABRsUZShHES -
SD:AAPARA2A | 2C1AFB2A 54A18ABA 28506482 ASDD1248 .53,33aT2dP(HLB2E
SD:AAPARA3M | 42019AR4 87354C6A MBA17201 2423DC18 5L5B L52araziois -
SD:AAPAGA4R | ABARRAAA 2CA14624 42015855 PB2AARAOR RUYESFs,UPTR2S.S .
SD:AAPARASE | 62432APA ASA4A2CD 180A4142 41ABA449 L. ChEz5EBAYLISY
SD:AAPAGAEGR | AZAGGA4A SARA1AFS BABARN1AZ PAB1156M R'RRTiUPSass 'iss
SD:AAPAGA7A | 982A21PA 4APARSA1 B51204AD 1A9508A6 % !*352URR512R223
SD:AAPARASA | A2254894 42839588 AABAR324 CA484999 3H/SE52B$S3asIHS -
Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.
O

©1989-2024 Lauterbach

Training Basic SMP Debugging

64

Use an Address Range to Specify the Addresses for the Data.dump Window

If you enter an address range, only data for the specified address range are displayed. This is useful if a

memory area close to memory-mapped /O registers should be displayed and you do not want TRACE32

PowerView to generate read cycles for the 1/O registers.

Conventions for address ranges:

J <start_address>--<end_address>

. <start_address>..<end_address>

. <start_address>++<offset_in_byte>

. <start_address>++<offset_in_word> (for DSPs)

fﬁj B::Data.dump El@

Address { Expression

DxGET 4+ 40 ~| (2] EHL

Width Access Options Flag

@ default @ default [Track Fead

") Byte T E [¥] Orient Wtite

O Ward [V] Ascii

* Long [C] SpatLight

Cancel
11%] B:Data.dump (0x6814+ +0xf) /DIALOG [=1[=][==]
C:0xB814 [#Find. | [Modit.. | | [Long =] FIE ElTack FHex F.

address C B#123456789ABCDEF

SD:PAAA6E1A
SD :IRAA6E28

J Z2C18F828

a 4 8
+06004185 B38255CA A4484D68

Fi
LB

£A

MAC
UKo

U2shHEg @

©1989-2024 Lauterbach

Training Basic SMP Debugging

65

Use a Symbol to Specify the Start Address for the Data.dump Window

Use 1 to select any symbol name or label known to TRACE32 PowerView.

-

{struct unionl)

144 B:Data.dump [=][=]=]
Address { Expression
- S HLL
R
Width Access Options Flag
@ default @ default [Track Fead
) Byte @E Orient Witite
O 'Ward [V] Ascii
@) Long [SpotLight
& Browse Symbols =l E][]
Dalsy E] E] Type: Symbols +| [l Source
synbol type address i
__sys_generate_error R :A0PAGABC -
| ANST_e2d R :ABAA39DA

D :APAAGE14--ANARGS27 [
D :AAAAGASA—-AAAAGAI7

background {int ()} R :A0PA3ZE4——0ARA3313
' clib_SigInt R:80885904 -
144 B:Data.dump [=|[=][z]
Address { Expression
ast | [&] EIHL
Width Access Options Flag
@ default @ default [Track Fead
7 Byte JE [Vl Orient Wtite
2 Word [¥] Ascii
*) Lang [[1SpotLight
[Cancel |
By default an oriented display
is used (line break at 2%).
A small arrow indicates
the specified dump address.
144 B:Data.dump (ast) /DIALOG =]]
D:0x6814 [j-‘gFinnvj [(Modife.. | | [Long ~| EE [DTack @Hex [#Asci
address a 4 8 C 8123456 789ABCDEF 1

SD:PAAA6E1A
SD :PRAA6E28
SD :ARAA6E30
SD :PRAA6E8
SD :IRAA6ESA
SD : IRAA6E6A

4

83421788»86804185 A38255C8 A44P4D6E &%
ZC1AF828 54818P8A 28506482 ASDD1248 .535,88aT2dP(HiBe
42010084 87354C60 A8A17201 2423DC18 SeiB‘LSsarnsseds
A89AAA48 2CA14624 42A15855 BB2OAROA BYYLSFS,UPYB3S.E
6243200A B5A4PZCD 18004142 418BP449 £.ChesssBAYLISY
22066048 SPOP1PFS 8A8AA1A2 BAB1156M B'R3EHUPEREs ‘L5% ¥

S2AYRSUZRhMES

o4 (M

©1989-2024 Lauterbach

Training Basic SMP Debugging |

66

I Data.dump <address> | <range> [/<option>]

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

0x6814

0x6810--0x682f

0x6810..0x682f

0x6810++0x1£f

ast

ast /Byte

Display a hex dump of the memory

; Display a hex dump starting at

; address 0x6814

; Display a
; specified

; Display a
; specified

; Display a
; specified

; Display a

; the address of the

; Display a

; the address of the

hex dump of the
address range

hex dump of the
address range

hex dump of the
address range

hex dump starting at
label ast

hex dump starting at
label ast in

; byte format

©1989-2024 Lauterbach

Training Basic SMP Debugging

67

Modify the Memory Contents

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Mk Al »n|E N o sl sdcds @ 3L

4] B:Data.dump (ast) /DIALOG

D:0x4A326DCC [#3Find...] [Modify... | | [Long ~]
address 0 4 8 C

NSD:4A326DC0 | BC79F602 7927C8ED DF537FE94BC512D36
NSD:4A326D00 | 0000303A 4A326DCC ELID7B28C DAF4F549 :
NSD:4A326DEO | 00010101 01000101 01010001
NSD:4A326DF0 | E2000101 64BF4EOB 0198A981 A
NSD:4A326E00 | B407F2E6 1FC9845D 7B3FB398
NSD:4A326E10 | 1B6F436C CE6B740F 6944B476
NSD:4A326E20 | B46E638C 26273793 31AFBE28/BAEECB4C

4

E::D.5 NSD:0x4A326DEC ¥LE ¥Long |

l [ok] H formats\H\<dai'a> H <srrmg;/ H options

By a left mouse double-click to the memory contents
a Data.Set command is automatically

displayed in the command line,
you can enter the new value and
confirm it with return.

previous

MI< UP

I Data.Set <address>|<range> [Y%o<format>] <value> [/<option>]

Data.Set 0x6814 Oxaa

Data.Set 0x6814 %Long Oxaaaa

Data.Set 0x6814 %LE %Long Oxaaaa

Write Oxaa to the address
0x6814

Write Oxaaaa as a 32 bit value to
the address 0x6814, add the
leading zeros automatically

Write Oxaaaa as a 32 bit value to
the address 0x6814, add the
leading zeros automatically

Use Little Endian mode

©1989-2024 Lauterbach

Training Basic SMP Debugging | 68

Run-time Memory Access

TRACES32 PowerView updates the displayed memory contents by default only if the cores is stopped.

Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Ik Aisee pnow o dun s @&

D:0x4A326DCC

[#iFind...] [Modify... | | [tong ~| [FIE [ITrack @Hex [#Asci

address |

0 4 8 C 0123456?89ABCDEF

NSD:4A326DC0

NSD:4A3260DD0
NSD:4A326DEQ
NSD:4A326DF0

BC79F602 7927CBBD DF53/FGOPBC512D36 s CDS IR
0000303A 4A326DCC E1D7B28C DAF4F549 i€ g5
00010101 01000101 01010001 00010100 33 W3
E2000101 64BF4EOB 0198A981 A8646741 33 5

F
ey
H
EEF
9% d

trace H Data H Var H List

runmning .

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

kA deern o aogus acds @2

| 81 B:Data.dump (ast) /DIALOG

|| D:0x4A326DCC
address

[#iFind...] [Modify... | | [tong ~| [FIE [ITrack @Hex [#Asci
0 4 [C 01234567 89ABCDEF

Il NSD:4A326DC0
NSD:4A3260DD0
NSD:4A326DEQ
NSD:4A326DF0

BC79F602 7927C8ED DF537F69¥BC512D36 x%fc%a Y1FSE6-0%
0000303A 4A326DCC E1D7BZ8C DAF4F549 0% em2I%5%
01010101 01010101 00010001 00010100 fﬁsﬂfﬁfﬁ
E2000100 64BF4EOB 0198A981 ABG46741 W35

F

o
5
H
a
[

g
It
55
HH
dﬁ

1

555 N
ek
TNEdTS

‘B::

trigger [devices][trace][Data][Var][i][previous

NSR:4A326580 \\demo\demo'\sieve+0x1C |stopped MI{ UP

A hatched window frame
indicates that the information
display is brozen because the
core is executing the program.

The plain window frame
indicates that the information
is updated, because the

program execution is
stopped.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 69

Non-intrusive Run-time Memory Access

Various cores allow a debugger to read and write physical memory (not cache) while the core is executing
the program. The debugger has in most cases direct access to the processor/chip internal bus, so no extra
load for the core is generated by this feature.

Open the SYStem window in order to check if your processor architecture allows a debugger to read/write
memory while the core is executing the program:

Misc Trace Perf Cov (

Change Frame L4

8 CPU Registers

FPU Registers 22 B:SVStem [E=H Eol(E=5|
o Peripherals tMade tMemiccess Option
© Dawn 0 CPU < Hitisicsit MemAccess Enable/NEXUS/DAP
2 NoDebug O Denied [CIIMASKHLL indicates that the core allows
0 Go CpuAccess VIPERSTOP the debugger to read/write the
D Attach D Enable CIDUALPORT memory while the core is
StancBy @ Denied [¥]ICFLUSH executing the program.
In Target Reset Up (StandBy)) Monstop [¥] DCFREEZE
Reset CPU Registers @ Up [[IDataTrace
JtagClock
reset 10.0MHz -
RESetOut
cPU

Please be aware that caches, MMUSs, tightly-coupled memories and suchlike add conditions to the run-time
memory access or at worst make its use impossible.

Restrictions

The following description is only a rough overview on the restrictions. Details about your core can be found in
the Processor Architecture Manual.

©1989-2024 Lauterbach Training Basic SMP Debugging | 70

Cache

If run-time memory access for a cached memory location is enabled the debugger acts as follows:

. Program execution is stopped

The data is read via the cache respectively written via the cache.

. Program execution is running

Since the debugger has no access to the caches while the program execution is running, the
data is read from physical memory. The physical memory contains the current data only if the
cache is configured as write-through for the accessed memory location, otherwise out-dated data
is read.

Since the debugger has no access to the cache while the program execution is running, the data
is written to the physical memory. The new data has only an effect on the current program
execution if the debugger can invalidate the cache entry for the accessed memory location. This
useful feature is not available for most cores.

MMU

Debuggers have no access to the TLBs while the program execution is running. As a consequence run-time
memory access can not be used, especially if the TLBs are dynamically changed by the program.

In the exceptional case of static TLBs, the TLBs can be scanned into the debugger. This scanned copy of
the TLBs can be used by the debugger for the address translation while the program execution is running.

Tightly-coupled Memory

Tightly-coupled memory might not be accessible via the system memory bus.

Usage

The usage of the non-intrusive run-time memory access has to be configured explicitly. Two methods are
provided:

. Configure the run-time memory access for a specific memory area.

. Configure run-time memory access for all windows that display memory contents (not available
for all processor architectures).

©1989-2024 Lauterbach Training Basic SMP Debugging | 71

Configure the run-time memory access for a specific memory area:

Enable the E check box to switch
the run-time memory access to ON

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I VY R I S [VA S

§4] B:Data.dump (ast) /DIALOG " A plain window frame
ED:0x4A326DCC [(#iFind..| [Modify-. | | [Long v] [CTrack [Hex [¥]Ascii indicates that the

address 0 4 8 information is updated
ENSD:4A326DC0 | BC79F602 7927C8BD DF53?F69+BC512D36

ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAF4F549 : LR = while the core is
ENSD:4A326DEQ | 00010101 01000101 00010001 00010100 ' i
ENSD:4A326DF0 | E2000100 64BFAEOE 0198A981 A8646741 NG - executing the program

trace][Data][Var][List][previous

g]| e

If the E check box is enabled, the attribute E is added to the memory class:

EP:1000 Program address 0x1000 with run-time memory access

ED:6814 Data address 0x6814 with run-time memory access

Write accesses to the memory work correspondingly:

le Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I+ »n[E o o Humsas @i P

[384 B::Data.dump (ast) /DIALOG (===
[#Find... | [Modify... | [Lon_q v] ME [DTrack .Hex [¥] Ascii
e 0123456?89ABCDEF —
BC79F602 7927CBBD DF53/FGIPBC512D36 HaYins Y1roE6- Qc
0000303A 4A326DCC E1D7B28C DAF4F549 :0 135y
I 00010101 01000101 00010001 00010100 2%
ENSD 4A3260F0 E2000100 64BF4ECB [DEEEEER] AB646741 TNEd% 8%

4

::[D. S ENSD:0x4A326DF8 %LE %Long Ox8a el Data.Set via run-time
memory access
(attribute E)

[[ok]][formats][<data=][<string=][options]

BND4A20R \eroiGotel_lbspece sttt |pan I

©1989-2024 Lauterbach Training Basic SMP Debugging | 72

SYStem.MemAccess Enable ; Enable the non-intrusive
; run-time memory access

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via run-time
; Imemory access

Data.Set E:0x6814 0xAA ; Write OxAA to the address
; 0x6814 via run-time memory
; access

©1989-2024 Lauterbach Training Basic SMP Debugging | 73

Configure the run-time memory access for all windows that display memory
(not available for all cores):

Misc Trace Probe Perf

Change Frame

3

B CPU Registers
FPU Registers
o Peripherals

If MemAccess Enable/NEXUS/DAP is
selected and DUALPORT is checked,
run-time memory is configured for

all windows that display memory

éy B::5YStem

In Target Reset
Reset CPU Registers

) Down
(©) NoDebug

File Edit View Var Break Run

Prepare
7 Go
() Attach
() StandBy
Up (StandBy)
@ up

SPC56EC74

e =]
- | Option ———— — Opﬁon.DisMode =
[C] mASKASM @ AUTO
@ NEXUS [Tl IMASKHLL DUALPORT (©) ACCESS
©) Denied [T 1CFLUSH — WATCHDOG —{ O FLE
— CpuAccess —— [T 1cREAD OFF ! © VLE
7 Enable DCREAD = LPMDEbUg B e —
@ Denied FREEZE OFF -
® Nonstop [CINOTRAP — ResetDetection — ———
................................. CIETK [DFF v] [CONFIG]
— BdmClock —— WA e
4.0MHZ ~

CPU Misc Trace Probe Perf

Cov MPCSXKX Window Help

[_ﬂj B::Data.dump (flags) /Byte /DIALOG

All windows that display memory

D:0x40004128

Iijmd...] I Modify...] [E\rte '] [[Ctrack [MHex [Asci haVe a plain WindOW frame’

address

(=}
=
rJ
(=¥}
IS
L
)
-~
(==}
o
=
(=]
a}
=l
m
hl

5D

5D:
5D:
140004140
5D:
sD:
sD:
sD:
sb:

40004120
40004130

40004150
40004160
40004170
40004180
40004190

because they are updated while
the core is executing the program

=]
=
=]
=}
=]
=]
=]
=

=]
=]
=]
=}
=]
=]
=]
=]

4[] v o4

B:PER

g
fl
il

akeup Unit

(WKPU)

»

eriodic Interrupt Timer and Real Time Interrupt

(PIT_RTI)

Timer Modul

el 0

F 00000000 C
NT 00000000

(5TM)
PS 00 FRzZ 0O TEN O

[m]

0 00000001
0 00000001
0 00009874

CEN 1
CIF 1

STM_CCR
STM_CIRL 00000000 C

CEN 0
IF 0

m

B:

:D. S 5D:0x40004148 %BE 0x99

[ok

| [formats | [<data> | [<strmg> | [options |

SD:40004148 \\diabc\Globalwtdef2+0xe unc i B |

<———— Write access is possible for all
memories while the core is
executing the program

©1989-2024 Lauterbach

Training Basic SMP Debugging | 74

SYStem.MemAccess Enable

SYStem.Option.DUALPORT ON

Go

Data.dump 0x6814

Data.Set 0x6814 0xAA

Enable the non-intrusive
run-time memory access

Activate the run-time memory
access for all windows that
display memory

this SYStem.Option is only
available for some processor
architectures

Start program execution

Display a hex dump starting at
address 0x6814 via run-time
memory access

Write OxAA to the address
0x6814 via run-time memory
access

©1989-2024 Lauterbach

Training Basic SMP Debugging |

75

Intrusive Run-Time Memory Access

If your processor architecture doesn’t allow a debugger to read or write memory while the core is executing
the program, you can activate an intrusive run-time memory access if required.

