LAUTERBACH A

Training Arm CoreSight ETM
Tracing

Training Arm CoreSight ETM Tracing

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES32 TraiNinNg .cicccccceriiiisssrriiiissssiisisssssiassssss s sasssssss s sssssss s sas s sss s easssssssseasssssss sassssnsnsenssssnsnnsansan =
Training Arm ETIM ... s ms s s s e amn e e s am e e e e e mm e e e e ammnn e e ammnnnnas r—~
Training Arm CoreSight ETM TracCingcccccccceriresminismmssssissssmssssssssssssssmsssssssssssssssssass snsanseas 1
S] 6
ETM Versions 6
Main Setup Windows 7
ETM.state Window 7
Trace.state Window 8
ETMv1 9
Interface and Trace Protocol 9
Basic Setup 11
What can | do to prevent a FIFO overflow (ETMv1.x)? 15
ETMv3 16
Interface and Protocol 16
Basic Setups 18
Additional Settings 20

PTM (aka. PFT) 27
Block Diagram 28
Protocol Description 30
Basic Setup 32
Additional Settings 37
FLOWERROR 38
Diagnostic Commands 39
Displaying the Trace CONteNtScccccrivimmmmmniiismrmmne s s sasmns s 41
Source for the Recorded Trace Information 41
Sources of Information for the Trace Display 43
Influencing Factors on the Trace Information 44
ETM Features and Settings 45
Settings in the TRACE32 Trace Configuration Window 47
States of the Trace 57
The Autolnit Command 58
Basic Display Commands 59
Default Listing 59
Basic Formatting 60
©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing 2

Correlating the Trace Listing with the Source Listing 61
Browsing through the Trace Buffer 62
Display Items 63
Default Display Items 63
Further Display ltems 66
Find a Specific Record 70
Belated Trace Analysis 72
Save the Trace Information to an ASCII File 73
Postprocessing with TRACE32 Instruction Set Simulator 74
Export the Trace Information as ETM Byte Stream 77
Trace-based Debugging (CTS) ...cccccerriirsmermmmisssmrmmsssssssrssssssss s sssssss s ssssssss s sssssssssesssssssssssnnsan 78
Forward and Backward Debugging 79
CTS Technique 84
Belated Trace-based Debugging 86
HLL Analysis of the Trace Contents 87
Details on each HLL Instruction 87
Function Nesting 88
Trace Control by Filter and Trigger ... e 91
Context 91
Filters and Trigger by Using the Break.Set Dialog 95
Examples for TraceEnable on Read/Write Accesses 96
Examples for TraceEnable on Instructions 100
Example for TraceData 104
Example for TraceON/TraceOFF 105
Example for BusTrigger 111
Example for BusCount 112
OS-AWAre TraCING ...ceiiiiieceriiissmerrisssmsrrissssmsssasssms s s ssssmns s sa s s ame s s e s s samn s £ ea s ammn s e e s s mmn e s ea s ammnnnnas 114
OS (No Dynamic Memory Management) 114
Activate the TRACES32 OS Awareness (Supported OS) 114
Exporting the Task Switches (OS) 117
Belated Trace Analysis (OS) 122
Enable an OS-aware Tracing (Not-Supported OS) 123
OS+MMU (Dynamic Memory Management) 124
Activate the TRACE32 OS Awareness 124
Exporting the Process/Thread-ID (OS+MMU) 125
Belated Trace Analysis 131
Specific Write Access vs. Context ID Packet 133
Task Statistics 134
Ended Processes (OS+MMU) 135
Context ID Comparator 136
Function RUN-Times ANAlYSIScccccccmrminsimmrmminsssnnmnsssssnssssssss s s ssssssmss s ssssssmsssssssammsnnnas 138
Software under Analysis (no OS, OS or OS+MMU) 138
©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 3

Flat vs. Nesting Analysis 138

Basic Knowledge about Flat Analysis 139
Basic Knowledge about Nesting Analysis 140
Summary 142
Flat Analysis 143
Optimum ETM Configuration (No OS or OS) 143
Optimum ETM Configuration (OS+MMU) 144
Dynamic Program Behavior 145
Function Timing Diagram 152
Hot-Spot Analysis 158
Nesting Analysis 166
Restrictions 166
Optimum ETM Configuration (No OS) 166
Optimum ETM Configuration (OS or OS+MMU) 167
Items under Analysis 168
Numerical Nested Function Run-time Analysis for all Software 171
Additional Statistics Items for OS or OS+MMU 178
More Nesting Analysis Commands 182
Trace-based COde COVEIaAgEcccrriirsmrrrmissssmmmmmisssssermnssssssrsssssss s s esssssssssssssssssssmnsssnsessennssan 185
Optimum ETM Configuration (No OS or OS) 185
Optimum ETM Configuration (OS+MMU) 185

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 4

Training Arm CoreSight ETM Tracing

Version 06-Jun-2024

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 5

ETM Setup

ETM Versions

The parallel ETM is available in the following versions:

ETMv1.x for ARM7 and ARM9

ETMv3.x for ARM11

ETMv3.x CoreSight Single for ARM9 and ARM11

ETMv3.x CoreSight for ARM9, ARM11, Cortex-M3/M4/M23, Cortex-R4/R5, Cortex-A5/A7
PTM for Cortex-A9/A15/A17

ETMv4 for Cortex-R7/R8/R52, Cortex-M7/M33 and Cortex-A3x/A5x/A7x (Cortex-
A32/A35/A53/A55/A57/A72/A73/A75)

The ETM trace information can be stored internally in an onchip memory (ETB, ETF, ETR) or exported via a
trace port interface (TPIU) to an external recording device (PowerTrace, CombiProbe, pTrace).

Using internal memory for trace recording is also called “onchip trace”.

Using an external recording device is also called “offchip trace”

Chips supporting “offchip trace” usually export data via a parallel trace port: Via up to 40 pins on the chip the
trace data is transferred to the PowerTrace.

Some modern Cortex-A and Cortex-R chips support also the export of the data via a High Speed Serial
Trace Port (HSSTP)

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 6

Main Setup Windows

ETM.state Window

The ETM.state window allows to configure the ETM/PTM and the TPIU.

Trace | Probe Pef Cov Win
Wgonfiguration_
B CTS Settings...

Trigger Dialeg...

Ttigge 3
£ List L4
= Timing L4
¥ Chart ’
g Save trace data ...
E Load reference data ...
Reset
& B:ETM.state EI@
etm control trace PortSize resources Tracelnclude
") OFF [V Trace [T Returnstack 16 - AComp: 4 E]
@ ON [C1DBGRQ [FleeC PortMode | | DComp: 0. TraceExclude {
[ClResdviiteBesk | | [C]STALL CComp: 1. (]
commands ' | [V SmartTrace PortFilter | | Counter: 2. :
trigger ContextID || |AUTO & Seq: Yes DataViewInclude
OFF ~| | - FifoLevel = TR (]
on/off |~ TImeMode 40. ExtInBus: 2/29. DataViewExclude |
Strabteman v| | - TraceD || Bdout: 2. (]
List level || [lcydeacaurate 1. FifoFull: Mo :
[C1 TimeStamps TracePriority —| | FifoSize: - FifoFullInclude
counter 1 TimeSamp@.0XK 0. Version: 1.0

FunnelHoldTime

advanced

FifoFullExclude

The JTAG interface is used to configure the ETM/PTM and the TPIU.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

Trace.state Window

The Trace.state window allows to configure the TRACE32 Preprocessor AutoFocus II.

Trace | Probe Perf C

Wind

b Conturaion-_]
B CTS Settings...

ETM Settings...
Trigger Dialeg...

-

List

= Timing

Mghar‘t

g Save trace data ...

E Load reference data ...

* v v v

Reset

METHOD
@ Analyzer CéAnalyzer © Onchip) ART (D) LOGGER () SNOOPer () FDX © LA
Integrator ' Probe IProbe

state used ACCESS TDelay analyzer program file

() DISable auto & 0. 4F TrOnchip browse...
o 0 o -
) Arm SIZE CLOCK & mm symbol value level

() trigger 1073741824, 100.0MHz THreshold %3 BMC
) break 1.651.75 -
Mode Mode @ wvece

commands @ Fifo BusTrace) CLOCK
©) Stack) ClockTrace @ autofocus
) Leash @ FlowTrace
©) STREAM [¥] TERMination TSelect Tout

i @ PIPE [Tl Prestore [C1BusA [C1BusA
AutoArm RTS SLAVE
[Autolnit TraceCLOCK PortType
[Selfarm TPIY -

W B::Trace.state EI@

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

ETMv1

This chapter is only relevant if you have an ARM7 or ARM9 chip with ETMv 1.

Interface and Trace Protocol

- - ETM
Trigger logic
Pipeline status » TRACECLK
Processor generation » PIPESTAT[2:0]
Trace packet | | \-n TH—> TRACEPKT[n-1:0]
generation » TRACESYNC
PIPESTAT Pipeline status pins provide a cycle-by-cycle indication of what is

happening in the execute stage of the processor pipeline (instruction
executed, branch executed etc.).

TRACEPKT Trace packets
(broadcast address and data information)

TRACECLK ETM clock

Trace packets contain the following information:

. Address information when the processor branches to a location that cannot be directly inferred
from the source code. When addresses are broadcast, high-order bits that have not changed are
not broadcast.

o Data accesses that are indicated to be of interest (only data, only addresses, data and
addresses).

The maximum sampling time for the program and data flow trace depends
mainly

o on the size of the trace buffer

. the CPU clock

because the pipeline status information has to be sampled every clock cycle.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 9

Trace.List TS PS2 PS1 PS0O TP DEFault

B::Trace.List TS PS2 P51 PSO TP DEFault

WSetup... {3 Goto... || #3Find..

record ts ps2 psi ps@ tp run_address cycle d.1 synbol ti.back
b Bx2268
—ARAARRA3 72 AARRPARA 1100A10Q R:B0PAZ268 exec ssarnlesarnssieve+8x38 8.840us
I cmp rz,#ix12
—ARRARRA3GE AARRPARA 1100A10Q R:B00BZ264 exec sharnlesarnssieve+8x3C B.180us
ble Bx2274
—ARBARRA361 psZ psl psA BABRARRA BPREAREA R:00002274 exec sharnlesarnssieve+8x4C 8.840us
687 {
688 if flags[i 1)
| 1dr ri, Bx22C4
—AAPRRRA36A psd PPBPPRRE PPPPRABA D:808A22C4 rd-long BBBBEEA4 \varmlevarmisieve+B8x9C B.848us
—ARAARAA351 psZ psl psA BARBAREA 1100A10Q R:80002278 exec sharnlesarnssieve +Bx50 @.880us
ldrb r@, [rd, +rZ]

—AAPRRRA35A psd PPBPPRRE 11000180 D:BPABGERS rd-byte B1 .mlevGlobal\flags+Bx11l <@.828us
—ARRARRA346 AARRPARA 1100A10Q R:8008227C exec sharnlesarnssieve +8x54 8.840us
cmp r@, #oxe
—ARRRRRA342 psl AARRPARA 1100A10Q R:80082288 notexec sharnlesarnssieve+Bx58 8.840us
—ARRARRA338 AARRPRRA 1100A10Q R:00002284 exec sharnlesarnssieve+8x5C 8.820us

689 {
690 primz = 1 + i + 3;

ETM signals

TS Trace synchronization signal

PS[0..2] Pipeline status

TP Trace packets (depending on PortSize)
TPH Trace packets high byte (PortSize=16 only)
TPL Trace packets low byte (PortSize=16 only)

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

10

Basic Setup

Port Size and Port Mode for ETMv1.x for ARM7/ARM9

Define the ETM port size.

TRACEPKT can be either 4, 8 or 16 bit.

In Halfrate Mode trace information is broadcast on the rising and falling edge of TRACECLK.

Normal Mode ETM Frequency = CPU Frequency

B O O N B

Define if your ETM is working in Halfrate Mode or not.

Normal Halfrate Mode ETM Frequency = 1/2 CPU Frequency

I R 2 BT

IE Petf Cov ICDkest

W Configuration...
& 15 settings. .

Trigger Dialog. ..

] List
ﬂ Timing
g Chart

g Save trace data ...

E Load reference data ...

* v v v

Reset

FifoFullE xclude

etm Tracelnclude zelection configuration
O OFF | ||| [ATrace []DBGRO
@ 0N TraceEsclude DataTrace [ReadwriteBreak.
| | | Bath v | FortSize
ContextiD | g v
[@CLEAR | | Dataviewlnclude |oFF DN RE
[Tﬁ Fegister] | | 15
2 Trace [ratatiewE xclude Lo HaliR ate
| || | CIcerT MapDecade
e
FifoFullnclude [5TALL FifoLewvel
| | SmartTrace

FBEX

IES0UICES
AComp: 4.
DComp: 2
CComp: 0.
Map: a
Counter: 2.
Seq: Yes
Extlr: 4.
ExtlnBus: -
ExtOut: 1.
FifaFull: Yes
FifoSize: -
Fraotocol: 7.
Wersion: 1.3

Switch to ON if ETM is working

in Halfrate mode

Trace information is only broadcast
on the rising edge of TRACECLK

Trace information is broadcast on the
rising and falling edge of TRACECLK

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

11

3. Define the mode of the ETM port.

etm Tracelnclude zelection configuration esources
O OFF | | Trace []DBGRO ACamp: 4
& 0N TraceE xclude DataTrace [|ReadwriteBreak | | DComp: 2
| | | Bath hd | PortSize CComp: 0.
ContextlD | 2 w | Map: 8
W} D ataviewlnclude | OFF v | Parttdode Counter: 2
[Tﬁ Fegister] | | Seq: Yes
2 Trace [ratatiewE xclude [Cycletcourate Extln: 4
| || | CIcerT ExtinBus: -
[eec Demused2 ExtDut 1.
FifoFullnclude [sTALL FifoLewvel FifoFul: “es
| | SmartTrace FifaSize:
FifoFullE xclude Fraotocol: 7.
| | Wersion: 1.3

Normal Mode: one trace line is output via one trace port pin. HalfRate mode is supported in normal

mode.

Multiplexed Mode: the multiplexed mode can be used to save trace lines; 2 trace lines are

multiplexed to a single trace port pin.

Mux Mode for frequencies < 100 MHz
fewer trace data fines needed

Package 1

Package 2

Signals sampled on the Signals sampled on the
rising edge of TRACECLK falling edge of TRACECLK

PIPESTAT[0] TRACESYNC in ETMv1
PIPESTAT[3] in ETMv2

PIPESTAT[1] TRACEPKTI[1]
PIPESTAT[2] TRACEPKT][2]
TRACEPKT([0] TRACEPKT[3]

B I I

Example for a 4-pin trace connector

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

12

Demultiplexed Mode: the demultiplexed mode is used to reduce the switching rate for the trace port;

each trace line is split across 2 trace port pins. HalfRate mode is supported in demultiplexed mode.

DeMux Mode for freqiiencies > 100 MHz
ETM Frequency = 1/2 CPU Frequency

L LS
L LA

Table 7-6 Demultiplexed four-bit connector pinout Exam p|e for a 4-bit trace connector

Pin Signal name Pin Signal name
38 PIPESTAT_A[0] 37 PIPESTAT_B[0]
36 PIPESTAT_A[1] 35 PIPESTAT_B[1]
34 PIPESTAT_A[2] 33 PIPESTAT_B[2]
32 TRACESYNC_A in ETMv1 31 TRACESYNC_B in ETMv1
PIPESTAT_A[3]in ETMv2 PIPESTAT_B[3] in ETMv2
3n TRACEPKT_A[0] 29 TRACEPKT_B[0]
28 TRACEPKT_A[1] 27 TRACEPKT_B[1]
26 TRACEPKT_A[2] 25 TRACEPKT_B[2]
24 TRACEPKT_A[3] 23 TRACEPKT_B[3]
22 No connect 21 nTRST
20 No connect 19 Dol
18 No connect 17 T™MS
16 No connect 15 TCK
14 VSupply 13 RTCK
12 VTRef 11 DO
1 EXTTRIG 9 nSRST
b DBGACK 7 DBGRQ
& TRACECLK 5 GND
4 No connect 3 No connect
2 No connect 1 No connect
Demuxed 4-bit demultiplexed trace port (one mictor connector to target)
Demuxed2 8- and 16-bit demultiplexed trace port (two mictor connectors to
target)

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

13

Data Trace Setting

etm Tracelnclude zelection configuration es0uUIces
O OFF | | Trace []DBGRO ACamp: 4
& 0N TraceE xclude DataTrace [|ReadwriteBreak | | DComp: 2.
| | Buoth v | PortSize CComp: 1.
OFF 3
: Address 8 hd e .
&) CLEAR D ataviewlnclude Data Parttdode Counter: 2
[Tﬁ Register] | | Read 144 v Seq: Yes
2 Trace [ratatiewE xclude MapDecode Extln: 4,
| | ExtlnBus: 2/20
FifaLewvel EstOut; 2
FifoFullnclude FifcFul: Mo
| | [DataSuppress FifoSize: B9.
FifoFullE xclude SmartTrace Frotocal: 0.
| | Version: 31
DataTrace (ETMv1)
OFF No information about data accesses is broadcast.
Address Only the address information for data accesses is broadcast.
Data Only the data information for data accesses is broadcast.
Read The address and data information is broadcast for read accesses.
Write The address and data information is broadcast for write accesses.
Both The address and data information is broadcast for all data
accesses.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 14

What can | do to prevent a FIFO overflow (ETMv1.x)?

If a FIFOFULL logic is implemented on your ETM, it is possible to stall the processor when a FIFO overflow

is likely to happen.
FEX
etm Tracelnclude zelection configuration es0uUIces
O OFF | | Trace []DBGRO ACamp: 4
& 0N TraceE xclude DataTrace [|ReadwriteBreak | | DComp: 2
| | | Both A4 | FortSize CComp: 0.
ContextlD | 2 w | Map: 8
W} D ataviewlnclude OFF b Parttdode Counter: 2. . .
2l | | e B o FIFOFULL logic available
2 Trace [ratatiewE xclude [cucletcourate [JHalRate Extln: 4
| | [1ceRT MapDecode ExtlnBuz -
BEC 0x0 ExtOut:
FifoFullnclude STALL FifoLewvel FifaFull:
| y SmartTrace 16 FifoSize: -
FifoFullE xclude Fraotocol: 7.
| | Wersion: 1.3

Stall the processor if a FIFO overflow is likely to happen

The ETM does not provide any information to help you to find out how big is the performance loss
caused by stalling the processor.

ARM7TMI, ARM720T, ARM920T and ARM922T do not support the stalling of
the core when the ETM target FiFo is (almost) full. (You can set the option, but it
won’t have an effect.)

ETM.STALL ON is supported by ARM926EJ-S, ARM946E-S and ARM966E-S.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 15

ETMv3

This chapter is only relevant if you have a chip with an ARM ETMv3.
This are usually chips with a Cortex-M3/M4/M23, Cortex-R4/R5, Cortex-A5/A7/A8, ARM9 or ARM11
core.

Interface and Protocol

- - ETM
Trigger logic
P-header » TRACECLK
Processor generation
FIFO » TRACECTL
Trace packet n
—— - — = TRACEDATA[n-1:0
generation Al]
TRACECLK Trace clock
TRACECTL Trace control indicates if the trace information is valid.
TRACEDATA[n-1:0] Trace packets
(broadcast pipeline status information, address and data
information)
Trace packets contain the following information:
. Information about the execution of instructions.
. Address information when the processor branches to a location that cannot be directly inferred

from the source code. When addresses are broadcast, high-order bits that have not changed are

not broadcast.

o Data accesses that are indicated to be of interest (only data, only addresses, data and
addresses).

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

16

Trace.List TP DEFault

B::Trace.List TP DEFault

WSetup... {3 Goto... || #3Find... & More || X Less

record tp run_address cycle |data synbol ti.back
-ARAARRE?Y |22 D:88PAGF 38 wr-hyte 88 \varmlavza_li_aif\flags+@x8C <@A.018us
—-ARAAAREA CC R:80082324 ptrace swarnlava_li_aifysievet+B@x?C B.458us
695 k += primnz;
| add r3,r3,r12
696 }
| b Bx2318
692 while (k <= SIZE)
F cmp r3,#0x12
—-ARAARAS |88 R:80082318 ptrace swarnlava_li_aifysievet+B@x7@ @.980us
693 {
694 flags[k 1 = FALSE;
mnov ri4,#0x0
ldr ré,Bx2344
-ARAARA74 |20 D:80082344 rd-long BBAPGF24 ssarmlava_li_aifssieve+@x9C <@A.018us
-AARARRGE B4 R:80082328 ptrace swarmlava_li_aifysievet+B@x78 8.170us
strb ri4,[r@, +r31
-ARRARRG?Y |22 D:88PA6F 33 wr-hyte 88 \varmlava_li_aif\flags+@x8F <@A.018us
—ARAARRSY |CC R:80002324 ptrace swarmlava_li_aifysievet+B@x?C @.368us

Due to the fact that the information about the execution of instructions is

broadcasted by trace packets, the maximum sampling time depends on the

number of broadcasted packages.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

17

Basic Setups

Port Size and Port Mode for ETMv3.x for ARM11

1. Define the ETM port size

TRACEDATA can use 1..32 pins (48 and 64 pins port size is not supported yet).

etm Tracelnclude zelection configuration esources
O OFF | | Trace []DEGRO AComp:
& 0N TraceE xclude DataTrace [ReadwriteBreak | | DComp:
| | | Bath hd | PortSize CComp:
ContextlD 2 w | Map:
W} D ataviewlnclude | OFF M | 1 Counter:
[Tﬁ Fegister] | | i Seq:
2 Trace [ratatiewE xclude [Cycletcourate W Extln:
| || | CIcerT % ExtinBus:
[Jeec ig ExtOut:
FifoFullnclude B4 FifaFull:
| | | | CJoatasuppres= FifoSize:
FifoFullE xclude SmartTrace Frotocal:
| | Wersior:

2/20
%
Mo
B9
0.
31

2. Define the mode for the ETM port

The ETMv3.x works always in half-rate mode.

The port mode defines the relation <etm_clock>/<cpu_clock>.

CBX

etm Tracelnclude zelection configuration esources
O OFF | | Trace []DEGRO AComp:
& 0N TraceE xclude DataTrace [ReadwriteBreak | | DComp:
| | | Both w | PortSize CComp:
ContextlD | 2 w Map:
W} D ataviewlnclude | OFF v | Parttdode Counter:
[Tﬁ Fegister] | | 144 Seq:
2 Trace [rataiewE xclude [cucletcourate Dynamic: Extln:
| || | Ocer Custom ExtirBus:
[JeBC 1::12 ExtOut:
FifaFullnclude 1/3 FifaFull:
| | | | CIoatasuppres= FifoSize:
FifoFullE xclude SmartTrace Frotocal:
| | Wersior:

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

18

Data Trace Setting

™ Fegister

etm Tracelnclude
O OFF
& 0N TraceE xclude

&) CLEAR Dataiiewlnclude
.}m D atat/iewE xclude

FifaFullnclude

FifoFullE xclude

zelection configuration es0uUIces

Trace []DEGRO AComp: 4
DataTrace [|ReadwriteBreak | | DComp: 2.
Both hd PortSize CComp: 1.

8 w Map: 0
Parttdode Counter: 2
144 w Seq: Yes
MapDecode Extln: 4,
0x0 ExtlnBus: 2420
FifoLevel ExtOut: 2.
32 FifaFul: Mo
[DataSuppress FifoSize: B9
SmartTrace Frotocal: 0.
Wersion: 31

DataTrace (ETMv3)
OFF No data accesses are traced.
Only program flow is traced.
ON Both address and data information of for all data accesses (Read and
write accesses) are traced (and the program flow).
Read Both address and data for read accesses are traced (and the prog. flow).
Write Both address and data for write accesses are traced (and the prog. flow).
Address The addresses of all read/write accesses are traced (and the program
flow), but not the data value, which has been read or written.
ReadAddress The addresses of all data read accesses are traced (and the prog. flow).
WriteAddress The addresses of all data write accesses are traced (and the prog. flow).
Data The data values of all read/write accesses are traced (and the program
flow), but not the addresses of the read/write accesses.
ReadData Data values of all read accesses are traced (and the program flow).
WriteData Data values of all write accesses are traced (and the program flow).
Only Only data is traced (address and data of all read/write accesses)
but program flow is not traced.
OnlyAddress Only data addresses are traced (address of all read/write accesses, but
no data).
Program flow is not traced.
OnlyData Only data values are traced (data of all read/write accesses, but no
addresses).
Program flow is not traced.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 19

Additional Settings

FIFO Overflow
- - ETM
| Trigger logic |
P-header » TRACECLK
Processor generation
FIFO » TRACECTL
Trace packet n
. - s =1:
race pack _D_,L TRACEDATAIn-1:0]
. Broadcasting the program flow requires usually a low bandwidth and can be done without any
problem.
. Broadcasting the data flow generates much more traffic on the trace port. In order to prevent an

overloading of the trace port a FIFO is connected upstream of TRACEPKT/TRACEDATA. This
provides intermediate storage for all trace packets that cannot be output via

TRACEPKT/TRACEDATA immediately.

Tracelnclude

TraceExclude

™ Fegister

etm

O OFF

0N

[B Trace |

FifaFullnclude

FifoFullE xclude

D ataviewlnclude

D ataviewE xclude

zelection configuration
Trace []DBGRO
DataTrace [ReadwriteBreak.
Bath hd FortSize
ContextiD g v
OFF b Parttdode
1/4 v
[Cycletcourate MapDecode
[JcrrRT 0«0
[eBC FifoLewvel
32

[DataSuppress
SmartTrace

IES0UICES
AComp: 4
DComp: 2
CComp: 1.
Map: 0
Counter: 2
Seq: Yes
Extlr: 4.
ExtlnBus: 2420
ExtOut: 2.
FifaFul: Mo

FifoSize: BS.
Fraotocol: 0.
Wersion: 31

/

The ETMv3.x provides the FifoSize in a ETM configuration register

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 20

Under certain circumstances it is possible that so much trace information is generated, that the FIFO
overflows.

B::Trace.List

WSetup... {3 Goto... || #3Find... & More | X Less

record run address cycle |data synbol ti.back
[add r3,rz,r12
692 while (k <= SIZE)
‘ cnp r3,#8x12
+ABAA7476 R:80082318 ptrace \warmlava_li_aifysieve+8x70 <@A.018us
693 {
694 flagsl k 1 = FALSE;
‘ nov ri4,#08x8
ldr r@,8x2344
— TARGET FIFO OVERFLOMW, PROGRAM FLOW LOST
+ABAA7582 R:8008231C ptrace \warmlava_li_aifysieve+Bx74 <@A.018us
ldr ré,Bx2344
+ABAA 7586 D:80082344 rd-long BBAPGF24 ssarmlava_li_aifssieve+@x9C <@A.018us
+ARAA7597 R:80082328 ptrace \warmlava_li_aifysieve+8x78 <@A.018us
strb ri4,[r@,+3]

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing

21

What can | do to prevent a FIFO overflow (ETMv3.x)?

If a FIFOFULL is likely to happen, the ETM suppresses the output of the data flow information.

FEX
etm Tracelnclude zelection configuration esouUIces
O OFF | | Trace []DBGRO ACamp: 4
& 0N TraceE xclude DataTrace []ReadwriteBreak | | DComp: 2.
| | | Bath b | PortSize CComp: 1.
ContextlD | 2 w | Map: 0
W} D ataviewlnclude | OFF b | Parttdode Counter: 2.
[Tﬁ Register] | | 144 v Seq: Yes
2 Trace [ratatiewE xclude [Cycletcourate MapDecode Extln: 4
| || | CIcerT 0x0 ExtinBus: 2/20
[eBC FifoLewvel ExtOut: @
FifaFullnclude 32 FifaFul: Mo
| | | DataSuppress | FifoSize: 63,
FifoFullE xclude SmartTrace Frotocal: 0.
| (Wersion: 31

Suppress data flow information if a FIFO overflow is likely to happen

The data suppression is not indicated in the trace.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 22

How does the ETM know that a FIFO overflow is likely to happen?

FifoLevel

FIFO

You can define a FifoLevel. If less the FifoLevel bytes are empty in the FIFO:

J The processor is stalled until the number of empty bytes is higher the FifoLevel again (ETMv1.x).
. No data information is broadcasted until the number of empty bytes is higher the FifoLevel again
(ETMv3.x)

Recommendation for FifoLevel is ~2/3 of the FIFO size.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 23

What happens at a FIFO overflow?

No further trace packets are accepted by the FIFO if a FIFO overflow occurs.

The ETM signals a FIFO overflow via the pipeline information and ensures, that the FIFO is completely
emptied. Once the FIFO memory is ready to receive again trace packets:

J A Trace restarted after FIFO overflow is output via the pipeline information

J The full address of the instruction just executed is output.

