LAUTERBACH A

Training Basic Debugging

Training Basic Debugging

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
[1T 01U T o T gl I = 11 11 4T r—~
Training Basic DebUgQiNgccoccceerrmiiimmrmniimss s s s s s s e sams s e samms e s 1
85353 (=0 €T o =Y o) 6
On-chip Debug Interface 7
Debug Features 7
TRACES32 Tools 8
On-chip Debug Interface plus On-chip Trace Buffer 10
On-chip Debug Interface plus Trace Port 12
NEXUS Interface 13
Starting a TRACE32 PowerView INStanCeccocciiiiimnninmsnissmssnssssms s s s ssssmssnns 14
Basic TRACES32 PowerView Parameters 14
Configuration File 14
Standard Parameters 15
Examples for Configuration Files 16
Additional Parameters 20
Application Properties (Windows only) 21
Configuration via T32Start (Windows only) 22
About TRACE32 23
Version Information 23
Prepare Full Information for a Support Email 24
Establish your Debug SeSSIiONccccccciimiiimmrmninsssrmnnssss s s ssss s sssssnsss s 25
TRACE32 POWEIVIEW ...ccicciiicnnemcmmnnssrssssssssssssssssnsssssnsssssssssssssmssssssnssesssssssssnnmnsnssnss nssnssssssnnnnns 26
TRACE32 PowerView Components 26
Main Menu Bar and Accelerators 27

Main Tool Bar 29
Window Area 31
Command Line 34
Message Line 37
Softkeys 38
State Line 39
=T 1= (=T 40
Core Registers 40
©1989-2024 Lauterbach Training Basic Debugging | 2

Display the Core Registers 40
Colored Display of Changed Registers 41
Modify the Contents of a Core Register 42
Special Function Register 43
Display the Special Function Registers 43
Details about a Single Special Function Register 46
Modify a Special Function Register 47
The PER Definition File 48
Memory Display and Modificationcccoiiiimmmmnnisssnn s 49
The Data.dump Window 50
Display the Memory Contents 50
Modify the Memory Contents 55
Run-time Memory Access 56
Colored Display of Changed Memory Contents 66
The List Window 67
Displays the Source Listing Around the PC 67
Displays the Source Listing of a Selected Function 68
T == | o o] | 70
Breakpoint Implementations 70
Software Breakpoints in RAM 70
Software Breakpoints in FLASH 72
Onchip Breakpoints in NOR Flash 73
Onchip Breakpoints on Read/Write Accesses 76
Onchip Breakpoints by Processor Architecture 77
ETM Breakpoints for ARM or Cortex-A/-R 78
Breakpoint Types 81
Program Breakpoints 82
Read/Write Breakpoints 84
Breakpoint Handling ... s ssss s s smms s s s s smmns s smmmn s 86
Breakpoint Setting at Run-time 86
Real-time Breakpoints vs. Intrusive Breakpoints 87
Break.Set Dialog Box 89
The HLL Check Box - Function Name 90
The HLL Check Box - Program Line Number 93
The HLL Check Box - Variable 95
The HLL Check Box - HLL Expression 97
Implementations 100
Actions 101
Options 105
DATA Breakpoints 109
Advanced Breakpoints 113
TASK-aware Breakpoints 114
©1989-2024 Lauterbach Training Basic Debugging | 3

Intrusive TASK-aware Breakpoint 114

Real-time TASK-aware Breakpoint 117
COUNTer 118
Software Counter 118
On-chip Counter 121
CONDition 122
CMD 130
memory/register/var 133
Display a List of all Set Breakpoints 138
Delete Breakpoints 139
Enable/Disable Breakpoints 139
Store Breakpoint Settings 140
9 1= o1V T e T] 4T R 141
Debugging of Optimized Code 141
Basic Debug Control 144
Sample-based Profiling ... s 156
Program Counter Sampling 156
Standard Procedure 157
Details 161
TASK Sampling 163

©1989-2024 Lauterbach Training Basic Debugging | 4

Training Basic Debugging

Version 06-Jun-2024

©1989-2024 Lauterbach Training Basic Debugging | 5

System Concept

A single-core processor/multi-core chip can provide:

J An on-chip debug interface
. An on-chip debug interface plus an on-chip trace buffer
J An on-chip debug interface plus an off-chip trace port

J A NEXUS interface including an on-chip debug interface

Depending on the debug resources different debug features can be provided and different TRACES32 tools
are offered.

©1989-2024 Lauterbach Training Basic Debugging | 6

On-chip Debug Interface

The TRACES2 debugger allows you to test your embedded hardware and software by using the on-chip
debug interface. The most common on-chip debug interface is JTAG.

A single on-chip debug interface can be used to debug all cores of a multi-core chip.

Debug Features

Depending on the processor architecture different debug features are available.

Debug features provided by all processor architectures:

. Read/write access to registers
J Read/write access to memories
. Start/stop of program execution

Debug features specific for a processor architecture:

. Number of on-chip breakpoints
. Read/write access to memory while the program execution is running
J Additional features as benchmark counters, triggers etc.

©1989-2024 Lauterbach Training Basic Debugging | 7

TRACE32 Tools

The TRACE32 debugger hardware always consists of:

J Universal debugger hardware
J Debug cable specific to the processor architecture
Debug Only Modules

PC or

Workstation

Target

[Epeseow— — Debug Cable

LAUTERBACH
« rowen T
usB ma D

Cable

L ome —

LauTERBACH

Debug
Connector

POWER DEBUG E40

Wall Mount
O
Power Supply

Current module:

. POWER DEBUG E40

Deprecated modules:
J POWER DEBUG INTERFACE / USB 3
J POWER DEBUG INTERFACE / USB 2

©1989-2024 Lauterbach Training Basic Debugging | 8

Debug Modules with Option for Off-chip Trace Extension

SWITCH PC or
Workstation

1 GBit Ethernet

T
Target
e ——— Debug Cable
Ethernet @™ 1
Cable FR= [
Al 85
o7 Lt § ; S
LAUTERBACH
S .
POWER DEBUG X50

L Desktop
Power Supply

Current module:

. POWER DEBUG X50

Deprecated modules:

. POWER DEBUG PRO (USB 3 and 1 GBit Ethernet)

. POWER DEBUG Il (USB 2 and 1 GBit Ethernet)

. POWER DEBUG / ETHERNET (USB 2 and 100 MBit Ethernet)

©1989-2024 Lauterbach Training Basic Debugging | 9

On-chip Debug Interface plus On-chip Trace Buffer

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface an on-
chip trace buffer.

On-chip Trace Features

The on-chip trace buffer can store information:

J On the executed instructions.
J On task/process switches.
J On load/store operations if supported by the on-chip trace generation hardware.

In order to analyze and display the trace information the debug cable needs to provide a Trace License. The
Trace Licenses use the following name convention:

. <core>-TRACE e.g. ARM-TRACE
J or <core>-MCDS) e.g. TriCore-MCDS

% Contents
;;Elndex
4 Find
) Tree /A B:VERSION == EcE
ﬁ TRACE32 PowerView User Manual
ﬁ Processor Architecture Manual TRACE32 PowerView for ARM A
ﬁ Debugger User Guide
MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2012 Lauterbach GmbH
ﬁ Linux Awareness Manual
Software: Interim Build (32-bit) mare...
Software Version: S.2012.08.000038874
Build: 38874, 08/2012
@Training Manuals ’ License: maore...
#4 Demo Scripts Cable: ARM (Cor‘te 01/2014
& Welcome to TRACE32
Lauterbach Homepage Hardware: PowerDebug-II via USBE 2.0 more...
Support 4 Debug Cable: C12100165970 ARM Debug Cable v4d
Environment: Windows 7 maore...
SYS: C:\T32_ARM
TMP: C:\TMP
CONFIG: C:\TMP\andT32_1000004.t32 [edit...

©1989-2024 Lauterbach Training Basic Debugging | 10

The display and the evaluation of the trace information is described in the following training manuals:

“Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).
“Training Cortex-M Tracing” (training_cortexm_etm.pdf).
“Training AURIX Tracing” (training_aurix_trace.pdf).

“Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

“Training Nexus Tracing” (training_nexus.pdf).

©1989-2024 Lauterbach Training Basic Debugging

11

On-chip Debug Interface plus Trace Port

A number of single-core processors/multi-core chips offer in addition to the on-chip debug interface a so-
called trace port. The most common trace port is the TPIU for the ARM/Cortex architecture.

Off-chip Trace Features

The trace port exports in real-time trace information:

J On the executed instructions.
J On task/process switches.
J On load/store operations if supported by the on-chip trace generation logic.

The display and the evaluation of the trace information is described in the following training manuals:

J “Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf)
J “Training Cortex-M Tracing” (training_cortexm_etm.pdf)

J “Training AURIX Tracing” (training_aurix_trace.pdf)

J “Training Hexagon ETM Tracing” (training_hexagon_etm.pdf)

©1989-2024 Lauterbach Training Basic Debugging | 12

NEXUS Interface

NEXUS is a standardized interface for on-chip debugging and real-time trace especially for the automotive
industry.

NEXUS Features

Debug features provided by all single-core processors/multi-core chips:

J Read/write access to the registers

J Read/write access to all memories

. Start/stop of program execution

. Read/write access to memory while the program execution is running

Debug features specific for single-core processor/multi-core chip:
o Number of on-chip breakpoints

. Benchmark counters, triggers etc.

Trace features provided by all single-core processors/multi-core chips:
. Information on the executed instructions.

J Information on task/process switches.

Trace features specific for the single-core processor/multi-core chip:

. Information on load/store operations if supported by the trace generation logic.

The display and the evaluation of the trace information is described in “Training Nexus Tracing”
(training_nexus.pdf).

©1989-2024 Lauterbach Training Basic Debugging | 13

Starting a TRACE32 PowerView Instance

Basic TRACE32 PowerView Parameters

This chapter describes the basic parameters required to start a TRACE32 PowerView instance.

The parameters are defined in the configuration file. By default the configuration file is named config.t32. It

is located in the TRACE32 system directory (parameter SYS).

Configuration File

Open the file config.t32 from the system directory (default c: \T32\config. t32) with any ASCII editor.

File Edit Format View Help

; Environment variables -
05=

; Interface to TRACE3ZZ hardware
FEI=
TsB

; Font settings
SCEREEN=
s FONT=2MALL

; Printer settings
FRINTEE=WINDOWS

The following rules apply to the configuration file:
J Parameters are defined paragraph by paragraph.
. The first line/headline defines the parameter type.

. Each parameter definition ends with an empty line.

. If no parameter is defined, the default parameter will be used.

©1989-2024 Lauterbach

Training Basic Debugging

14

Standard Parameters

Parameter

Syntax

Description

Host interface

PBI=
<host _interface>

PBI=ICD
<host_interface>

Host interface type of TRACES2 tool
hardware (USB or ethernet)

Full parameter syntax which is not in use.

(not required for new tools)

Environment 0S=
variables ID=<identifier> (ID) Prefix for all files which are saved by
TMP=<temp_directory> the TRACES32 PowerView instance into the
SYS=<system_directory> TMP directory
HELP=<help_directory>
(TMP) Temporary directory used by the
TRACES32 PowerView instance (*)
(SYS) System directory for all TRACE32
files
(HELP) Directory for the TRACES32 help
PDFs (**)
Printer PRINTER=WINDOWS All standard Windows printer can be used
definition from TRACE32 PowerView
License file LICENSE=<license_directory> Directory for the TRACES32 license file

(*) In order to display source code information TRACE32 PowerView creates a
copy of all loaded source files and saves them into the TMP directory.

(™) The TRACES32 online help is PDF-based.

©1989-2024 Lauterbach

Training Basic Debugging

15

Examples for Configuration Files

Configuration File for USB

Single debugger hardware module connected via USB:

; Host interface
PBI=
USB

; Environment variables

0S=

ID=T32

TMP=C: \temp ; temporary directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
used from the TRACE32 user interface

Multiple debugger hardware modules connected via USB:

; Host interface

PBI=

USB

NODE=trainingl ; NODE name of TRACE32

; Environment variables

0S=

ID=T32_trainingl

TMP=C: \temp ; temporary directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
used from TRACE32 PowerView

©1989-2024 Lauterbach Training Basic Debugging | 16

Use the IFCONFIG command to assign a device name (NODE=) to a debugger hardware module. The
manufacturing default device name is the serial number of the debugger hardware module:

J e.g. E18110012345 for a debugger hardware module with ethernet interface, such as PowerDebug

PRO.

J e.g. C18110045678 for a debugger hardware module with USB interface only, such as PowerDebug

USB 3.

Trace Perf Cov CMM

™

P R]
& Frequency Counter

{7} Runtime
@ Mermory Map
* Flash Programming

% Choose Colors...

b~ Interface Config...
éb Tools 4

Japanese Menu

IFCONFIG

B BAIFCONFIG
- |p addreSS
10.2.0.208

— ethernet address
00-C0-8A-80-57-98

- de\fice name —————"———
MPC
— ethernet settings ——————
[CIRARP
[CJpooTP
[¥] DHCP (via device name)

[CTfull duplex

(=[O s

— host |p address ———— -

—EFE—— 0

1714,
send packets | 5219.

4369.
collisions 0.
retries 5

0

Brrors

configuration:

| Enter device name

Save device name to
~ debugger hardware module

Dialog to assign USB device name

Please be aware that USB device names are case-sensitive

©1989-2024 Lauterbach

Training Basic Debugging | 17

Remote Control for POWER DEBUG INTERFACE / USB

TRACES32 allows to communicate with a POWER DEBUG INTERFACE USB from a remote PC. For an
example, see “Example: Remote Control for POWER DEBUG INTERFACE / USB” in TRACES32

Installation Guide, page 56 (installation.pdf).

©1989-2024 Lauterbach Training Basic Debugging | 18

Configuration File for Ethernet

; Host interface
PBI=

NET
NODE=trainingl

; Environment variables

OS=

ID=T32 ; temp directory for TRACE32
SYS=C:\t32 ; system directory for TRACE32
HELP=C:\t32\pdf ; help directory for TRACE32

; Printer settings
PRINTER=WINDOWS ; all standard windows printer can be
; used from the TRACE32 user interface

Ethernet Configuration and Operation Profile

Trace Perf Cov CMM

& Frequency Counter éy B:IFCONFIG EI@
ip address host ip address
@ 10.2.0.208
Runtime
&l Memory Map ethernet address host ethernet address
* Flash Programming 00-C0-8A-80-57-98
“ Choose Colors... i
e rene R
errace Lonfig...
Japanese Menu 5219
ethernet settings 4369
[CIraRP 0.
[CsooTP 5.
[¥] DHCP (via device name) 0.
[T full duplex errors 0.
configuration: use2
I IFCONFIG Dialog to display and change information for the Ethernet interface

©1989-2024 Lauterbach Training Basic Debugging | 19

Additional Parameters

Changing the font size can be helpful for a more comfortable display of TRACE32 windows.

; Screen settings

SCREEN=
FONT=SMALL ; Use small fonts

Display with normal font:

E=N Noh /)

= BuList
[Mistep |[M over]@Diverge][SRetun | @up || »Go | mBreak]%Mode | Find: demo.c
addr/1ine |code label mnemonic comment i

char TTags[SIZE+1];

int sieve(void) /* sieve of erathostenes */

416 |{
Lo NSR:4AZ26564. -0 05020 sieve: push {r4-r5,ri4}

422 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
NSR:4A326568 [ES9FCLTC ldr ri12,0x4A3266EC
register int i, primz, k;
int anzahl;

420 anzahl = 0;
NSR:4A32656C |E3 10 mow rQ,#0x0

422 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
NSR:4A326570 |E1A01000 cpy rl,r0

4 1

Display with small font:

=N Nl

i == SIZE ; flags[i++] = TRUE] ;
rl,ri

422
NSR:4A326570 |E

1 =TRLE I ;
NSR:4A32657
NSR:4A32657
NSR:4A32657

= BuList
[Mstep || W over |[Miverge| # Return| @up |[PGo | mBreak || ¥¥mode | Find: demo.c
addr/Tine |code Tabel mnemonic comment |
char TTags[SIZE+11; =
int siewve(void) * sieve of erathosteres *
416 |
Lo WSR:4A326564 |F5 204020 sieve: push fr4-r5,rl14}
422 for (1 =0 7 <= SIZE ; flags[i++] = TRUE J ;
NSR:4A326568 |ESSFC1TC Tdr rl2, dx4A3266EC
register int 1, primz, k;
int arzahl;
420 arzahl = 0;
NSR:4A32656C |E3ADDOO0 mov r0, E#0x0

©1989-2024 Lauterbach

Training Basic Debugging

20

Application Properties (Windows only)

The Properties window allows you to configure some basic settings for the TRACE32 software.

To open the Properties window, right-click the desired TRACE32 icon in the Windows Start menu.

| | Movell Version I Previous Versions

General Shotcut | Compatibiity | Securty

a t32mam exe

Target type: Application

Target location: windows

Target: vindows't 32mam exe ¢ JAANDVPODNcorfig 132 |~ Conﬁguration F|Ie

Start in: JAAND'POD Working Directory
Shortcut key: Mone

Run: [Maxm’zed ']‘ WindOW Size

Nomal window
Comment: Minimized

B izimized |
Open File Location Change lcon... Advanced...

Definition of the Configuration File

By default the configuration file config.t32 in the TRACE32 system directory (parameter SYS) is used. The
option -c allows you to define your own location and name for the configuration file.

C:\T32_ARM\bin\windows\t32marm.exe -c¢ j:\and\config.t32

Definition of a Working Directory

After its start TRACES32 PowerView is using the specified working directory. It is recommended not to work in
the system directory.

I PWD TRACE32 command to display the current working directory

Definition of the Window Size for TRACE32 PowerView

You can choose between Normal window, Minimized and Maximized.

©1989-2024 Lauterbach Training Basic Debugging | 21

Configuration via T32Start (Windows only)

The basic parameters can also be set up in an intuitive way via T32Start.

A detailed online help for t32start.exe is available via the Help button or in “T32Start” (app_t32start.pdf).

4 -7 Configuration Tree

> - Settings

s -fi] Example Configuration

4 43] MPCSxxx Debugger

i a =l 1: Padbus Device Chain

: 4 -f) 1: Power Debug PRO
@] ConnectionType: Ethernet

1: Care
@] Target: PowerPC

i - Advanced Seftings
>~ Ethemet Settings

Parameters — B>

b <3 TricoreDebugger

Delete
Up
Down
Instances...
Information...
Save and Exit
Save

Help

1D: //Configuration5

©1989-2024 Lauterbach

Training Basic Debugging

22

About TRACE32

If you want to contact your local Lauterbach support, it might be helpful to provide some basis information
about your TRACES2 tool.

Version Information

% Contents
;;Elndex
4 Find
25 Tree /A B:VERSION EI@
ﬁ TRACE32 PowerView User Manual
TRACE32 PowerView for ARM
ﬁ Processor Architecture Manual
ﬁ Debugger User Guide
MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2014 Lauterbach GmbH
Software: Interim Build (64-bit)
Software Version: 5.2014.05.000053810 1
Build: 53810. 05/2014
ﬁTraining Manuals L4
#4 Demo Scripts License:
& Welcome to TRACE32 Cable: ARM (Cortex ARM-TRACE) 12/2014 2
Lauterbach H
SZ::;I,:C smepsas v Hardware: PowerDebug USE 3.0
Debug Cable: C12100165970 ARM Debug Cable V4d 3
Environment: Windows 7
sys: C:\T32_ARM
TMP: C:\Users\amartin\AppData\Local\Temp
CONFIG: C:\T32_ARM\config.t32
The VERSION window informs you about:
1. The version of the TRACES32 software.
2. The debug licenses programmed into the debug cable and the expiration date of your software
warranty respectively the expiration date of your software warranty.
3. The serial number of the debug cable.
VERSION.view Display the VERSION window.
VERSION.HARDWARE Display more details about the TRACE32 hardware modules.
VERSION.SOFTWARE Display more details about the TRACE32 software.

©1989-2024 Lauterbach Training Basic Debugging | 23

Prepare Full Information for a Support Email

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose Help > Support > Systeminfo.

% Contents
Tk Index
§1Find
-E; Tree

ﬁ TRACE32 PowerView User Manual

ﬁ Processor Architecture Manual

ﬁ Debugger User Guide

#3 Demo Scripts
J& Welcome to TRACE32

Lauterbach Homepage

Er e A

JA About TRACE3Z...

& Online Support

(=] Contact Lauterbach

Program maintenance license into cable...

Company:
Prefix:
Firstname:
Surname:
Street:
City:
Country:
Telephone:
eMail:

Product.:

Compiler:

Target CPU:
Hostsystem:

Realtime0S:

éy Generate TRACE32 Support Information

Press the following button to get help on how to generate Support Information:

Lauterbach

Andrea

Martin

Altlaufstr, 40
Hoehenkirchen-Siegertsbrunn
Germany
++49-8104-9843-555

training@lauterbach.com

Power Debug Interface [USB 3
CortexAg

PC Windows 7 -
ARM

None

Generate Support Information:

oo

Department: Training
P.0. Box:
ZIP Code: 85635

Safe Mode:

]

’ Save to Clipboard]’ Save to File

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Training Basic Debugging

24

Establish your Debug Session

Before you can start debugging, the debug environment has to be set up. An overview on the most common
setups is given in “Establish Your Debug Session” (tutor_setup.pdf).

©1989-2024 Lauterbach Training Basic Debugging | 25

TRACE32 PowerView

TRACE32 PowerView Components

File Edit View War Break Run CPU Misc Trace Pef Cov Linux OMAP4430app Window Help

(MK L Fee|ru[E 20N Sca @32

i=]| [BxData.List]

[E= B |

[Mstep | W over]@Dwer?e][# Return ||

demo.c

eup || ke [E?reak]@Mode | Find:

addr/Tine [source o
4726 1F (T Tagst 1 7

428 rimz =1 + i + 3;

429 =1 + primgz;

430 while (k <= SIZE)
I 432 i flags[k] = FALSE;
| s e o e 12
I i Program Address

435 anz3 Go Till

436 abcc o -
O ¥ Breakpoint...]

Window Area

8 Breakpoints

EIE i&| Display Memory

I @ B::Frame /Locals /Caller

(=E]E=]

£ Bookmark...

Context.Menu

I) T A7 4A3Z6DCC
| [-001]main() E 2 SPSR 0
[= return = 1 L

v

RS 4A326DB4 & | Stack

| 3 Down [Vargs Mlocals [callel df Toggie Bookmark 9 4A320DBEA =

~000][s1eve() 1 RrRI1O 3039 =
.i=1 45 Set PC Here E Rl 1

. Erimz =5 [2# Edit Source R12Z 4A326DEO B
k=6 % View Inf R13 4A326FE4
- anzahl = 1 4 Viewinio R14 4A3266B0

PC 4A326580
CPSR 800001D3

4 USR: FIQ:
goto start; RS 4A326DB4 RS 0
. R9 4A326DB4 RY 0
1 sieve(); I I RIO 3039 RrI10 0
[[-002[[NSR: 0x314D70 (asm) ~ |FF Ril 1 Rl 0 -
| 4 [3 4 b
| !B: :
trigger [devices] [trace] [Data] [Var] [List] [PERF] [SYStemn] [other] [previous]
NSR:4A3265B0 \\demo\demo\sieve+0x4C éstopped at breakpoint i1l HLL | UP

-@— Main Menu Bar
-@— Main Tool Bar

Command Line
Message Line
SoftkeyLine

-—
-
-4
<@— State Line

(training_menu.pdf) for details.

The structure of the menu bar and the tool bar are defined by the file t32.men
which is located in the TRACE32 system directory.

TRACERS2 allows you to modify the menu bar and the tool bar so they will better
fit your requirements. Refer to “Training Menu Programming”

©1989-2024 Lauterbach

Training Basic Debugging |

26

Main Menu Bar and Accelerators

The main menu bar provides all important TRACES32 functions sorted by groups.

For often used commands accelerators are defined.

[M % A3 & & [» MsSte

W Step Over Call
WA Step Diverge Path

+ Go Next

& Go Return F5
¢ Golp Fé
+ GoTill..