éy Bu:SYStem.view
Mode
) Dawn
_ MNoDebug
O Go
1 Aftach
_) StandBy
Up [StandBy)
@ Up

reset

RESetOut

4

[E=R(ESR (<D
Memaccess Option Option -
DA [C] IMASKASH [CIDACR
O TSMON3 [Tl IMASKHLL [T MMUSPACES
*) RealtOM [CITURBOD WP
O TrkMON [C] BigEndian] CFLUSH 3
°) GobhOM [¥| FesBreak CINY
@ Denied CIINTDIS
CpuAccess [V DBGACK. [Tl AMBA,
© Enahle <—F4EhawEnet ——hhEEA
* Denied [V|EnReset [CIEXEC
- Monstop [('wWaitReset [CsPUT -

([}

CpuAccess Enable allows an
intrusive run-time memory access

If an intrusive run-time memory access is activated, TRACE32 stops the program execution periodically to
read/write the specified memory area. Each update takes at least 50 us.

L L
core(s) is core(s) is stopped to allow
executing the program TRACE32 PowerView to read/write
the specified memory
The time taken by a short stop depends on various factors:
o The time required by the debugger to start and stop the program execution on a processor/core
(main factor).

J The number of cores that need to be stopped and restarted.
J Cache and MMU assesses that need to be performed to read the information of interest.
U The type of information that is read during the short stop.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 76

An intrusive run-time memory access is only possible for a specific memory area.

Enable the E check box to switch
the run-time memory access to ON

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I Y I S [VA S

#44] B:Data.dump (ast) /DIALOG === A plain window frame

ED:0x4A326DCC [#3Find...] [Modify... | | [Long ~] WE [ITrack [@Hex [l Asci !ndlcates_: that the
address 0 4 8 C 0123456?89ABCDEF information is updated

ENSD:4A326DC0 | BC79F602 7927CEED DF537FG9PEC512D36 % while the core(s) is

ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAF4F549 :0 TN - .

ENSD:4A326DED | 00010101 01000101 00010001 00010100 R executing the program

ENSD:4A326DF0 | E2000100 64BF4EOE 0198A981 A8646741 '\3h5YNEdY! -

4

‘B::

trigger [devioes][trace][Data][Var][List
ning | |

A red S in the state line indicates that a TRACES32 feature is
activated that requires short-time stops of the program execution

Write accesses to the memory work correspondingly:

TRACE32 PowerView [E=RFENE)
Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

M E A+ o oausscs @22

#41] B:Data.dump (ast) /DIALOG =] ==
ED:0x4A326DCC [#iFind...] [Modify... | | [tong ~| FIE [ITrack @Hex [#Asci

address 0 4 8 C_0123456789ABCDEF |
ENSD:4A326DC0 | BC/9F602 7927CBED DF537F69PEC512D36 "0?'5“3 YILS16-0F
ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAFAF549 :0%%em235525 1455
ENSD:4A326DED | 00010101 01000101 00010001 00010100 %3%hiitiiaitail
ENSD:4A326DF0 | E2000100 64BF4EOE 00000099 A8646741 §3SYNTdY L Agdi

4 13
B::D.5 ENSD:0x4A326DF8 %LE ¥Long 0x99 el - Data.Set via run-time
memory access with short
[[ok]][formats][<data=][<string=][options] StOp of the program
CrEE 3 v - execution

©1989-2024 Lauterbach Training Basic SMP Debugging | 77

SYStem.CpuAccess Enable

Go

Data.dump E:0x6814

Data.Set E:0x6814 OxAA

Enable the intrusive
run-time memory access

Start program execution

Display a hex dump starting at
address 0x6814 via an intrusive
run-time memory access

Write OxAA to the address
0x6814 via an intrusive
run-time memory access

©1989-2024 Lauterbach

Training Basic SMP Debugging |

78

Colored Display of Changed Memory Contents

Var Break Run CP

Access
@ default
B E

[Registers
14
:;| List Source
@Watch
@ Referenced Var mj Bu:Data.dump
ik
&df Locals Address / Expression
@ Stackframe with Locals
flags
@ Stackframe
o Peripherals)
& Symbols 4 i
EE smngs @ default
g Bookmarks - Byte
= Trace List ' WWard
£ | Message Area ' Long

Options

[Track

[¥] Orient

[V] Ascii

[¥] SpatLight

A

===

~ [&] @re

Flag
Fead
YWhrite:

Cancel

Enable the option SpotLight to mark the
memory contents changed by the last 4 single
steps in orange, older changes being lighter.

14 B::Data.dump (flags) /Spotlight /DIALOG

=@ =

Di0xPE7C [#1Find.. | [Modify.. |

Byte ~J

address A1 2 3456 7

21234567

FE

[7] Track Hex [¥]Ascii

SD:AAAAVE/B | 16 AS 3D 99+@1 @8 A1 A1
SD:PAAA7EBS | A1 P1 A1 A1 @1 81 81 A1
SD:PAAAVEBS | A1 P1 A1 A1 @1 81 81 AC
SD:PAAA7ESR | 8@ 47 A3 4A 58 C2 98 A1
SD:AAAA7ESS | BA M1 A1 85 33 15 99 B2
SD:PAAA7EAB | 1A PA 1@ 4B 6C 12 @D B2
SD:PAAAVEAB | 16 B6 2D 31 52 48 81 58

Fl

1A_95SHSS
&S OHUHH

SS5SES55S
HHHHHHHH

SSSSESSE
HHHHHHHE

H[lE JPC 2R
BGSJPE39
85587198
AHHSJE 32

ANilF]iCS
AvohlzZRx

£2-1RHSX

Data.dump flags /SpotLight

’

’

’

Display a hex dump starting at
the address of the label flags

Mark changes

©1989-2024 Lauterbach

Training Basic SMP Debugging

79

The List Window

Displays the Source Listing Around the PC

Var Break Run CF
¥ Registers
144 Dump...

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux

EHmN S @z P

Window Help
+
&) Watch MK+ & »n|E 2N
&5 Referenced Var
ﬂ Locals =1 B:Data.List

@ Stackframe with Locals
@ Stackframe
o Peripherals
& Symbols 4
1il Groups
‘ Bookmarks
| Trace List
= | Message Area

E=N HoRj)

[Mostep |[M over |[¥ mext | qf_lRT:urn I

¢ up][P Go |[M Break || [Mode |

addr/1ine |code

mnemonic comment

Fi
I

NUR :0225:0000985C [EADODOLF
645

100009864
100009868
:0000986C
100009870 |C

647
100009874
100009878
:0000987C
: 00009880
: 00009884

648

0x98ED

-

if (flags[
1dr

Idr
1drb
cmp
beg

il
r3,[rll,#-0x20]
r2,0x98FC
r3,[r2,+r3]
r3,#0x0

0x98D4

primz =1 + i + 3;

r2,[ri1,#-0x20]

r2,[ri1,#-0x20]

r3.r2;r2

r3,r3,#0x3

r3, [r11,#-0x1C]
k =1 + primz;

emulate

trigger [devices][

trace][Data

][Var][other][previous

NUR:022E sieve 0

File Edit View Var
Window Help

MR+ e » 2Nl

CPU Misc Trace

stopped

MI{ UP

Probe

IEETIErri »ya

= BuData.List

Lo)lo e

[M Step |[M over || ¥ Next || Retun | ¢ up

][b Go

addr/1ine |source

][11 Break]ﬂ Mode]F|

register int 1, primz, e

-

639
641

643|

int anzahl;
anzahl = 0;

for (1 =0 ; 1 <= 5IZE ; flags[i++] = TRUE

for (1 =0 : i <= SIZE ; i++)
i
L

647
648

rimz
=

i+ 1+ 3;

rimz;

649
651

while |{ <= SIZE)

1

flags[k] = FALSE;

fiovicstn) |uualtach) (uuebota

| NUR:022:sieve

0 stdpped

If HLL mode is selected for debugging,
only hll information is displayed

©1989-2024 Lauterbach

Training Basic SMP Debugging

80

Displays the Source Listing of a Selected Function

Var Break Run CF
¥ Registers i
144 Dump...
E’J List Source
@Watch
@ Referenced Var
ﬂ Locals
@ Stackframe with Locals
@ Stackframe
o Peripherals

Symbols

il Groups Browse Modules

Trace List Browse Variables

= | Message Area Browse Types
g yp

Symbols Tree View
Symbols by name
Symbols by address
Sections Select the function you
Source Search Paths want to dISp|ay

Overview
Details of Symbol

Z Bus¥Ymbol.Browse.Function I ilﬂl&
W (][] Type:

symbol
regulator_get_voltage

| regulator_get_voltage
regulator_has_full_const..

Fungtions +| [[] Source

|

P:0000:C023550C--C02355 .

P:0000:C0234228--C02342

P:0000:C02342B4--C02342

P:0000:C0587F14--CO587F]

regulator_init_complete P:0000:C0587F98--C05880
regulator_is_g

requlator_is_s i£] BuList regulator_init][-E]
[Mstep |[M over || ¥ Next [Retun| ¢ up || »Go | I Break]ﬂ Mode | Find:

addr/1ine |source i
#Fendit -

(stat1ic int ())

static const struct file_operations supply_map_fops = {
#ifdef CONFIG_DEBUG_FS

.read = supply_map_read_file,

. 11seek = default_1lseek,
#endif

3218 |static int __init regulator_init(void) =
= 3219 | E |

= int ret; _ -k
List [<address>] [/<option>] Display source listing
List [<address>] ICORE <n> [/<option>] Display source listing
Data.List [<address>] [/<option>] Display source listing
Data.List [<address>] /ICORE <n> [/<option>] Display source listing

©1989-2024 Lauterbach Training Basic SMP Debugging | 81

List

List E:

List *

List funcl7?

List /CORE 1

Display a source listing
around the PC

Display a source listing,
allow scrolling while the
program execution is running

Open the symbol browser to
select a function for display

Display a source listing of
funcl?

Display a source listing
around the PC of core 1

©1989-2024 Lauterbach

Training Basic SMP Debugging

82

Breakpoints

Videos about the breakpoint handling can be found here:
support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Breakpoint Implementations

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip breakpoints.

Software Breakpoints in RAM

The default implementation for breakpoints on instructions is a Software breakpoint. If a Software breakpoint
is set the original instruction at the breakpoint address is patched by a special instruction (usually TRAP) to
stop the program and return the control to the debugger.

©1989-2024 Lauterbach Training Basic SMP Debugging | 83

https://support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

The number of software breakpoints is unlimited.

=] [B=Data.List] =8 |EeE
[Mistep |[®over || $next | Return|[@ up |[»Go |[M Break |[¥ Mode | Find:
addr/1ine |code |1abel mremonic comment L
int sievel() /* sieve of erathostenes */ .
635 [{
3 3 ELAOCOOD.. sieve: cpy riz,rl3
NUR:0225:0000980C [E920DE00 push irll-r12,r14 ,pc}
NUR:0225:00009810 [E24CB004 sub rll,r12,#0x4
NUR:0225:00009814 (E24DD01S sub r13,rl13,#0x18
register int i, primz, k;
int anzahl;
639 anzahl = 0;
NUR:0225:00009818 [E2403000 mow r3,#0x0
NUR:0225:0000981C [ES0B3010 str r3,[rll,#-0x10]
1 =
641 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ; [
NUR:0225:00009820£2401000 mowv rl,#0x0
NUR:0225:00009824 |ES0B1020 str rl, [rl1,#-0x20] %
4 T] v
Bresk] Run _CPU_Misc 1
2% Delete All
F Trigger Bus...
ZF OnChip Trigger...
BTN T I
(3% Delete All QO Disable All (@ Enable All|[@ Init [(2 Impl... || 52 store... | 2 Load... || € Set... |
address [types imp]l '
NR:0225: 00009820? Program SOFT sieve'b -
4 »

Breakpoints on instructions are called Program breakpoints by TRACE32 PowerView.

Please be aware that TRACES32 PowerView always tries to set an Onchip
breakpoint, when the setting of a Software Breakpoint fails.

©1989-2024 Lauterbach

Training Basic SMP Debugging

84

Onchip Breakpoints in NOR Flash

Most core(s) provide a small number of Onchip breakpoints in form of breakpoint registers. These Onchip
breakpoints can be used to set breakpoints to instructions in read-only memory like onchip or NOR FLASH.

That fact that the debugger does not know on which core of the SMP system a program section is running,
has the consequence that the debugger programs the same on-chip breakpoint to all cores.

So you can say from the debugger perspective there is only one break logic shared by all cores of the SMP
system. This is the reason why breakpoints are regarded as common resource and therefore the Break.List
window has a white background.

Efil[B:'DataLiSt] EI@
[Mostep |[M over |[¥ mext | qf Return || @ up |[» Go [Il Break ||] Mode | Find:
addr/1ine |code el mremonic comment
int s1eve__ /* sieve of erathostenes =/ -
635 ({
i i ELAQCOOD. . sieve: cpy ri2,rl3

NUR:0225:0000980C [E push frii- rl2,rld, pc}

NUR:0225:00009810 sub rll (i bl "0x4

NUR:0225:00009814 |E sub rl3,r13,#0x18

register int i, primz, k;
int anzahl;

639 anzahl = 0;
NUR:0225:00009818 0
NUR:0225:0000981C

mov r3 #0x0
str 3, [rl11,#-0x10]

641
NUR:0225:00009820)E3A
NUR:0225:00009824

(1=0; 1« 5SIZE ; flags[i++] = TRUE } ; L
mowv rl,#0x0
str rl, [rll,#-0x20] -

I »

Break | Run CPU Misc 1

B3 Set..

2% Delete All

F Trigger Bus...
ZF OnChip Trigger...

Trigger Reset

e B::Break.List |E”E”E|
[#& Delete All O Disable All [@ Enable Al || 9 init_|[& impl... | 53 store...][53 Load... || & set... |

ress imp]l

NR:0225: OOOOSSZOfProgram ‘ONCHIP ‘ sieve' b -
4 3

©1989-2024 Lauterbach Training Basic SMP Debugging | 85

If an SMP operating system that uses dynamic memory management to handle processes/tasks (e.g. Linux)
is used, the instruction address within TRACE32 PowerView consists of:

. An access class
J A memory-space ID of the process
o A virtual address

<access_class>:<space_id>:<virtual_address>
NUR:0x225:0x9820

The on-chip break logic of most cores stores only the virtual address, but not the space ID. As a result an
identical virtual address within another process can also result in a breakpoint hit.

For details on the TRACES32 PowerView address scheme of operating systems that uses dynamic memory
management to handle processes/tasks refer to your RTOS/OS Debugger Manual.

Additional details on this issue are provided when task-aware breakpoints are introduced.

©1989-2024 Lauterbach Training Basic SMP Debugging | 86

Since Software breakpoints are used by default for Program breakpoints, TRACE32 PowerView can be

informed explicitly where to use Onchip breakpoints. Depending on your memory layout, the following
methods are provided:

1. If the code is completely located in read-only memory, the default implementation for the

Program breakpoints can be changed.

Break | Run CPU Misc ~

B3 Set..
& List & B:Break METHOD ==
Program Read Write
2K Delete Al O AUTO @ AUTO @ AUTO
:) SOFT SOFT SOFT
- Trigger Bus... *) HARD ") HARD ") HARD
) OnChip Trigger.. @ Onchip _) Onchip _! Onchip
Trigger Reset
hipha Beta Charly Delta Echo
@ AUTO @ AUTO @ AUTO @ AUTO @ AUTO
SOFT) SOFT) SOFT) SOFT) SOFT
HARD) HARD) HARD) HARD) HARD
Onchip _! Onchip _! Onchip _! Onchip _! Onchip

Change the implementation of Program breakpoints to Onchip

Break.METHOD Program Onchip Advise TRACES32 PowerView to

implement Program breakpoints
always as Onchip breakpoints

©1989-2024 Lauterbach Training Basic SMP Debugging | 87

2.

If the code is located in RAM and onchip/NOR FLASH you can define code ranges where

Onchip breakpoints are used.

MAP.BOnchip <range> Advise TRACE32 PowerView to implement Program
breakpoints as Onchip breakpoints within the defined
address range

MAP.List

Check your settings

MAP.BOnchip 0x0++0x1FFF

MAP.BOnchip 0xA0000000++0x1FFFFF

Check your settings as follows:

Trace Probe Pef Cov MI

& Frequency Counter...

£ Runtime

@ Load Map

A Flash Programming

4 Choose Colors...
& Interface Config...

& Tools

Japanese Menu

For the specified address ranges Program breakpoints are

implemented as Onchip breakpoints. For all other memory areas
Software breakpoints are used.