:Trace.List

WSetup... {3 Goto... || #3Find... & More | X Less

record run address cycle data synbol .
[add r3,rz,ri2 ~
692 while (k <= SIZE)
cnp r3,#Bx12 v
-
+ABAA7476 R:80082318 ptrace \warmlava_li_aifysieve+8x70 <@A.018us :
693 {
694 flagsl k 1 = FALSE;

mnov ri14,#08:0
1dr ri,Bx2344
— TARGET FIFO OVERFLOW, PROGRAM FLOW LOST

+ABAA7582 R:8808231C ptrace \warmlava_li_aifysieve+Bx74 <@A.018us
ldr ré,Bx2344

+ABAA 7586 D:80082344 rd-long ABAA rarmlava_li_aifysieve+8x9C <@A.018us

+ARAA7597 R:80082328 ptrace Aar _li_aifyvsieve+Bx78 <@A.018us

strh ri4,[r@,+3]

Trace restarted
after FIFO overflow

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

24

What can | do to reduce the risk of a FIFO overflow?

o Set the correct PortSize.
. Restrict DataTrace to read cycles (write accesses can be reconstructed via CTS).
o Restrict DataTrace to write cycles (a FIFO overflow becomes less likely).
J Reduce the broadcast of TraceData information by using a trace filter.
. Exclude the stack area from the data trace.
=113
etm Tracelnclude zelection configuration es0uUIces
O OFF | M Trace []DBGRO ACamp: 41,
& 0N TraceE xclude DataTrace [|ReadwriteBreak | | DComp: 2.
| | Buoth v | PortSize CComp: 1.
ContextlD | 2 R | Map: 0.
&) CLEAR D ataviewlnclude |DFF V| Portiode Counter: 2.
[Tﬁ Register] | 144 b Seq: Yes
2 Trace [ratatiewE xclude [cycletcourate MapDecode Extln: 4
| Dsf0-fi ExtlnBus: 2/20
Hhal ExtOut; @
FifoFullnclude el Mo
| [#] DataSuppress FifoSize: B3, [v
FifoFullE xclude [¥] SmartTrace Frotocal: 0.
| L Exclude the stack area from
the data trace
. Stall the core / supress the data flow when a FIFO overflow is likely to happen.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

25

Can the gaps in the trace resulting from FIFO overflow be reconstructed?

The gaps in the trace recording resulting from FIFO overflow can be reconstructed in most cases by using

the SmartTrace and CTS.
etm Tracelnclude zelection configuration
O OFF | ||| [ATrace []DBGRO
& 0N TraceE xclude DataTrace [ReadwriteBreak.
| | | Bath hd | FortSize
ContextiD | g v |
W} D ataviewlnclude | OFF hd | Parttdode
[T« Fegizster] | | 144 _Iv
2 Trace [ratatiewE xclude [Cycletcourate MapDecode
| || | Deear
[eBC FifoLewvel
FifeFullnclude

[DataSuppress

FifoFullE xclude

|SmartTrace |

FEX
IES0UICES
AComp: 4.
DComp: 2
CComp: 1.
Map: 0
Counter: 2.
Seq: Yes
Extlr: 4.
ExtlnBus: 2420
ExtOut: 2.
FifaFul: Mo
FifoSize: BS.
Fraotocol: 0.
Wersion: 31

It is not possible to reconstruct:

J Exceptions occurring in the trace gaps.

. Port reads occurring in the trace gaps.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

26

PTM (aka. PFT)

PTM stands for Program Trace Macrocell
PTM is also known as PFT. PFT stands for Program Flow Trace.

PTM offers a stronger trace compression comparing to ETMv3 but does not offer any kind of data trace
(neither data address nor data value)

The PTM is only used for Cortex-A9, Cortex-A15 and Cortex-A17 processor cores.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 27

Block Diagram

Simplified block diagram for off-chip trace with parallel interface, training-relevant components only:

Cortex-A9/A15 core Cortex-A9/A15 core
PTM PTM
72-byte 72-byte
FIFO FIFO

*ATB *ATB

CoreSight trace infrastructure

*ATB

TPIU

— — —

T By T A

> > >

O O o

m m m

218 12 |5

2 |7 3 |3

3 C (@]

=) — m

= 2

= * PTM = Program Flow Trace Macrocell
v v v 4 * TPIU = Trace Port Interace Unit
* ATB = AMBA Trace Bus

TRACEDATA[N:0] Trace packets
TRACECTL Trace Control (optional)
TRACECLKOUT Trace Clock from Target
TRACECLKIN not used

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 28

Simplified block diagram for on-chip trace, training-relevant components only:

Cortex-A9/A15 core Cortex-A9/A15 core
PTM PTM
72-byte 72-byte
FIFO FIFO

*ATB *ATB

CoreSight trace infrastructure

*ATB

ETB

* PTM = Program Flow Trace Macrocell
* ATB = AMBA Trace Bus

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 29

Protocol Description

The PTM generates trace information on certain points in the program (waypoints). TRACE32 needs for a
full reconstruction of the program flow also the source code information. Waypoints are:

o Indirect branches, with branch destination address and condition code

i BTraceList TPINFO DEFault

oo

(& setup... || 4 Goto... || #1Find... || Ad chart || B Profile || BMPS |[$ More| X Less
d

-0047902075

155
156

157
-0047902073
181

Branch address a=0x440 mask=0xFFF

Branch address a=0x80D mask=0xFFF

ZR:00001054 ptrace

static void funcl(intptr

int * intptr;

; (*intptr)++;
= 1dr ri,[r0]

add rl,rl,#0x1

str rl,[r0]

cpy

Y pc,ri4
ZR:00001100 ptrace

record [tpinfao run |address cycle |data symbaol |
Tdr r0,0x110C
b1 0x1054

‘harmlelarm'funcl

'* static function */

Wl « [m»

“harmleharm\func2+0x3C

Je1

. Direct branches with only the condition code

£ B:TRACE.LIST

TPINFO DEFault

[E= e

(# setup... [A Goto... || #1Find... || Adchart || Bl Profile || Bl MIPS |[# More| X Lesg
record [tpinfo run |address cycle |data symbol i
+00000002§g Atom a=NENEN ZR:00002284 ptrace armleharmysieve+r0x5C -
690 . primz = i + 1 + 3; =
1s1 r0,r2,#0x1 &
add ri2,r0,#0x3 -
691 k =1 + primz; |
add r3,r2,rl2
692 while (k <= SIZE)
Not exec cmp r3,#0x12
693
694 flags[k] = FALSE;
mov ri4,#0x0
Tdr r0,0x22C4
strb r14,[r0,+r3]
6895 k += primz;
696 E add r3,r3, ri2
Xec b 0x2290
692 while (k <= SIZE)
Not exec cmp r3,#0x12
693
694 flags[k] = FALSE;
mov ri4,#0x0
Tdr r0,0x22C4
strb r14,[r0,+r3]
695 k += primz;
696 add r3,r3, ri2
EXGC b 0x2290
692 while (k <= SIZE)
Not exec £ cmp r3,#0x12
40000000094 |Atom a=EEEEE I ZR:00002298 ptrace “Yharmleharm\sieve+Ox70 b
4 | L 3
. Instruction barrier instructions
. Exceptions, with an indication of where the exception occurred
. Changes in processor instruction set state
. Changes in processor security state
. Context ID changes
. Start and stop of the program execution

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

30

The PTM can be configured to provide the following additional information:

J Cycle count between traced waypoints

| B::Trace.List TPINFO DEFault =N <)
(4 setup... | 14 Goto... || #1Find... || A chart || Bl Profile || HE MIPS][4 More|[X Lesq
record tpinfo |run |address leycle |data |symbol =
-0000000121 [Atom a=N cyclecount=0x54 ZR:00002274 pirace armle\armysieve+xdC ~
687 i E
688 iF(flags[i 1) =
c 1dr r0,0x22C4
Tdrb r0, [r0,+r2] =
cmp r0,#0x0
-0000000119 |Atom a=E cyclecount=0x2 ZR:00002284 ptrace ‘Marmletarmsieve+0x5C
689 {
690 primz = 1 + 1 + 3;
1s1 r0,r2,#0x1
add ri2,r0,#0x3
691 k =1 + primz;
add r3,r2,ri2
692 while (k <= SIZE)
cmp r3,#0x12
bgt 0x22AC E
-0000000118 |Atom a=E cyclecount=0x1D ZR:000022AC ptrace “Mharmleharm\sieve+Ox84 £
697 anzahl++; -
jER I] r
. Global system timestamps
J Target addresses for taken direct branches

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 31

Basic Setup

1. Enable TPIU pins

The TPIU pins need to be enabled, if they are multiplexed with other signals.

TPIU —
Application -
Pins
PER.Set.simple <address>|<range> [Y%<format>] <string> Modify configuration register/on-
chip peripheral
PER.Set SD:0x111D640 %Word 0x9AAQ ; Enable TPIU functionality on
PER.Set SD:0x111D6A4 SWord 0x2901 ; GPIO’s
PER.Set 0x111600D %$Long %LE 0x01E ; Enable CLK

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

32

2. Configure CoreSight trace infrastructure

The CoreSight trace infrastructure is automatically configured by TRACE32 PowerView if your chip and its
infrastructure is known. Otherwise please contact your local TRACE32 support.

SYStem.CONFIG.state /COmponents

éy B::5YStem, CONFIG.state /COmponents EI@

Debugport ITAG Multitap DAP Components

|- New Component - v|
COREDEBUG
Base DAP:0x80090000 [...]
ETBI
Base DAP:0x80001000 [...| ATBSource FUNNELL]
ETM
Base DAP:0x8009C000 [...
FUNNELL
Base DAP:0x80004000 [...]
ATBSource ETM 0 ITM 3 (]
mM
Base DAP:0x80005000 [...|
TPIU
Base DAP:0x80003000 [...| ATBSource FUNNELL]

Check configuration of CoreSight

infrastructure

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

33

3. Specify PortSize

PortSize specifies how many TRACEDATA pins are available on your target to export the trace packets.

&2 B:ETM
etm control
) OFF Trace
@ ON [C1DBGRQ
[ReadvirteBreak
commands
trigger
onft
L level
counter

trace
[l Returnstack
[CIeBC
[IsTALL
SmartTrace
ContextID

OFF -
TImeMode
(pehoudettdana «
CydeAccurate
[C1 TimeStamps
TimeStamp(0K

PortSize
16

A4

FunnelHaldTime

[F=5 Eol 55
resources
AComp: 4.
DComp: 0.
CComp: 1.
Counter: 2.
Seq: Yes
ExtIn: 4.
ExtInBus: 2/29.
ExtOut: 2.
FifoFull: No
FifoSize:
Version: 1.0

I ETM.PoriSize <size>

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

34

4. Specify PortMode

ETM.PortMode specifies the Formatter operation mode.

The TPIU/ETB merges the trace information generated by the various trace sources within the multicore

chip to a single trace data stream. A trace source ID (e.g ETM.TracelD, ITM.TracelD, HTM.TracelD) allows

to maintain the assignment between trace information and its generating trace source. The task of the
Formatter within the TPIU/ETB is to embed the trace source ID within the trace information to create this

single trace stream.

& B:ETM | &[]
etm control trace PortSize resources
© oFF [VITrace [T Returnstack 16 - AComp: 4.
@ ON [C1DBGRQ [FleBC PortMode DComp: C.
[CReadtelresk | | [C1STALL CComp: 1.

commands [¥] SmartTrace Bypass 3 Counter: 2.

trigger ContextID P Seq: Yes

OFF ~| | - Fifotevel — Bthn: 4.

onfoff TImeMode 40. ExtInBus: 2/29.

(pdmsestd v) | - TraceDD BdOut: 2.

L level [V CydeAcarate 1. FifoFull: No
[T TimeStamps TracePriority FifoSize: -
counter TimeStamp1.OXK 0. Version: 1.0
FunnelHoldTime

Bypass There is only one trace source, so no trace source IDs is needed.
In this operation mode the trace port interface needs to provide the
TRACECTL signal.

Wrapped The Formatter embeds the trace source IDs. The TRACECTL
signal is used to indicate valid trace information.

Continuous The Formatter embeds the trace source IDs. Idles are generated
to indicate invalid trace information. The TRACES32 preprocessor
filters these idles in order to record only valid trace information into
the trace memory.

I ETM.PortMode Bypass | Wrapped | Continuous

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

35

5. Calibrate AutoFocus Preprocessor

Push the AutoFocus button to set up the recording tool.

W B:Trace EI@
METHOD
@ Analyzer CéAnalyzer © Onchip () ART () LOGGER () SNOOPer) FDX © LA
Integrator ' Probe IProbe

state used ACCESS TDelay
(©) DISable auto - 0.
© OFF 0. 0% -
© Arm SIZE CLoCK
© trigger 1073741824, THreshold
) break 1.661.70 =

Mode Mode ovee
commands @ Fifo BusTrace) CLOCK

RESet () Stack

) ClockTrace

@ autofocus

) Leash @ FlowTrace

© STREAM TERMination
4 List) PIPE [Prestore

AutoArm RTS SLAVE

[C] Autolnit | [AutoFocus| |

[selfarm

If the calibration is performed successfully, the following message is displayed:

B::
L\na'lyzer data capture o.k. (f=100.0MHz,testpattern)

emulate trigger [devices][trace][Data][Var][

] [previous

ZSR:00002260 \\armle\arm\sieve+0x38 stopped

MI< UP

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

36

Additional Settings

The following setting may be of interest. They are explained in detail later in this training:

ETM.ReturnStack [ON | OFF] May help to reduce the amount of generated
trace information.

I ETM.ContextiD 8 | 16 |1 32 | OFF Is required for OS-aware tracing
ETM.TImeMode <mode> Is required for OS-aware tracing
ETM.CycleAccurate [ON | OFF] Enable cycle-accurate tracing
ETM.TimeStamps [ON | OFF] Enable global timestamp
ETM.TimeStampCLOCK <frequency> Specify clock of global timestamp

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 37

FLOWERROR

FLOWERROR: The trace information is not consistent with the code image in the target memory.

This can happen when the code in the target memory was changed or the trace information was corrupted

e.g. because of crosstalk on the external trace pins.

pop {r4,pc}
—— FLOW ERROR (UNEXPECTED INDIRECT BRANCH) ——
—— FLOW ERROR (UNEXPECTED INDIRECT BRANCH) —

-0000000117 [BRK | &

_J<| (1 +

| Bu:Trace.List EI-@
& setup...|[1Y Goto... || 3 Find... [A chart]L M Profile || BIMIPS || % More
TG0 lrun |address cycle |data symbol
699 ¥ -~
=
701 return anzahl; i
cpy ro,rl =
702 }
mowv r0,#0x0

HARDERROR: The trace port pins are in an invalid state.

This happens if the trace information was corrupted e.g. because of crosstalk on the external trace pins. In

rare cases this can be caused by a bug in the chip.

£ BeTrace List EI@
& setup... m Goto...][#4 Find...][el Chart]L ProFIe | MIPS][v More][A Lessﬂ

[EE0GErun |address, cycle |data symbol ti.back i
-0486807064 ZR:0000336C ptrace \GlobaTh_fp_muTt_common+0x19C 0. 500us

r5,#0x0

-0456804539 ZR:00004EC4 ptrace

b1 Ox4EDE

ZR:00004ED8 ptrace
r0,#0x60000000

-0486804537

“YSarmleZGlobaly_esub+0x1C . [E

‘“YSarmle\Global'_eZe

226.260us | |
0.320us

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

38

Diagnostic Commands

TRACES32 normally uploads only those records from the physical trace memory to the host, that are required
by the current trace display/analysis window. To upload the complete trace contents to the host for diagnosis,
the following commands are recommended:

Trace.FLOWPROCESS

Trace.Chart.sYmbol

To check the number of FLOWERRORS in the trace use the following command:

PRINT %Decimal Trace.FLOW.ERRORS ()

Eszssa
[ermilate][trigger][devices][trace][
SR:00002240 “harmleharm'sieve+0x18

If the trace contains FLOWERRORS / HARDERRORS, please try to set up a proper trace recording
before you start to evaluate or analyse the trace contents. See also the section “Diagnosis” in “Arm
ETM Trace” (trace_arm_etm.pdf).

To find the FLOWERRORS / HARDERRORS in the trace use the keyword FLOWERROR in the Trace.Find
window.

Use the Expert Find page to find the FLOWERRORs

in the trace
5% B::Trace.List k
WSetup... {3 Goto... || #3Find... & Moe | X L
record run address cycle |data l&umbul ti.back =
ble Bx2258 ~
—ARAARAS? R:B0AAZ258 exec sharnlesarnssieve+Bx3@ <@A.018us
Fh Bx2248 v
—AARARASE R:B0002248 exec sharnlesarmissieve+Bx18 8.180us .
F mov r4, #8x1 .
5155151515 LY R:80002244 exec sharnlesarnssieve+8x1C <@A.018us
mnov ri4,r2
—-ARAAAASA R:AAAA2248 exec armlesa jeve +Ax <A, 018
add rZ,r2,ré4 : =l
pnAREas3 Ry SRS £% race Find B
1dr ri, 8x22C4 (2) Expert O Cycle O Group OChanges Olp
—-ARRAAAS2 D:AA8A22C4 rd-long) Signal @ Dawn 5
—-ARAAAAS 1 R:AAAA2258 exec fs s
strh r4,[rd, +r14]
_appasAs1 D:@0ABGEAA wr—byte | FLOWERROR i 8
—-ARARARA48 R:AAAA2254 exec s
b Bx2234
—-ARRAeR47 R:AAAA2234 exec s
F cmp rz,#ix12
—-ARRAAA44 R:AAAA2238 exec s
pnAnaR43 bls:EEEE%EESEDtEXEC e (EE R
T EEXXXXXERE z

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 39

FIFOFULL

£ B::Trace.Chart.sYmbol

200.000ms 400.000ms
1 1

To check the number of FIFOFULLs in the trace use the following command:

PRINT %Decimal Trace.FLOW.FIFOFULL ()

Eszssa
[ermilate][trigger][devices][trace][
SR:00002240 “harmleharm'sieve+0x18

To find the FIFOFULLSs in the trace use the keyword FIFOFULL in the Trace.Find window.

Use the Expert Find page to find the FIFOFULLs
in the trace

B::Trace.List

WSetup... {3 Goto... || #3Find... & Moe | X L

record run address cycle |data l&qmbul ti.back
—34528774 D:80001184 rd-long BBBASSICY “sarnlesarnsfuncZ +8xAA <A.010us ~
—34528773 R:B0AA18CA exec ssarnlesarns funcZ +8x5C <@A.018us
str ré, [r1] v
34528773 ur—long XKXKKHHHKK <B.018us
— TARGET FIFO OVERFLOW, PROGEAM FLOW LOST
-34528723 | | R:AAPA1AD8 exec sAarmlevarnifuncZ+8x74 2.210us
add ri,rd,r1
34528722 R:AAAA1BDC exec 3 <A, 018
1dr ri,Bx1184 : ml=Eva
34528721 D:00001184 rd-long f3 .race Find EBX
34528720 R:@@AR1GEA exec (2 Expert O Cycle O Group O Changes Olp
str ri,[rd,#dxA0]) Signal ® Down
34528728 D:880B563C wr-long| . s
34528712 R:AAAA1BES exec . s
|FIFOFULL |
178 fstatic2 = 2fst
1dr ri,Bx1184
34528711 D:AAAA1184 rd-long s
34528783 R:AAAA1BES exec s
1dr ré, [ra, #8xn0)
_g:g%ggg? ggggg?ggg ;geémg (Fnanen | [FindFust] (FindHere) [Firdal | [Ciear | [Cancel |
mnov rd,rd, sl #8
—34528696 R:B0PA1AFA exec sharnlesarns funcZ +8x8C B.260us

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

40

Displaying the Trace Contents

Source for the Recorded Trace Information

Trace | Perf Cov Window He

| & CTS Settings...
ETM Settings...
Trigger Dialeg...
3
£ List 4
24 Timing » & Birace e ==
M Chart 4 METHOD
€3 Save trace data ... @ Analyzer] ' CAnalyzer Onchip © ART (D) LOGGER (©) SNOOPer () FDX © LA
53 Load reference data ... Integrator) Probe Probe
Reset
state used ACCESS TDelay
© DISable -] | o
© OFF 0. 0% -
©) Arm SIZE CLOCK
() trigger 536870912, THreshold
) break 0.92 -
Mode Mode @ vce
commands @ Fifo BusTrace 0 CLOCK
() Stack () ClockTrace () autofocus
() Leash @ FlowTrace [¥] TERMination
© STREAM
] List © PIPE [Prestore
[7] AutoArm RTS SLAVE
[Autolnit
[C] selfarm

If TRACERS2 is started when a PowerTrace hardware and an ETM preprocessor is connected, the source for
the trace information is the so-called Analyzer (Trace.METHOD Analyzer).

The setting Trace.METHOD Analyzer has the following impacts:

1. Trace is an alias for Analyzer.
Trace.List ; Trace.List means
; Analyzer.List
Trace.Mode Fifo ; Trace.Mode Fifo means

; Analyzer.Mode Fifo

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 41

2. All commands from the Trace menu apply to the Analyzer.

Trace | Perff Cov Window He
WConfiguration_
| & CTS Settings...

ETM Settings...

Trigger Dialeg...

E Default
= Timing L4 All
fuf Chart b 2 Tracking with Source
| List Context Tracking Syst
ESavetrace data ... @ =t -on A SR e

E Load reference data ...

Reset

3. All Trace commands from the Perf menu apply to Analyzer.

Cov Window Help
1 2 Perf Configuration...
| & Perf List
E| Perf List Dynamic
Distribution
Duration Ato B

Distance trace records

-

£ Show Mumerical
E Show as Tree k
E Show Detailed Tree

Reset @ Show asTi.ming
{F] Show Mesting

- v ¥

4. TRACE32 is advised to use the trace information recorded to the Analyzer as source for the trace

evaluations of the following command groups:

CTS.<sub_cmd> Trace-based debugging

COVerage.<sub_cmd> Trace-based code coverage

ISTAT.<sub_cmad> Detailed instruction analysis

MIPS.<sub_cmad> MIPS analysis

BMC.<sub_cmad> Synthesize instruction flow with recorded benchmark counter
information

This ETM Training uses always the command group Trace. If you are using a CombiProbe or the on-chip

ETB as source of the trace information, just select the appropriate trace method and most features will work
as demonstrated for the trace method Analyzer.

Trace.METHOD CAnalyzer ; select the CombiProbe as source

; for the trace information

Trace.METHOD Onchip ; select the ETB as source for the

; trace information

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 42

Sources of Information for the Trace Display

In order to provide an intuitive trace display the following sources of information are merged:

. The trace information recorded.
. The program code from the target memory read via the JTAG/DAP interface.

. The symbol and debug information already loaded to TRACE32.

Recorded trace Program code from
information target memory
Uploaded from Read via
the source of JTAG/DAP
trace information interface

File Edit View Var Break Run CPU Misc Trace Probe Pef Cov Window Help

(MKl deelrn[BE e o g sae @ L

] BrTrace List [=lE]=]
& setup...| 1L Goto... || #3Find... | o chart || Bl profile !mrs 4 Wore|[X Lesg

record run \address leycle |data |ti.back]
cmp r0, 0 -
ec 0x8000930 =

~-0000000146 T:08000 P <0.005us
622 ,
623 -

1s1s r0,r2,#0x1 ;
adds r7,r0.#0x3 :
624 while (
| adds r3,r2,r7 . B

cmp r3,#0x12
bgt 0x800092E

Eadds. ri,#0xt ; anzahl,#1

L0010 [»4 out kot Fuil

-2.465393000s -2.465392000s ‘

& setup...|| iid Groups... | 22 Config...| ¥ Goto... || #1Find... |
-2.465394000s

address 4 L 1 =]

demo_r4\demo\maingH| [_] [[__] [| | [L1 -

Ldemo_rd demo Funcl3 G/ M — . L . . . E

"denu r4\demo'\funcl4 &y . [] 3 |

“\demo_r4\demo'\funcl5 R Lo . . . L .

\\demo_r4\demo\funcl6&H| [| S

Symbol and debug
information loaded
to TRACE32

TE o= v
I

(_emulate | [trigger][devices |[trace |[pata | var][wus][PR |[Svstem][stp [Go J[Break][Register | [sYmbol][other

| [_previous |

ST:08000912 \\demo_r4\demo\sieve+0x26 stopped [1]

M |ue

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 43

Influencing Factors on the Trace Information

The main influencing factor on the trace information is the ETM itself. It specifies what type of trace
information is generated for the user.

Another important influencing factor are the settings in the TRACE32 Trace configuration window. They
specify how much trace information can be recorded and when the trace recording is stopped.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 44

ETM Features and Settings

An ETM can provide the following trace information:
. Program: Instruction flow mainly based on the target addresses of taken indirect branches

J Non-Branch Conditionals: The ARM instruction sets allow also non-branch instruction to be
conditional. The trace can contain information if the condition of every conditional instruction has
been met or only if the condition of the branch instructions have been met.

. Data Address: The address to/from a data access is writing/reading data-
J Data Value: The data value loaded/stored by a read/write operation
. Context ID: Values of Context ID changes, mainly used to indicate task/process changes and

changes of the virtual address space

J Cycle-count (CC): Number of clock cycles between executed instructions

The table below shows what trace information is generated by the various ARM Cortex cores.

Core ETM |Program| non-branch| Data Data Context Cycle bits per
Version Flow |conditionals| Address| Value ID Count | instruction

ARM7 ETMv1 [| [| [| [| >ETMv1.2 [| >8.00

ARM9

ARM9 CoreSight | | | | | | ~1.20
ETMv3

ARM11 (CoreSight) [] [| [| [| | [] ~1.20
ETMv3

Cortex-M3/M4 | CoreSight [| [| (DWT) (DWT) - - ~1.20

Cortex-M23 ETMv3

Cortex-M7 ETMv4 [| [| (DWT) (DWT) - [| ~0.35

Cortex-M33 (Cfg. 3)

Cortex-R4 CoreSight | | [| [| | | ~1.20

Cortex-R5 ETMv3

Cortex-R7/R8 ETMv4 | [| [| [| | | ~0.40

Cortex-R52 (Cfg. 1)

Cortex-A5 CoreSight | | [| [| | | ~1.20

Cortex-A7 ETMv3

Cortex-A8 CoreSight | | [| - | | ~1.20
ETMv3

Cortex-A9 PTM | - - - | | ~0.30

Cortex-A15

Cortex-A17

Cortex-A3x ETMv4 | - - - | | ~0.30

Cortex-A5x (Cfg. 2)

Cortex-A7x

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 45

The column "Bits per Instruction" is base on values stated by ARM for program traces without data
address/value trace, without conditional non-branch instructions and without cycle-count or internal-timing
information (only external tool-base timing).

The ETM can provide also a number of comparators to restrict the generated trace information to the
information of interest. They are introduced in detail in the section Trace Control by Filter and Trigger of
this training.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 46

Settings in the TRACE32 Trace Configuration Window

The Mode settings in the Trace configuration window specify how much trace information can be recorded
and when the trace recording is stopped.

The following modes are provided:

Fifo, Stack, Leash Mode: allow to record as much trace records as indicated in the SIZE field of
the Trace configuration window.

W B:Trace EI@
METHOD
@ Analyzer (CAnalyzer Onchip © ART () LOGGER () SNOOPer () FDX © LA
Magaiiayoe MeagaiAndyoa MagaiOndip Integrator ' Probe IProbe
state used ACCESS TDelay
© DISable -]l | o
© OFF 0. 0% -
) Arm SIZE CLOCK
() trigger 1073741824, THreshold
) break -
Mode Mode @ vce
commands @ Fifo BusTrace 0 CLOCK
() Stack (0 ClockTrace () autofocus
() Leash @ FlowTrace [¥] TERMination
© STREAM
] List © PIPE [T Prestore
AutoArm RTS SLAVE
[Autolnit
[C] selfarm

STREAM Mode: STREAM mode specifies that the trace information is immediately streamed to
a file on the host computer. Peak loads at the trace port are intercepted by the TRACES32 trace
tool, which can be considered as a large FIFO.

STREAM mode allows a trace memory of several T Frames.

STREAM mode required 64-bit host computer and a 64-bit TRACES32 executable to handle the
large trace record numbers.

PIPE Mode: PIPE mode specifies that the trace information is immediately streamed to the host
computer. There it is distributed to a user-defined trace analysis application. This mode is still
under construction and will be used mainly for software-generated trace information.