Il Break F&
;'fﬂ;f Mode

File Edit View Var Break [Run] CPU Misc Trace Perf Cov Window Help

F2
=
F4

W els @ 1P

©1989-2024 Lauterbach

Training Basic Debugging

27

A user specific menu can be defined very easily:

MENU.AddMenu <name> <command> Add a user menu

MENU.RESet Reset menu to default
; user menu
MENU.AddMenu "Set PC to main" "Register.Set PC main"

; user menu with accelerator
MENU.AddMenu "Set PC to main, ALT+F1l0" "Register.Set PC main"

A TRACE32 PowerView =NEEA X
File Edit View Var Break Run CPU Misc Trace Pef Cov MPCSXXX Window Help

R N IR Y a;

= BuData.List
[Mistep |[M oOver]@Dlverge][SRetun | eup | o |[mBreak || #mode | |r1
| addr/1ine |source
| main()
5
nt 3;
char * p;
i while (TRUE)
592 |start:
593 vtripplearray[0][0][0] = 1; User Menu
[594 viripplearray[1][0][0] = 2;
595_] viripplearray[0][1][0] = 3;
L VSO UV SU UV UV UV UV UV U VON SN IIONeS e
‘B MENU. AddMenu "Set PC to main, ALT+F10" "Register.Set pc main"
!
SF:40001138 ‘\\diabc_int\diabc\main stopped at breakpoint

For more complex changes to the main menu bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization

©1989-2024 Lauterbach Training Basic Debugging | 28

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Main Tool Bar

The main tool bar provides fast access to often used commands.

The user can add his own buttons very easily:

MENU.AddTool <tooltip_text> <tool_image> <command> Add a button to the toolbar
MENU.RESet Reset menu to default

; <tooltip text> here: Set PC to main

; <tool image> here: button with capital letters PM in black

; <command> here: Register.Set PC main

MENU.AddTool "Set PC to main" "PM,X" "Register.Set PC main"

TRACE32 PowerVi -5l
File Edit View WVar Break Run CPU Misc Trace Pef Cov MPC5XXX User Window Help

(MR] DN Eﬂﬁﬂll@@@leéﬂwt
= pa - Set PC to main Tt .
] BData.List T User specific

[Mistep |[M oOver |IéDi\.rerge [#Retun || ¢up || »Go | miereak | mode | Find: button
I addr/Tline |source I
M main()

M{ v t "

int 7J;
char * p;
a;.'h'i'le (TRUE)
592 sitart:
593 vtripplearray[0][0][0] = 1;
594 vtripplearray[1][0][0] = 2;
595J vtripplearray[0][1][0] = 3;
4 mn

‘B::MENU.AddToo'I "Set PC to main" "PM,X" "Register.Set PC main"

[ok] previous

SF:40001138 \\diabc_int\diabc\main stopped at breakpoint HLL UP

Information on the <tool image> can be found in Help -> Contents

TRACE32 Documents -> IDE User Interface -> PowerView Command Reference -> MENU ->
Programming Commands -> TOOLITEM.

©1989-2024 Lauterbach Training Basic Debugging | 29

All predefined TRACES32 icons can be inspected as follows:

[Misc] Trace Perf Cov MPCSXx

& Frequency Counter

@ Runtime
Memo Ma
")’ F

* Flash Programmlng

‘ Choose Colors...

L ntedface Config... |
Japanese Menu Dlsplay internal icon library

File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help

(MR deee|rm|E 2RO HuNMeE @ LP o

| /A predefined TRACE32 icons - mouse click for displaying the icon name inside the message line EI-@

%...%..@.....%9..@@.@.@..@[

B::|
[:colorpurple]

emulate trigger [devices][trace][Data][Var

ST:00001BA4 \\thumble\arm\sieve+0x28 Estopped

Or by following TRACE32 command:
ChDir.DO ~~/demo/menu/internal_icons.cmm
The predefined icons can easily be used to create new icons.

; overprint the icon colorpurple with the character v in White color
Menu .AddTool "Set PC to main" "v,W,colorpurple" "Register.Set PC main"

For more complex changes to the main tool bar refer to “Training Menu
Programming” (training_menu.pdf).

Videos about the menu programming can be found here:
support.lauterbach.com/kb/articles/trace32-user-interface-customization

©1989-2024 Lauterbach Training Basic Debugging | 30

https://support.lauterbach.com/kb/articles/trace32-user-interface-customization

Window Area

Save Page Layout

No information about the window layout is saved when you exit TRACE32 PowerView. To save the window

layout use the Store Windows to ... command in the Window menu.

Window | Help
5 Cascade

= Tile Horizontally
00 Tile Vertically

oo Arrange Icons

Create Duplicate window
¥ Clear Windows on Page
2 Clear all Windows

E Load Windows from ...

Script example:

// andT32_1000003 Sat Jul 21 16:59:

183 3

TOOLBAR ON

STATUSBAR ON
FramePOS 68.0 5.2857 107.

WinPAGE.RESet

WinCLEAR

WinPOS 0.0 0.0 80.

WinTABS 10.
List

WinPOS 0.0 21.643 80. 5.
0.

WinTABS 13.
Break.List

10.

0.

at any time.

<« System (C:) » T32_ARM » demo » arm » compiler » gnu

Store Windows to ... generates a script, that
allows you to reactivate the window-configuration

Organize v New folder

It Favorites
@ Links
My Documents
W My Music
=| My Pictures
B My Videos
5 Saved Games
¥/ Searches
Virtualbox
1% Computer
€ Network

Name

] arm.cmm

&) cppdemo.cmm

Date modified Type

CMM File
CMM File

T = 3

File name: | window_configlemm

Save as type: | Current (*.cmm}

= Hide Folders

45.

16.
62.

15, i,
25 o

25, 1.
0. 0. 0. 0.

WinPAGE.select P000

ENDDO

55

w000

w001l

2012

©1989-2024 Lauterbach

Training Basic Debugging

31

ﬁn Edit View Var Break Run
2 £ Run Script...
[Edit Script...
4 Search for Script...

Cl

% Open File...
2 Load File...
Type File...
4] Dump File...

@ Stop Command

¢ Printer Settings...
8 Window Print...
Window Screenshot to File...

¥ exit

KoM .« TZARM » demo b arm b compiler » gnu = [%3 Searchignu: 2
Organize New folder = 0l @
14 Downloads “ Name i Date modified Type
Faverit
- L“:” =] arm.cmm 300120121045 CMM File
- J‘ ;] cppdemo.cmm 300120121015 CMMFile
p .
il [&] window_config.cmm 21.07.201217:04 CMM File
i My Music
2] My Pictures
B My Videos |
1 Saved Games
1 searches =
1| Virtualbox
8 Computer u
€ Network =il i] v
File name: window_config.cmm -

Cancel

.

Run the script to reactivate the stored

window-configuration

©1989-2024 Lauterbach

Training Basic Debugging

32

Modify Window

TRACE32 PowerVi
File Edit View Var Break Run CPU Misc Trace Pef Cov MPC5XXX Window Help

(M AMl+ e |2 O N saEs @ 2 2

SR R N A AN AR = = >
[Mstep |[M over]@DWRJ&%&FM L »Go || mBreak]%Mode]
u addr/1ine |source |
main() The window header
L e displays the command
char* p; which was executed to
| . N .
| while (TRUE) open the window
| 592 |start:
B 593 viripplearray[0][0][O] = 1; [|
| 2ok vtripplearray[1][0][0] =2;
i 595 vtripplearray[0][1][0] = 3;
i 596 _ viripplearray[0][0][1] = 4; -
B::B::List /SOrder
[[ok]] [Mark] [Track] [TDrder\H\Slmier] [other] [previous
SF:40001138 \\diabc_int\diabc\main |stopped at breakpoint HLL UP

By clicking with the right
mouse button to the window
header, the command which
was executed to open the
window is re-displayed in the
command line and can be
modified there

©1989-2024 Lauterbach Training Basic Debugging | 33

Command Line

File Edit View Var Break Run CPU Misc Trace Pef Cov MPC5XXX Window Help

(M Al+ e B2 O N scs @ 2 2

while (TRUE)

| g Folle) |
[Mstep |[M over]@Diverge][Retun|[¢up || »Go || IBreak]%Mode |
addr/1ine |source i
main() ‘
ﬂ{ v t v
int J;
char]* p;

SF:40001138 ‘\\diabc_int\diabc\main

592 |start:
593 viripplearray[0][0][0] = 1; [
594 viripplearray[1][0][0] = 2;
595 viripplearray[0][1][0] = 3;
596 viripplearray[0][0][1] = 4; v
J 4| i 3
‘B:: -
emulate trigger [devices] [trace] [Data] [other] [previous
stopped at breakpoint HLL UP

Command Structure

Command line

Device prompt: the default device promptis B: :. It stands for BDM which was the first on-chip debug

interface supported by Lauterbach.

A TRACES32 command has the following structure:

Data.dump 0x1000--0x1fff /Byte

—— Com

‘ L Option(s)
Parameter(s)

Subcommand

mand group

©1989-2024 Lauterbach

Training Basic Debugging

34

Command Examples

Data Command group to display, modify ... memory
Data.dump Displays a hex dump

Data.Set Modify memory

Data.LOAD.auto Loads code to the target memory

Break Command group to set, list, delete ... breakpoints
Break.Set Sets a breakpoint

Break.List Lists all set breakpoint

Break.Delete Deletes a breakpoint

Each command can be abbreviated. The significant letters are always written in upper case letters.

Examples for the parameter syntax and the use of options will be presented throughout this training.

©1989-2024 Lauterbach Training Basic Debugging | 35

The Online Help for a Specific Command

B

[File Edit View Window Help

|Ree- BEOE 2802300

|FI: :’ﬂ.&v' 3 V:_' ;' @ @ 1166 @ | @ @ | @ Tools Comment Share
mar -

i ‘Bwk i Data.dump Memory dump

B- (X

={F General Commands
@ Reference Guide D

[Data <option>: Byte | Word | Long | Quad | TByte | TWord

{format) BE ILE
% ¥ DTM (Data Trace Decimal | Decimalll

Module)

Format: Data.dump [<address> | <ranges] [[<option> ...]

NoHex | Hex
MNoAscii | Ascii

<Option>: DIALOG
(standard) Track
CORE <number=

Orient | NoQrient
SpotLight | NoSpotLight
STRING

WIDTH [<cofumns=]

ICache | DCache | L2Cache

Mark <breaks

L

|B: :|Data. dump

| i e i | I)| I)| | [previous]
| NSR:4A326580 \demolemo\sieve+oxiC stopped at breakpoint__ | | | b op

Enter the command to the command line.
Add one blank.
Push F1 to get the online help for the specified command.

©1989-2024 Lauterbach Training Basic Debugging | 36

Message Line

A TRACE32 Poweﬂﬁew

~9|@|_J::;::m|w@w|e

Referenced Var
Locals
Stackframe with Locals
Stackframe

" Peripherals

= | BiAREA Message Area

ripplearray = (((1, 4, 0, 0), (3, 0, 0, 0), (0O, O, O, 0)), ((2, 0, O, 0), (O, -
ast = (word = 0x0, count = 2346 ieft = ox4 {)004240 r1ght Z 0x0, fieldl = 1, £l
ile C: \BZJIPC\de-o\pmterpc\harduare\-pcSSxx\-pcSSxxde-o\-y elf not found -
£ n ro

Message Line

G demo'\power pc‘\hardware'\mpc)) elt not touna
_emulate][t [devices][T v | F - |] [previous |
SF:40001138 \\dlabc_lnt\dlabc\mam ktopped at breakpomt |—|—|— HLL ,F i
. Message line for system and error messages
J Message Area window for the display of the last system and error messages

©1989-2024 Lauterbach Training Basic Debugging | 37

Softkeys

The softkey line allows to enter a specific command step by step. Here an example:

Select the command group, here Data.

IB::|

trigger][devices |[trace [Data [war |[st |[PERF][svstem

Select the subcommand, here dump.

‘B: :|DATA.|

[.[o.k]][.d.l.{r.np. [view].[Print].[List .].[Set][Assemble.][PRDGRAM.

Angle brackets request an entry from the user,
here e.g. the entry of a <range> or an <address>.

B: :DATA. DUMP |

(ot (wcrmpene] |soddmssn) (woptinose)

The display of the hex. dump can be adjusted to your needs by an option.

IB: :[DATA. DUMP 0x1000--0x1fff

[[ok]][options]

Select the option formats to get a list of all format options.

IB: :[DATA. DUMP 0x1000--0x1fff /|

[[okl |[formats |[™ark][Track][wmtH |[orient |[NoOrient |[STRING

Select a format option, here Byte.

IB: :[DATA. DUMP 0x1000--0x1fff /

[[ok]][HoHex][Decimal][Decimalu][Hex][Byte][Waord][Long

The command is complete now.

IB::|DATA. DUMP 0x1000--0Ox1fff /BYTE |

[[ok]][options]

©1989-2024 Lauterbach Training Basic Debugging | 38

State Line

.‘B: ;|
emulate trigger [devices][trace][Data][Var][List][other][previous
Sra000iis8 Udoboridobdeom Fmppsdatbeapant | [[[b

Cursor Debug Mode
field field field

The Cursor field of the state line provides:
. Boot information (Booting ..., Initializing ... etc.).

. Information on the item selected by one of the TRACES32 PowerView cursors.

The Debug field of the state line provides:
J Information on the debug communication (system down, system ready etc.)

J Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

The Mode field of the state line indicates the debug mode. The debug mode defines how source code
information is displayed.

J Asm = assembler code
. HIl = programming language code/high level language
J Mix = a mixture of both

It also defines how single stepping is performed (assembler line-wise or programming language

line-wise).

‘B: :|
emulate trigger [devices][trace][Data][Var][List][other][previous
_ “;ld ______
ocde
Asm
v HIl

The debug mode can be changed by using the Mode pull-down.

©1989-2024 Lauterbach Training Basic Debugging | 39

Registers

Core Registers

Display the Core Registers

[View] var Break Run CPU 1

| §34] Dump...

List Source
@Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

o Peripherals

& Symbols

1ii Groups
‘ Bookmarks

= | Message Area

Register.view

[l BuRegister fole =
_ RO 0 RE 0 _s5]| _stack -
_ Rl 0 R9 0 =
_ R2 0 R10 0
_ R3 0 RI11 0
_ R4 0 R12 0

R5 0 RL13 4A327000
_ R6 0 R14 00314D70
_ R7 0 PC 44326604
_ 5SPSR 0 CPSR 0103 i

©1989-2024 Lauterbach

Training Basic Debugging

40

Colored Display of Changed Registers

The option /SpotLight advises TRACE32 PowerView to mark changes.

Register.view /SpotLight

[} B::Register.view /SpotLight EI
_ RO 0 R& 4A326DB4 _S| _Stack -
— R1 0 R9 0
_ R2 0 R0 O3S
_ R3 R11 0
_ R4 4A326D94 R1Z 0

5 0 R13 4A326FF0
_ RE 0 RrR14 00314D70
_ R7 0 PC 4A326614
SPSR 0 CPsR 01D3 =

Establish /SpotLight as default setting

Bresk Run CPU M
@Watch...

'ﬁﬁ‘u'iew...

Q Data View...

a Breakpoint...

E’J Show Function...

ﬁﬂ Show Watch

ﬂ Show Locals

@ Show Stack

@ Show Current Vars

W Busetup.var EI
radix format pointer
[7] Decimal [¥] compact [7] string
[T Hex [7] Fixed [T wideString
[T Bmary [¥| TREE [C] sYmbol
[Ascii [¥] sHow [C]poUMP
[T pump Open Recursive
[7] SCALED s ||| [oFe -
display other
[T ndex [¥] Mherited [C]sPaces
[CType [[]HIdden [
[T] Location [T] MEthods
[¥] Name
[Ok] [Apply] [Cancel]

SETUP.Var %SpotLight

The registers changed by the last
step are marked in dark red.

The registers changed by the
step before the last step are

marked a little bit lighter.

This works up to a level of 4.

Establish the option SpotLight as default setting for

- all Variable windows

- Register window
- PERipheral window

- the HLL Stack Frame

- Data.dump window

©1989-2024 Lauterbach

Training Basic Debugging | 41

Modify the Contents of a Core Register

JA TRACE32 PowerView for ARM O [SIM @]
File Edit View Var Break Run CPU

Misc Trace Probe Pef Cov OMAP4430app Window Help

- O X

[I R Y I A | el

ARIEF T Y
ol |

_S| _Stack
0

1]
o
o
o
o
o
o
o
]

1

Ll

B::[Register.Set R9 0x7653

[0 [stopped

[T [ur

I Register.Set <register> <value>

By double clicking to the register contents
a Register.Set command is automatically displayed
in the command line.
Enter the new value and press return to modify the
register contents.

Modify register

©1989-2024 Lauterbach

Training Basic Debugging

42

Special Function Register

Display the Special Function Registers

TRACE32 supports a free configurable window to display/manipulate configuration registers and the on-chip
peripheral registers at a logical level. Predefined peripheral files are available for most standard
processors/chips.

Tree Display

The individual configuration registers/on-chip peripherals are organized by TRACE32 PowerView in a tree
structure. On demand, details about a selected register can be displayed.

Misc Trace Probe Perf

Change Frame L4

8 CPU Registers
FPU Registers

éb System Settings...

In Target Reset
Reset CPU Registers

=0 =R
E:PER =0 =R
B Core Registers
4 n
B ID Registers
MIDR 411FC092 IMPL 41 1 ARCH ARMT
PART 0co9 2
CTR 83338003 FORMAT ARMVT 3
ERG 3 8 words
L1IPOLICY Wirtual 8 words
TCMTR 00000000
TLETR 00000402 ILSIZE 00 DLSIZE 04 TLE_size 128
nu Unified
MPIDR 80000000 U Multiprocessor ClusterID 0O CPUID 0 -
a4 1 F

Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.

©1989-2024 Lauterbach Training Basic Debugging | 43

Full Display

Sometimes it might be useful to expand the tree structure from the start.

#* B:PER oo =
Flora Banictars -
ShDW | /]
f Use the right mouse and
m select Show all
Hide all
s mmsssssssssssssssssad
® INSTR_PRM
® DSP_
7 #* B:PER ===
Bl Core Registers !:I
B ID Registers
WMIDR 411FC092 TWPL 11 VAR il ARCH ARMVT
PART 0C09 REV 2
CTR 83338003 FORMAT ARMVT CWG 3
ERG 3 DMINLINE 8 words
L1POLICY Virtual IMINLINE 8 words
TCMTR 00000000
TLETR 00000402 TLSIZE 00 DLSIZE 04 TLE_size 128
nu Unified
MPIDR 80000000 U Multiprocessor ClusterID 0 CPUID 0
MMFRO 00100103 FCSE Not supported ACR Supported TCM Not supported -
4 | (1] | r
Commands:
I PER.view <filename> [<tree_item>] Display the configuration registers/on-chip peripherals

; Display all functional units in expanded mode

; , advises TRACE32 PowerView to use the default peripheral file
; * stands for all <tree-items>

PER.view , "*"

©1989-2024 Lauterbach Training Basic Debugging | 44

; Display the functional unit "ID Registers" within "Core Registers"
; in expanded mode
PER.view , "Core Registers,ID Registers"

«# B:PER.view , "Core Registers,ID Registers" EI@
B Core Registers -
B ID Registers B
MIDR 411FC093 IMPL 41 1 ARCH ARMT
A 0co9 3
CTR 83338003 ARMvT 3
3 8 words
Virtual 8 words
TCMTR 00000000
TLBTR 00000402 00 04 TLE_size 128
Unified
MPIDR 80000000 Multiprocessor 0 0
MMFRO 00100103 Not supported Supported Not supported
Not supported Supported Not supported =
4 1] 3

; Display the functional unit "DMA_Channel_ 0" within "sDMA_Module, sDMA"
; in expanded mode
PER.view , "sDMA Module, sDMA,DMA_Channel 0"

BaPERview, "sDMA_Module sDMA DMA_Channel 0" fal= =

000063E8 83E8
00550C3A 550C3A
0000FOCE FOCH
0102A020 0 BUFFERING_DISABLE 0
0 SUPERVISOR 0
0 TRANSPARENT_COPY_ENABLE 1 ~

< I »

The following command sequence can be used to save the contents of all configuration registers/on-chip
peripheral registers to a file.

; PRinTer.FileType ASCIIE ; Select ASCII ENHANCED as output
; format
; (default output format)

PRinTer.FILE Per.lst ; Define Per.lst as output file

WinPrint.PER.view ; Save contents of all
; configuration registers/on-chip
; peripheral registers to the
; specified file

©1989-2024 Lauterbach Training Basic Debugging | 45

Details about a Single Special Function Register

e M=
File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help
MM eI O HuE M E @ 32

o B:PER

B Core Registers

ID Registers

System Control and Configuration

B Memory Management Unit

SCTLR 00C50078 TE ARM AFE DisabTed DisabTed
NMF I Disabled EE Little Random
vV 0x00000000 I] 7 Disabled
SW Disabled C lad A Nisabled

M Disabled Instruction Cache Enable

9C3F004A TTEO 9C3F0000 IRGN[1:0] Back/allocated
RGN Back/allocated s Shared

N [T O -
system ready MIX UP

The access class, address, bit position and the full name of the selected item are
displayed in the state line; the full name of the selected item is taken from the
processor/chip manual.

©1989-2024 Lauterbach Training Basic Debugging | 46

Modify a Special Function Register

You can modify the contents of a configuration/on-chip peripheral register:

. By pressing the right mouse button and selecting one of the predefined values from the pull-
down menu.
" B:PER.view, "Core Registers Memory Management Unit" ===
E Memory Management Unit -
SCTLR 00C50078 TE ARM AFE DisabTed TRE DisabTed A
NMFI Disabled EE Little RR Random =
v 0x00000000 I b led 7 Disabled
SW Disabled C Disabled|v Disabled Disabled
W Disabled Enabled A
TTERD 65B32FD9 TTEO 65830000 IRGN[1:0] Back/not allocated
RGN Back/not allocated s Nonshared
TTBR1 7BF7C042 TTBL 7BF7C000 TRGN[1:0] Back/allocated
RGN Noncacheable S Shared
TTBCR 00000000 FPDL Enable PD0O Enable N off -
1 mmm——) s '
. By a double-click to a numeric value. A PER.Set command to change the contents of the

selected register is displayed in the command line. Enter the new value and confirm it with return.

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

(ML dee/ru[Eow o HuNdcs @i

| B:PER

B Core Registers

@ ID Registers

B System Control and Configuration

SCTLR DOCS0078 TE ARM A DisabTed DisabTed
NMF I Disabled Little : Random
v 0x00000000 I Disabled 7 Disabled
SW Disabled C Disabled A Disabled
M Disabled

ACTLR 00000041 PARON Disabled XC Disabled SMP 1
FOZ Disabled Disabled P2 Disabled
Fi Enabled

CPACR ASEDIS No 32DIS Denied
CP10 Denied

4 I

B::PER.Set C15:0x201 %Long

[[ok]][formats][<data=][<string=][options

C15:00000201 Coprocessor Access Control Register system ready MI{ UP

PER.Set.simple <address>|<range> [Y%<format>] <value> Modify configuration register/on-
chip peripheral

Data.Set <address>|<range> [Y%o<format>] <value> Modify memory

Data.Set is equivalent to PER.Set.simple if the configuration register is memory mapped.

PER.Set.simple D:0xF87FFF10 %Long 0x00000b02

©1989-2024 Lauterbach Training Basic Debugging |

47

The PER Definition File

The layout of the PER window is described by a PER definition file.

The definition can be changed to fit to your requirements using the PER command group.

The path and the version of the actual PER definition file can be displayed by using:

I VERSION.SOFTWARE

A B:VERSION.SOFTWARE

TRACE32 PowerView for ARM
Interim Build (32-bit)

Build: 40137.

Software Version: 5.2012.10.000040137

t32usbhamdé4. sys

Jun 24 2010 use
C:\T32_ARM\fcc.t32

Oct 24 2012 Podbus (40134)

Oct 24 2012 Host

Oct 24 2012 Operation System
Oct 24 2012 Debugger
C:\T32_ARM‘fccarm.t32

Oct 24 2012 cController

C:\T32_ARM'bin‘windows\t32marm. exe

IC: \T32_ARM‘peromap4430app. per
Aug 31 2011 Default Per File

(=[O el

PER.view <filename>

PER.view C:\T32_ARM\percortexa9mpcore.per

Display the configuration registers/on-chip peripherals specified by
<filename>

©1989-2024 Lauterbach

Training Basic Debugging

48

Memory Display and Modification

This training section introduces the most often used methods to display and modify memory:

o The Data.dump command, that displays a hex dump of a memory area, and
the Data.Set command that allows to modify the contents of a memory address.

. The List (former Data.List) command, that displays the memory contents as source code listing.

A so-called access class is always displayed together with a memory address. The following access
classes are available for all processor architectures:

P:1000 Program address 0x1000

D:6814 Data address 0x6814

For additional access classes provided by your processor architecture refer to your “Processor
Architecture Manuals”.