\

[0 B::Map List \< | = B [
address type bus bonchip attributes
A : APPPPPAB--BAPA1FFF “lhonchip -
A:AARRZBAB--9FFFFFFF
A:APPRBRABR--AB1FFFFF bonchip
A:APZABPAB—-FFFFFFFF

©1989-2024 Lauterbach

Training Basic SMP Debugging | 88

Onchip Breakpoints on Read/Write Accesses

Onchip breakpoints can be used to stop the core at a read or write access to a memory location.

=] [B:Data.List]
[M Step][W Over][+ Mext][+ Return][¢ up][» Go][11 Break] ¥ Mode] Find: I
addr/1ine |code |Tabel |mnemonic |comment |
NUR:0225:0000981C [ES0B3010 str r3, [ri11,#-0x10] -~
641 for (i =0; 1 <=5S1ZE ; [@EMAl i++ 1 = TRUE 3 :
NUR:0225:00009820 [E3401000 mov r"l,f—ECIXCl Variable
NUR:0225:00009824 [ES0B1020 str rl,[rll,#{ -
NUR: 0225 : 00009828 |EA00D006 b oxonas | | SjEEE
NUR:0225:0000982C [E51B1020 Tdr rl,[rll,# trof| View in Windaw
NUR:0225 : 00009830 |E59F20C4 1dr r2,0x98FC | g5l set Value...
NUR:0225:00009834 [E2403001 mov r3,#0x1]
NUR:0225:00009838 |E7C23001 strb r3.[r2,+r] 63 Modify Value..
NUR:0225:0000983C [E51B2020 Tdr r2,[ril,#| ¥ GoTil 4
NUR:0225:00009840 [E2522001 add r2,r‘2,?—f0x]as kooint
NUR:0225:00009844 |E5082020 str r2,[ril,# reakpont..)
NUR:0225: 00009848 |[E51E3020 Tdr r3, [ril,#- & Advanced Breakpoint [.
NUR:0225:0000984C [£3530012 cmp r3,#0x12 —
NUR:0225:00009850 [DAFFFFFS ble 0x982C s, o
| o i Display Memory L4 Read
= 7 Grep in Sourcefiles
other 4

1 B::Break List

(o [O

(% Delete All [© Disable All[@ Enable All|| @ Init [& mpl...][53 store... || 53 Load... || K Set... |

types

1mp

address
NR:0225:00011DCC--0001100E]

Write

#

ONCHIP

“As1eve'\GlobaT T Tags I

Again, this breakpoint is programmed identically in all cores. And again write accesses to an identical virtual
address result in a breakpoint hit.

Additional details on this issue are provided when task-aware breakpoints are introduced.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 89

Onchip Breakpoints by Processor Architecture

Refer to your Processor Architecture Manual for a detailed list of the available Onchip breakpoints.

For some processor architectures Onchip breakpoints can only mark single addresses (e.g Cortex-A9).
Most processor architectures, however, allow to mark address ranges with Onchip breakpoints. It is very
common that one Onchip breakpoint marks the start address of the address range while the second Onchip
breakpoint marks the end address (e.g. MPC57xx).

The command Break.CONFIG.VarConvert (TrOnchip.VarConvert in older software versions) allows to
control how range breakpoints are set for scalars (int, float, double).

Break.CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) the
ON breakpoint is set to the start address of the variable.
+ Requires only one single address breakpoint.
- Program will not stop on unintentional accesses to the variable’s
address space.
Break.-CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) breakpoints
OFF are set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses
to the variable’s address space.

- Requires two onchip breakpoints since a range breakpoint is
used.

The current setting can be inspected and changed from the Break.CONFIG window.

Example: the red line in the Data.View window shows the range of the Onchip breakpoint.

Q B::Data.View vint

[E=N NoR/~<")

symbo |
diab

breakpoint address | data [value
W SD:4000406C] 00 T

5D:4000406D | 00
5D:4000406E | 00
5D:4000406F | 00

4

T

I

Set an Onchip breakpoint to the start address of the variable wvint

Break.CONFIG.VarConvert ON
Var .Break.Set vint /Write

Data.View vint

’

; variable vint

Set an Onchip breakpoint to the whole memory range address of the

Break.CONFIG.VarConvert OFF
Var.Break.Set vint /Write

Data.View vin

©1989-2024 Lauterbach

Training Basic SMP Debugging | 90

Q B::Data.View vint

breakpoint address | data [value

SD:4000406C || 00 T
SD:4000406D| 00
SD:4000406E || 00
SD:4000406F || 00
SD:40004070 | 00

4

=E==E=

T T T

A number of processor architectures provide only bit masks or fixed range sizes to mark an address range

with Onchip breakpoints. In this case the address range is always enlarged to the smallest bit mask/next
allowed range that includes the address range.

It is recommended to control which addresses are actually marked with breakpoints by using the
Break.List /Onchip command:

Breakpoint setting:

Var .Break.Set str2

Break.List

a B::Break.List EI@
(3% Delete All| (O Disable All (@ Enable All|[@ Init [& Method... | 22 store... | 2 Load... || EilSet... |
address type method i
C:20005524——2000553?JWF‘|te ‘ONCHIP ‘ W str2 »
I3

Break.List /Onchip

a B::Break.List /Onchip EI@
(3% Delete All| (O Disable All (@ Enable All|[@ Init [2 Method... | 22 store... || 2 Load... || EiiSet... |

address type method |onchip resource i
C:20005520——2000553?JWr1te ‘ONCHIP ‘Ol ‘\.-’ ‘(vppu'long)——(str2+0x13) -

4 [}

ETM Breakpoints for ARM or Cortex-A/-R

ETM breakpoints extend the number of available breakpoints. Some Onchip breakpoints offered by ARM
and Cortex-A/-R cores provide restricted functionality. ETM breakpoints can help you to overcome some of
these restrictions.

ETM breakpoints always show a break-after-make behavior with a rather large delay. Thus, use ETM
breakpoints only if necessary.

©1989-2024 Lauterbach Training Basic SMP Debugging | 91

Program Breakpoints | Read/Write Data Value
Breakpoints Breakpoints
ARM7 Onchip breakpoints: Onchip breakpoints: Onchip Breakpoint:
ARMO9 up to 2, but address up to 2, but address up to 2, but address range
range only as bit mask | range only as bit mask | only as bit mask
(Reduced to 1 if soft-
ware breakpoints are ETM breakpoints: ETM breakpoints:
used) up to 2 exact address up to 2 data value breakpoints
ranges for exact address ranges
ETM breakpoints:
up to 2 exact address
ranges
ARM11 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
6, but only single 2, but only single no data value breakpoints
addresses addresses possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges possible ranges possible for exact address ranges
Cortex-A5 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
3, but only single 2, but address range no data value breakpoints
addresses only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges
Cortex-A7 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-R7 6, but only single 4, but address range no data value breakpoints
addresses only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges
Cortex-A8 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
6, but address range 2, but address range no data value breakpoints
only as bit mask only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges

©1989-2024 Lauterbach

Training Basic SMP Debugging | 92

Program Breakpoints

Read/Write
Breakpoints

Data Value
Breakpoints

Cortex-R4 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-R5 2..8, but address 1..8, but address no data value breakpoints
range only as bit mask | range only as bit mask | possible

ETM breakpoints: ETM breakpoints: ETM breakpoints:

up to 2 exact address up to 2 exact address up to 2 data value breakpoints

ranges ranges for exact address ranges
Cortex-A9 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-A15 6, but only single 4, but address range no data value breakpoints
Cortex-A17 addresses only as bit mask possible

ETM breakpoints: ETM breakpoints: ETM breakpoints:

2 exact address ranges | — —

Program Breakpoints | Read/Write Data Value

Breakpoints Breakpoints

Cortex-A3x Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-A5x 6, but only single 4, but address range no data value breakpoints
Cortex-A6x addresses only as bit mask possible
Cortex-A7x
Cortex-R82 ETM breakpoints: ETM breakpoints: ETM breakpoints:
Cortex-X 2 exact address ranges | — —
Neoverse (more on request)
Cortex-R52 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:

8, but only single
addresses

ETM breakpoints:
up to 2 exact address
ranges

8, but address range
only as bit mask

ETM breakpoints:

no data value breakpoints
possible

ETM breakpoints:

No ETM breakpoints are available for the Cortex-M family.

Please refer to the description of the ETM.StoppingBreakPoints command, if you want to use the ETM
breakpoints.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 93

Breakpoint Types

TRACE32 PowerView provides the following breakpoint types for standard debugging.

Breakpoint Types Possible Implementations
Program Software (Default)

Onchip
Read, Write, Onchip (Default)
ReadWrite

©1989-2024 Lauterbach Training Basic SMP Debugging | 94

Program Breakpoints

i£] [B::Data.List] =] &[]
[Mostep |[M over || $Mext |[¢Retun | @ up || »Go | BN Break ”;yﬂ Mode |
addr/1ine |source i
int steve() sieve of erathosten .
635 |1
register 1nt 1, primz, k;
int anzahl;
639 anzahl = 0;
641 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
+ 643 for (i =0; i <= S5IZE ; i++)
Eet al Pftrogram breakpoint 645 if (flags[i 1)
Yy a left mouse —P> | 1 : i :
_nli 6471 rimz = i + 1 + 3;
double-click e s
to the instruction e 649J while (k <= SIZE) -
Fl 1 F

The red program breakpoint indicator marks all code lines for which a Program breakpoint is set.

The program stops before the instruction marked by the breakpoint is executed (break before make).

=1 [B=Data.List] fole =
| MsStep || M over | $ Next | Return | @ up | P Go | M Break || B¥]Mode |
addr/1ine |source i
int steve() /* sieve of erathosten .
635 |1
register int 1, primz, k;
int anzahl;
639 anzahl = 0;
641 for (1 =0 ; 1 == 5IZE ; flags[i++] = TRUE) ;
2 643 for (i =0; i <= SIZE ; i++)
Disable the Program 645 : if (flags[i 1)
breakpomt by a %}': : rimz =1 + 1+ 3;
-Cli 648 =1 + primz;
left mouse double-click . &t et e B
to the red program |« ,

breakpoint indicator.
The program breakpoint
indicator becomes grey.

Break.Set <address>/Program [/DISable] Set a Program breakpoint to the specified address.
The Program breakpoint can be disabled if required.

©1989-2024 Lauterbach Training Basic SMP Debugging | 95

Break.

Break.

Break.

Break.

Break.

Break.

Set 0xA34f /Program

Set funcl /Program

Set funcl+0xlc /Program

Set funcll\7

Set funcl7 /Program /DISable

List

set a Program breakpoint to
address 0xA34f

set a Program breakpoint to the
entry of funcl
(first address of function funcl)

set a Program breakpoint to the
instruction at address

funcl plus 28 bytes

(assuming that byte is the
smallest addressable unit)

set a Program breakpoint to the
7th line of code of the function
funcll

(line in compiled program)

set a Program breakpoint to the
entry of funcl7
diable Program breakpoint

list all breakpoints

©1989-2024 Lauterbach

Training Basic SMP Debugging | 96

Read/Write Breakpoints

=1 [B=Data.List] =8 EER
[Mstep |[M over || dnext [Return|[@ up |[»Go |[M Break |[] Mode |
addr/1ine |source '
645 iF (MErEl 1 1) A
U { Variable
gg_ g4 Add to Watch Window
649 v G} View in Window
&3 Set Value...
gg% &5 Modify Value... E:
4)
4 ¥ GoTill 4
G 1 8 a Breakpoint...
} B Advenced Breskpoint b |
659 return anzahl; | i Display Memory 4
660 |} 47 Grep in Sourcefiles
1+ | i other ’ ..
| Spot
Alpha
Beta
=] [B=Data.List] oo =
[Mistep |[M over || dnext [Return|[@ up |[»Go |[M Break |[2 Mode |
addr/1ine |source Loy
645 T EEE T "
J { Variable
el F 64 Add to Watch Window
649 v &raf] View in Window
651 =8 Set‘u’.alue... E:
652 &5 Modify Value...
1 ¥ GoTil ’
B 1 g a Breakpoint...
} B Advenced Breskpoint b | |
659 return anzahl; i Display Memory ’ Read
660 |} 4 Grep in Sourcefiles |
LG} . other

All cores are stopped
at a read access
to the variable

All cores are stopped
at a write access
to the variable

On most core(s) the program stops after the read or write access (break after make).

©1989-2024 Lauterbach

Training Basic SMP Debugging |

97

ﬁj Bi:Var.View \\sieve\Global\flags EI-@

\Globallftlags = (

-
-

DDDDDDDDDD

[=lslalalelelslelal]

Pty

If an HLL variable is displayed,
a small red breakpoint indicator
marks an active Read/Write breakpoint.

A small grey breakpoint indicator

marks a disabled Read/Write breakpoint.

Break.Set <address> | <range> /Read | /Write | /ReadWrite [/DISable]

; allow HLL expression to specify breakpoint

Var.Break.Set <hll_expression>/Read | /Write | /ReadWrite [/DISable]

Break. Set

Break.Set ast /Write

Break. Set

Var .Break.

Var.Break.Set flags[3]

Var .Break.

Break.List

0x0B56 /Read

Set flags /Write

vpchar+5 /ReadWrite /DISable

Set ast->count /ReadWrite /DISable

©1989-2024 Lauterbach

Training Basic SMP Debugging

98

Breakpoint Handling

Breakpoint Setting at Run-time

éy Bu:SYStem EI@
Mode MemAccess Option Option DisMode
* Down @ DAP [7] IMASKASM | DACR @ AUTO
*) NoDebug ©) TSMON3 [T IMASKHLL | MMUSPACES ") ACCESS
_ Prepare _) RealMON TURBO |MPU I ARM
7 Go * TrkMON [BigEndian [/] CFLUSH ©) THUMB
) Attach * GdbMON [¥| ResBreak
*) StandBy) Denied | INTDIS
Up (StandBy) CpuAccess V| DBGACK CONFIG
@ Up JEnable | | | EnReset DETECT
@ Denied JITRST
reset _ Nonstop | | L] PWRDWN
RESetOut WaitReset
OFF
CPU JtagClock
OMAP4430 Ctck 30.0MHz ~
Software breakpoints
J If MemAccess Enable/NEXUS/DAP is enabled, Software breakpoints can be set while the

core(s) is executing the program. Please be aware that this is not possible if an instruction cache
and an MMU is used.

J If CpuAccess is enabled, Software breakpoints can be set while the core(s) is executing the
program. If the breakpoint is set via CpuAccess the real-time behavior is influenced.

J If MemAccess and CpuAccess is Denied Software breakpoints can only be set when the

program execution is stopped.

The behavior of Onchip breakpoints is core dependent. E.g. on all ARM/Cortex cores Onchip breakpoints
can be set while the program execution is running.

©1989-2024 Lauterbach

Training Basic SMP Debugging

99

Real-time Breakpoints vs. Intrusive Breakpoints

TRACE32 PowerView offers in addition to the basic breakpoints (Program/Read/Write) also complex
breakpoints. Whenever possible these breakpoints are implemented as real-time breakpoints.

Real-time breakpoints do not disturb the real-time program execution on the core(s), but they require a
complex on-chip break logic.

If the on-chip break logic of a core does not provide the required features or if Software breakpoints are
used, TRACES32 has to implement an intrusive breakpoint.

Intrusive breakpoint perform as follows:

|

Program execution <&

'

Stop program execution Continue with
at breakpoint hit program execution

Check not ok

Perform
required check

Check ok

Stay stopped

Each stop to perform the check suspends the program execution for at least 1 ms. For details refer to
“StopAndGo Mode” (glossary.pdf)

‘B::

trigger [devices H trace H Data H Var H other H previous
I Mx_up

The (short-time) display of a red S in the state line indicates that an intrusive breakpoint was hit.

©1989-2024 Lauterbach Training Basic SMP Debugging | 100

Intrusive breakpoints are marked with a special breakpoint indicator:

x
\
N

Example for intrusive breakpoint (Cortex-A9): ProgramPass/ProgramFail breakpoint

ProgramPass If a breakpoint is set to a conditional instruction, the program
execution is only stopped, if the condition is satisfied (pass).
ProgramFail If a breakpoint is set to a conditional instruction, the program

execution is only stopped, if the condition fails.

Stop the program execution, when the ble instruction fails.