RTS Mode: The RTS radio button in only an indicator that shows if Real-time Profiling is ON or
OFF. For details on Real-time Profiling refer to the RTS command group.
RTS is available for ETMv3 and ETMv4.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 47

Fifo Mode

Trace.Mode Fifo

default mode

when the trace memory is full
the newest trace information will
overwrite the oldest one

the trace memory contains all
information generated until the
program execution stopped

W Bu:Trace.state EI@
METHOD
® Analyzer (CAnalyzer Onchip © ART) LOGGER () SNOOPer () FDX D LA
Mtz Megai(Andyza () Megaindip Integrator ' Probe IProbe
state used ACCESS TDelay
oosae | | I | |)| | o
© OFF 1073741824, 0% -
) Arm SIZE CLOCK
~ trigger 1073741824, THreshold
*) break 1.66 -
Mode Mode @ vce
commands @ Fifo BusTrace) CLOCK
RESet ~) Stack ~) ClockTrace * autofocus
") Leash @ FlowTrace [¥] TERMination
© STREAM
i @ PIPE [T Prestore
AutoArm RTS SLAVE
[selfarm
s BuTrace.List EI
[W Setup...][3 Goto...] jFlnd][el Chart]L ProFIe | MIPS][v More][A Les&i
record run |addres cycle |data symbo ti.back |
-0000000190 T: 08000920 ptrace Svdemo_rdhdemo'\ 51 evet0x34 0.155us .
625 E
cmp r3,#0x12 lfl
bgt 0x800092E
630 ¥ B
Foadds rl,#0x1
631 b
632
| b UxSUUUSUE
for (1 =0; 1 <= SIZE ; i++)
619 i
= adds r2,#0x1
[b 0x8000908
for (1 =0; 1 <= SIZE ; i++)
619 i
= cmp r2,#0x12
-0000000189 [BRK <0.005us
-0000000178 T:08000914 ptrace “\demo_r4‘\demo'sieve+0x28 858.185us
ldrb r0,[r0,r2] (4
1] ¥

In Fifo mode negative record numbers are used. The last record gets the smallest negative number.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 48

Stack Mode

Trace.Mode Stack

The trace recording is |

stopped as soon as
the trace memory is
full (OFF state)

; when the trace memory is full
; the trace recording is stopped

; the trace memory contains all
; information generated directly
; after the start of the program
; execution

— METHOD

@ Analyzer CAnalyzer Onchip © ART () LOGGER () SNOOPer () FDX © LA
Integrator ' Probe IProbe
— state — used — ACCESS — TDelay
© DISable - e [4F Tronchip |
@ OFF 1073741568, 0% - & ETM
© Arm - SEZE ~ CLOCK
© trigger 1073741824, ~ THreshold ——
0 break 1.65 -
— Mode — Mode @ VCC
— commands —— | © Fifo BusTrace 2 CLOCK ¥ advanced
RESet @ Stack 2 ClockTrace 2 autofocus
@ Init ©) Leash @ FlowTrace [¥] TERMination
o stReam
List © PIPE Prestore
| AutoArm RTS SLAVE ¥ AutoFocus
" P utato
SelfArm

trigger

| devices ||

trace Data

J{ J{

Green running indicates that the
program execution is running,

OFF indicates that the trace
recording is switched off

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 49

HW Setup...][3 Goto... || #3Find... || A chart || B Profile || BEMIPS |[# More|[X Lesg

run |address lcycle |data |symbo [t1.back

]« n

e

s

By default, the trace information
can not be displayed while the
program execution is running.
TRACES32 has NOACESS to
the target memory.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing

| 50

There a three alternative ways to solve the NOACCESS issue:

1.

2.

the target memory via this run-time memory access for trace decoding.

éy B::5Y5tem.state
Mode
) Down
(©) NoDebug
() Prepare
) Go
() Attach
() StandBy
Up (StandBy)
@ Up

reset

RESetOut

CFU

MemAccess

@ DAP

) TSMON3
©) RealMON

) TrkMON

©) GdbMON
) Denied

CpuAccess

©) Enable
@ Denied

(©) Nonstop

JtagClock
10.0MHz

-

Stop the program execution. Then TRACE32 has access to the target memory.

Enable the run-time memory access (if supported by your chip) and advise TRACES32 to read

SYStem.MemAccess DAP
Trace.ACCESS DualPort

fele ==
Option Option DisMode
[C] IMASKASM [CIpacr @ AUTO
[T IMASKHLL [CIMMUSPACES | | () ACCESS
[C1TurBO [CImPu © ARM
BigEndian [¥] cFLUSH () THUMB
[¥] ResBreak
[ClmTpIs [C] amBa
DBGACK NODATA
[7] EnReset [ExEC
[TRST [ClspLIr
[C] PWRDWN
WaitReset
OFF ﬁB::Trace.state
METHOD
©@ Analyzer CéAnalyzer © Onchip © ART (C) LOGGER
state used ACCESS
) DISable I
1073741568.
) Arm SIZE CLOCK
© trigger 1073741824, 800.0MHz
) break
Mode Mode
commands) Fifo BusTrace
@ Stack) ClockTrace
"I Leash @ FlowTrace
© STREAM
ist © PIPE [T Prestore
AutoArm RTS SLAVE
[V] AutoInit
[selfarm

() SNOOPer) FDX O
Integrator ' Probe

TDelay

0
w - | CeeEm
Cemm

THreshold
1.631.77 ~

@vce

) CLOCK

@ autofocus

¥ advanced

[¥] TERMination

¥ AutoFocus
¥ ShowFocus

Enable run-time memory access.

memory access for trace decoding.

Advise TRACE32 to read the target memory via the run-time

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

51

3. Provide the program code to TRACE32 via the so-called TRACE32 Virtual Memory.

If there is a copy of the program code in the TRACE32 Virtual Memory TRACE32 reads the code
from there, if an access to the target memory is not possible.

Recorded trace
information

Uploaded from |
the source of
trace information

(‘ TRACE32 PowerView for ARM 1 [Power Trace Ethernet @]

File Edit View Var Bresk Run CPU Misc Trace Probe Perf Cov Window Help
\HH#Jt\HH%?W\HﬂﬂHW@\.;ﬁ
] B Trace List [s&@]=]
[ﬂ setup....[1% Goto... |[#3 Find... || ﬂchm] !Pruf‘le !MFS 4 vore][X Less
record run |address cycle |data symbol ti.back
o 0, #0x0 "
4 Copy of the program
0000000146 T:0800091A prrace \\demu r4\demo\sieve+0x2E <0.005us - ; i
@ e A / code in Virtual Memory
sls rD,r2,#0xl
adds r7.r0,%0x3
624 while (k <= SIZE) of TRACE32
| adds r3
625
cmp r3,#0x12
bgt 0x%800092E
630 3
£ adds ri,#0x1)
631 1
632 -

: , \ Symbol and debug
£l BeTrce Chae el =R information loaded
& Setup... | i Groups... |88 Config...]| 11 Goto... || #3Find... || 4» In | p4 Out| MM Full

dd ~2.4653940005 ~2.465393000s ~2.465392000s to TRACE32
address
["demo_rd\deno\main N - T [S (s
funcl3 o/ mm— — -])]
funcld]
funcls —
funcl6 o u .
i i
|B::
emulate trigger | [devices | [tace][Data |[var][st][PeRF_][Srstem |[sStep |[Go][Break |[Register |[sYmbol][other][previous
ST:08000912 \\demo_r4\demolsieve+0x26 stopped M up

; load the code from the file demo_r4.axf to the target and the
; TRACE32 Virtual Memory
Data.LOAD.Elf demo_r4.axf /PlusVM

Data.LOAD.El1f demo_r4.axf

; load the program code to the TRACE32 Virtual Memory
Data.LOAD.Elf demo r4.axf /VM /Nos¥Ymbol /NoClear

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 52

Caution:

Please make sure that the Virtual Memory of TRACE32 always provides an up-

to-date version of the program code. Out-of-date program versions will cause
FLOW ERRORs.

The trace contents is displayed as soon as TRACES32 has access to the program code.

Since the trace recording starts with the program execution and stops when the trace memory is full,
positive record numbers are used in Stack mode. The first record in the trace gets the smallest

positive number.

i BuTrace.List EI@
(& setup...|[13 Goto... |[#3Find... | Mchar‘t]@ Profile || Bl MIPS |[4 More|[X Lesg
record run |address cycle |data symbo ti.back |
—— TRACE ENABLE -
+0000000026 | T 08000930 ptrace “\demo_r4'\demo'sieve+Ox44 =
631
632 i
| b 0xB800090E =
for (1 =0 ; 1 == SIZE ; i++) [
619
= adds r2,#0x1
[b 0x8000908
for (1 =0 ; 1 == SIZE ; i++)
619 {
= cmp r2,#0x12
[ble 0x8000912
620 if (flags[i])
621
= 1dr r0,0x800093C
+0000000027 D:0800093C rd- 'Iong 08001C5C “\\demo_r4‘demo'sieve+0x50 =0. 005us
+0000000038 T:08000914 1 \demo r4\demo\s1eve+0x28 0.030us
ldrb rQ, [r0O, -
4

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

53

Leash Mode

Trace.Mode Leash

EilemEditmVicwmVarmEreakmmRonmEPUss MischmiliscemProbemPerdamGovmWindowsskelp

; when the trace memory is nearly
; full the program execution is
; stopped

; Leash mode uses the same record
; numbering scheme as Stack mode

(Ml decirn|E e ol daes @ 2 2
.. R S EEEI

— METHOD
@ Analyzer (CAnalyzer Onchip © ART () LOGGER () SNOOPer) FDX © LA
Mamadindz Magadlindima () MegadOndip Integrator ' Probe IProbe
|~ state - used — | ~ ACCESS — TDelay
| | © psable I | - [4F Tronchip |
| | ©oFF 966447808. 0% - & e
|| ©am - szE ~ CLOCK
| | © trigger 1073741824, ~ THreshold ——
| | © break 1.65 -
. — Mode — Mode @vce
— commands —— |) Fifo BusTrace) CLOCK ¥ advanced
) Stack 2 ClockTrace 2 autofocus
© Init @ Leash ® FlowTrace [¥I TERMination
@& SnapShot () STREAM
] List © PIPE Prestore
AutoArm RTS SLAVE
Autolnit
SelfArm
I |B: :
emulate | [trigger |[devices |[wace |[Data [var J[List |[other J[previous |
ST:0B0DOBEE \\demo_rd\demo\sieve+0x2 stopped [T] M p

The program execution is stopped as soon as
the trace buffer is nearly full.

Since stopping the program execution when the trace
buffer is nearly full requires some logic/time, used is
smaller then the maximum SIZE.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

54

STREAM Mode

Trace.Mode STREAM ; STREAM the recorded trace
; information to a file on the host
; computer

; (off-chip trace only)

; STREAM mode uses the same record
; numbering scheme as Stack mode

The trace information is immediately streamed to a file on the host computer after it was placed into the trace
memory. This procedure extends the size of the trace memory to several TFrames.

. Streaming mode required 64-bit host computer and a 64-bit TRACE32 executable to handle the
large trace record numbers.

By default the streaming file is placed into the TRACES32 temp directory
(OS.PresentTemporaryDirectory()).

The command Trace.STREAMFILE <file> allows to specific a different name and location for the streaming
file.

Trace.STREAMFILE d:\temp\mystream.t32 ; specify the location for
; your streaming file

Please be aware that the streaming file is deleted as soon as you de-select the STREAM mode or when you
exit TRACE32.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 55

STREAM mode can only be used if the average data rate at the trace port does not exceed the maximum
transmission rate of the host interface in use. Peak loads at the trace port are intercepted by the trace

memory, which can be considered to be operating as a large FIFO.

used graphically
indicates the number of

records buffered by & B:Trace ===y
the TRACE32 trace METHOD
memory @ Analyzer CéAnalyzer © Onchip) ART () LOGGER () SNOOPer) FDX D LA
Integrator ' Probe IProbe
state used ACCESS TDelay
(7 DISable . | auto - 0. 4 TrOnchip
—orr— 1464947712 0% -
@ Arm SIZE CLOCK
() trigger THreshold) BMC
used numerically o 166175 ~
indicates the number Mode Mode vee
commands () Fifo BusTrace) CLOCK
of records saved : : : ~
. . RESet () Stack) ClockTrace @ autofocus
to the streaming file : i i
[Lleash @ FlowTrace
1= SnapShot @ STREAM [¥] TERMination
| List) PIPE [CI Prestore
AutoArm RTS SLAVE
[C] AutoInit ¥ AutoFocus
[C] selfarm ¥ ShowFocus
BuTrace.List EI@
(& setup... || 1Y Goto... | #3Find... | ¥y Chart || [l Frofile |[4 Morg X Less
record [run [address cycle [data symbol fi.bhack |
CHip r12, f#0x=0 -
» +00018042191874 R:00000ERE ptrace Widemodemotsieve+0x44 <0.005us =
{ -
690 primz = i + i + 3; -
151 r12,r1, 8001
add r2,r12,#0x3
691 k =1 + prinz;
| add ra,ri,r2
692 while { k <= SIZE)
| b 0xEAS
692 while { k <= SIZE)
Locmp r3,f0x12
+00018042131875 [R:00000EBD ptrace Yhydemosdemoysieve+0x60 <0.005us
+
BT anzahl++; |
| add ro,ri, #0x1 —
ik)

STREAM mode can
generate very large
record numbers

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

56

States of the Trace

The trace buffer can either sample or allow the read-out for information display.

RESet (0 Stack
© Leash
@& SnapShot (C) STREAM

) List " PIPE
AutoArm RTS
[C] AutoInit
[selfarm

W BuTrace
METHOD
@ Analyzer (CAnalyzer (Onchip
Menalinayza MegaiChndyza () Megaindip
state used
© piSable |
@ OFF 293980160.
2 Arm SIZE
() trigger 1073741824,
) break
Mode
commands @ Fifo

[F=5 Eol 55
) ART () LOGGER () SHNOOPer) FDX oL
Integrator ' Probe IProbe
ACCESS TDelay
[=ie
o -
CLOCK
THreshold
1.65 -
Mode @vce
BusTrace) CLOCK
2 ClockTrace) autofocus
@ FlowTrace [¥] TERMination

[Prestore
SLAVE ¥ AutoFocus

States of the Trace

DISable The trace is disabled.
OFF The trace is not recording. The trace contents can be displayed.
Arm The trace is recording. The trace contents can not be displayed.

The Trace states trigger and break are introduced in detail later in this training.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

57

The Autolnit Command

W B:Trace EI@
METHOD
® Analyzer (CAnalyzer Onchip © ART () LOGGER () SNOOPer () FDX © LA
Menalinayza MeagaiArdyoa Menaindip Integrator ' Probe IProbe
state used ACCESS TDelay
© DISable | - | o
© OFF 307607232, 0% -
O Arm SIZE CLOCK
© trigger 1073741824, THreshold
) break 1.65 -
Mode Mode @ vce
commands ©) Fifo BusTrace) CLOCK
RESet () Stack (0 ClockTrace () autofocus
I © Init I @ Leash @ FlowTrace [¥] TERMination
@& SnapShot (Z) STREAM
i List © PIPE [Prestore
AutoArm RTS SLAVE
[C] selfarm
Init Button Delete the trace memory. All other settings in the Trace
Configuration window remain valid.
Autolnit CheckBox ON: The trace memory is deleted whenever the program execution
is started (Go, Step).

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

58

Basic Display Commands

Default Listing

Trace] Probe Perf Cov Winc

WConfiguration_

B CTS Settings...
ETM Settings...
Trigger Dialog

= Timing
fuf Chart

g Save trace data ...
E Load reference data ...

2 Tracking with Source
| 6% List Context Tracking System

Reset

Conditional
instruction
executed

Conditional
instruction

not executed
(pastel printed)

| BuTraceList E’@
[setup...| [Goto... || #1Find... [A chart || B Profile || B MIPS |[4 More|[X Lesd
record run [address cycle |data symbol ti.back |
T adds r2,#0x1
b 0x8000308

620
621

H+0321270527
+0321270538

0321270539
+0321270547

0549

622
623

624

L

£ ldr

for (i =0; 1 <=5IZE ; i++)

cmp r2,#0x12
e 0Ox8000912
i (ags[i])

r0,0x800093C

1s1s
adds

D:0800093C rd-long 08001C5C| "% \demo_r4‘\demo'sieve+0x50

T: ptrace “demo_rd'demo'\sieve+0x28
ldrb r0,[r0,r2]

D:08001C65 rd-byte 01 “\demo_r4'Global\flags+0x9

T:08000916 ptrace “demo_rd'demo'\sieve+Ox2A

T:0800091A ptrace Ydemo_rd‘\demo'\sieve+0x2E
Er'imzlz'i-el-'i+3;
= 1|+ primz;

r0,r2,#0x1
r7,r0,#0x3
while|(k <= SIZE)

<0.005us
0.060us

<0.005us

| 0.185us |

<0.005us

Data access Timing information

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

59

Basic Formatting

i BuTrace.List [ol= ==
(& setup...|[A Goto... || #iFind... || Al chart || # mMore || X LessL\L)

record run |address cycle |data symbol ti.back i

Tdr r0,0x2344 ~

-00000079 0:00002344 rd-Tong 00006F24 “armla‘a_li_aifsieve+0x9C 0.023us |7

-00000067 R:000022D0 ptrace “harmlaha_li_aif\sieve+0x28 0.260us — :

strb r4,[r0,

-00000066 H WY i £
-00000058 R:000022D4 “Yharmlaha_li_aif\sieve+0x2C 0.270us
b UxZ.B4 1
= cmp r2,#0x12 "
|— hle 0x?7D8
£ BuTrace List [=[=][=]
(& setup...|[A Goto... || #iFind... || Al chart || # more || X Lessb\\)J
record run |address _ cycle |data symbol ti.back i
-000 -:p;cfl' ri4,r2 -
L a rz,r2,r4 =
L Tdr r0,0x2344 lfl
-00000079 bD:OOOOZ?ErM rd—'lt]mg 00006F24 ‘‘armla‘a_li_aif'sieve+0x9C 0.023us
— str r4,[r0,+r14 &
-00000066 D:00006F25 wr-byte 01 “harmlaba 17 aif '\ flags+0x1 0,023us
b Ox22B4 2-
F Cmp rZ,#70x12
[ble 0x22D8
b 0x22C0.
£ BrTrace List [E=B[E=R(=T
(& setup...| R Goto... [#1Find... || sl chart || £ more | X Lesw
-0000(record run |address lcycle |data |symbol 1. back i
-0000(int steve() /% sieve of erathostenes =/ -
678 £ 0.117us =]
-00000109 || D:00000FE4 wr-Tong OOBCE14E 0.023us [~ 3
-00000103 | D:00000FES wr-long 0000227C 0.155us
register int i, primz, k; =
int anzahl;
682 anzahl = 0; 0.117us
for (1 =03 1 <= SIZE ; flags[i++] = TRUE) ; 0.159%us
' BuTrace.List El@
0000001 [setup... | A Goto... || F3Find... || A chart [& more [X less\
-000000 record . : i
000000 668 whiTe { TRUE) -~
669 {) E|
670 sieve(); 0.117us
char flags[SIZE+1];
int sieve() /* sieve of erathostenes */
678 |1 0.117us
register int i, primz, k;
int anzahl;
682 anzahl = 0; 0.117us
684 for (1 =0 ; 1 <= 5IZE ; flags[i++] = TRUE) ; 0.159us ||
S -
4 F

the 1st time (ptrace).

after pushing ‘Less’-button Suppress the display of the program trace package information

after pushing ‘Less’-button Suppress the display of the assembly code.
the 2nd time

the 3rd time

after pushing ‘Less’-button Suppress the data access information (e.g. wr-long cycles).

The More button works vice versa.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

60

Correlating the Trace Listing with the Source Listing

| Trace| Perf Cov ARM Windc

W Configuration...

B CTS Settings...
ETM Settings...
Trigger Dialeg...

Trigger Definition L4

Default

= Timing L4

il Chart ’

All
+ Tracking with Source
& List Context Tracking System

g Save trace data ...

E Load reference data ...
Reset
BuTrace.List [|[E][]
wSetup...] 13 Goto... || #1Find... || Adchart || # More || X Less |
record run |address leycle Idata |symbaol [t1.back Ly
add r2,r2,r4 o
Tdr r0,0x2344 =
D:00002344 rd-lon | 0.023us |o
-00000089 R:000022D0 ptrace armlaha_l1_a1t\s1eve+0x28 0.260us
strb rd,[r0,+ri4]
-00000088 D:00006F24 wr-byte 01 ‘harmlala_li_aif\flags 0.022us
-00000080 R:000022D4 ptrace ‘“Warmlaha_Ti_aif\sieve+0x2C 0.270us
0x22B4
cmp r2,#0x12
[ble 0x22D8
[b 0x22C0
mow r4,#0x1 1
’V cpy ri4,r2 [
Active Window Jladd rarard i
=] BuData.List E: /Track [= =][]
[M Step{ W Over][+ Mext][+ Return][¢ up][b Go][Il Break]ﬂ Mode] Find:
addp/1ine gode 1abel mremonic |comment Loy
678 o
:000022A8 |[E9204010 sieve: stmdb r13!,{r4,ri4}
register int i, primz, k;
int anzahl;
682 anzahl = 0;
| ESR:000022AC [E3ADLO00 mo rl,#0x0 ; anzahl,#0
684 for {1 =0 ; i == SIZE ; flags[i++] = TRUE } ;
ESR:000022B0 |E3A02000 mov r2,#0x0 _
ESR:000022B4 |E3520012 cmp r2,#0x12 [
ESR:000022B8 |DAOOOODOG ble 0x22D8
ESR:000022BC |EA000006 b 0x22DC b
4 1 +
All windows opened with
the /Track option follow the
cursor movements in the
active window
©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 61

Browsing through the Trace Buffer

£ BrAnalyzer.List % [==]=]
(& setup... | 3 Goto... | #iFind... [Al chart || # More || X Less |
record run |address leycle |data |symbol [t1.back L
cmp r2,#0x12 -
[ble ox22F4 e
687 { =
688 if (flags[11) i
= 1dr r0,0x2344 =
-00001017 0:00002344 rd-Tong 00006F24 “armla‘a_li_aif'sieve+0x9C =0.020us
-00001006 R:000022F8 ptrace
ldrb r0,[r0,+r2] I3 Trace Goto [F=5[ECB| =)
-00001005 0:00006F31 rd-byte d/Ti kmark
R:000022FC Record / Time / Bookmar
cmp r0,#0x0 -1000. -
-00000996 R:00002304 ptrace
639 f T : .
690 primz = i Previous [First] [Trigger] [Zero]
mov ro,r2,1s1 #0x1 Next (b Shnn] [wonRofu] (wilockuu)
add r12,r0,#0x3 L
691 =1i+p
—=]
Pg T Scroll page up.
Pg Scroll page down.
Ctrl-Pg * Go to the first record sampled in the trace buffer.
Ctrl-Pg | Go to the last record sampled in the trace buffer.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

62

Display Items

Default Display ltems

:Trace.List EI@
|ﬁ Setup.. ” 1 Goto.. | 41 Find... H #ul Chart “! Profile | M MIPs ”anreHA Lessi
record run adcress cycle data symbol ti.back i
adds rz,#0x1l -
f b 0x8000908 -
for (1 =0 ; 1 <= SIZE ; 1++) -
619 {
£ cmp r2,#0x12 -
[ble 0x8000912
620 if (flags[i])
621 i
= 1dr r0, 0x800093C
40321270527 D:0800093C rd-Tong 08001C5C \\demo_r4‘demo\sieve+0x50 <0. 005us
4+0321270538 - lT:OBOOO%lﬁr ptrace \\demo_r4‘\demo\sieve+0x28 0. 060us
drb r0,[r0,r
+0321270539 D:08001C65 rd-byte 01 \\demo_i r4\G'Ioba'I\F'Iags+0x9 <0. 005us
+0321270547 T:08000916 ptrace \ emo_r4'demo'\sieve+0x2A 0.185us
cmp r0,#0x0
+0321270549 T:0800091A ptrace ‘MSdemo_r4‘demo'sieve+0x2E <0.005us
622 rimz =1 + 1 + 3;
623 =1 + primz;
1s1s r0,r2,#0x1
adds r7,r0,#0x3 |
624 while (k <= SIZE) -
I .
. Column record
Displays the record numbers
. Column run

The column run displays some graphic element to provide a quick overview on the instruction

flow.

Trace.List List.ADDRESS DEFault

:Trace.List List. ADDRESS DEFault = &=
(& setup...|[13 Goto... || #3Find... || P chart || Bl Profile || BEMIPS |[% More|[X Lesg
record run |address cycle |data symbol i
Tdrb r0,[r0,r2] ~
. -0000000195 D:08001C6E rd-byte 01 “\\demo_r4\Global\flags+0x12 =
Sequent|a| -0000000190 T:08000916 ptrace ‘\demo_r4‘\demo'\sieve+0x2A
. . cmp r0,#0x0
instruction flow e
-0000000189 T:0800091A ptrace ‘\\demo_r4‘\demo'sieve+0x2E
622 Er'inaz =i +1+ 3
623 =1 + primz;
1s1s rEI r2,#0x1
adds #0x3
624 .h'l'le k <= SIZE)]
| adds r3,r2,r;
625 {
cmp r3,#0x12
2 bgt 0x800092E
i 630 b
Change in the E adds ri,#0x1
instruction flow -
| b 0x800090E
for (i =0; 1 <= SIZE ; i++)
619
= adds r2,#0x1
[b 0x8000908 -
J Fl T 3

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

63

The column run also indicates Interrupts and TRAPSs.

i BuTrace.List EI@
(& setup...|[1% Goto... || #3Find... || P chart || B Profile || EEMIPS |[# More|[X Lesg
record run |address leycle |data |symbol [t1.back Loy
—& trap -
-0003153452 L NR.:0000:FFFFO008 ptrace 0.060us [z
Tdr pc,0xFFFF0420
-0003153412 NR:0000:C00332C0 wiwwmlTnux’\G loba l\wector_swi

oA

add sp, sp, #S_FRAME_SIZE
subs pc, 1r, #4

#else
#define A710({code...)
#endif

[

.align 5§
ENTRY (vector_swi)
su sp, sp, #S_FRAME_SIZE
= sub rl3,rl3,#0x48 -
4

. Column cycle

The main cycle types are:

- ptrace (program trace information)

- rd-byte, rd-word, rd-long (read access)

- wr-byte, wr-word, wr-long (write access)

- task (Task

ID written via Context ID register)

- overlay (Code-Overlay ID written via Context ID register)

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

64

. Column address/symbol

BuTrace.List EI@
& Setup...” 3 Goto... | #4 Find... || ul Chart “; Profile |_! MIPS J — Mnre”I Lessi
record run |address cycle |data symbol ti.back i
= adds r2,#0x1 -
[b 08000908 -
for {1 =03 1 == SIZE ; 1++) -
619 {
£ cmp r2,#0x12 -
[ble 08000912
620 if (flags[1])
621 {
L 1de 0 _Oxs00093c
+0321270527 D:0800093C rd-long 08001C5C “\\demo_r4‘\demo'\s1eve+0x50 <0.005us
40321270538 : ptrace L A demo_r 4 demo 51 eve+Ux 0. 060us
Tdrb r0, [r0,r2]
+0321270539 D:08001C65 rd-byte 01 “\demo_r4'Global'flags+0x9 <0. 005us
40321270547 T:08000916 ptrace Ydemo_r4'demo's1evetrOx2A 0.185us
cmp rQ, #0x0
+0321270549 I T:OB0000LA ptrace demo_rdhdemo's1eve+UxZE J <0.005us
622 LA B S p S
623 E =1 + primz;
| 1s1s r0,r2,#0x1
adds r7,r0,#0x3
624—J while (k <= SIZE) -
i)

The address column shows the following information:
<memory_class>:<logical_address>

Memory Classes

T Instruction Thumb mode decoded
R Instruction ARM mode decoded
D Data address

The symbol column shows the corresponding symbolic address.

. Column ti.back

BuTrace.List DEFault TIme Zero El
(& setup...|[@ Goto... |[#iFind... [Adchart || # More || X Less |
record [run |address lcycle |data |symbol [ti.back [ti.zero |
20532484 R:000022F8 ptrace armlasa_li_aitwsieve+0x50 0.710us 2.561s o
ldrb r0,[r0,+r2] El
+20532485 D:00006F35 rd-byte 01 “harmlaha_li_aif\flags+0x11 0.090us 2.561s =
+20532490 R:000022FC ptrace ‘“harmlaha_li_aif\sieve+0x54 0.090us 2.561s
cmp r0,#0x0 &
+20532494 R:000023?4 ptrace ‘“Yharmlaha_li_aif\sieve+0x5C 2.930us 2.561s
689
690 primz = 1 + 1 + 3; _
mow r0,r2,1s1 #0x1 [
.................................... add r‘lz'r‘o'?‘:‘GX3 o
4

The ti.back column shows the time distance to the previous record.

Training Arm CoreSight ETM Tracing | 65

©1989-2024 Lauterbach

Further Display Items

Time Information

Time.Back Time relative to the previous record (red).
Time.Fore Time relative to the next record (green).
Time.Zero Time relative to the global zero point.

Trace.List TIme.BACK TIme.FORE TIme.ZERO DEFault

| BuTrace List TIme.Back TIme.Fore TIme.Zero DEFault EI@
[setup...|[L Goto... || #1Find... || ~d chart || Bl Profile || B MIPS || % mare|[X Lessi
record [ti.back ti.fore ti.zero run address cycle |data symbol ti.back |
627 += primz; -
movs r4,#0x0 Bl
ldr r0,0x800093C =
fDDDDDDDlgrd].OOSuS 0.030us 1.597s D:0800093C rd- Tong 08001C5C ‘\\demo_r4‘demo'sieve+0x50 <0.005us
-000000018@=== 0 030us <0.005us 1.597s LJT:E]BOCICI‘EZS ptl]'s.-:e “\demo_r4‘demo'\sieve+0x3C 0.030us *
str rd,[r0,r3
-0000000185 [<0.005us 0.125us 1.597s D:08001C68 wr-byte 00 ‘\\demo_r4'Global'flags+0x0C <0.005us
-0000000182 0.125us <0.005us 1.597s T:0800092A ptrace “\demo_r4‘demo'sieve+0x3E 0.125us
628 1
| adds r3,r3,r7 K
629 anzahl++; -
—in .
Set the Global Zero Point
£ BuTrace List DEFault TIme.Zero =2 EcE(F="
(& setup...|[A Goto... |[#iFind... [mdchart || # More || X Less |
record run |address leycle data |symbaol [t1.back ti.zero L
Tdrb r0, [r0,+r2] . o
+20532429 D:00006F32 rd-byte 01 ‘M“armla‘a_li_aif'flags+0x0E 0.080us -0.090us (7
+20532434 R:000022FC s1eve+0x54 - ==
cmp rQ,#0x0 Trace
. . . Set Ref
+20532439 R:00002304 ptrace ‘“YSarmlaha_li_aif\sieve+0x5C 2.940us ¥
689 { EX: Set Zero
690 primz =1 + i + 3; Toggle Bookmark
| mov r0,r2,1s1 #0x1 ? 22
.................................... &4 set CTS

Establish the
selected record as
global zero point

First in Statistic
¥ Last in Statistic

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

66

Time Information for Cycle Accurate Mode

. Cycle Accurate Mode Pros

Provides accurate core clock cycle information.