©1989-2024 Lauterbach Training Basic Debugging | 49

The Data.dump Window

Display the Memory Contents

Va_r _Bre_al_(R_un _CP

[Registers

M {#4] B:Data.dump ===

i List Source Address /Expression——8 S

&4 Watch | - [CIHLL

@ Referenced Var R i C i S |

ﬂ Locals idth —————— — ACCESs ——— - Options ———— - Flag ——— .

[S e @ default @ default [Track Fead

ol Stackirame O Byte ©E [¥] Orient Whirite

? Peripherals © Word -

& Symbols 4 - ;

iii Groups © Long [SpotLight

g Bookmarks L e) O O —
= Trace List

= | Message Area

©1989-2024 Lauterbach Training Basic Debugging | 50

Use an Address to Specify the Start Address for the Data.dump Window

144! B:Data.dump =l ==
Address { Expression
0x6814 «| (2] EHL
Width Access Options Flag
@ default @ default Track Fead
Byte E J| Orient YWhrite:
Word V| Ascii
Long SpotLight
[Cancel
144 B:Data.dump (0x6814) /DIALOG =1 | e I >
C:0x6514 [#iFind.. | [Modity.. | | [Long =] CIE Track [Hex
address] 4 8 C_0123456789ABCDEF
SD:AAPAGE1M | 8342178A+A6MA4185 M38255CH A44M4D68 3:BseABRsUZShHES -
SD:AAPARA2A | 2C1AFB2A 54A18ABA 28506482 ASDD1248 .53,33aT2dP(HLB2E
SD:AAPARA3M | 42019AR4 87354C6A MBA17201 2423DC18 5L5B L52araziois -
SD:AAPAGA4R | ABARRAAA 2CA14624 42015855 PB2AARAOR RUYESFs,UPTR2S.S .
SD:AAPARASE | 62432APA ASA4A2CD 180A4142 41ABA449 L. ChEz5EBAYLISY
SD:AAPAGAEGR | AZAGGA4A SARA1AFS BABARN1AZ PAB1156M R'RRTiUPSass 'iss
SD:AAPAGA7A | 982A21PA 4APARSA1 B51204AD 1A9508A6 % !*352URR512R223
SD:AAPARASA | A2254894 42839588 AABAR324 CA484999 3H/SE52B$S3asIHS -
Please be aware, that TRACE32 permanently updates all windows. The default
update rate is 10 times per second.
O

©1989-2024 Lauterbach

Training Basic Debugging

51

Use an Address Range to Specify the Addresses for the Data.dump Window

If you enter an address range, only data for the specified address range are displayed. This is useful if a
memory area close to memory-mapped /O registers should be displayed and you do not want TRACE32
PowerView to generate read cycles for the 1/O registers.

Conventions for address ranges:

J <start_address>--<end_address>
. <start_address>..<end_address>
J <start_address>++<offset_in_byte>
. <start_address>++<offset_in_word> (for DSPs)
1#] B::Data.dump [E=H EoB(E=5|
Address { Expression
0xBE1 4+ +0d | (&) EIHL
Width Access Options Flag
@ default @ default [Track Fead
") Byte T E [¥] Orient Wtite
) Word [Ascii
* Long [C] SpatLight
Cancel
1] B::Data.dump (0x6814++0xf) /DIALOG [=1[=][==]
C:0xB814 [#Find. | [Modit.. | | [Long =] FIE ElTack FHex F.
address a 4 8 C 8123456 789ABCDEF |
5D :AAARGE1A +A6AA4185 A38255CA A4484D68 EABRsUZRhHES =
5D :PAARGEZA | 2C1AF820 55, o

©1989-2024 Lauterbach Training Basic Debugging | 52

Use a Symbol to Specify the Start Address for the Data.dump Window

Use 1 to select any symbol name or label known to TRACE32 PowerView.

-

144 B:Data.dump [=][=]=]
Address { Expression
- S HLL
R
Width Access Options Flag
@ default @ default [Track Fead
) Byte @E Orient Witite
O 'Ward [V] Ascii
@) Long [SpotLight
& Browse Symbols =l E][]
Dalsy E] E] Type: Symbols +| [l Source
synbol type address i
__sys_generate_error R :A0PAGABC -
| ANST_e2d R :ABAA39DA

{struct unionl)

D :APAAGE14--ANARGS27 [
D :AAAAGASA—-AAAAGAI7

background {int ()} R :A0PA3ZE4——0ARA3313
' clib_SigInt R:80885904 -
144 B:Data.dump [=|[=][z]
Address { Expression
ast | [&] EIHL
Width Access Options Flag
@ default @ default [Track Fead
7 Byte JE [Vl Orient Wtite
2 Word [¥] Ascii
*) Lang [[1SpotLight
[Cancel |
By default an oriented display
is used (line break at 2%).
A small arrow indicates
the specified dump address.
144 B:Data.dump (ast) /DIALOG =]]
D:0x6814 [j-‘gFinnvj [(Modife.. | | [Long ~| EE [DTack @Hex [#Asci
address a 4 8 C 8123456 789ABCDEF 1

SD:PAAA6E1A
SD :PRAA6E28
SD :ARAA6E30
SD :PRAA6E8
SD :IRAA6ESA
SD : IRAA6E6A

83421789»86804185 A38255CA A4484D68 33BseAvRsUsRhMRS
ZC1AF828 54818P8A 28506482 ASDD1248 .535,88aT2dP(HiBe
42010084 87354C60 A8A17201 2423DC18 SeiB‘LSsarnsseds
A89AAA48 2CA14624 42A15855 BB2OAROA BYYLSFS,UPYB3S.E
6243200A B5A4PZCD 18004142 418BP449 £.ChesssBAYLISY
22066048 SPOP1PFS 8A8AA102 BAB1156A B'R3EsUPERes L%

Kxsoul XHOO Si1
4 [}

o4 (M

E
T

©1989-2024 Lauterbach

Training Basic Debugging |

53

I Data.dump <address> | <range> [/<option>]

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

Data .dump

0x6814

0x6810--0x682f

0x6810..0x682f

0x6810++0x1£f

ast

ast /Byte

Display a hex dump of the memory

; Display a hex dump starting at

; address 0x6814

; Display a
; specified

; Display a
; specified

; Display a
; specified

; Display a

; the address of the

; Display a

; the address of the

hex dump of the
address range

hex dump of the
address range

hex dump of the
address range

hex dump starting at
label ast

hex dump starting at
label ast in

; byte format

©1989-2024 Lauterbach

Training Basic Debugging

54

Modify the Memory Contents

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Mk Al »n|E N o sl sdcds @ 3L

4] B:Data.dump (ast) /DIALOG

D:0x4A326DCC [#3Find...] [Modify... | | [Long ~]
address 0 4 8 C

NSD:4A326DC0 | BC79F602 7927C8ED DF537FE94BC512D36
NSD:4A326D00 | 0000303A 4A326DCC ELID7B28C DAF4F549 :
NSD:4A326DEO | 00010101 01000101 01010001
NSD:4A326DF0 | E2000101 64BF4EOB 0198A981 A
NSD:4A326E00 | B407F2E6 1FC9845D 7B3FB398
NSD:4A326E10 | 1B6F436C CE6B740F 6944B476
NSD:4A326E20 | B46E638C 26273793 31AFBE28/BAEECB4C

4

E::D.5 NSD:0x4A326DEC ¥LE ¥Long |

l [ok] H formats\H\<dai'a> H <srrmg;/ H options

By a left mouse double-click to the memory contents
a Data.Set command is automatically

displayed in the command line,
you can enter the new value and
confirm it with return.

previous

MI< UP

I Data.Set <address>|<range> [Y%o<format>] <value> [/<option>]

Data.Set 0x6814 Oxaa

Data.Set 0x6814 %Long Oxaaaa

Data.Set 0x6814 %LE %Long Oxaaaa

Write Oxaa to the address
0x6814

Write Oxaaaa as a 32 bit value to
the address 0x6814, add the
leading zeros automatically

Write Oxaaaa as a 32 bit value to
the address 0x6814, add the
leading zeros automatically

Use Little Endian mode

©1989-2024 Lauterbach

Training Basic Debugging | 55

Run-time Memory Access

TRACES32 PowerView updates the displayed memory contents by default only if the cores is stopped.

Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Ik Aisee pnow o dun s @&

A hatched window frame

D:0x4A326DCC

[#iFind...] [Modify... | | [tong ~| [FIE [ITrack @Hex [#Asci

address |

0 4 8 C 0123456?89ABCDEF

NSD:4A326DC0

NSD:4A3260DD0
NSD:4A326DEQ
NSD:4A326DF0

BC79F602 7927CBBD DF53/FGOPBC512D36 s CDS IR
0000303A 4A326DCC E1D7B28C DAF4F549 i€ g5
00010101 01000101 01010001 00010100 33 W3
E2000101 64BF4EOB 0198A981 A8646741 33 5

F
ey
H
EEF
9% d

indicates that the information

display is brozen because the
core is executing the program.

trace H Data H Var H List

runmning .

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

kA deern o aogus acds @2

The plain window frame

| 81 B:Data.dump (ast) /DIALOG

|| D:0x4A326DCC
address

[#iFind...] [Modify... | | [tong ~| [FIE [ITrack @Hex [#Asci
0 4 [C 01234567 89ABCDEF

Il NSD:4A326DC0
NSD:4A3260DD0
NSD:4A326DEQ
NSD:4A326DF0

BC79F602 7927C8ED DF537F69¥BC512D36 x%fc%a Y1FSE6-0%
0000303A 4A326DCC E1D7BZ8C DAF4F549 0% em2I%5%
01010101 01010101 00010001 00010100 fﬁsﬂfﬁfﬁ
E2000100 64BF4EOB 0198A981 ABG46741 W35

F

o
5
H
a
[

g
It
55
HH
dﬁ

1

555 N
ek
TNEdTS

‘B::

trigger [devices][trace][Data][Var][i][previous

NSR:4A326580 \\demo\demo'\sieve+0x1C |stopped MI{ UP

indicates that the information

is updated, because the
program execution is
stopped.

©1989-2024 Lauterbach

Training Basic Debugging | 56

Non-intrusive Run-time Memory Access

Various cores allow a debugger to read and write physical memory (not cache) while the core is executing
the program. The debugger has in most cases direct access to the processor/chip internal bus, so no extra
load for the core is generated by this feature.

Open the SYStem window in order to check if your processor architecture allows a debugger to read/write
memory while the core is executing the program:

Misc Trace Perf Cov (

Change Frame L4

8 CPU Registers

FPU Registers 22 B:SVStem [E=H Eol(E=5|
o Peripherals tMade tMemiccess Option
© Dawn 0 CPU < Hitisicsit MemAccess Enable/NEXUS/DAP
2 NoDebug O Denied [CIIMASKHLL indicates that the core allows
0 Go CpuAccess VIPERSTOP the debugger to read/write the
D Attach D Enable CIDUALPORT memory while the core is
StancBy @ Denied [¥]ICFLUSH executing the program.
In Target Reset Up (StandBy)) Monstop [¥] DCFREEZE
Reset CPU Registers @ Up [[IDataTrace
JtagClock
reset 10.0MHz -
RESetOut
cPU

Please be aware that caches, MMUSs, tightly-coupled memories and suchlike add conditions to the run-time
memory access or at worst make its use impossible.

Restrictions

The following description is only a rough overview on the restrictions. Details about your core can be found in
the Processor Architecture Manual.

©1989-2024 Lauterbach Training Basic Debugging | 57

Cache

If run-time memory access for a cached memory location is enabled the debugger acts as follows:

. Program execution is stopped

The data is read via the cache respectively written via the cache.

. Program execution is running

Since the debugger has no access to the caches while the program execution is running, the
data is read from physical memory. The physical memory contains the current data only if the
cache is configured as write-through for the accessed memory location, otherwise out-dated data
is read.

Since the debugger has no access to the cache while the program execution is running, the data
is written to the physical memory. The new data has only an effect on the current program
execution if the debugger can invalidate the cache entry for the accessed memory location. This
useful feature is not available for most cores.

MMU

Debuggers have no access to the TLBs while the program execution is running. As a consequence run-time
memory access can not be used, especially if the TLBs are dynamically changed by the program.

In the exceptional case of static TLBs, the TLBs can be scanned into the debugger. This scanned copy of
the TLBs can be used by the debugger for the address translation while the program execution is running.

Tightly-coupled Memory

Tightly-coupled memory might not be accessible via the system memory bus.

Usage

The usage of the non-intrusive run-time memory access has to be configured explicitly. Two methods are
provided:

. Configure the run-time memory access for a specific memory area.

. Configure run-time memory access for all windows that display memory contents (not available
for all processor architectures).

©1989-2024 Lauterbach Training Basic Debugging | 58

Configure the run-time memory access for a specific memory area:

Enable the E check box to switch
the run-time memory access to ON

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I VY R I S [VA S

§4] B:Data.dump (ast) /DIALOG " A plain window frame
ED:0x4A326DCC [(#iFind..| [Modify-. | | [Long v] [CTrack [Hex [¥]Ascii indicates that the

address 0 4 8 information is updated
ENSD:4A326DC0 | BC79F602 7927C8BD DF53?F69+BC512D36

ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAF4F549 : LR = while the core is
ENSD:4A326DEQ | 00010101 01000101 00010001 00010100 ' i
ENSD:4A326DF0 | E2000100 64BFAEOE 0198A981 A8646741 NG - executing the program

trace][Data][Var][List][previous

g]| e

If the E check box is enabled, the attribute E is added to the memory class:

EP:1000 Program address 0x1000 with run-time memory access

ED:6814 Data address 0x6814 with run-time memory access

Write accesses to the memory work correspondingly:

le Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I+ »n[E o o Humsas @i P

[384 B::Data.dump (ast) /DIALOG (===
[#Find... | [Modify... | [Lon_q v] ME [DTrack .Hex [¥] Ascii
e 0123456?89ABCDEF —
BC79F602 7927CBBD DF53/FGIPBC512D36 HaYins Y1roE6- Qc
0000303A 4A326DCC E1D7B28C DAF4F549 :0 135y
I 00010101 01000101 00010001 00010100 2%
ENSD 4A3260F0 E2000100 64BF4ECB [DEEEEER] AB646741 TNEd% 8%

4

::[D. S ENSD:0x4A326DF8 %LE %Long Ox8a el Data.Set via run-time
memory access
(attribute E)

[[ok]][formats][<data=][<string=][options]

BND4A20R \eroiGotel_lbspece sttt |pan I

©1989-2024 Lauterbach Training Basic Debugging | 59

SYStem.MemAccess Enable ; Enable the non-intrusive
; run-time memory access

Go ; Start program execution

Data.dump E:0x6814 ; Display a hex dump starting at
; address 0x6814 via run-time
; Imemory access

Data.Set E:0x6814 0xAA ; Write OxAA to the address
; 0x6814 via run-time memory
; access

©1989-2024 Lauterbach Training Basic Debugging | 60

Configure the run-time memory access for all windows that display memory
(not available for all cores):

Misc Trace Probe Perf

Change Frame

3

B CPU Registers
FPU Registers
o Peripherals

If MemAccess Enable/NEXUS/DAP is
selected and DUALPORT is checked,
run-time memory is configured for

all windows that display memory

In Target Reset
Reset CPU Registers

File Edit View Var Break Run

éy B::5YStem

) Down
(©) NoDebug

Prepare

7 Go
() Attach
() StandBy

Up (StandBy)

@ up

SPC56EC74

e =]
- | Option ———— — Opﬁon.DisMode =
[C] mASKASM @ AUTO
@ NEXUS [Tl IMASKHLL DUALPORT (©) ACCESS
©) Denied [T 1CFLUSH — WATCHDOG —{ O FLE
— CpuAccess —— [T 1cREAD OFF ! © VLE
7 Enable DCREAD = LPMDEbUg B e —
@ Denied FREEZE OFF -
® Nonstop [CINOTRAP — ResetDetection — ———
................................. CIETK [DFF v] [CONFIG]
— BdmClock —— WA e
4.0MHZ ~

CPU Misc Trace Probe Perf Cov MPCSXXX Window Help

[_ﬂj B::Data.dump (flags) /Byte /DIALOG

All windows that display memory

D:0x40004128

Iijmd...] IMod\fy...] [E\rte '] [[Ctrack [MHex [Asci

have a plain window frame,

address

(=}
=
rJ
(=¥}
IS
L
)
-~
(==}
o
=
(=]
a}
=l
m
hl

5D

5D:
5D:
140004140
5D:
sD:
sD:
sD:
sb:

40004120
40004130

40004150
40004160
40004170
40004180
40004190

because they are updated while
the core is executing the program

=]
=
=]
=}
=]
=]
=]
=

=]
=]
=]
=}
=]
=]
=]
=]

4[] v o4

B:PER

g
fl
il

akeup Unit

(WKPU)

»

eriodic Interrupt Timer and Real Time

Interrupt

(PIT_RTI)

Timer Modul

el 0

F 00000000 C
NT 00000000

(5TM)
PS 00 FRZ 0O TEN

0

[m]

0 00000001
0 00000001
0 00009874

CEN 1
CIF 1

STM_CCR
STM_CIRL 00000000 C

CEN 0
IF 0

m

B:

:D. S 5D:0x40004148 %BE 0x99

[ok

| [formats | [<data> | [<strmg> | [options |

SD:40004148 \\diabc\Globalwtdef2+0xe unc i B |

<———— Write access is possible for all
memories while the core is
executing the program

©1989-2024 Lauterbach

Training Basic Debugging | 61

SYStem.MemAccess Enable

SYStem.Option.DUALPORT ON

Go

Data.dump 0x6814

Data.Set 0x6814 0xAA

Enable the non-intrusive
run-time memory access

Activate the run-time memory
access for all windows that
display memory

this SYStem.Option is only
available for some processor
architectures

Start program execution

Display a hex dump starting at
address 0x6814 via run-time
memory access

Write OxAA to the address
0x6814 via run-time memory
access

©1989-2024 Lauterbach

Training Basic Debugging |

62

Intrusive Run-Time Memory Access

If your processor architecture doesn’t allow a debugger to read or write memory while the core is executing
the program, you can activate an intrusive run-time memory access if required.

éy Bu:SYStem.view
Mode
) Dawn
_ MNoDebug
O Go
1 Aftach
_) StandBy
Up [StandBy)
@ Up

reset

RESetOut

4

[E=R(ESR (<D
Memaccess Option Option -
DA [C] IMASKASH [CIDACR
O TSMON3 [Tl IMASKHLL [T MMUSPACES
*) RealtOM [CITURBOD WP
O TrkMON [C] BigEndian] CFLUSH 3
°) GobhOM [¥| FesBreak CINY
@ Denied CIINTDIS
CpuAccess [V DBGACK. [Tl AMBA,
© Enahle <—F4EhawEnet ——hhEEA
* Denied [V|EnReset [CIEXEC
- Monstop [('wWaitReset [CsPUT -

([}

CpuAccess Enable allows an
intrusive run-time memory access

If an intrusive run-time memory access is activated, TRACE32 stops the program execution periodically to
read/write the specified memory area. Each update takes at least 50 us.

L L
core(s) is core(s) is stopped to allow
executing the program TRACE32 PowerView to read/write
the specified memory
The time taken by a short stop depends on various factors:
o The time required by the debugger to start and stop the program execution on a processor/core
(main factor).

J The number of cores that need to be stopped and restarted.
J Cache and MMU assesses that need to be performed to read the information of interest.
U The type of information that is read during the short stop.

©1989-2024 Lauterbach

Training Basic Debugging | 63

An intrusive run-time memory access is only possible for a specific memory area.

Enable the E check box to switch
the run-time memory access to ON

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

I Y I S [VA S

#44] B:Data.dump (ast) /DIALOG === A plain window frame

ED:0x4A326DCC [#3Find...] [Modify... | | [Long ~] WE [ITrack [@Hex [l Asci !ndlcates_: that the
address 0 4 8 C 0123456?89ABCDEF information is updated

ENSD:4A326DC0 | BC79F602 7927CEED DF537FG9PEC512D36 % while the core(s) is

ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAF4F549 :0 TN - .

ENSD:4A326DED | 00010101 01000101 00010001 00010100 R executing the program

ENSD:4A326DF0 | E2000100 64BF4EOE 0198A981 A8646741 '\3h5YNEdY! -

4

‘B::

trigger [devioes][trace][Data][Var][List
ning | |

A red S in the state line indicates that a TRACES32 feature is
activated that requires short-time stops of the program execution

Write accesses to the memory work correspondingly:

TRACE32 PowerView [E=RFENE)
Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

M E A+ o oausscs @22

#41] B:Data.dump (ast) /DIALOG =] ==
ED:0x4A326DCC [#iFind...] [Modify... | | [tong ~| FIE [ITrack @Hex [#Asci

address 0 4 8 C_0123456789ABCDEF |
ENSD:4A326DC0 | BC/9F602 7927CBED DF537F69PEC512D36 "0?'5“3 YILS16-0F
ENSD:4A326DD0 | 0000303A 4A326DCC E1D7B28C DAFAF549 :0%%em235525 1455
ENSD:4A326DED | 00010101 01000101 00010001 00010100 %3%hiitiiaitail
ENSD:4A326DF0 | E2000100 64BF4EOE 00000099 A8646741 §3SYNTdY L Agdi

4 13
B::D.5 ENSD:0x4A326DF8 %LE ¥Long 0x99 el - Data.Set via run-time
memory access with short
[[ok]][formats][<data=][<string=][options] StOp of the program
CrEE 3 v - execution

©1989-2024 Lauterbach Training Basic Debugging | 64

SYStem.CpuAccess Enable

Go

Data.dump E:0x6814

Data.Set E:0x6814 OxAA

Enable the intrusive
run-time memory access

Start program execution

Display a hex dump starting at
address 0x6814 via an intrusive
run-time memory access

Write OxAA to the address
0x6814 via an intrusive
run-time memory access

©1989-2024 Lauterbach

Training Basic Debugging |

65

Colored Display of Changed Memory Contents

Var Break Run CP

Access
@ default
B E

[Registers
14
:;| List Source
@Watch
@ Referenced Var mj Bu:Data.dump
ik
&df Locals Address / Expression
@ Stackframe with Locals
flags
@ Stackframe
o Peripherals)
& Symbols 4 i
EE smngs @ default
g Bookmarks - Byte
= Trace List ' WWard
£ | Message Area ' Long

Options

[Track

[¥] Orient

[V] Ascii

[¥] SpatLight

A

===

~ [&] @re

Flag
Fead
YWhrite:

Cancel

Enable the option SpotLight to mark the
memory contents changed by the last 4 single
steps in orange, older changes being lighter.

14 B::Data.dump (flags) /Spotlight /DIALOG

=@ =

Di0xPE7C [#1Find.. | [Modify.. |

Byte ~J

address A1 2 3456 7

21234567

FE

[7] Track Hex [¥]Ascii

SD:AAAAVE/B | 16 AS 3D 99+@1 @8 A1 A1
SD:PAAA7EBS | A1 P1 A1 A1 @1 81 81 A1
SD:PAAAVEBS | A1 P1 A1 A1 @1 81 81 AC
SD:PAAA7ESR | 8@ 47 A3 4A 58 C2 98 A1
SD:AAAA7ESS | BA M1 A1 85 33 15 99 B2
SD:PAAA7EAB | 1A PA 1@ 4B 6C 12 @D B2
SD:PAAAVEAB | 16 B6 2D 31 52 48 81 58

Fl

1A_95SHSS
&S OHUHH

SS5SES55S
HHHHHHHH

SSSSESSE
HHHHHHHE

H[lE JPC 2R
BGSJPE39
85587198
AHHSJE 32

ANilF]iCS
AvohlzZRx

£2-1RHSX

Data.dump flags /SpotLight

’

’

’

Display a hex dump starting at
the address of the label flags

Mark changes

©1989-2024 Lauterbach

Training Basic Debugging

66

The List Window

Displays the Source Listing Around the PC

]
¥ Registers i
144 Dump...
ﬁd‘ Watch

H Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

o Peripherals

& Symbols 4
1il Groups

‘ Bookmarks

] Trace List

[0

= | Message Area

File Edit View Var Break Ru

n CPU Misc Trace Perf Cov OMAP44BUapp Window Help

Ik alseelrnEew o ads @ o

e s |

erge | ¢/ Return |[@ up | o ||_mBreak]QMode]

[)I.Step][m over]@Div

addr/1ine |code

Tabel mnemonic comment

428
E1ACLO82

i -
primz = 1 + 1 + 3;

dsd ElnZadtbocl. bt

NSR:4A32659C [E2813003
429
NSR:4A3265A0 |E0S821003

420
NSR:4A3265A4

E3A04000

add r3,rl,#0x3
k=1 + primz;
add rl,r2,r3
register int i, primz, k;
int anzahl;

anzahl = 0;

]

mowv r4,#0x0
1 |

‘E!::

[devices][tra

NGR:4A326508 “derm‘dermlsnexem

File Edit View Var

Break Run

ce][Data][Var
B stopped at breakpoint

If MIX mode is selected for
debugging, assembler and HLL
information is displayed

CPU Misc Trace Perf Cov OMAP4430app Window Help

[nwsldeeru/Eow o HuNdas @i o

Bu:List

cup | [T Eireak]%Mod?]