NUR:0225:00009844
NUR:0225:00009848
NUR:0225:0000984C

0t (oo
[Mstep |[®over || dnext | Return|[@ up |[»Go |[M Break |[¥ Mode | Find:

a ddr/Tine |code |Tabel mnemonic comment Loy

EZ522001 a r,r2, #0xl sk 2.r2 #1 -

E50B2020
302

r2,rll,#-0x20]
r3,[rl1,#-0x20]
r3,#0x12

NUR:0225 : 00009850 |DAFFFFF 5 :
Program Address
643 for ': i=0 H 1 i Go Till
NUR:0225:00009854 (E3A01000 mov)
NUR:0225:00009858 [E5081020 str |l Breakpoint... ;
NUR:0225:0000985C EA00001F b Program
645 L i Display Memory L4 ProgramPass
NUR:0225:00009860 [ES1E3020 Tdr]| g Toggle Bookmark ProgramFail
4| i —"
u e SEt_ PC Here Spot
% Edit Source | .
& ViewInfo Alpha
G T'I-I_Th_ ________ | feta
%L.o ill There Charly
:__:| ist There Delta
Assemble here ...
Echo
Modify here ...
Patch here ...
@ B:Break List IEI-IEI
[Delete All |[O Disable AJI][Q Enable All|[@ Init |[& Impl...]Lﬁ Store... || &2 Load...]L@ Set...
address [types imp]l |
NR:0225:00009850}ProgramFail [SOFT s1eve'6+0x30 -

©1989-2024 Lauterbach

Training Basic SMP Debugging

101

The ProgramFail breakpoint behaves as follows:

Check
status flag
N (negative)

N set

Program execution stops at ProgramFail
breakpoint

g Continue program

Keep stop of program execution

execution

Each stop to check the status flag takes at least 1.ms. This is why the red S is displayed in the TRACE32

PowerView state line.

& TRACE32 PowerView on PandaBoard

=)

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

(Ml decirn e ol daes @ 2 2

[[Mstep |[M over || dnext [Retun|[@ up |[»Go |[M Break |[¥ Mode | Find:
addr/1ine |[code label mnemonic comment Ly
51 -
NUR:0225: 00009808 |[ELADCOOD sieve: cpy ri2,ri3
NUR:0225:0000980C [E920DE00 push {ri1-r12,r14,pc}
NUR:0225:00009810 [E24CBO04 sub ril,rl2,#0x4
NUR:0225:00009814 [E240D018 sub r13,rl3,#0x18
register int i, primz, k;
int anzahl; @
639 anzahl = 0; -
1+ | i r
e B::Break.List EI@
I [Delete All|[© Disable Al (@ Enable All][@ Init | 2 Impl... || 52 store... || £ Load... || €l Set... |
address types imp]l Ly
NR.:0225:00009850}ProgramFail [SOFT s1eve'6+0x30 I
4 3
|B: |
emulate trigger [devices][trace][Data][Var][other][previous]
| . TN W v

©1989-2024 Lauterbach

Training Basic SMP Debugging

102

Flle Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Ip

|>|-i|¢«r¢| P e Ol N sEE @ P

[=1 e:DataLis =]
Il [M step || M over || ¥ Next |[# Return|[¢ up |[»Go || I Break || }Z]Mode |
addr/1ine |code 1abel mnemonic comment'
NUR:0225:00009840 [E2522001 a r2,r2,#0x1 sir2,r2p
NUR:0225:00009844 (E50B82020 str r2,[ril,#-0x20]
NUR:0225:00009848 [E51B3020 Tdr r3,[rl1,#-0x20]
NUR:0225:0000984C [E3530012 cmp r3,#0x12 1
o ble W')r
643 Fon (hali— 0= — STPF =y i)
NUR:0225:00009854 [E3A01000 mov rl,#0x0
l NUR:0225:00009858 [ES0B1020 str rl, [rll,#-0x20]
NUR:0225:0000985C [EAO00DLF b 0x98E0
I 645 if (flags[i 1) A
i NUR:0225:00009860 [E51BE3020 Tdr r3,[rll,#-0x20]
NUR:0225:00009864 [E59F2090 Tdr r2,0x98FC -
<
| [xudenem][ousauem][gaauem][emn [& mpl... |52 store..][Fﬁmad]@Set.]
address impl Loy
Ui NR:0225:00009850 Prograiaﬂ SOFT s1eve\b+0x30 -
4
I B:Register [=EE=]
N _ RO 0 RS 0 sP+ 00000001 -
M- m1 12 R9 0 -24 00000013 E
e R 13 R10 B6FOB000 -20 00000025
Wit R 13 R1I1 BE9AADI4 -1C 00011B34
R 00011884 R12 BE9AADIE -15 00000000
R5 0 R13 BE9SAACFO -14 00000000
il [° R6 0 R14 97E8 -10 BE9AAD74
p _ Rr7 0 PC 9850 -0C BE9AAD18
2 . SPSR CPSR 20000010 -0& 00OO097ES8 e
< Bl
lIB::
(emutate |[tigger |[devices |[tace J[Data |[var |[other][previous |
NUR:0225:00009850 fsieve b stopped at breakpoint | | | | Mx p

©1989-2024 Lauterbach

Training Basic SMP Debugging

103

Break.Set Dialog Box

There are two standard ways to open a Break.Set dialog.

ey LBt (=)= =

2 Method... [Mstep || W over || 3 next || Retun|[e up || »Go |[I Break || ¥ Mode |
| addr/1ine |source | | =

3 Delete All k =1 + primz; ~

R : or Program Address

[+ GoTil

ZF OnChip Trigger...

Trigger Reset e Breakpoints

i Display Memory L4
g Toggle Bookmark

* Set PC Here

% Edit Source

659 |
660 [} K

/* job for ba~
=

i Wiew Info

y

F B
£ B:BreakSet [ESREERX

— address [expression
- Bae =
— type options — method
@ Program [T Exclude [ITemporary
() ReadWrite [T NoMmark [T p1Sable - action
©) Read [p1SableHIT stop -
) Write DATA
© default [|| | [¥ advanced |
| —T— [Add | [Dpeete] [cancel |

©1989-2024 Lauterbach Training Basic SMP Debugging | 104

The HLL Check Box - Function Name

sYmbol .INFO func2 ; display symbol information
; for function func2

Function Name/HLL Check Box OFF

Program breakpoint is set to the function entry (first address of the function).

Break.Set funcll

[l B::Break.Set = |[= =

address [expression

funcz - FIHLL

type options implementation

@ Program [[Exclude [l Temporary

©) ReadWrite [T noMARK [C]p1sable action

) Read [T p1SableHIT stop -

) Write DATA

© default [|| | [¥ advanced |

[Ok] [Add] [Delete] [Cancel]
W B::Break List o ==
(3% Delete All|[© Disable Al (@ Enable All|[@ Init [& Impl... || 52 store... || 2 Load... |[€ Set... |

address imp 1

types amp
NR:OZEE:OOOOS4B4?Pr0gram ‘SOFT ‘ func? -
4 13

©1989-2024 Lauterbach Training Basic SMP Debugging | 105

Function name/HLL Check Box ON (only for special use cases)

J If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint
implemented as Onchip is set to the full address range covered by the function.

. If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the
complete address range of the function.

J otherwise this breakpoint is rejected with an error message.

a Bu:Break.Set

— address / expression - |
funci1 > (]| =<
type UptIUI"IS method -
|| @ Program [EXclude [ClTemporary

() ReadWrite 7] Nomark 7] p1Sable — action ————
) Read [T D1SableHIT stop -
Write - DATA ———

O default [v] [¥ advanced |

Ok] [Add] [Delete] [Cancel]

8 B::Break List ===
3% Delete All|[© Disable All[@ Enable All[@ Init][&Memod...]@ Store... || £ Load...]L Set.. |
address type method |
F:400003F0——40000C8?JPFogram ‘ONCHIP ‘ W funcll -

Var.Break.Set funcll

©1989-2024 Lauterbach Training Basic SMP Debugging | 106

The HLL Check Box - Program Line Number

sYmbol .INFO funclO\6

; for 6th program line in

; function funclO

? BusYmbolINFO func10\6 = 5

| % Symbols | ti/Dump List | O View | $&MMU

[

address info
rame: RET:LR CFA:R1+0x20 R27:*CFA-Ox14 R28:*CFA-0x10 R29:*CFA-0x0C R30:*CFA-Ox8 R31:"CFA-Ox4 LR:*C
RET:LR CFA:R1+0x%20 RO:used Rl:used R3:used R4:used R5:used R6:used R7:used R8:used R9:used R
line
L dema’ demo 5 8--62 Sih_my_user_repository__\demo_smp_8coresthreads_sram_compile‘\demo.

P:FFF300D8--FFF300DE

module info

anguage: ELF-C

producer: Diab Data, Inc:dcc Rel 5.8.0.0:PPCG03

source: S:h__my_user_repository__\demo_smp_8coresthreads_sram_compile'demo.c

< >

Program Line Number/HLL Check Box OFF

; display symbol information

Program breakpoint is set to the first assembler instruction generated for the program line number.

address type method

&3 B:Break.Set - O *

address / expression

[funci0n v [2 0w O~

type options method

(®) Program [Exclude [Temporary auto ~

(O ReadWrite [NoMark [Disable action

() Read [DeleteHIT [DisableHIT stop w

O Write DATA

Add Delete Cancel
a B::Break.List EI@
B Setup... | 3K Delete All | O Disable All | @ Enable All @ Init | SZstore.. | T2 load.. | [Set..

v A ‘ Tuncll\&

P:r—r—r—suuusJProgram SOFT

Break.Set funcl0\6

Program Line Number/HLL Check Box ON

If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint

implemented as Onchip is set to the full address range covered by all assembler instructions

generated for the program line number.

©1989-2024 Lauterbach

Training Basic SMP Debugging |

107

. If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the
complete address range of the program line.

. otherwise this breakpoint is rejected with an error message.

&3 B:Break.Set - O *

address / expression

[funci0n «| [2 |&He | O

type options method

(®) Program [Exclude [Temporary auto ~

(O ReadWrite [NoMark [Disable action

() Read [DeleteHIT [DisableHIT stop w

O Write DATA

Add Delete Cancel

&9 B:Break List (o] 8)

B Setup... | 3K Delete All | O Disable All | @ Enable All @ Init | SZstore.. | T2 load.. | [Set..
address type method |

ONCHIP

v A ‘ Tuncll\&

P:FFFQOODS——FFFSUUU%JProgram

©1989-2024 Lauterbach Training Basic SMP Debugging | 108

The HLL Check Box - Variable

display symbol information

sYmbol .INFO flags 9
for variable flags

I

=N Hoh/

z

& BuVarINFO flags
vwsleve'Globaliflags

D:0224:00011DCC--00011DDE AD:9CD16DCC--9CD16DDE

global static

(char [19]1) (array of char, 19 bytes, 0..18)

ar) (unsigned & bits)

Variable/HLL Check Box OFF

Selected breakpoint (ReadWrite/Read/Write) is set to the start address of the variable.

Break.Set flags

a B::Break.Set |E||E”E|
address [expression
type options implementation
) Program [T Exclude [C] Temparary
©) ReadWrite [T nOMARK [C]p1sable action
) Read ["] D1SableHIT stop -
@ Write DATA
© default (|| | [¥ advanced |
[Ok] [Add] [Delete] [Cancel]
W B::Break List o =@ ==
(3% Delete All|[© Disable All (@ Enable All|[@ Init [& Impl... || 52 store... || 2 Load... || € Set... |
address types imp i
NR:0224:00011DCCTJF1te ‘ONCHIP ‘ wsi1eveyGlobal yFlags Z
4 I3

©1989-2024 Lauterbach Training Basic SMP Debugging | 109

Variable/HLL Check Box ON

. If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the variable.

. If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address

range used by the variable.

Var.Break.Set flags

il B::Break Set =]
address [expression
flags -
type options implementation
) Program [C Exclude [CITemporary
©) ReadWrite [T nOMARK [C]p1Sable action
) Read ["] D1SableHIT stop -
@ Write DATA
© default [|| | [¥ advanced |
(Ok] [Add] [Delete] [Cancel]

e B::Break.List

(=)=]=]

(% Delete All [© Disable All[@ Enable Al @ mnit [& mpl...][5 store... || 53 Load... || K Set... |

1mp

address types
NR:0224: OOOllDCC——UOOllDDEﬂWF‘Ite

4

1
‘ONCHIP ‘ wsieveyGlobalyFlags -

¥

©1989-2024 Lauterbach

Training Basic SMP Debugging

110

The HLL Check Box - HLL Expression

sYmbol.INFO flags ; display symbol information
; for variable flags

4 BuVarINFO flags EI@

vwsleve'Globaliflags

0:0224:00011D0CC--00011DDE AD:9CD16DCC--9CD16DDE global static

(char [19]) (array of char, 19 bytes, 0..18)

(char) (unsigned & bits) -

Variable/HLL Check Box Must Be ON

If you want to use an HLL expression to specify the address range for a Read/Write breakpoint, the HLL
check box has to be checked.

. If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the HLL expression.

. If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address
range used by the HLL expression.

Var.Break.Set flags[3]

©1989-2024 Lauterbach Training Basic SMP Debugging | 111

— address [expression

flags[3] - IHLL
—type —— options —implementation —
) Program EXclude Temporary
) ReadWrite NOMARK DISable — action
©) Read DISableHIT stop -
@ Write DATA
© defautt [-] | | [¥ advanced]
 F—— [Add | [Deete] [cancel |
e B::Break.List EI@

(% Delete Al [© Disable All[@ Enable Al @ Init [& mpl... (53 store... || 53 Load... || K Set... |

address types

imp]l

NR:0224 :00011DCF--00011DCF[[write

4

ONCHTP | \\sieve\CTobaT FTags[3] =

©1989-2024 Lauterbach

Training Basic SMP Debugging

112

Allow Wildcards in address/expression

Set Program breakpoints the all function that match the defined name pattern.

a Bu:Break.Set l =Npey X
address [expression
funcz* - oL &= Check * to enable wildcard usage
type options method
@ Program [[] Exclude [CITemparary
() ReadWrite [T NoMark [T D1Sable action
) Read [T D1SableHIT stop -
) Write DATA
© default [~| | | [¥ advanced |
[Ok] [Add] [Delete] [Cancel]
80 BuBreakList [E=5EeR
(3% Delete All|[O Dissie 8 | (@ Enable All|[@ Init [2 Method... | 2 store... || £ Load... || iiSet... |
address type method i
F : 40000080]Program SOFT W func? -
F:40000114 [Program SOFT W funcZa
F:40000174 [[Program SOFT W funcZb
F:400001D0 [[Program SOFT W func2c
F:400002A8 [[Program SOFT W func2d
F :40000E2C [[Program SOFT W func20
F:40000E80 [[Program SOFT W func2l
F :40000EDO [[Program SOFT W func22
F:40000F20|Program SOFT W func23
F:40000F70|Program SOFT W func24
F :40000F90 [Program SOFT W func2s
F :40000FB4 [[Program SOFT W func2é
F :40000FD4 [[Program SOFT W func2? -
4 F

Requires sufficient resources if Onchip breakpoints are used.

Break.SetPATtern func2*

©1989-2024 Lauterbach Training Basic SMP Debugging | 113

Implementations

3l B::Break Set = = =
— addressf’ expression ...
sieve - B B
— type OptiOI"IS method
@ Program [EXclude [l Temporary <— Implementation
() ReadWrite [T NoMark [T p1Sable = auto -
[Read ["] D1SableHIT gﬁ;'—ip
(5] Write DATA S R —— |
© default (|| | [¥ advanced |
Ok] [Add] [Delete] [Cancel]
Implementation
auto Use breakpoint implementation as predefined in TRACE32 PowerView.
SOFT Implement breakpoint as Software breakpoint.
Onchip Implement breakpoint as Onchip breakpoint.

©1989-2024 Lauterbach

Training Basic SMP Debugging

114

Actions

a B::Break.Set EM
address [expression
+ (&) Ene =
type options method
@ Program [Exclude [CITemporary
() ReadWrite [noMark [l p1sable action
) Read [T D1SableHIT stop -
) Write DATA stop
Spot
) default L -] Apha
Beta
roT— [add | [Delete | Charly
Delta -
Echo r
WATCH
TraceEnable
TraceData
TraceON
TraceOFF
TraceTrigger
BusTrigger
BusCount

By default the program execution is stopped when a breakpoint is hit (action stop). TRACE32 PowerView
provides the following additional reactions on a breakpoint hit:

Action (debugger)

Spot The program execution is stopped shortly at a breakpoint hit to update the
screen. As soon as the screen is updated, the program execution continues.

Alpha Set an Alpha breakpoint.

Beta Set a Beta breakpoint.

Charly Set a Charly breakpoint.

Delta Set a Delta breakpoint.

Echo Set an Echo breakpoint.

WATCH Trigger the debug pin at the specified event (not available for all processor
architectures).

