
MANUAL

Training Arm CoreSight ETM
Tracing

Training Arm CoreSight ETM Tracing

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Training .. 

 Training Arm ETM ... 

 Training Arm CoreSight ETM Tracing .. 1

 ETM Setup .. 6

 ETM Versions 6

 Main Setup Windows 7

 ETM.state Window 7

 Trace.state Window 8

 ETMv1 9

 Interface and Trace Protocol 9

 Basic Setup 11

 What can I do to prevent a FIFO overflow (ETMv1.x)? 15

 ETMv3 16

 Interface and Protocol 16

 Basic Setups 18

 Additional Settings 20

 PTM (aka. PFT) 27

 Block Diagram 28

 Protocol Description 30

 Basic Setup 32

 Additional Settings 37

 FLOWERROR 38

 Diagnostic Commands 39

 Displaying the Trace Contents ... 41

 Source for the Recorded Trace Information 41

 Sources of Information for the Trace Display 43

 Influencing Factors on the Trace Information 44

 ETM Features and Settings 45

 Settings in the TRACE32 Trace Configuration Window 47

 States of the Trace 57

 The AutoInit Command 58

 Basic Display Commands 59

 Default Listing 59

 Basic Formatting 60
Training Arm CoreSight ETM Tracing | 2©1989-2024 Lauterbach

 Correlating the Trace Listing with the Source Listing 61

 Browsing through the Trace Buffer 62

 Display Items 63

 Default Display Items 63

 Further Display Items 66

 Find a Specific Record 70

 Belated Trace Analysis 72

 Save the Trace Information to an ASCII File 73

 Postprocessing with TRACE32 Instruction Set Simulator 74

 Export the Trace Information as ETM Byte Stream 77

 Trace-based Debugging (CTS) ... 78

 Forward and Backward Debugging 79

 CTS Technique 84

 Belated Trace-based Debugging 86

 HLL Analysis of the Trace Contents 87

 Details on each HLL Instruction 87

 Function Nesting 88

 Trace Control by Filter and Trigger ... 91

 Context 91

 Filters and Trigger by Using the Break.Set Dialog 95

 Examples for TraceEnable on Read/Write Accesses 96

 Examples for TraceEnable on Instructions 100

 Example for TraceData 104

 Example for TraceON/TraceOFF 105

 Example for BusTrigger 111

 Example for BusCount 112

 OS-Aware Tracing ... 114

 OS (No Dynamic Memory Management) 114

 Activate the TRACE32 OS Awareness (Supported OS) 114

 Exporting the Task Switches (OS) 117

 Belated Trace Analysis (OS) 122

 Enable an OS-aware Tracing (Not-Supported OS) 123

 OS+MMU (Dynamic Memory Management) 124

 Activate the TRACE32 OS Awareness 124

 Exporting the Process/Thread-ID (OS+MMU) 125

 Belated Trace Analysis 131

 Specific Write Access vs. Context ID Packet 133

 Task Statistics 134

 Ended Processes (OS+MMU) 135

 Context ID Comparator 136

 Function Run-Times Analysis .. 138

 Software under Analysis (no OS, OS or OS+MMU) 138
Training Arm CoreSight ETM Tracing | 3©1989-2024 Lauterbach

 Flat vs. Nesting Analysis 138

 Basic Knowledge about Flat Analysis 139

 Basic Knowledge about Nesting Analysis 140

 Summary 142

 Flat Analysis 143

 Optimum ETM Configuration (No OS or OS) 143

 Optimum ETM Configuration (OS+MMU) 144

 Dynamic Program Behavior 145

 Function Timing Diagram 152

 Hot-Spot Analysis 158

 Nesting Analysis 166

 Restrictions 166

 Optimum ETM Configuration (No OS) 166

 Optimum ETM Configuration (OS or OS+MMU) 167

 Items under Analysis 168

 Numerical Nested Function Run-time Analysis for all Software 171

 Additional Statistics Items for OS or OS+MMU 178

 More Nesting Analysis Commands 182

 Trace-based Code Coverage .. 185

 Optimum ETM Configuration (No OS or OS) 185

 Optimum ETM Configuration (OS+MMU) 185

Training Arm CoreSight ETM Tracing | 4©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

Version 06-Jun-2024
Training Arm CoreSight ETM Tracing | 5©1989-2024 Lauterbach

ETM Setup

ETM Versions

The parallel ETM is available in the following versions:

• ETMv1.x for ARM7 and ARM9

• ETMv3.x for ARM11

• ETMv3.x CoreSight Single for ARM9 and ARM11

• ETMv3.x CoreSight for ARM9, ARM11, Cortex-M3/M4/M23, Cortex-R4/R5, Cortex-A5/A7

• PTM for Cortex-A9/A15/A17

• ETMv4 for Cortex-R7/R8/R52, Cortex-M7/M33 and Cortex-A3x/A5x/A7x (Cortex-
A32/A35/A53/A55/A57/A72/A73/A75)

The ETM trace information can be stored internally in an onchip memory (ETB, ETF, ETR) or exported via a
trace port interface (TPIU) to an external recording device (PowerTrace, CombiProbe, µTrace).
Using internal memory for trace recording is also called “onchip trace”.
Using an external recording device is also called “offchip trace”

Chips supporting “offchip trace” usually export data via a parallel trace port: Via up to 40 pins on the chip the
trace data is transferred to the PowerTrace.
Some modern Cortex-A and Cortex-R chips support also the export of the data via a High Speed Serial
Trace Port (HSSTP)
Training Arm CoreSight ETM Tracing | 6©1989-2024 Lauterbach

Main Setup Windows

ETM.state Window

The ETM.state window allows to configure the ETM/PTM and the TPIU.

The JTAG interface is used to configure the ETM/PTM and the TPIU.
Training Arm CoreSight ETM Tracing | 7©1989-2024 Lauterbach

Trace.state Window

The Trace.state window allows to configure the TRACE32 Preprocessor AutoFocus II.
Training Arm CoreSight ETM Tracing | 8©1989-2024 Lauterbach

ETMv1

This chapter is only relevant if you have an ARM7 or ARM9 chip with ETMv1.

Interface and Trace Protocol

Trace packets contain the following information:

• Address information when the processor branches to a location that cannot be directly inferred
from the source code. When addresses are broadcast, high-order bits that have not changed are
not broadcast.

• Data accesses that are indicated to be of interest (only data, only addresses, data and
addresses).

PIPESTAT Pipeline status pins provide a cycle-by-cycle indication of what is
happening in the execute stage of the processor pipeline (instruction
executed, branch executed etc.).

TRACEPKT Trace packets
(broadcast address and data information)

TRACECLK ETM clock

The maximum sampling time for the program and data flow trace depends
mainly
• on the size of the trace buffer
• the CPU clock
because the pipeline status information has to be sampled every clock cycle.
Training Arm CoreSight ETM Tracing | 9©1989-2024 Lauterbach

ETM signals

TS Trace synchronization signal

PS[0..2] Pipeline status

TP
TPH
TPL

Trace packets (depending on PortSize)
Trace packets high byte (PortSize=16 only)
Trace packets low byte (PortSize=16 only)

Trace.List TS PS2 PS1 PS0 TP DEFault
Training Arm CoreSight ETM Tracing | 10©1989-2024 Lauterbach

Basic Setup

Port Size and Port Mode for ETMv1.x for ARM7/ARM9

1. Define the ETM port size.

TRACEPKT can be either 4, 8 or 16 bit.

2. Define if your ETM is working in Halfrate Mode or not.

In Halfrate Mode trace information is broadcast on the rising and falling edge of TRACECLK.

Trace information is only broadcast
on the rising edge of TRACECLK

Trace information is broadcast on the
rising and falling edge of TRACECLK

Switch to ON if ETM is working
in Halfrate mode
Training Arm CoreSight ETM Tracing | 11©1989-2024 Lauterbach

3. Define the mode of the ETM port.

Normal Mode: one trace line is output via one trace port pin. HalfRate mode is supported in normal
mode.

Multiplexed Mode: the multiplexed mode can be used to save trace lines; 2 trace lines are
multiplexed to a single trace port pin.

Example for a 4-pin trace connector
Training Arm CoreSight ETM Tracing | 12©1989-2024 Lauterbach

Demultiplexed Mode: the demultiplexed mode is used to reduce the switching rate for the trace port;
each trace line is split across 2 trace port pins. HalfRate mode is supported in demultiplexed mode.

Demuxed 4-bit demultiplexed trace port (one mictor connector to target)

Demuxed2 8- and 16-bit demultiplexed trace port (two mictor connectors to
target)

Example for a 4-bit trace connector
Training Arm CoreSight ETM Tracing | 13©1989-2024 Lauterbach

Data Trace Setting

.

DataTrace (ETMv1)

OFF No information about data accesses is broadcast.

Address Only the address information for data accesses is broadcast.

Data Only the data information for data accesses is broadcast.

Read The address and data information is broadcast for read accesses.

Write The address and data information is broadcast for write accesses.

Both The address and data information is broadcast for all data
accesses.
Training Arm CoreSight ETM Tracing | 14©1989-2024 Lauterbach

What can I do to prevent a FIFO overflow (ETMv1.x)?

If a FIFOFULL logic is implemented on your ETM, it is possible to stall the processor when a FIFO overflow
is likely to happen.

The ETM does not provide any information to help you to find out how big is the performance loss
caused by stalling the processor.

ARM7TMI, ARM720T, ARM920T and ARM922T do not support the stalling of
the core when the ETM target FiFo is (almost) full. (You can set the option, but it
won’t have an effect.)

ETM.STALL ON is supported by ARM926EJ-S, ARM946E-S and ARM966E-S.

FIFOFULL logic available

Stall the processor if a FIFO overflow is likely to happen
Training Arm CoreSight ETM Tracing | 15©1989-2024 Lauterbach

ETMv3

This chapter is only relevant if you have a chip with an ARM ETMv3.
This are usually chips with a Cortex-M3/M4/M23, Cortex-R4/R5, Cortex-A5/A7/A8, ARM9 or ARM11
core.

Interface and Protocol

Trace packets contain the following information:

• Information about the execution of instructions.

• Address information when the processor branches to a location that cannot be directly inferred
from the source code. When addresses are broadcast, high-order bits that have not changed are
not broadcast.

• Data accesses that are indicated to be of interest (only data, only addresses, data and
addresses).

TRACECLK Trace clock

TRACECTL Trace control indicates if the trace information is valid.

TRACEDATA[n-1:0] Trace packets
(broadcast pipeline status information, address and data
information)
Training Arm CoreSight ETM Tracing | 16©1989-2024 Lauterbach

Due to the fact that the information about the execution of instructions is
broadcasted by trace packets, the maximum sampling time depends on the
number of broadcasted packages.

Trace.List TP DEFault
Training Arm CoreSight ETM Tracing | 17©1989-2024 Lauterbach

Basic Setups

Port Size and Port Mode for ETMv3.x for ARM11

1. Define the ETM port size

TRACEDATA can use 1..32 pins (48 and 64 pins port size is not supported yet).

2. Define the mode for the ETM port

The ETMv3.x works always in half-rate mode.

The port mode defines the relation <etm_clock>/<cpu_clock>.
Training Arm CoreSight ETM Tracing | 18©1989-2024 Lauterbach

Data Trace Setting

.

DataTrace (ETMv3)

OFF No data accesses are traced.
Only program flow is traced.

ON Both address and data information of for all data accesses (Read and
write accesses) are traced (and the program flow).

Read Both address and data for read accesses are traced (and the prog. flow).

Write Both address and data for write accesses are traced (and the prog. flow).

Address The addresses of all read/write accesses are traced (and the program
flow), but not the data value, which has been read or written.

ReadAddress The addresses of all data read accesses are traced (and the prog. flow).

WriteAddress The addresses of all data write accesses are traced (and the prog. flow).

Data The data values of all read/write accesses are traced (and the program
flow), but not the addresses of the read/write accesses.

ReadData Data values of all read accesses are traced (and the program flow).

WriteData Data values of all write accesses are traced (and the program flow).

Only Only data is traced (address and data of all read/write accesses)
but program flow is not traced.

OnlyAddress Only data addresses are traced (address of all read/write accesses, but
no data).
Program flow is not traced.

OnlyData Only data values are traced (data of all read/write accesses, but no
addresses).
Program flow is not traced.
Training Arm CoreSight ETM Tracing | 19©1989-2024 Lauterbach

Additional Settings

FIFO Overflow

• Broadcasting the program flow requires usually a low bandwidth and can be done without any
problem.

• Broadcasting the data flow generates much more traffic on the trace port. In order to prevent an
overloading of the trace port a FIFO is connected upstream of TRACEPKT/TRACEDATA. This
provides intermediate storage for all trace packets that cannot be output via
TRACEPKT/TRACEDATA immediately.