Accurate time information can be calculated, if the core clock was constant while recording the

trace information.

. Cycle Accurate Mode Cons

Cycle accurate tracing requires up to 4 times more bandwidth.

ETM/PTM trace information can not be correlated with any other trace information.

Trace information has to be processed always from the start of the trace memory. “Tracking”
indicates that the display of the trace information might need some time.

Cycle Accurate Mode and constant core clock while recording

Example for Cortex-A9:

ETM.TImeMode CycleAccurate ; enable cycle accurate mode

Trace.CLOCK 800 .MHZ

; inform TRACE32 about your core
; clock frequency

BuTrace.List EI@
(& setup...|[13 Goto... || #3Find... || A chart || B Profile || B MIPS |[# More|[X Less
record run |address cycle |data symbol ti.back i
bgt 0x22AC -
-0000000118 ZR:000022AC p “Sharmlelarmisievetr0x84 0.003us =
697 anzahl++; -
r add ri,rl,#0x1
698 b A
699 _)
b 0x226C
-0000000116 ZR:0000226C ptr “SarmlelarmisieverOx44 0.044us
686 for (1 IR RS
£ add r2,r
b 0x22
-0000000112 ZR:00002 “Yharmlelarmisieve+0x38 0.034us
686 i <= SIZE ; i++)
-0000000110 “harmlelarmisieve+r0x40 0.033us
-0000000109 “harmlelarmisieve+r0x8C 0.001us -

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 67

Cycle Accurate Mode and changing core clock while recording

Example for Cortex-A9:

; combines cycle accurate mode with TRACE32 global timestamp
ETM.TImeMode CycleAccurate+ExternalTrack

BiTrace List =0 =T
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || EEMIPS |[# More|[X Lesg
record run |address lcycle |data |symbaol [t1.back =
bgt 0x22AC ~
-0000000118 ZR:000022AC ptrace “harmlelarmisieve+r0x84 0.003us =
697 anzahl++;
= add ri,rl,#0x1
698) } -
699 ¥
b 0x226C
-0000000116 ZR:0000226C ptrace “harmlelarmisievetrOx44 0.044us
686 for (1 =0; 1 <= SIZE ; i++)
= add r2,r2,#0x1
b 0x2260
-0000000112 ZR:00002260 ptrace “Yharmlelarmisieve+0x38 0.034us
686 for (1 =0; 1 <= SIZE ; i++)
F cmp r2,#0x12
-0000000110 ZR:00002268 ptrace “harmlelarmisieve+r0x40 0.033us _
0x2284 (4
-0000000109 ZR:000022B4 ptrace “harmlelarmisieve+r0x8C 0.001us -
4 3

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

68

Clock Information

In addition to the timing information the number of clocks needed by an instruction/instructions range can be

displayed.

Trace.List CLOCKS.BACK TIme.BACK DEFault

| B:Trace List CLOCKS.Back TIMe.Back DEFault =@ |-
(& setup...|[13 Goto... || #3Find... || A chart || B Profile || B MIPS]|¢ More|[X Lesg
record [clocks.b |ti.back run |address cycle |data symbol
686 for (1 =0; 1 <= SIZE ; i++) =
F cmp r2,#0x12 -
ble 0x2274
-0000000111 29. 0.040us ZR:00002274 ptrace “harmlelarmysieverOx4C o
687 {
688 if (flags[i 1)
£ 1dr r0,0x22¢c4
ldrb r0,[r0,+r2]
cmp r0,#0x0
-0000000109 84. 0.117us ZR:00002284 ptrace “harmlelarmisieve+r0x5C
689 {
690 primz = 1 + 1 + 3;
1s1 r0,r2,#0x1
add ri2,r0,#0x3
691 k=1 + primz;
add r3,r2,riz
692 while (k == SIZE)
cmp r3,#0x12
bgt 0x22AC
-0000000104 2. 0.003us ZR:000022AC ptrace “SharmlelarmisievetrOx84
697 anzahl++; E
r add rl,rl,#0x1 -
J 4 m 3

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

69

Find a Specific Record

Trace.List EI@
& setup fdchart || # More || X less |
record [run [addr dsSemm—l cycle [data |symbol [ti.back Loy
dr r0,0x2344 -
-00010000 0.022us =
-00009990 R:000022F8 ptrace s1eve+0x50 0.405us -
Tldrb r0,[r0,+r2]
-00009989 D:00006F20 rd-byte 00 “MNarmlaha_li_aif\flags+0x9 0.023us =
-00009983 R:000022FC ptrace “harmlaha_li_aifhsieve+0x54 0.135us
cmp rQ,#0x0 =
beg 0x2330 +] Trace Find
698 1 _ _ _ _ _
699 1 () Expert @ Cycle) Group () Changes ' Up
E b 0x22EC e
Cadd r2,r2,#0x1 e R
b 0x22E0 — address / expression
cnp r2 $0x12 B e S — =
ble 0xJ2F4 L
638 { £ (Flags[i 1)
688 i ags[1
L 1dr r0,0x2342I : Cycle — Data — .
-00009982 D0:00002344 rd-long 00006F2 -
-00009968 R:000022F8 ptrace :]
Tldrb r0,[r0,+r2]
-00009967 D:00006F2E rd-byte q
-00009962 R:000022FC ptrace Find Next| [Find First| [Find Here| [Find Al
4
Example: Find a specific symbol address.
BuTrace.List = s
[setup...|| ¥ Goto... || #1Find... || ~dchart || 4 More || X Less |
record run |address cycle |data symbo t1.back 1
-49018277 R:0000227C ‘“Narmlaha_Tli_aif'\main+0x204 0.215us
Eb© 0x2278 £
668 while { TRUE) =
669 { (
670 sieve();
E bl 0x22A8
char flags[SIZE+1];
int sieve() /* sieve of erathostenes #/
T
v stmdb ri3!,{r4,r14} £ T, Find (==
49018276 D:00000FE4 wr—Tong 00BCE14 12 et i g B EI-
-49018270 D:00000FE8 wr-Tong 0000227 (O Expert @ Cycle) Group) Changes) Up
-49018263 R:000022AC ptrace A i @
register int i, primz, k; _ Signal s
int anzahl; — address [expression
682 anzahl = 0; sieve ¢ [CIHLL
| mov rl,#0x0
654 for (i =0; i <= SIZE ; Cycle Data
mow r2,#0x0 -
ble 0x22D8
[b 0x22C0
F mov r4,#0x1 [Find Next)| [Find First]I[Find Here| [Findall | [clear | [cancel |
4

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

70

Example: Find Context ID

i BuTrace.List DEFault List. TASK
B setup...|| 11 Goto... | #iFind... | e cChart | B Profile | i MIFS * More Y lLess
record |run |address leycle |data |symbal
#ifdef _PIC__
.align 4
.type T32_Magic_Update, %function
TSZJjag'ic_Up a;:]e:
* Write the Magic {1 :
282 LDR RO, pxCurre L lzasine
Tdr r0,0x3F0004 84
283 LDR RO, [R9, RO Expert Cycle Group Changes Signal o
Tdr r0,[r9,+r0] Direction —
284 MCR P15, Ox0,RO _ ’
mcr ;:l]k_5,0><0,r‘0,cl3E ||address,"expressmn | 1 0 Oup
—— task: SieveDemo ~| |2 HLL
-0000073419 task | Ol
-0000073414 ZR:3F0002BC ptrace T
285 BX R14 — Cycle Data Find Up
1 bx ri4 |task v| | | "
-0000073411 | ZR:3F000258 ptrace Eind Down
274 r portRESTORE_CONTEXT
Tdr r0,0x3F000484
H: :,ig['[?,ﬁ' 0] Find First || Find Next Find Al Find Here Clear Cancel
Tdr r0,0x3F00048C
pop {ri}
str rl,[r9,+r0] v
1< >
Example: Find Interrupt/Trap
= Trace.List EI@

(& setup...|[¥ Goto... | 3 Find... 4§14 Trace Find

static inline void arch_local_irg_restore(unsigned Tong flags)

142 asm volatile(
E msr cpsr_c,rb
D
-0211922491 NR:022E:FFFF0018 ptrace 0.120us

record run |address - - - ti.back "
0 icC r3,) Cycle) Group © R
0 | bic r3,) ci &
Bl =0 i () Signal @ Down @
0| 1dr rl, |} items
] str r2,
0| 1dm ri3 INTERRUPT M

-0211922507 [0 NR:022E <0.005us
2604 (0 |
0 - ldm ri3
-0211922502 [0 NR:022E 0.020us

0
0 ret
0|}
g [Find Next] [Find First| [Find Here| [FindAll | [clear | [cancel |
0 restore
0 kf
0
0
0
0
0
0
4

Eb OxFFFF0200 -

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 71

Belated Trace Analysis

There are several ways for a belated trace analysis:
1. Save a part of the trace contents into an ASCII file and analyze this trace contents by reading.

2. Save the trace contents in a compact format into a file. Load the trace contents at a subsequent
date into a TRACES32 Instruction Set Simulator and analyze it there.

3. Export the ETMv3 byte stream to postprocess it with an external tool.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 72

Save the Trace Information to an ASCII File

Saving part of the trace contents to an ASCI! file requires the following steps:

1. Select Print in the File menu to specify the file name and the output format.
" A TRACE3?
Edit View Var Break
¥ Run Batchfile...
[Edit Batchfile...
% Open...
E Load...
Type.. __ ¢ BuPRinTer =] B[]
144 Dump...
Type
@ Stop Command @ Printer [WIN (Windows Default) ']
: On Hardcopy | | ClpBoard [ASCIE (ASCII ENHANCED) -]
X it] FileType {
@ File [ASCIE (ASCI ENHANCED) -]
I:\EVB\QDSP\QDSPE000\SURFB200\m | browse...
PRinTer.FileType ASCIIE ; specify output format
; here enhanced ASCII
PRinTer .FILE testrunl.lst ; specify the file name
2. It only makes sense to save a part of the trace contents into an ASCIlI-file. Use the record

numbers to specify the trace part you are interested in.

TRACER32 provides the command prefix WinPrint. to redirect the result of a display command into a
file.

; save the trace record range (-8976.)--(-2418.) into the
; specified file
WinPrint.Trace.List (-8976.)--(-2418.)

3. Use an ASCII editor to display the result.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 73

Postprocessing with TRACE32 Instruction Set Simulator

1. Save the contents of the trace memory into a file.

Trace | Probe Peff Cov Winc

WConfiguration_
B CTS Settings...
ETM Settings...
Trigger Dialeg...
....... Thica = >
v L | Becesave fe o
Timing 3 filename
] Chart » testrunl browse...
E Load reference data ... EILE mode
............... : . - © BusTrace
Reset _
= @ FlowTrace
Ozr
Cancel

The default extension for the trace file is .ad.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 74

2.

Start a TRACE32 Instruction Set Simulator (PBI=SIM).

4 -7 Configuration Tree
- Settings
AE] ARM Simulator Add...

H I -1 - L
i:> K ﬂ‘ Delete
b-® Start

[

Delete

Up
Clear Subitems
Save to file... s
Load from file and add... Instances...
Load from file and replace...
Copy

Paste and add

Information...
Save and Exit
Paste and replace Save

3
Reset Help

Show Start Environment ... L\)

Create Config Files
Create Start Link ...
Select Item by ID ...

ErpD BB FEROPV

1D: //Configuration/Simulator

r #* i
b Start Environment Viewer - ARM Simulator/Simulator % L
%

Batch Job

C:
cd C:\T32_ARM

4

C:\T32_RARM\t32marm.exe -c C:\Users\amartin\AppData\Local\Temp\andT32_1000019.t32

T32 Configuration File C:\UsershamartintAppD atabLocal\TemphandT 32_1000019.t32

;This configuration file is generated with T325tart2

sEnvironment Variables

Q5=

ID=T32_ 1000013
TMP=C:\Users\amartin\AppData\Local\Temp
SYS=C:\T32_RRH

HELP=C:\T32_RRH\pdf

; Standard License File used

;T332 API Rccess
; not used

;T32 Intercom
; not used

s T32 GDEBE
; not used

;Connection to Host

;5creen Settings

SCREEN=

FONT=5MALL

HERDER=TRACE32 PowerView for ARM

»

m

Edit Histary Settings...] ’ Save Batch Job Az,] ’ Save Config As...] ’ Cloze

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

75

3. Select your target CPU within the simulator. Then establish the communication between
TRACE32 and the simulator.

Misc Trace Probe Perf
Register Set Change L4

8 CPU Registers
FPU Registers

#* Peripherals — Mode Option
- ©) Down [C]mMAsKASM
o Etesption Conis) NoDebug ©) Denied [IMASKHLL
Azl L I Go CpuAccess [BigEndian
& Clock Frequency Attach 71 Enable [] alignment
& Set Clock Frequency.., StandBy
Standalone Reset (StandBy) () Nonstop

In Target Reset
Reset CPU Registers

— reset

RESetOut

- CPU ———

CortexRd4 ~

4. Load the trace file.

| Trace| Perf Cov Cortex-R4 W

WConﬁguraﬁon_

B CTS Settings...
ETM Settings...
Trigger Dialeg...

== Trigger Definition
List

A B:B:Trace lOAD*

* v v v

= Timing
— - F B* -
Sl Lookin: || T32_ARM (<N =
MName Date modified Type

g Save trace data ...
= L. demo 27.04.2011 07:29 File folder

Load reference data ...

B L pdf 27.04.2011 07:28 File folder
Reset || a50df.adf 15.07.199212:36 ADF File 2KB

(#l| Register_TRACE320 27.04.2011 07:33 Internet Shortcut 1KB

| || testrunl.ad 03.05.2011 14:34 AD File 1,672,658 KB |

File name: testrun.ad

Files of type: | Cument (*.ad)

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 76

5. Display the trace contents.

£ BTrace List EI@
(& stw... |[FY Goto...|[# Find...][| Chart |[B Profile || B MIPS (% Morg][X Less
record run |address cycle |data symbol ti.back i
+0307607095 T:08000914 ptrace 0.125us -
strh r4,[r3,#0x2] =
+0307607096 D:08001C5C rd-byte 00 <0.020us -
+0307607099 T:08000916 ptrace 0.030us
movs rd,r5 &
lsrs r0,r2,#0x08B
stcl pl,cO,[r7,#+0xC8]!
1s1s r2,r6,#0x4
+0307607100 [BRK <0.020us
+0307607118 T:08000912 ptrace 872.420us :
lsrs r0,rl,#0x9
R -
T | - '

LOAD indicates that the source for the trace information is the loaded file.

6. Load symbol and debug information as you need it.

Data.LOAD.El1f demo_r4.axf /NoCODE

The TRACES2 Instruction Set Simulator provides the same trace display and analysis commands as the
TRACE32 debugger.

Export the Trace Information as ETM Byte Stream

TRACES32 allows to save the ETM byte stream into a file for further analysis by an external tool.

Analyzer.EXPORT testrunl.ad /ByteStream

; export only a part of the trace contents
Analyzer.EXPORT testrun2.ad (-3456800.)--(-2389.) /ByteStream

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 77

Trace-based Debugging (CTS)

In the past it was necessary to spend a lot of time analyzing the trace listing in order to find out which
instructions, data or system states had caused malfunctioning of the target system.

Now Trace-based Debugging - also CTS for Context Tracking System - allows the user to recreate the state
of the target system at a selected point based on the information sampled in the trace buffer. From this
starting point the program steps previously recorded in real-time in the trace memory can be re-debugged
again in the TRACE32 PowerView GUI.

Standard Trace-based Debugging requires:

J Continuous instruction flow trace (Trace.Mode Fifo or Leash)

J Continuous data flow trace (at least read accesses).

If the read data and the operation on the read data are known, the write accesses can be recreated

by CTS.

The ARM Cortex core that allow standard Trace-based Debugging are highlighted by a grey background.

Core ETM Program Data Data Context ID cC
Version Address Value

ARM7 ETMv1 | [| | > ETMvi.2 |

ARM9

ARM9 CoreSight | | | | |
ETMv3

ARM11 (CoreSight) | | | | |
ETMv3

Cortex-M3 / M4 CoreSight | (DWT) (DWT)

Cortex-M23 ETMv3

Cortex-R4 CoreSight | | | | |

Cortex-R5 ETMv3

Cortex-R7 / R8 CoreSight | | | | |

Cortex-R52 ETMv4

Cortex-A5 CoreSight | | | [| [|

Cortex-A7 ETMv3

Cortex-A8 CoreSight | | [| |
ETMv3

Cortex-A9 CoreSight | | |

Cortex-A15 PTM

Cortex-A17

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 78

Forward and Backward Debugging

Trace-based Debugging allows to re-debug a trace program section.

Trace-based Debugging is set up as follows:

1. Select the trace record that should be the starting point for Trace-based Debugging and select
Set CTS in the Trace context menu.
i) BuTrace.List EI
[W Setup..][I} Goto...][$3 Find...][el Chart]L Profle Il MIPS][v More][A Les&i
record run |address cycle |data symbo ti.back |
“E Tdr r0,0x800093C -
+0099897571 D 0800093C rd-long 08001C5C \\demo r4\demo\s‘|eve+0x50 <0.005us =
+0099897582 4 0.030us =
rb 0 r0,r2 Trace
+0099897583 D:08001C66 rd- byte & Set Ref lobalflags+0x0a <0.005us -
+0099897590 T:08000916 ptrace emo's1evetrOx2A 0.095us
cmp r0, #0x0 2+ Set Zero 7
beq N 0x8000930 #E Toggle Bookmark E
631 ¥
632
tb 0x800090E
for (1 =0; 1 <=4
619 {
t adds r2,#0x1
[b 0x8000908
for (1 =0; 1 <=4
619 {
'|: cmp r2,#0x12) .
620 ble OXSOOOQ?'E.F]agS[%4 First in Statistic
621 C ¥ Last in Statistic
r r0,0x800093c -
40099897591 D:0800093C rd-Tong (¥ Full Statistic emo\s1 eve+0x50 <0.005us
+0099897604 T:08000914 ptrace here emo'sieve+0x28 0.060us -
¥

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

79

2. TRACE32 PowerView now recreates the state of the target system as it was when the instruction
at the starting point was executed. The recreation take a while (CTS busy).

Please be aware, that CTS recreates the former target state only in the TRACE32 PowerView GUI.
This has no effect on the target system.

File Edit View Var Break Run CPU Misc Trace Probe Ped Cov Window Help
(M delrnE 2w o HuB ed @z 2
i BsTraceList o io RS | &t L=l el
I [setup...][2 Goto... || #iFind... |[Al chart || E Frofile | W MIPS |4 More| X Lesd ~ state ———— - progress —— - options ———
| re(ggg run address lcycle [data symbol [ti.back ' || ®oF [¥] UseSIM
< e 0, 0%800093C ‘;‘ @ on shown: 0.447% | | [Use¥M
[| +0099897571 D:0800093C rd-Tong 08001C5C “\\demo_r4\demo'\sieve+0x50 <0.005us = _ — | | MuseConst
[0039857582 T:08000914 pirace \\demo_r4'\demo\z1 eve+0x28 0.030us e S
| drb = | - commands —— 206024, [Vl useMemory
| 0099897583 0:08001C66 rd-byte 00 emo_r4\Globa ags+0x0A <0, 005us @ i I
I -0098887590 T:08000916 pirate \\demo_r4'\demo\s1 evesOx2A 0. 095us = BEsel i [l useRegister
| cmp r0, #0x0 il UseCACHE
Il 1 bea 0x8000330 s FluseReadcyde
& ~ Mode ——— | [@]UseMriteCyde
1] B:DataList = = @ Ful [l electiveTrace
[dstep J[sover J[_ .l next |[.o' Return |~ up il Step|[-lover|[:.Entry](| Off][2 mode | Find:_ © Memary [ZImcremental
addr/Tine |code [Tabel [mnemonic [comment 7l 2 cacHe ©) CACHE —
ST:08000912 1804 S ldr r0,0x800093C -
: 5C80 Ideb...r0,[r0,r2]
5T:08000916 (2500 cmp r0,#0x0 4 (53 |
ST:080009L8 |D00A beq 0x4000930 Lidiizias [=la]=]
622 rimz = 1 + 1 + 3; RO 08001C5C RS 5P+ 0B00L7FC .
53 % 5 prima RL 7 R9 -04 0B00LCSC [
ST:0800091A (0050 1s1s r0,r2,#0x1 R2 9 RI10 F— 00BC614E —
ST:0800091C |iccT adds r7,r0,#0x3 R 1B RI11 +04 227277777
624 while { k <= SIZE) R4 0 RI2 +08 22222222
ql e] RS 08001CSC RI: 08007FDO
RE R14 080008D3
R7 13 pC 08000914
&f| B:Var View flags SPSR CPSR
[#Fflags = ([0] =0, [1]=1, [21=1, [31 =1, 41 =1, [5]1 =0, [6] =1, [7] =1, ’
< I 3
B
[emulate] trigger [devices] [trace] [Data] [Var List] [PERF] [SYStem] [Step] [Go.] [Break] [other] [previous]
C-T: +0099897562 600.990ms | C-Z: +39.1725 [cTs (998975820) busy | | | M P

When CTS is active the TRACE32 PowerView GUI does not show the current state of the target system. It
shows a state recreated by the TRACES32 software for the record displayed in the state line.

‘B::

(B ————— p———

[t (uprovions

MIX up

CTS (99897582.0.) busy |

ST:08000918 \\demo_r4\demo\sieve+0x2C

TRACES2 PowerView show the state of the target as it was when
the instruction of the trace record 99897582.0 was executed

In order to avoid irritations the look-and-feel of TRACE32 PowerView is changed to yellow when CTS is

active.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

80

The main subjects of the CTS recreation are:

Source listing
Register contents
Memory contents

Call stack and local variables

Variables
Forward debugging commands Backward debugging commands
=] [B=Data.List] =5 EER |
[Istep | .rover |[.l next |[.o Return][= up |[il Step|[-.)over][:.Entry|[I Dﬂ‘]ﬂ Mode | Find:
addr/line |code |Tabel |mnemonic |comment f—
ST:08000912 [450A Tdr r0,0x800093C -
0 S¢S0 ldrb pl.le0.e2]
5T:08000916 [2500 cmp r0, #0x0 I

0x8000930
622 primz =1 + 1 + 3; -

4| i 3

The following forward debugging commands can be used to re-debug the traced program section:

Single step (Step.single)

Step over call (Step.Over)

Single step until specified expression changes (Step.Change, Var.Step.Change)
Single step until specified expression becomes true (Step.Till, Var.Step.Till)

Go

Start the program execution. Stop it when the next written instruction is executed (Go.Next)

Start the program execution and stop it before the last instruction of the current function is
executed (Go.Return)

Start the program execution and stop it after it returned to the calling function (Go.Up)

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing

81

The following backward debugging commands can be used to re-debug the traced program section:

. Step backwards (Step.Back)

. Step backwards over call (Step.BackOver)

J Step backwards until specified expression changes (Step.BackChange, Var.Step.BackChange)

J Step backwards until specified expression becomes true (Step.BackTill, Var.Step.BackTill)
. Run the program backwards (Go.Back)
. Run the program until the start of the current function (Go.BackEntry)

If CTS can not recreate the contents of a memory location or a variable value a ? is displayed.

File Edit View Var Break Run

[M K|+ & » | 2w

CPU Misc Trace Probe Pef Cov Window Help

QLTI

B B:Register EI@ &f| Br:VarView flags EI

N _ RO 0 RS 0 SP+ 00000000 . Eflags = (n
7z _ R1 0 R9 0 +04 00000000 [— - [0] = 777,
C _ R2 0 RI10 0 +08 00000000 — - [1] = 777,
vV _ R3 0 RI1 0 +0C 00000000 [2] = 777,
I I R4 0 RI12 0 +10 00000000 [3] = 777,
FF RS 0 R13 08008000 +14 00000000 [4] = 777,
TT R6 0 R14 0 +18 00000000 [5] = 777,
R7 0 PC 080007DC +1C 00000000 [6] = 777,
svc SPSR 10 CPsR 03F3 +20 00000000 ~ [7] = 777,
«) [8] = 777,
[9] = 777,
[10] = 777,
444 B:Data.dump (ast) /DIALOG [=E]=] [11] = 777,
i [12] = 777,
D:0xB80019A4 [#3Find...] [Modify... | | [ong ~| [JE 13% = 777,
address 0 4 8 C | [14] = 7727,
SD:080019A0 | AAAAAAAAPAARAARAR 7777777 27777777 p [15] = 777,
SD:08001980 77777777 AAAAAAAA AAAMAMAA [E [16] = 777,
SD:080019C0 | AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA [17] = 777,

SD: 08001900 | AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA = [18] = 777) hd

4 b 4 F

= B:Data.List EI@
[Istep |[_;over |[.l Next |[o Retun | = uUp |l Step|[-]over][Entry)[I Dﬂ‘]ﬂ Mode | Find:
addr/line |code label mnemonic comment i
nrla'in{}
£590 , main: push {rd4,r7,rl4}
int 3; 3
char * p; LA
viripplearray[0][0][0] = 1; -
i P W ——— 0
emulate trigger [devices] [trace] [Data] [Var] [List] [PERF] [other] [previous
ST:080007DC \\demo_r4\demo\main (CTS) CTS {-464155563.0.) MK UP

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

82

If you want to terminate the re-debugging of a traced program section use the yellow Off button (CTS.OFF)

in the Data.List window.

=1 B:Data.List =8 |EeR |
[| Step] . Over][L Next][.+ Return][= Up][J\I Sted[_',J Over][\?LEntry][o Oﬁ]% Made] Find:
addr/line |code |Tabel mremonic |comment Loy
ST:080008FE [4D0F r r5,0x800093C -
i 2426 strb rd,[r5,r0]
ST:08000902 [E7FO b 0x80008F2
ST:08000904 [E7FE b 0x80008F8&
for (1 =0 ; 1 <= SIZE ; i++)
619 {
ST:08000906 |2200 movs r2,#0x0 I
for (1 =0 ; 1 == SIZE ; i++) o
619 { -
4 1 +

After CTS is switched off the TRACE32 PowerView GUI displays the current contents of your target system.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

83

CTS Technique

Current state of the target

Contents of the

trace buffer Memory CPU register

Memory-mapped

peripherals SPR register

CTS

CTS reads and evaluates the current state of the target together with the information recorded to the trace
memory:

1. CTS can only perform a correct recreation, if solely the core, for which the data trace information
is recorded into the trace buffer, writes to memory. If there are memory addresses, e.g. dual-
ported memories or peripherals, that are change otherwise, these addresses have to be
excluded by the command MAP.VOLATILE from the CTS recreation. These memory addresses
are then displayed as unknown (?) if CTS is used.

2. CTS performs memory reads while performing a recreation. If read accesses to specific memory-
mapped peripherals should be prevented, the addresses have to be excluded by the command
MAP.VOLATILE from the CTS recreation. These memory addresses are then displayed as
unknown (?) if CTS is used.

3. Under certain circumstances the reconstruction of the instruction flow can cause BUSERRORS
on the target system. If this is the case, it is recommended to load the code to TRACE32 Virtual
Memory.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 84

4. CTS has to be re-configured if:
- the program execution is still running while CTS is used.
- not all CPU cycles until the stop of the program execution are sampled to the trace.
- the trace contents is reprocessed with a TRACES32 Instruction Set Simulator.
- only the program flow is sampled to the trace buffer.

In all these cases the current state of the target can not be used by CTS. For more information refer to
the command CTS.state.