Alpha, Beta, Charly, Delta and Echo breakpoint are only used in very special cases. For this reason no
description is given in the general part of the training material.

©1989-2024 Lauterbach Training Basic SMP Debugging | 115

Action (on-chip or off-chip trace)

TraceEnable

Advise on-chip trace logic to generate trace information on the specified event.

TraceON Advise on-chip trace logic to start with the generation of trace information at the
specified event.
TraceOFF Advise on-chip trace logic to stop with the generation of trace information at the

specified event.

TraceTrigger

Advise on-chip trace logic to generate a trigger at the specified event.
TRACE32 PowerView stops the recording of trace information when a trigger is
detected.

A detailed description for the Actions (on-chip and off-chip trace) can be found in the following manuals:

“Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

“Training Cortex-M Tracing” (training_cortexm_etm.pdf).

“Training AURIX Tracing” (training_aurix_trace.pdf).

“Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

“Training Nexus Tracing” (training_nexus.pdf).

or with the description of the Break.Set command.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 116

Example for the Action Spot

The information displayed within TRACE32 PowerView is by default only updated, when the core(s) stops
the program execution.

The action Spot can be used to turn a breakpoint into a watchpoint. The core stops the program execution at
the watchpoint, updates the screen and restarts the program execution automatically. Each stop takes

50 ... 100 ms depending on the speed of the debug interface and the amount of information displayed on
the screen.

©1989-2024 Lauterbach Training Basic SMP Debugging | 117

Example: Update the screen whenever the program executes

il B::Break Set
address [expression
sievel13

~type ———— - QPO — - implementation —
@ Program [T Exclude [C1Temporary auto -
©) ReadWrite [T nOMARK [C] p1sable - action ———
© Read [DISableHIT
©) Write _DATA — _ |
© default [|| | [¥ advanced |

Ok] [Add] [Delete] [Cancel]

the instruction sieve\13.

3 B::Break.List

(o8 sl

NR:0225:00009888

types imp]l action

(% Delete All [© Disable All[@ Enable Al @ Init || & mpl...][5 store... || 53 Load... ||

address

Program ‘SOFT ‘SPOT ‘ s1evey13

»

=

File Edit View Var Break Run CPU Misc Trace Probe Ped Cov OMAP#30app Linux Window Help

(HE[dee/rn[Een o SN scs @ 22|

i =]
[Mstep | Mover || dNext [Return] @up || »Go][MnBresk |] Mode | Find:
addr /1ine |code label mnemonic comment |
NUR:0225:00009884 [E50B301C str r3,[rll,#-0x1C] -
648 k =1 + primz;
i i E5183020 1dr r3,[rll,#-0x20]
NUR:0225:0000988C [E51B101C Idr rl,[rll,#-0x1C]
NUR:0225:00009890 [E0833001 add o P i B
NUR:0225:00009894 |E5083018 str r3,[rll,#-0x18]
649 while { k <= SIZE)
NUR:0225:00009898 [EA000007 b 0x988C
651 flags[k] = FALSE;
NUR:0225:0000989C 5181018 1dr rl, [r11,#-0x18] W
< it 3
6o Bi:VarView \\sieve\Globahflags (=)=]=]
\\s1eve'Global%flags = (1, 1, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1,1, 1) -
< i | ’
&4 BvarLocal =5 e)

sieve()
=1=0

= anzahl = 0

4

B::
\\sieve\Global\flags = (1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1)

emulate trigger [devu:es][trace][Data][Var][other][prewous]

NUR:0225:00009888 sieve 0 B D jup

A spotpoint is a
is no longer run

ctive and the system
ning in real-time

©1989-2024 Lauterbach

Training Basic SMP Debugging

118

Options

rﬁ Bu:Break.Set == &1
address [expression
- Huw =
- type UptiUr'IS - method
@ Program [[] Exclude [CITemporary
() ReadWrite [NoMark [l pIsable - action —————
) Read [T D1SableHIT stop -
) Write DATA —
© default L‘ || | [¥ advanced |
Ok] [Add] [Defete] [Cancel]
Options
Temporary OFF: Set a permanent breakpoint (default).
ON: Set a temporary breakpoint. All temporary breakpoints are deleted
the next time the core(s) stops the program execution.
DISable OFF: Breakpoint is enabled (default).
ON: Set breakpoint, but disabled.
DISableHIT ON: Disable the breakpoint after the breakpoint was hit.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 119

Example for the Option Temporary

Temporary breakpoints are usually not set via the Break.Set dialog, but they are often used while

debugging.
Examples:
. Go Till
= BuList [E=H el
[MisStep |[M oOver]@Diverge][Retun | @up || »Go || NHBreak]%Mode | Find: demo.c
addr/1ine |source |
24 for (1 =0; 1 <= SIZE ; 1++) o~
; rimz =1 + 1 + 3;
=1 + primz;
while { k <= SIZE) _
{ [
Program Address e -
:
a Breakpoint... —
e Ereakpoints L4
i Display Memory L4

I Go <address> [<address> ...]

ﬁ% Bookmark...

g Toggle Bookmark
4§ Set PC Here

% Edit Source

& ViewInfo

; set a temporary Program breakpoint to
; the entry of the function func4
; and start the program execution

Go func4

; set a temporary Program breakpoints to

; the entries of the functions func4,

; and start the program execution

Go func4 func8 func9

func8 and func9

©1989-2024 Lauterbach

Training Basic SMP Debugging

120

. Go Till -> Write

I Var.Go <hll_

expression> [/Write]

5] [BList NSR:0x4A326624] [= | = |[eE3]
[MisStep |[M over]LDLverge][quetum L eup | J[_1nBreak |[#Mode | Find: demo.c
addr/1ine |source | | '
373 abed = 0; -
375 \gh'i'le ({ TRUE)
377 viripplearray[0][0][0] = 1;
378 vtripplearray[1][0][0] = 2;
379)
380 vtripplearray[0][0][1] Variable
ﬁﬂ Add to Watch Window D
St func2(); ol View in Window
384 func2al(); &3¢ Set Value...
il e &5 Modify Value... - \
= ReadWrite i

Read

a Breakpoint...
@ Advanced Breakpeint

e Breakpoints

* v v v

4 Grep in Sourcefiles
other 4

; set a temporary write breakpoint to the variable
and start the program execution

; vtripplearray[0][1]1[0]
Var.Go vtripplearray[0] [1] [0] /Write

©1989-2024 Lauterbach

Training Basic SMP Debugging

121

Go.Return and similar commands

= [BuList]

(=)[E sl

[Mistep |[M over]@Divergeﬂd’ReturnI—[eup |

b Go [Il Break]%Mode | Find:

addr/T1ine |source

demo.c

g01d funcZzal)

auto char autovar;
register char regvar;

155 autovar = regvar = mstaticl;
156 autovar++;
2] 158 for ({ regvar = 0; regvar < (char) 5 ; regvar++)
159 | vchar += regvar*autovar;
160 [}
J 4 m

I Go.Return

7
I

12

first Go.Return

set a temporary breakpoint to the start of the function epilogue

and start the program execution

Go.Return

7

I

I

I

7

stopping at the function epilog first has the advantage

local variables are still wvalid at this point.

second Go.Return
set a temporary breakpoint to the function return
and start the program execution

Go.Return

? BusYmbolINFO func2a

[E=N Hoh/

(% symbols || #tipump || Slust || O view || $8mmu |

laddress info

attr: FLE

function

wdiabchdiabc\FuncZa

P:40000114--40000173

function info

global static

= s1ze: 0. push: [] use:

[RO,R1,R3,R4,R5,R6,R7,RE,R9,R10,R11,R12]

epilog: P :4000015C
exit: P:40000170
#pdu]e info

a : ELF-C

Diab Data, Inc:

dcc Rel 4.0b:PPCEO3

I:4T32DEMOYPOWERPCY, 55xx " code_0x40000020_data_0x40004000 diabc. c

|

type
Cvoid () function (void)
(void) void

that the

©1989-2024 Lauterbach

Training Basic SMP Debugging

122

DATA Breakpoints

The DATA field offers the possibility to combine a Read/Write breakpoint with a specific data value.

J DATA breakpoints are implemented as real-time breakpoints if the core supports Data Value
Breakpoints (for details on your core refer to “Onchip Breakpoints by Processor Architecture”,
page 77).

TRACES32 PowerView indicates a real-time breakpoints by a full red bar. I

TRACE32 PowerView allows inverted data values if this is supported by the on-chip break logic.

J DATA breakpoints are implemented as intrusive breakpoints if the core does not support Data
Value Breakpoints. For details on the intrusive DATA breakpoints refer to the description of the
Break.Set command.

TRACE32 PowerView indicates an intrusive breakpoint by a hatched red bar.

/77

TRACE32 PowerView allows inverted data values for intrusive DATA breakpoints.

©1989-2024 Lauterbach Training Basic SMP Debugging | 123

Example: Stop the program execution if a 1 is written to flags[3].

[l B::Break.Set
address [expression
flags[3]

- type Uptlons Imdemenmhon
*) Program [T Exclude [“ITemporary
©) ReadWrite [CInoMARK [T p1sable action —————|
) Read ["] DISableHIT stop -
a Write — e — |
* default 1. [||| [¥ advanced |

Ok] [Add] [Delete] [Cancel]
0 BuBreakList o[-l

address

types

[#& Delete All |[O Disable All (@ Enable All|[@ tnit || & Impl...]Lﬁ Store..][= Load...]L@ Set... |
dat

imp]l

NR:0225:00011DCF--00011DCFi[wWrite

4

ONCHIP

BYTE 0x1 “Asteve'\GlobaT\TTags[3] |

b

-

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov GMAPMBOapp Linux Window Help

(M dee/ru(Eew oz ses @z

List [sE]=]
Mstep || W over |[4 Hext | Retun|[@ up || »Go |[10 Break || ®IMode | Find: sieve.c
addr /1ine |source N
641 for { i.=0; i <= SIZE ; flags[i++] = TRUE J ; B
Iy 643 fur (1=0; i <= SIZE ; i++)
645 : if (flags[i 1)
647 i rimz = i + 1 + 3; @
648 =1 + primz;
el r
180 B::Break.List [= =] =]
3K Delete All|[O Disable All[@ Enable Al|| @ Init || & Impl... (52 Store... [22 Load... | W
NR:0225: OOgTIKF**OOOIIKFEW‘ItG ‘Dﬁ%’%ﬁ Ox1 ‘ \\sieve\GlobaT\fTags[3] »J
ol BVar.View flags[3] SE=]
| -fflags[3] =1 -
M|« »
F
emulate trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous
NUR:0225:00009838 \\sieve\sieve\sieve+ sieve 0 |stopped by rfw break HLL UP
L =

©1989-2024 Lauterbach

Training Basic SMP Debugging |

124

If an HLL expression is used TRACE32 PowerView gets the information if the data is written via a byte, word
or long access from the symbol information.

If an address or symbol is used the user has to specify the access width, so that the correct number of bits is

compared.
il B::Break Set ===
address [expression
oxt1def - FIHLL
type options implementation
) Program [C] Exclude [CITemporary
) ReadWrite [T nOMARK [C] p1sable action
) Read [“] D1SableHIT stop -
@ Write DATA
© default 1234. [+|| | [¥ advanced |
)) ol
Long
Quad
TByte
Tword |

Break.Set Oxlldcf /Write /DATA.Word 1234.

©1989-2024 Lauterbach

Training Basic SMP Debugging

125

Advanced Breakpoints

.
il B:BreakSet = | B |t

— address [expression

If the advanced button is pushed
additional input fields are provided

—type ———— options
@ Program [[] Exclude [l Temporary auto
*) ReadWrite [noMark [“IpIsable - action
") Read [T p1SableHIT stop
© Write - patA—
© default [|| | [A advanced |

(Ok] [Add] [Delete] [Cancel]
— memory [register / var

2 ProgramPass HLL -
_) ProgramFail | — TASK COUNT ————
*) MemonyReadWrite 1.
©) MemoryRead | — MACHINE — CORE e
©) MemoryWrite
RegisteReadite | | CONDItion Advanced breakpoint input fields
ReqisterRead FIHLL [[keag
REgiStEI"\"'a'I'itE Lo —me—
+ [VIRESUME

©1989-2024 Lauterbach Training Basic SMP Debugging | 126

TASK-aware Breakpoints

If OS-aware debugging is configured (refer to “OS-aware Debugging” in TRACE32 Glossary, page 31

(glossary.pdf)), TASK-aware breakpoints allow to stop the program execution at a breakpoint if the specified
task/process is running.

TASK-aware breakpoints are implemented on most cores as intrusive breakpoints. A few cores support real-
time TASK-aware breakpoints (e.g. ARM/Cortex). For details on the real-time TASK-aware breakpoints refer
to the description of the Break.Set command.

Intrusive TASK-aware Breakpoint

Processing:

'

Specified
task
running?

Program execution stops at TASK-aware
breakpoint

No

g Continue with

Yes

Keep stop of program execution

program execution

Each stop at the TASK-aware breakpoint takes at least 1.ms. This is why the red S is displayed in the

TRACES32 PowerView state line whenever the breakpoint is hit.

EE_oo_TerminateTask

©1989-2024 Lauterbach

Training Basic SMP Debugging

127

Example: Stop the program execution at a write access to the variable flags[3] only when the task/process
“sh” is performing this write access.

Kl B::Break Set = | @ =

address [expression

flags[3] - IHLL

type options implementation
_) Program [T Exclude [C]Temporary
©) ReadWrite [T nOMARK [C]p1Sable action
) Read [T D1SableHIT stop -
@ Write DATA
_) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register /[var
_) ProgramPass P HLL
) ProgramFail
(2 MemonyReadWirite TASK COUNT
~) MemoryRead “sh" \:Eg 1.
*) MemoryWrite ::tﬁﬁﬂirqﬁfl" -
RegisterRead | | "sync_supers" HLL
RegisterWrite "bdi-default”
: "kblockd"

+ [V|RESUME

"omap2_mcspi/1"
"omap2_mcspi/2"
"omap2 mcspi/3"

W B::Break List |- e

[#& Delete All |[O Disable All (@ Enable All [@ mnit || & Impl...]Lﬁ Store... || 2 Load...]L Set...
address types imp]l task i
NR:0224: OOOIIDCF——OOOIIDCFjWMte ‘ONCHIP "' sh” ‘ sieveyGlobaT yFlags[3] -

4 b

File Edit View Var Braak Run (PU Misc Trace Probe Perf Cov OMAP443[]app Lmux Wlndow Help

(Mk[dee v oldumpsca @i

WEE L A N

! [Mstep || Iédova]r. |l $next [#Return| @up | wGo | N Break || P mode | Find: sieve.c

I addr /Tine |source |

‘ 641 for (i =0; i <= SIZE ; flags[i++] = TRUE) ; °

I 643 for (i =0 ; i < SIZE ; i++)

I 645 gf (flags[i 1) £ |
647 primz = i + i + 3; =

O m v

ﬁWﬁféﬁW//A (= ==]

and #thr [state spaceid [pids 1
(OSCDEOS] swapper;ﬂ 36. [running 0000 0. 2. 3. 4.5 6. 7. 8. 9. 10. 11. 209. 211. 21 .
DC828ACO init - |sleeping 0001 1. @
DCILECOO sh - |sleepin 0223 547. wm
DC956440 sieve - current%l) 0224 548.

‘ I il] v

I8 B::Break. List [=E]=]
3K Delete All|[O Disable All[@ Enable Al @ Init || & Impl... || 52 store... | 5 Load... || K Set...
address types imp tas N
NR:0224:00011DCF--00011DCF{[write ‘DN(HIP ‘D(‘BIE(GG ‘ vis1eveiGlobal'\fTags[3] -
J A »
|E: i
emulate frigger [devices] [frace] [Data] [Var] [List] [PERF] [other] [previous
| T T

The red S indicates
an intrusive breakpoint

©1989-2024 Lauterbach Training Basic SMP Debugging | 128

Real-time TASK-aware Breakpoi

nt

Example for Cortex-A9: Stop the program execution at a write access to the variable flags[3] only when the
task/process “sh” is performing this write access (here Cortex-A9).

TRACE32 PowerView can realize real-time TASK-aware breakpoints, if the operating system updates the
Context ID Register (CONTEXTIDR) on every process/task switch. Set the ContextID check-box in the
TrOnchip window to ON to inform TRACES32 PowerView about this update.