The ETMv3.x provides the FifoSize in a ETM configuration register
Training Arm CoreSight ETM Tracing | 20©1989-2024 Lauterbach

Under certain circumstances it is possible that so much trace information is generated, that the FIFO
overflows.
Training Arm CoreSight ETM Tracing | 21©1989-2024 Lauterbach

What can I do to prevent a FIFO overflow (ETMv3.x)?

If a FIFOFULL is likely to happen, the ETM suppresses the output of the data flow information.

The data suppression is not indicated in the trace.

Suppress data flow information if a FIFO overflow is likely to happen
Training Arm CoreSight ETM Tracing | 22©1989-2024 Lauterbach

How does the ETM know that a FIFO overflow is likely to happen?

You can define a FifoLevel. If less the FifoLevel bytes are empty in the FIFO:

• The processor is stalled until the number of empty bytes is higher the FifoLevel again (ETMv1.x).

• No data information is broadcasted until the number of empty bytes is higher the FifoLevel again
(ETMv3.x)

Recommendation for FifoLevel is ~2/3 of the FIFO size.

F
IF

O

FifoLevel
Training Arm CoreSight ETM Tracing | 23©1989-2024 Lauterbach

What happens at a FIFO overflow?

No further trace packets are accepted by the FIFO if a FIFO overflow occurs.

The ETM signals a FIFO overflow via the pipeline information and ensures, that the FIFO is completely
emptied. Once the FIFO memory is ready to receive again trace packets:

• A Trace restarted after FIFO overflow is output via the pipeline information

• The full address of the instruction just executed is output.

Trace restarted
after FIFO overflow
Training Arm CoreSight ETM Tracing | 24©1989-2024 Lauterbach

What can I do to reduce the risk of a FIFO overflow?

• Set the correct PortSize.

• Restrict DataTrace to read cycles (write accesses can be reconstructed via CTS).

• Restrict DataTrace to write cycles (a FIFO overflow becomes less likely).

• Reduce the broadcast of TraceData information by using a trace filter.

• Exclude the stack area from the data trace.

• Stall the core / supress the data flow when a FIFO overflow is likely to happen.

Exclude the stack area from
the data trace
Training Arm CoreSight ETM Tracing | 25©1989-2024 Lauterbach

Can the gaps in the trace resulting from FIFO overflow be reconstructed?

The gaps in the trace recording resulting from FIFO overflow can be reconstructed in most cases by using
the SmartTrace and CTS.

It is not possible to reconstruct:

• Exceptions occurring in the trace gaps.

• Port reads occurring in the trace gaps.
Training Arm CoreSight ETM Tracing | 26©1989-2024 Lauterbach

PTM (aka. PFT)

PTM stands for Program Trace Macrocell
PTM is also known as PFT. PFT stands for Program Flow Trace.

PTM offers a stronger trace compression comparing to ETMv3 but does not offer any kind of data trace
(neither data address nor data value)

The PTM is only used for Cortex-A9, Cortex-A15 and Cortex-A17 processor cores.
Training Arm CoreSight ETM Tracing | 27©1989-2024 Lauterbach

Block Diagram

Simplified block diagram for off-chip trace with parallel interface, training-relevant components only:

TRACEDATA[n:0] Trace packets

TRACECTL Trace Control (optional)

TRACECLKOUT Trace Clock from Target

TRACECLKIN not used

TPIU

CoreSight trace infrastructure

Cortex-A9/A15 core

PTM
72-byte
FIFO

Cortex-A9/A15 core

PTM
72-byte
FIFO

...

T
R

A
C

E
D

ATA
[n:0]

T
R

A
C

E
C

T
L

T
R

A
C

E
C

LK
O

U
T

T
R

A
C

E
C

LK
IN * PTM = Program Flow Trace Macrocell

* TPIU = Trace Port Interace Unit

ATBATB

ATB

* ATB = AMBA Trace Bus
Training Arm CoreSight ETM Tracing | 28©1989-2024 Lauterbach

Simplified block diagram for on-chip trace, training-relevant components only:

ETB

CoreSight trace infrastructure

Cortex-A9/A15 core

PTM
72-byte
FIFO

Cortex-A9/A15 core

PTM
72-byte
FIFO

...

* PTM = Program Flow Trace Macrocell
* ATB = AMBA Trace Bus

ATB ATB

ATB
Training Arm CoreSight ETM Tracing | 29©1989-2024 Lauterbach

Protocol Description

The PTM generates trace information on certain points in the program (waypoints). TRACE32 needs for a
full reconstruction of the program flow also the source code information. Waypoints are:

• Indirect branches, with branch destination address and condition code

• Direct branches with only the condition code

• Instruction barrier instructions

• Exceptions, with an indication of where the exception occurred

• Changes in processor instruction set state

• Changes in processor security state

• Context ID changes

• Start and stop of the program execution

Not exec

Exec

Not exec

Exec

Not exec
Training Arm CoreSight ETM Tracing | 30©1989-2024 Lauterbach

The PTM can be configured to provide the following additional information:

• Cycle count between traced waypoints

• Global system timestamps

• Target addresses for taken direct branches
Training Arm CoreSight ETM Tracing | 31©1989-2024 Lauterbach

Basic Setup

1. Enable TPIU pins

The TPIU pins need to be enabled, if they are multiplexed with other signals.

PER.Set.simple <address>|<range> [%<format>] <string> Modify configuration register/on-
chip peripheral

PER.Set SD:0x111D640 %Word 0x9AA0
PER.Set SD:0x111D6A4 %Word 0x2901

; Enable TPIU functionality on
; GPIO’s

PER.Set 0x111600D %Long %LE 0x01E ; Enable CLK

TPIU

Application
Pins
Training Arm CoreSight ETM Tracing | 32©1989-2024 Lauterbach

2. Configure CoreSight trace infrastructure

The CoreSight trace infrastructure is automatically configured by TRACE32 PowerView if your chip and its
infrastructure is known. Otherwise please contact your local TRACE32 support.

SYStem.CONFIG.state /COmponents Check configuration of CoreSight
infrastructure
Training Arm CoreSight ETM Tracing | 33©1989-2024 Lauterbach

3. Specify PortSize

PortSize specifies how many TRACEDATA pins are available on your target to export the trace packets.

ETM.PortSize <size>
Training Arm CoreSight ETM Tracing | 34©1989-2024 Lauterbach

4. Specify PortMode

ETM.PortMode specifies the Formatter operation mode.

The TPIU/ETB merges the trace information generated by the various trace sources within the multicore
chip to a single trace data stream. A trace source ID (e.g ETM.TraceID, ITM.TraceID, HTM.TraceID) allows
to maintain the assignment between trace information and its generating trace source. The task of the
Formatter within the TPIU/ETB is to embed the trace source ID within the trace information to create this
single trace stream.

Bypass There is only one trace source, so no trace source IDs is needed.
In this operation mode the trace port interface needs to provide the
TRACECTL signal.

Wrapped The Formatter embeds the trace source IDs. The TRACECTL
signal is used to indicate valid trace information.

Continuous The Formatter embeds the trace source IDs. Idles are generated
to indicate invalid trace information. The TRACE32 preprocessor
filters these idles in order to record only valid trace information into
the trace memory.

ETM.PortMode Bypass | Wrapped | Continuous
Training Arm CoreSight ETM Tracing | 35©1989-2024 Lauterbach

5. Calibrate AutoFocus Preprocessor

Push the AutoFocus button to set up the recording tool.

If the calibration is performed successfully, the following message is displayed:
Training Arm CoreSight ETM Tracing | 36©1989-2024 Lauterbach

Additional Settings

The following setting may be of interest. They are explained in detail later in this training:

ETM.ReturnStack [ON | OFF] May help to reduce the amount of generated
trace information.

ETM.ContextID 8 | 16 | 32 | OFF Is required for OS-aware tracing

ETM.TImeMode <mode> Is required for OS-aware tracing

ETM.CycleAccurate [ON | OFF] Enable cycle-accurate tracing

ETM.TimeStamps [ON | OFF] Enable global timestamp

ETM.TimeStampCLOCK <frequency> Specify clock of global timestamp
Training Arm CoreSight ETM Tracing | 37©1989-2024 Lauterbach

FLOWERROR

FLOWERROR: The trace information is not consistent with the code image in the target memory.
This can happen when the code in the target memory was changed or the trace information was corrupted
e.g. because of crosstalk on the external trace pins.

HARDERROR: The trace port pins are in an invalid state.
This happens if the trace information was corrupted e.g. because of crosstalk on the external trace pins. In
rare cases this can be caused by a bug in the chip.
Training Arm CoreSight ETM Tracing | 38©1989-2024 Lauterbach

Diagnostic Commands

TRACE32 normally uploads only those records from the physical trace memory to the host, that are required
by the current trace display/analysis window. To upload the complete trace contents to the host for diagnosis,
the following commands are recommended:

To check the number of FLOWERRORS in the trace use the following command:

If the trace contains FLOWERRORS / HARDERRORS, please try to set up a proper trace recording
before you start to evaluate or analyse the trace contents. See also the section “Diagnosis” in “Arm
ETM Trace” (trace_arm_etm.pdf).

To find the FLOWERRORS / HARDERRORS in the trace use the keyword FLOWERROR in the Trace.Find
window.

Trace.FLOWPROCESS

Trace.Chart.sYmbol

PRINT %Decimal Trace.FLOW.ERRORS()

Use the Expert Find page to find the FLOWERRORs
in the trace
Training Arm CoreSight ETM Tracing | 39©1989-2024 Lauterbach

FIFOFULL

To check the number of FIFOFULLs in the trace use the following command:

To find the FIFOFULLs in the trace use the keyword FIFOFULL in the Trace.Find window.

PRINT %Decimal Trace.FLOW.FIFOFULL()

Use the Expert Find page to find the FIFOFULLs
in the trace
Training Arm CoreSight ETM Tracing | 40©1989-2024 Lauterbach

Displaying the Trace Contents

Source for the Recorded Trace Information

If TRACE32 is started when a PowerTrace hardware and an ETM preprocessor is connected, the source for
the trace information is the so-called Analyzer (Trace.METHOD Analyzer).

The setting Trace.METHOD Analyzer has the following impacts:

1. Trace is an alias for Analyzer.

Trace.List ; Trace.List means
; Analyzer.List

Trace.Mode Fifo ; Trace.Mode Fifo means
; Analyzer.Mode Fifo
Training Arm CoreSight ETM Tracing | 41©1989-2024 Lauterbach

2. All commands from the Trace menu apply to the Analyzer.

3. All Trace commands from the Perf menu apply to Analyzer.

4. TRACE32 is advised to use the trace information recorded to the Analyzer as source for the trace
evaluations of the following command groups:

This ETM Training uses always the command group Trace. If you are using a CombiProbe or the on-chip
ETB as source of the trace information, just select the appropriate trace method and most features will work
as demonstrated for the trace method Analyzer.

CTS.<sub_cmd> Trace-based debugging

COVerage.<sub_cmd> Trace-based code coverage

ISTAT.<sub_cmd> Detailed instruction analysis

MIPS.<sub_cmd> MIPS analysis

BMC.<sub_cmd> Synthesize instruction flow with recorded benchmark counter
information

Trace.METHOD CAnalyzer ; select the CombiProbe as source
; for the trace information

Trace.METHOD Onchip ; select the ETB as source for the
; trace information
Training Arm CoreSight ETM Tracing | 42©1989-2024 Lauterbach

Sources of Information for the Trace Display

In order to provide an intuitive trace display the following sources of information are merged:

• The trace information recorded.

• The program code from the target memory read via the JTAG/DAP interface.

• The symbol and debug information already loaded to TRACE32.

Symbol and debug
information loaded

to TRACE32

Recorded trace
information

Uploaded from
the source of

trace information

Program code from
target memory

Read via
JTAG/DAP
interface
Training Arm CoreSight ETM Tracing | 43©1989-2024 Lauterbach

Influencing Factors on the Trace Information

The main influencing factor on the trace information is the ETM itself. It specifies what type of trace
information is generated for the user.

Another important influencing factor are the settings in the TRACE32 Trace configuration window. They
specify how much trace information can be recorded and when the trace recording is stopped.
Training Arm CoreSight ETM Tracing | 44©1989-2024 Lauterbach

ETM Features and Settings

An ETM can provide the following trace information:

• Program: Instruction flow mainly based on the target addresses of taken indirect branches

• Non-Branch Conditionals: The ARM instruction sets allow also non-branch instruction to be
conditional. The trace can contain information if the condition of every conditional instruction has
been met or only if the condition of the branch instructions have been met.

• Data Address: The address to/from a data access is writing/reading data-

• Data Value: The data value loaded/stored by a read/write operation

• Context ID: Values of Context ID changes, mainly used to indicate task/process changes and
changes of the virtual address space

• Cycle-count (CC): Number of clock cycles between executed instructions

The table below shows what trace information is generated by the various ARM Cortex cores.