IE Perf Cov Window B E:: ['._”E|§|
I W Configuration... shate progress options
(® OFF Lse5IM
Trigger Dialog. .. O oN UszeConst
I Trigger Definition 4 WanIngs |setdemary
29 List 4 commands LseRegister
2 Timing 4 fifafulls
#2| Chart 4 UseFieadCycle
g Save brace data ... L
E Load reference data ... Mode Fleckenslie
.}E & Full INCremental
Reset ')'_‘ CACHE O Memory [CIDlaG
MAP.VOLATILE <range> Exclude addresses from CTS
CTS.state Reconfigure CTS.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 85

Belated Trace-based Debugging

The TRACES2 Instruction Set Simulator can be used for a belated Trace-based Debugging. To set up the
TRACE32 Instruction Set Simulator for belated Trace-based Debugging proceed as follows:

1. Save the trace information to a file

Trace.SAVE my_file

2. Set up the TRACE32 Instruction Set Simulator for a belated Trace-based Debugging:

SYStem.CPU CORTEXR4

SYStem.Up

Trace.LOAD my_trace.ad

Data.LOAD.El1f demo_r4.axf /NoCODE

Trace.Lis

CTS.UseFinalMemory OFF

MAP.CONST 0x8000900++0xff

t

; CTS.UseConst ON

CTS.UseFinalContext OFF

CTS.GOTO

-293648539.

select the target CPU

establish the communication
between TRACE32 and the
TRACE32 Instruction Set
Simulator

load the trace file

load the symbol and debug
information

display the trace listing

exclude the current memory
contents from CTS

inform TRACE32 which memory
address range provides
constants

include constant address
range into CTS

exclude the current register
contents from CTS

specify the CTS starting
point

start the re-debugging

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 86

HLL Analysis of the Trace Contents

CTS provides also a number of features for high-level language trace display.

Details on each HLL Instruction

Trace | Probe Perf Cov Wind

WConfiguration_
B CTS Settings...
ETM Settings...
Trigger Dialeg...
3
12 Default
ﬂTlmlng L4 All
3

fuf Chart : Tracking with Source

=) List Context Tracking 5
2 Sove trace dota

E Load reference data ...

Reset

651 B:CTS List =0 E=H
(& setup...|| ﬁcrs |[2 Goto... |[#iFind... || =|TREE || Al chart |[% chart |[4 More|[X Lesg
record H |
=3 ~
for (1 =0; 1 <= SIZE ; i++) =
619 £ =
i=4
+0000006282 | - : - a-w 0.00%us 4
1 =4
for (1 =0 ; 1 <= SIZE ; i++)
619 1
+0000006282 | - a-w 0.00%us
flags = (0, 1, 1,1,1,0,1,1,0,1,0,1,0,1,1, 0, 777, 0, 1)
1 =4
620 if (flags[i 1)
621 1
+0000006282 | - : - a-w 0.131us
primz =
1i=4
k = 23
622 r"lmz—'|+'|+3
623 = 1 + primz;
| primz = 11 -
4 I3

For each HLL step the following information is displayed:

. The values of the local and global variables used in the HLL step
J The result of the HLL step

J The time needed for the HLL step

I CTS.List [<recordirange>] [<item> ...] [[<option>] List pure HLL trace.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 87

Function Nesting

651 BCTS List =0 =0
[ﬁ Setup...][2 cTs...][3 Goto...][FiFind...] =| TREE][il Chart][_E Chart] & More|| X esé
d [[|
+uuuu$ﬁr59 5] func3 TC\210—— & w—— 0.006us -
=
static int func3() /* simple function */ &
222 =
223 return 5; 4
+0000001159 | - - aw 0.012us
110000001166 func3+0x2 awv—— 0.006us
i =5
558 I start:
sl j = func5((int) j, (char) 2, (long) 3 J;
+0 1166 - = - 0.023us
0000001166 |= funcs demo. c\229——a v—— 0. 250us
/ char b;
long c:
231 {
Push the Less 0000001166 | - °= av 0.020us -
4 b
button to get a =
function nesting
analysis
65 BuCTS List o[-l
(& setup...|| A cTs... |[13 Goto... || $iFind... || =|TREE || d chart || = chart |[# More|[X Less
record |
+0000000018 [E B | —main demo. c\52F——a v—— -
+0000000059 | B func2 demo.c\156——a v—— 1.623us El
+0000000102 funcl demo. c\152——a v—— 0.065us ——_
|:'i_ntptr = 0x08007FES
+0000000113 funcl+0x6 awv—— (.065us -
+0000000123 funcl demo. c\152——a w—— 0.125us —[
|:'i_ntptr = 0x080017EC
+0000000135 funcl+0x6 awv—— 0.125us ——
+0000000408 funcl demo. c'\152——a w—— 0.060us ——
|:'i_ntptr = 0x080017F0
+0000000423 —funcl+0xé awv—— 0.060us —
+0000000438 func2+0x56 awv—— 1.623us ——
+0000000438 l:fum:Zu demo.c\182——a w—— 1.085us ——
+0000000627 func2a+0x2C awv—— 1.085us ——
+0000000627 l:fum:Zb demo.c\194——a v—— 0.965us ——
+0000000814 func2b+0x22 awv—— (0.965us ——
+0000000814 l:fum:Zd demo. c\206——a v+—— 1.090us ——
+0000001030 func2d+0x2C awv—— 1.09us —
+0000001159 l:fum:B demo.c\219——a v—— 0.006us ——
+0000001166 func3+0x2 a wv—— 0.006us %
4 [3
For each function you get the following information:
J Function parameters (and return value - not available on all CPUs)

J Time spent in the function

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

88

Tree Display

5 B::CTS.List /t

autovar = 45

funcl{ Sauvtovar); /* to force autovar as stack-scope */ |
Fa 0.2000s :

liabcl.cv149—— 1.988us

/% static function %/

Config...|| [Gota

Click here to get a
tree analysis of the

function nesting

I‘ funcs: 33. total: 13.857ms
range tree tine min max -
13.187ns B .890 13.107 »|
12 .884ns .08 12.884

16 .380us

16.300us | 16.398

Timing Display

Click here to get a
graphical analysis of
the function runtime

(@ seun (@ T5. (13 oo,)_Fing.) E17rEE | 8 char] & e J(X Les |

record

autovar = 45

166 funcl{ Sauvtovar); /% to force avtovar as stack-scope */ 'i;
+AB2275 |- = aw 0.200us A
+AB2277 (= diabcl.cv149—— 1.98Bus =

= B::CTS.Chart

W Setup...| i1 Groups..] am Config...|| (¥ Goto... || #4Find... 4P In P4 Out MM Full

152

address | | ! |

300 . 80dus 310.808us 320 .008us 330.0808us

funcz |

funcza
funcZhb «|

func4 «»

funch ¥

JE e

functe) EESEEEES 00
func2del
func3el
L R

func9e/ 0] 1] Wm
funciBe I |
3|

I

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing

89

CTS.STATistic.TREE [%<format>][<item> ...] [/<options>] Display trace contents as call tree

CTS.Chart.sYmbol [<record_range>] [<scale>] [[<option>] Display trace contents as timing
based on the symbol information

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 90

Trace Control by Filter and Trigger

Context

An ETM can contain logic (resources) to control the tracing.

J Filter: Address Comparator, Data Comparator and Context ID Comparators are provided to
advice the ETM to only generate trace information for events of interest.

o Trigger: Address Comparator, Data Comparator, Context ID Comparators, Counters and a
Three-level Sequencer can be used to send a Trigger to the trace recording. In most cases the
trace recording is stopped when a Trigger occurs.

The table below lists which resources are provided by the various ARM Cortex cores:

Core ETM Address Data ContextID | Counters |Sequencer
Version | Comparators | Comparators | Comparator

ARM7 ETMv1 [| | | |

ARM9

ARM9 CoreSight | | | | |
ETMv3

ARM11 (CoreSight) |] |] |
ETMv3

Cortex-M3 CoreSight (DWT) (DWT)

Cortex-M4 ETMv3

Cortex-M23

Cortex-R4 CoreSight | | | | |

Cortex-R5 ETMv3

Cortex-R7/R8| CoreSight |] | | |

Cortex-R52 ETMv4

Cortex-A5 CoreSight [| | [| [|

Cortex-A7 ETMv3

Cortex-A8 CoreSight | | | [| |
ETMv3

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 91

Core ETM Address Data Context ID | Counters |Sequencer
Version | Comparators | Comparators | Comparator

Cortex-A9 CoreSight [| [| [|

Cortex-A15 PTM

Cortex-A17

Cortex-A3x | CoreSight | | [| |

Cortex-A5x ETMv4

Cortex-A7x

The ETM Configuration Window provides detailed information on the available resources for your core:

& B:ETM o=
etm control trace PortSize resources TraceInclude
*) OFF [¥ITrace [C] Returnstack 16 ~| f| Acomp: 4. ™
@ oN [CIpBGRQ [CIBBC PortMode DComp: 0. TraceExclude
[CResdviiteBesk | | []STALL CComp: 1.]
commands [¥] SmartTrace PortFilter Counter: 2.
trigger ContextID AUTO & Seq: Yes DataViewInclude
OFF ~| | - FifoLevel Bihn: 4.]
onj/off TImeMode 40. ExtInBus: 2/29. DataViewExclude
TracelD BdOut: 2.]
) List level [C]cydeacarate 1. FifoFull: Mo
[C] TimeStamps TracePriority FifoSize: FifoFullInclude
counter TimeSampdOXK 0. Version: 1.0 [3
FunnelHoldTime FifoFullExclude
3 - (-
Number of address range comparators AComp
Number of data comparators DComp
(single value or bitmask)
Number of Context ID comparator CComp
Number of 16-bit counters Counter
Three-state sequencer implemented Seq: Yes

Special values for “DComp”:

A 0 zero means, you can compare addresses on read/write but you cannot compare data.

A minus (') means, the ETM (or PTM) cannot compare addresses for read/write accesses. (The
address comparators can only consider program addresses.)

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

92

If you push the Register button in the ETM Configuration Window, you get a tree display of the control

registers for the ETM.

&2 B:ETM = E]]
etm ——— control ———— trace ——— — PortSize ———— — resources —— — Tracelnclude —— -
") OFF [V Trace [T Returnstack 16 - AComp: 4. E]
@ ON [CIpBGRQ [ClsBC _ PortMode — DComp: 0. L P —
................................ [ReadWiriteBreak [FISTALL CComp: 1. E]
~ commands —— I | SmartTrace _ PortFilter ——| counter: 2. | b
~ trigger ———— - ContextlD ——— [AUTO—,] Seq: Yes | — DataViewInclude —
[© cear | OFF ~| | |- FifoLevel ——| Bxtin: 4. ™
| | # Register || - onjof ——— | TImeMode —— 40. ExtnBus: 2/20. | - DataViewExclude —
& Trace — TracelD ——— BxtOut: 2.
List level ————— [CIcydeAcourate 1. FifoFull: No
[T TimeStamps | |- TracePriority — | FifoSize: - — FifoFullInclude —
counter ——— - TimeSamp@OK —— 0. Version: 1.0
— FunnelHoldTime — —— — FifoFullExclude —M—
............................ E]

B:ETM.Register EI@
Control
Trace
ViewData
Address Comparators
Data Comparators
B Context ID Comparators
Ipl FFF7DEDF
D2 00000000
103 00000000
TDMASK FB7ES8F7
Counter
Seqguencer
External
TPIU
£ 1 L

Use the following command, if you want to read the ETM registers while the program execution is running:

ETM.Register

7

/DualPort

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

93

The following TRACE32 components can be used to control the ETM resources.

& B:ETM
etm control
O OFF [Trace
@ 0oN [CpBGRQ
[ReadwiteBrezk
commands

trigger
enfof

£ List level

counter

trace PortSize
["|Returnstack 16 -
[Ceec PortMode
[CsTALL
[¥] smartTrace PortFilter
ContextID AUTO -
OFF Z FifoLevel
TImeMode 40.
TracelD
[[] cydeAcaurate 1.
[l TimeStamps TracePriority
TimeSampa0K 0.

FunnelHoldTime

3

resources
AComp: 4.
DComp: 0.
CComp: 1.
Counter: 2.
Seq: Yes
Extln: 4.
BExtInBus: 2/29,
ExtOut: 2.
FifoFull: ~ No
FifoSize: -

Version: 1.0

A advanced

TraceInclude

TraceExclude

DataViewInclude

DataViewExclude

FifoFullInclude

FifoFullExclude

[]
[]

ETM Configuration Window

Y

ETM Resources

A

ETM.Set command group
(for advanced configuration)

Kl B:Break Set =N CR ==

address [expression
- [z

type options implementation
@ Program [Exclude [C1Temporary
* ReadWrite [CINOMARK [l p1sable action
* Read "] DISableHIT
~) Write DATA stop
~) default f\ﬁ:;a
Beta
rom— [Add | [Delete | Charly

TraceData
TraceON
TraceOFF
TraceTrigger
BusTrigger
BusCount

Trace actions in the Beak.Set Dialog

P =<
Definition
Address Address
A-Range or
B-Range [v] or]
CRange [V or]
Value Value
DATAD: BYTE -] COUNTO
DATAL V[~ counr]
Levelo
Action Address/Range RD/VIR... Data Count External
~F & & -] BES -
~F | & ~|a BE -
~IF s & ~|a BE -
~F s & ~|a BE -
Levell
¥ & & & & -
¥ & & & & -
& & & & ~
Level2
F & & & & -
¥ & & & & -
¥ & & & & ~
(___Program] [__Program & Save] [Program &5ave &Close |
Actual used file

ETM Programming Dialog
(not recommended)

For advanced configurations via command ETM.Set see “Arm ETM Trace” (trace_arm_etm.pdf)

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 94

Filters and Trigger by Using the Break.Set Dialog

Run CPU Misc Tr

10 List

éylmplementation... a oy EI@
A Delete All address | expression
ZF Trigger Bus... M L]HLL
& OnChip Trigger...
type options implementation
© Program [Exclude [CITemporary
) ©) ReadWrite [CINOMARK [CIp1Sable action
B) Read ["] p1SableHIT stop -
) Write DATA stop
) default E ilppor::a
Beta
oy— [add] [Delete | Charly
Delta
Ech
F
TraceData
TraceON
TraceOFF
TraceTrigger
BusTrigger
BusCount
TraceEnable Advise the ETM to generate trace information only for the specified
data or program event(s).
TraceData Advice the ETM to generate trace information for the complete
instruction flow and additionally for the specified data event.
TraceON Advise the ETM to start with the generation of trace information at
the specified event.
TraceOFF Advise the ETM to stop the generation of trace information at the
specified event.
TraceTrigger Advise the ETM to generate a Trigger for the trace recording at the
specified event.
If the ETM Trigger is not already connected to the TPIU in your
CoreSight system, this connection has to be configured manually
by the corresponding CTI (Cross Trigger Interface) setup.
BusTrigger Advise the ETM to generate a pulse at ETM External Output 1 at
the specified event.
BusCount Advise the ETM to decrement an ETM counter at the specified
event.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 95

Examples for TraceEnable on Read/Write Accesses

Example 1: Advise the ETM to generate only trace information for the write accesses to the variable

flags[3].
1. Set a write breakpoint to flags[3] and select the action TraceEnable.
a B::Break.5et EI@
address [expression
flags[3] * | & | FHW
type options implementation
_ Program [Temporary |aut0 'I
_ ReadWrite DISable action
) Read | DISableHIT TraceEnable ~
DATA
» default | v] | ¥ advanced|
[Ok J | Add | Delete] | Cancel |
2. Start the program execution and stop it.

3. Display the result.

Trace.List EI@
[&setup.. || A Goto.. |[#iFind.. || AdChart || EProfile || EMPS || #More |[Tless |

record run address cycle |data synbol ti.back
—AAPRRRRSAZ 2D :APPBSDIB xx-data BBBAABAD \\sieve\Global:flags+Bx3 B.330us -
~AAPRRBR493 2D :APBBSDIB xx-data BBBAABRAL \\sieve\Globalrflags+8x3 2.416ns E
—AAPRRBR4B4 2D :APBBSDIB xx-data BBBAABRAD \\sieve\Globalrflags+8x3 B8.372us <
—AAPRRBR4 75 2D :APBBSDIB xx-data BBBAABRAD \\sieve\Globalrflags+8x3 4.817ns A
~AAPRRBRA6T7 2D :APBBSDIB xx-data BBBAABRAL \\sieve\Globalrflags+8x3 B.330us
—AAPRRBRAS7 2D :APBBSDIB xx-data BBBAABRAD \\sieve\Globalrflags+8x3 B8.413us
~AAPRRBR448 2D :APBBSDIB xx-data BBBAABRAD \\sieve\Globalrflags+8x3 B.330us
—AAPRRRR439 2D :ABAAsDIB xx-data BBBAABRAL \\sieveiGlobalrflags+8x3 B.418us -

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

96

4. If you'd like to have details about the instruction that performed the write access, enable

DataTracePrestore in the ETM Configuration Window.

& B:ETM.state EI@
etm control trace Timetdode resources
OFF V| Trace BBC Externallnterpol. AComp: 4-1.
@ 0N DBGRO DCormp: 2.
StoppingEireakPoi STALL Cycledcourate CCormp: 1.
commands V| DataSuppress CLOCK Counter: 2.
RESet trigger DataTrace 12.0MHz Seq: Yes
@ CLEAR [oFF ~ Exin. 2
™ Begister on/off TimeStamps | | ExtinBus: 2430,
B Trace PseudoDataTrace TimeStampCLOCK ExtOut 2.
SHTRIU lewvel CPRT Yersion: 35
ist ContextlD
counter OFF -
¥ advanced
5. With ETM.DataTracePrestore ON you see in Trace.List for every data-cycle also the associated

program trace cycle (ptrace):

BuTrace.List EI@
[&setup.. || A Goto.. |[#iFind.. || AdChart || EProfile || EMPS || #More |[Tless |
record run address cycle |data synbol ti.back
—— TRACE EMABLE -
-ARBRRRRZEE Z21:808815F2 ptrace wsieversieversievetBx12 4.913ns E
strb r2,r3,rd] -
-ARRARRRZE 7 2D :88AA509E wr-hyte A1 swsieveshlobalsflags+@x3 0.800us -
— TRACE EMABLE
-ARRARRRZ 73 21:808081612 ptrace wsieversievessievetBx32 B8.538us
strb r2,[r3,r5]
-ARRARRRZ 72 2D :88AA509E wr-hyte 88 sywsieveshlobalsflags+@x3 B.8080us
— TRACE EMABLE
g 515515151515 Mot Z21:808815F2 ptrace wsieversieversievetBx12 3.372ns
strb r2,r3,rd]
-ARRARRRZSE 2D :88AA509E wr-hyte A1 swsieveshlobalsflags+@x3 B.8080us
— TRACE EMABLE
-ARRARRRZ44 21:808081612 ptrace wsieversievessievetBx32 B.577us
strb r2,[r3,r5]
55515151515 P) 2D :88AA509E wr-hyte 88 sywsieveshlobalsflags+@x3 B.8080us
— TRACE EMABLE
g 55515151515 Poa Z21:808815F2 ptrace wsieversieversievetBx12 B.618us
strb r2,r3,rd]
—ARAARRRZ 29 2D :88AA509E wr-hyte A1 svwsieveshlobalsflags+@x3 @.800us b

Using DataTracePrestore generates additional trace data with ETMv3.
With ETMv1 and ETMv4 any data trace cycle is always generated together with a program trace cylce.

Thus for ETMv1/v4 DataTracePrestore just controls if the debugger displays the program trace cylce.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

97

Example 2: Advise the ETM to generate only trace information for the write accesses to the variable
sched_lock. Perform various statistical analysis on the trace contents.

; advise the ETM to only generate trace information for the write
; accesses to the variable sched_lock
Var.Break.Set sched lock /Write /TraceEnable

; start and stop the trace recording to fill the trace memory
Go

Break

; display the trace memory contents
Trace.List

; analyse the contents of the variable sched_lock statistically
Trace.STATistic.DistriB Data.L /Filter Address sched_lock

£ | BrTrace STATistic.DistriB Data.L /Filter Address sched _lock (=% N =<=|
(& setup...|[32 config...| A Goto... |[=] Detal\ed” e Chart || B Frofile || @ Init |
items: 6. total: 33.940s samples: 47936.
class [total min max avr count. ratio¥% 1% 2% 5% 10% 20% 50% 100
68.080us | 68.080us | 68.080us | 68.080us 0. <0.001% [¢ -
d.1=0x0| 25.293s 2.800us | 27.320ms 5.784ms 4373 (0/1) | 74.523%
d. 1=0x1 3.900s 61.115us 1.284ms | 446.065us 11.491%
d. 1=0x2 3.844s | 245.915us 1.699ms | 641.597us 5992. 11.327%
d.1=0x3 | 323.763ms | 83.195us | 117.360us | 99.927us 3240. 0.953% [«
d.1=0x4 | 578.226ms | 340.630us | 378.870us | 356.930us 1620. 1.703% | e—
< i v

; display a timing diagram that illustrates the contents changes of
; the variable sched_lock
Trace.Chart.DistriB Data.L /Filter Address sched lock

¥ B:Trace.Chart.DistriB Data.L /Filter Address sched_lock = | 2|23
(& setup... EGroups... | |8 config...|| ¥ Goto... || #3 Find... || 4» In |[»4 Out|[M Full]
82s -19. 880s -19.878s -19.876s -19.874s -19. 872s|
class | ! ! 1 1 I I
bl
d. 1=0x0Rmm)) C 1 1
d.1=0x1%| mmmm _ 1 1 .
d. 1=0x2 & I I S - []
d. 1=0x3 [| 11
d. T=0x4) - . om [-
4\ r 4 3

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 98

// display a graph over time of the variable "sched_lock"
Trace.DRAW.Var %DEFault sched lock

// or

Trace.DRAW.channel Data.L /Filter Address sched_ lock

| B:Trace. DRAW Data.L /Filter Address sched_lock |-]
(& Setup...][1Y Goto... |[#3Find... |[¢l Chart |[b In |[»4 0ut][M Full][# 1n |[X out][Z Full
] -22.160s -22.150s -22.140s -22.130s
L bl 1 1 1 1 i

0x3

0x2

0x1

0x0

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 99

Examples for TraceEnable on Instructions

Example 1: Advise the ETM to generate trace information only for the entry to the function sieve.

1. Set a program breakpoint to the entry of the function sieve and select the action TraceEnable.

il B::Break.Set = B
address [expression
sieve - ETHLL
type options implementation
@ Program [[] Exclude [CITemporary
©) ReadWrite [T noMARK [CIp1sable action
©) Read [] DISableHIT
*) Write DATA
© default [|| | [¥ advanced |
[Ok] [Add] [Delete [Cancel]

2. Start the program execution and stop it.

3. Display the result.

i) BuTrace.List EI@
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || EEMIPS |[# More|[X Lesg
record run |address cycle |data symbol ti.back
o le 0x2258
—— TRACE ENABLE
-0000000147 ZR:00002228 ptrace “Sarmlelarmisieve 8.900us _
char flags[SIZE+1];
int sieve() /* sieve of erathostenes #/
678 £]
push {r4,r14}
register int i, primz, k;
int anzahl;
682 anzahl = 0;
mov rl,#0x0
684 for { 1 =0 ; 1 <= 5IZE ; flags[i++] = TRUE) ;
mov r2,#0x0
684 for { 1 =0 ; 1 <= 5IZE ; flags[i++] = TRUE) ;
cmp r2,#0x12
ble 0x2258
—— TRACE ENABLE
-0000000138 ZR:00002228 ptrace “Sarmlelarmisieve 8.860us
J 4

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

100

Use the following command, if you want to perform a statistical evaluation of this event.

Trace.STATistic.AddressDIStance sieve

£ | B:Trace.STATistic. AddressDIStance sieve EI@
(& setup...|[il chart || 4 zoom | X Zoom || 4 Move || T Move || @ mit |
samples: 1836560. avr: 6.296us min: 6.230us max: 6.360us
total: 11.564s in: 11.564s out: 220.660us ratio: 99.998%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |

< 6.230us . 0.000% B

6. 240us 8530. 0.464% [+

6.250us 17653. 0.961% |+

6.260us 14904. 0.811% |+

6.270us 88864. 4.838%

6.280us 267859, | 14.584%

6.290us 206975, | 11.269%

6.300us 298225, | 16.238%

6.310us 336005. | 18.295%

6.320us 248121, | 13.510%

6.330us 327212, | 17.816%

6. 340us 18165. 0.989% |+

6.350us 1623. 0.088% |+

6.360us 2169. 0.118% |+

6.370us 255. 0.013% |+

6.380us 0. 0.000%

6.390us 0. 0.000%
= 0. 0.000% -

J«; 1] 3

For ARM Cortex CPUs:

When measuring execution times while only parts of the program flow have
been traced (by using trace filters TraceEnable, TraceON or TraceOFF) you
should not use external (tool based) time stamps. On ARM Cortex CPUs
already generated trace packets might not leave your chip when the trace filter
disables the ETM/PTM. The packets are then recorded when the ETM/PTM
gets re-enabled, which gives wrong external timestamps.

Best is to use ETM.TImeMode CycleAccurate, when using trace-filters.
Alternatively you can use ETM.TiImeMode SyncTimeStamps or
ETM.TimeMode AsyncTimeStamps (if an internal chip-internal time stamper is
available)

See command ETM.TImeMode in “Arm ETM Trace” (trace_arm_etm.pdf) for
more details.

If you use external (tool based) time stamps (ETM.TImeMode External) to
measure execution times while only parts of the program flow have been traced
(by using trace filters TraceEnable, TraceON or TraceOFF), ensure that the port-
filter of you trace preprocessor (or CombiProbe or pTrace) is set to ON.
(Trace.PortFilter ON) Otherwise trace packets might be highly delayed in your
trace tool.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 101

Example 2: Advise the ETM to generate trace information for the entries and exits to the function sieve.

1.

2.
3.

Mark the entry and the exit of the function sieve with an TraceEnable breakpoint.

BaList [E=0 =R)
[Mstep |[M over || ¥ Next || Retun| ¢ up | o [mn Break || 1% mode | F|r1d
addr/line |code 1abel |mnemonic |comment |
'int sieve() /* sieve of erathostenes
611 re'lster int 1, r'lmz, ;
ST:0B000BEC n
‘Int anza Program Address
Go Till
anzahl = 0; % Goll
615 a Breakpoint.. |
ST:080008EE [2100 ol beports:
for (1 =0; | =
617 i Display Memory L4 ProgramPass
ST:080008F0 (2200 mo gdf Toggle Bookmark ProgramFail
for (1 =05 | e 5et PC Here
617 =
ST:080008F2 (2412 Eq [Edit Source
ST:080008F4 [DD0G ol T
ST:080008F6 [E006 p | &M
for (1 =0;
617
ST:080008F8 (2401 = ==
ST:080008FA [1C10 ad Assemble here ...
ST:080008FC 1912 ad .
ST:080008FE |4 DOF 1d| Piedibecty
ST:08000900 2 st Patch here ...
ST:08000902 [E7FG b =
ST:08000904 E7FE b 0x80008F8 m
for (i =0; 1 <= sIZE ; i++) TraceON
619 {) TraceOFF I
ST:08000906 |2200 movs r2,#0x0 . E
for (i =0; i <= SIZE ; i++) jaceluoaey
619 { BusTrigger
ST:08000908 [2a12 cmp r2,#0x12 B i
usCount
JER (1 | +
0 BuBreakList IEI-IEI
[Delete All |[O Disable All (@ Enable All || & Init | éz?lmpl | 53 store... || 22 Load... | &l set...
address [types mp 1 laction |
T:080008EC[[Program ONCHIP TraceEnable | sieve -
T:08000936)|Program ONCHIP |TraceEnable | sieve‘\23+0x4

Start the program execution and stop it.

Display the result.

:Trace.List
(& setup...|[13 Goto... || #3Find... | Mchar‘(]L H Profile || B MPS |[# More|[X Lesd
record run |address cycle |data symbo ti.back |
—— TRACE ENABLE -
-0000000179 ‘ T:08000936 ptrace “N\demo_r4‘\demo'sieve+Ox4A 6.115us [z
mow pc,rl4 =
—— TRACE ENABLE
-0000000166 | T:080008EC ptrace “\demo_r4‘demo'\sieve 0.090us +
char flags[SIZE+1];
'}nt sieve() /* sieve of erathostenes #/
611 ; reg'lster int '|, primz, k;
push {r4-r5,r =
-0000000165 D:08007F2C wr- 'Iong 080017FC “\demo_r4“Global"_end+0x626C <0.005us ||
-0000000154 D:08007F30 wr-Tlong 08001C5C “\'‘\demo_r4\Global'_end+0x6270 0.035us =
4 3

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

102

Use the following command, if you want to get a statistical analysis of the time spent between the entry and
exits of the function sieve. (The function sYmbol.EXIT(<func>) returns the exit address of a function.)

Trace.STATistic.AddressDURation sieve sYmbol.EXIT (sieve)

= | B:Trace STATistic. AddressDURation sieve 0x2000936 = ===
(& setup...|[il chart || zoom | X Zoom || 4 Move || T Move || @it |
samples: 1997429, avr: 6.199%us min: 6.120us max: 6.270us
total: 12.545s in: 12.382s out: 163.814ms ratio: 98.694%
up to |count ratio 1% 2% 5% 10% 20% 50% 100 |
< 6.120us . 0.000% -
6.160us 4464. 0.223% [+
6.200us 1260085. | 63.085%
6. 240us 410738. | 20.563%
6.280us 322142, | 16.127%
6.320us 0. 0.000%
6.360us 0. 0.000%
6.400us 0. 0.000%
6.440us 0. 0.000%
6.480us 0. 0.000%
6.520us 0. 0.000%
6.560us 0. 0.000%
6.600us 0. 0.000%
6.640us 0. 0.000%
6.680us 0. 0.000%
6.720us 0. 0.000%
6.760us 0. 0.000%
= J 0. 0.000% -
4 I3

For ARM Cortex CPUs:

When measuring execution times while only parts of the program flow have
been traced (by using trace filters TraceEnable, TraceON or TraceOFF) you
should not use external (tool based) time stamps. On ARM Cortex CPUs
already generated trace packets might not leave your chip when the trace filter
disables the ETM/PTM. The packets are then recorded when the ETM/PTM
gets re-enabled, which gives wrong external timestamps.