[Mistep |[M over]LDwerge][queturn I

addr/1ine |source
426

i CHTaiEl T 1) : w

BhiNZesadubadutads

k =1 + primz;
while (k <= SIZE)

flags[k] = FALSE;
k += primz;

anzahl++;
abcd++;

trigger [devices][

trace][Data][Var

B NeR:4326598 Vdemoldemo'sieveHd4

istopped at breakpoint

If HLL mode is selected for
debugging, only HLL
information is displayed

©1989-2024 Lauterbach

Training Basic Debugging |

Displays the Source Listing of a Selected Function

Var Break Run CF
¥ Registers

144 Dump...

E’J List Source

ﬁﬂ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals
@ Stackframe

ﬂ Peripherals

Browse

Browse Modules

Browse Variables E!

Browse Types

il Groups
‘ Bookmarks

= | Message Area

Symbols Tree View
Symbols by name
Symbols by address
Sections

Source Search Paths
Overview

Details of Symbol

Select the function you
want to display

-

_1?', B::s¥mbol.Browse. Function EI@
W [t (3] Type Functions ~| [[] Source
bol type address Ly
uncl5 (stat nt () P:4A326544--4A32654B -
funclé (1) P:4A32654C--4A326553 =

P:4A326554--4A32655B =
P:4A32655C--4A326563

:] [BsList funcl7] = &
[Mstep |[M over |[MDiverge|| ¢ Return][¢up || »Go || M Break || Pmode |

addr/1ine |source | Ly

int funcl?({ short x1, short x2) /= Para‘

;gg) return x1%x2; [

4 1 +)

List [<address>] [/<option>]

Data.List [<address>] [/<option>]

Display source listing

Display source listing

©1989-2024 Lauterbach

Training Basic Debugging | 68

List

List E:

List *

List funcl7?

Display a source listing
around the PC

Display a source listing,
allow scrolling while the
program execution is running

Open the symbol browser to
select a function for display

Display a source listing of
funcl?

©1989-2024 Lauterbach

Training Basic Debugging

69

Breakpoints

Videos about the breakpoint handling can be found here:
support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Breakpoint Implementations

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip breakpoints.

Software Breakpoints in RAM

The default implementation for breakpoints on instructions is a Software breakpoint. If a Software breakpoint
is set the original instruction at the breakpoint address is patched by a special instruction (usually TRAP) to
stop the program and return the control to the debugger.

©1989-2024 Lauterbach Training Basic Debugging | 70

https://support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

The number of software breakpoints is unlimited.

(o)[E el

¢up || »co | M Break || ®Mode |&F][2.] 2

=i [Bulist]
[Mstep | over |[ADiverge][¢ Return ||
addr/1ine |source
674 " if.(.flags[.i.l.)
676 .- rimz =1 + 1 + 3;
677 =1 + primz;
678 .;:H]e ({ k == SIZE)
680 " flags[k] = FALSE;
681 . k += primz;
[¥
6831 anzahl++;
687 | return anzahl;
688 |F
4

-~

Break | Run CPU Misc 1

B3 Set..

2% Delete All
F Trigger Bus...
ZF OnChip Trigger...

8 B::Break List

Trigger Reset

(o)O sl

(3% Delete All|[O Dissie 8 || @ Enable All|[@ Init [2 Method... | 2 store... || 2 Load... || iiset... |

method

‘SOFT

ddress type
F:40001338JPr0gram

4

‘»’

s1eve’ 19

»

Breakpoints on instructions are called Program breakpoints by TRACE32 PowerView.

Please be aware that TRACE32 PowerView always tries to set an Onchip
breakpoint, when the setting of a Software Breakpoint fails.

©1989-2024 Lauterbach

Training Basic Debugging

71

Software Breakpoints in FLASH

TRACE32 allows to set Software breakpoints to FLASH. Please be aware that the affected FLASH sector
has to be erased and programmed in order to patch the break instruction used by the Software breakpoint.
This usually takes some time and reduces the number of FLASH erase cycles. For details refer to
“Software Breakpoints in FLASH” (norflash.pdf).

©1989-2024 Lauterbach Training Basic Debugging | 72

Onchip Breakpoints in NOR Flash

Most core(s) provide a small number of Onchip breakpoints in form of breakpoint registers. These Onchip
breakpoints can be used to set breakpoints to instructions in read-only memory like onchip or NOR FLASH.

5 (oo s
[M Step][® Over][.A.Di\rerge][+ Return][¢ up][» Go][11 Break][% Mode]@E]
addr/Tine |source |
674 . bl :
676 : rimz =1 + 1 + 3;
677 =1 + primz;
678 .;:H]e ({ k == SIZE)
Bl) flags[k] = FALSE;
681 . k += primz;
[}
683] . anzahl++;
687 | return anzahl; 4
688 |} -
M 3

Break | Run CPU Misc 1

B3 Set..

2% Delete All
F Trigger Bus...
ZF OnChip Trigger...

Tieoer et il B::Break List =]
Mgger Res
(3% Delete All|[O Dissie 8 |(@ Enable All|[@ Init [2 Method... | 2 store... || £ Load... || iiSet... |
address type method i
F:40001338JPr0gram ‘ONCHIP ‘ W s1eve’ 19 -
4 13

©1989-2024 Lauterbach Training Basic Debugging | 73

Since Software breakpoints are used by default for Program breakpoints, TRACE32 PowerView can be

informed explicitly where to use Onchip breakpoints. Depending on your memory layout, the following
methods are provided:

1. If the code is completely located in read-only memory, the default implementation for the

Program breakpoints can be changed.

Break | Run CPU Misc ~

B3 Set..
& List & B:Break METHOD ==
Program Read Write
2K Delete Al O AUTO @ AUTO @ AUTO
:) SOFT SOFT SOFT
- Trigger Bus... *) HARD ") HARD ") HARD
) OnChip Trigger.. @ Onchip _) Onchip _! Onchip
Trigger Reset
hipha Beta Charly Delta Echo
@ AUTO @ AUTO @ AUTO @ AUTO @ AUTO
SOFT) SOFT) SOFT) SOFT) SOFT
HARD) HARD) HARD) HARD) HARD
Onchip _! Onchip _! Onchip _! Onchip _! Onchip

Change the implementation of Program breakpoints to Onchip

Break.METHOD Program Onchip Advise TRACES32 PowerView to

implement Program breakpoints
always as Onchip breakpoints

©1989-2024 Lauterbach Training Basic Debugging | 74

2.

If the code is located in RAM and onchip/NOR FLASH you can define code ranges where

Onchip breakpoints are used.

MAP.BOnchip <range> Advise TRACE32 PowerView to implement Program
breakpoints as Onchip breakpoints within the defined
address range

MAP.List

Check your settings

MAP.BOnchip 0x0++0x1FFF

MAP.BOnchip 0xA0000000++0x1FFFFF

Check your settings as follows:

Trace Probe Pef Cov MI

& Frequency Counter...

£ Runtime

@ Load Map

A Flash Programming

4 Choose Colors...
& Interface Config...

& Tools

Japanese Menu

For the specified address ranges Program breakpoints are

implemented as Onchip breakpoints. For all other memory areas
Software breakpoints are used.

\

[0 B::Map List \< | = B [
address type bus bonchip attributes
A : APPPPPAB--BAPA1FFF “lhonchip -
A:AARRZBAB--9FFFFFFF
A:APPRBRABR--AB1FFFFF bonchip
A:APZABPAB—-FFFFFFFF

©1989-2024 Lauterbach

Training Basic Debugging | 75

Onchip Breakpoints on Read/Write Accesses

Onchip breakpoints can be used to stop the core at a read or write access to a memory location.

method

=] [BuList.auto] oo =
[Mistep |[M over]@Diverge][SReturn [@up | »co | mEBreak |[#|Mode | Find:
addr/1ine |source i
689 for (1 =03 1 <= SIZE ; i++) ‘
SR+ E— L CRARTEL 1)
I3 -
1 Variable
8 65 Add to Watch Window
695 fff View in Window
697 =8 Set\u’.alue... LSE:
698 &5 Modify Value...
+ GoTill v
e 1 a Breakpoint... 3
1 @ Advanced Breakpoint L4 s
1 — r ReadWrite g
Display Memory L4 Read
+] Grep in Sourcefiles spot
other L4
Alpha
Beta
Charly
Delta
Echo
0 B:Break List [E=3 B ™3
(3% Delete All|[O Disstie 8 |(@ Enable All|[@ Init [2 Method... | 22 store... || 2 Load... || EiiSet... |

‘ONCHIP ‘\.-’ tTags

4 b

address type
C :40004128——4000413AJWF‘|T_€

©1989-2024 Lauterbach

Training Basic Debugging |

76

Onchip Breakpoints by Processor Architecture

Refer to your Processor Architecture Manual for a detailed list of the available Onchip breakpoints.

For some processor architectures Onchip breakpoints can only mark single addresses (e.g Cortex-A9).
Most processor architectures, however, allow to mark address ranges with Onchip breakpoints. It is very
common that one Onchip breakpoint marks the start address of the address range while the second Onchip
breakpoint marks the end address (e.g. MPC57xx).

The command Break.CONFIG.VarConvert (TrOnchip.VarConvert in older software versions) allows to
control how range breakpoints are set for scalars (int, float, double).

Break.CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) the
ON breakpoint is set to the start address of the variable.
+ Requires only one single address breakpoint.
- Program will not stop on unintentional accesses to the variable’s
address space.
Break.-CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) breakpoints
OFF are set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses
to the variable’s address space.

- Requires two onchip breakpoints since a range breakpoint is
used.

The current setting can be inspected and changed from the Break.CONFIG window.

Example: the red line in the Data.View window shows the range of the Onchip breakpoint.

Q B::Data.View vint

[E=N NoR/~<")

symbo |
diab

breakpoint address | data [value
W SD:4000406C] 00 T

5D:4000406D | 00
5D:4000406E | 00
5D:4000406F | 00

4

T

I

Set an Onchip breakpoint to the start address of the variable wvint

Break.CONFIG.VarConvert ON
Var .Break.Set vint /Write

Data.View vint

’

; variable vint

Set an Onchip breakpoint to the whole memory range address of the

Break.CONFIG.VarConvert OFF
Var.Break.Set vint /Write

Data.View vin

©1989-2024 Lauterbach

Training Basic Debugging | 77

Q B::Data.View vint

breakpoint address | data [value

5D:4000406C| 00 ™
5D:4000406D) 00
5D:4000406E| 00
5D:4000406F || 00
5D:40004070 | 00

4

====
cEcEoEoic

A number of processor architectures provide only bit masks or fixed range sizes to mark an address range
with Onchip breakpoints. In this case the address range is always enlarged to the smallest bit mask/next

allowed range that includes the address range.

It is recommended to control which addresses are actually marked with breakpoints by using the

Break.List /Onchip command:

Breakpoint setting:

Var .Break.Set str2

Break.List

a B::Break.List EI@
(3% Delete All| (O Disable All (@ Enable All|[@ Init [& Method... | 22 store... | 2 Load... || EilSet... |
address type method i
C:20005524——2000553?JWF‘|te ‘ONCHIP ‘ W str2 »
I3
Break.List /Onchip
a B::Break.List /Onchip EI@
(3% Delete All| (O Disable All (@ Enable All|[@ Init [2 Method... | 22 store... || 2 Load... || EiiSet... |
address type method |onchip resource i
C:20005520——2000553?JWr1te ‘ONCHIP ‘Ol ‘ W ‘ (vppuTong)--(strZ+0x13) =
4 I3

ETM Breakpoints for ARM or Cortex-A/-R

ETM breakpoints extend the number of available breakpoints. Some Onchip breakpoints offered by ARM
and Cortex-A/-R cores provide restricted functionality. ETM breakpoints can help you to overcome some of

these restrictions.

ETM breakpoints always show a break-after-make behavior with a rather large delay. Thus, use ETM

breakpoints only if necessary.

©1989-2024 Lauterbach

Training Basic Debugging | 78

Program Breakpoints | Read/Write Data Value
Breakpoints Breakpoints
ARM7 Onchip breakpoints: Onchip breakpoints: Onchip Breakpoint:
ARMO9 up to 2, but address up to 2, but address up to 2, but address range
range only as bit mask | range only as bit mask | only as bit mask
(Reduced to 1 if soft-
ware breakpoints are ETM breakpoints: ETM breakpoints:
used) up to 2 exact address up to 2 data value breakpoints
ranges for exact address ranges
ETM breakpoints:
up to 2 exact address
ranges
ARM11 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
6, but only single 2, but only single no data value breakpoints
addresses addresses possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges possible ranges possible for exact address ranges
Cortex-A5 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
3, but only single 2, but address range no data value breakpoints
addresses only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges
Cortex-A7 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-R7 6, but only single 4, but address range no data value breakpoints
addresses only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges
Cortex-A8 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
6, but address range 2, but address range no data value breakpoints
only as bit mask only as bit mask possible
ETM breakpoints: ETM breakpoints: ETM breakpoints:
up to 2 exact address up to 2 exact address up to 2 data value breakpoints
ranges ranges for exact address ranges

©1989-2024 Lauterbach

Training Basic Debugging | 79

Program Breakpoints | Read/Write Data Value
Breakpoints Breakpoints

Cortex-R4 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-R5 2..8, but address 1..8, but address no data value breakpoints

range only as bit mask | range only as bit mask | possible

ETM breakpoints: ETM breakpoints: ETM breakpoints:

up to 2 exact address up to 2 exact address up to 2 data value breakpoints

ranges ranges for exact address ranges
Cortex-A9 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-A15 6, but only single 4, but address range no data value breakpoints
Cortex-A17 addresses only as bit mask possible

ETM breakpoints: ETM breakpoints: ETM breakpoints:

2 exact address ranges | — —

Program Breakpoints | Read/Write Data Value

Breakpoints Breakpoints

Cortex-A3x Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:
Cortex-A5x 6, but only single 4, but address range no data value breakpoints
Cortex-A6x addresses only as bit mask possible
Cortex-A7x
Cortex-R82 ETM breakpoints: ETM breakpoints: ETM breakpoints:
Cortex-X 2 exact address ranges | — —
Neoverse (more on request)
Cortex-R52 Onchip breakpoints: Onchip breakpoints: Onchip breakpoints:

8, but only single 8, but address range no data value breakpoints

addresses only as bit mask possible

ETM breakpoints: ETM breakpoints: ETM breakpoints:

up to 2 exact address — —

ranges

No ETM breakpoints are available for the Cortex-M family.

Please refer to the description of the ETM.StoppingBreakPoints command, if you want to use the ETM

breakpoints.

©1989-2024 Lauterbach

Training Basic Debugging | 80

Breakpoint Types

TRACE32 PowerView provides the following breakpoint types for standard debugging.

Breakpoint Types Possible Implementations
Program Software (Default)

Onchip
Read, Write, Onchip (Default)
ReadWrite

©1989-2024 Lauterbach Training Basic Debugging | 81

Program Breakpoints

Set a Program breakpoint
by a left mouse

= [BuList,

(o)[E el

[Mstep || % over |[\AdDiverge| ¢ Return ||

eup |

addr/1ine |source

P Go [I Break || ¥ Mode]@E} L

674

676
677
678

680
681

double-click
to the instruction

687 |
688 |}

it (flags[i 1.0

return anzahl;

rimz =1 + 1 + 3;
=1 + primz;)
while (k <= SIZE)

' flags[k] = FALSE;
k += primz;

anzahl++;

-~

The red program breakpoint indicator marks all code lines for which a Program breakpoint is set.

The program stops before the instruction marked by the breakpoint is executed (break before make).

Disable the Program
breakpoint by a

left mouse double-click
to the red program
breakpoint indicator.

The program breakpoint

= Bulist =5 EoR |
| M Step || W Over || + Mext || + Return || ¢ up || b Go || 11 Break | ¥ Mode |
addr/1ine |code i label mnemonic comment i
426 if (flags[1 1)
NSR:4A326590 |E ldrb rl,[r12,+r2]
NSR:4A326594 cmp rl,#0x0
NSR:4A326598 |0 beq Ox4A3265F8
428] primz =1 + i + 3;
NSR:4A326! sl rl,r2,#0x1 S
NSR:4A3265A0 | add r3,rl,#0x3
429 k=1 + primz;
NSR:4A3265A4 |EOE add rl,r2,r3

) register int i, primz, k;

int anzahl;

m

indicator becomes grey.

Break.Set <address> /Program [/DISable]

Set a Program breakpoint to the specified address.

The Program breakpoint can be disabled if required.

©1989-2024 Lauterbach

Training Basic Debugging

82

Break.

Break.

Break.

Break.

Break.

Break.

Set 0xA34f /Program

Set funcl /Program

Set funcl+0xlc /Program

Set funcll\7

Set funcl7 /Program /DISable

List

set a Program breakpoint to
address 0xA34f

set a Program breakpoint to the
entry of funcl
(first address of function funcl)

set a Program breakpoint to the
instruction at address

funcl plus 28 bytes

(assuming that byte is the
smallest addressable unit)

set a Program breakpoint to the
7th line of code of the function
funcll

(line in compiled program)

set a Program breakpoint to the
entry of funcl7
diable Program breakpoint

list all breakpoints

©1989-2024 Lauterbach

Training Basic Debugging | 83

Read/Write Breakpoints

= [BeList]

=N Hoh/<

[M ostep || ¥ Over [¥ next |[¢ Return|[@ up ||

PGo [I Blreak |[¥ Mode | Find:

addr/Tine |source | =
426 %F (flags[7 1) "
——— 1 T N S
429 E =1+ EF"I ;
430 1%.'h'i'|e { k <= SIZE)
432 H [l 1 — carce.
433 F Variable | |
% Add to Watch Window E
435 anzahl++; .
436 abcd++; o] View in Window -
Il I &5 Set Value... o
&5 Modify Value...
+ GoTill 3

a Breakpoint...
@ Advanced Breakpoint
‘. Breakpoints

Display Memaory

=l| Display Trace
7 Grep in Sourcefiles

other

ReadWrite

On most core(s) the program stops after the read or write access (break after make).

4 Grep in Sourcefiles

other

1 [:List] [E=5 | Eem >
[Mistep |[M over || $next | Return|[@ up |[»Go |[M Break |[¥ Mode | Find:
addr/Tine [source [| 'y
426 %F (flags[7 1) -
| I——— 1. imz =1 .+ i+ 3;
429 % Er'lmz;
430 while (k <= SIZE)
:;% = Variable
&5 Add to Watch Window 3
435 anzahl++; View in Wind
436 abcd++; afd‘ e in Hindow 5
a | = G Set Value... o
i &5 Modify Value...
+ GoTill ’
a Breakpoint...
Bl Advanced Breakpoint >
‘. Breakpoints 4 ReadWrite
i Display Memory L4 Read

Spot

Core stops at
a read access
to the variable

Core stops at
a write access
to the variable

©1989-2024 Lauterbach

Training Basic Debugging |

84

ﬁj Bi:Var.View \\sieve\Global\flags EI-@

\Globallftlags = (

-
-

DDDDDDDDDD

[=lslalalelelslelal]

Pty

If an HLL variable is displayed,
a small red breakpoint indicator
marks an active Read/Write breakpoint.

A small grey breakpoint indicator

marks a disabled Read/Write breakpoint.

Break.Set <address> | <range> /Read | /Write | /ReadWrite [/DISable]

; allow HLL expression to specify breakpoint

Var.Break.Set <hll_expression>/Read | /Write | /ReadWrite [/DISable]

Break. Set

Break.Set ast /Write

Break. Set

Var .Break.

Var.Break.Set flags[3]

Var .Break.

Break.List

0x0B56 /Read

Set flags /Write

vpchar+5 /ReadWrite /DISable

Set ast->count /ReadWrite /DISable

©1989-2024 Lauterbach

Training Basic Debugging

85

Breakpoint Handling

Breakpoint Setting at Run-time

éy B::5YStem EI@
Mode MemAccess DisMode
_ Down @ DAP @ AUTO
_ NoDebug I TSMON3 I ACCESS
_ Prepare _) RealMON ' ARM
1 Go ' TrkMON _ THUMB
) Attach) GdbMOMN
_) StandBy _ Denied
Up (StandBy) CpuAccess CONFIG
@ Up _) Enable DETECT
@ Denied
reset _ Nonstop |
RESetOut WaitReset
OFF
CPU JtagClock
OMAP4430 Ctck 30.0MHz -
Software breakpoints
J If MemAccess Enable/NEXUS/DAP is enabled, Software breakpoints can be set while the

core(s) is executing the program. Please be aware that this is not possible if an instruction cache
and an MMU is used.

J If CpuAccess is enabled, Software breakpoints can be set while the core(s) is executing the
program. If the breakpoint is set via CpuAccess the real-time behavior is influenced.

J If MemAccess and CpuAccess is Denied Software breakpoints can only be set when the
program execution is stopped.

The behavior of Onchip breakpoints is core dependent. E.g. on all ARM/Cortex cores Onchip breakpoints
can be set while the program execution is running.

©1989-2024 Lauterbach Training Basic Debugging | 86

Real-time Breakpoints vs. Intrusive Breakpoints

TRACE32 PowerView offers in addition to the basic breakpoints (Program/Read/Write) also complex
breakpoints. Whenever possible these breakpoints are implemented as real-time breakpoints.

Real-time breakpoints do not disturb the real-time program execution on the core(s), but they require a
complex on-chip break logic.

If the on-chip break logic of a core does not provide the required features or if Software breakpoints are
used, TRACES32 has to implement an intrusive breakpoint.

Intrusive breakpoint perform as follows:

|

Program execution <&

'

Stop program execution Continue with
at breakpoint hit program execution

Check not ok

Perform
required check

Check ok

Stay stopped

Each stop to perform the check suspends the program execution for at least 1 ms. For details refer to
“StopAndGo Mode” (glossary.pdf)

‘B::

trigger [devices H trace H Data H Var H other H previous
I Mx_up

The (short-time) display of a red S in the state line indicates that an intrusive breakpoint was hit.

©1989-2024 Lauterbach Training Basic Debugging | 87

Intrusive breakpoints are marked with a special breakpoint indicator:

©1989-2024 Lauterbach Training Basic Debugging | 88

Break.Set Dialog Box

There are two standard ways to open a Break.Set dialog.

1 etis]
[Mistep |[M over]LDwerge][quetum L eup |

addr/1ine |source |

Wt It flagsL i L)
T Trigger Bus.. or
ZF OnChip Trigger... :gg 1'.'h‘|='-|; Prog.ram Address
- f + GoTill
Trigger Reset 432 * int... E
053 / e Ereakpoints 4 d
435 nzahl ﬂ Display Memaory L4 =
[IE<] L1 / £ Bookmark... b
£ gE Toggle Bookmark
4f Set PC Here
%Edit Source
& View Info

F B
a Bi:Break.Set E@g

— address [expression
o =
— type options — method
@ Program [T Exclude [ITemporary
() ReadWrite [T NoMmark [T p1Sable - action
©) Read [p1SableHIT stop -
) Write DATA
0 default [v] [¥ advanced |
| —T— [Add | [Dpeete] [cancel |

©1989-2024 Lauterbach Training Basic Debugging | 89

The HLL Check Box - Function Name

sYmbol.INFO funcll ; display symbol information
; for function funcll

% BusYmbolINFO funcll = ==
[% symbols || #tipump || Slust || O view || $8mmu |

laddress info .
attr: FLE

ifunction

wdiabchdiabch Funcll

P :40000BF0--40000C87 global static

function info
= size: 0. push: [] use: [RO,R1,R3,R4,R5,R6,R7,RE,R9,R10,R11,R12]

epilog: P:40000C74
exit: P :40000C84

module info
anguage: ELF-C
producer: Diab Data, Inc:dcc Rel 4.0b:PPC603

source: I:4T32DEMOYPOWERPCY,55xx " code_0x40000020_data_0x40004000 diabc. c
type
(int () function (int)

(int) signed integer (32 bits)

Function Name/HLL Check Box OFF

Program breakpoint is set to the function entry (first address of the function).

a B::Break.Set

— address / expression
funcil

options

|| @ Program [Exclude [CITemporary
() ReadWrite [noMark [l p1sable

©) Read [C] p1SableHIT

) Write — DATA

* default v] advanced |

Ok Delete [Cancel]

i B::Break List ===
[x Delete AJI][O Disable AJI][@ Enable AJI][& Init][&Memod...]@ Store...][=2 Load...]@ Set...]

address type methed | [] :

F :40000BF0[[Program SOFT funcll -

‘v

©1989-2024 Lauterbach

Training Basic Debugging | 90

Break.Set funcll

©1989-2024 Lauterbach Training Basic Debugging | 91

Function name/HLL Check Box ON (only for special use cases)

J If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint
implemented as Onchip is set to the full address range covered by the function.