Core ETM
Version

Program
Flow

 non-branch
conditionals

Data
Address

Data
Value

Context
ID

Cycle
Count

bits per
instruction

ARM7
ARM9

ETMv1 ■ ■ ■ ■ ETMv1.2 ■ 8.00

ARM9 CoreSight
ETMv3

■ ■ ■ ■ ■ ■ ~1.20

ARM11 (CoreSight)
ETMv3

■ ■ ■ ■ ■ ■ ~1.20

Cortex-M3/M4
Cortex-M23

CoreSight
ETMv3

■ ■ (DWT) (DWT) - - ~1.20

Cortex-M7
Cortex-M33

 ETMv4
(Cfg. 3)

■ ■ (DWT) (DWT) - ■ ~0.35

Cortex-R4
Cortex-R5

CoreSight
ETMv3

■ ■ ■ ■ ■ ■ ~1.20

Cortex-R7/R8
Cortex-R52

 ETMv4
(Cfg. 1)

■ ■ ■ ■ ■ ■ ~0.40

Cortex-A5
Cortex-A7

CoreSight
ETMv3

■ ■ ■ ■ ■ ■ ~1.20

Cortex-A8 CoreSight
ETMv3

■ ■ ■ - ■ ■ ~1.20

Cortex-A9
Cortex-A15
Cortex-A17

PTM ■ - - - ■ ■ ~0.30

Cortex-A3x
Cortex-A5x
Cortex-A7x

ETMv4
(Cfg. 2)

■ - - - ■ ■ ~0.30
Training Arm CoreSight ETM Tracing | 45©1989-2024 Lauterbach

The column "Bits per Instruction" is base on values stated by ARM for program traces without data
address/value trace, without conditional non-branch instructions and without cycle-count or internal-timing
information (only external tool-base timing).

The ETM can provide also a number of comparators to restrict the generated trace information to the
information of interest. They are introduced in detail in the section Trace Control by Filter and Trigger of
this training.
Training Arm CoreSight ETM Tracing | 46©1989-2024 Lauterbach

Settings in the TRACE32 Trace Configuration Window

The Mode settings in the Trace configuration window specify how much trace information can be recorded
and when the trace recording is stopped.

The following modes are provided:

• Fifo, Stack, Leash Mode: allow to record as much trace records as indicated in the SIZE field of
the Trace configuration window.

• STREAM Mode: STREAM mode specifies that the trace information is immediately streamed to
a file on the host computer. Peak loads at the trace port are intercepted by the TRACE32 trace
tool, which can be considered as a large FIFO.

STREAM mode allows a trace memory of several T Frames.

STREAM mode required 64-bit host computer and a 64-bit TRACE32 executable to handle the
large trace record numbers.

• PIPE Mode: PIPE mode specifies that the trace information is immediately streamed to the host
computer. There it is distributed to a user-defined trace analysis application. This mode is still
under construction and will be used mainly for software-generated trace information.

• RTS Mode: The RTS radio button in only an indicator that shows if Real-time Profiling is ON or
OFF. For details on Real-time Profiling refer to the RTS command group.
RTS is available for ETMv3 and ETMv4.
Training Arm CoreSight ETM Tracing | 47©1989-2024 Lauterbach

Fifo Mode

Trace.Mode Fifo ; default mode

; when the trace memory is full
; the newest trace information will
; overwrite the oldest one

; the trace memory contains all
; information generated until the
; program execution stopped

In Fifo mode negative record numbers are used. The last record gets the smallest negative number.
Training Arm CoreSight ETM Tracing | 48©1989-2024 Lauterbach

Stack Mode

Trace.Mode Stack ; when the trace memory is full
; the trace recording is stopped

; the trace memory contains all
; information generated directly
; after the start of the program
; execution

The trace recording is
.stopped as soon as
the trace memory is
full (OFF state)

Green running indicates that the
program execution is running,

OFF indicates that the trace
recording is switched off
Training Arm CoreSight ETM Tracing | 49©1989-2024 Lauterbach

By default, the trace information
.can not be displayed while the
program execution is running.
TRACE32 has NOACESS to
the target memory.
Training Arm CoreSight ETM Tracing | 50©1989-2024 Lauterbach

There a three alternative ways to solve the NOACCESS issue:

1. Stop the program execution. Then TRACE32 has access to the target memory.

2. Enable the run-time memory access (if supported by your chip) and advise TRACE32 to read
the target memory via this run-time memory access for trace decoding.

SYStem.MemAccess DAP Enable run-time memory access.

Trace.ACCESS DualPort Advise TRACE32 to read the target memory via the run-time
memory access for trace decoding.
Training Arm CoreSight ETM Tracing | 51©1989-2024 Lauterbach

3. Provide the program code to TRACE32 via the so-called TRACE32 Virtual Memory.

If there is a copy of the program code in the TRACE32 Virtual Memory TRACE32 reads the code
from there, if an access to the target memory is not possible.

; load the code from the file demo_r4.axf to the target and the
; TRACE32 Virtual Memory
Data.LOAD.Elf demo_r4.axf /PlusVM

Data.LOAD.Elf demo_r4.axf

; …

; load the program code to the TRACE32 Virtual Memory
Data.LOAD.Elf demo_r4.axf /VM /NosYmbol /NoClear

Symbol and debug
information loaded

to TRACE32

Recorded trace
information

Uploaded from
the source of

trace information

Copy of the program
code in Virtual Memory

 of TRACE32
Training Arm CoreSight ETM Tracing | 52©1989-2024 Lauterbach

The trace contents is displayed as soon as TRACE32 has access to the program code.

Caution: Please make sure that the Virtual Memory of TRACE32 always provides an up-
to-date version of the program code. Out-of-date program versions will cause
FLOW ERRORs.

Since the trace recording starts with the program execution and stops when the trace memory is full,
positive record numbers are used in Stack mode. The first record in the trace gets the smallest
positive number.
Training Arm CoreSight ETM Tracing | 53©1989-2024 Lauterbach

Leash Mode

Trace.Mode Leash ; when the trace memory is nearly
; full the program execution is
; stopped

; Leash mode uses the same record
; numbering scheme as Stack mode

The program execution is stopped as soon as
the trace buffer is nearly full.

Since stopping the program execution when the trace
buffer is nearly full requires some logic/time, used is
smaller then the maximum SIZE.
Training Arm CoreSight ETM Tracing | 54©1989-2024 Lauterbach

STREAM Mode

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory. This procedure extends the size of the trace memory to several TFrames.

• Streaming mode required 64-bit host computer and a 64-bit TRACE32 executable to handle the
large trace record numbers.

By default the streaming file is placed into the TRACE32 temp directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specific a different name and location for the streaming
file.

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

Trace.Mode STREAM ; STREAM the recorded trace
; information to a file on the host
; computer
; (off-chip trace only)

; STREAM mode uses the same record
; numbering scheme as Stack mode

Trace.STREAMFILE d:\temp\mystream.t32 ; specify the location for
; your streaming file
Training Arm CoreSight ETM Tracing | 55©1989-2024 Lauterbach

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace
memory, which can be considered to be operating as a large FIFO.

used graphically
indicates the number of
records buffered by
the TRACE32 trace
memory

used numerically
indicates the number
of records saved
to the streaming file

STREAM mode can
generate very large
record numbers
Training Arm CoreSight ETM Tracing | 56©1989-2024 Lauterbach

States of the Trace

The trace buffer can either sample or allow the read-out for information display.

The Trace states trigger and break are introduced in detail later in this training.

States of the Trace

DISable The trace is disabled.

OFF The trace is not recording. The trace contents can be displayed.

Arm The trace is recording. The trace contents can not be displayed.
Training Arm CoreSight ETM Tracing | 57©1989-2024 Lauterbach

The AutoInit Command

Init Button Delete the trace memory. All other settings in the Trace
Configuration window remain valid.

AutoInit CheckBox ON: The trace memory is deleted whenever the program execution
is started (Go, Step).
Training Arm CoreSight ETM Tracing | 58©1989-2024 Lauterbach

Basic Display Commands

Default Listing

Conditional
instruction

executed

Conditional
instruction

not executed
(pastel printed)

Data access Timing information
Training Arm CoreSight ETM Tracing | 59©1989-2024 Lauterbach

Basic Formatting

The More button works vice versa.

after pushing ‘Less’-button
the 1st time

Suppress the display of the program trace package information
(ptrace).

after pushing ‘Less’-button
the 2nd time

Suppress the display of the assembly code.

after pushing ‘Less’-button
the 3rd time

Suppress the data access information (e.g. wr-long cycles).

1.

2.

3.
Training Arm CoreSight ETM Tracing | 60©1989-2024 Lauterbach

Correlating the Trace Listing with the Source Listing

Active Window

All windows opened with
the /Track option follow the
cursor movements in the
active window
Training Arm CoreSight ETM Tracing | 61©1989-2024 Lauterbach

Browsing through the Trace Buffer

Pg  Scroll page up.

Pg  Scroll page down.

Ctrl - Pg  Go to the first record sampled in the trace buffer.

Ctrl - Pg  Go to the last record sampled in the trace buffer.
Training Arm CoreSight ETM Tracing | 62©1989-2024 Lauterbach

Display Items

Default Display Items

• Column record

Displays the record numbers

• Column run

The column run displays some graphic element to provide a quick overview on the instruction
flow.

Trace.List List.ADDRESS DEFault

Sequential
instruction flow

Change in the
instruction flow
Training Arm CoreSight ETM Tracing | 63©1989-2024 Lauterbach

The column run also indicates Interrupts and TRAPs.

• Column cycle

The main cycle types are:

- ptrace (program trace information)

- rd-byte, rd-word, rd-long (read access)

- wr-byte, wr-word, wr-long (write access)

- task (Task ID written via Context ID register)

- overlay (Code-Overlay ID written via Context ID register)
Training Arm CoreSight ETM Tracing | 64©1989-2024 Lauterbach

• Column address/symbol

The address column shows the following information:
<memory_class>:<logical_address>

The symbol column shows the corresponding symbolic address.

• Column ti.back

The ti.back column shows the time distance to the previous record.

Memory Classes

T Instruction Thumb mode decoded

R Instruction ARM mode decoded

D Data address
Training Arm CoreSight ETM Tracing | 65©1989-2024 Lauterbach

Further Display Items

Time Information

Set the Global Zero Point

TIme.Back Time relative to the previous record (red).

TIme.Fore Time relative to the next record (green).

TIme.Zero Time relative to the global zero point.

Trace.List TIme.BACK TIme.FORE TIme.ZERO DEFault

Establish the
selected record as
global zero point
Training Arm CoreSight ETM Tracing | 66©1989-2024 Lauterbach

Time Information for Cycle Accurate Mode

• Cycle Accurate Mode Pros

Provides accurate core clock cycle information.

Accurate time information can be calculated, if the core clock was constant while recording the
trace information.

• Cycle Accurate Mode Cons

Cycle accurate tracing requires up to 4 times more bandwidth.

ETM/PTM trace information can not be correlated with any other trace information.

Trace information has to be processed always from the start of the trace memory. “Tracking”
indicates that the display of the trace information might need some time.

Cycle Accurate Mode and constant core clock while recording

Example for Cortex-A9:

ETM.TImeMode CycleAccurate ; enable cycle accurate mode

Trace.CLOCK 800.MHZ ; inform TRACE32 about your core
; clock frequency
Training Arm CoreSight ETM Tracing | 67©1989-2024 Lauterbach

Cycle Accurate Mode and changing core clock while recording

Example for Cortex-A9:

; combines cycle accurate mode with TRACE32 global timestamp
ETM.TImeMode CycleAccurate+ExternalTrack
Training Arm CoreSight ETM Tracing | 68©1989-2024 Lauterbach

Clock Information

In addition to the timing information the number of clocks needed by an instruction/instructions range can be
displayed.

Trace.List CLOCKS.BACK TIme.BACK DEFault
Training Arm CoreSight ETM Tracing | 69©1989-2024 Lauterbach

Find a Specific Record

Example: Find a specific symbol address.
Training Arm CoreSight ETM Tracing | 70©1989-2024 Lauterbach

Example: Find Context ID

Example: Find Interrupt/Trap
Training Arm CoreSight ETM Tracing | 71©1989-2024 Lauterbach

Belated Trace Analysis

There are several ways for a belated trace analysis:

1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACE32 Instruction Set Simulator and analyze it there.

3. Export the ETMv3 byte stream to postprocess it with an external tool.
Training Arm CoreSight ETM Tracing | 72©1989-2024 Lauterbach

Save the Trace Information to an ASCII File

Saving part of the trace contents to an ASCII file requires the following steps:

1. Select Print in the File menu to specify the file name and the output format.

2. It only makes sense to save a part of the trace contents into an ASCII-file. Use the record
numbers to specify the trace part you are interested in.