Best is to use ETM.TImeMode CycleAccurate, when using trace-filters.
Alternatively you can use ETM.TiImeMode SyncTimeStamps or
ETM.TimeMode AsyncTimeStamps (if an internal chip-internal time stamper is
available)

See command ETM.TImeMode in “Arm ETM Trace” (trace_arm_etm.pdf) for
more details.

If you use external (tool based) time stamps (ETM.TImeMode External) to
measure execution times while only parts of the program flow have been traced
(by using trace filters TraceEnable, TraceON or TraceOFF), ensure that the port-
filter of you trace preprocessor (or CombiProbe or pTrace) is set to ON.
(Trace.PortFilter ON) Otherwise trace packets might be highly delayed in your
trace tool.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 103

Example for TraceData

Example: Advise the ETM to generate trace information for the complete instruction flow and for the write

accesses where 1 is written as a byte to the variable flags.

1. Set a Write breakpoint to the HLL variable flags, define DATA 1 and select the action TraceData.

fiorrrsmm————]]

address / expression

|flags v| [MIHLL

type options implementation

) Program [Exclude [Temporary auto e

O Readwiite I HOMaRK [DISable action

[DISableHIT TraceData

%) Wwrite DATA

() any |Dx1 | |Byte V| [¥ advanced]

[Ok | [Set] [Delete] [Cancel]
2. Start the program execution and stop it.

3. Display the result.

::Trace.List

W Setup...|| ¥ Gota... || #3Find..
record run address cycle |d.l synbol ti.back -
—AARRAAAAS6 R:BBBA326C exec \armyarmisieve+8x28 A.628us ~
strh r4,[rd, +r14]
g 551515151515 15 1oL D:8BPA7EBE wr-hyte 81 \varmvGlobalsflags+8x8C <@A.020us v
g 515515151515 15 La¥4 R:800A3270 exec ssarmsarmniysieve Hix20 B.768us ~
b Bx3250]
—ARRARAAAS 1 R:BBAA3258 exec ssarmsarmniysieve HixAC <@A.020us
I cmp rz,#ix12
—ARRARRAR4E R:80PA3254 exec ssarmsarmnysieve 8y 10 B.168us
ble Bx3274
—ARRARRRR44 R:800A3274 exec ssarmsarmnysieve Hix30 B.168us
b Bx325C -
HEEXEXXXXXEXR bt

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

104

Example for TraceON/TraceOFF

Example: Sample only the function sieve.

1. Set a Program breakpoint to the entry of the function sieve and select the action TraceON.

::Break.5et SR:0x3244 DIALOG

address / expression
|sieve v| [I] [IHLL
type options implementation
(%) Program [Exclude [Temporary
) Readwiite I HOMaRK [DISable action
O Read [DISableHIT
1 write DATA
O any | | | v| [W advanced]
[Ok | [Set] [Delete] [Cancel]
2. Set a Program breakpoint to the exit of the function sieve and select the action TraceOFF.

| Change Breakpoint

address / expression

| sisve 23+ 0t v| (&) OOHL

type options implementation

(®) Program [Exclude [Temporary auto b

) Readwite I HOMaRK [0I5 able action

O Read [DISableHIT

(1 wirite DATA

O any | | | w | [¥ advanced]

[Ok | [Set] [Delete] [Cancel]
3. Start the program execution and stop it.

4. Display the result.

::Trace.List
W Setup...|| (¥ Gota... || #3Find..
record run address cycle d.1 synbol ti.back
~
-AAZ21458737 R:800A3284 exec ssarmsarmniysieve Hix48 B.6080us
b Bx32D8 v
—AAZ1458736 R:800A32D8 exec ssarmsarmnysieve HixBC B8.168us .
701 return anzahl;
| mov ré,ri
—— TRACE EHABLE
—A921458725 | | R:000@3244 exec ssarmsarmysieve 2.468us
char flags[SIZE+1];
int sieve() /* sieve of erathostenes */
678 |{ v
£ >

The ETM stops the generation for the trace information before trace information is generated for the

event the causes the stop.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

105

Example for TraceTrigger

Example: Stop the recording to the trace buffer after 1 was written to flags[3].

1. Set a write breakpoint to flags[3], define DATA 1 and select the action TraceTrigger.

a B::Break.5et EI@
address [expression
flags[3] + (2] #He
type options implementation
Program | EXclude | Temporary |aut0 W
ReadWrite | NOMARK | DISable action
Read | DISableHIT |TraceTri_q_qer 7
default 1 | v| | ¥ advanced|
[Ok] | Add | | Delete | [cancel |

2. Establish the connection between the ETM Trigger and the TPIU via the Cross Trigger Interface
(CTI) if required.

This is only required for chips with ETMv3 or PTM and CoreSight debug infrastructure (Cortex-R4/R5
and Cortex-A5 to A17). You can skip this step for Cortex-M and cores with ETMv4 (with ETMv4 the
trigger is propagated via the trace bus (ATB).)

You have to set up both the Cross Trigger Interface (CTI) of you trigger-source - here the ETM/PTM -
and the sink for the trace trigger - here the TPIU (or ETF or ETR).

4>
ETM Trigger

Cross Trigger
Interface
(CTI)
of
ARM core
and
ETM/PTM

; core specific example

; configure ETM trigger

; enable Core/ETM CTI

Data.Set APB:0x80001000

; map CTITRIGIN[6]

Data.Set APB:0x80001038

I

(ETM

; enable System/TPIU CTI
Data.Set APB:0x80002000 %Long 1

7

Map channel 3 to CTITRIGOUT[3]

Cross Trigger
Matrix
(CTM)

with
4 chnnels

to channel 3

%Long 1
Trigger Out)
%Long Data.Long(APB:0x80001038)|0x4

configure channel 3 to TPIU Trigger In

Cross Trigger
Inerface
(CTI)
of
Trace Port
Interface Unit
(TPIU)

4>
TPIU Trigger In

channel 3

(TPIU Trigger In)

Data.Set APB:0x800020AC %Long Data.Long(APB:0x800020AC)|0x4

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

106

The peripheral file “percti.per” in your TRACE32 system folder can help you to configure the CTls:

PER.view

"~~/percti.per"

<cti_base_address>

Check your chips data sheet, for the base addresses of the CTl interface for both ETM and TPIU (or

ETF or ETR).

The following CTI inputs and outputs are use by the different ARM cores:

ARM core ETM Trigger Output Core Break Input Core Halt Output
to CTM Channel from CTM Channel to CTM Channel

ARM9 / ARM11 CTITRIGIN[6] CTITRIGOUTI[0] CTITRIGINIO]
Cortex-R4 CTITRIGINI6] CTITRIGOUTIO0] CTITRIGINIO]
Cortex-A9 CTITRIGINI6] CTITRIGOUTIO0] CTITRIGINIO]
Cortex-M3 CTITRIGINI[7] CTITRIGOUTIO0] CTITRIGINIO]
Cortex-R7 CTITRIGIN[2] CTITRIGOUTIO0] CTITRIGINIO]
ARMv8-A CTITRIGIN[4] CTITRIGOUTIO0] CTITRIGINIO]
Trace Sink Trigger Input from CTM Channel
TPIU CTITRIGOUTI[3]
ETF CTITRIGOUT[7]
ETR CTITRIGOUT[1]

3. Configure an optional delay with Trace.TDelay <time> | <ETM cycles> | <percent of trace-buffer>

When the trace trigger occurs, the recording will stop after the specified delay.

4. Start the program execution.

1
I

B::
I emulate frigger Idew'ces H frace H Data H Var H List H PERF J S| other
g.! MIX P

The Trace State field in the command line is green, as long a the trace recording is active

previous

‘B::

emulate trigger |d,evices H trace H Data ||

‘ other H previous

MIX |UP

The Trace State field in the command line becomes blue after the trace recording was

stopped by the Trigger (BRK)

5. Display the result.

Displaying the result requires access to the target memory in order to read the code information. To

display the result:

- Stop the program execution or

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

107

- Load the code to the TRACES32 Virtual Memory before you use the TraceTrigger action
(Data.LOAD <file> /VM).

| Bu:Trace.List EI@
|W Setup...” 3 Goto... ” #4 Find... || el Chart ”_ | Profile “_ MIFS ”vMore”A Lessi
record run |address cycle |data symbol ti.back i
-0000000028 T:08000900 ptrace vdemo_rdhdemo'\s51evetOx1d 0.370us .
strb r4,[r5,r0] =
-0000000027 D:08001C5E wr-byte 01 “\demo_r4'Global'flags+0x2 <0.005us
-0000000019 T:08000902 ptrace “YNdemo_r4'\demo'sieve+Ox16 0.185us 7
b 0x80008F2 =
-0000000018 T:080008F2 [ﬂ'r a W\demo_r4'demo'sieve+0x6 <0.005us
for (1 =0; 1 SIZE ; flags[i++] = TRUE } ;
617
= cmp r2,#0x12
[ble 0x58000904
rb 0x80008F8
for (1 =0; i == 5IZE ; flags[i++] = TRUE) ;
617
= movs r4,#0x1
adds ro,r2,#0x0 i
adds r2,r2,rd |21
ldr r5.0x800093C F|
-0000000017 D:0800093F rd-data “Ydemo_r4'\demo'sieve+0x53 <0.005us ||
+‘-‘:‘-‘:‘-‘:‘-‘:‘-‘:‘-‘:‘-‘:‘-‘:‘-‘:‘-‘: -
J 1 }

The trace recording is stopped before the event that caused the triggered is exported by the ETM.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

108

Example for TraceTrigger with a Trigger Delay

Example: Stop the sampling to the trace buffer after 1 was written to flags[3] and another 10% of the trace

buffer is filled.

1. Set a write breakpoint to flags[3], define DATA 1 and select the action TraceTrigger.

il B::Break.Set [
address [expression
flags[3] - [2] @Hu
type options implementation
) Program [[] Exclude [l Temporary
©) ReadWrite [T nOMARK [C] p1Sable action
©) Read [] DISableHIT
© default 1 [|| | [¥ advanced |
[Ok] [Add] [Delete] [Cancel]

2. Define the trigger delay (TDelay) in the Trace Configuration Window.

WB‘.:Trace
METHOD
@ Analyzer = CAnalyzer Onchip
state used
() DISable
@ OFF 0.
) Arm SIZE
() trigger 1073741824,
) break
Mode
commands @ Fifo
*) Stack
") Leash
© STREAM
i List @© PIPE
[¥] AutoArm RTS
[¥] AutoInit
[[] selfarm

@ FlowTrace

Prestore
SLAVE

Iy [F=5 Eol >
O ART () LOGGER (! SHNOOPer) FDX DA
Integrator ' Probe IProbe
ACCESS TDelay
v] 0. & Tronchip
0%} - & ETM
CLOCK 0%
Mode
BusTrace © cLock
©) ClockTrace 2 autofocus

[¥] TERMination

¥ AutoFocus
¥ ShowFocus

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

109

3. Start the program execution.

‘B::

emulate trigger [devices][

trace][Data][Var][List][FERF] S [other][ptewous
| | MIX UP

The Trace State field in the command line is green, as long a the trace recording is active

!|B::

emulate trigger [devioes][trace ” Data][Var][List ”

PERF

][svstem ||

other

J [_previous |

g ————— i3

MIx

up

The Trace State field in the command line becomes
and the trigger delay (TDelay) starts

after the Trigger occured (TRG)

|B::

emulate wigger |[devices |[tace [Data J[wvar |[st

. =

other previous

MIX |UP

The Trace State field in the command line becomes blue after the trace recording was

stopped because the trigger delay ran down (BRK)

Display the result.

B::Trace.List

WSetup... {3 Goto... || #3Find... & More || X Less

\

record runfgddress cycle |data synbol ti.back
nold rZ,r2,ré4 ~
R:B0AA9268 exec ssarnsarmniysieve Hix24 B8.830us
ri, 8x92E8 v
A.830us -
B.@870us
+ARARARRY : 81 \varmvGlobalyflags+8x3 <@A.018us
+ARARARa7 R:80@ ssarmsarmniysieve Hix20 B8.830us
b
+A0ARRA14 R :A008: ssarmsarmniysieve HixAC B.868us
cmp
+ARARRA1G R 4 exec ssarmsarmnysieve 8y 10 B8.130us
ble
+9000019 R: (R Trace Goto
+APRAARZ3 b R:PPAA9ZSC Sxec Fecord / Time / Bookmark
mnov r4, 8
+ABRBRAZ4 R:B0BR9268 £xe
mnov ri4,r2 -
+60008029 R:@00809264 cxec L Tioce JL 200)
add rZ,ré,r4 [Last/] Fef] [Track]
+ABRBRA36 R:BABAI268 exec
1ol wA AO?CQR

Push the Trigger button in the Trace Goto window to find the record, where TraceTrigger
was accepted by the trace. Here the sign of the record numbers has changed.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

110

Example for BusTrigger

Example: Indicate with a pulse on ETM External Output 1 that 1 was read from flags[12].

In order to measure this pulse on ETM External Output 1 you need to check where the ETM External

Output 1 can be measured on your core.

1. Set a read breakpoint to flags[12], define DATA 1 and select the action BusTrigger.

€ B:Break Set [F=3 EoR =5
address [expression
flags[12] ~ [&]OHw
type options implementation
Program | EXclude | Temporary |aut0 v|
ReadWrite | NOMARK | DISable action
| DISableHIT |BusTri_q_qer 7
Write DATA
default 1 | v| (v advanced|
[Ok] | Add | [Delete | [cancel |
2. Measure the result.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

111

Example for BusCount

Example: Advise the ETM to decrement its counter at each entry to the function sieve.

1. Set a program breakpoint to the entry of the function sieve and select the action BusCount.

I3l B::Break.Set

— address / expression
sieve

- type ———— options — implementation —

[Exclude [CITemporary
©) ReadWrite [T nOMARK [C] p1Sable —action ————
) Read [] DISableHIT
©) Write _DATA L
© default [|| | [¥ advanced |

Ok] [Add] [Delete] [Cancel]

2. Use the ETM configuration window to observe the counter.

& B:ETM = ==
—etm ——— L CU”trUl — trace —— — PortSize ———— . — resources ——
© oFF [V Trace [T Returnstack 16 - AComp: 4.-1.

@ ON [1pBGRQ [FleeC — PortMode ——— DComp: C.
............................. [ReadWriteBeak [FISTALL cComp: 1.
— commands —— | [¥ISmartTrace — PortFilter ——— Counter: 2.

~ trigger — |- ContextlD —— [AUTO—v] Seq: Yes

OFF || |- FifoLevel ——| Bxth: 4.

-~ onfoff ———— - TImeMode —| 40, ExtInBus: 2/29.

 TracelD — EdOut: 2.

2 — level ———— [Tl cydeAcaurate 1. FifoFull: No
[T TimeStamps | |- TracePriority —| | FifoSize: -
I - TimeSampQOX — | O Version: 1.0
0x0 —FunnelHoldTime —

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 112

3.

Start the program execution

— etm

) OFF
@ 0N

— commands ——

[Reset]

[Regster |
(P |

List

— control — trace — PortSize
Trace [l Returnstack
[C]DBGRQ [ClBBC PortMode
[Readwrtemest | | [C]STALL
SmartTrace | — PortFilter
— trigger — ContextID ——— | |AUTO ™
[oFF ~| | - FifoLevel
— onfoff —— |~ TImeMode —— 40.
External w|| - TraceD ———
-~ level [Clcydeacarate 1.
[T TimeStamps | |- TracePriority —
— counter — TimeSampa.0X — 0.
0xCD3D5 — FunnelHoldTime —

— resources
AComp: 4.-1.
DComp: 0.
CComp: 1
Counter: 2
Seq: Yes
ExtIn: 4.
ExtInBus: 2/29.
ExtOut: 2.
FifoFull: Mo
FifoSize: -
Version: 1.0

¥ advanced

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

113

OS-Aware Tracing

OS-aware tracing is relatively simple if you use an operating system that does not use dynamic memory
management (e.g. eCos).

The OS-aware tracing for an operating that uses dynamic memory management to handle processes/tasks
is more complex. That is why this is explained in a separate chapter.

OS (No Dynamic Memory Management)

Activate the TRACE32 OS Awareness (Supported OS)

TRACE32 includes a configurable target-OS debugger to provide symbolic debugging of operating systems.
Lauterbach provides configuration files for most common available OS.

If your kernel is compiled with symbol and debug information, the adaptation to your OS can be activated as

follows:
TASK.CONFIG <file> Configures the OS debugger using a configuration file provided by
Lauterbach
MENU.ReProgram <file> Program a ready-to-run OS menu

HELP.FILTER.Add <filter> Add the help information for the OS debugger

All necessary files can be found under ~~/demo/arm/kernel, where ~~ expands to the TRACE32
system directory.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 114

Example for eCos:

; enable eCos specific commands and features within TRACE32 PowerView
TASK.CONFIG ~~/demo/arm/kernel/ecos/ecos.t32

; extend the Trace menu and the Perf menu for OS-aware tracing
MENU.ReProgram ~~/demo/arm/kernel/ecos/ecos.men

[Trace| Probe Perf Cov eCos Cov eCos Window Help
& Configuration... 42 Perf Configuration...
B CTS Settings... £ Perf List
ETM Settings... E| Perf List Dynamic
Trigger Dialog.. Function Runtime
=l Trigger Definition 4

Distribution

* v v v

Default Duration Ato B
_— v
ﬂ Timing Al Distance trace records
fuf Chart b 2 Tracking with Source

g Savetrace data .. Task Function Runtime *| = Show Numerical
£ Load reference daa . WL Task Status > | 4l Show as Timing
Default and Tasks

Reset . Reset #u] Tracking with Trace List
The Trace menu is extended by the commands The Perf menu is extended by the commands
- Task Switches - Task Runtime
- Default and Tasks - Task Function Runtime

- Task Status

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 115

; enable eCos-specific help
HELP.FILTER.Add rtosecos

[% Content || " Index] [$3 Find | [%} command Tree || g Bookmarks
Content
[close all] [open all use filter: bdmarm;icretm;rtosecos;

= TRACE3Z OnTine Help
= TRACE32 Directory
= TRACE32Z Index
TRACE32 Getting Started
= TRACE32 Documents
IDE User Interface
PRACTICE Script Language E
® General Commands and Functions
FLASH Programming
Per'iphera? Files
® Analyzer System
E RTOS Debugger
E RTOS Debugger for eCos
= OvVerview
® Configuration
Features
eCos Commands
= eCos PRACTICE Functions i

[» |

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

116

Exporting the Task Switches (OS)

There a two methods how task switch information can be generated by the ETM:

By generating trace information for a specific write access

This method requires that the ETM can generate Data Address information and Data Value
information for write accesses (see table below). If this is possible this method is the preferred

one because it does not require any support from the operating system.

By generating a Context ID packet

This method should only be used, if the ETM can not generate Data Address information and
Data Value information for write accesses (see table below). The reason is that it requires
support from the operating system. If the generation of Context ID packets is not supported by

your operating system it has to be patched in order to provide this information.

Core ETM Version Data Address Data Value Context ID
ARM7 ETMv1 [| [| [|
ARM9

ARM9 ETMv3 [| [| [|
ARM11 ETMv3 [| [| [|
Cortex-M3/M4 ETMv3 (DWT) (DWT) -
Cortex-M23

Cortex-M7 ETMv4 (DWT) (DWT) -
Cortex-M33 Config. 1

Cortex-R4 ETMv3 [| [| | |
Cortex-R5

Cortex-R7/R8 ETMv4 [| [| [|
Cortex-R52 Config. 3

Cortex-A5 ETMv3 [| [| [|
Cortex-A7

Cortex-A8 ETMv3 [| - [|
Cortex-A9 PTM - - [|
Cortex-A15

Cortex-A17

Cortex-A3x ETMv4 - - |
Cortex-A5x Config. 2

Cortex-A7x

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 117

Specific Write Access (OS)

Each operating system has a variable that contains the information which task is currently running. This
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

One way to export task switch information is to advise the ETM to generate trace information when a write
access to this variable occurs.

The address of this variable is provided by the TRACE32 function TASK.CONFIG(magic).

PRINT TASK.CONFIG (magic) ; print the address that holds
; the task identifier

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 118

Example: Advise the ETM to generate only trace information on task switches.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic) and select the trace

action TraceEnable.

[l B::Break.Set

address [expression
TASK.CONFIG(magic)

type options implementation
~) Program [Exclude [ClTemporary
) ReadWrite [T nOoMARK [C]p1sable action

© Read [C] DISableHIT
) default [v] [¥ advanced]
[Ok] [Add] [Delete] [Cancel]

2. Start and stop the program execution to fill the trace buffer

3. Display the result.

[Trace] Probe Perf Cov

eCos

B CTS Settings...
ETM Settings...
Trigger Dialog

= Timing
fuf Chart

i W Configuration...

g Save trace data ...
E Load reference data ...

Default
All
2 Tracking with Source
& List Context Tracking System

Task Switches

A TR S

Reset
£ BxTrace List List. TASK DEFault el a0]
(& setup... || [k Goto... || #3Find... || Mchart]L i Profile | !MIPS [More[X Lesg
record run |address cycle |data symbo t1. back |
—— TRACE ENABLE -
-0000000100 | R:ODOSBEFC]&)@: ‘\demo'\sched\Cyg_Scheduler : :unlock_inner+0xF0 51.698ms E
str r2, [r3 :
--- THREAD magic = 00059008, id = 8., name = Thread.5 - il
-0000000099 D:00048D60 wr-long 00053008 \demo\GToba1\Cyg_Schedu1er‘_Base: :current_thread <0.005us 2
—— TRACE ENABLE
-0000000080 | R:OOOSB?EFC]exe-: \\dema'\sched\Cyg_scheduler: :unlock_inner+0xF0 3.650ms
str r2,[r3
--- THREAD magic = 0004BCAO, id = 1., name = Idle.Thread -—
-0000000079 D:00048D60 wr-Tong 0004BCAQ Y demo\G'\oba'I\Cyg Scheduler_Base: :current_thread <0.005us
— TRACE ENABLE
-0000000060 | R:UUUSBEFC]EXSZ M\ dema'\sched\Cyg_Scheduler : :unlock_inner+0xF0 27.600ms
str r2,[r3
--— THREAD magic = 00059158, id = name = Thread.7
| D:0004BD60 wr-Tong 0005‘3158 demu\G'\oba'l\Cyg S(hedu'ler Base scurrent_thread <0.005us
©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 119

Context ID Packet (OS)

A Context ID packet is generated when the OS updates the Context ID Register (CONTEXTIDR) on a task

switch.

The generation of Context ID packets has to be enabled within TRACE32.

ETM.ContextID 32 ; enable the generation of Context ID packets and
; inform TRACE32 that the Context ID is a 32-bit
; value
Example:
1. Start and stop the program execution to fill the trace buffer.

2. Display the result.

Trace | Probe Peff Cov eCos

WConfiguration_
| & CTS Settings...
ETM Settings...
Trigger Dialeg...
3
§ Li 4 Default
= Timing L4 All
fuf Chart b & Tracking with Source
g Save trace data . & List Context Tracking System
E Load reference data ... Task Switches

Default and Tasks
Reset

B Trace.List DEFault List. TASK = =R
B setup...|| 1 Goto... | FyFind... | el Chart | EProfile | I MIPS & Mare Y Less
record |run |address cycle |data symbaol i
"~
#ifdef _PIC__ -
.align 4 -
.type T32_Magic_Update, %function e
T32_Magic_Update: ~
/% Write the Magic to the ContextID Register */
282 LDR RO, pxCurrentTCBConst
1dr r0,0x3F000484
283 LDR RO, [R9, RO]
Tdr r0,[r9,+r0]
284 MCR P15, Ox0,R0,C13,C0,0x1
mcr pl5,0x0,r0,cl13,c0,0x1
—— task: SieveDemo (0x3F0044F0)
-0000073419 task ..3F0044F0 SieveDemo
-0000073414 ZR:3F0002BC ptrace “Artosdemo_pic_armv7a‘\Global\T32_Magic_Update
285 BX R14
1 bx ri4
-0000073411 | ZR:3F000258 ptrace “Artosdemo_pic_armv7a‘\GlobalFreeRTOS_SWI_Han
274 r portRESTORE_CONTEXT
ldr r0,0x3F000484
ldr rl,[r9,+r0]
ldr r13,[r1]
1dr r0,0x3F00048C
pop {ri}
str rl,[r9,+r0] v
< >
©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 120

Searching for the Context IDs can be performed as follows:

st DEFault List, TASK
| & setup...|| 3 Goto... | #3Find... | Achart | EProfile | EEMPS | % More | X less
record |run |address leycle |data symbol
#ifdef _PIC__
.align 4
. type T32J41a3'ic_Update, %¥function
T32_Magic_Update: .
/% Write the Magic
282 LDR RO, pxCurre
Tdr F0,0X3FO(EO484 |
283 LDR RO, [R9, RO Expert Cycle Group Changes Signal o
Tdr r0,[r9,+r0] Direction —
284 MCR P15, Ox0,RO _ :
mcr p]k_S,OxO,rO,CISE |‘|"dd“*55"e’“’re"‘5'°” @ o Oup
task: SieveDemo w HLL
-0000073419 task Qunn
-0000073414 ZR:3F0002BC ptrace T |
285 BX R14 e Daid Find Up
0000073411 | | DX JR:3F000258 pt [tosk v|| | || Yl
- : ptrace ~
274 - pOrtRESTORE_CONTEXT | | b fandipown
Idr r0,0x3F000484
o i Find Next Frdtere | [clear || Cancel
Tdr r0,0x3F00048C
pop {rl
str rl,[r9,+r0] v
>

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

121

Belated Trace Analysis (OS)

The TRACES2 Instruction Set Simulator can be used for a belated OS-aware trace evaluation. To set up the
TRACES32 Instruction Set Simulator for belated OS-aware trace evaluation proceed as follows:

1. Save the trace information for the belated evaluation to a file.

Trace.SAVE testrtos.ad

Trace.SAVE saves the trace row data plus decompressed addresses, data and op-codes, but not the
task names.

2. Set up the TRACE32 Instruction Set Simulator for a belated OS-aware trace evaluation (here eCos
on an Excalibur):

SYStem.CPU EPXA ; select the target CPU

SYStem.Up ; establish the communication
; between TRACE32 and the
; TRACE32 Instruction Set

; Simulator
Trace.LOAD testrtos.ad ; load the trace file
Data.LOAD.El1f demo.elf /NoCODE ; load the symbol and debug
; information
TASK.CONFIG ecos ; activate the TRACE32

; OS Awareness

TASK.NAME.Set 0x58D68 "Thread 1" ; assign the task name to the
; saved task identifier

; assign the other task names

Trace.List List.TASK DEFault ; display the trace listing

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 122

Enable an OS-aware Tracing (Not-Supported OS)

If you use an OS that is not supported by Lauterbach you can use the “simple” awareness to configure your
debugger for OS-aware tracing.

Current information on the “simple” awareness can be found under ~~/demo/kernel/simple/readme.ixt.

Each operating system has a variable that contains the information which task is currently running. This
variable can hold a task ID, a pointer to the task control block or something else that is unique for each task.

Use the following command to inform TRACES32 about this variable:

TASK.CONFIG ~~/demo/kernel/simple/simple.t32 <var> Var.SIZEOF (<var>)

If current_thread is the name of your variable the command would be as follows:

TASK.CONFIG ~~/demo/kernel/simple/simple current_thread \
Var .SIZEOF (current_thread)

The OS-aware debugging is easier to perform, if you assign names to your tasks.

TASK.NAME.Set <task_id> <name> Specify a name for your task
TASK.NAME.view Display all specified names

TASK.NAME.Set 0x58D68 "My Task 1"

The “simple” awareness only supports task switches that are exported for the write accesses to the variable
that contains the information which task is currently running.

The “simple” awareness does currently not support context ID packets.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 123

OS+MMU (Dynamic Memory Management)

Since Linux is widely used, it is taken as example target OS for this training chapter.

Activate the TRACE32 OS Awareness

Please refer to “Training Linux Debugging” (training_rtos_linux.pdf) on how to activate the Linux
awareness on your target.

If you use a different OS that uses dynamic memory management to handle processes/tasks refer to the
corresponding target OS Awareness Manual (rtos_<os>.pdf).

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 124

Exporting the Process/Thread-ID (OS+MMU)

There a two methods how process/thread switch information can be generated by the ETM:

By generating trace information for a specific write access.

This method requires that the ETM can generate Data Address information and Data Value
information for write accesses (see table below). If this is possible this method is the preferred
one because it does not require any support from the operating system.

By generating a Context ID packet.

This method should only be used, if the ETM can not generate Data Address information and
Data Value information for write accesses (see table below). The reason is that it requires
support from the operating system. If the generation of Context ID packets is not supported by

your operating system it has to be patched in order to provide this information.