Break | Run CPU Misc Tr

il Set...
| 8 List & BuTrOnchip
éylmplementation... tronchip
2K Delete All
V] convert
ZF Trigger Bus... [~ varCOnVert

5w OnChip Trigger... ContextID

Set

Set

Trigger Reset = FIQ = NFIQ
[rq [CInRQ
[T DABORT [CINDABORT
[T PABORT [T NPABORT
[Clswi [Clnswi
[Tl unNDEF [Tl NUNDEF
[V]RESET
[7] stepVector

Set

[C1sF1Q
[CIsrq

[C1 SDABORT
[C1SPABORT
[C1sswi

[T SuNDEF
[¥] SRESET

Set

[C1MFIQ
[CIMRQ

[MDABORT
[C] MPABORT
[Clmswi1

I TrOnchip ContextID ON

Enable TASK-aware breakpoints (Onchip and ETM)

©1989-2024 Lauterbach

Training Basic SMP Debugging

129

File

Edit View Var

[M K|+ & » | 2w

Break Run

CPU Misc

Probe

IEEYIErr

Trace

@ z

Perf Cov OMAP4430app Linux

&

Window Help

' BrTASK. List (= =]=]
magic |name id space traceid |core [sel stop i
DC9333C0 [irq/363-rtc0 499. 0. [0xD0O00 [00000000 - -
DCI91E180 |kworker fu:2 517. 0. | 0xD000 |00000000 -
DC9454C0 |deferwg 528. 0. | 0xD000 |00000000 -
DC94A880 |mmcqd,/ 0 531. 0. | 0xD000 |00000000 -
DCA5CC40 |sh 547. 547. | 0x0223 |0000010E -
DCIBI08B0 [Flush-1:0 548. 0. | 0xD000 |00000000 -
DC940480 |sieve 549. 549. | 0x0225 00000110 0. W - -
4 13
B:PER = =R
IR5S NoncachabTe NoncachabTe -
IR3 Write-back no allocate Write-through
IR1 Noncachable Noncachable
B
CBAR 48240000 cCeaA 48240000
00000000 FCSEPID 00000000
[EEI0EL] PROCID 000001 ASID 10
LR X 00000000 URWTPID 00000000
U FCI PIDR B6F504A0 UROTPID BOF504A0 b
4 L} F
‘B: :
emulate trigger | devices] | trace] | Data] | Var] | List] | FERF] | other] | previous
C15:0000010D Context ID Register |sieve 0 |stopped at breakpoint HLL UP

The traceid in the TASK.List window helps you to decode the contents of the CONTEXTIDR.

Kl B::Break Set
address [expression
flags[3]
type options implementation
_) Program [T Exclude [C]Temporary
©) ReadWrite [T nOMARK [C]p1Sable action
) Read [T D1SableHIT stop -
@ Write DATA
_) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register /[var
_) ProgramPass P HLL
) ProgramFail
(2 MemonyReadWirite TASK COUNT
(©) MemoryRead “sh" \:Eg 1.
*) Memorywrite | — "ksoftirqd/1" -
~ "khelper"
"kworkerfu:1"
RegisterRead | | "sync_supers" HLL
RegisterWrite ::ES:;CC'E;?““"
"omap2_mcspi/1" : [MIResume
"omap2_mcspi/2"
"oman2 mcspif3"

3 B::Break.List

(o[el

[#& Delete All O Disable All @ Enable Al ||

@ Init

[& Impl... Lﬁ Store..][= Load...

[& set... |

impl

address types
NR:0224: OOOIIDCF——OOOIIDCFjWF‘Ite

4

task
‘ONCHIP "' sh™

‘ sieveyGlobaT yFlags[3]

1

©1989-2024 Lauterbach

Training Basic SMP Debugging

130

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

w e elrulE e O dum daE @ ;@

| Slsdisr sy s e
[M step || % over][+ Next || ¢ Return || ¢ up [»Go [NN Break %Mude Find: sleep‘#}xx

addr /Tine |source
359

@ wWait For Interrupt -
| 360 nop
361 nop

362 nop —

363 nop]

364 nop b

<]] v

Y e P O i A =a NCH

magic command #thr state spaceid pid §
05CD608 swapper /0 36. [current 0000 0. 2. 3.4, 5. 6. 7. 8 9. 10. 11. 209. 211. .
|| [pcg28aco init - |sleeping 0001 1. m
DCI5CC40 sh - |sleeping 0223 547. =
DC940480 sieve - |sleeping 0225 549. -

¢ I i »
0 B:BreakList (o= =

3K Delete All| [Disable AJI][QI Enable Al 9 mit [2 Impl...][§ Store...][3 Load... || I Set...

addre: impl ta: I
NR:0225: DDDIID(F**DDDIID(FE‘WF‘H:G [ONCHIP \D(‘BSE(‘H] [Visteve'GlobaT\fTags[3]

ié==||

emulate trigger [devioes][trace][Data][Var][List][PERF
)

L —

other][previous

©1989-2024 Lauterbach Training Basic SMP Debugging | 131

COUNTer

Counters allow to stop the program execution on the n th hit of a breakpoint.

Software Counter

If the on-chip break logic of the core does not provide counters or if a Software breakpoint is used, counters
are implemented as software counters.

Processing:

Program execution stops at
a breakpoint with counter

Increment
counter

Counter
reached final
value?

No

Continue with
- program execution

Yes

Keep stop of program execution

Each stop at a Counter breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32
PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic SMP Debugging | 132

Example: Stop the program execution after the function sieve was entered 1000. times.

|~ address [expression

sieve

- [E)B8m 3=

@ Program
©) ReadWrite
©) Read

©) Write

) default

—type ———————

— options

EXclude
NoMark

— DATA

Temporary
DISable
DISableHIT

— method

— action

[)

[A advanced |

[Add

] [Dpelete |

[Cancel]

() ProgramPass
) ProgramFail
() MemonyReadWrits
(©) MemoryRead
©) MemoryWrite
RegisterReadirite
RegisterRead
RegisterWrite

— memory [register [var

-] [&] 0w

— TASK

COUNT

| 1000.

— MACHINE

CORE

— CONDition

— CMD

FIHLL [Ckteag

[V]RESUME

(3% Delete All | [© Disable All (@ Enable All|[@ Init [(2 Impl... || 52 store... || 52 Load... || €l Set... |

add

[imp] |count

ress types
NR:0225:00009808;|Program
4

[SOFT [0.71000. | sieve

©1989-2024 Lauterbach

Training Basic SMP Debugging

133

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov OMAP4430app Linux Window Help

M|+ »n|E 2w o

EEL LY

o AL /A o =

Mstep || M over || d et | Return | ¢ up || »Go | 1N Break]ﬂ Mode | Find:
addr/1ine |source |
546 |1 o
547 int j, trace_fd, ondempg = 0;
char * p;
550 vtripplearray[0] [0][0] = 1;
S5 vitripplearray[1][0][0] = 2;
552 vtripplearray[0][1][0] = 3;
553 vtripplearray[0][0][1] = 4;

contents is

The current counter

permanently updated

4| i

e B::Break.List

[Delete All [O Disadb‘lje All (@ Enable Al @ mit [& Impl...]L Storeﬁoad...]L Set.

address types imp caunt
NR:OZZS:OOOOBSOﬁE\T’rogram [SOFT [10. /1000. | sieve
4

iB::;

emulate trigger [devices][trace][Data][Var
- - O

—

The red S indicates an
intrusive breakpoint

IR=Ecl A R0 A

[M K|+ & » | 2w

= BuList

(o [O el

[Mstep |[M over |[¥ Next || Return |

addr/1ine |source

¢up || »Go | I Break |[¥ mode | Find:

Jint sieve() * sieve of erathos .
| 63581
| register int 1, primz, k;
int anzahl;
639 anzahl = 0;
641 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
J 4| 1] L
e B::Break.List EI@ '
(3% Delete All|[© Disable All (@ Enable All|[@ Init [(& Impl... || 52 store... || 2 Load... || €l Set... |
Il address types imp count |
NR:DZZS:DOOOSSOS?Prograﬂ [SOFT [0.71000. | sieve B
4 13
‘B: :
[l
emulate trigger [devices][trace][Data][Var][other][previous i
NUR:0225:00009¢ sieve 1 |stopped at breakpoint HLL UP i

©1989-2024 Lauterbach

Training Basic SMP Debugging | 134

CONDition

The program execution is stopped at the breakpoint only if the specified condition is true.
CONDition breakpoints are always intrusive.

Processing:

Program execution stops
at a breakpoint with condition

AfterStep
check box
ON?

No

y

Perform assembler
single step

y

Verify
condition

Condition No
is
true?

Continue with
program execution

Yes

Keep stop of program execution

Each stop at a CONDition breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32

PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic SMP Debugging

135

Example: Stop the program execution on a write to flags[3] only if flags[12] is equal to 1 when the

breakpoint is

hit.

a B::Break.Set

flags[3]

type
() Program
©) ReadWrite
") Read
@ Write
) default

address [expression

(&)@ =

method

options

[EXclude
[noMark

[CITemporary
[T p1Sable
[“] p1SableHIT

DATA

n@ﬂ

auto i

action

stop

[2 ||

advanced]

Ok

[

Add] [Delete] [

Cancel

() ProgramPass
) ProgramFail
*) Memon ReadWrite
(©) MemoryRead
) MemoryWrite
RegisterReadWrite
RegisterRead
RegisterWrite

memory [register [var

TASK

MACHINE

COMNDition
flags[12]==

FIHLL [[keg

CMD

i

[V]RESUME

When the breakpoint is reached, the core(s)/CPU
is stopped for a moment, the condition is checked
and the program execution continues when the

condition is not true.

e

Break.List

(=[O el

[Delete All (O Disable AJI][Q Enable All|[@ Init |[& Impl...]Lﬁ Store... || 2 Load...]L@ Set... |

types

imp]l condition

addre
NR:0225: 00011[1(F——00011[[F§

Write

4

ONCHIP [fTags[12]==

sieveyGlobaT yFlags[3]

I

b

File Edit View Var Bk Run OMJ Misc Trace Probe Pef Cov OMAPMZ0app Limx Window Help

(MR v e O BN ede @ L2
BN e = e
1 M step || ﬂ'adl)ve_‘r‘ L ¥ mext | Retun [¢ up][B Go [NN Break %Mmje | Find: sieve.c
: 641 for (i =0 ; i <= SIZE ; flags[i++] = TRUE) ; -
‘ 643 for i=0; i< SIZE ; i+t)
645 ; i (Flags[1)
647 : rwmz =1 i nep IZI
648 =1 + primz; -
< i v
P [olimss] |
3K Delete All|[O Disable All (@ Enable Al @ Init || & Impl...][§ store... || 2 Load... || I Set...
| NR:0225: DDggID(FffDDDIID(Fi\WMte ‘D%HIP ‘%’:g;t[l%]::ﬂ ‘ sieve\Global\flags[3] »J

F

emulate trigger [devices][

ftrace] [Data] [Var] [

List

][other

Weoos]

The red S indicates
an intrusive breakpoint

©1989-2024 Lauterbach

Training Basic SMP Debugging

136

Example: “Break-before-make” Read/Write breakpoints only

Stop the program execution at a write access to the variable mstatic1 only if flags[12] is equal to 0 and
mstatic1 is greater O.

Perform an assembler single step because the processor architecture stops before the write access is

performed.
il B::Break Set [r=|[-E e
address [expression
mstaticl - (3] @Hu
type options implementation
) Program [Exclude [CITemporary
©) ReadWrite [T noMARK [C] p1sable action
") Read [T D1SableHIT stop -
@ Write DATA
©) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
(©) ProgramPass x HLL
(©) ProgramFail
(2 MemonRead\irite TASK COUNT
~) MemoryRead 1.
©) MemoryWrite
RegisterReadWite CONDition
RegisterRead (flags[12]==0)&8(mstatic1>0.) [HLLY (] ke AfterStep checked
RegisterWrite CMD
< [VIRESUME

183 B::Break.List
(3% Delete All|[O Disable All| (@ Enable All [& it][éz?lmpl]Lﬁstore [2 Load...]L@Set]

address types condition
N: 4A325DA8——4A325DABEWF‘IT_€ ‘ONCHIP
4 | L 3

Var.Break.Set mstaticl /Write /VarCONDition (flags([12]==0)&& (mstaticl>0)
/AfterStep

©1989-2024 Lauterbach Training Basic SMP Debugging | 137

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Hli-&|¢¢’¢| PR D Hu B e E @ LR

e e
[Mstep || over |[MDiverge | queturn L ¢up || »co | MBreak || mode | Find:I

addr/1ine |source | |

E for { regvar = 0; regvar < 5 ; regvar++ |
141 mstaticl += regvar®autovar;

143 fstatic += mstaticl;

145 fstatic? = 2*fstatic;

4| i

| 6ol B:VarView mtaticl flags[12]

| [~imstaticl = 1566434318
|- flags[12] = 0

e

: eB::Break.List
i [Delete All] [Disable Al @ Enable Al Qmit][ﬂ?lmpl]Lgstore [£ Load...]L@Set

address It imp]l condition

Ype
4A326DA8——4A326DABj‘II‘r1te ONCHIP |(TTags[12]=0)&&(mstaticl=0.) A

4| i | b

IB::|
| trigger [devioes][trace][Data][Var][List][other][previous]

NSR:4A3260D8 \\demo\demo\func2+0x30 Stopped byrjw breskpaint N :

The red S indicates
an intrusive breakpoint

©1989-2024 Lauterbach Training Basic SMP Debugging | 138

Conditions not in HLL Syntax

It is also possible to write register-based or memory-based conditions.

Examples: Stop the program executions on a write to the address flags if Register R11 is equal to 1.

ﬁﬁ B::Break.Set

flags

e ——————
) Program
©) ReadWrite
©) Read
@ Write
) default

address [expression

- Uptions

= Ve —

[C] Exclude [CITemporary
[T nomark

[l p1sableHIT stop v

[v] [# advanced]

FaT—

[Add] [Delete] [Cancel]

() ProgramPass
) ProgramFail
() MemonyReadWrite
(©) MemoryRead
©) MemoryWrite
RegisterReadWrite
RegisterRead
RegisterWrite

— CONDition

— CMD

. memory,"register,"\.rar —

— TASK

— MACHINE

Register(R11)==0x1

[¥]RESUME

o S|

~ [&])8ne E=

[7] p1Sable _ action ——|

ke

Switch HLL OFF ->
TRACE32 syntax can be used
to specify the condition

; stop the program execution at a write to the address flags if the
; register R11 is equal to 1
Break.Set flags /Write /CONDition Register (R11)==0x1

; stop program execution at a write to the address flags if the long
; at address D:0x1000 is larger then 0x12345
Break.Set flags /Write /CONDition Data.Long(D:0x1000)>0x12345

©1989-2024 Lauterbach

Training Basic SMP Debugging

139

Example: Stop the program execution if an register-indirect call calls the function func3.

= [BuList]

(=[O s

[Mstep | % over]@ Diverge || ¢ Return |

eup |

P Go |[1N Break || Mode]DE] i

code

|1abel

|comment

addr/'l'ine
2

SEE 4 000114(

SF:40001150 |4E 500021

B16DE0C4

mnemonic
7 = (Ffuncptr) (J;
iz Gl

7D6E03A6

ril

-~

3

SF:40001154 |[7C/FLE7 S mr ril,r3 Program Address
4 + GoTil +
a Breakpoints L4
i) Display Memory L4
F Bookmark...
M Toggle Bookmark
4§ Set PC Here
Edit Source
2 ViewInfo
& Go Till There
£| List There
Assemble...
Modify...
Patch...
(€3 B:Break Set SF0x40001150 /DIALOG [ESREERTX)
— address [expression
SF:0x40001150 Oue O=
— type ——— [~ options — method
@ Program [[] Exclude [CITemparary auto -
(©) ReadWrite [T NoMmark [T p1Sable - action
) Read [] p1SableHIT stop -
) Write — DATA
© defautt [~]| | [A advanced]
 —— [Add | [Dpeete | [cancel |
— memory [register [var
(©) ProgramPass z HLL
() ProgramFail | — TASK COUNT
() MemonyReadWrite 1.
©) MemoryRead | |~ MACHINE CORE
©) MemoryWrite
RegisterReadWrite |- CONDition
RegisterRead Register(PC)==ADDRESS.OFFSET(funt [C|HLL [V]#testa
Register\Write — D
+ [VIRESUME
i B::Break List [r=]l

Break.Set main\31+0x8 /CONDition Register (PC)=

[xDeleneml][oDisableAJl][@EnableAJl][@ Init_ || 2 Method... [52 store.... || 2 Load... || Bl set...

address

F:40001150 Pr ogr am

4

method
S0FT

Register (PC)==ADDRESS.O0FFSET (func3) A

’Eond'lt'l on

W [

main31+0x8

=

/AfterStep

=ADDRESS .OFFSET (func3)

©1989-2024 Lauterbach

Training Basic SMP Debugging |

140

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MPCSXKX Window Help

Mk A Iee/rn[E 2RO EnEss @ 2
BuList
[Mstep |[% over]&Di\rerge][Retun [¢up |[»Go || I Break |
addr/1ine |code 1abel |mnemonic |comment
?tat'lc int func3() /% simple function */
232
I g 9421EEE8. . funci: stﬁgg rl,-0x8(rl) saalleanB0E1)
SF:40000314 (FCO80240 mt Ir ri
SF:40000318 (2001000C stw r0,0x0C(r1)
233 return 5;
SF:4000031C ?38500005 14 r3,0x5
234 |}
SF:40000320 [2001000C Twz r0,0x0C(r1)
SF:40000324 [FCO803246 mt1r ro
4
|| W B:Break.List
|| {3 Delete All| (O Disable All[@ Enable All] @ mit || & Method...|[52 Store... || 2 Load... || & Set... |
| address [type |method |condition a
F:40001150}Program SOFT ’Tleg15ter(P()=ADDRESS.UHbI:IU'unl:3) A
i .. .
B
[components| [trace |[Data][wvar][ust][Pere][Svstem |[step ||
SF:40000310 \\diabc\diabc\func3 éstopped at breakpoint

©1989-2024 Lauterbach Training Basic SMP Debugging | 141

CMD

The field CMD allows to specify one or more commands that are executed when the breakpoint is hit.