TRACE32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

3. Use an ASCII editor to display the result.

PRinTer.FileType ASCIIE ; specify output format
; here enhanced ASCII

PRinTer.FILE testrun1.lst ; specify the file name

; save the trace record range (-8976.)--(-2418.) into the
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)
Training Arm CoreSight ETM Tracing | 73©1989-2024 Lauterbach

Postprocessing with TRACE32 Instruction Set Simulator

1. Save the contents of the trace memory into a file.

The default extension for the trace file is .ad.
Training Arm CoreSight ETM Tracing | 74©1989-2024 Lauterbach

2. Start a TRACE32 Instruction Set Simulator (PBI=SIM).

Training Arm CoreSight ETM Tracing | 75©1989-2024 Lauterbach

3. Select your target CPU within the simulator. Then establish the communication between
TRACE32 and the simulator.

4. Load the trace file.
Training Arm CoreSight ETM Tracing | 76©1989-2024 Lauterbach

5. Display the trace contents.

6. Load symbol and debug information as you need it.

The TRACE32 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACE32 debugger.

Export the Trace Information as ETM Byte Stream

TRACE32 allows to save the ETM byte stream into a file for further analysis by an external tool.

Data.LOAD.Elf demo_r4.axf /NoCODE

Analyzer.EXPORT testrun1.ad /ByteStream

; export only a part of the trace contents
Analyzer.EXPORT testrun2.ad (-3456800.)--(-2389.) /ByteStream

LOAD indicates that the source for the trace information is the loaded file.
Training Arm CoreSight ETM Tracing | 77©1989-2024 Lauterbach

Trace-based Debugging (CTS)

In the past it was necessary to spend a lot of time analyzing the trace listing in order to find out which
instructions, data or system states had caused malfunctioning of the target system.

Now Trace-based Debugging - also CTS for Context Tracking System - allows the user to recreate the state
of the target system at a selected point based on the information sampled in the trace buffer. From this
starting point the program steps previously recorded in real-time in the trace memory can be re-debugged
again in the TRACE32 PowerView GUI.

Standard Trace-based Debugging requires:

• Continuous instruction flow trace (Trace.Mode Fifo or Leash)

• Continuous data flow trace (at least read accesses).

If the read data and the operation on the read data are known, the write accesses can be recreated
by CTS.

The ARM Cortex core that allow standard Trace-based Debugging are highlighted by a grey background.

Core ETM
Version

Program Data
Address

Data
Value

Context ID CC

ARM7
ARM9

ETMv1 ■ ■ ■ ETMv1.2 ■

ARM9 CoreSight
ETMv3

■ ■ ■ ■ ■

ARM11 (CoreSight)
ETMv3

■ ■ ■ ■ ■

Cortex-M3 / M4
Cortex-M23

CoreSight
ETMv3

■ (DWT) (DWT)

Cortex-R4
Cortex-R5

CoreSight
ETMv3

■ ■ ■ ■ ■

Cortex-R7 / R8
Cortex-R52

CoreSight
ETMv4

■ ■ ■ ■ ■

Cortex-A5
Cortex-A7

CoreSight
ETMv3

■ ■ ■ ■ ■

Cortex-A8 CoreSight
ETMv3

■ ■ ■ ■

Cortex-A9
Cortex-A15
Cortex-A17

CoreSight
PTM

■ ■ ■
Training Arm CoreSight ETM Tracing | 78©1989-2024 Lauterbach

Forward and Backward Debugging

Trace-based Debugging allows to re-debug a trace program section.

Trace-based Debugging is set up as follows:

1. Select the trace record that should be the starting point for Trace-based Debugging and select
Set CTS in the Trace context menu.
Training Arm CoreSight ETM Tracing | 79©1989-2024 Lauterbach

2. TRACE32 PowerView now recreates the state of the target system as it was when the instruction
at the starting point was executed. The recreation take a while (CTS busy).

Please be aware, that CTS recreates the former target state only in the TRACE32 PowerView GUI.
This has no effect on the target system.

When CTS is active the TRACE32 PowerView GUI does not show the current state of the target system. It
shows a state recreated by the TRACE32 software for the record displayed in the state line.

In order to avoid irritations the look-and-feel of TRACE32 PowerView is changed to yellow when CTS is
active.

TRACE32 PowerView show the state of the target as it was when
the instruction of the trace record 99897582.0 was executed
Training Arm CoreSight ETM Tracing | 80©1989-2024 Lauterbach

The main subjects of the CTS recreation are:

• Source listing

• Register contents

• Memory contents

• Call stack and local variables

• Variables

The following forward debugging commands can be used to re-debug the traced program section:

• Single step (Step.single)

• Step over call (Step.Over)

• Single step until specified expression changes (Step.Change, Var.Step.Change)

• Single step until specified expression becomes true (Step.Till, Var.Step.Till)

• Go

• Start the program execution. Stop it when the next written instruction is executed (Go.Next)

• Start the program execution and stop it before the last instruction of the current function is
executed (Go.Return)

• Start the program execution and stop it after it returned to the calling function (Go.Up)

Forward debugging commands Backward debugging commands
Training Arm CoreSight ETM Tracing | 81©1989-2024 Lauterbach

The following backward debugging commands can be used to re-debug the traced program section:

• Step backwards (Step.Back)

• Step backwards over call (Step.BackOver)

• Step backwards until specified expression changes (Step.BackChange, Var.Step.BackChange)

• Step backwards until specified expression becomes true (Step.BackTill, Var.Step.BackTill)

• Run the program backwards (Go.Back)

• Run the program until the start of the current function (Go.BackEntry)

If CTS can not recreate the contents of a memory location or a variable value a ? is displayed.
Training Arm CoreSight ETM Tracing | 82©1989-2024 Lauterbach

If you want to terminate the re-debugging of a traced program section use the yellow Off button (CTS.OFF)
in the Data.List window.

After CTS is switched off the TRACE32 PowerView GUI displays the current contents of your target system.
Training Arm CoreSight ETM Tracing | 83©1989-2024 Lauterbach

CTS Technique

CTS reads and evaluates the current state of the target together with the information recorded to the trace
memory:

1. CTS can only perform a correct recreation, if solely the core, for which the data trace information
is recorded into the trace buffer, writes to memory. If there are memory addresses, e.g. dual-
ported memories or peripherals, that are change otherwise, these addresses have to be
excluded by the command MAP.VOLATILE from the CTS recreation. These memory addresses
are then displayed as unknown (?) if CTS is used.

2. CTS performs memory reads while performing a recreation. If read accesses to specific memory-
mapped peripherals should be prevented, the addresses have to be excluded by the command
MAP.VOLATILE from the CTS recreation. These memory addresses are then displayed as
unknown (?) if CTS is used.

3. Under certain circumstances the reconstruction of the instruction flow can cause BUSERRORS
on the target system. If this is the case, it is recommended to load the code to TRACE32 Virtual
Memory.

Contents of the
trace buffer

Current state of the target

Memory

Memory-mapped
peripherals

CPU register

SPR register

CTS
Training Arm CoreSight ETM Tracing | 84©1989-2024 Lauterbach

4. CTS has to be re-configured if:

- the program execution is still running while CTS is used.

- not all CPU cycles until the stop of the program execution are sampled to the trace.

- the trace contents is reprocessed with a TRACE32 Instruction Set Simulator.

- only the program flow is sampled to the trace buffer.

In all these cases the current state of the target can not be used by CTS. For more information refer to
the command CTS.state.

 MAP.VOLATILE <range> Exclude addresses from CTS

 CTS.state Reconfigure CTS.
Training Arm CoreSight ETM Tracing | 85©1989-2024 Lauterbach

Belated Trace-based Debugging

The TRACE32 Instruction Set Simulator can be used for a belated Trace-based Debugging. To set up the
TRACE32 Instruction Set Simulator for belated Trace-based Debugging proceed as follows:

1. Save the trace information to a file

2. Set up the TRACE32 Instruction Set Simulator for a belated Trace-based Debugging:

Trace.SAVE my_file

SYStem.CPU CORTEXR4 ; select the target CPU

SYStem.Up ; establish the communication
; between TRACE32 and the
; TRACE32 Instruction Set
; Simulator

Trace.LOAD my_trace.ad ; load the trace file

Data.LOAD.Elf demo_r4.axf /NoCODE ; load the symbol and debug
; information

Trace.List ; display the trace listing

CTS.UseFinalMemory OFF ; exclude the current memory
; contents from CTS

MAP.CONST 0x8000900++0xff ; inform TRACE32 which memory
; address range provides
; constants

; CTS.UseConst ON ; include constant address
; range into CTS

CTS.UseFinalContext OFF ; exclude the current register
; contents from CTS

CTS.GOTO -293648539. ; specify the CTS starting
; point

… ; start the re-debugging
Training Arm CoreSight ETM Tracing | 86©1989-2024 Lauterbach

HLL Analysis of the Trace Contents

CTS provides also a number of features for high-level language trace display.

Details on each HLL Instruction

For each HLL step the following information is displayed:

• The values of the local and global variables used in the HLL step

• The result of the HLL step

• The time needed for the HLL step

CTS.List [<record|range>] [<item> …] [/<option>] List pure HLL trace.
Training Arm CoreSight ETM Tracing | 87©1989-2024 Lauterbach

Function Nesting

For each function you get the following information:

• Function parameters (and return value - not available on all CPUs)

• Time spent in the function

Push the Less
button to get a
function nesting
analysis
Training Arm CoreSight ETM Tracing | 88©1989-2024 Lauterbach

Tree Display

Timing Display

Click here to get a
tree analysis of the
function nesting

Click here to get a
graphical analysis of
the function runtime
Training Arm CoreSight ETM Tracing | 89©1989-2024 Lauterbach

CTS.STATistic.TREE [%<format>][<item> …] [/<options>] Display trace contents as call tree

CTS.Chart.sYmbol [<record_range>] [<scale>] [/<option>] Display trace contents as timing
based on the symbol information
Training Arm CoreSight ETM Tracing | 90©1989-2024 Lauterbach

Trace Control by Filter and Trigger

Context

An ETM can contain logic (resources) to control the tracing.

• Filter: Address Comparator, Data Comparator and Context ID Comparators are provided to
advice the ETM to only generate trace information for events of interest.

• Trigger: Address Comparator, Data Comparator, Context ID Comparators, Counters and a
Three-level Sequencer can be used to send a Trigger to the trace recording. In most cases the
trace recording is stopped when a Trigger occurs.

The table below lists which resources are provided by the various ARM Cortex cores:

Core ETM
Version

Address
Comparators

Data
Comparators

Context ID
Comparator

Counters Sequencer

ARM7
ARM9

ETMv1 ■ ■ ■ ■ ■

ARM9 CoreSight
ETMv3

■ ■ ■ ■ ■

ARM11 (CoreSight)
ETMv3

■ ■ ■ ■ ■

Cortex-M3
Cortex-M4
Cortex-M23

CoreSight
ETMv3

(DWT) (DWT)

Cortex-R4
Cortex-R5

CoreSight
ETMv3

■ ■ ■ ■ ■

Cortex-R7/R8
Cortex-R52

CoreSight
ETMv4

■ ■ ■ ■ ■

Cortex-A5
Cortex-A7

CoreSight
ETMv3

■ ■ ■ ■ ■

Cortex-A8 CoreSight
ETMv3

■ ■ ■ ■ ■
Training Arm CoreSight ETM Tracing | 91©1989-2024 Lauterbach

The ETM Configuration Window provides detailed information on the available resources for your core:

Special values for “DComp”:

• A 0 zero means, you can compare addresses on read/write but you cannot compare data.

• A minus (‘-’) means, the ETM (or PTM) cannot compare addresses for read/write accesses. (The
address comparators can only consider program addresses.)

Cortex-A9
Cortex-A15
Cortex-A17

CoreSight
PTM

■ ■ ■ ■

Cortex-A3x
Cortex-A5x
Cortex-A7x

CoreSight
ETMv4

■ ■ ■ ■

Number of address range comparators AComp

Number of data comparators
(single value or bitmask)

DComp

Number of Context ID comparator CComp

Number of 16-bit counters Counter

Three-state sequencer implemented Seq: Yes

Core ETM
Version

Address
Comparators

Data
Comparators

Context ID
Comparator

Counters Sequencer
Training Arm CoreSight ETM Tracing | 92©1989-2024 Lauterbach

If you push the Register button in the ETM Configuration Window, you get a tree display of the control
registers for the ETM.

Use the following command, if you want to read the ETM registers while the program execution is running:

ETM.Register , /DualPort
Training Arm CoreSight ETM Tracing | 93©1989-2024 Lauterbach

The following TRACE32 components can be used to control the ETM resources.