Core ETM Version Data Address Data Value Context ID
ARM7 ETMv1 [| [| [|
ARM9

ARM9 ETMv3 [| [| [|
ARM11 ETMv3 [| [| [|
Cortex-M3/M4 ETMv3 (DWT) (DWT) -
Cortex-M23

Cortex-M7 ETMv4 (DWT) (DWT) -
Cortex-M33 Config. 1

Cortex-R4 ETMv3 [| [| [|
Cortex-R5

Cortex-R7/R8 ETMv4 [| [| [|
Cortex-R52 Config. 3

Cortex-A5 ETMv3 [| [| [|
Cortex-A7

Cortex-A8 ETMv3 [| - [|
Cortex-A9 PTM - - |
Cortex-A15

Cortex-A17

Cortex-A3x ETMv4 - - |
Cortex-A5x Config. 2

Cortex-A7x

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 125

Specific Write Access (OS+MMU)

Each operating system has a variable that contains the information which process/thread is currently
running. This variable can hold a process/thread, a pointer to the process control block or something else
that is unique for each process/thread.

One way to export process/thread switch information is to advise the ETM to generate trace information
when a write access to this variable occurs.

The address to this variable is provided by the TRACE32 function TASK.CONFIG(magic).

PRINT TASK.CONFIG (magic) ; print the address that holds
; the task identifier

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 126

Example: Advise the ETM to generate only trace information on a process/thread switch.

1. Set a Write breakpoint to the address indicated by TASK.CONFIG(magic) and select the trace

action TraceEnable.

& B::Break.Set o -2

(| address [expression

TASK.CONFIG(magic) «| (2] EHe

— options —implementation —
) Program [Exclude [ClTemporary
©Readwrite | | [T NOMARK [pisable achon —————|
© Read [7] DiSableHIT
| @ write - DATA

) default [[¥ advanced]
(Ok] [Add] [Delete] [Cancel]

Display the result.

[Trace] Probe Pef Cov eCos

| ¢& Configuration...

B CTS Settings...
ETM Settings...
Trigger Dialog

3
L Default
= Timing L4 All
fuf Chart b & Tracking with Source

& List Context Tracking Syst
ESavetracedata @ st en R e

E Load reference data ... Task Switches

Start and stop the program execution to fill the trace buffer.

Reset

A TR S

—— TRACE EMAELE

-000000007
351

-

-—— TASK = C033D8A0 helloloop
-0000000075 |
— TRACE ENABLE

D:02D4:C02AA4C0 wr-Tong C€O033D8A0 “\\wmlinux\kernel/sched\per_cpu__

rungueues+0x3ED <0.005us

) R:02D4:C020F570 exec Vywmlinux\kernel/sched'schedule+0x198 526.450us
7|//s/t/{/////r~/{//r 1/2//*/C/\x/{E/C/I]///

£ BsTraceList List. TASK DEFault =R
[ﬁ Setup...][I Goto...][F3Find...][i Chart]L | Profile]L MIPS][3 Mure][: Lesei
record run [address cycle [data |symbo [ti.back [
-0000000109 D:0000:C02AA4C0 wr-Tong COZEF050 \\wmlinux\kernel/sched\per_cpu__rungueues+0x3ED <0.005us -
— TRACE ENABLE =

-0000000090 | | Ywmlinux\kernel /sched'schedule+0x1 :v

3514 |2 //////////// /{//////// /// -
T F== TASK = CDJJDDSD s1eve
-0000000089 D:0000:C02AA4C0 wr-long CO33D060 \\ \kernel/schedyper_cpu__rungueues+0x3ED <0, 005us

-0000000060
3514
ri2,#0x3l

Ywmlinuxikernel/sched'\schedule+0x1

///////////(/// ////////// ///

F

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

127

Context ID Packet (OS+MMU)

A Context ID packet is generated when the OS updates the Context ID Register (CONTEXTIDR) on a
process/thread switch.

Linux, in most cases, writes only the Linux Address Space ID (ASID) to CONTEXTIDR. This allows
tracking the program flow of the processes and evaluating of the process switches. But it does not provide
performance information on threads. In particular the idle thread can not be detected.

To allow a detailed performance analysis also on Linux threads, the Linux Address Space ID and the
Linux PID (each thread gets its own PID - despite the name) has to be written to CONTEXTIDR. The
swapper gets the PID -1.

Lauterbach provide a Linux patch, that takes care that Linux writes the required information to the Context
ID Register.

The information written via the Lauterbach patch to CONTEXTIDR is called TRACE32 traceid in the
following.

Linux PID ASID TRACE32 traceid

31 8 7 0

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 128

The generation of Context ID packets is disabled after an ETM reset, so it has to be enabled within
TRACE32.

ETM.ContextID 32 ; enable the generation of Context ID packets and
; inform TRACE32 that the Context ID is a 32-bit

; value

If you use the Lauterbach Linux patch, you have to do the following setting within TRACE32:

TASK.Option THRCTX ON

The TRACER32 traceid for the processes/threads can be checked in the TASK.List window.

o B:TASK List = | = ==
magic |name id space traceid [sel stop
CO4EBB58 |swapper 0. 0. | 0x0000 [FFFFFFOO | / - -
DCB3C000 |[init 1. 1. | 0x0001 |00000101 * [1

DCB3C300 |kthreadd 2. 0. | 0x0000 |00000200 -
DCE3CE00 |ksoftirgd/0 3. 0. | 0x0000 |00000300 -
DCE3CI00 |migration/0 4. 0. | 0x0000 |00000400 -
DCE3CCO0 |migration/1 5. 0. | 0x0000 |00000500 - =|
DCE3CFO0 |ksoftirgd/1 6. 0. | 0x0000 |00000600 -
DCB3D500 |events/0 7. 0. | 0x0000 |00000700 -
DCB3D800 |events,/1 8. 0. | 0x0000 |00000800 -
DCE3DE00 |khelper 9. 0. | 0x0000 |00000900 -
DCE3DEND |async,/mgr 12. 0. | 0xD000 |00000CO0 L] =
DCE3EL00 [pm 13. 0. | 0x0000 |00000DO0 -
DCE3E400 |irg/104-serialo 44, 0. | 0x0000 |00002C00 -
DCE3E7O0 |irg/105-serial. 46. 0. | 0x0000 |00002E00 -
DCE3EADD |irg/l06-serial. 48. 0. | 0x0000 |00003000 -
DCE3EDOD |irg/102-serials 50. 0. | 0x0000 |00003200 -
DCE3F000 [sync_supers 209. 0. | 0xD000 |0000D100 L]
DCB3F300 |bdi-default 211. 0. | 0x0000 |0000D300 -
DCB3F600 |kblockd/0 213. 0. | 0x0000 |0000D500 -
DCB3FI00 |kblockd/1 214, 0. | 0x0000 |0000D600 -
DCE3FCO0 |omap?_mcspi 221. 0. | 0xD000 |0000DDO0 L]
DC97C000 khuEd 232. 0. | 0x0000 |0000ESOD -
DC97C300 |kseriod 235. 0. | 0x0000 |0000EBOOD -
DCO7CE00 [twl6030-1rg 243, 0. | 0x0000 |0000F300 - -
4 ¥

magic Address of process descriptor task_struct

id Linux Process IDentifier (PID)

space Identifier for virtual address space (decimal and hex), TRACE32

space ID
traceid Information exported via Context ID packet

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing |

129

Example:

1. Start and stop the program execution to fill the trace buffer.

2. Display the result.

| Trace | Probe Ped Cov eCos
W Configuration...
B CTS Settings...
ETM Settings...

Trigger Dialeg...

Trigger Definition

= Timing L4

g Save trace data ...
E Load reference data ...

Reset

il Chart Y2

Default

All

Tracking with Source

& List Context Tracking System

Task Switches

BuTrace.List List. TASK DEFault

[W Setnp...][¥ Goto...]

#3Find... |[vl chart |[B Profile || H MIPS][‘More][' Lesd bk
ti.bac |

ress lcycle |data Isym o

record run |add
mcr

|
-0001610027
-0001610016

#ifdef

117
| 1dr

calld

4

45 ENDPROC(cpu Wi _proc_ 1n1t)
14

il 1n?
* actua] y changed.

=|
pl5,0x0,r0,c13,c0,0x1 ; pl ,c0,1 (asid) -
B

<0.005us
ux‘\kernel/sched\schedule+0x35C 0.480us 3

owner DC227900
NR:02C3:C0397004 ptrace

CONFIG_SMP . . :
/* check for possible thread migration =/

if (!cpumask_empty(mm_cpumask(next)) &&
r3,[r5,#0xl§c{

the CPU specific function when the mm hasn't

130

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

Belated Trace Analysis

The TRACE32 Instruction Set Simulator can be used for a belated Linux-aware trace evaluation.

Example for the PandaBoard

1. Perform the following steps to save the relevant information within TRACES32.

; save the trace contents
Trace.SAVE belated linux.ad

; save the whole Linux address range - code and data area
Data.SAVE.Binary image.bin ASD:0x80000000--0x9fffffff

; generate a script that re-configures the important MMU registers
OPEN #1 MMU Register.cmm /Create

WRITE #1 "PER.SET Cl5:0x1 %Long " Data.Long(Cl5:0x1)

WRITE #1 "PER.SET Cl5:0x2 %Long " Data.Long(Cl5:0x2)

WRITE #1 "PER.SET Cl1l5:0x102 %Long " Data.Long(C15:0x102)

CLOSE #1

2. Set up the TRACE32 Instruction Set Simulator for a belated Linux-aware trace evaluation.

RESet

; select the OMAP4430 as target chip
SYStem.CPU OMAP4430

; Extends the address scheme of the debugger to include memory
; spaces
SYStem.Option.MMUSPACES ON

; establish the communication between TRACE32 and the TRACE32
; Instruction Set Simulator
SYStem.Up

; set the important MMU register
DO MMU Register.cmm

; load the binary file you saved before
Data.LOAD.Binary image.bin ASD:0x80000000--0x9fffffff

; load the Linux symbol and debug information
Data.LOAD.El1lf vmlinux /NoCODE

; specify MMU table format

MMU.FORMAT linux swapper pg dir 0xc0000000--O0xdfffffff 0x80000000
TRANSlation.COMMON 0xc000000--Oxfffffff

MMU.SCAN ALL

TRANSlation.ON

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 131

; configure the Linux-awareness
TASK.CONFIG ~~/demo/arm/kernel/linux/linux-<version>.x/linux.t32
MENU.ReProgram ~~/demo/arm/kernel/linux/linux-<version>.x/linux.men

HELP.FILTER.Add rtoslinux

; load the saved trace file
Trace.LOAD belated_ linux.ad

; load the symbol and debug information for the running processes
&address_space=TASK.PROC.SPACEID("sieve")
Data.LOAD.Elf &address_space:0 /NoCODE /NoClear

; display the trace listing
Trace.List List.TASK DEFault

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 132

Specific Write Access vs. Context ID Packet

Specific Write Access Context ID Packet

Requires an ETM that allows to export Data Requires an ETM that allows to export Context
Address and Data Write Value information ID Packets

No support from the OS required Requires support from OS and/or patch

ETM can be advised to only generate trace Context ID information is only exported in
information on the specific write access conjunction with the instruction trace

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 133

Task Statistics

The following two commands perform a statistical analysis of the task/process/thread switches:

Cov eCos Window Help
& Perf Configuration...

E| Perf List

E| Perf List Dynamic

Function Runtime
Distribution
Duration Ato B

Distance trace records

* v v v

Task Function Runtime
Task Status

Reset

Prepare

M Show as Timing
| ¥ Tracking with Trace List

Ir

= | B:Trace STATistic. TASK |-
(& setup... | iii Groups... | 2 Config..][J Detailed || {E] Nesting | i Task Chart| Bl Tesk Rofie || @ Init |
tasks: 11. total: 132.677s
range [total |min |max avr count ratio¥ (1% 2% I
Cunknown) 0.000us 0.000us - 0.000us 0. 0.000% -
Thread 0 2.626s 3.084ms 34.681ms 3.423ms 767. 1. 97 8% |we—
main| 29.005s 4.188ms 5.700s 39.038ms 743. 21, 861 |——
Thread 1 2.535s 3.05%ms 35.751ms 3.357ms 755. 1. 910% |e—
Thread 2 2.608s 3.05%ms 35.184ms 3.369ms 774, 1. 965% |e—
Thread 3 2.656s 3.073ms 35.322ms 3.379ms 786. 2. 001% |e—
Thread 4 2.537s 3. 084ms 36.046ms 3.415ms 743. 1.912% |we—
Thread 5 2.564s 3.060ms 35.691ms 3.383ms 758. 1.932% |me—
Thread 6 2.576s 3.059ms 35.732ms 3.372ms 764, 1.941% |e—
Thread 7 2.584s 3.070ms 39.080ms 3.391ms 762. 1.947% |e—
Idle Thread 82.987s 5.396ms | 179. 354ms 31.435ms 2640, 62, 54 8% |—
JER 1 | +
Cov eCos Window Help |
& Perf Configuration... |
E| Perf List
E| Perf List Dynamic
Function Runtime L4
Distribution L4
Duration Ato B L4
Distance trace records L4
Task Function Runtime j Show Numerical
Task Status
| ¥ Tracking with Trace List
Reset L

¥y B:Trace. CHART.TASK

[W Setup...]miGroups...][==
(unk;g\%ﬂ_

Thread
mai

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Idle Threa

[E=N Noh/)

Config...[F¥ Goto... [#) Find...
|450s -125.400s

J[4 10 |[»4 Out][MM Full]
-125.350s -125.300s

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 134

Ended Processes (OS+MMU)

When a process is ended the process information is removed from the process table. Hereby the information
on the virtual address space of the process is lost. This is the reason why TRACE32 can not decompress
the trace information for ended processes.

£ [B:Trace.List EI@
(& setup...|[1% Goto... || #3Find... || P chart || H Profile || EEMIPS |[# More|[X Lesg
record run |address cycle |data symbol ti.back i
-0180575278 NR:0000:4000B784 unknown <0.005us -
-0180575268 NR:0000:4000B784 unknown 1.160us
-0180575267 NR:0000:4000B784 unknown <0.005us -
-0180575266 NR:0000:4000B784 unknown <0.005us
:0000: . -
~0180575262 NR:0000:4000B784 wunknown 1.480us [
-0180575261 NR:0000:4000B784 unknown <0.005us
-0180575260 NR:0000:4000B784 unknown <0.005us
-0180575259 NR:0000:4000B784 unknown <0.005us
-0180575256 NR:0000:4000B784 unknown 1.440us i

Instructions of ended processes are marked as unknown in the trace, since TRACE32 has no access to the
source code which is required to decompress the trace information.

Since the process table no longer contains the name for an ended process, its process/thread ID or its
TRACE32 traceid is displayed in the Trace.Chart/Trace.STATistic analyses.

#u] B Trace.Chart. TASK

(& Setup...]miGroups... (=8 Conﬁg....][I Goto... |[#3Find... |[4» In |[p4 Out|[M Full]

-4.017s

-4.016s -4.015s -4.014s

range [y

(unknown) ¥
contextid:0x4FEB0 MM
contextid:0x4FEEL AN

events,/0 4
kblockd/0k¥
kmmed Ay
ksoftirqd,/0RN
mmegd 4

shiy

contextid:0x4F682Hy

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

135

Context ID Comparator

If your target-OS updates the Context ID Register (CONTEXTIDR) on a task/process/thread switch and if

TRACE32 supports the Context ID for your OS, you can use the ETM Context ID Comparator to set up filter
and trigger.

Before you can use the Context ID Comparator, you have to enable the usage of the Context ID within

TRACE32.
Break | Run CPU Misc Tr
g-- Fiolo e
éylmplementatlon...
2K Delete All [7] CONVert
VarCONVert
ZF Trigger Bus... D var E

E o OnChip Trigger...

ContextID

Trigger Reset

[rq

[] DABORT
[C]PABORT
[Clswi

[Tl unDEF
RESET

[7] stepVector

Break.CONFIG.UseContextID ON

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 136

Example: Advise the ETM to only generate trace information if the process sieve executes an instruction
within the function thumbee_notifier.

1. Set a Program Breakpoint to the address range of the function thumbee_notifier and select the
trace action TraceEnable. Additionally select the process sieve in the TASK field.

2.
3.

+— address [expression
thumbee_notifier HLL
-~ type ——— [~ options —implementation —
® Program [C] Exclude [ITemporary
©) ReadWwrite [C] NOMARK [pisable Cadion]
© Read [C] DISableHIT
) Write — DATA
O default [v] [A advanced |
(Ok] [Add] [Delete] [Cancel]
— memeory [register [var
() ProgramPass P HLL
) ProgramFail
() MemonfeadWiite | |- TASK COUNT ————
©) MemoryRead "sieve" - ’7 1.
©) MemoryWrite
RegisterReadWiite | — COMNDition
RegisterRead HLL
RegisterWrite — CMD
- RESUME

Start and stop the program execution.

Display the result.

| B:Trace.List List. TASK DEFault [= | B |23
| setup...|| i Goto... || #3Find... || A Chart]@ Profile || HH MIPS][v More|[X Less
record run |address cycle |data symbo ti.back 1
task: sieve (C1485800 él
-0000000484 (1 owner C1485800 -
-0000000461 |1 NR:02C1:C0038F78 ptrace “Wovm T4 nux thumbee'\ thumbee_notifier 93. 040us
; E
?tat'ic int thumbee_notifier(struct notifier_block *self, unsigned long cmd, void *t) »
41
1 | cpy riz,ri3
1 | push frii- rl2,rld,pc}
1 | sub ril,ri2, £0x4
struct thread_'lnfo *thread = t;
44 switch (cmd) {
1 | cmp rl,#0x0
case THREAD NOTIFY_ FLUSH
46 thread-=thumbee_state = 0; -
4 [3

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

137

Function Run-Times Analysis

All commands for the function run-time analysis introduced in this chapter use the contents of the trace
buffer as base for their analysis.

Software under Analysis (no OS, OS or OS+MMU)

For the use of the function run-time analysis it is helpful to differentiate between three types of application

software:

1. Software without operating system (abbreviation: no OS)

2. Software with an operating system without dynamic memory management (abbreviation: OS)
3. Software with an operating system that uses dynamic memory management to handle

processes/tasks (abbreviation: OS+MMU). If an OS+MMU is used, several processes/tasks can
run at the same virtual addresses.

Flat vs. Nesting Analysis

TRACES2 provides two methods to analyze function run-times:
J Flat analysis

. Nesting analysis

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 138

Basic Knowledge about Flat Analysis

The flat function run-time analysis bases on the symbolic instruction addresses of the trace entries. The time
spent by an instruction is assigned to the corresponding function/symbol region.

i) BuTrace.List /Track EI
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || EEMIPS |[# More|[X Lesg
record run |address cycle |data symbo ti.back i
156 (Fintptr)++; -~
= 1dr rl,[r0] =
-0188026394 D:08007FES rd-long 00000020 “\‘demo_r4Global'_end+0x6328 <0.005us -
T:08000052 4 c1+0 [1]
adds rl,#0x1 -
str rl,[r0] -
4 I3
MB::Trace.Chart.stboI_a'Track | = | =] | 3
(& Setup...]miGroups... (5% config...][1} Goto... |[#i Find... |[4» In |[»4 Out)[MM Full]
30505000s -6.730504500s -6.730504000s
address iy | | |
FuncZ 4|))) ________I§ .]] -
i I
mai iy
funcZaly|) -
R ;
£| B:Trace.STATistic.sYmbol [@] =
(& setup...[iii Groups... | 2 Config...| ¥ Goto... |[=|Detailed|| =|TREE |[fl Chart || B Profile || @ mit |
items: 29. total: 6.730s samples: 93454324,
address [total min max avr count ratio¥ [1%'
0.000us 0.000us - 0.000us 0. 0.000% -
main | 17.953ms 0.000us 2.955us | 17.953ms 1. 0.266% [+ 1
func2 7.483us 0.185us 6.095us 7.483us 1. <0.001% |« —
funcl 3.690us 0.185us 1.475us 0.527us 7. <0.001% |+ -~
4 | n F
funct funct
min max
| main + main + main
funci funci funci func1 func

A func2 func3 A A func3 A

Entry of func1 Entry of func1
Exit of func1 Exit of func1
min shortest time continuously in the address range of the

function/symbol region

max longest time continuously in the address range of the
function/symbol region

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 139

Basic Knowledge about Nesting Analysis

The function nesting analysis analyses only high-level language functions.

| BuTrace.List /Track [& [&]
[B sep...][n. Goto...|[#3 Find... || ff Chart || & More || T Less |
record |[run |address lcycle |data |symbol |t1.back =
0000000149 R:000020B0 ptrace armlaha_Ti_aifimain+0x38 0.830us o
585 Func2(l; |E|
Ox10E4 -
wold TuncZi) -
160 |{
db A
P y b
E BuTrace.Chart.Func /Track El-'i
[& setup...][il Goups... [B8 Gonfg... [Goto.. [F1Find...][4 1n |[p-4.0ut] MM Full
Oms 2.275ms 2. 280ms 2.285ms 2.290ms 2.295ms 2. 300m= 2.|
range 1 1 1 1 1 1 -
] CPGD‘E)HH e e —pa
a1t mainf -
z i Func2 iy o]
al ait funcipgy 000 N
mrE r

ﬂ B:Trace STATIstic.Func

[(=][=]==]

funcs:

(B sen.. (11 Goups... [58 £ G n Goto.. £ st al JE] Nesting| & Chare || @ mnt: |

i |

total: 12.238s %J
range [total min max avr count intern% [1% 2%
(root) 12.238s - 12.238s 12.238s - 0. 018% [+ ~
armlata_li_aif'main| 12.236s - 12.236s 12.236s 1.(0/1) 0.837% [+
al 33.695us 33.6895us 33.895us 33.695us 1. «<0.001% |+
a a 1_aitifuncl 3.047us 0.297us 0.593us 0.435us 7. <0.001% |+ i
4

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

140

funci

func2

interrupt_service1

In order to display a nested function run-time analysis TRACE32 analyzes the structure of the program
execution by processing the trace information to find:

1. Function entries
2. Function exits
3. Entries to interrupt service routines (asynchronous)

An entry to the vector table is detected and the vector address indicates an asynchronous/hardware
interrupt.

The HLL function started following the interrupt is regarded as interrupt service routine.

If a return is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembly interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create

FENTRY/FEXIT).
4, Exits of interrupt service routines
5. Entries to TRAP handlers (synchronous)

6. Exits of TRAP handlers

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 141

| main main main
funci funci func1 funci funci
A func2 funcd] A A func3 A
< func1 max - < func1 min -
Entry of func1 Entry of func1
Exit of func1 Exit of func1

min shortest time within the function including all subfunctions and traps
max longest time within the function including all subfunctions and traps
Summary

The nesting analysis provides more details on the structure and the timing of the program run, but it is much

more sensitive then the flat analysis. Missing or tricky function exits for example result in a worthless nesting
analysis.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 142

Flat Analysis

It is recommended to reduce the trace information generated by the ETM to the required minimum.

J To avoid an overload of the ETM port.
. To make best use of the available trace memory.
J To get a more accurate timestamp (no-cycle accurate mode).

Optimum ETM Configuration (No OS or OS)

Flat function run-time analysis does not require any data information if no OS or an OS is used. That's why
it is recommended to switch the broadcasting of data information off.

ETM.DataTrace off

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 143

Optimum ETM Configuration (OS+MMU)

Virtual address: 0x97E4

The virtual address exported by the ETM
is not enough to indentify the function/ 02C1: Ox97E4
symbol range.)

sieve

The Address Space ID is required!

02C2: Ox97E4 func1+0x6

TRACE32 Symbol Database

If an target operating system is used, that uses dynamic memory management to handle processes, the
instruction flow plus information on the Address Space ID is required in order to perform a flat function run-
time analysis.

The standard way to get the Address Space ID is to advise the ETM to export the instruction flow and the
process switches. For details refer to the chapter OS-Aware Tracing of this training.

Optimum Configuration 1 (process switches are exported in form of a special write access):

Break.Set TASK.CONFIG (magic) /Write /TraceData

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

ETM.ContextID 32

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 144

Dynamic Program Behavior

Look and Feel (No OS or OS)

Push the Profile button to get information on the
dynamic behaviour of the program

£ BeTrace List EI

[setup...|[12 Goto... |[#4Find... |[Adchart || B Profile | B MPS |[4 More| X Lesq

record run |address cyc'le ata symbol ti.back i
0966381295 [T: OBOOOSFZ ptrac vdemo_rdhdemo'\s51evet+0x6 <0.005us .
for (i=0; 1 <= SIZE ; flags[i++] = TRUE) ; =
617 =
= cmp r2,#0x12
[ble 0x8000904 -
rb 0xB80008F8
for {1 =0; i == 5IZE ; flags[i++] =TRUE) ; Lo |
617 -

-

80.04-

60.07

40.0

20.0

v o« [

M B::Trace.PROfileChart.sYmbol [@] =]
& Setup... || iil Groups... || 3% Config...|| I Goto... 3‘3 Find... || 4» In_]LN out|[MM Full][# n |[X out|| F Full][Fine]@
10.000us [l (other) [l main func2 M funcl [] Func2a b
250.000us 300.000us 350.000us 400.000u
ratio | 1 1]
100.0 . |

b4 (m| s

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

145

Look and Feel (OS+MMU)

Push the Profile button to get information on the
dynamic behaviour of the program

£ BuTrace.List List. TASK DEFault o -2
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || BEMIPS |[% More|[X Lesg
record run |address lcycle |data |symbol [ti.back |
add rl13,rl3,#0x19C o~
Eop {r4-r8,r10,ri14} =
X rl4 b
-0016598555 NR:02C1:000097E4 ptrace \\sieve'\sieve'\main+0x21C 0. 240us
626 count = sieve(); -
L bl 0x9808 B
}
char flags[SIZE+1];
int sieve() /* sieve of erathostenes */
635 [{
= ocpy ri2;ril3
|— push {ril-r12,r14,pc} -
4 3

M B::Analyzer.PROfileChart.s¥mbol e = ==
&2 setup...|[ii Groups... |38 Config...|[3 Goto...]L}j Find... || 4» In |[pd Out [KN Full[# In |[X out| F Full] Fine |[coarse|
10.000us [l (other) Il omapd_enter_idle [l getnstimeofday
i -80.000s -60.000s -40.000s -20.000s 0.
ratio 1 1 1 1 L=
100.0

> [»

80.0

60.0

40.0

20.0

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 146

Look and Feel (OS+MMU, Ended Process)

M| B:Trace. PROfileChart.s¥mbol 4 o -2
(& Setup..-][iliGroups.;J[ll Config...)[I Goto... JL}} Finds |[4» In |(»4 Out [KN Full [#][X out)[E Fu
10.000us Il (other) I omapd_enter_idle [l getnstimeofday
_ |.000s -4.000s -3.000s -2.000s -1.000s 0.0
ratio || 1 1 1 1 I
100.0 "

80.0

60.0

C-T: -2.968s

40.0 , C-Z: 39.847s
scale: 100.000ms
interval: 10.000us
20.0 item: (UNKNOWN)

UNKNOW instructions are separately named in the Trace.PROfileChart.sYmbol analysis.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 147

More Details

To draw the Trace.PROfileChart.sYmbol graphic, TRACE32 PowerView partition the recorded instruction
flow information into time segments. The default segment size is 10.us.

For each time segment rectangles are draw that represent the time ratio the executed functions consumed
within the time segment. For the final display this basic graph is smoothed.

-

14 B:Trace PROFileSTATistic.sYmbol /Track == M B:Trace PROfileChart.s¥mbol /Steps (== ==
(& Setup...]miGroups... (22 config...][¥ Goto... || #1Find... |[E] Detailed][2 Setup... || iii Groups... |28 Conﬁg...]Lﬂ, Goto... || #1Find
items: 29. total: 34.65 10.000us [l (other) [l main
s 240.000us
address | 224.685us 244.685us | ratio | 1
0.000us 0.000us 0.000us | « 100.0 -
main 0.278us 2.958us 0.275us |~ =
func2 0.248us 0.000us 0.000us =
funcl 0.000us 0.000us 0.000us 90.0
func2a 6.275us 0.000us 0.000us -
funcZb 3. 200us 1.508us 0. 000us
: e func2d 0. 000us 5.535us 0. 000us 80.0
_call_wia_r0 0.000us 0.000us 0.000us
] func3| 0.000us | 0.000us| 0.000us |= 70.0 func2d
funcs 0.000us 0.000us 1.480us
funcs 0.000us 0.000us 8.245us
func? 0.000us 0.000us 0.000us 60.0
funcl0 0.000us 0.000us 0.000us
funcll 0.000us 0.000us 0.000us
funcl3 0.000us 0.000us 0.000us 50.0
funcl4d 0.000us 0.000us 0.000us ||
funcls 0.000us 0.000us 0.000us
funclé 0.000us 0.000us 0.000us 40.0
funcl? 0.000us 0.000us 0.000us
funcl8 0.000us 0.000us 0.000us
funcl9 0.000us 0.000us 0.000us 30.0
func20 0.000us 0.000us 0.000us | =
A gl L
20.0

10.0

v o« [

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

148

H| B::Trace PROfileChart.sVmbol == =]

& Setup... || il Groups... || 3% Config...|| I} Goto... }3 Fmd [¢ n][N Out] MM Fu £ n || X out| Z rul] Fine |Coarse

100.000us [l (other) [main unc2a [] funcZJ ‘
0= -6.100s -6. 0005 -5.900s -5.800s
ratio |] 1 1 1
100.0 é‘
80.01| PSP C-T: 60425 B
B C-7: 10.434s
scale: 10.000ms
60.0 interval: 100.000us
| itern: sieve
40.0 '
20.0
0.0 |
< m] v« [am b
Fine Decrease the time segment size by the factor 10
Coarse Increase the time segment size by the factor 10

The time segment size can also be set manually.