Example: Write the contents of flags[12] to a file whenever the write breakpoint at the variable flags[12] is

hit.
OPEN #1 outflags.txt /Create ; open the file for writing
Var .Break.Set flags[1l2] /Write /CMD "WRITE #1 ""flags[1l2]="" $%$Decimal
Var .VALUE (flags[12])" /RESUME

©1989-2024 Lauterbach Training Basic SMP Debugging | 142

It is recommended to set RESUME to OFF, if CMD
. starts a PRACTICE script with the command DO

J commands are used that open processing windows like
Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List

because the program execution is restarted before these commands are
completed.

File Edit View Var Break Run CPU Misc
DU AR SRR

Trace Probe Pef Cov OMAP4430app Linux Window Help

I=E T

Y BuList

| [M step || m over || & next || ¢ Ret

urn ” ¢ up H b Go | 11 Break || ¥ Mode | Find: sieve.c

addr /Tine |source
639 anzahl = 0; -~
641 foruledesuDduxs SIZE i flagsl bk o s TRUE.)i
& 643 for’ (= T e ISTZE ST
645 ; if (Flags[1)
647 : rimz = i + 1+ 3;
648 =1 + primz;
& 649 '»;.‘h'i'le (k <= S5IZE)
1+ . m v
B skt ==
3K Delete All|[O Disable All[@ Enable All|| @ Init || & Impl... |52 Store... || B2 Load... || & Set... |
address types imp]l cmd c
NR:0225:GGGIIDDS**GGGIIDDSi\m“lte ‘DN(HIP ‘nr"lte #1 "Tlags[12]=" v.VALUE(TTags[12]) R‘ \\sieve\GlobaT\fTags[12] -

‘B::

emulate trigger ‘d.evices H trace H Data H Var H List H PERF H SYStem H Step. H other Hp(eviousl

MNUR:0225:00009838 \\sieve\sieve\sieve+0x30

sieve 1 |stopped by rfw break HLL |UP

CLOSE #1

The state of the debugger toggles between

going and stopped

7

close the file when you are done

©1989-2024 Lauterbach

Training Basic SMP Debugging

143

Display the result:

Edit View Var Break Run ClI
¥ Run Script...

[Edit Script...
$3 Search for Script...

g Open File...
2 Load File...

B Type File...
4] Dump File...

@ Stop Command L of 150. (=] (=] [fiFind..] | ElTrack

flags[12]=

¢ Printer Settings...
8 Window Print...
Window Screenshot to File...

»

¥ exit

©1989-2024 Lauterbach Training Basic SMP Debugging | 144

Display a List of all Set Breakpoints

Break | Run CPU Misc 1

A (AfterStep)

B3 Set..
T
& Method...
2% Delete All
3 B::Break.List =N EeR
(3% Delete All (O Disable All (@ Enable All|[@ Init [& Impl... || 52 store... | 2 Load... || € Set... |
address types imp]l task count i
NR:0000:C0083350;|Program SOFT 0./20. 1rg_gc_resume o
NR:0225:00009804 |[Program SOFT sievel 8
NR:0225:00011DCC--00011DDE |write ONCHIP “Asieve\Globaliflags
NR:0225:00011DCF--000110CF;|Program ONCHIP "sh" ‘ ‘Wsievel\Global'yflags[3]
address Address of the breakpoint
types Type of the breakpoint
impl Implementation of the breakpoint or disabled
action Action selected for the breakpoint (if not stop)
options Option defined for the breakpoint
data Data value that has to be read/written to stop the program execution by
the breakpoint
count Current value/final value of the counter that is combined with a
breakpoint
condition Condition that has to be true to stop the program execution by the

breakpoint
A ON: Perform an assembler single step before condition is evaluated

cmd (command)

Commands that are executed after the breakpoint hit

R (resume) R ON: continue the program execution after the specified commands
were executed
task Name of the task for a task-aware breakpoint

Symbolic address of the breakpoint

I Break.List [/<option>]

List all breakpoints

©1989-2024 Lauterbach

Training Basic SMP Debugging | 145

Delete Breakpoints

W B::Break List = -]

(3% Delete All |[© Disable Al (@ Enable All|[@ Init [& Impl... || 52 store... || £ Load... || € Set... |

address [types [imp] [tas |count Ly

NR.: 0000 :C0083350}Program 0./20.

NR:0225: 00009804 |Program]

NR:0225:00011DCC--00011DDE||[Write

NR:0225:00011DCF--00011DCF;|Program
4

rg_gc_resume

Breakpoint s1eveiGlol

ba ags
“Wsieve\Global'flags[3] -
3

Break.Delete <address>l<address_range> [[<type>] [I<implem.>] [I<option>] Delete breakpoint

Var.Break.Delete <hl|_expression> [I<type>] [[<implem.>] [/<option>] Delete HLL breakpoint

Enable/Disable Breakpoints

3 B::Break List E=nEcRExT)
[#&Delete Al | Disable all (@ Enable All|[@ mit || & mpl... |[52 store... | 52 Load... || Bl set... |
address types imp options data Ly
NR:4A3261D8[[Program SOFT DISabTeHIT funcd -
NR:4A32659C||Program sieve\6

SOFT
N:4A326FAB-—4A326FABJWrite ONCHIP | psica | flagsl3] [
T | Breakpoint T

. Change...

Delete

here

(=[O el

8 B::Break List

(3% Delete All QO Disable Al (@ Enable All|[@ Init [& Impl... || 52 store... | B2 Load... || €l Set... |

address [types [imp] [tas |count
NR.: 0000 :C0083350}Program

rg_gc_resume

NR:0225:000098D4 |Program :
NR:0225:00011DCC--00011DDE |[Write Breakpoint sieve\Globa ags
NR:0225:00011DCF--000110DCF;|Program " &l Change.. Ysieve\Global'flags[3] -

4 3
X Delete

Break.ENable [<address>|<address_range>] [/<option>] Enable breakpoint

Break.DISable [<address>|<address_range>] [[<option>] Disable breakpoint

©1989-2024 Lauterbach Training Basic SMP Debugging | 146

Store Breakpoint Settings

@ ki
(3% Delete All (O Disable All (@ Enable All|[@ Init [(2 Impl... | 52 store... || 22 Load... |[€ Set... |
address types [im |count | '
NR: 0000:C0083350%Program SOFT 0.,/20. 1rg_gc_resume -
o
NR:0225:00011DCC--00011DDE||[Write ONCHIP sieve'Globa ags
NR:0225:00011DCF--000110CF;|Program ONCHIP "sh" YWsieve\Global'yflags[3] -
4 3

Organize « MNew folder

(=] Pictures MName

B videos

o linux-3.4

Lol Computer =] app_debug.crmm

& System (C:)

5@ 5YS (\OESL2) (F)

S VOL_BUSINESS (\\OESI3) (G:)

® VOL_DEVEL (\WOESI2) (H:)

S VOL_MISCT (\WOESI2) (E)

S _HOME (\WOESI2Z\WOL_DEVEL) ():)

| app_page_load.cmm

& atag_list.cmm

| bootloader.cmm
& emif_config.cmm
& linux.cmm

= linw_AND.cmm
1

File name: [SIETETREA

Save as type: ’Cunent (*.cmm)

* Hide Folders

// AndT32 Fri Jul 04 13:17:41 2003

B::

Break.RESet

Break. Set func4d /Program /DISableHIT
Break.Set sieve /Program

Var.Break.Set \\diabp555\Global\flags[3]; /Write /DATA.Byte 0x1;

ENDDO

I STOre <filename> Break Generate a script for breakpoint settings

©1989-2024 Lauterbach Training Basic SMP Debugging | 147

Debugging

Debugging of Optimized Code

A video tutorial about debugging optimized code can be found here:

support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

HLL mode and MIX mode debugging is simple, if the compiler generates a continuous block of assembler

code for each HLL code line.

If compiler optimization flags are turned on, it is highly likely that two or more detached blocks of assembler
code are generated for individual HLL code lines. This makes debugging laboriously.

TRACE32 PowerView displays a tree button, whenever two or more detached blocks of assembler code are

generated for an HLL code line.

] BaListHII =@ =
[Mstep |[Mover || $next || #Retun| @up || »Go | NiBreak |Iﬁl\ﬂode | Find: diabc.c
addr/1ine |source i
char flags[SIZE+1]; “
int sieve() * sjeve of erathostenes *
I—— - b
register 1nt 1, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE) ;
£ 672 fo:' (1=0; 1 <= 5IZE ; i++)
/4 674 if (flags[i 1)
K - ;
tree button
The following background information is fundamental if you want to debug optimized code:
J In HLL debug mode, the HLL code lines are displayed as written in the compiled program (source
line order).
. In MIX debug mode, the target code is disassembled and the HLL code lines are displayed

together with their assembler code blocks (target line order). This means if two or more detached
blocks of assembler code are generated for an HLL code line, this HLL code line is displayed

more than once in a MIX mode source listing.

©1989-2024 Lauterbach

Training Basic SMP Debugging | 148

https://support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

The expansion of the tree button shows how many detached blocks of assembler code are generated for the
HLL line (e.g. two in the example below).

List.HII Display source listing, display HLL code lines only.
List.Mix /Track Display source listing, display disassembled code and the assigned
HLL code lines.
The blue cursor in the MIX mode display follows the cursor movement
of the HLL mode display (Track option).
5] BuListHIl =& =
[Mstep |[Mover || $next || #Return | eup | || Break || ¥Mode | Find: diabc.c
addr /Tine |source | | | =
char flags[SIZE+1]; ‘
;rint sieve() /* sieve of erathostenes */
register 1nt 1, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
E 672 {or 1 =0; 1 <= SIZE ; 1++ @
674 if (flags[i 1) he
[1 | 2
i [BsList.Mix /Track] = |-
[Mstep |[Mover || $next || #Return | eup |][Break | ¥mode | Find: diabc.c
addr /1ine [code 1abel mremonic |comment Loy
672 for (1 =0; 7 <= S5IZE ; 1++) -
:400012EC [3BEOOODD . L514: E]
SF:400012F0 |2CIFO0L2 . L522: cmpw r3il,0xi2
SF:400012F4 41610050{ bgt 0x40001344
674 if ((flags[i 1)
SF:400012F8 (30804000 Tis ri2,0x4000
SF:400012FC (398C4128 addi r12,rl2,0x4128
SF:40001300 [7DECFEAE Tbzx ri2,ri2,r31
SF:40001304 |2C0C0000 cmpwi ri2,0x0
SF:40001308 (415820034 . beq 0x4000133C
676 primz = 1 + 1 + 3;
SF:4000130C [FDO9FFAL4 add rl2,r31,r31
SF:40001310 [3BCCO003 addi r30,r12,0x3
677 k=1 + primz;
SF:40001314 [FFEFF214 add r29,r31,r30
678 while (k == SIZE)
SF:40001318 |2C1p0012 .L520: cmpwi r29,0x12
SF:4000131C [4181001C bgt . 0x40001338
680 flags[k] = FALSE;
SF:40001320 (30804000 Tis ri2, Ox40
SF:40001324 (398C4128 addi ri2,rl2,0x4128
SF:40001328 (39600000 14 rll,OxO
SF:4000132C |7DECESAE sthx rll,rl2,r29
681 k += primz;
SF:40001330 [FFEDF214 add r29,r29,r30
SF:40001334 [4BFFFFE4 b 0x40001318
683 anzahl++;
SF:40001338 (389C0001 . L519: addi r28,r28,0x1
672 for (1 =0; i <= SIZE ; i++) =
SFT4000133C [3BFFO00L . L521: addi r3l,r31,0x1
SF:40001340 [4BFFFFEOD) b Ox400012F0
< 1 2

©1989-2024 Lauterbach

Training Basic SMP Debugging | 149

To keep track when debugging optimized code, it is recommended to work with an HLL mode and a MIX

mode display of the source listing in parallel.

List.H11

List.Mix

Please be aware of the following:

If a Program breakpoint is set to an HLL code line for which two or more detached blocks of assembler code
are generated, a Program breakpoint is set to the start address of each assembler block.

=] BaListHIl E=8 =)
[Mstep || Mover || $Next || #Return] @up || pGo | mBreak |[¥mode | Find: diabc.c
addr/T1ine |source
int sieve() /% si1eve of erathostenes =/ -~
664 |{
register int i, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE) ;
7 672 fpr(i:D;i{:SIZE;i++}
674 . if (flags[i 1)
676 . rimz = 1 + 1 + 3;
677 — Em-mz; ey
678 while (k <= SIZE) -
J ¢ I b
I BaBreak List =0 =R)
[Delete All (O Disable All [@ Enable All|[@ Init || Lmpl... || 52 store... || S Load... || Kilset...
address types imp I
F:400012EC||Program SOFT s1eve' 8 -
F:4000133C|[Program SOFT sievel 8 -
4

©1989-2024 Lauterbach

Training Basic SMP Debugging |

150

Basic Debug Control

There are local buttons in the Data.List window for all basic debug commands

|
) foutois =)o
[Mstep |[M over || ¥ Next | Retun | ¢ up | »Go | INBreak]ﬂ Mode | Find: sieve.c
addr/1ine |source i
int sieve() /* sieve of erathostenes */ -
635 ({
register int i, primz, k;
int anzahl;
639 anzahl = 0;
Lo B4l fop bl O d s SIFE o flags Lo daa. Jo s TRUE O
643 for (1i=0; 1 <= SIZE ; i++)
645 / if (flags[i 1)
J 4| . (Tl b
Step Single stepping (command: Step)
Over Step over call (command Step.Over).
Diverge Exit loops or fast forward to not yet stepped code lines. Step.Over is performed
repeatedly.

©1989-2024 Lauterbach

Training Basic SMP Debugging

151

More details on Step.Diverge

TRACE32 maintains a list of all assembler/HLL lines which were already reached by a Step. These reached
lines are marked with a slim grey line in the List window.

E'_l [BuList.auto sieve] EI@
[Mistep |[M over]@Diverge][Retun | @up | »co | mEBreak]%Mode | Find diabe.c
addr/line sowrce 1 1 g e — |

/% sieve of erathostenes #/ ~

int sieve()

664
ragister int i, primz, k;

{-l -i ne 5G1t anzahl;

gs[i++] = TRUE) ;

_-l'F-'lzah'I = 0;
Eﬁq_ - w (1 =0; 1 «= 5IZE ; fla
w (i =0; 1 <= SIZE ; i++)
'if (flags[i])
................ I =
668

The following command allows you to get more details:

List.auto /DIVERGE

©1989-2024 Lauterbach

Training Basic SMP Debugging

152

=1 [BuList /DIVERGE]

[o &

[Mistep |[M over]LDwerge][SReturn [@up || »Go][MnBreak |[EMode | Find:
s state 1 addr/1ine |source
int sieve() /* sieve of erathostenes
h stop 664 (L
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE)
h done [672 for (1 =0; i <= SIZE ; i++)
672 for (i=0; 1 <= SIZE ; i++)
hit 674 g if.(.flags[i .}
676 . rimz =1 + 1 + 3;
677 =1 + primz;
678 fki]e (k == SIZE)
680 " flags[k] = FALSE;
681) k += primz;
683 5nzah1++;
target 687 | return anzahl; =
688 |} -
m 3

Drag this handle to see the DIVERGE details

=] [BiList /DIVERGE] =0 =R
[M Step][W Over]LDwerge” + Return][¢ up ” » Go][11 Break] ¥ Mode] Find:
s state 1 addr/1ine |code label mremonic comment
a stop 602 j = (*funcptr)(); -
a stop SF:40001148 Twz rll -0x7F3C(r13)
a done SF:4000114C mtTr ri1
a done 1 SF:40001150 blrT
a stop SF:40001154 mr r3l,r3
done 604 j = func5{ (int) j, (char) 2, (long) 3 J;
done SF:40001158 mr r3,ril
:4000115C 14 rd, 0x2
11 r5,0x3
b1 0x400003A0
mr r3l,r3 el

Column layout

s Step type performed on this line
a: Step on assembler level was started from this code line
h: Step on HLL level was started from this code line
state done: code line was reached by a Step and a Step was started from

this code line.

hit: code line was reached by a Step.

target: code line is a possible destination of an already started Step,
but was not reached yet (mostly caused by conditional branches).

stop: program execution stopped at code line.

indirect branch taken
(return instructions are not marked).