For advanced configurations via command ETM.Set see “Arm ETM Trace” (trace_arm_etm.pdf)

ETM Resources

Trace actions in the Beak.Set Dialog

ETM Programming DialogETM.Set command group

ETM Configuration Window

(not recommended)
(for advanced configuration)
Training Arm CoreSight ETM Tracing | 94©1989-2024 Lauterbach

Filters and Trigger by Using the Break.Set Dialog

TraceEnable Advise the ETM to generate trace information only for the specified
data or program event(s).

TraceData Advice the ETM to generate trace information for the complete
instruction flow and additionally for the specified data event.

TraceON Advise the ETM to start with the generation of trace information at
the specified event.

TraceOFF Advise the ETM to stop the generation of trace information at the
specified event.

TraceTrigger Advise the ETM to generate a Trigger for the trace recording at the
specified event.

If the ETM Trigger is not already connected to the TPIU in your
CoreSight system, this connection has to be configured manually
by the corresponding CTI (Cross Trigger Interface) setup.

BusTrigger Advise the ETM to generate a pulse at ETM External Output 1 at
the specified event.

BusCount Advise the ETM to decrement an ETM counter at the specified
event.
Training Arm CoreSight ETM Tracing | 95©1989-2024 Lauterbach

Examples for TraceEnable on Read/Write Accesses

Example 1: Advise the ETM to generate only trace information for the write accesses to the variable
flags[3].

1. Set a write breakpoint to flags[3] and select the action TraceEnable.

2. Start the program execution and stop it.

3. Display the result.
Training Arm CoreSight ETM Tracing | 96©1989-2024 Lauterbach

4. If you’d like to have details about the instruction that performed the write access, enable
DataTracePrestore in the ETM Configuration Window.

5. With ETM.DataTracePrestore ON you see in Trace.List for every data-cycle also the associated
program trace cycle (ptrace):

Using DataTracePrestore generates additional trace data with ETMv3.
With ETMv1 and ETMv4 any data trace cycle is always generated together with a program trace cylce.
Thus for ETMv1/v4 DataTracePrestore just controls if the debugger displays the program trace cylce.
Training Arm CoreSight ETM Tracing | 97©1989-2024 Lauterbach

Example 2: Advise the ETM to generate only trace information for the write accesses to the variable
sched_lock. Perform various statistical analysis on the trace contents.

; advise the ETM to only generate trace information for the write
; accesses to the variable sched_lock
Var.Break.Set sched_lock /Write /TraceEnable

; start and stop the trace recording to fill the trace memory
Go

…

Break

; display the trace memory contents
Trace.List

; analyse the contents of the variable sched_lock statistically
Trace.STATistic.DistriB Data.L /Filter Address sched_lock

; display a timing diagram that illustrates the contents changes of
; the variable sched_lock
Trace.Chart.DistriB Data.L /Filter Address sched_lock
Training Arm CoreSight ETM Tracing | 98©1989-2024 Lauterbach

// display a graph over time of the variable "sched_lock"

Trace.DRAW.Var %DEFault sched_lock

// or

Trace.DRAW.channel Data.L /Filter Address sched_lock
Training Arm CoreSight ETM Tracing | 99©1989-2024 Lauterbach

Examples for TraceEnable on Instructions

Example 1: Advise the ETM to generate trace information only for the entry to the function sieve.

1. Set a program breakpoint to the entry of the function sieve and select the action TraceEnable.

2. Start the program execution and stop it.

3. Display the result.
Training Arm CoreSight ETM Tracing | 100©1989-2024 Lauterbach

Use the following command, if you want to perform a statistical evaluation of this event.

Trace.STATistic.AddressDIStance sieve

For ARM Cortex CPUs:
When measuring execution times while only parts of the program flow have
been traced (by using trace filters TraceEnable, TraceON or TraceOFF) you
should not use external (tool based) time stamps. On ARM Cortex CPUs
already generated trace packets might not leave your chip when the trace filter
disables the ETM/PTM. The packets are then recorded when the ETM/PTM
gets re-enabled, which gives wrong external timestamps.

Best is to use ETM.TImeMode CycleAccurate, when using trace-filters.
Alternatively you can use ETM.TImeMode SyncTimeStamps or
ETM.TImeMode AsyncTimeStamps (if an internal chip-internal time stamper is
available)

See command ETM.TImeMode in “Arm ETM Trace” (trace_arm_etm.pdf) for
more details.

If you use external (tool based) time stamps (ETM.TImeMode External) to
measure execution times while only parts of the program flow have been traced
(by using trace filters TraceEnable, TraceON or TraceOFF), ensure that the port-
filter of you trace preprocessor (or CombiProbe or µTrace) is set to ON.
(Trace.PortFilter ON) Otherwise trace packets might be highly delayed in your
trace tool.
Training Arm CoreSight ETM Tracing | 101©1989-2024 Lauterbach

Example 2: Advise the ETM to generate trace information for the entries and exits to the function sieve.

1. Mark the entry and the exit of the function sieve with an TraceEnable breakpoint.

2. Start the program execution and stop it.

3. Display the result.
Training Arm CoreSight ETM Tracing | 102©1989-2024 Lauterbach

Use the following command, if you want to get a statistical analysis of the time spent between the entry and
exits of the function sieve. (The function sYmbol.EXIT(<func>) returns the exit address of a function.)

Trace.STATistic.AddressDURation sieve sYmbol.EXIT(sieve)

For ARM Cortex CPUs:
When measuring execution times while only parts of the program flow have
been traced (by using trace filters TraceEnable, TraceON or TraceOFF) you
should not use external (tool based) time stamps. On ARM Cortex CPUs
already generated trace packets might not leave your chip when the trace filter
disables the ETM/PTM. The packets are then recorded when the ETM/PTM
gets re-enabled, which gives wrong external timestamps.

Best is to use ETM.TImeMode CycleAccurate, when using trace-filters.
Alternatively you can use ETM.TImeMode SyncTimeStamps or
ETM.TImeMode AsyncTimeStamps (if an internal chip-internal time stamper is
available)

See command ETM.TImeMode in “Arm ETM Trace” (trace_arm_etm.pdf) for
more details.

If you use external (tool based) time stamps (ETM.TImeMode External) to
measure execution times while only parts of the program flow have been traced
(by using trace filters TraceEnable, TraceON or TraceOFF), ensure that the port-
filter of you trace preprocessor (or CombiProbe or µTrace) is set to ON.
(Trace.PortFilter ON) Otherwise trace packets might be highly delayed in your
trace tool.
Training Arm CoreSight ETM Tracing | 103©1989-2024 Lauterbach

Example for TraceData

Example: Advise the ETM to generate trace information for the complete instruction flow and for the write
accesses where 1 is written as a byte to the variable flags.

1. Set a Write breakpoint to the HLL variable flags, define DATA 1 and select the action TraceData.

2. Start the program execution and stop it.

3. Display the result.
Training Arm CoreSight ETM Tracing | 104©1989-2024 Lauterbach

Example for TraceON/TraceOFF

Example: Sample only the function sieve.

1. Set a Program breakpoint to the entry of the function sieve and select the action TraceON.

2. Set a Program breakpoint to the exit of the function sieve and select the action TraceOFF.

3. Start the program execution and stop it.

4. Display the result.

The ETM stops the generation for the trace information before trace information is generated for the
event the causes the stop.
Training Arm CoreSight ETM Tracing | 105©1989-2024 Lauterbach

Example for TraceTrigger

Example: Stop the recording to the trace buffer after 1 was written to flags[3].

1. Set a write breakpoint to flags[3], define DATA 1 and select the action TraceTrigger.

2. Establish the connection between the ETM Trigger and the TPIU via the Cross Trigger Interface
(CTI) if required.

This is only required for chips with ETMv3 or PTM and CoreSight debug infrastructure (Cortex-R4/R5
and Cortex-A5 to A17). You can skip this step for Cortex-M and cores with ETMv4 (with ETMv4 the
trigger is propagated via the trace bus (ATB).)

You have to set up both the Cross Trigger Interface (CTI) of you trigger-source - here the ETM/PTM -
and the sink for the trace trigger - here the TPIU (or ETF or ETR).

; core specific example

; configure ETM trigger to channel 3

; enable Core/ETM CTI
Data.Set APB:0x80001000 %Long 1
; map CTITRIGIN[6] (ETM Trigger Out) to channel 3
Data.Set APB:0x80001038 %Long Data.Long(APB:0x80001038)|0x4

; configure channel 3 to TPIU Trigger In

; enable System/TPIU CTI
Data.Set APB:0x80002000 %Long 1
; Map channel 3 to CTITRIGOUT[3] (TPIU Trigger In)
Data.Set APB:0x800020AC %Long Data.Long(APB:0x800020AC)|0x4

Cross Trigger
ETM Trigger

Cross Trigger

 Cross Trigger
TPIU Trigger In

Matrix
(CTM)
with

4 chnnels

Interface
(CTI)

of
ARM core

and
ETM/PTM

Inerface
(CTI)

of
Trace Port

Interface Unit
(TPIU)
Training Arm CoreSight ETM Tracing | 106©1989-2024 Lauterbach

The peripheral file “percti.per” in your TRACE32 system folder can help you to configure the CTIs:

Check your chips data sheet, for the base addresses of the CTI interface for both ETM and TPIU (or
ETF or ETR).

The following CTI inputs and outputs are use by the different ARM cores:

3. Configure an optional delay with Trace.TDelay <time> | <ETM cycles> | <percent of trace-buffer>
When the trace trigger occurs, the recording will stop after the specified delay.

4. Start the program execution.

5. Display the result.

Displaying the result requires access to the target memory in order to read the code information. To
display the result:

- Stop the program execution or

PER.view "~~/percti.per" <cti_base_address>

ARM core ETM Trigger Output
to CTM Channel

Core Break Input
from CTM Channel

Core Halt Output
to CTM Channel

ARM9 / ARM11 CTITRIGIN[6] CTITRIGOUT[0] CTITRIGIN[0]

Cortex-R4 CTITRIGIN[6] CTITRIGOUT[0] CTITRIGIN[0]

Cortex-A9 CTITRIGIN[6] CTITRIGOUT[0] CTITRIGIN[0]

Cortex-M3 CTITRIGIN[7] CTITRIGOUT[0] CTITRIGIN[0]

Cortex-R7 CTITRIGIN[2] CTITRIGOUT[0] CTITRIGIN[0]

ARMv8-A CTITRIGIN[4] CTITRIGOUT[0] CTITRIGIN[0]

Trace Sink Trigger Input from CTM Channel

TPIU CTITRIGOUT[3]

ETF CTITRIGOUT[7]

ETR CTITRIGOUT[1]

The Trace State field in the command line is green, as long a the trace recording is active

The Trace State field in the command line becomes blue after the trace recording was
stopped by the Trigger (BRK)
Training Arm CoreSight ETM Tracing | 107©1989-2024 Lauterbach

- Load the code to the TRACE32 Virtual Memory before you use the TraceTrigger action
(Data.LOAD <file> /VM).

The trace recording is stopped before the event that caused the triggered is exported by the ETM.
Training Arm CoreSight ETM Tracing | 108©1989-2024 Lauterbach

Example for TraceTrigger with a Trigger Delay

Example: Stop the sampling to the trace buffer after 1 was written to flags[3] and another 10% of the trace
buffer is filled.

1. Set a write breakpoint to flags[3], define DATA 1 and select the action TraceTrigger.

2. Define the trigger delay (TDelay) in the Trace Configuration Window.
Training Arm CoreSight ETM Tracing | 109©1989-2024 Lauterbach

3. Start the program execution.

4. Display the result.

The Trace State field in the command line is green, as long a the trace recording is active

The Trace State field in the command line becomes blue after the trace recording was
stopped because the trigger delay ran down (BRK)

The Trace State field in the command line becomes cyan after the Trigger occured (TRG)
and the trigger delay (TDelay) starts

Push the Trigger button in the Trace Goto window to find the record, where TraceTrigger
was accepted by the trace. Here the sign of the record numbers has changed.
Training Arm CoreSight ETM Tracing | 110©1989-2024 Lauterbach

Example for BusTrigger

Example: Indicate with a pulse on ETM External Output 1 that 1 was read from flags[12].

In order to measure this pulse on ETM External Output 1 you need to check where the ETM External
Output 1 can be measured on your core.

1. Set a read breakpoint to flags[12], define DATA 1 and select the action BusTrigger.

2. Measure the result.
Training Arm CoreSight ETM Tracing | 111©1989-2024 Lauterbach

Example for BusCount

Example: Advise the ETM to decrement its counter at each entry to the function sieve.

1. Set a program breakpoint to the entry of the function sieve and select the action BusCount.

2. Use the ETM configuration window to observe the counter.
Training Arm CoreSight ETM Tracing | 112©1989-2024 Lauterbach

3. Start the program execution
Training Arm CoreSight ETM Tracing | 113©1989-2024 Lauterbach

OS-Aware Tracing

OS-aware tracing is relatively simple if you use an operating system that does not use dynamic memory
management (e.g. eCos).