. If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the
complete address range of the function.

J otherwise this breakpoint is rejected with an error message.

a Bu:Break.Set

— addressf expression ...
funct1 V] HLL| -

— e ————————— — UptIUI"IS method -
|| @ Program [EXclude [ClTemporary
) ReadWrite 7] Nomark 7] pISable " action —————
) Read [T D1SableHIT stop
) Write - DATA ———
O default [v] [¥ advanced |

Ok] Cancel]

8 B::Break List ===
[3% Delete All|[© Disable All (@ Enable Al @ mnit |[& Method...|[52 Store... [£ Load...]@ Set.. |
address type method |
F:400003F0——40000€8?JPFogram ‘ONCHIP ‘ W funcll -

Var.Break.Set funcll

©1989-2024 Lauterbach Training Basic Debugging | 92

The HLL Check Box - Program Line Number

display debug information
for 7th program line in
function funcl0

sYmbol .INFO funclO\7

I

7

% BusVmbolINFO func10\7 = =R
Symbols it Dump = List Q, View vy
Tine
diabc_inthdiabc 362--362 C:i\Usersiraloulou’Documents’\T32\demo’powerpcihardware\mpcs5xx\mpe55xxdemo’diabe. c
P:400007BC--400007C7
module info
anguage: ELF-C
producer: Diab Data, Inc:dcc Rel 4.0b:PPCE03
source: I:%T32DEMOPOWERPC55xx" code_0x40000020_data_0x40004000%diabc. c
£ >

Program Line Number/HLL Check Box OFF

Program breakpoint is set to the first assembler instruction generated for the program line number.

&3 B:Break.Set - O *
address / expression
[funcion “| [2 |Owe | O~
type options method
(®) Program [Exclude [Temporary auto ~
(O ReadWrite [NoMark [Disable action
() Read [DeleteHIT [DisableHIT stop w
O Write DATA
Add Delete Cancel
a B::Break.List EI@
B Setup... | 3K Delete All | O Disable All | @ Enable All @ Init | SZstore.. | T2 load.. | [Set..
address e method |

typ
P:40000?BCJPr‘ogr‘a.m |SOFT | " j| Tunclly7

Break.Set funclO\7

Program Line Number/HLL Check Box ON

. If the on-chip break logic supports ranges for Program breakpoints, a Program breakpoint
implemented as Onchip is set to the full address range covered by all assembler instructions

generated for the program line number.
. If the on-chip break logic provides only bitmasks to realizes breakpoints on instruction ranges, a
Program breakpoint implemented as Onchip is set by using the smallest bitmask that covers the

Training Basic Debugging | 93

©1989-2024 Lauterbach

complete address range of the program line.

. otherwise this breakpoint is rejected with an error message.
&3 B:Break.Set - O *
address / expression
[funcion v [2 |&Ehe | O
type options method
@Program [EXclude I:‘Ter'nporar)‘r auto ~
(O ReadWrite [NoMark [Disable action
() Read [DeleteHIT [DisableHIT stop w
O Write DATA
Add Delete Cancel
&9 B:Break.List =N Eo

B Setup... | 3K Delete All | O Disable All | @ Enable All @ Init | SZstore.. | T2 load.. | [Set..

address type method |
P:400007BC--400007C7 [Program OMCHIP | < /| Tunclo’7

©1989-2024 Lauterbach Training Basic Debugging | 94

The HLL Check Box - Variable

sYmbol .INFO flags ; display symbol information
; for variable flags

% BusYmbolINFO flags ===
(2 symbols |[#tioump |[Eust || G view || 88 mmu |
laddress 1nfo

attr: DATA E
ariable
\\sieve_cm\Global\Flags

D:20005500--20005512 global static 3
type
(char [19]) array (char, 19 bytes, 0..18)

(char) unsigned integer (8 bits)

4

Variable/HLL Check Box OFF

Selected breakpoint (ReadWrite/Read/Write) is set to the start address of the variable.

il B::Break Set f= | & ==
— Eddressf expression ... ——
flags - [z ElHL) B+
— type Optior'ls method
) Program [Exclude [l Temporary
() ReadWrite [T NoMmark [T p1Sable - action —————
) Read [“] p1SableHIT stop -
© Write DATA — S
© default [|| | [¥ advanced |
[Ok] [Add] [Delete] [Cancel]
i B::Break List =nEoR=
5% Delete All|[O Disable All(@ Enable Al @ it |[ZMethod...| 2 Store... || B load... || EdSet.. |
address type method |
C:ZDDDSSDDJWMte ‘ONCHIP ‘ W tTags G
4 3

Break.Set flags

©1989-2024 Lauterbach Training Basic Debugging | 95

Variable/HLL Check Box ON

. If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the variable.

. If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address
range used by the variable.

B B:Break.Set = -2/
address [expression
flags - EEHLL [
type options method
*) Program [Exclude [CITemporary
*) ReadWrite [C] nomark [T p1Sable action
*) Read [p1SableHIT stop -
2 Write DATA
_) default [v] [¥ advanced]
[Ok] [Add] [Delete] [Cancel]
i B::Break List = -E]
(3% Delete All| [Disable All (@ Enable All|[@ Init][2 Method... | 22 store... || £ Load... || EiiSet... |
address type method i
C:20005500——20005512JWr1te ‘ONCHIP ‘ W tTags z
I3

Var.Break.Set flags

©1989-2024 Lauterbach Training Basic Debugging | 96

The HLL Check Box - HLL Expression

sYmbol .INFO flags ; display symbol information
; for variable flags

% BusYmbolINFO flags ===
[% symbols || #tipump || Slust || O view || $8mmu |

laddress 1nfo -
attr: DATA

ariable
\\sieve_cm\Global\Flags

D:20005500--20005512 global static

m

type
(char [19]) array (char, 19 bytes, 0..18)

(char) unsigned integer (8 bits)

Variable/HLL Check Box Must Be ON

If you want to use an HLL expression to specify the address range for a Read/Write breakpoint, the HLL
check box has to be checked.

. If the on-chip break logic supports ranges for Read/Write breakpoints, the specified breakpoint is
set to the complete address range covered by the HLL expression.

o If the on-chip break logic provides only bitmasks to realizes Read/Write breakpoints on address
ranges, the specified breakpoint is set by using the smallest bitmask that covers the address
range used by the HLL expression.

il B::Break Set = = =
address / expression
flags[3] - I@ |-
type options method
*) Program [Exclude [“ITemporary
") ReadWrite [C] nomark [C]p1Sable action
*) Read [p1SableHIT stop -
9 Write DATA
_) default I v] [¥ advanced |
[Ok] [Add] [Delete] [Cancel]
54 B::Break List == ES]
(3% Delete All| [Disable All (@ Enable All|[@ Init][2 Method... | 22 store... || 2 Load... || EiiSet... |
address type method i
C:20005503——20005503JWr1te ‘ONCHIP ‘ v FTags[3] -
I3

©1989-2024 Lauterbach Training Basic Debugging | 97

Var.Break.Set flags[3]

©1989-2024 Lauterbach Training Basic Debugging | 98

Allow Wildcards in address/expression

Set Program breakpoints the all function that match the defined name pattern.

f a Bu:Break.Set

=)

address [expression

- FHL F= J‘— Check * to enable wildcard usage

Fl

func2*®
type options method
@ Program [T Exclude [ClTemporary
") ReadWrite [T NoMark [T D1Sable action
) Read [T D1SableHIT stop -
) Write DATA
© default [~| | | [¥ advanced |
[Ok] [Add] [Delete] [Cancel]
80 BuBreakList [E=5EeR
(3% Delete All|[O Dissie 8 | (@ Enable All|[@ Init [2 Method... | 2 store... || £ Load... || iiSet... |
address type method i
F : 40000080]Program SOFT W func? -
F:40000114 [Program SOFT W funcZa
F:40000174 [[Program SOFT W funcZb
F:400001D0 [[Program SOFT W func2c
F:400002A8 [[Program SOFT W func2d
F :40000E2C [[Program SOFT W func20
F:40000E80 [[Program SOFT W func2l
F :40000EDO [[Program SOFT W func22
F:40000F20|Program SOFT W func23
F:40000F70|Program SOFT W func24
F :40000F90 [Program SOFT W func2s
F :40000FB4 [[Program SOFT W func2é
F :40000FD4 [[Program SOFT W func2? -

Requires sufficient resources if Onchip breakpoints are used.

Break.SetPATtern func2*

©1989-2024 Lauterbach

Training Basic Debugging

99

Implementations

3l B::Break Set = = =
— addressf’ expression ...
sieve - B B
— type OptiOI"IS method
@ Program [EXclude [l Temporary <— Implementation
() ReadWrite [T NoMark [T p1Sable = auto -
[Read ["] D1SableHIT gﬁ;'—ip
(5] Write DATA S R —— |
© default (|| | [¥ advanced |
Ok] [Add] [Delete] [Cancel]
Implementation
auto Use breakpoint implementation as predefined in TRACE32 PowerView.
SOFT Implement breakpoint as Software breakpoint.
Onchip Implement breakpoint as Onchip breakpoint.

©1989-2024 Lauterbach

Training Basic Debugging

100

Actions

a B::Break.Set EM
address [expression
+ (&) Ene =
type options method
@ Program [Exclude [CITemporary
() ReadWrite [noMark [l p1sable action
) Read [T D1SableHIT stop -
) Write DATA stop
Spot
) default L -] Apha
Beta
roT— [add | [Delete | Charly
Delta -
Echo r
WATCH
TraceEnable
TraceData
TraceON
TraceOFF
TraceTrigger
BusTrigger
BusCount

By default the program execution is stopped when a breakpoint is hit (action stop). TRACE32 PowerView
provides the following additional reactions on a breakpoint hit:

Action (debugger)

Spot The program execution is stopped shortly at a breakpoint hit to update the
screen. As soon as the screen is updated, the program execution continues.

Alpha Set an Alpha breakpoint.

Beta Set a Beta breakpoint.

Charly Set a Charly breakpoint.

Delta Set a Delta breakpoint.

Echo Set an Echo breakpoint.

WATCH Trigger the debug pin at the specified event (not available for all processor
architectures).

Alpha, Beta, Charly, Delta and Echo breakpoint are only used in very special cases. For this reason no
description is given in the general part of the training material.

©1989-2024 Lauterbach Training Basic Debugging | 101

Action (on-chip or off-chip trace)

TraceEnable

Advise on-chip trace logic to generate trace information on the specified event.

TraceON Advise on-chip trace logic to start with the generation of trace information at the
specified event.
TraceOFF Advise on-chip trace logic to stop with the generation of trace information at the

specified event.

TraceTrigger

Advise on-chip trace logic to generate a trigger at the specified event.
TRACE32 PowerView stops the recording of trace information when a trigger is
detected.

A detailed description for the Actions (on-chip and off-chip trace) can be found in the following manuals:

“Training Arm CoreSight ETM Tracing” (training_arm_etm.pdf).

“Training Cortex-M Tracing” (training_cortexm_etm.pdf).

“Training AURIX Tracing” (training_aurix_trace.pdf).

“Training Hexagon ETM Tracing” (training_hexagon_etm.pdf).

“Training Nexus Tracing” (training_nexus.pdf).

or with the description of the Break.Set command.

©1989-2024 Lauterbach

Training Basic Debugging | 102

Example for the Action Spot

The information displayed within TRACE32 PowerView is by default only updated, when the core(s) stops
the program execution.

The action Spot can be used to turn a breakpoint into a watchpoint. The core stops the program execution at
the watchpoint, updates the screen and restarts the program execution automatically. Each stop takes

50 ... 100 ms depending on the speed of the debug interface and the amount of information displayed on
the screen.

Example: Update the screen whenever the program executes the instruction sieve\11.

il B::Break Set =[]

address [expression

sieve\11 - B B

type options method

@ Program [EXclude [l Temporary auto A

") ReadWrite [T NoMmark [T D1Sable action

* Read [“] p1SableHIT

) Write DATA

_) default I v] [¥ advanced]

[T] a B::Break.List EI@

(3% Delete All| [Disable All (@ Enable All|[@ Init][/2 Method... | 22 store... || 2 Load... || EiiSet... |
address type method |action i
T:ZDDU_‘LSGAjProgram ‘SOFT ‘SPOT ‘ W s1eve’ 11 z
I3

©1989-2024 Lauterbach Training Basic Debugging | 103

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

(M A+ pn| B 2R O EHEE s @ 12

=] BuData.List

(= [= =]

[Mistep |[M oOver]@Dwerge][+ Return |

eup |

» Go][Il Break]&mde]_

addr/1ine |source

—1

if (FlagsLi])

424 for (1 =0 ; 1 <= SIZE ; 14+)

rimz =13 + i + 3;

-

=1 + Z 5
while (B e)

<!

flags[k] = FALSE; -

3

ﬂ B:Var.Local EI@

s1eve()
L i=4
= anzahl = 3

3
8
4
0B

54000800
54000000

3
4A326DCC
0

RE
R9
R10
R11
R12
R13
R14
PC

4A326DB4 5| stack | .

4A326DB4
3039

1
4A326DEOQ
4A326FE4
4A3266B0
4A3265A0

CPSR 200001D3

£

trigger [devices][trace][

NSR:4A3265A0 \\demo'\demo\sieve+0x3C

Break.Set sievel\ll

spotted

/Spot

spotted indicates a breakpoint with the action Spot

©1989-2024 Lauterbach

Training Basic Debugging

104

Options

rﬁ Bu:Break.Set == &1
address [expression
- Huw =
- type UptiUr'IS - method
@ Program [[] Exclude [CITemporary
() ReadWrite [NoMark [l pIsable - action —————
) Read [T D1SableHIT stop -
) Write DATA —
© default L‘ || | [¥ advanced |
Ok] [Add] [Defete] [Cancel]
Options
Temporary OFF: Set a permanent breakpoint (default).
ON: Set a temporary breakpoint. All temporary breakpoints are deleted
the next time the core(s) stops the program execution.
DISable OFF: Breakpoint is enabled (default).
ON: Set breakpoint, but disabled.
DISableHIT ON: Disable the breakpoint after the breakpoint was hit.

©1989-2024 Lauterbach

Training Basic Debugging | 105

Example for the Option Temporary

Temporary breakpoints are usually not set via the Break.Set dialog, but they are often used while

debugging.
Examples:
. Go Till
= BuList [E=H el
[MisStep |[M oOver]@Diverge][Retun | @up || »Go || NHBreak]%Mode | Find: demo.c
addr/1ine |source |
24 for (1 =0; 1 <= SIZE ; 1++) o~
; rimz =1 + 1 + 3;
=1 + primz;
while { k <= SIZE) _
{ [
Program Address e -
:
a Breakpoint... —
e Ereakpoints L4
i Display Memory L4

I Go <address> [<address> ...]

ﬁ% Bookmark...

g Toggle Bookmark
4§ Set PC Here

% Edit Source

& ViewInfo

; set a temporary Program breakpoint to
; the entry of the function func4
; and start the program execution

Go func4

; set a temporary Program breakpoints to

; the entries of the functions func4,

; and start the program execution

Go func4 func8 func9

func8 and func9

©1989-2024 Lauterbach

Training Basic Debugging

106

. Go Till -> Write

I Var.Go <hll_

expression> [/Write]

5] [BList NSR:0x4A326624] [= | = |[eE3]
[MisStep |[M over]LDLverge][quetum L eup | J[_1nBreak |[#Mode | Find: demo.c
addr/1ine |source | | '
373 abed = 0; -
375 \gh'i'le ({ TRUE)
377 viripplearray[0][0][0] = 1;
378 vtripplearray[1][0][0] = 2;
379)
380 vtripplearray[0][0][1] Variable
ﬁﬂ Add to Watch Window D
St func2(); ol View in Window
384 func2al(); &3¢ Set Value...
il e &5 Modify Value... - \
= ReadWrite i

Read

a Breakpoint...
@ Advanced Breakpeint

e Breakpoints

* v v v

4 Grep in Sourcefiles
other 4

; set a temporary write breakpoint to the variable
and start the program execution

; vtripplearray[0][1]1[0]
Var.Go vtripplearray[0] [1] [0] /Write

©1989-2024 Lauterbach

Training Basic Debugging

107

. Go.Return and similar commands

= [BuList]

(=)[E sl

[Mistep |[M over HEDivergeﬂqueturnl—[¢up || »Go | mBreak || ¥mode | Find:

addr/T1ine |source

demo.c

g01d funcZzal)

auto char autovar;
register char regvar;

155 autovar = regvar = mstaticl;
156 autovar++;
| 158 for ({ regvar = 0; regvar < (char) 5 ; regvar++)
159 | vchar += regvar*autovar;
160 [}
J 4 m

I Go.Return

7
I

12

first Go.Return

set a temporary breakpoint to the start of the function epilogue

and start the program execution

Go.Return

7

I

I

I

7

stopping at the function epilog first has the advantage

local variables are still wvalid at this point.

second Go.Return
set a temporary breakpoint to the function return
and start the program execution

Go.Return
% BusYmbolINFO func2a o ==
(% symbols || #tipump || Slust || O view || $8mmu |
laddress info -
attr: FLE
function

wdiabchdiabc\FuncZa

P:40000114--40000173 global static

function info

= size: 0. push: [] use: [RO,R1,R3,R4,R5,R6,R7,RE,R9,R10,R11,R12]

epilog: P :4000015C
exit: P:40000170
#pdu]e info

a : ELF-C

Diab Data, Inc:dcc Rel 4.0b:PPC603
I:4T32DEMOYPOWERPCY, 55xx " code_0x40000020_data_0x40004000 diabc. c

|

type
Cvoid () function (void)
(void) void

that the

©1989-2024 Lauterbach

Training Basic Debugging

108

DATA Breakpoints

The DATA field offers the possibility to combine a Read/Write breakpoint with a specific data value.

J DATA breakpoints are implemented as real-time breakpoints if the core supports Data Value
Breakpoints (for details on your core refer to “Onchip Breakpoints by Processor Architecture”,
page 77).

TRACES32 PowerView indicates a real-time breakpoints by a full red bar. I

TRACE32 PowerView allows inverted data values if this is supported by the on-chip break logic.

J DATA breakpoints are implemented as intrusive breakpoints if the core does not support Data
Value Breakpoints. For details on the intrusive DATA breakpoints refer to the description of the
Break.Set command.

TRACE32 PowerView indicates an intrusive breakpoint by a hatched red bar.

/77

TRACE32 PowerView allows inverted data values for intrusive DATA breakpoints.

©1989-2024 Lauterbach Training Basic Debugging | 109

Example: Stop the program execution if a 1 is written to flags[3].

B B:Break.Set
— BUArESS { @UPIEESION e
flags[3] -
options method ———
*) Program [[] Exclude [C]Temporary auto -
() ReadWrite [T NoMmark [T p1Sable i
) Read [T p1SableHIT stop -
a Write e — |
* default 1. [||| [¥ advanced |
[ok | L add | [@ pspreaklist EE@
[xDeleteAJI][ODcsabIeAJI][@EnabIeAJI][@ it |[& Method..]@Store . 2 Load...]@Set
addre type method |data
C: 20005503——20005503|Wr‘|te ONCHIP BYTE Ox1 f-lags[3:| -
4 3
/A TRACE32 PowerView [F=5 EoR
File Edit View Var Break Run CPU Misc Trace Pef Cov S5TM32Fdx Window Help
TR D ERE S E @O
[E=5EeR 5

[}E.Step][¥ Over][.&Dr\ferge][(J‘Return][

» Go || I Break |

addr/1line |source

C,EUp Il E"“Mode J(&=t) 2] 3

for. (d.=

-

0. d.==5I7E ; flags[i++] = TRUE } ;

for (i = 0;
if

i <= SIZE; i++) 1
(flags[i]) {
r'|me—'|+'|+3 3
i+ prime;
wh'l'le (k == sIZE) {

|f'| ags [3] =1

4

[B::Break List

IEIEI

[deetem][ousauem][@amauem][@ Init || 2 Method... | 52 store..][EFrBLoad]@Set

addre ype method |data
c: 20005503——20005503|lr1te ONCHIP [BYTE Ox1 ‘ v @] -
4 [
B::|
[cmnponmts] [trace] [Data] [Var] [List] [PERF] [other

ST:2000154E \\sieve_cm\sieve\sieve+0x26

|stopped by r/w breakpoint

Var .Break.Set flagsl|

3] /Write /DATA.auto 1.

©1989-2024 Lauterbach

Training Basic Debugging |

110

Example: Stop the program execution if another value then 1 is written to flag[3].

a B::Break.5et EI@
addressfexpression —
flags[3] - (2] @Hu

- type UptiUnSimp|emenmﬁ0n
) Program [T Exclude [C1Temporary
) Readwrite [CInoMARK [TIp1sable - action ——— {
) Read [7] D1SableHIT stop -
@ Write DATA ——
© default n [||| [¥ advanced |
[Ok] [Add] [Delete] [Cancel]

e B::Break.List

(& Delete All|[O Disable Al @ Enable All [© it][S mpl...]L Store... || 5 Load...]L Set...
address types imp]l i
C:4000412E§T¢'r1te ‘ONCHIP ‘B‘FI'E T0x1 ‘ tTags[3] %

Edit View

File

Var Break Run CPU

(M K|+ & » | 2w

Misc Trace Perf Cov MPCSXXX Window

| e

=R Al

Help

=1 [BuList.HIN

_ [Mstep |[Mover || $next | #Retun | @up | »Go | NEBreak HEMode | Find:

addr/1ine |source
677

k=17 + primz;
while { k == SIZE)

flags[k] = FALSE;
k += primz;

b
anzahl++;

m

SF:40001330 \\diabc\diabc\sieve+0x38

Var.Break.Set flags[3] /Write /DATA.auto

ool N Ve T T =
‘-lf'lags[{l =0 &
4 2
gy e
[Delete All (O Disable Al (@ Enable All|[@ Init || Zmpl... || 52 store... || Sload... || Kilset... |
address types imp]l data i
C:4000412B[Write ‘ONCHIP FYTE TOx1 ‘ fTags[3]
2
‘B: :
emulate trigger [devices] [trace | [Data | [Var | [List] [other | [previous
stopped byr/w breakpoint HLL |UP

1.

©1989-2024 Lauterbach

Training Basic Debugging

111

If an HLL expression is used TRACE32 PowerView gets the information if the data is written via a byte, word
or long access from the symbol information.

If an address or symbol is used the user has to specify the access width, so that the correct number of bits is

compared.
il B::Break Set ===
address [expression
oxt1def - FIHLL
type options implementation
) Program [C] Exclude [CITemporary
) ReadWrite [T nOMARK [C] p1sable action
) Read [“] D1SableHIT stop -
@ Write DATA
© default 1234. [+|| | [¥ advanced |
)) ol
Long
Quad
TByte
Tword |

Break.Set Oxlldcf /Write /DATA.Word 1234.

©1989-2024 Lauterbach

Training Basic Debugging

112

Advanced Breakpoints

.
il B:BreakSet = | B |t

— address [expression

If the advanced button is pushed
additional input fields are provided

—type ———— options
@ Program [[] Exclude [l Temporary auto
*) ReadWrite [noMark [“IpIsable - action
") Read [T p1SableHIT stop
© Write - patA—
© default [|| | [A advanced |

(Ok] [Add] [Delete] [Cancel]
— memory [register / var

2 ProgramPass HLL -
_) ProgramFail | — TASK COUNT ————
*) MemonyReadWrite 1.
©) MemoryRead | — MACHINE — CORE e
©) MemoryWrite
RegisteReadite | | CONDItion Advanced breakpoint input fields
ReqisterRead FIHLL [[keag
REgiStEI"\"'a'I'itE Lo —me—
+ [VIRESUME

©1989-2024 Lauterbach Training Basic Debugging | 113

TASK-aware Breakpoints

If OS-aware debugging is configured (refer to “OS-aware Debugging” in TRACE32 Glossary, page 31

(glossary.pdf)), TASK-aware breakpoints allow to stop the program execution at a breakpoint if the specified
task/process is running.