©1989-2024 Lauterbach

Training Basic SMP Debugging | 153

Example 1: Diverge through function sieve.

1.

Run program execution until entry to function sieve.
i£] [B:List /DIVERGE] = = =
[Mistep |[W over]@Diverge][SReturn | @up || »co [miBreak [mode | Find: sieve d
s state 1 addr/1ine |source |
char TTags[SIZE+1]; B
int sieve * sieve of erathostenes #
664 . Program Address
regis
A a Breakpoint...
668 anzah| 8 Ereakpoints »
670 for (] Display Memory * Hags[i++] = TRUE) ;
5E Bookmark...
672 for (gE Toggle Bookmark ++)
674 Af Set PC Here
676 %Et‘jitSource i3
677 a ViewInfo mz;
678] WHTTE K == SIZE))
~ |« [| ElBaList/DVERGE ¢

s

stop indicates that the
program execution was
stopped at this code line

2.

[Mistep |[M over]@Diverge][« Return ||

eup |

s state 1 addr/1ine |source

char TTags[SIZE+1];

Start a Step.Diverge command.

int sieve() sieve of eratl
register 1nt 1, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0; i == 5IZE ; flags[i++] = TRUE) ;
672 for('i:O;'i<:SIZE;'i++)
i£] BuList /DIVERGE [

h indicates that a Step

[M Step][W Over

command in HLL mode was

.&DiverrEI quﬂturn [¢ up][

b Go || Il Break]%M.ode | Find: sier

started in this line

L =
—

hit indicates that this
code line was reached by
Step command

s state 1 addr/[1ne source |
char TTags[SIZE+1];
int sieve() /% sieve of erathc
+h stop 664](L
register int i, primz, k;
int anzahl;
R anzahl = 0;
670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
672 Eor('i:O;'i<:SIZE;'i++)
674 ?C (flags[1 1)
676 rimz = 1 + 1 + 3;
677 =1 + primz;
678 while (k <= SIZE)
1+ | 1] |

©1989-2024 Lauterbach

Training Basic SMP Debugging

| 154

3. Continue with Step.Di

verge.

i£] BuList /DIVERGE

&

[Mistep |[M over]@Diverqe][quﬂturn [eup][

I

done indicates that the
code line was reached by
a Step command and that
a Step command was
started from this code line

b Go][11 Break]%Mode] Find: siev
s state 1 addr/1ine |source |
char TTags[SIZE+1];
int sieve() /* sieve of eratho
h stop [|54
register int i, primz, k;
int anzahl;
*h done 668] anzahl = 0;
Lt 6 for (1 =0 ; i == 5IZE ; flags[i++] = TRUE } ;
672 for (1 =0; 1 <= SIZE ; i++)
674 ?C (flags[i 1)
676 rimz =1 + 1 + 3;
677 =1 + primz;
678 while (k <= SIZE)
1+ | i |

©1989-2024 Lauterbach

Training Basic SMP Debugging |

155

i=] BuList /DIVERGE [
[Mistep |[M over]@Diverqe][quﬂturn [eup][» Go || Il Break]%M:ode | Find: siev

s state 1 addr/1ine |source |
char TTags[SIZE+1];

The tree button . . e s
.. int sieve() /% sieve of eratho
indicates that two or h stop 6641 . o N
register 1nt 1, primz, k;
more detached blocks of int angahls ¥
assembler code are

h done 668] anzahl = 0;
generated for an HLL , _ for (i e 05 i <o SIZE 4 Flagsl ies] o TRUE s
code line | ik s s= iagslam= :
> 672 for (1 =0; 1 <= SIZE ; i++)
674 :if (flags[1 1)

4. Continue with Step.Diverge.

=] BuList /DIVERGE =
[Mistep |[M over]@Diverqe][Retun [@up || »Go | MBreak || Mode | Find: sieve
s state 1 addr/1ine |source
char TTags[SIZE+1];
int sieve() /* sieve of erathos
h stop G664 |4
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;

h done 670] for ; flags[i++] = TRUE) ;

(i H
LsaliE F 7Y N (RC (R) WU SIS | UL RS |
E 672 for (1 =0; 1 <= SIZE ; 1++)

o
1
=}
o
A
Il
v
=
~
m

674 }F (flags[1 1)
The drill-down tree is 676 : rimz =i+ i+ 3
677 =1 + primz;
expanded and the HLL L LA ——
code line representing i il |

the reached block of
assembler code is marked as hit

©1989-2024 Lauterbach Training Basic SMP Debugging | 156

i£] BrList /DIVERGE
[Mistep |[M over Diverge] « Return || @ up || »Go || M Break]%Mode | Find:
|

s state 1 addr/1ine |source |
char TTags[SIZE+1];

int sieve() /% sieve of er

h stop
register int i, primz, k;
. i i int anzahl;
This HLL code line includes a
., h done anzahl = 0;
conditional branch
for (1 =0; i == SIZE ; flags[i++] = TRUE

| h done

13

for {1=0; 1 == SIZE ; i++

0 : 1 <= SIZE ; i++)

([N}

| M Step r | 1AaDiesze [« Retum|[@ up |[P Go [Ereak] yﬂ

addr/'l'lne Icode 1abel mremonic
672

for (1 =0; 1 <= SIZE ; 1++) -

SF:400012F0 2C1F0012 L522: cmpwi r3i,0x12 (]

SF:400012F4 41810050 bgt 0x40001344 ~
4 1 +

5. Continue with Step.Diverge.

i£] BuList /DIVERGE
[Mistep |[M over]@Diverqe][Retun | @up | »oco | mEBresk]&Mode | Find:
s state 1 addr/1ine |source | | |
h stop [T
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE
h done [672 for (1 =0 ; 1 <= SIZE ; i++)
672 Eor('i:D;'i<=SIZE;'i++)
| B it 674 if (flags[i]
676 ‘ i i i 3
. . rimz =1 + 1 + 3;
The reached code line is i =
marked as hit 678 \gh‘i]e (<= SIZE)
680 flags[k] = FALSE;
681) k += primz;
683) anzahl++;
}
target 687 return anzahl;
688 [}
I] m

The not-reached code line is
marked as target

©1989-2024 Lauterbach Training Basic SMP Debugging | 157

6. Continue with Step.Diverge (several times).

=1 [BuList /DIVERGE]

[Mistep |[M over Diverge] ¢ Return | @up | PGo | M Break || mode

s state 1 addr/Tine |source

int sieve() /* sieve
h stop 664 |{)))) L
_» register 1nt 1, primz, k;
int anzahl;

h done 668 anzahl = 0;

h done 670 for (1 =0 ; 1 <= SIZE ; flags[i++] =

h done [672 (1 =0; 1 ==SIZE ; i++)

. target 672 for (1 =0 ; 1 == SIZE ; i++)
All code lines are now { o o
either marked as done, h done 674 1r (flags[i 1)
i h done 676 - rimz = 1 + 1 + 3;
hit or target h done 677 =1 + primz;]

h done 678 ._-_,"r‘ﬂe ({ k == SIZE)

h done 80| " flags[k] = FALS
hit 681 | . k += primz;
target 683 § é\nzah'|++;

_>
target 687 | return anzahl;
688
J 4 | i

7. Continue with Step.Diverge.

=Y [B:List /DIVERGE]
[Mistep |[M over]@Diverge][Return | @up | »Go | mEBreak]%Mode | Finc
s state 1 addr/Tine |source
char TTags[SIZE+1];
int sieve() /% sieve of ¢
h stop 664 (£
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE
h done [672 =0 ; i <= SIZE ; i++)
target 672 f =0 ; i <= SIZE ; i++)
h done 674 . '|'F (flags[11)
E gone 676 . rimz = 1 + 1 + 3;
H one 677 =1 + primz;
A code line former marl.<ed h done 678 while (k <= SIZE)
as tar.ge.t Changes to hit h done 680 - flags[k] = FALSE;
when it is reached h done 681) k += primz;
I hit 683 | . anzahl++;
target 687 return anzahl;
688 [}
Jf n

When all reachable code lines are marked as done, the following message is displayed:

no more reacnal

trigger [devices][trace][Data][Var][List

SF:40001284 \\diabc\diabc\main+0x228

©1989-2024 Lauterbach Training Basic SMP Debugging | 158

The DIVERGE marking is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.

©1989-2024 Lauterbach Training Basic SMP Debugging | 159

Example 2: Exit a loop.

=] BuList /DIVERGE [
[Mstep |[M over fADiverge | ¢ Return || @up || »Go | NEBreak]%Mode | Find:
s state 1 addr/1ine |source |
register 1nt 1, primz, k;
int anzahl;
h done 668 anzahl = 0;
. . h done 670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE) ;
DIVERGE marking is 2
h done 672 for (1 =0; 1 <= SIZE ; i++)
dpne whenever you target [672 for (1 =03 1 <= SIZE ; i++)
Smgle step. h done 674 '%F (flags[i 1)
h done 676 rimz =1 + 1 + 3;
h done 677 E =1 + primz;
If all code lines of h done 678 \gh'i'le (k == S1ZE)
a loop are marked as h done 680] » flags[k] = FALSE;
done/hit, a k4= primz;
Step_Diverge will target 683) anzahl++;
exit the loop }
target 687 return anzahl;
688 |}
int background() /* job for backagr:
691 |{
register long countl, count2;
1+ | 1] |

i£] [B:List /DIVERGE] =
[Mistep |[M oOver]@Diverqe][Retun | @up | »Go | mEBreask]%Mode | Find:
s state 1 addr/1ine |source

char flags[SIZE+1];

int sieve() /* sieve of erath
h stop 664 |{
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
h done [672 for (1 =0; 1 <= SIZE ; i++)
target 672 for (1 =0; 1 <= SIZE ; i++)
h done 674 ‘%‘F (flags[i 1)
h done 676 Er'imz =1+ 1+ 3;
h done 677 =1 + primz;
h done 678 1gh'i'|e (k == SIZE)
h done 680 flags[k] = FALSE;
h done 681) k += primz;
P hit - anzahl++;
}
target 687 return anzahl;

4 | i

©1989-2024 Lauterbach Training Basic SMP Debugging | 160

Return Return sets a temporary breakpoint to the last instruction of a function and
starts the program execution.
] [BaList] [=
[Mstep |[M over [¥ e &Retun [@ up || »Go |[M Break
addr/1ine [
After pressing E% E1fgs|grlw'(ml; :
Return the program _+- 654 Afvahlis.
execution is stopped) ¥
at the last instruction
of the function 659 N return anzahl;
.. - .
Up This command is used to return to the function that called the current function.

For this a temporary breakpoint is set at the instruction directly after the function

call.

= [BuList] =
[MisStep |[® over | ¥ Next][JR&turnLQ up [»Go | mnBreak | |
addr/Tine [source | —" i
Press Up to return ;m/ﬁ)rﬁe() 7F sie
to the function that / rleg-isterh:lint i, primz, k;
nt ;
called the current B Wl b
function / 639 anzahl = 0;
641 for (i =0 ; i <= SIZE ; flags[i++]
643' for (i =0 ; i <= SIZE ; i++)
645 ?C (flags[1 1)
TV 11| P A T, T S 1
648 k =1 + primz;
649 1%.'h'i'|e (k <= 5IZE)
a4 | 1 |
Var Break Run CPU P
¥ Registers
| nd o, .
gu:tmsime Display the HLL stack to
aljwﬂtch see the function nesting
@ Referenced Var
ﬂLocals
ﬂ Stackframe with Locals @ BrFrame EI@
Peripheral 3% Down [“largs [[Locals [C]caller
Erpherals
& Symbols » (SKEN = eval) =
iii Groups Program Address
gk Bookmarks — [end of frame
4 .
£ Trace List il Breakpoint...
£ | Message Area 3 Breakpoints L
i Display Memory L4
gE Toggle Bookmark
4§ Set PC Here
%EditSource
& ViewInfo

©1989-2024 Lauterbach

Training Basic SMP Debugging | 161

Performed on the currently selected core if single stepping is performed on assembler level. Otherwise all

cores are executing code.

Step [<count>]
Step.Change <expression>

Step.Till <condition>

Var.Step.Change <hll_expression>

Var.Step.Till <hll_condition>

Step 10.

Step.Change Register (R11)

Step.Till Register (R11)>0xAA

Var.Step.Change flags[3]

Var.Step.Till flags[3]==1

Single step
Step until <expression> changes

Step until <condition> becomes true,
<condition> written in TRACES32 syntax

Step until <hll_expression> changes

Step until <hll_condition>becomes true,
<hll_condition> as allowed in used programming
language

All core are executing code, when one of the following commands is used.

I Step.Over

Go [<address>|<label>]

Go.Next

Go.Return

Go.Up [<level>|<address>]

Step over call

Start program execution

Set a temporary breakpoint to the next code line
and start the program execution

Set a temporary breakpoint to the return
instruction and start the program execution

Run program until it returns to the caller function

©1989-2024 Lauterbach

Training Basic SMP Debugging | 162

	Training Basic SMP Debugging
	System Concept
	On-chip Debug Interface
	Debug Features
	TRACE32 Tools

	On-chip Debug Interface plus On-chip Trace Buffer
	On-chip Debug Interface plus Trace Port
	NEXUS Interface

	Starting a TRACE32 PowerView Instance
	Basic TRACE32 PowerView Parameters
	Configuration File
	Standard Parameters
	Examples for Configuration Files
	Additional Parameters

	Application Properties (Windows only)
	Configuration via T32Start (Windows only)
	About TRACE32
	Version Information (SMP)
	Prepare Full Information for a Support Email

	Establish your Debug Session
	TRACE32 PowerView
	SMP Concept
	TRACE32 PowerView Components
	Main Menu Bar and Accelerators
	Main Tool Bar
	Window Area
	Command Line
	Message Line
	Softkeys
	State Line

	Basic Debugging (SMP)
	Go/Break
	Single Stepping on Assembler Level
	Single Stepping on High-Level Language Level

	Registers
	Core Registers
	Display the Core Registers
	Colored Display of Changed Registers
	Modify the Contents of a Core Register

	Special Function Register
	Display the Special Function Registers
	Details about a Single Special Function Register
	Modify a Special Function Register
	The PER Definition File

	Memory Display and Modification
	The Data.dump Window
	Display the Memory Contents
	Modify the Memory Contents
	Run-time Memory Access
	Colored Display of Changed Memory Contents

	The List Window
	Displays the Source Listing Around the PC
	Displays the Source Listing of a Selected Function

	Breakpoints
	Breakpoint Implementations
	Software Breakpoints in RAM
	Onchip Breakpoints in NOR Flash
	Onchip Breakpoints on Read/Write Accesses
	Onchip Breakpoints by Processor Architecture
	ETM Breakpoints for ARM or Cortex-A/-R

	Breakpoint Types
	Program Breakpoints
	Read/Write Breakpoints

	Breakpoint Handling
	Breakpoint Setting at Run-time
	Real-time Breakpoints vs. Intrusive Breakpoints
	Break.Set Dialog Box
	The HLL Check Box - Function Name
	The HLL Check Box - Program Line Number
	The HLL Check Box - Variable
	The HLL Check Box - HLL Expression
	Implementations
	Actions
	Options
	DATA Breakpoints

	Advanced Breakpoints
	TASK-aware Breakpoints
	Intrusive TASK-aware Breakpoint

	COUNTer
	Software Counter

	CONDition
	CMD

	Display a List of all Set Breakpoints
	Delete Breakpoints
	Enable/Disable Breakpoints
	Store Breakpoint Settings

	Debugging
	Debugging of Optimized Code
	Basic Debug Control