The OS-aware tracing for an operating that uses dynamic memory management to handle processes/tasks
is more complex. That is why this is explained in a separate chapter.

OS (No Dynamic Memory Management)

Activate the TRACE32 OS Awareness (Supported OS)

TRACE32 includes a configurable target-OS debugger to provide symbolic debugging of operating systems.

Lauterbach provides configuration files for most common available OS.

If your kernel is compiled with symbol and debug information, the adaptation to your OS can be activated as
follows:

All necessary files can be found under ~~/demo/arm/kernel, where ~~ expands to the TRACE32
system directory.

TASK.CONFIG <file> Configures the OS debugger using a configuration file provided by
Lauterbach

MENU.ReProgram <file> Program a ready-to-run OS menu

HELP.FILTER.Add <filter> Add the help information for the OS debugger
Training Arm CoreSight ETM Tracing | 114©1989-2024 Lauterbach

Example for eCos:

; enable eCos specific commands and features within TRACE32 PowerView
TASK.CONFIG ~~/demo/arm/kernel/ecos/ecos.t32

; extend the Trace menu and the Perf menu for OS-aware tracing
MENU.ReProgram ~~/demo/arm/kernel/ecos/ecos.men

The Trace menu is extended by the commands The Perf menu is extended by the commands
- Task Switches
- Default and Tasks

- Task Runtime
- Task Function Runtime
- Task Status
Training Arm CoreSight ETM Tracing | 115©1989-2024 Lauterbach

; enable eCos-specific help
HELP.FILTER.Add rtosecos
Training Arm CoreSight ETM Tracing | 116©1989-2024 Lauterbach

Exporting the Task Switches (OS)

There a two methods how task switch information can be generated by the ETM:

• By generating trace information for a specific write access

This method requires that the ETM can generate Data Address information and Data Value
information for write accesses (see table below). If this is possible this method is the preferred
one because it does not require any support from the operating system.

• By generating a Context ID packet

This method should only be used, if the ETM can not generate Data Address information and
Data Value information for write accesses (see table below). The reason is that it requires
support from the operating system. If the generation of Context ID packets is not supported by
your operating system it has to be patched in order to provide this information.

Core ETM Version Data Address Data Value Context ID

ARM7
ARM9

ETMv1 ■ ■ ■

ARM9 ETMv3 ■ ■ ■

ARM11 ETMv3 ■ ■ ■

Cortex-M3/M4
Cortex-M23

ETMv3 (DWT) (DWT) -

Cortex-M7
Cortex-M33

ETMv4
Config. 1

(DWT) (DWT) -

Cortex-R4
Cortex-R5

ETMv3 ■ ■ ■

Cortex-R7/R8
Cortex-R52

ETMv4
Config. 3

■ ■ ■

Cortex-A5
Cortex-A7

ETMv3 ■ ■ ■

Cortex-A8 ETMv3 ■ - ■

Cortex-A9
Cortex-A15
Cortex-A17

PTM - - ■

Cortex-A3x
Cortex-A5x
Cortex-A7x

ETMv4
Config. 2

- - ■
Training Arm CoreSight ETM Tracing | 117©1989-2024 Lauterbach

Specific Write Access (OS)

Each operating system has a variable that contains the information which task is currently running. This
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

One way to export task switch information is to advise the ETM to generate trace information when a write
access to this variable occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic).

PRINT TASK.CONFIG(magic) ; print the address that holds
; the task identifier
Training Arm CoreSight ETM Tracing | 118©1989-2024 Lauterbach

Example: Advise the ETM to generate only trace information on task switches.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic) and select the trace
action TraceEnable.

2. Start and stop the program execution to fill the trace buffer

3. Display the result.
Training Arm CoreSight ETM Tracing | 119©1989-2024 Lauterbach

Context ID Packet (OS)

A Context ID packet is generated when the OS updates the Context ID Register (CONTEXTIDR) on a task
switch.

The generation of Context ID packets has to be enabled within TRACE32.

Example:

1. Start and stop the program execution to fill the trace buffer.

2. Display the result.

ETM.ContextID 32 ; enable the generation of Context ID packets and
; inform TRACE32 that the Context ID is a 32-bit
; value
Training Arm CoreSight ETM Tracing | 120©1989-2024 Lauterbach

Searching for the Context IDs can be performed as follows:
Training Arm CoreSight ETM Tracing | 121©1989-2024 Lauterbach

Belated Trace Analysis (OS)

The TRACE32 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the
TRACE32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

Trace.SAVE saves the trace row data plus decompressed addresses, data and op-codes, but not the
task names.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here eCos
on an Excalibur):

Trace.SAVE testrtos.ad

SYStem.CPU EPXA ; select the target CPU

SYStem.Up ; establish the communication
; between TRACE32 and the
; TRACE32 Instruction Set
; Simulator

Trace.LOAD testrtos.ad ; load the trace file

Data.LOAD.Elf demo.elf /NoCODE ; load the symbol and debug
; information

TASK.CONFIG ecos ; activate the TRACE32
; OS Awareness

TASK.NAME.Set 0x58D68 "Thread 1" ; assign the task name to the
; saved task identifier

... ; assign the other task names

Trace.List List.TASK DEFault ; display the trace listing
Training Arm CoreSight ETM Tracing | 122©1989-2024 Lauterbach

Enable an OS-aware Tracing (Not-Supported OS)

If you use an OS that is not supported by Lauterbach you can use the “simple” awareness to configure your
debugger for OS-aware tracing.

Current information on the “simple” awareness can be found under ~~/demo/kernel/simple/readme.txt.

Each operating system has a variable that contains the information which task is currently running. This
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

Use the following command to inform TRACE32 about this variable:

If current_thread is the name of your variable the command would be as follows:

The OS-aware debugging is easier to perform, if you assign names to your tasks.

The “simple” awareness only supports task switches that are exported for the write accesses to the variable
that contains the information which task is currently running.

The “simple” awareness does currently not support context ID packets.

TASK.CONFIG ~~/demo/kernel/simple/simple.t32 <var> Var.SIZEOF(<var>)

TASK.CONFIG ~~/demo/kernel/simple/simple current_thread \
Var.SIZEOF(current_thread)

TASK.NAME.Set <task_id> <name> Specify a name for your task

TASK.NAME.view Display all specified names

TASK.NAME.Set 0x58D68 "My_Task 1"
Training Arm CoreSight ETM Tracing | 123©1989-2024 Lauterbach

OS+MMU (Dynamic Memory Management)

Since Linux is widely used, it is taken as example target OS for this training chapter.

Activate the TRACE32 OS Awareness

Please refer to “Training Linux Debugging” (training_rtos_linux.pdf) on how to activate the Linux
awareness on your target.

If you use a different OS that uses dynamic memory management to handle processes/tasks refer to the
corresponding target OS Awareness Manual (rtos_<os>.pdf).
Training Arm CoreSight ETM Tracing | 124©1989-2024 Lauterbach

Exporting the Process/Thread-ID (OS+MMU)

There a two methods how process/thread switch information can be generated by the ETM:

• By generating trace information for a specific write access.

This method requires that the ETM can generate Data Address information and Data Value
information for write accesses (see table below). If this is possible this method is the preferred
one because it does not require any support from the operating system.

• By generating a Context ID packet.

This method should only be used, if the ETM can not generate Data Address information and
Data Value information for write accesses (see table below). The reason is that it requires
support from the operating system. If the generation of Context ID packets is not supported by
your operating system it has to be patched in order to provide this information.

Core ETM Version Data Address Data Value Context ID

ARM7
ARM9

ETMv1 ■ ■ ■

ARM9 ETMv3 ■ ■ ■

ARM11 ETMv3 ■ ■ ■

Cortex-M3/M4
Cortex-M23

ETMv3 (DWT) (DWT) -

Cortex-M7
Cortex-M33

ETMv4
Config. 1

(DWT) (DWT) -

Cortex-R4
Cortex-R5

ETMv3 ■ ■ ■

Cortex-R7/R8
Cortex-R52

ETMv4
Config. 3

■ ■ ■

Cortex-A5
Cortex-A7

ETMv3 ■ ■ ■

Cortex-A8 ETMv3 ■ - ■

Cortex-A9
Cortex-A15
Cortex-A17

PTM - - ■

Cortex-A3x
Cortex-A5x
Cortex-A7x

ETMv4
Config. 2

- - ■
Training Arm CoreSight ETM Tracing | 125©1989-2024 Lauterbach

Specific Write Access (OS+MMU)

Each operating system has a variable that contains the information which process/thread is currently
running. This variable can hold a process/thread, a pointer to the process control block or something else
that is unique for each process/thread.

One way to export process/thread switch information is to advise the ETM to generate trace information
when a write access to this variable occurs.

The address to this variable is provided by the TRACE32 function TASK.CONFIG(magic).

PRINT TASK.CONFIG(magic) ; print the address that holds
; the task identifier
Training Arm CoreSight ETM Tracing | 126©1989-2024 Lauterbach

Example: Advise the ETM to generate only trace information on a process/thread switch.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic) and select the trace
action TraceEnable.

2. Start and stop the program execution to fill the trace buffer.

3. Display the result.
Training Arm CoreSight ETM Tracing | 127©1989-2024 Lauterbach

Context ID Packet (OS+MMU)

A Context ID packet is generated when the OS updates the Context ID Register (CONTEXTIDR) on a
process/thread switch.

Linux, in most cases, writes only the Linux Address Space ID (ASID) to CONTEXTIDR. This allows
tracking the program flow of the processes and evaluating of the process switches. But it does not provide
performance information on threads. In particular the idle thread can not be detected.

To allow a detailed performance analysis also on Linux threads, the Linux Address Space ID and the
Linux PID (each thread gets its own PID - despite the name) has to be written to CONTEXTIDR. The
swapper gets the PID -1.

Lauterbach provide a Linux patch, that takes care that Linux writes the required information to the Context
ID Register.

The information written via the Lauterbach patch to CONTEXTIDR is called TRACE32 traceid in the
following.

7 0

ASIDLinux PID

831

TRACE32 traceid
Training Arm CoreSight ETM Tracing | 128©1989-2024 Lauterbach

The generation of Context ID packets is disabled after an ETM reset, so it has to be enabled within
TRACE32.

If you use the Lauterbach Linux patch, you have to do the following setting within TRACE32:

The TRACE32 traceid for the processes/threads can be checked in the TASK.List window.

ETM.ContextID 32 ; enable the generation of Context ID packets and
; inform TRACE32 that the Context ID is a 32-bit
; value

TASK.Option THRCTX ON

magic Address of process descriptor task_struct

id Linux Process IDentifier (PID)

space Identifier for virtual address space (decimal and hex), TRACE32
space ID

traceid Information exported via Context ID packet
Training Arm CoreSight ETM Tracing | 129©1989-2024 Lauterbach

Example:

1. Start and stop the program execution to fill the trace buffer.

2. Display the result.
Training Arm CoreSight ETM Tracing | 130©1989-2024 Lauterbach

Belated Trace Analysis

The TRACE32 Instruction Set Simulator can be used for a belated Linux-aware trace evaluation.

Example for the PandaBoard

1. Perform the following steps to save the relevant information within TRACE32.

2. Set up the TRACE32 Instruction Set Simulator for a belated Linux-aware trace evaluation.

; save the trace contents
Trace.SAVE belated_linux.ad

; save the whole Linux address range - code and data area
Data.SAVE.Binary image.bin ASD:0x80000000--0x9fffffff

; generate a script that re-configures the important MMU registers
OPEN #1 MMU_Register.cmm /Create
WRITE #1 "PER.SET C15:0x1 %Long " Data.Long(C15:0x1)
WRITE #1 "PER.SET C15:0x2 %Long " Data.Long(C15:0x2)
WRITE #1 "PER.SET C15:0x102 %Long " Data.Long(C15:0x102)
CLOSE #1

RESet

; select the OMAP4430 as target chip
SYStem.CPU OMAP4430

; Extends the address scheme of the debugger to include memory
; spaces
SYStem.Option.MMUSPACES ON

; establish the communication between TRACE32 and the TRACE32
; Instruction Set Simulator
SYStem.Up

; set the important MMU register
DO MMU_Register.cmm

; load the binary file you saved before
Data.LOAD.Binary image.bin ASD:0x80000000--0x9fffffff

; load the Linux symbol and debug information
Data.LOAD.Elf vmlinux /NoCODE

; specify MMU table format
MMU.FORMAT linux swapper_pg_dir 0xc0000000--0xdfffffff 0x80000000
TRANSlation.COMMON 0xc000000--0xfffffff
MMU.SCAN ALL
TRANSlation.ON
Training Arm CoreSight ETM Tracing | 131©1989-2024 Lauterbach

; configure the Linux-awareness
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-<version>.x/linux.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-<version>.x/linux.men
HELP.FILTER.Add rtoslinux

; load the saved trace file
Trace.LOAD belated_linux.ad

; load the symbol and debug information for the running processes
&address_space=TASK.PROC.SPACEID("sieve")
Data.LOAD.Elf &address_space:0 /NoCODE /NoClear
…

; display the trace listing
Trace.List List.TASK DEFault
Training Arm CoreSight ETM Tracing | 132©1989-2024 Lauterbach

Specific Write Access vs. Context ID Packet

Specific Write Access Context ID Packet

Requires an ETM that allows to export Data
Address and Data Write Value information

Requires an ETM that allows to export Context
ID Packets

No support from the OS required Requires support from OS and/or patch

ETM can be advised to only generate trace
information on the specific write access

Context ID information is only exported in
conjunction with the instruction trace
Training Arm CoreSight ETM Tracing | 133©1989-2024 Lauterbach

Task Statistics

The following two commands perform a statistical analysis of the task/process/thread switches:
Training Arm CoreSight ETM Tracing | 134©1989-2024 Lauterbach

Ended Processes (OS+MMU)

When a process is ended the process information is removed from the process table. Hereby the information
on the virtual address space of the process is lost. This is the reason why TRACE32 can not decompress
the trace information for ended processes.