TASK-aware breakpoints are implemented on most cores as intrusive breakpoints. A few cores support real-
time TASK-aware breakpoints (e.g. ARM/Cortex). For details on the real-time TASK-aware breakpoints refer
to the description of the Break.Set command.

Intrusive TASK-aware Breakpoint

Processing:

'

Specified
task
running?

Program execution stops at TASK-aware
breakpoint

No

g Continue with

Yes

Keep stop of program execution

program execution

Each stop at the TASK-aware breakpoint takes at least 1.ms. This is why the red S is displayed in the

TRACES32 PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach

Training Basic Debugging

114

Example: Stop the program execution at the entry to the function EE_oo_TerminateTask only if the

task/process “Task3” is running.

f a Bu:Break.Set

— address [expression

EE_oo_TerminateTask

+ (&) Ene =

—type —— - options — method ———
@ Program [C] Exclude [CITemporary
() ReadWrite [noMark ["IpIsable action ————|

* Read [C] p1SableHIT stop -
) Write — DATA
© default [~|| | [A advanced |

 —y— | [add | [Delete

] [Cancel]

.. memory," register [var

(©) ProgramPass £ HLL
(©) ProgramFail | |- TASK OUNT
() MemonyRead\ite "Task3" - 1
) MemoryRead | [~ MACHINE CORE
) MemoryWrite |
RegisterfeadWiite | |— CONDition
ReqisterRead FIHLL [[aeag
RegisterWrite — CMD

* [VIRESUME

%

-

a B::Break.List

Fl

type
V:4000108l)jprogram

‘SOFT "Task3"

===
3% Delete All|[© Disable All[@ Enable All[@ nit][&Memod...]@ Store... || £ Load...]@ Set... |
address method |task - =
EE_oo_TerminateTask -

Break.Set EE_oo_TerminateTask /Program /TASK "Task3"

©1989-2024 Lauterbach

Training Basic Debugging

115

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MPCSXXX EE_cpu0 Window Help

Vs Te e
[M step |[% over |[ADiverge|[¢ Return | @ up |[P Go | I Break |[" mode |62+ Find ||
addr/1ine |code |1abel mnemonic |comment Loy
StatusType EE_oo_TerminateTask{void)
SV:‘%DODlOgg]?821(I5FEI EE_oo_Te..:e_stwu rl,-0x10(r1)
SV:40001084 |00&0 se_mflr rO

-

]

register EE_FREG np_flags;
65 EE_ORTI_set_service_in(EE_SERVICETRACE_TERMINATETASK);
SV:40001086 (1CEDS0E0 80

e_addlei r4,rl3,-0x7F

E_OS_RESOURCE if the task sti11 occupy resources
E_OS_CALLLEVEL if called at interrupt Tevel
3

_l 4
e e A e it el
(3% Delete All|[O Disstle A || @ Enable All|[@ Init [2 Method... | 2 store... || £ Load... || GiiSet... |

| Iress type method [task
V:40001080Program S W EE_oo_TerminateTask

OFT "(other)™
4

trace |[Dpata || J[ust [Pere |[Svstem |[other |[previous |

il e @2

Erae o o - |

The red S indicates that an
intrusive breakpoint is used

[=][=][=]

¢up |[»co | I Break |[% Mode &[22 Find

comment

[M step |[® over |[ADiverge|[¢ Return |

addr/1ine |code label mremonic
StatusType EE_oo_TerminateTask{void)

rl,-0x10(rl} sblaslblnll)
ri

$2106E0. EE 00 Te..ie stwu
0080 se_mtIr

register EE_FREG np_flags;
EE_ORTI_set_service_in(EE_SERVICETRACE_TERMINATETASK);
SV:40001086 (1CEDS0E0 e_addlei r4,rl13,-0x7F80

E_OS_RESOURCE if the task still occupy resources
E_OS_CALLLEVEL if called at interrupt level

a B::Break.List

(3% Delete All|[O Dissie 8 |(@ Enable All|[@ Init [2 Method... | 22 store... || 2 Load... || Eilset... |

ress type method |task
| V:40001080% Program ‘SOFI’ "(other)” ‘ W EE_oo_TerminateTask

4

‘B::|

]) Yo (b (upmions.

congorepn . tcs.)| bom...J Nt) b0
MIX up

SIE40001080 {ppcies_teminatiE | (other) stopped at breakpoint

116

Training Basic Debugging

©1989-2024 Lauterbach

Real-time TASK-aware Breakpoint

Example for ARM9: Stop the program execution at the entry to the function Func_2 only if the taskF “main” is
running (Onchip breakpoint).

il B::Break.Set ==
address [expression
Func_2 - [FIHLL
type options implementation
@ Program [[] Exclude [CITemporary
) ReadWrite [CInoMARK [C]p1sable action
") Read [T D1SableHIT stop -
© Write DATA
O default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
(©) ProgramPass % HLL
) ProgramFail
~) MemonyReadWrite TASK COUNT
~) MemoryRead "main" - 1.
©) MemoryWrite
RegisterReadWrite CONDition
RegisterRead [HLL
RegisterWrite CMD
+ [VIRESUME
e B::Break.List I[22]
[#& Delete All O Disable All[@ Enable AJI][9 it | & impl... Lﬁ store .2 Load... | K set... |
address ty imp]l
R: 0003128Cﬂpr0gram |0NCHIP ma'ln | Fuﬂc_zr

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov eCos Window Help

(M I e/ pn[EewaollsaNdads @ 22|

[Mstep |[M over || ¥ Next | Retun| @ up | »Go | INBreak]ﬂ Mode | Find:

addr/Tine |source
135§Boo'|ean Func_Z (5tr_1_ Par_ Re1c Str 2 Par Ref‘]

executed once
5tr 1 _Par_Ref 'DHRY __""uE PROGRAM,
/% Str_2_Par_Ref == "DHRYSTONE PROGRAM,

str_30 Str_1_Par_Ref;
Str_30 Str_2_Par_Ref;

" REG One_Thirty Int_Loc;
Capital_Letter Ch_Loc;

Jt: T

‘B::

emulate trigger [devices H trace H Data H Var H other H previous
g | e

©1989-2024 Lauterbach Training Basic Debugging | 117

COUNTer

Counters allow to stop the program execution on the n th hit of a breakpoint.

Software Counter

If the on-chip break logic of the core does not provide counters or if a Software breakpoint is used, counters
are implemented as software counters.

Processing:

Program execution stops at
a breakpoint with counter

Increment
counter

Counter
reached final
value?

No

Continue with
- program execution

Yes

Keep stop of program execution

Each stop at a Counter breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32
PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic Debugging | 118

Example: Stop the program execution after the function sieve was entered 1000. times.

|~ address [expression

sieve

- [E)B8m 3=

—type ——— [~ options

() ReadWrite NoMark DISable
) Read DISableHIT

©) Write - DATA

@ Program EXclude Temporary

— method

— action

stop

) default [

)

[A advanced |

[add]

Delete

]

[Cancel]

— memory [register [var

() ProgramPass |

(£ | Ohu

() ProgramFail | — TASK

OUNT

© Memonyfeadiiite | | |

1000.

©) MemoryRead | |~ MACHINE

CORE

©) MemoryWrite |

RegisterReadiWte | | — CONDition

RegisterRead
RegisterWrite — CMD

FIHLL [Ckteag

[V]RESUME

count

F:400012A8

type method
Program SOFT

4

0./1000.

@

i

Break.Set sieve /COUNT 1000.

©1989-2024 Lauterbach

Training Basic Debugging

119

BBz, e e |

! [Mstep |[% over |[.AdDiverge|| ¢ Return ||

eup J[»Go || I Bresk |[% mode |&)(2.] 2

addr/1ine |source

char flags[SIZE+1];

int sieve(}
{

int anzahl;

anzahl = 0;

-~

/* sieve of erathostenes */

register int i, primz, k;

| (3 B::Break.List

(oo e

(% Delete Al (O Disable Al @ Enable All|[@ mnit|[& Method...|| E2 Store... || 5 Load... || B Set... |

The current counter

address t met hod

count

‘SOFT

75.
f

[sieve value is displayed

Ype
F:400012A8Tr0gram

/1000. | ¢
|

: in the Break.List
window

J{

st || PERF || other |[previous

running .

FiI ‘u‘iew Var Break Run
(M e A+ e | 28 d

intrusive breakpoint

CPU Misc Trace Probe Perf Cov MPC5XXX Window Help

=i g
[t

Bleves @i o

il EBuList

[=][=] =]

[Mstep || over |[ADiverge][¢ Return ||

eup || »Go |[mnBreak || "% Mode]@E] 2]

addr/1ine |source

char flags[SIZE+1];

: : b
int sieve()

int anzahl;

anzahl = 0;

-

/* sieve of erathostenes */

register int 1, primz, k;

3 B::Break List

[E=N Hoh

(2% Delete All| (O Disable Al @ Enable All|[@ Init [& Method... | 2 store... || £ Load... || EilSet... |

address t method

count

‘SOFI' ‘0

4

Ype
F:400012A8Trogru

~/1000. ‘ v

51eve

‘B::

trace][Data][Var

[components| |

JL_ust]|

PERF][other][previous

SF:40001248 \\diabc\diabc\sieve

stopped at breakpoint

HLL up

The red S indicates an

©1989-2024 Lauterbach

Training Basic Debugging

120

On-chip Counter

The on-chip break logic of some cores e.g. MPC55xx provides counters. They are used together with
Onchip breakpoints.

Example: Stop the program execution after the function sieve was entered 1000. times.

3l B:Break Set ™ [E=NEER

address [expression

sieve - |:|HLL E=

type options method

@ Program [[] Exclude [CITemporary
() ReadWrite [T NoMmark [[D1Sable action

) Read [C] p1SableHIT stop

©) Write DATA

© default [|| | [A advanced |

Ok [Add] [Delete [Cancel]

memory [register [var

(©) ProgramPass £ HLL
(©) ProgramFail TASK COUNT
() MemonyReadWrite 1000.
(©) MemoryRead MACHINE
©) MemoryWrite
RegisterReadWiite CONDition
ReqisterRead FIHLL [[kteg
RegisterWrite CMD

[V]RESUME

i B::Break List = | @ ==

(3% Delete all] [Disable All (@ Enable All][@ Init][&Memod...]@ Store... || £ Load...]L Set... |

address type method |count |
F:400012A8ﬂprogram ‘ONCHIP ‘0. /1000. ‘ W sieve -

Break.Set sieve /COUNT 1000. /Onchip

The counters run completely in real-time. No current counter value can be displayed while the program
execution is running. As soon as the counter reached its final value, the program execution is stopped.

©1989-2024 Lauterbach Training Basic Debugging | 121

CONDition

The program execution is stopped at the breakpoint only if the specified condition is true.
CONDition breakpoints are always intrusive.

Processing:

Program execution stops
at a breakpoint with condition

AfterStep
check box
ON?

No

y

Perform assembler
single step

y

Verify
condition

Condition No
is
true?

Continue with
program execution

Yes

Keep stop of program execution

Each stop at a CONDition breakpoint takes at least 1.ms. This is why the red S is displayed in the TRACE32

PowerView state line whenever the breakpoint is hit.

©1989-2024 Lauterbach Training Basic Debugging

122

Example: Stop the program execution on a write to flags[3] only if flags[12] is equal to O when the

breakpoint is hit.

I address [expression

flags[3]

- [)@HL @

(©) Program
©) ReadWrite
©) Read

@ Write

) default

—type —————

— options
[EXclude
[noMark

[CITemporary
[T p1Sable
[“] p1SableHIT

— method

— action

stop

— DATA

[7]

[A advanced |

[Add

)

Delete

]

[Cancel]

() ProgramPass
) ProgramFail
() MemonyReadWrite
(©) MemoryRead
) MemoryWrite
RegisterReadWrite
RegisterRead
RegisterWrite

— memory [register [var

-] [&] 0w

— TASK

COUNT

-] .

— MACHINE

CORE

|~ CONDition

flags[12]==

[HLLY [kemg

— CMD

+ [VIRESUME

E3 D;:Iete A.JI][O Disable All (@ Enable All|[@ mit |

& Method...|| 22 store... || 2 Load... || ElSet...]

address

type

condition a

C:400041ZE{Write

Jf

method
ONCHIP

flags[12]==0

W [

tTags[3]

©1989-2024 Lauterbach

Training Basic Debugging

123

File Edit View WVar Break

Run CPU Misc Trace Probe Perf Cov MPCEXXX Window Help

R R RIS [

2RO HHE S @&

iE] BuList

[= = =]

_Mstep || M over || AuDivergel JReTurn L eup J[peo | I|I Break || 1% Mode]@

addr/1ine |source
670 ik SIZE . flagsf die . l = TRUE) ;
672 for (1 =03 1 <= SIZE ; i++)
674 if (flags[1 1)
f ‘ o [
676 rimz = 1 + 1 + 3;
677 =1 + primz; =
1+ Fia
8 B:Break List (==]=]
[3 Delete All|[Q Disable All| @ Enable All|[@ Init || 2 Metnod... [2 Store... || 2 Load... || B3iSet... |
address type method |condition a =
C:40004126 [Write ONCHIP |Flags[12]==0 W FTags[3] -
Jf LA
bl BVar View flags[3] flags[12] [B fal]
2fflags[3] =1

- flags[12] = 0

4

T The red S indicates

- / an intrusive breakpoint

B::

(components| [mace |

Data][Var][List][FERF][other p(evious]

SF:400012E4 \\diabc\diabc\sieve+3C

|st0pped by rfw breakpoint l_’_ HLL |UP i

Var .Break.Set flags[3] /Write /VarCONDition flags[12]==0

©1989-2024 Lauterbach

Training Basic Debugging

124

Example: “Break-before-make” Read/Write breakpoints only

Stop the program execution at a write access to the variable mstatic1 only if flags[12] is equal to 0 and
mstatic1 is greater O.

Perform an assembler single step because the processor architecture stops before the write access is

performed.
il B::Break Set [r=|[-E e
address [expression
mstaticl - (3] @Hu
type options implementation
) Program [Exclude [CITemporary
©) ReadWrite [T noMARK [C] p1sable action
") Read [T D1SableHIT stop -
@ Write DATA
©) default [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
(©) ProgramPass x HLL
(©) ProgramFail
(2 MemonRead\irite TASK COUNT
~) MemoryRead 1.
©) MemoryWrite
RegisterReadWite CONDition
RegisterRead (flags[12]==0)&8(mstatic1>0.) [HLLY (] ke AfterStep checked
RegisterWrite CMD
< [VIRESUME

183 B::Break.List
(3% Delete All|[O Disable All| (@ Enable All [& it][éz?lmpl]Lﬁstore [2 Load...]L@Set]

address types condition
N: 4A325DA8——4A325DABEWF‘IT_€ ‘ONCHIP
4 | L 3

Var.Break.Set mstaticl /Write /VarCONDition (flags([12]==0)&& (mstaticl>0)
/AfterStep

©1989-2024 Lauterbach Training Basic Debugging | 125

File Edit View Var Break Run CPU Misc Trace Pef Cov OMAP4430app Window Help

Hli-&|¢¢’¢| PR D Hu B e E @ LR

e e
[Mstep || over |[MDiverge | queturn L ¢up || »co | MBreak || mode | Find:I

addr/1ine |source | |

E for { regvar = 0; regvar < 5 ; regvar++ |
141 mstaticl += regvar®autovar;

143 fstatic += mstaticl;

145 fstatic? = 2*fstatic;

4| i

| 6ol B:VarView mtaticl flags[12]

| [~imstaticl = 1566434318
|- flags[12] = 0

e

: eB::Break.List
i [Delete All] [Disable Al @ Enable Al Qmit][ﬂ?lmpl]Lgstore [£ Load...]L@Set

address It imp]l condition

Ype
4A326DA8——4A326DABj‘II‘r1te ONCHIP |(TTags[12]=0)&&(mstaticl=0.) A

4| i | b

IB::|
| trigger [devioes][trace][Data][Var][List][other][previous]

NSR:4A3260D8 \\demo\demo\func2+0x30 Stopped byrjw breskpaint N :

The red S indicates
an intrusive breakpoint

©1989-2024 Lauterbach Training Basic Debugging | 126

Conditions not in HLL Syntax

It is also possible to write register-based or memory-based conditions.

Examples: Stop the program executions on a write to the address flags if Register R11 is equal to 1.

ﬁﬁ B::Break.Set

flags

e ——————
) Program
©) ReadWrite
©) Read
@ Write
) default

address [expression

- Uptions

= Ve —

[C] Exclude [CITemporary
[T nomark

[l p1sableHIT stop v

[v] [# advanced]

FaT—

[Add] [Delete] [Cancel]

() ProgramPass
) ProgramFail
() MemonyReadWrite
(©) MemoryRead
©) MemoryWrite
RegisterReadWrite
RegisterRead
RegisterWrite

— CONDition

— CMD

. memory,"register,"\.rar —

— TASK

— MACHINE

Register(R11)==0x1

[¥]RESUME

o S|

~ [&])8ne E=

[7] p1Sable _ action ——|

ke

Switch HLL OFF ->
TRACE32 syntax can be used
to specify the condition

; stop the program execution at a write to the address flags if the
; register R11 is equal to 1
Break.Set flags /Write /CONDition Register (R11)==0x1

; stop program execution at a write to the address flags if the long
; at address D:0x1000 is larger then 0x12345
Break.Set flags /Write /CONDition Data.Long(D:0x1000)>0x12345

©1989-2024 Lauterbach

Training Basic Debugging

127

Example: Stop the program execution if an register-indirect call calls the function func3.

= [BuList]

(=[O s

[Mstep | % over]@ Diverge || ¢ Return |

eup |

P Go |[1N Break || Mode]DE] i

|comment

addr/'l'ine code |1abel
2] =

B16DE0C4

mnemonic
*funcptr) (J;
z ™

SEE 4000114(7D6E03A6
SF:40001150 |4E 500021
SF:40001154 [7C7F1E78

ril

ril,r3

-~

3

Program Address

+ GoTill

a Breakpoints L4
i) Display Memory L4
¢ Bookmark...

M Toggle Bookmark

4§ Set PC Here

Edit Source

2 ViewInfo

& Go Till There

£| List There
Assemble...
Modify...
Patch...

(€3 B:Break Set SF0x40001150 /DIALOG [ESREERTX)
— address [expression
SF:0x40001150 Oue O=
— type ——— [~ options — method
@ Program [[] Exclude [CITemparary auto -
(©) ReadWrite [T NoMmark [T p1Sable - action
) Read [] p1SableHIT stop -
) Write — DATA
© defautt [~]| | [A advanced]
 —— [Add | [Dpeete | [cancel |
— memory [register [var
(©) ProgramPass z HLL
() ProgramFail | — TASK COUNT
() MemonyReadWrite 1.
©) MemoryRead | |~ MACHINE CORE
©) MemoryWrite
RegisterReadWrite |- CONDition
RegisterRead Register(PC)==ADDRESS.OFFSET(funt [C|HLL [V]#testa
Register\Write — D
+ [VIRESUME
3 B::BreakList

[xDeleneml][oDisableAJl][@EnableAJl][@ Init_ || 2 Method... [52 store.... || 2 Load... || Bl set...

address

F:40001150 Pr ogr am

4

method
S0FT

condition
Register (PC)==ADDRESS.O0FFSET (func3) A

W [

main31+0x8

Break.Set main\31+0x8 /CONDition Register (PC)=

/AfterStep

=ADDRESS .OFFSET (func3)

©1989-2024 Lauterbach

Training Basic Debugging |

128

File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MPCSXKX Window Help

Mk A Iee/rn[E 2RO EnEss @ 2
BuList
[Mstep |[% over]&Di\rerge][Retun [¢up |[»Go || I Break |
addr/1ine |code 1abel |mnemonic |comment
?tat'lc int func3() /% simple function */
232
I g 9421EEE8. . funci: stﬁgg rl,-0x8(rl) saalleanB0E1)
SF:40000314 (FCO80240 mt Ir ri
SF:40000318 (2001000C stw r0,0x0C(r1)
233 return 5;
SF:4000031C ?38500005 14 r3,0x5
234 |}
SF:40000320 [2001000C Twz r0,0x0C(r1)
SF:40000324 [FCO803246 mt1r ro
4
|| W B:Break.List
|| {3 Delete All| (O Disable All[@ Enable All] @ mit || & Method...|[52 Store... || 2 Load... || & Set... |
| address [type |method |condition a
F:40001150}Program SOFT ’Tleg15ter(P()=ADDRESS.UHbI:IU'unl:3) A
i .. .
B
[components| [trace |[Data][wvar][ust][Pere][Svstem |[step ||
SF:40000310 \\diabc\diabc\func3 éstopped at breakpoint

©1989-2024 Lauterbach Training Basic Debugging | 129

CMD

The field CMD allows to specify one or more commands that are executed when the breakpoint is hit.

Example: Write the contents of flags[12] to a file whenever the write breakpoint at the variable flags[12] is

hit.

OPEN #1 outflags.txt /Create ; open the file for writing

) Bireakset (=@ S The specified command(s) is executed
address / expression — whenever the breakpoint is hit. With RESUME
flags{12] v L&]Mhe T= 11 ON the program execution will continue after

the execution of the command(s) is finished.
type options method
* Program [T EXclude [“] Temparary auto -
O ReadWrite [Z] NoMark ["] pISable action
" Read ["| p1SableHIT stop -
@ Write DATA /
_ default | v| | # advanced
Ok] | Add | | Delete | | Cancy/|
memory [register [var
_ ProgramPass
_) ProgramFail TASK
) MemonyReadWirite
 MemoryRead | |- MACHINE The cmd field in the Break.List window
) MemoryWrite informs the user which command(s) is
Fegstefesdliite |~ CONDition associated with the breakpoint. R indicates
RegisterRead that RESUME is ON.
RegisterWrite CMD
JWRITE #1 "flags[12]=" %Decimal Vv * [/]|RESUME

-
e B::Break.List

addr

method cmd

}[/ [=)=]=]
(3% Delete All|[O Disable All[@ Enable All][@ nit || & Method... [52 storPP| B Load... | Bl Set... |
t

4

ess ype
C:40004134er'|te

‘ONCHIP ‘WRITE

r
#1 "TT1ags[12]=" ¥Decimal Var.VALUE(fTags[12]) R‘ W TTags[12] »I

Var .Break.Set flags[1l2]

Var .VALUE (flags[12]) "

/Write /CMD "WRITE #1 ""flags[1l2]="" %Decimal

/RESUME

©1989-2024 Lauterbach

Training Basic Debugging | 130

completed.

It is recommended to set RESUME to OFF, if CMD
. starts a PRACTICE script with the command DO

J commands are used that open processing windows like
Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List

because the program execution is restarted before these commands are

File Edit View War Break Run CPU Misc Trace Probe Pef Cov MPCOXXX Window Help
(M A dee|vn|E 20 s das @ 2 &
[e Eicies
! [Mstep || M over |[\MADiverge| «/Return|[@ up || ®co || M Break || ¥ mode]@E] + | Find: diabe.c
| addr,/line |code label mnemonic comment |
I SF:400012€E0 [7D6CFIAE sthx ril,riZ,r31 -
I : JEEE0001 addi £3L,r31,0%1 gLl
i SF:400012E8 |[4BFFFFE4 b 0x400012CC
E 672 for (1 =0; 1 <= SIZE ; i++)
| sSF:400012eC |328E00000 .L514: H r31,0x0
I SF:400012F0 |2C1IF0012 .L522: cmpwi r31,0x12 I
i SF:400012F4 (41810050 bgt 0x40001344 =
| o
I
(| L] »
‘ aE::Ereak.List EI@
3% Delete All O Disable All (@ Enable Al @ mnit][(& Method...|| 52 Store... | 5 Load... || Eilset... |
address type method [cmd r |
C:40004134jlr1te ‘ONCHIP "IIRIIT_ #1 "fTags[12]=" ¥Decimal Var_ VALUE(TTags[12]) R| W flags[12] -
4 »
B::
[components| [wace][paw J[wvar J[st][pPerF][svstem][step |[Go][other][previous |
|| SF:400012E4 \\diabc\diabc\sieve+0x3C stopped by r/w breakpoint MIX upP

CLOSE #1

The state of the debugger toggles between
running and stopped

; close the file when you are done

©1989-2024 Lauterbach

Training Basic Debugging | 131

Display the result:

Edit View Var Break Run ClI

¥ Run Script...
[Edit Script...
$3 Search for Script...
g Open File...
2 Load File...
B Type File...
14 Dump File... & B:TYPE I\EVB\omap\omap4430\PandaBoard\linux\training\outflags.bdt
@ Stop Command L of 150. (=] (=] [fiFind..] | ElTrack
- - il 12]=1 o
¢ Printer Settings... 1 :gz [12]=1 3@
8 Window Print... tlags[12]=0
= v - flags[12]=1
Wlndow Screenshot to File g} ags [12]=0
- ags[12]=1
X et flags[12]=0
flags[12]=1
flags[12]=0
flags[12]=1
flags[12]=0
flags[12]=1 -
“

©1989-2024 Lauterbach

Training Basic Debugging

132

memory/register/var

The on-chip break logic of some cores allows to combine data accesses and instructions to form a complex
breakpoint (e.g. ARM or PowerArchitecture).

Preconditions

. Harvard architecture.

J The on-chip break logic supports a logical AND between Program and Read/Write breakpoints.
Advantageous

J Program breakpoints on address ranges are possible.

. Read/Write breakpoints on address ranges are possible.

©1989-2024 Lauterbach Training Basic Debugging | 133

Example: Stop the program execution when the function sieve writes a 1 to variable flags[3]. (If your core
does not support this feature, the radio buttons (MemoryWrite, MemoryRead etc.) are grey.)

MemoryWrite accesses

MemoryWrite accesses

il B::Break Set o[- E ez
addressf’ expression — -
X 3
= - L instructions here
- type - UptiUr'IS implemenmtion -
) Program [T Exclude [“ITemporary — 2. Select MemoryWrite
* ReadWrite [T nOMARK [CI p1Sable ~ action ————
“) Read [p1SableHIT stop - r
) Write _ DATA4.._.............. [— I
©) default 1. [v] [A advanced | . [
Ok] [Add] [Delete] [Cancel] ! I
—memory Jregister fvar——————— T -I- o
) ProgramPass flags[3] - MHL |- — <
© ProgramFall |lem— _
©) MemonReadWirte] — COUNT
©) MemoryRead 1.
-
RegsierReadWiite | — CONDition —————————
ReqisterRead FIHLL [Caeg
RegisterWrite - CMD - —
+ [¥|RESUME
18 B:Break List o= =)

(3% Delete All| © Disable Al @ Enzbie All][@ Init|[&impl...
3 |

Lﬁstore...][22 Load...]L Set...]

)
data

ress

t

a ypes imp]
F:400012A8--40001367 [MemoryWrite [ONCHIP

4

[BYTE Ox1

[sieve | fTags[3]

Var .Break.Set sieve /VarWrite flags[3]

/DATA.auto 1.

1. Define the address (range) of the

4. Define the data value for the

3. Define the address (range) for the

©1989-2024 Lauterbach

Training Basic Debugging

134

TRACE32 PowerVi
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov MPCSXKX Window Help

(M A+ e |2 O s s @ 1 2

Ef B SIEI=]

[Mistep |[M over]@Diverge][&Retun | &up || »Go [M Break]%Mode | Find::

addr/1ine |source |

670 for.(i.=.0.;.i.<= SIZE ; flags[i+t] = TRUE.).; .

672 for (1 =0 ; 1 <= SIZE ; i++)
674 if (flags[1) 3
I I Pre———————— R ————— i

e B::Break.List
[& Delete All|[C Disable All (@ Enable All [& it].[Lmpl... | EBstore... | Bload... || ilset... |

address types imp data |
F:400012A8——40001SGFﬂieIoryumte [ONCHIP [BYTE Ox1 [sieve | flags[3] -
4 ¥
Bof| B:VarView flags[2] =<
- tlags[3] =1 -
4 ¥
‘B: :
trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous
SF:400012E8 \\diabc\diabc\sieve+0x40 stopped byr/w breakpoint HLL UP
Exclude (Advanced users only, not available on all cores)

The breakpoint is inverted.
J by the inverting logic of the on-chip break logic

. by setting the specified breakpoint type to the following
2 address ranges
0x0-- (start_of_breakpoint_range-1)
(end_of_breakpoint_range+l)--end_of_memory

The EXclude option applies only to Onchip breakpoints.
If the on-chip breakpoint logic does not provide an inverting logic, the

core has to provide the facility to set the specified breakpoint type on
2 address ranges.

©1989-2024 Lauterbach Training Basic Debugging | 135

Example for the Option EXclude

Stop the program execution when code outside of the function sieve writes 1 to the variable flags[3].

il B::Break Set = |2 e
address [expression
sieve - [HLL
type options implementation
) Program EXclude [C]Temporary
© ReadWrite [T nOMARK [CIp1sable action
) Read [T D1SableHIT stop -
) Write DATA
_) default 1. [v] [A advanced |
Ok] [Add] [Delete] [Cancel]
memory [register [var
*) ProgramPass flags[3] - [HLL
) ProgramFail
() MemonReadWirite TASK COUNT
(©) MemoryRead 1.
@ MemoryWrite
RegisterReadWrite CONDition
RegisterRead FIHLL [[Jatesa
RegisterWrite CMD
+ [V|RESUME

e B::Break.List

[=][=][=]

(& Delete All|[O Disable Al @ Enable All [& it].[Zimpl...]@store... || BLoad... || Edset.. |

address t

options

data

F:400012A8--40001367 [M

Fl

ypes imp
emoryWrite [ONCHIP

[EXcTude

[BYTE Ox1

sieve | Tlags[3]

Var.Break.Set sieve /VarWrite flags([3]

/DATA.auto 1.

/EXclude

©1989-2024 Lauterbach

Training Basic Debugging |

136

5] [BeList] = B
[Mistep |[M oOver]@Diverge][&Return | @up | »Go | mEBreak]%Mode | Find:

breakpoint addr/1ine |source i
649 J = funcZ5(); o
651 p = func26();
= 653 for (3 =0; § < 10; j++)
655 sieve();
658

char flags[SIZE+1];

int sieve() /* sieve of er
E mw 664 |{
register int i, primz, k;
int anzahl;
E mw 668 anzahl = 0;
E mw 670 for (1 =0; i == SIZE ; flags[i++] = TRUE
E mw = 672 for (i=03; i< SIZE; i++)
Jf - i | b

3 The function sieve is marked with Exclude memoryWrite breakpoints

The following command allows to check how the option EXclude is implemented.

Break.List /Onchip

Inverting logic of on-chip break logic:

18 B:Break.List /Onchip EI@
#Deletz All (O Disable Al (@ Enable All|[@ Wit |[& mpl... |[52 store... [Load [& set... |
address types imp options onchip resource ' |
R:00001800——OOOOlBFF|JMemorWr1te [ONCHIP |EXc'|ude |BYTE 0x1 [(Func23+0x4)--(main \26+0x23) [Tlags[3]] =
P »

Two address range breakpoints:

180 B::Break List /Onchip =S| EEE
3% Dekete A1) (O Lisahle MI][O Enahle Al © e][& Impl... |52 Store.. Load Kl se

] 3

pes impl options onchip resource
[5 DDDDDDDD——TDDD:[SES Memory\nmte IONCHIP EYTE Ox1 C:0x0--0x700013E9 [TTags[3] -
€:70001450--FFFFFFFF] iMemorywrite [ONCHIP BYTE Ox1 C:0x70001450--0xFFFFFFFF | Flags[3]

If your TRACE32 PowerView does not accept the option EXclude, delete all other Onchip breakpoints, to
make sure that enough resources are available.

©1989-2024 Lauterbach Training Basic Debugging | 137

Display a List of all Set Breakpoints

Break | Run CPU Misc 1

B3 Set..
& Method...
2% Delete All
A T'igge_'B“_s“' 0 B:Break.List E=SE08 =)
k| ST e (#Delate all][O Disable Al [@ Enable m\]l @it |[& mpl.. || S store... | 2 Load... | K set... |
ket NR: 4A3261D8Jprogram S(ﬁT Dls;b1eHIT data Funcd |
NR:4A32659C||Program SOFT sieve'\b
N:4A326FAB--4A326FAB{Write QNCHIP BYTE Ox1 flags[3]
address Address of the breakpoint
types Type of the breakpoint
impl Implementation of the breakpoint or disabled
action Action selected for the breakpoint (if not stop)
options Option defined for the breakpoint
data Data value that has to be read/written to stop the program execution by
the breakpoint
count Current value/final value of the counter that is combined with a
breakpoint
condition Condition that has to be true to stop the program execution by the
breakpoint
A (AfterStep) A ON: Perform an assembler single step before condition is evaluated
cmd (command) Commands that are executed after the breakpoint hit
R (resume) R ON: continue the program execution after the specified commands
were executed
task Name of the task for a task-aware breakpoint
Symbolic address of the breakpoint

I Break.List [/<option>]

List all breakpoints

©1989-2024 Lauterbach

Training Basic Debugging | 138

Delete Breakpoints

W B:Break List [E=0E=R <7
(3% Delete All (O Disable All (@ Enable All|| @ Wit |[J2 mpl... (52 store... | 53 Load... || Kl Set... |
address types imp] options data =
NR:4A3261D8[[Program SOFT DISabTeHIT Tuncd -
NR:4A32659C||Program SOFT sieve\
N:4A326FAB--4A326FAB:|Write [ONCHIP | 5 -
= Breakpoint T
ﬁ Change...
[+ Enable
here 3

Delete breakpoint

Break.Delete <address>l<address_range> [I<type>] [[<implem.>] [/<option>]
Delete HLL breakpoint

Var.Break.Delete <hl|_expression> [I<type>] [/[<implem.>] [/<option>]

Enable/Disable Breakpoints

W B:Break List [E=0 =R
[#&Delete All | Disable All (@ Enable Al @ Wit |[J2 mpl... |[52 store... | 52 Load... || Kl Set... |
address types imp] options data =
NR:4A3261D8[[Program SOFT DISabTeHIT Tuncd -
NR:4A32659C||Program SOFT sieve\6
N:4A326PAB-~4A32OFABWT 1 te DICHIP |~ aiiiant -
, | Breakpoint +
.@ Change...
| X Delete

here

Enable breakpoint

Break.ENable [<address>|<address_range>] [/<option>]
Disable breakpoint

Break.DISable [<address>|<address_range>] [/<option>]

©1989-2024 Lauterbach Training Basic Debugging | 139

Store Breakpoint Settings

W BBreak List s = e
(3% Delete All (O Disable All (@ Enable Al @ it |[2 impl... | 52 Store... | 52 Load... || Kl Set.. |
address types imp 1 options data =]
NR:4A3261DE[[Program SOFT DISabTeHIT funcd -
NR:4A32659C||Program SOFT sieve'\b
N:3A326FAB-~4AJ2OFAB JHr ite ONCHIP | RV TE Ox P ags 3 -

Organize « MNew folder

(=] Pictures

B videos

.- Computer
& System (C:)
5@ 5YS (\OESL2) (F)
C® VOL_BUSINESS (\WOESI3) (G:)
® VOL_DEVEL (\WOESI2) (H:)
S VOL_MISCT (\WOESI2) (E)
C® _HOME (\WOESIAVOL_DEVEL) ()

Name

o linux-3.4

| app_debug.cmm
| app_page_load.cmm
& atag_list.cmm

| bootloader.cmm

& emif_config.cmm
& linux.cmm

= linw_AND.cmm

L}

File name: [SIETETREA

Save as type: ’Cunent (*.cmm)

* Hide Folders

// AndT32 Fri Jul 04 13:17:41 2003

B::

Break.RESet

Break. Set func4d /Program /DISableHIT
Break.Set sieve /Program

Var.Break.Set \\diabp555\Global\flags[3];

ENDDO

I STOre <filename> Break

/Write

/DATA .Byte 0x1;

Generate a script for breakpoint settings

©1989-2024 Lauterbach

Training Basic Debugging

140

Debugging

Debugging of Optimized Code

A video tutorial about debugging optimized code can be found here:

support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

HLL mode and MIX mode debugging is simple, if the compiler generates a continuous block of assembler

code for each HLL code line.

If compiler optimization flags are turned on, it is highly likely that two or more detached blocks of assembler
code are generated for individual HLL code lines. This makes debugging laboriously.

TRACE32 PowerView displays a tree button, whenever two or more detached blocks of assembler code are

generated for an HLL code line.

=] BuList.Hil

(=[O e

[Mstep || Mover || $next |[#Retun | Eup |

b Go || Il Break |Iﬁl\ﬂode | Find: diabc.c

addr/1ine |source

char flags[SIZE+1];
jnt sieve()

register int 1, primz, k;
int anzahl;

anzahl = 0;

670 for (1 =0 ; 1 <= SIZE ;
+ 672 fo:' (1=0; 1 <= SIZE ;
/4 674 if (flags[i 1)

-

* sieve of erathostenes *

flags[i++] = TRUE } ;

i+t)

m 3

tree button

The following background information is fundamental if you want to debug optimized code:

line order).

In HLL debug mode, the HLL code lines are displayed as written in the compiled program (source

In MIX debug mode, the target code is disassembled and the HLL code lines are displayed

together with their assembler code blocks (target line order). This means if two or more detached
blocks of assembler code are generated for an HLL code line, this HLL code line is displayed

more than once in a MIX mode source listing.

©1989-2024 Lauterbach

Training Basic Debugging | 141

https://support.lauterbach.com/kb/articles/debugging-optimized-code-in-trace32

The expansion of the tree button shows how many detached blocks of assembler code are generated for the
HLL line (e.g. two in the example below).

List.HII Display source listing, display HLL code lines only.
List.Mix /Track Display source listing, display disassembled code and the assigned
HLL code lines.
The blue cursor in the MIX mode display follows the cursor movement
of the HLL mode display (Track option).
=] BaListHIl =1 =
[Mstep |[Mover || $next || #Return | eup | || Break || ¥Mode | Find: diabc.c
addr /Tine |source | | | =
char flags[SIZE+1]; ‘
;rint sieve() /* sieve of erathostenes */
register 1nt 1, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
E 672 or 1 =0; 1 <= SIZE ; 1++ @
674 if (flags[i 1) he
[1 | 2
ﬂ [B:List.Mix /Track] EI
[Mstep |[Mover || $next || #Return | eup |][Break | ¥mode | Find: diabc.c
addr /1ine [code 1abel mremonic |comment Loy
672 for (1 =0; 7 <= S5IZE ; 1++) -
:400012EC [3BEOOODD . L514: E]
SF:400012F0 |2CIFO0L2 . L522: cmpw r3il,0xi2
SF:400012F4 (41810050 bgt 0x40001344
674 if ((flags[i 1)
SF:400012F8 (30804000 Tis ri2,0x4000
SF:400012FC (398C4128 addi r12,rl2,0x4128
SF:40001300 [7DECFEAE Tbzx ri2,ri2,r31
SF:40001304 |2C0C0000 cmpwi ri2,0x0
SF:40001308 (415820034 . beq 0x4000133C
676 primz = 1 + 1 + 3;
SF:4000130C [FDO9FFAL4 add rl2,r31,r31
SF:40001310 [3BCCO003 addi r30,r12,0x3
677 k=1 + primz;
SF:40001314 [FFEFF214 add r29,r31,r30
678 while (k == SIZE)
SF:40001318 |2C1p0012 .L520: cmpwi r29,0x12
SF:4000131C [4181001C bgt . 0x40001338
680 flags[k] = FALSE;
SF:40001320 (30804000 Tis ri2, Ox40
SF:40001324 (398C4128 addi ri2,rl2,0x4128
SF:40001328 (39600000 14 rll,OxO
SF:4000132C |7DECESAE sthx rll,rl2,r29
681 k += primz;
SF:40001330 [FFEDF214 add r29,r29,r30
SF:40001334 [4BFFFFE4 b 0x40001318
683 anzahl++;
SF:40001338 (389C0001 . L519: addi r28,r28,0x1
672 for (1 =0; i <= SIZE ; i++) =
SFT4000133C [3BFFO00L . L521: addi r3l,r31,0x1
SF:40001340 [4BFFFFEOD) b Ox400012F0
< 1 2

©1989-2024 Lauterbach

Training Basic Debugging | 142

To keep track when debugging optimized code, it is recommended to work with an HLL mode and a MIX

mode display of the source listing in parallel.

List.H11

List.Mix

Please be aware of the following:

If a Program breakpoint is set to an HLL code line for which two or more detached blocks of assembler code
are generated, a Program breakpoint is set to the start address of each assembler block.

=] BaListHIl E=8 =)
[Mstep || Mover || $Next || #Return] @up || pGo | mBreak |[¥mode | Find: diabc.c
addr/T1ine |source
int sieve() /% si1eve of erathostenes =/ -~
664 |{
register int i, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE) ;
& 672 7Y S N § WL PN V4 N |
674 . n: (flags[i])
676 . rimz = 1 + 1 + 3;
677 — Em-mz; ey
678 while (k <= SIZE) -
J ¢ I b
I BaBreak List =0 =R)
[Delete All (O Disable Al @ Enable All|[@ Init || Z1mpl... || S store... || SLoad... || Kilset... |
address types imp I
F:400012EC||Program SOFT s1eve' 8 -
F:4000133C|[Program SOFT sievel 8 -
4

©1989-2024 Lauterbach

Training Basic Debugging |

143

Basic Debug Control

There are local buttons in the List window for all basic debug commands

|
= BList =0 EeE
[Mistep |[M over]@Diverge || #Return][@up || »Go || HNBreak]%Mode | Find: diabc.c
addr/1ine |source i
register 1nt 1, primz, k; -
int anzahl;
668 anzahl = 0;
670] for (1 =0 ; 1 <= 5IZE ; flags[i++] = TRUE) ;
) 672 e il ST7 Faaiciianl
674 . n: (flags[1])
676 . rimz =1 + 1 + 3;
677 =1 + primz; -
[|Tg m b
Step Single stepping (command: Step)
Over Step over call (command Step.Over).
Diverge Exit loops or fast forward to not yet stepped code lines. Step.Over is performed
repeatedly.

©1989-2024 Lauterbach

Training Basic Debugging |

144

More details on Step.Diverge

TRACE32 maintains a list of all assembler/HLL lines which were already reached by a Step. These reached
lines are marked with a slim grey line in the List window.

E'_l [B::List.auto sieve]

(o[

[Mistep |[M over]@Diverge][SReturn [eup |

addr/1ine |source

diabc.c

int sieve()

664
ragister int i, primz, k;

{-l -i ne 5G1t anzahl;

/% sieve of erathostenes #/

gs[i++] = TRUE) ;

_-l'F-'lzah'I = 0;
Eﬁq_ - w (1 =0; 1 «= 5IZE ; fla
w (i =0; 1 <= SIZE ; i++)
'if (flags[i])
................ I =
668

The following command allows you to get more details:

List.auto /DIVERGE

©1989-2024 Lauterbach

Training Basic Debugging

145

=1 [BuList /DIVERGE]

[o &

[Mistep |[M over]LDwerge][SReturn [@up || »Go][MnBreak |[EMode | Find:
s state 1 addr/1ine |source
int sieve() /* sieve of erathostenes
h stop 664 (L
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0 ; 1 <= SIZE ; flags[i++] = TRUE)
h done [672 for (1 =0; i <= SIZE ; i++)
672 for (i=0; 1 <= SIZE ; i++)
hit 674 g if.(.flags[i .}
676 . rimz =1 + 1 + 3;
677 =1 + primz;
678 fki]e (k == SIZE)
680 " flags[k] = FALSE;
681) k += primz;
683 5nzah1++;
target 687 | return anzahl; =
688 |} -
m 3

Drag this handle to see the DIVERGE details

=] [BiList /DIVERGE] =0 =R
[M Step][W Over]LDwerge” + Return][¢ up ” » Go][11 Break] ¥ Mode] Find:
s state 1 addr/1ine |code label mremonic comment
a stop 602 j = (*funcptr)(); -
a stop SF:40001148 Twz rll -0x7F3C(r13)
a done SF:4000114C mtTr ri1
a done 1 SF:40001150 blrT
a stop SF:40001154 mr r3l,r3
done 604 j = func5{ (int) j, (char) 2, (long) 3 J;
done SF:40001158 mr r3,ril
:4000115C 14 rd, 0x2
11 r5,0x3
b1 0x400003A0
mr r3l,r3 el

Column layout

s Step type performed on this line
a: Step on assembler level was started from this code line
h: Step on HLL level was started from this code line
state done: code line was reached by a Step and a Step was started from

this code line.

hit: code line was reached by a Step.

target: code line is a possible destination of an already started Step,
but was not reached yet (mostly caused by conditional branches).

stop: program execution stopped at code line.

indirect branch taken
(return instructions are not marked).

©1989-2024 Lauterbach

Training Basic Debugging | 146

Example 1: Diverge through function sieve.

1.

Run program execution until entry to function sieve.
i£] [B:List /DIVERGE] = = =
[Mistep |[W over]@Diverge][SReturn | @up || »co [miBreak [mode | Find: sieve d
s state 1 addr/1ine |source |
char TTags[SIZE+1]; B
int sieve * sieve of erathostenes #
664 . Program Address
regis
A a Breakpoint...
668 anzah| 8 Ereakpoints »
670 for (] Display Memory * Hags[i++] = TRUE) ;
5E Bookmark...
672 for (gE Toggle Bookmark ++)
674 Af Set PC Here
676 %Et‘jitSource i3
677 a ViewInfo mz;
678] WHTTE K == SIZE))
~ |« [| ElBaList/DVERGE ¢

s

stop indicates that the
program execution was
stopped at this code line

2.