Instructions of ended processes are marked as unknown in the trace, since TRACE32 has no access to the
source code which is required to decompress the trace information.

Since the process table no longer contains the name for an ended process, its process/thread ID or its
TRACE32 traceid is displayed in the Trace.Chart/Trace.STATistic analyses.
Training Arm CoreSight ETM Tracing | 135©1989-2024 Lauterbach

Context ID Comparator

If your target-OS updates the Context ID Register (CONTEXTIDR) on a task/process/thread switch and if
TRACE32 supports the Context ID for your OS, you can use the ETM Context ID Comparator to set up filter
and trigger.

Before you can use the Context ID Comparator, you have to enable the usage of the Context ID within
TRACE32.

Break.CONFIG.UseContextID ON
Training Arm CoreSight ETM Tracing | 136©1989-2024 Lauterbach

Example: Advise the ETM to only generate trace information if the process sieve executes an instruction
within the function thumbee_notifier.

1. Set a Program Breakpoint to the address range of the function thumbee_notifier and select the
trace action TraceEnable. Additionally select the process sieve in the TASK field.

2. Start and stop the program execution.

3. Display the result.
Training Arm CoreSight ETM Tracing | 137©1989-2024 Lauterbach

Function Run-Times Analysis

All commands for the function run-time analysis introduced in this chapter use the contents of the trace
buffer as base for their analysis.

Software under Analysis (no OS, OS or OS+MMU)

For the use of the function run-time analysis it is helpful to differentiate between three types of application
software:

1. Software without operating system (abbreviation: no OS)

2. Software with an operating system without dynamic memory management (abbreviation: OS)

3. Software with an operating system that uses dynamic memory management to handle
processes/tasks (abbreviation: OS+MMU). If an OS+MMU is used, several processes/tasks can
run at the same virtual addresses.

Flat vs. Nesting Analysis

TRACE32 provides two methods to analyze function run-times:

• Flat analysis

• Nesting analysis
Training Arm CoreSight ETM Tracing | 138©1989-2024 Lauterbach

Basic Knowledge about Flat Analysis

The flat function run-time analysis bases on the symbolic instruction addresses of the trace entries. The time
spent by an instruction is assigned to the corresponding function/symbol region.

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

main

func1

func2

func1
func3

func1

main

func1

func3

func1

main

max
func1

Entry of func1 Entry of func1

Exit of func1 Exit of func1

min
func1
Training Arm CoreSight ETM Tracing | 139©1989-2024 Lauterbach

Basic Knowledge about Nesting Analysis

The function nesting analysis analyses only high-level language functions.
Training Arm CoreSight ETM Tracing | 140©1989-2024 Lauterbach

In order to display a nested function run-time analysis TRACE32 analyzes the structure of the program
execution by processing the trace information to find:

1. Function entries

2. Function exits

3. Entries to interrupt service routines (asynchronous)

An entry to the vector table is detected and the vector address indicates an asynchronous/hardware
interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a return is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembly interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

4. Exits of interrupt service routines

5. Entries to TRAP handlers (synchronous)

6. Exits of TRAP handlers

func1

func2

interrupt_service1
Training Arm CoreSight ETM Tracing | 141©1989-2024 Lauterbach

Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much
more sensitive then the flat analysis. Missing or tricky function exits for example result in a worthless nesting
analysis.

min shortest time within the function including all subfunctions and traps

max longest time within the function including all subfunctions and traps

main

func1

func2

func1

func3

func1

main

func1

func3

func1

main

Entry of func1 Entry of func1

Exit of func1 Exit of func1

func1 max func1 min
Training Arm CoreSight ETM Tracing | 142©1989-2024 Lauterbach

Flat Analysis

It is recommended to reduce the trace information generated by the ETM to the required minimum.

• To avoid an overload of the ETM port.

• To make best use of the available trace memory.

• To get a more accurate timestamp (no-cycle accurate mode).

Optimum ETM Configuration (No OS or OS)

Flat function run-time analysis does not require any data information if no OS or an OS is used. That’s why
it is recommended to switch the broadcasting of data information off.

ETM.DataTrace off
Training Arm CoreSight ETM Tracing | 143©1989-2024 Lauterbach

Optimum ETM Configuration (OS+MMU)

If an target operating system is used, that uses dynamic memory management to handle processes, the
instruction flow plus information on the Address Space ID is required in order to perform a flat function run-
time analysis.

The standard way to get the Address Space ID is to advise the ETM to export the instruction flow and the
process switches. For details refer to the chapter OS-Aware Tracing of this training.

Optimum Configuration 1 (process switches are exported in form of a special write access):

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

Break.Set TASK.CONFIG(magic) /Write /TraceData

ETM.ContextID 32

02C2: 0x97E4 func1+0x6

Virtual address: 0x97E4

TRACE32 Symbol Database

02C1: 0x97E4 sieve

The virtual address exported by the ETM
is not enough to indentify the function/
symbol range.

The Address Space ID is required!
Training Arm CoreSight ETM Tracing | 144©1989-2024 Lauterbach

Dynamic Program Behavior

Look and Feel (No OS or OS)

Push the Profile button to get information on the
dynamic behaviour of the program
Training Arm CoreSight ETM Tracing | 145©1989-2024 Lauterbach

Look and Feel (OS+MMU)

Push the Profile button to get information on the
dynamic behaviour of the program
Training Arm CoreSight ETM Tracing | 146©1989-2024 Lauterbach

Look and Feel (OS+MMU, Ended Process)

UNKNOW instructions are separately named in the Trace.PROfileChart.sYmbol analysis.
Training Arm CoreSight ETM Tracing | 147©1989-2024 Lauterbach

More Details

To draw the Trace.PROfileChart.sYmbol graphic, TRACE32 PowerView partition the recorded instruction
flow information into time segments. The default segment size is 10.us.

For each time segment rectangles are draw that represent the time ratio the executed functions consumed
within the time segment. For the final display this basic graph is smoothed.

func2d

func2b

main
Training Arm CoreSight ETM Tracing | 148©1989-2024 Lauterbach

The time segment size can also be set manually.

Fine Decrease the time segment size by the factor 10

Coarse Increase the time segment size by the factor 10

Trace.PROfileChart.sYmbol /InterVal 5.ms ; change the time
; segment size to 5.ms
Training Arm CoreSight ETM Tracing | 149©1989-2024 Lauterbach

Color Assignment - Basics

• The tooltip at the cursor position shows the color assignment and the used segment size
(InterVal).

• Use the control handle on the right upper corner of the Trace.PROfileChart.sYmbol window to
get a color legend.

Control
handle
Training Arm CoreSight ETM Tracing | 150©1989-2024 Lauterbach

Color Assignment - Statically or Dynamically

FixedColors Colors are assigned fixed to functions (default).

Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong
impression of the dynamic behavior.

AlternatingColors Colors are assigned by the recording order of the functions
repeatedly for each measurement.

Trace.PROfileChart.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program
- graphical display

Trace.PROfileSTATistic.sYmbol [/InterVal <time>] Overview on the dynamic behavior
of the program
- numerical display for export as
comma-separated values

Trace.STATistic.COLOR FixedColors | AlternatingColors Color assignment method
Training Arm CoreSight ETM Tracing | 151©1989-2024 Lauterbach

Function Timing Diagram

Look and Feel (No OS or OS)

TRACE32 PowerView provides a timing diagram which shows when the program counters was in which
function/symbol range.

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window
Training Arm CoreSight ETM Tracing | 152©1989-2024 Lauterbach

Look and Feel (OS+MMU)

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window
Training Arm CoreSight ETM Tracing | 153©1989-2024 Lauterbach

Look and Feel (OS+MMU, Ended Process)

(UNKNOWN) instructions are separatly listed in the analysis.
Training Arm CoreSight ETM Tracing | 154©1989-2024 Lauterbach

Did you know?

If Sort visible/Window is selected in the Chart Config window, the functions that are active at the selected
point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful especially if you
scroll horizontally.

Select Window
Training Arm CoreSight ETM Tracing | 155©1989-2024 Lauterbach

Numeric Analysis

Analog to the timing diagram also a numerical analysis is provided.

survey

item number of recorded functions/symbol regions

total time period recorded by the trace

samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a
function/symbol region)

function details

address function/symbol region name

(other) program sections that can not be assigned to a
function/symbol region

total time period in the function/symbol region during the recorded time
period

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

avr average time continuously in the address range of the
function/symbol region
Training Arm CoreSight ETM Tracing | 156©1989-2024 Lauterbach

count number of new entries (start address executed) into the address
range of the function/symbol region

ratio ratio of time in the function/symbol region with regards to the total
time period recorded

Trace.STATistic.sYmbol Flat function run-time analysis
- numerical display

Trace.Chart.sYmbol Flat function run-time analysis
- graphical display

Pushing the Config button provides the possibility to specify a different
sorting criterion for the address column or a different column layout.
By default the functions/symbol regions are sorted by their recording order.
Training Arm CoreSight ETM Tracing | 157©1989-2024 Lauterbach

Hot-Spot Analysis

If a function seems to be very time consuming, details on the run-time of single instructions can be displayed
with the help of the ISTAT command group.

Preparation

Constant clock while recording

Changing clock while recording

A high number of local FIFOFULLs might affect the result of the instruction statistic.

ETM.TImeMode CycleAccurate ; select cycle-accurate tracing

Trace.CLOCK 600.MHz ; inform TRACE32 about your
; CPU/core frequency

; combine cycle accurate tracing and TRACE32 external timestamp
ETM.TImeMode CycleAccurate+ExternalTrack
Training Arm CoreSight ETM Tracing | 158©1989-2024 Lauterbach

Processing

The command group ISTATistic works with a measurement database. The measurement includes the
following steps:

1. Enable cycle-accurate tracing.

2. Specify the core/CPU clock.

3. Clear the database.

4. Fill the trace memory.

5. Transfer the contents of the trace memory to the database.

6. Display the result.

7. (Repeat step 4-6 if required)

The following commands are available:

Trace.CLOCK <clock> Specify the core/CPU clock for the trace evaluation.

ISTATistic.RESet Clear the instruction statistic database.

ISTATistic.add Add the contents of the trace memory to the instruction
statistic database.

ISTATistic.ListFunc List function run-time analysis based on the contents of
the instruction statistic database.

List <address> /ISTAT List run-time analysis for the single instructions.
Training Arm CoreSight ETM Tracing | 159©1989-2024 Lauterbach

A detailed function run-time analysis can be performed as follows (ARM11 with ETMv3 as example):

; ETM setup

ETM.CycleAccurate ON ; switch cycle accurate tracing on

... ; general procedure

Trace.CLOCK 176.MHz ; inform TRACE32 about your CPU
; frequency

ISTATistic.RESet ; reset instruction statistic data
; base

Trace.Mode Leash ; switch trace to Leash mode

Go ; start program execution

;WAIT !RUN() ; wait until program stops

Trace.FLOWPROCESS ; upload the trace information to
; the host and merge source code

IF Analyzer.FLOW.FIFOFULL()>6000.
PRINT “Warning: Please control the FIFOFULLS”

ISTATistic.ADD ; add trace information to
; instruction statistic data
; base

ISTATistic.ListFunc ; list hot-spot analysis
Training Arm CoreSight ETM Tracing | 160©1989-2024 Lauterbach

Look and Feel (No OS or OS)
Training Arm CoreSight ETM Tracing | 161©1989-2024 Lauterbach

Look and Feel (OS+MMU)
Training Arm CoreSight ETM Tracing | 162©1989-2024 Lauterbach

Analysis Details

address address range of the module, function or HLL line

tree flat module/function/HLL line tree

coverage code coverage of the module, function or HLL line

count number of function/HLL line executions

time total time spent by the module, function or HLL line

clocks total number of clocks spent by the module, function or HLL line

ratio Percentage of the total measurement time spent in the module,
function or HLL line

cpi average clocks per instruction for the function or the HLL line
Training Arm CoreSight ETM Tracing | 163©1989-2024 Lauterbach

List /ISTAT ; list instruction run-time
; statistic

count total number of instruction executions

clocks total number of clocks for the instruction

cpi average clocks per instruction
Training Arm CoreSight ETM Tracing | 164©1989-2024 Lauterbach

Instructions with a condition are bold-printed on a yellow background if exec or notexec is 0 (or both).
Instructions without a condition are bold-printed on a yellow background if exec is 0.

List /ISTAT COVerage ; list instruction coverage

exec conditional instructions: number of times the instruction was
executed because the condition was true.

other instructions: number of times the instruction was executed

notexec conditional instructions: number of times the instruction wasn’t
executed because the condition was false.

coverage instruction coverage
Training Arm CoreSight ETM Tracing | 165©1989-2024 Lauterbach

Nesting Analysis

Restrictions

1. The nesting analysis analyses only high-level language functions.

2. The nested function run-time analysis expects common ways to enter/exit functions.

3. The nesting analysis is sensitive with regards to FIFOFULLs.

Optimum ETM Configuration (No OS)

The nesting function run-time analysis doesn’t require any data information if no OS is used. That’s why it is
recommended to switch the export of data information off.

ETM.DataTrace off ; ARM-ETM
Training Arm CoreSight ETM Tracing | 166©1989-2024 Lauterbach

Optimum ETM Configuration (OS or OS+MMU)

TRACE32 PowerView builds up a separate call tree for each task/process.

In order to hook a function entry/exit or a entry/exit of a TRAP handler into the correct call tree, TRACE32
PowerView needs to know which task/process/thread was running when the entry/exit occurred.

The standard way to get information on the current task/process/thread is to advise the ETM to export the
instruction flow and task/process/thread switches. For details refer to the chapter OS-Aware Tracing of this
training.

Optimum Configuration 1 (process switches are exported in form of a special write access):

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

Trace.STATistic.TREE /TASK "events/0"

Break.Set TASK.CONFIG(magic) /Write /TraceData

ETM.ContextID 32
Training Arm CoreSight ETM Tracing | 167©1989-2024 Lauterbach

Items under Analysis

In order to prepare the results for the nesting analysis TRACE32 postprocesses the instruction flow to find:

• Function entries

The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

Trace.Chart.Func ; function func10 as
; example

Trace.List /Track
Training Arm CoreSight ETM Tracing | 168©1989-2024 Lauterbach

• Function exits

A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.

• Entries to interrupt service routines (asynchronous)

Interrupts are identified if an entry to the vector table is detected and the vector address indicates
an asynchronous/hardware interrupt

The HLL function started following the interrupt is regarded as interrupt service routine.

If a return is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembly interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

• Exits of interrupt service routines

A RETURN / RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded
as exit of the interrupt service routine.

• Entries to TRAP handlers (synchronous)

If an entry to the vector table was identified and if the vector address indicates a synchronous
interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

• Exits of TRAP handlers

A RETURN / RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the
TRAP handler.
Training Arm CoreSight ETM Tracing | 169©1989-2024 Lauterbach

• Task/process/thread switches

Task/process/thread switches are needed to build correct call trees if a target operating system is
used.
Training Arm CoreSight ETM Tracing | 170©1989-2024 Lauterbach

Numerical Nested Function Run-time Analysis for all Software

Trace.STATistic.Func Nested function run-time analysis
- numeric display

survey

func number of functions in the trace

total total measurement time

intr total time in interrupt service routines
Training Arm CoreSight ETM Tracing | 171©1989-2024 Lauterbach

• HLL function

• (root)

The function nesting is regarded as tree, root is the root of the function nesting.

• HLL interrupt service routine

• HLL trap handler

columns

range (NAME) function name, sorted by their recording order as default
Training Arm CoreSight ETM Tracing | 172©1989-2024 Lauterbach

columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt
service routines is excluded

No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt
service routines is excluded

avr average time between function entry and exit, time spent in interrupt
service routines is excluded
Training Arm CoreSight ETM Tracing | 173©1989-2024 Lauterbach

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries>/<number of missing function exits>).

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing

2. 4. (0/3): 4 times within the function, 3 function exits missing

3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

columns (cont.)

count number of times within the function

If the number of missing function entries or exits is greater than 1, the analysis
performed by the command Trace.STATistic.Func might fail due to nesting
problems. A detailed view to the trace contents is recommended.

columns (cont.)

intern%
(InternalRatio,
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP
handlers, interrupts
Training Arm CoreSight ETM Tracing | 174©1989-2024 Lauterbach

columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

Pushing the Config… button allows to display additional columns
Training Arm CoreSight ETM Tracing | 175©1989-2024 Lauterbach

columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers

EAVeRage average time spent within called sub-functions/TRAP handlers

EMIN shortest time spent within called sub-functions/TRAP handlers

EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted

ExternalINTRMAX max. time one function pass was interrupted

INTRCount number of interrupts that occurred during the function run-time
Training Arm CoreSight ETM Tracing | 176©1989-2024 Lauterbach

The following graphic give an overview how times are calculated:

Entry to func1

func2

TRAP1

func3

interrupt 1

Exit of func1

To
ta

l o
f

(r
o

o
t)

Start of measurement

End of measurement

To
ta

l o
f

fu
n

c1

In
te

rn
al

 o
f

fu
n

c1

E
xt

er
n

al
 o

f
fu

n
c1

IN
T

R
 o

f
fu

n
c1

Entry to func1

Exit of func1

Exit of func1

Entry to func1
Training Arm CoreSight ETM Tracing | 177©1989-2024 Lauterbach

Additional Statistics Items for OS or OS+MMU

• HLL function

HLL function “_raw_spin_lock_irqsave” running in task/process/thread “event/1”

• Root of call tree for task/process/thread “event/1”

• Unknow task/process/thread

Before the first task/process/thread switch is found in the trace, the task/process/thread ID is
unknown

• Root of unknow task/process/thread
Training Arm CoreSight ETM Tracing | 178©1989-2024 Lauterbach

The process/thread ID or the TRACE32 traceid is displayed if a process is already ended. The UNKNOWN
cycles are assigned to
Training Arm CoreSight ETM Tracing | 179©1989-2024 Lauterbach

columns - task/thread related information

TASKCount number of tasks that interrupt the function

ExternalTASK total time in other tasks

ExternalTASKMAX max. time 1 function pass was interrupted by a task
Training Arm CoreSight ETM Tracing | 180©1989-2024 Lauterbach

Entry to func1 in TASK1

func2 in TASK1

TASK2

func2 in TASK1

func3 in TASK1

TRAP1 in TASK1

func4 in TASK1

TASK3

func4 in TASK1

interrupt1 in TASK1

Exit of func1 in TASK1

To
ta

l o
f

(r
o

o
t)

@
ro

o
t

Start of measurement

First entry to TASK1

Last exit of TASK1

To
ta

l o
f

(r
o

o
t)

@
TA

S
K

1

In
te

rn
al

 o
f

fu
n

c1
@

TA
S

K
1

E
xt

er
n

al
 o

f
fu

n
c1

@
TA

S
K

1

IN
T

R
 o

f
fu

n
c1

@
TA

S
K

1

E
xt

er
n

al
TA

S
K

 o
f

fu
n

c1
@

TA
S

K
1

First task switch recorded to trace

To
ta

l o
f

fu
n

c1
@

TA
S

K
1

Entry to func1 in TASK1

Exit of func1 in TASK1
Training Arm CoreSight ETM Tracing | 181©1989-2024 Lauterbach

More Nesting Analysis Commands

Look and Feel (No OS)

Look and Feel (OS or OS+MMU)

Trace.Chart.Func Nested function run-time analysis
- graphical display
Training Arm CoreSight ETM Tracing | 182©1989-2024 Lauterbach

Look and Feel (No OS)

Look and Feel (OS or OS+MMU)

Trace.STATistic.TREE Nested function run-time analysis
- tree display

Trace.STATistic.TREE /TASK "helloloop"
Training Arm CoreSight ETM Tracing | 183©1989-2024 Lauterbach

Look and Feel (No OS)

Look and Feel (OS or OS+MMU)

Trace.STATistic.LINKage <address> Nested function run-time analysis
- linkage analysis
Training Arm CoreSight ETM Tracing | 184©1989-2024 Lauterbach

Trace-based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a
detailed introduction to the trace-based code coverage. However, the manual does not contain details about
the architecture-specific setups. Here is an overview of the setups for ARM-ETM.

Optimum ETM Configuration (No OS or OS)

Code coverage does not require any data information if no OS or an OS is used. That’s why it is
recommended to switch the broadcasting of data information off.

Optimum ETM Configuration (OS+MMU)

If an target operating system is used, that uses dynamic memory management to handle processes, the
instruction flow plus information on the Address Space ID is required in order to perform a code coverage
analysis.

The standard way to get the Address Space ID is to advise the ETM to export the instruction flow and the
process switches. For details refer to the chapter OS-Aware Tracing of this training.

ETM.DataTrace off

02C2: 0x97E4 func1+0x6

Virtual address: 0x97E4

TRACE32 Symbol Database

02C1: 0x97E4 sieve

The virtual address exported by the ETM
is not enough to identify the function/
symbol range.

The Address Space ID is required!
Training Arm CoreSight ETM Tracing | 185©1989-2024 Lauterbach

Optimum Configuration 1 (process switches are exported in form of a special write access):

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

Break.Set TASK.CONFIG(magic) /Write /TraceData

ETM.ContextID 32
Training Arm CoreSight ETM Tracing | 186©1989-2024 Lauterbach

	Training Arm CoreSight ETM Tracing
	ETM Setup
	ETM Versions
	Main Setup Windows
	ETM.state Window
	Trace.state Window

	ETMv1
	Interface and Trace Protocol
	Basic Setup

	ETMv3
	Interface and Protocol
	Basic Setups
	Additional Settings

	PTM (aka. PFT)
	Block Diagram
	Protocol Description
	Basic Setup
	Additional Settings

	FLOWERROR
	Diagnostic Commands

	Displaying the Trace Contents
	Source for the Recorded Trace Information
	Sources of Information for the Trace Display
	Influencing Factors on the Trace Information
	ETM Features and Settings
	Settings in the TRACE32 Trace Configuration Window

	States of the Trace
	The AutoInit Command
	Basic Display Commands
	Default Listing
	Basic Formatting
	Correlating the Trace Listing with the Source Listing
	Browsing through the Trace Buffer

	Display Items
	Default Display Items
	Further Display Items

	Find a Specific Record
	Belated Trace Analysis
	Save the Trace Information to an ASCII File
	Postprocessing with TRACE32 Instruction Set Simulator
	Export the Trace Information as ETM Byte Stream

	Trace-based Debugging (CTS)
	Forward and Backward Debugging
	CTS Technique
	Belated Trace-based Debugging
	HLL Analysis of the Trace Contents
	Details on each HLL Instruction
	Function Nesting

	Trace Control by Filter and Trigger
	Context
	Filters and Trigger by Using the Break.Set Dialog
	Examples for TraceEnable on Read/Write Accesses
	Examples for TraceEnable on Instructions
	Example for TraceData
	Example for TraceON/TraceOFF
	Example for BusTrigger
	Example for BusCount

	OS-Aware Tracing
	OS (No Dynamic Memory Management)
	Activate the TRACE32 OS Awareness (Supported OS)
	Exporting the Task Switches (OS)
	Belated Trace Analysis (OS)
	Enable an OS-aware Tracing (Not-Supported OS)

	OS+MMU (Dynamic Memory Management)
	Activate the TRACE32 OS Awareness
	Exporting the Process/Thread-ID (OS+MMU)
	Belated Trace Analysis

	Specific Write Access vs. Context ID Packet
	Task Statistics
	Ended Processes (OS+MMU)

	Context ID Comparator

	Function Run-Times Analysis
	Software under Analysis (no OS, OS or OS+MMU)
	Flat vs. Nesting Analysis
	Basic Knowledge about Flat Analysis
	Basic Knowledge about Nesting Analysis
	Summary

	Flat Analysis
	Optimum ETM Configuration (No OS or OS)
	Optimum ETM Configuration (OS+MMU)
	Dynamic Program Behavior
	Function Timing Diagram
	Hot-Spot Analysis

	Nesting Analysis
	Restrictions
	Optimum ETM Configuration (No OS)
	Optimum ETM Configuration (OS or OS+MMU)
	Items under Analysis
	Numerical Nested Function Run-time Analysis for all Software
	Additional Statistics Items for OS or OS+MMU
	More Nesting Analysis Commands

	Trace-based Code Coverage
	Optimum ETM Configuration (No OS or OS)
	Optimum ETM Configuration (OS+MMU)