[Mistep |[M over]@Diverge][« Return ||

eup |

s state 1 addr/1ine |source

char TTags[SIZE+1];

Start a Step.Diverge command.

int sieve() sieve of eratl
register 1nt 1, primz, k;
int anzahl;
668 anzahl = 0;
670 for (1 =0; i == 5IZE ; flags[i++] = TRUE) ;
672 for('i:O;'i<:SIZE;'i++)
i£] BuList /DIVERGE [

h indicates that a Step

[M Step][W Over

command in HLL mode was

.&DiverrEI quﬂturn [¢ up][

b Go || Il Break]%M.ode | Find: sier

started in this line

L =
—

hit indicates that this
code line was reached by
Step command

s state 1 addr/[1ne source |
char TTags[SIZE+1];
int sieve() /% sieve of erathc
+h stop 664](L
register int i, primz, k;
int anzahl;
R anzahl = 0;
670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
672 Eor('i:O;'i<:SIZE;'i++)
674 ?C (flags[1 1)
676 rimz = 1 + 1 + 3;
677 =1 + primz;
678 while (k <= SIZE)
1+ | 1] |

©1989-2024 Lauterbach

Training Basic Debugging |

147

3. Continue with Step.Di

verge.

i£] BuList /DIVERGE

&

[Mistep |[M over]@Diverqe][quﬂturn [eup][

I

done indicates that the
code line was reached by
a Step command and that
a Step command was
started from this code line

b Go][11 Break]%Mode] Find: siev
s state 1 addr/1ine |source |
char TTags[SIZE+1];
int sieve() /* sieve of eratho
h stop [|54
register int i, primz, k;
int anzahl;
*h done 668] anzahl = 0;
Lt 6 for (1 =0 ; i == 5IZE ; flags[i++] = TRUE } ;
672 for (1 =0; 1 <= SIZE ; i++)
674 ?C (flags[i 1)
676 rimz =1 + 1 + 3;
677 =1 + primz;
678 while (k <= SIZE)
1+ | i |

©1989-2024 Lauterbach

Training Basic Debugging |

148

i=] BuList /DIVERGE [
[Mistep |[M over]@Diverqe][quﬂturn [eup][» Go || Il Break]%M:ode | Find: siev

s state 1 addr/1ine |source |
char TTags[SIZE+1];

The tree button . . e s
.. int sieve() /% sieve of eratho
indicates that two or h stop 6641 . o N
register 1nt 1, primz, k;
more detached blocks of int angahls ¥
assembler code are

h done 668] anzahl = 0;
generated for an HLL , _ for (i e 05 i <o SIZE 4 Flagsl ies] o TRUE s
code line | ik s s= iagslam= :
> 672 for (1 =0; 1 <= SIZE ; i++)
674 :if (flags[1 1)

4. Continue with Step.Diverge.

=] BuList /DIVERGE =
[Mistep |[M over]@Diverqe][Retun [@up || »Go | MBreak || Mode | Find: sieve
s state 1 addr/1ine |source
char TTags[SIZE+1];
int sieve() /* sieve of erathos
h stop G664 |4
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;

h done 670] for ; flags[i++] = TRUE) ;

(i H
LsaliE F 7Y N (RC (R) WU SIS | UL RS |
E 672 for (1 =0; 1 <= SIZE ; 1++)

o
1
=}
o
A
Il
v
=
~
m

674 }F (flags[1 1)
The drill-down tree is 676 : rimz =i+ i+ 3
677 =1 + primz;
expanded and the HLL L LA ——
code line representing i il |

the reached block of
assembler code is marked as hit

©1989-2024 Lauterbach Training Basic Debugging | 149

i£] BrList /DIVERGE
[Mistep |[M over Diverge] « Return || @ up || »Go || M Break]%Mode | Find:
|

s state 1 addr/1ine |source |
char TTags[SIZE+1];

int sieve() /% sieve of er

h stop
register int i, primz, k;
. i i int anzahl;
This HLL code line includes a
., h done anzahl = 0;
conditional branch
for (1 =0; i == SIZE ; flags[i++] = TRUE

| h done

13

for {1=0; 1 == SIZE ; i++

0 : 1 <= SIZE ; i++)

([N}

| M Step r | 1AaDiesze [« Retum|[@ up |[P Go [Ereak] yﬂ

addr/'l'lne Icode 1abel mremonic
672

for (1 =0; 1 <= SIZE ; 1++) -

SF:400012F0 2C1F0012 L522: cmpwi r3i,0x12 (]

SF:400012F4 41810050 bgt 0x40001344 ~
4 1 +

5. Continue with Step.Diverge.

i£] BuList /DIVERGE
[Mistep |[M over]@Diverqe][Retun | @up | »oco | mEBresk]&Mode | Find:
s state 1 addr/1ine |source | | |
h stop [T
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE
h done [672 for (1 =0 ; 1 <= SIZE ; i++)
672 Eor('i:D;'i<=SIZE;'i++)
| B it 674 if (flags[i]
676 ‘ i i i 3
. . rimz =1 + 1 + 3;
The reached code line is i =
marked as hit 678 \gh‘i]e (<= SIZE)
680 flags[k] = FALSE;
681) k += primz;
683) anzahl++;
}
target 687 return anzahl;
688 [}
I] m

The not-reached code line is
marked as target

©1989-2024 Lauterbach Training Basic Debugging | 150

6. Continue with Step.Diverge (several times).

=1 [BuList /DIVERGE]

[Mistep |[M over Diverge] ¢ Return | @up | PGo | M Break || mode

s state 1 addr/Tine |source

int sieve() /* sieve
h stop 664 |{)))) L
_» register 1nt 1, primz, k;
int anzahl;

h done 668 anzahl = 0;

h done 670 for (1 =0 ; 1 <= SIZE ; flags[i++] =

h done [672 (1 =0; 1 ==SIZE ; i++)

. target 672 for (1 =0 ; 1 == SIZE ; i++)
All code lines are now { o o
either marked as done, h done 674 1r (flags[i 1)
i h done 676 - rimz = 1 + 1 + 3;
hit or target h done 677 =1 + primz;]

h done 678 ._-_,"r‘ﬂe ({ k == SIZE)

h done 80| " flags[k] = FALS
hit 681 | . k += primz;
target 683 § é\nzah'|++;

_>
target 687 | return anzahl;
688
J 4 | i

7. Continue with Step.Diverge.

=Y [B:List /DIVERGE]
[Mistep |[M over]@Diverge][Return | @up | »Go | mEBreak]%Mode | Finc
s state 1 addr/Tine |source
char TTags[SIZE+1];
int sieve() /% sieve of ¢
h stop 664 (£
register int i, primz, k;
int anzahl;
h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE
h done [672 =0 ; i <= SIZE ; i++)
target 672 f =0 ; i <= SIZE ; i++)
h done 674 . '|'F (flags[11)
E gone 676 . rimz = 1 + 1 + 3;
H one 677 =1 + primz;
A code line former marl.<ed h done 678 while (k <= SIZE)
as tar.ge.t Changes to hit h done 680 - flags[k] = FALSE;
when it is reached h done 681) k += primz;
I hit 683 | . anzahl++;
target 687 return anzahl;
688 [}
Jf n

When all reachable code lines are marked as done, the following message is displayed:

no more reacnal

trigger [devices][trace][Data][Var][List

SF:40001284 \\diabc\diabc\main+0x228

©1989-2024 Lauterbach Training Basic Debugging | 151

The DIVERGE marking is cleared when you use the Go.direct command without address or the Break
command while the program execution is stopped.

©1989-2024 Lauterbach Training Basic Debugging | 152

Example 2: Exit a loop.

i£] BzList /DIVERGE =
[Mstep |[M over fADiverge | ¢ Return || @up || »Go | NEBreak]%Mode | Find:
s state 1 addr/1ine |source |
register 1nt 1, primz, k;
int anzahl;
h done 668 anzahl = 0;
. . h done 670 for (1 =0 ; 1 == SIZE ; flags[i++] = TRUE) ;
DIVERGE marking is 2
h done 672 for (1 =0 ; 1 == SIZE ; i++)
d.One whenever you target [672 ?{:cr (1 =0; 1 <=5IZE ; i++)
single step. o 674 i Cflagsl 1)
h done 676 rimz =1 + 1 + 3;
. h done 677 =1 + primz;
If all code lines of h done 678 \%.';”ﬂe (k == S1ZE)
a loop are marked as h done 680] » flags[k] = FALSE;
done/hit, a k4= primz;
Step.Diverge will target 683) anzahl++;
exit the loop }
target 687 return anzahl;
688 [}
int background() /* job for backagr:
691 [{
register long countl, count2;
1+ | 1] |

i£] [B:List /DIVERGE] =
[Mistep |[M oOver]@Diverqe][Retun | @up | »Go | mEBreask]%Mode | Find:
s state 1 addr/1ine |source

char flags[SIZE+1];

int sieve() /* sieve of erath
h stop 664 |{
register int i, primz, k;
int anzahl;

h done 668 anzahl = 0;
h done 670 for (1 =0; i == SIZE ; flags[i++] = TRUE) ;
h done [672 for (1 =0; 1 == SIZE ; i++)

target 672 for (1 =0; 1 <= SIZE ; i++)
h done 674 ‘%‘F (flags[i 1)
h done 676 Er'imz =1+ 1+ 3;
h done 677 =1 + primz;
h done 678 '.%.'h'i'le (k == SIZE)
h done 680 flags[k] = FALSE;
h done 681) k += primz;

P hit - anzahl++;
}
target 687 return anzahl;

4 | i

©1989-2024 Lauterbach Training Basic Debugging | 153

Return

Return sets a temporary breakpoint to the last instruction of a function and then
starts the program execution.

= BuList.auto
[Mistep |[M over]@Diverge N &return | eup |

addr/1ine |source
return anzahT;

b Go || Il Bre:

int background() /* job for
691 |{
register long countl, count2;
4 | i |

Up

This command is used to return to the function that called the current function.
For this a temporary breakpoint is set to the instruction directly after the function
call. Afterwards the program execution is started.

Var Break Run CPU I
¥ Registers

144 Dump...

E’J List Source

ﬁﬂ Watch

@ Referenced Var

ﬂ Locals

@ Stackframe with Locals

o Peripherals
& Symbols L4

1il Groups
‘ Bookmarks
£ Trace List

Message Area

= [BuList.auto]
[Mistep |[M oOver]@Diverge][qugturnl ¢dup | pco | I Break

addr/1ine |source

668 an:zah'l = 0; ;
670 for (1 =0; i == SIZE ; flags[i++] = TR
672

Eor('i:U;'i<:SIZE;'i++)

4 | i |

Display the HLL stack to
check the function nesting

o] BuFrame =0 =
"3 Down Args [[Locals [C]caller
[s1eve() o~

—002||_1nit_main(asm -
-003(|start(asm) [
— |end of frame

©1989-2024 Lauterbach

Training Basic Debugging | 154

Step [<count>]
Step.Change <expression>

Step.Till <condition>

Var.Step.Change <hll_expression>

Var.Step.Till <hll_condition>

Step 10.

Step.Change Register (R11)
Step.Till Register (R11)>0xAA
Var.Step.Change flags[3]

Var.Step.Till flags[3]==1

I Step.Over

Go [<address>l<label>]

Go.Next

Go.Return

Go.Up [<level>|<address>]

Single step
Step until <expression> changes

Step until <condition> becomes true,
<condition> written in TRACE32 syntax

Step until <hll_expression> changes

Step until <hll_condition>becomes true,
<hll_condition> as allowed in used programming
language

Step over call

Start program execution

Set a temporary breakpoint to the next code line
and start the program execution

Set a temporary breakpoint to the return
instruction and start the program execution

Run program until it returns to the caller function

©1989-2024 Lauterbach

Training Basic Debugging | 155

Sample-based Profiling

Program Counter Sampling

Task: get the percentage of time used by a high-level language function.

£ B:PERF ListFunc ==]
(& setup... [38 Config...| R Goto... | Elpetailed|| @ View | jlProfie || @mit | Obisable] @arm |

coverage: 54.546% runtime: 99.432% covtime: 54.546%
Iname ratio 1% 2% 5% 10% 20% 50% 100
s1eve 54.491% -
funcl0 7.784% i
func9 1.796% |mm— 3
funcl3 1.197% |
main 1.197% |
funcl 0.598% [«
func2 0.598% [«
funcza 0.598% [«
func2c 0.598% [«
func2d 0.598% [«
funcll 0.598% [«
funcl? 0.598% |« -
J 4 L} F

Measurement procedure: The Program Counter is sampled periodically. This is implemented in two ways.

. Snoop: Processor architecture allows to read the Program Counter while the program execution
is running.
o StopAndGo: The program execution is stopped shortly in order to read the Program Counter.

©1989-2024 Lauterbach Training Basic Debugging | 156

Standard Procedure

Steps to be taken:

1. Open the PERF configuration window.

Cov MPCSXXX Window H

E| Perf List
E| Perf List Dynamic
Function Runtime

Distribution
Duration Ato B

Distance trace records

Reset

* v v v

I PERF.state

) Trace

& B:PERF
METHOD
BusSnoop @ StopAndGo
state Mode
@ DISable @ PC
) OFF I TASK
) Arm 2 MEMory
() PCTASK
commands ~) PCMEMory
options
E List MMUSFACES
[reset ||| @stream |
[¥] AutoArm
RunTime

y

Snoop
scans done
curr.scan
runtime
snoops(s

snoop fails

perf program file

[F=5 EoR 5
commands
() Address
() sYmbol
© Ratio
SnoopAddress
SnoopSize

Display PERF configuration window

The PERF METHOD Snoop is automatically selected, if the processor architecture supports reading

the Program Counter while the program execution is running.

The default METHOD for all other processor architectures is StopAndGo.

©1989-2024 Lauterbach

Training Basic Debugging |

157

Remarks on the StopAndGo method

StopAnd Go means that the core is stopped periodically in order to get the actual Program Counter.

STREAM ON The software running on the TRACE32 debug hardware
initiates the periodic stops. This has the following advantages:
. Low intrusive (approx. 50. to 100.us)
o More samples per second are possible
STREAM OFF The software running on the host initiates the periodic stops.
. More intrusive (1 ms in a worst case scenario)
o Less samples per second are possible

The display of a red S in the TRACE32 state line indicates that the program execution is periodically
interrupted by the sample-based profiling.

‘B::

trigger [devices H trace H Data H Var H other H previous
I Mx_up

TRACERS2 tunes the sampling rate so that more the 99% of the run-time is retained for the actual
program run (runtime). The smallest possible sampling rate is nevertheless 10 (snoops/s).

& B:PERF =l =]
METHOD commands
BusSnoop @ StopAndGo) Trace Snoop DCC
state Maode scans done Sort
© DISable @ PC © oFF
© OFF () TASK curr.scan (0 Address
@ Arm ©) MEMory) sYmbol
© PCTASK runtime © Ratio
commands ©) PCMEMary 99.901%
snoops(s SnoopAddress
options 11. C:0x0
[l MmusPACES snoop fails SnoopSize
[¥] AutoArm
RunTime perf program file

©1989-2024 Lauterbach Training Basic Debugging | 158

2. Enable the sample-based profiling by selecting the OFF state.

&2 B:PERF o=
METHOD commands
BusSnoop @ StopAndGo) Trace Snoop DCC
state Maode scans done Sort
© DISable @ PC © oFF
() TASK curr.scan (0 Address
) Arm ~) MEMory ~) sYmbol
©) PCTASK runtime © Ratio
commands (Z) PCMEMory
snoops(s SnoopAddress
options C:0x0
MMUSPACES | - snoop fails SnoopSize
[¥] AutoArm
RunTime perf program file
I PERF.OFF Enable the sample-based profiling

3. Open a result window by pushing the ListFunc button.

& B:PERF
METHOD

state
(©) DISable
@ OFF
) Arm

commands

g Frogram
@ Init
£ List

RESet

W

=
=
(=]
g
=
5
E|

BusSnoop @ StopAndGo

Mode
@ PC

*) TASK

(£ MEMory
(0 PCTASK
(©) PCMEMg

options
MMUSPA

STREAM

RunTime

) Trace

Snoop DCC

scans done Sort

) OFF

curr.scan) Address

P

{]

commands
ListProgram
ListTREE
ListLine

[BCR =>c

ListFunc

ListMadule

|

£ B:PERF.ListFunc

(o) sl

(& setup...|[22 config...|| R Goto... | ElDetailed]| G View || Profie || @mit | ODbisable| @ arm |
name ratio 1% 2% 5% 10% i
(other) 0. 000% -
funcl 0. 000%

funcl 0. 000%

func2 0. 000% =
funcZa 0. 000%

funcZb 0. 000%

func2c 0. 000%

func2d 0. 000%

func3 0. 000%

funcd 0. 000%

funcs 0. 000%

funch 0. 000%

func? 0. 000%

funcs 0. 000% -
J 4 | (1

I PERF.ListFunc

Open an HLL function profiling window

©1989-2024 Lauterbach

Training Basic Debugging

159

4. Start the program execution and the sampling.

£ B:PERF ListFunc ==]
(& setup... || 58 Config...][3 Goto... LDetalIed][@, View]MProﬂe [®mit |[Opisable] @arm |

coverage: 54.546% runtime: 99.432% covtime: 54.546%
name ratio 1% 2% 5% 10% 20% 50% 100
sleve 54.491% -
(other) 29.341% -
funcl0 7.784% i
func9 1.796% |m— 3
funcl3 1.197% |mem E
main 1.197% |mm
funcl 0.598% +
func2 0.598% +
func2a 0.598% +
func2c 0.598% +
func2d 0.598% +
funcll 0.598% +
funcl? 0.598% + e
_i 4 1 |

©1989-2024 Lauterbach Training Basic Debugging | 160

Details

In-depth Result

Push the Detailed button, to get more detailed information on the result.

£ B:PERF ListFunc ==
(&2 Setup...|[28 Config...| [Goto... | E]Detailed] @, View || [l Profile || @ mit |[DISable]| & Arm |
coverager TOU0% runtime: 99.994% covtime: 100.000%

name ratio 1% 2% 5% 10% 20% 50% 100 4
s1eve 96.332% -
main 3.633% E
(other) 0.034% |+ -
START 0.000%

Eackground 0. 000% -

4 2
£ B:PERF ListFunc ALL ===

(& setup...|[28 Config...|[13 Goto... |[E] Detailed|[& view]m profile || @ Wit |[© Disable| @® Arm |

name time watchtime |ratio dratio |address hits i
s1eve 73.455s 76.409s 96.133% | 75.000% | P:A10005F8--A100063F 7434, .
main 2.9155 | 76.409s | 3.814%| 25.000% | P:AL0004A4--A10005F7 295.
jf,ir{f' "0.000us | 76.409s | 0.000%| 0.000%| P:A1000000--A1000009 0. -
4 | Ll F
I PERF.ListFunc ALL Open a detailed HLL function profiling window

name Function name

time Time in function

watchtime Time the function is observed

ratio Ratio of time spent by the function in percent

dratio Similar to Ratio, but only for the last second

address Function’s address range

hits Number of samples taken for the function

©1989-2024 Lauterbach Training Basic Debugging | 161

(other)

TRACE32 assigns all samples that can not be assigned to a high-level language function to (other).

Especially if the ratio for (other) is quite high, it might be interesting what code is running there. In this case
pushing the button ListLABEL is recommended.

& B:PERF
METHOD

BusSnoop

state

(©) DISable
@ OFF

I Arm

commands

El List

AutoArm

@ StopAndGo) Trace Snoop
Mode scans done
@ PC
*) TASK curr.scan
~) MEMory
(0) PCTASK runtime
(Z) PCMEMory
snoops(s

options 5697.

MMUSPACES snoop fails
[¥] STREAM

£ B::PERF.ListFunc

RunTime

DCC

Sort

© OFF

©) Address
(©) s¥mbol
@ Ratio

SnoopAddress
C:0x0
SnoopSize
Byte

]

(- 3]
commands
ListProgram
ListTREE
ListLine
ListFunc

ListMadule

ListFuncMad

ListLABEL

ListRange

List510

List5100
List51000

List510000

[= ===

(& setup...|[22 Config...|| Y Goto... || ElDetailed)[& View]@Proﬁle || ®@mit |[ODpisable] @ aArm |

rname

coverage:

68.041%

59.006% covtime:
1% 2% 5%

68.041%
10%

51eve

I PERF.ListLABEL

(other)
funcl0
main
func2c
funcs

+
+

funcl3

1]

I

£ B:PERF.ListLABEL

[= ===

(& setup...|[22 Config... || 13 Goto... |[ElDetailed|[@ view]@Proﬁle || ®mit |[ODpisable|] @®aArm |

coverage: 100.000% runtime: G59.006% covtime: 100.000%

name ratio 1% 2% 5% 10% i
LL516--.1514 15.236% -
LL522--.1520 14.649% E |
.L520--.L519 10, 465% | ————
d_add--d_sub 6.553%
sTpDoubleNormalize--sfpDoubleNormalize? 6.403%
d_mul--sfpDoubleNormalize 5. 417% | —
LL521--.L517 3. 570% |e—
.JL519——. L521 2. 368% |—— T

4| L}

Open a window for label-based profiling

©1989-2024 Lauterbach

Training Basic Debugging

162

TASK Sampling

If OS-aware debugging is configured (refer to “OS-aware Debugging” in TRACE32 Glossary, page 31
(glossary.pdf)), TASK information can be sampled.

Steps to be taken:

1. Open the PERF configuration window.

Cov MPCSXXX Window H

. Perf List
E| Perf List Dynamic
Function Runtime ’ &2 B:PERF oo =
Dimil_mtion g METHOD commands
D_uratlonAtDB ' BusSnoop @ StopAndGo) Trace ©) Snoop DcC ListProgram
Distance trace records 4
ListTREE
Reset state Mode scans done Sort ListLine
@ DISable @ PC) OFF ListFunc
) OFF) TASK curr.scan) Address ListModule
) Arm (©) MEMory (2 s¥mbol ListFuncMod
() PCTASK runtime @ Ratio ListLABEL
commands () PCMEMory ListRange

@ Program snoops(s SnoopAddress ListS10
@ Init options C:0x0 List5100
£ List [MMusPACES snoop fails SnoopSize List51000
RESet [C]STREAM Byte List510000

[¥] AutoArm ListDistriB
RunTime perf program file ListVarState
ListTASK

=
B

©1989-2024 Lauterbach Training Basic Debugging | 163

2. Select Mode TASK.

{]

& BPERF (e [wsa]
METHOD commands

BusSnoop () StopAndGo) Trace @ Snoop DCC
state Mode scans done Sort
© DISable © PC © oFF
@ OFF curr.scan Address
) Arm (2 MEMory sYmbol
©) PCTASK runtime © Ratio
commands () PCMEMory
snoops(s SnoopAddress
options SD:0x400059)
[CIMMUSPACES | |- snoop fails SnoopSize ListS1000
STREAM [Byte ~|| | [Lists10000 |
[¥] AutoArm ListDistriB

RunTime perf program file ListVarState

ListTASK

il

Since every OS has a variable that contains the information which task/process is currently running,
this variable has to be sampled while the program execution is running in order to perform TASK
sampling.

TRACERS2 fills the following fields when TASK mode is selected:
- the SnoopAddress field with the address of the variable.

- the SnoopSize field with the size of the variable.

The PERF METHOD Snoop is automatically selected, if the processor architecture supports reading
physical memory while the program execution is running. For details refer to “Run-time Memory
Access” (glossary.pdf)).

The default METHOD for all other processor architectures is StopAndGo.

I PERF.Mode TASK

©1989-2024 Lauterbach Training Basic Debugging | 164

3. Enable sample-based profiling by switching to OFF state and open the result window by
pushing the ListTask button.

& B:PERF =n o<

METHOD commands

BusSnoop) StopAndGo) Trace @ Snoop DCC

state Mode scans done Sort

© DISable (G):0 © oFF

@ TASK curr.scan Address

) Arm (2 MEMory sYmbol

©) PCTASK runtime © Ratio

commands () PCMEMory

snoops(s SnoopAddress

options SD:0x400059)
[CIMMUSPACES | - snoop fails SnoopSize List51000

RESet STREAM [Byte ~| | | [Lists10000 |
ListDistrib
RunTime perf program file ListVarState

LiStTASK

£ B:PERF.ListTASK [=n Eoh
(& setup... || 58 Config...|[1A Goto... || ElDetailed|[@ view]MProﬁle [®mit |[Opisable] @arm |

name ratio 1% 2% 5% 10% 20% 50% 100
TASKE -

TASKD
TASKC
TASKB
TASKA
TASK4
TASK3
TASK2
TASK1

v

=l
p
=
g
=
=
3

J4| 1 o

PERF.OFF Enable the sample-based profiling
PERF.ListTASK

4, Start the program execution and the sampling.

£ B:PERF.ListTASK = -E =]
(&2 setup... [38 config...| R Goto... || ElDetailed|| @ View | lProfie || @mit | Obisable] @arm |
runtime: 76.397%
name ratio 1% 2% 5% 10% 20% 50% 100,
TASKD 92.391% -
TASK2 3. 201% | e—
TASK3 2.174%
TASKE 1.087% =
TASK4 1.087% =
TASKD 0. 000%
TASKC 0. 000%
TASKB 0. 000%
TASKA 0. 000%
TASKL 0. 000%
NO_TASK 0. 000% o
Jf [m '

©1989-2024 Lauterbach Training Basic Debugging | 165

	Training Basic Debugging
	System Concept
	On-chip Debug Interface
	Debug Features
	TRACE32 Tools

	On-chip Debug Interface plus On-chip Trace Buffer
	On-chip Debug Interface plus Trace Port
	NEXUS Interface

	Starting a TRACE32 PowerView Instance
	Basic TRACE32 PowerView Parameters
	Configuration File
	Standard Parameters
	Examples for Configuration Files
	Additional Parameters

	Application Properties (Windows only)
	Configuration via T32Start (Windows only)
	About TRACE32
	Version Information
	Prepare Full Information for a Support Email

	Establish your Debug Session
	TRACE32 PowerView
	TRACE32 PowerView Components
	Main Menu Bar and Accelerators
	Main Tool Bar
	Window Area
	Command Line
	Message Line
	Softkeys
	State Line

	Registers
	Core Registers
	Display the Core Registers
	Colored Display of Changed Registers
	Modify the Contents of a Core Register

	Special Function Register
	Display the Special Function Registers
	Details about a Single Special Function Register
	Modify a Special Function Register
	The PER Definition File

	Memory Display and Modification
	The Data.dump Window
	Display the Memory Contents
	Modify the Memory Contents
	Run-time Memory Access
	Colored Display of Changed Memory Contents

	The List Window
	Displays the Source Listing Around the PC
	Displays the Source Listing of a Selected Function

	Breakpoints
	Breakpoint Implementations
	Software Breakpoints in RAM
	Software Breakpoints in FLASH
	Onchip Breakpoints in NOR Flash
	Onchip Breakpoints on Read/Write Accesses
	Onchip Breakpoints by Processor Architecture
	ETM Breakpoints for ARM or Cortex-A/-R

	Breakpoint Types
	Program Breakpoints
	Read/Write Breakpoints

	Breakpoint Handling
	Breakpoint Setting at Run-time
	Real-time Breakpoints vs. Intrusive Breakpoints
	Break.Set Dialog Box
	The HLL Check Box - Function Name
	The HLL Check Box - Program Line Number
	The HLL Check Box - Variable
	The HLL Check Box - HLL Expression
	Implementations
	Actions
	Options
	DATA Breakpoints

	Advanced Breakpoints
	TASK-aware Breakpoints
	Intrusive TASK-aware Breakpoint

	COUNTer
	Software Counter

	CONDition
	CMD
	memory/register/var

	Display a List of all Set Breakpoints
	Delete Breakpoints
	Enable/Disable Breakpoints
	Store Breakpoint Settings

	Debugging
	Debugging of Optimized Code
	Basic Debug Control

	Sample-based Profiling
	Program Counter Sampling
	Standard Procedure
	Details

	TASK Sampling