Trace.PROfileChart.sYmbol /InterVal 5.ms ; change the time
; segment size to 5.ms

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 149

Color Assignment - Basics

J The tooltip at the cursor position shows the color assignment and the used segment size
(InterVal).
| B:Trace.PROfileChart.sYmbol /InterVal 5.us EI@

(& Setup..-“iliGroups.;][ll Conﬁg...]Lﬂ, Goto... || #3Find... || 4» I.n_JLN out/[MMFull] £ 1n [X out|EF
5.000us [l (other) [main W func? W funcl B func?a
. 0.000us 240.000us 260.000us 280.000us 300.
ratio| | 1 1 1 (=

100.0

80.0

C-T: 222.760us
C-7: 12930s

scale: 10.000us
interval: 5.000us
item: funcZa

60.0

40.0

20.0

. Use the control handle on the right upper corner of the Trace.PROfileChart.sYmbol window to
get a color legend.

E B::Trace.PROfileChart.s¥Ymbol /InterVal 5.us EI@
[setup...|| iii Groups... |[38 Config...][1% Goto... |[#4Find... |[4» In |[»4 Out)[MM Full][% 1n || X out)[Z Full][Fine][
C-T: +0000001152 238.760us | C€-Z: +12.930s scale: 10.000us
(other) main func? funcl
func2a funcZb func2d _call_wia_r0
func3 funcs funcs func?
5.000us funclo B funcll funcl3 funcl4
0.000us 240.000us 260.000us 280.000us 300.000us Control

e

handle

y 4] D

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 150

Color Assignment - Statically or Dynamically

-

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

M| B: Trace PROfileChart.s¥mbol (o)==
& setup... || il Groups... || 3% Config...|| I Goto... }; Fmd [4@ n][N out|[MM Fu # in || X out|| F Full][Fine |[Coarse]
100.000us [l (other) [main funcl unc2a [] funch ‘
0s -6.100s -6.000s -5.900s -5.800s
ratio | 1 1 1 |
90.01¢ g

@ OFF [Tl windows @ FixedColors
(©) Nesting (©) Atemating@lors
©) GROUP
() Address
() s¥mbol

[l Al windows

FixedColors Colors are assigned fixed to functions (default).
Fixed color assignment has the risk that two functions with the same
color are drawn side by side and thus may convey a wrong
impression of the dynamic behavior.

AlternatingColors Colors are assigned by the recording order of the functions

repeatedly for each measurement.

Trace.PROfileChart.sYmbol [/InterVal <time>]

Trace.PROfileSTATistic.sYmbol [/InterVal <time>]

Trace.STATistic.COLOR FixedColors | AlternatingColors

Overview on the dynamic behavior
of the program
- graphical display

Overview on the dynamic behavior
of the program

- numerical display for export as
comma-separated values

Color assignment method

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 151

Function Timing Diagram

Look and Feel (No OS or OS)

TRACES32 PowerView provides a timing diagram which shows when the program counters was in which
function/symbol range.

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window

i) BuTrace.List EI@
(& setup...][13 Goto... [#1Find... |[A~ Charttg@ profile || HE MIPS |[# More|[X Lesd
record run |address cyclely |data symbo ti.back i
strb r4,[r0,r3] o~
+0417736897 D:08001CE6F wr-byte 0.740us (g7
+0417736900 T:0800092A ptrace “\demo_r4‘demo'sieve+0x3E <0.005us
| adds r3,r3,r7 o
629 anzahl++;
| b 0x5000920
625 L e |
= cmp r3,#0x12 -
4 13

#u] B:Trace.Chart.sYmbol

[E=N Hoh/

[setup... || 1ii Groups... |[38 Config...|[¥ Goto... |[$ Find.

.| 4» 1n |[p4 Out|[n Full]

address i

00us

240.000us

250.000us
|

260.

000us 270.000u

Ak

mai n

func2 4

funcl 4y
func2aly
func2by
func2dh
_call_wia_rOuy
func3 i

func5 i

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

152

Look and Feel (OS+MMU)

Pushing the Chart button in the Trace.List window
opens a Trace.Chart.sYmbol window

£ BTrace.List List. TASK DEFault =N Eeh=
(& setup...|[13 Goto... || #3Find... || P chart || B Profile || BEMIPS |[% More|[X Lesg
record run |address cycle |data symbaol ti.back i
add rl13,rl3,#0x19C -
Eop {r4-r8,r10,ri14}
X rl4 -
-0016598555 NR:02C1:000097E4 ptr \\sieve'\sieve'\main+0x21C 0. 240us
626 count = sie -
it 0x9808
char flags[SIZE+1];
int sieve() /* sieve of erathostenes =/
635 |{
= ocpy ri2;ril3
|— push {ril-r12,r14,pc} -
4 3

M B::Trace.Chart.s¥Ymbol

(& setup... || i Groups.. | 2 Config...][(4 Goto... |[#3 Find... |[4 1n |[»4 Out][M Full]
-84.030358000s

-84.030356000s

«mr o«

address 4 | L I
Rl [____]]] [_] -
_raw_spin_lock_irgsavesy I 1| | 1
__raw_spin_lock_irgsave i 1 - 1 »
_clear_bit_lek) 1
raw_spin_lock_irqgiy il] | Il
__raw_spin_lock_irqghy 1 [|
_raw_spin_unlock_irqiy I n 1
sys_nanos leep i]]
ret,fz'ast,sysca'! ﬁ] 4y | .

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 153

Look and Feel (OS+MMU, Ended Process)

¥y B:Trace.Chart.sYmbol EI@
(& setup... | iii Groups... (== Conf“g J[3 Goto... || #3Find... || 4» In][k« out][M Full]
-2.452878500s -2.452878000s -2.452877500s
address iy | |
CUNEKNOWN) <) -
Ll __ I}
omapd_enter_idlekHy [|
getnstimeofday M n
omap_32k_sync_32k_readHH [
__aeabi_1TsrqH [B _
set_normalized_timespecy [] _
__irg_swvchH []
do_local_timerfy _ -
fm] v o« b
£ | BrTrace. STATistic.s¥Ymbol
& setup... || iii Groups... |38 Config...|[(¥ Goto... |[E]Detailed|| E]TREE || M chart || B Profile || @ Init
items: 1242 total: 5.031s samples: 66937198.
address [total min max avr count ratio¥ [1% 2% E—
(UNKNOWN) 2.988s 0.023us 7.622ms 2.988s 0. 59. 387% |e——
getnstimeofday 1.252s 0.000us | 68.479ms 4.743ms 264. 24.886%
omap4_enter_idle | 333.925ms 0.000us 18.261ms 2.530ms 132. (0/1) 6. BI0Y | ———
_raw_spin_unlock_irgrestore | 291.856ms 0.000us 91.302ms | 215.551us 1354. 5. 8005 |m—
12x0_cache_sync | 143.704ms 0.000us | 60.158ms | 292.081us 492. 2.856%
ehci_work &.854ms 0.000us | 163.220us | 163. 960us 54. 0.175% [+
omap_32k_sync_32k_read 1.010ms 0.000us 1.100us 0. 266us 3796. 0.020% |+
ktime_get | 935.45%us 0.000us 0.641us 0.35%us 2609. 0.018% +
932.630us | -0.113us | 357.558us | 932.630us 0. 0.018% [+
hrtimer_interrupt | 468.156us 0.000us 0. 593us 0.493us 949, 0.009% |+
update_wall_time | 326.066us 0.000us 0.636us 0.753us 433. 0.006% |+
] m D

(UNKNOWN) instructions are separatly listed in the analysis.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

154

Did you know?

#u| B:Trace.Chart.sYmbol [=|[E ==

[& seup... (i Goups... || 28 Corfiy... ({3 Goto...)[33 Find... |[4» In][»40ut MM Ful]
2.38 2. 400ms 2.420ms 2.440ms 2.460ms 2.480ms
1 1

=
L8

' L] L
_dadd i [y R N
_ fp_addsub_common & BB - [

_ fp_e2d& I u . m
_d1s§ L]
_dmuT &8 N | |

== Chart Config EI@
Sort Sort visible
@ OFF *) Global
*) Nesting © Window —ff—— Select Window
_ GROUP Sort core
_) Address @ CoreTogether
~) s¥mbol _) CoreSeparated
_ InternalRatio
_ TotalRatio
_! Ratio
) Count
| TotalMAX
_! RatioMAX

[l Al windows

If Sort visible/Window is selected in the Chart Config window, the functions that are active at the selected
point of time are visualized in the scope of the Trace.Chart.sYmbol window. This is helpful especially if you
scroll horizontally.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 155

Numeric Analysis

Analog to the timing diagram also a numerical analysis is provided.

£ | B:Trace.STATistic.sYmbol EI@
(& setup...)[iii Groups... |2 Config...|[¥ Goto... ||=|Detailed|| E|TREE |[il Chart || B Profile || @ mit |
items: 29. total: 14.974s samples: 207931632.
address |[total min max avr count ratio¥% [1% i
0.000us 0.000us - 0.000us 0. 0.000% o
main 36.096ms 0.000us 2.765us 36.096ms 1. 0.241% |+
func2 7.658us 0.185us 6.090us 7.658us 1. <0, 001% |+ -
funcl 3.387us 0.180us 1.480us 0.484us 7. =0. 001% |+ 1
func2a 6.275us 6.275us 6.275us 6.275us 1. <0.001% |+
funcZb 4. 800us 4. 800us 4. 800us 4. 800us 1. =0. 001% |+
func2d 5.725us 5.725us 5.725us 5.725us 1. =0. 001% |+
_call_wia_r0 0.093us 0.093us 0.093us 0.093us 1. =0. 001% |+
func3 0.123us 0.123us 0.123us 0.123us 1. <0.001% |+
funcs 0.998us 0.998us 0.998us 0.998us 1. <0.001% |+
funcs 17.078us 17.078us 17.078us 17.078us 1. <0.001% |+ -
4 m »
survey
item number of recorded functions/symbol regions
total time period recorded by the trace
samples total number of recorded changes of functions/symbol regions
(instruction flow continuously in the address range of a
function/symbol region)

function details

address function/symbol region name
(other) program sections that can not be assigned to a
function/symbol region

total time period in the function/symbol region during the recorded time
period

min shortest time continuously in the address range of the
function/symbol region

max longest time continuously in the address range of the
function/symbol region

avr average time continuously in the address range of the

function/symbol region

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

156

count number of new entries (start address executed) into the address
range of the function/symbol region

ratio ratio of time in the function/symbol region with regards to the total
time period recorded

Pushing the Config button provides the possibility to specify a different
sorting criterion for the address column or a different column layout.
By default the functions/symbol regions are sorted by their recording order.

-

£| B:Trace.STATistic.sYmbol [@] =]
(& setup...|[iii Groups... | 3% Config...| [Goto... |[=|Detailed|| £[Tree || A chart |[B Profile |
items: 64. total: 3.750s samples: 239461451
address |[total min max avr count ratio¥% [1% |
(other) 0.038us 0.038us 0.038us 0.038us 0. <0.001% [+ o~
main 17.027ms 0.000us 0.563us 17.027ms 1. 0.454% |+ E
func2 1.064us 0.049%us 0.395us 1.064us 1. <0.001% |+
funcl 1.635us 0.000us 0.960us 0.234us 7. <0.001% |+
func2a 2.244us 2.244us 2.244us 2.244us 1. <0.001% |+ E
funcZb 0.218us 0.218us 0.218us 0.218us 1. =0. 001% |+
Fug:é;lc 1.358us 0.000us 0.813us 1.358us 1. <0.001% |+
— t
__dflt_normalise| &R Statistic Config =]]
_Fp_addsub_cag;gg Sort Sort visible available selected
_fp_s%d @ OFF @ Global NAME Total
dlsp P CORE MIN
f norig,ul : Nesting ' Window TotalMIN MAX
‘Fp_mETt tomob-| | © GROUP Sort core | | [Totalmax AVeRage
__fp_mult_fast_common| | © Address 1@ CoreTogether RatioMIN Count
func2d| | - - RatioMAX Ratio
func4| | © sYmbol © CoreSeparated | | g0)1y BAR.LOG
_mgmcp)é' ©) InternalRatio CountRatio
unc = : CountBAR.LOG
() TotalRat -
funcs| | TORERARG CountBAR.LIN
ElEato CountMIN '
~) Count CountMAX
) TotalMAX
() RatioMAX
[Tl Al windows
Trace.STATistic.sYmbol Flat function run-time analysis
- numerical display
Trace.Chart.sYmbol Flat function run-time analysis

- graphical display

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 157

Hot-Spot Analysis

If a function seems to be very time consuming, details on the run-time of single instructions can be displayed
with the help of the ISTAT command group.

| B:ISTAT ListFunc (===
& setup...|[Y coto... | EJust | + add |[5 Load... |[5E save... || @ mit |
address tree coverage |count time clocks
P:080007A0--080007DD ® Tuncll 32.258% 71230. 24.485ms 1567061. | »
P : 080007 DE--08000808 & funcl3 100. 000% 284920, | 170.284ms | 10898203
P:08000816--0800081F & tuncl5 lUO?ODO% 71230. 8.904ms 569840?
P:08000820--08000825 # funclb 100. 000% 71230. 4.452ms 284921. |[=
P:08000826-{0 0
P 108000838 i [BList P:0:800080C /ISTAT] [E=3 =R
Eg ggg gg: [M Step |[® over | next |[¢ Return|[¢ up || » Go [I Break |[I Mode | Find: arm.c
count clocks cpi addr/line |code label mnemonic comment
284920. 1139680, 33 477 return c+e+d;
284920. 284920. 00 ST:08000804 |1949 adds rl,r5,r6
284920. 569840. 00 ST:08000806 |9501 Tdr r0, [r13,#0x4]

284920. 284920. 00 5T:08000808 1508 adds r0,rl,r0

478 |} (3

L el el el
=]
=}

284920. 1139588. 1)
284920. 1139688. 00 ST:0800080A |BDFC pop {r2-r7,pc}
71230. 142460. 2.00 482 |{
71230. | 142460. | 2.00 ST:0800080C 0001 funcl4: movs rl,rd -
< | T 3
Preparation
Constant clock while recording
ETM.TImeMode CycleAccurate ; select cycle-accurate tracing
Trace.CLOCK 600.MHz ; inform TRACE32 about your

; CPU/core frequency

Changing clock while recording

; combine cycle accurate tracing and TRACE32 external timestamp
ETM.TImeMode CycleAccurate+ExternalTrack

A high number of local FIFOFULLs might affect the result of the instruction statistic.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 158

Processing

The command group ISTATistic works with a measurement database. The measurement includes the
following steps:

1.

The following commands are available:

N o o &M 0D

Enable cycle-accurate tracing.
Specify the core/CPU clock.
Clear the database.

Fill the trace memory.

Transfer the contents of the trace memory to the database.

Display the result.

(Repeat step 4-6 if required)

Trace.CLOCK <clock>
ISTATistic.RESet
ISTATistic.add

ISTATistic.ListFunc

List <address> /ISTAT

Specify the core/CPU clock for the trace evaluation.
Clear the instruction statistic database.

Add the contents of the trace memory to the instruction
statistic database.

List function run-time analysis based on the contents of
the instruction statistic database.

List run-time analysis for the single instructions.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 159

A detailed function run-time analysis can be performed as follows (ARM11 with ETMv3 as example):

ETM setup

~e

ETM.CycleAccurate ON ; switch cycle accurate tracing on

~e

general procedure

Trace.CLOCK 176 .MHz ; inform TRACE32 about your CPU
; frequency

ISTATistic.RESet ; reset instruction statistic data
; base

Trace.Mode Leash ; switch trace to Leash mode

Go ; start program execution

;WAIT !RUN() ; wait until program stops

Trace.FLOWPROCESS ; upload the trace information to

; the host and merge source code

IF Analyzer .FLOW.FIFOFULL()>6000.
PRINT “Warning: Please control the FIFOFULLS”

ISTATistic.ADD ; add trace information to
; instruction statistic data
; base

ISTATistic.ListFunc ; list hot-spot analysis

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 160

Look and Feel (No OS or OS)

= B:ISTAT.ListModule [ol= =]
(& setup...|[A Goto... || E|List || + Add || Load... [save.. || @ mit |
address tree coverage |count time clocks ratio cpi =
P:080000E0--D8000B0O7 arm 92.692% - 1.570s [119306940. | 97.554% | 1.56 | »
nore # Global -
1] 4 3
= B:ISTAT.ListFunc (o= =]
(& setup...|[A Goto... || Euist || + Add || Load... [save.. || @ mit |
address tree |coverage [count time clocks ratio cpi =
P:080008A8--080008AB ® func2s 100. 000% 50427. 1.327ms 100854. 0.082% | 1.00 -~
P:080008AC--080008AF ® func2é 100. 000% 50427. 2.654ms 201708. 0.164% | 2.00
P:080008B0--080008CF func2? 0.000% 0. 0.000us 0. 0.000% -
P:080008D0--08000931 ® func40 100. 000% 1. | 575.013us 43701. 0.035% | 2.05
P:08000932--08000967 # test_function 96. 296% 50427. 27.868ms 2117964. 1.731%| 1.08
P:08000968--080009A7 o s1eve . . 27684680. 1.27 =
P:080009A8--08000AF 3 = main 98.795% 1. 36.495ms 2773644, 2.267% | 1.25 [
P:08000AF4--08000B07 background 0.000% 0. 0.000us 0. 0.000% - i
4 [3
5] [B:List P:0x8000968 /ISTAT] = =& e
[Mo step |[M over || ¥ Next [Retun | @ up | P Go | M Break || BMode | Find: arm.c
count clocks cpi addr/line |code 1abel mremonic |comment Ly
50427,] 50427. 1 1.00] ST:0800096A (2000 movs r0,#0x0 -~
50427. 0. 0.00 712 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
50427. | 0. | 0.00| ST:0800096C (2100 movs rl,#0x0
50427. 50427. 1.00 712 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
50427. | 50427. | 1.00 | ST:0800096E [E0O4 b 0x800097A
958113. 6706791. 1.40 712 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
958113. 958113. | 1.00 ST:08000970 [2601 movs ro,#0x1
958113. 958113. 1.00 ST:08000972 (000C movs rd,rl
958113. 958113. 1.00 ST:08000974 [1C49 adds rl,rl,#0x1
958113. 2874339. | 3.00 ST:08000976 [4D6D Tdr r5,0x8000B2C
958113. 958113. | 1.00 ST:08000978 [552E strb ré,[r5,r4] 3
1008540. 1210301. 0.60 712 for (1 =0 ; i == SIZE ; flags[i++] = TRUE) ;
1008540. | 50427. | 0.05 | ST:0800097A (2912 cmp rl,#0x12 %

<

L}

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

161

Look and Feel (OS+MMU)

2C1:00009860--0000987 3 s1eve. C\644--645
1

£ | BAISTAT ListModule (===
(@ setup...|[1Y Goto... | Sltst | + add |2 load... [save.. | @ mit |
address tree coverage count time clocks ratio cpi L
none ext-proc -
P:0000:C038C6D4--CO3BCI9EF riv 0. 000us 0.000% -
none = rﬂ(ﬂ[i];’core
none & sysct]_net
P:0000:C038DE1C--C038E423 klist 0. 000us 0.000% -
none Global
P:02C1:00008350--00009937 sjeve 1.835ms 117427, 0.000% | 1.62
none Global =
P:02C2:00008384--000083E7 helloloop 0. 000us 0.000% - Lo
none = Global -
] P
| B:ISTAT ListFunc sieve (=@ =]
& Setup...][A Goto... || E|list || + Add][5 Load... | EZ Save... || @ Wit |
address tree time clocks ratio cpi =
P:02C1:00008350--00009957 E sieve 1.835ms 117427 0.000% | 1.62[.
P:02C1:00009808--000098FF = sieve 1.677ms 107348 0.000% | 1.50| —
P:02C1:00009808--00009817 sieve.c\629--635 7.444us 476. 0.000% | 1.23| =
P:02C1:00009818--0000981F sieve. c\636--639 3.722us 0.000% 1.23
P:02C1:00009520--00009853 sjeve. c\640--641 394.553us 25251 0. 000% l 33
2C1:00009854--0000985F sieve. c\642--643 29.688us 1900. 0. UUU%

271.172us 17355. |-

R Ao ooy S R e oA URIoD m“@[é]
[M Step][W Over][+ Next][JRetum][¢ up][b Go][11 Break] ¥ Mode] Find: sieve.c
count clocks cpi addr/1line code Tabel i |comment L
1843 17355. 1.88 645 if (flags[i 1) .
1843 3470. | 1.88 NSR:02C1:00009860 |E51E3020 1dr (e [r].]. #-0x20]
1843 3470. | 1.88 NSR:02C1:00009864 |ES9F2090 F‘Z,OXQBFC
1843 3470. | 1.88 NSR:02C1:00009868 |E/D23003 r3,[r2,+r3]
1843 3470. | 1.88 NSR:02C1:0000986C |E3530000 r3,#0x0 |
1843 3471. | 1.88 NSR:02C1:00009870 |0A000017 u 0x98D4
JEl [. 1

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

162

Analysis Details

= | B:ISTAT. ListFunc =n o <
(& setup... [@ Goto... || Efust][+Add][5 Load... |52 Save... || @ mit |
address tree coverage |count time clocks ratio cpi i
P:080008AC--080008AF ® funcZé 100. 000% 71230. 4.452ms 284920. 0.166% | 2.00| .
P:080008B0--080008CF ® func2? 0.000% 0. 0.000us 0. 0.000% -
P:080008D0--08000931 & func40 0.000% 0. 0.000us 0. 0.000% -
P:08000932--08000967 @ test_function 96.296% 71230. 46.745ms 2991660. 1.751% | 1.
P:08000968--080009A7 B sieve 100. 000% 71230, | 611.020ms | 39105270, | 22.894% | 1.
P:08000968--08000969 arm. ch6 100. 000% 71230. 3.339%ms 213690. 0.125% | 3.
P:0800096A--08000968B arm. ¢ 100. 000% 71230. 1.113ms 71230. 0.041% | 1.
P:0800096C--0800096D arm. ¢ 100. 000% 71230. 0.000us 0. 0.000% | 0.
P:0800096E--0800096F arm. ¢ 100. 000% 71230. 1.113ms 71230. 0.041% | 1.
P:08000970--08000979 arm. ¢ 100. 000% 1353370. | 148.025ms 9473590. 5.546% | 1.
P:0800097A--0800097D arm. ¢ 100. 000% 1424600. 26.711ms 1709520. 1.000% | 0.
P:0800097E--0800097F arm. ¢ 100. 000% 71230. 0.000us 0. 0.000% | O.
P:08000980--08000981 arm. ¢ 100. 000% 71230. 1.113ms 71230. 0.041% | 1.
4

address address range of the module, function or HLL line

tree flat module/function/HLL line tree

coverage code coverage of the module, function or HLL line

count number of function/HLL line executions

time total time spent by the module, function or HLL line

clocks total number of clocks spent by the module, function or HLL line

ratio Percentage of the total measurement time spent in the module,
function or HLL line

cpi average clocks per instruction for the function or the HLL line

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

163

List /ISTAT

; list instruction run-time
; statistic

= BuData.List P:0x22B0 /ISTAT
[M step |[M over || & Next |[« Retum|[& up || » Go |[B Break |[¥ Mode | Find:
count clocks cpi addr/1ine |code |Tabel |mnemonic
83137. 166360399. 11.4 684 for (i =0; i <= 5IZE ; flags[i++ 1 = TRUE } ;
83137. §3137. | 1.00 SR:000022B0 [E3AQDZ000 mov r2,#0x0
1664375, 1664375, | 1.00 SR:000022B4 |[E3520012 cmp r2,#0x12
1664375, | 11151256. | 6.70 SR:000022B8 |DAQDOODOE ble 0x22D8
83228. 166456. | 2.00 SR :000022BC [EAQDDDOE b 0x22DC
1581148, 1581148, | 1.00 SR:000022C0 [E3AQD4001 mov r4,#0x1
1581148, 1581148, | 1.00 SR:000022C4 |[E1ADEDOZ cpy
1581148, 1581148, | 1.00 SR:000022C8 |[E0322004 add
1581148, | 72651358. |45.9 SR:000022CC [ES9F0070 Tdr
1581237. | 67994551, 43.0 SR :000022D0 |[E7CO400E strb]
1581238. 1581238. | 1.00 SR:000022D4 |[EAFFFFF& b 22
1581146 5324584 4. 00 SR:000022D8||EAFFFFFE b Ox22C0
83228. 21139986. 3.18 686 for (i =0; i <= 5IZE ; i++)
83228. §3245. | 1.00 SR:000022DC [E3ADZ000 mov r2,#0x0
1664560, 1664560, | 1.00 SR:000022E0Q [E3520012 cmp - F
1664560, | 11152609. | 6.70 SR:000022E4 |DAQOODOZ ble | #l
83228. 332912. | 4.00 SR:000022E8 [EADDDODLL b E
1581332, 1581332. | 1.00 SR:000022EC [E2322001 add r2,r2,#0mx=l
1581332, 6325328. | 4.00 SR:000022F0 |[EAFFFFFA b 0x22E0 -
1 1 | +
count total number of instruction executions
clocks total number of clocks for the instruction
cpi average clocks per instruction

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

164

List /ISTAT COVerage ; list instruction coverage

i=] [B:Data.List R:0x1D00 /ISTAT COVerage] | =]
[M step][W Over][+ MNext][Qf Return][¢ up][b Go]m Break]Ufﬂ Maode] Find: arm.c
exec notexec coverage addr/line |code T1abel mnemonic comment |
N 0. 0. 000% SR :00001CF8 [ESADDD00 mov r0,F0x0 ~
0. 0. 0. 000% SR:00001CFC |EAFFFFFB b OxiCFO
int funcli(x) /= multiple returns */
int x;
1 0. 100.000% 439 |{
1 0. |100. 000% SR:00001D00 |E1401000 funcll: cpy rl,rQ
3 0. 20.000% 440 switch { x)
1 0. |100. 000% SR:00001D04 [E3510006 cmp rl,#0x6
1 0. | 0.000% SR:00001D08 [908FF101 addls pc,pc,rl,1s] #0x2
o 0. 0. 000% SR :00001D0C |[EADDDOLS b Ox1D6B
o 0. 0. 000% SR:00001D10 |[EADODO14 b Oocl DN v o e e o e o
o 0. 0. 000% SR:00001D14 |[EADODOO4 b Ol D2C
o 0. 0. 000% SR:00001D18 |[EADODOOT b Ol D3C
o 0. 0. 000% SR :00001D1C |EADOOOOB b Ox1D44
o 0. 0. 000% SR:00001D20 |[EADODOO9 b D1 D4C
1 0. |100. 000% SR :00001D24 (EAQDDOOC b 0x1D5C
o 0. 0. 000% SR:00001D28 |[EADODOOC b Ox1D60
o 0. 0. 000% 441 {
0 0. 0. 000% 442 case 1: -
i< T b
exec conditional instructions: number of times the instruction was
executed because the condition was true.
other instructions: number of times the instruction was executed
notexec conditional instructions: number of times the instruction wasn’t
executed because the condition was false.
coverage instruction coverage

Instructions with a condition are bold-printed on a yellow background if exec or notexec is 0 (or both).
Instructions without a condition are bold-printed on a yellow background if exec is 0.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

165

Nesting Analysis

Restrictions

1. The nesting analysis analyses only high-level language functions.
2. The nested function run-time analysis expects common ways to enter/exit functions.
3. The nesting analysis is sensitive with regards to FIFOFULLSs.

Optimum ETM Configuration (No OS)

The nesting function run-time analysis doesn’t require any data information if no OS is used. That's why it is
recommended to switch the export of data information off.

ETM.DataTrace off ; ARM-ETM

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 166

Optimum ETM Configuration (OS or OS+MMU)

TRACE32 PowerView builds up a separate call tree for each task/process.

Trace.STATistic.TREE /TASK

"events/0"

= | B:Trace.STATistic. TREE /TASK "events/0"

=N Hohje

(& setup... || §ii Groups... (28

Config.. ” 1} Goto... ”J Deta||ed]L|:_| Nestlng “_ﬂ Chart ” & Init]

funcs:

range tree

total: 199.892us

atomic_notifier_call_chain
__atomic_notifier_call_chain

rcu_note_context_switch

_raw_spin_
__raw_spin_lock_irgsave

(root)
schedule

notifier_call_chain

thumbee_notifier t

vfp_notifier
finish_task_switch - fini
= rcu_
rcu_sched_gs —
_raw_spin_lock_irq —E
__raw_ saﬂn lock_irqg
ock_irgsave

- notifier_call_chain

+ rcu_sched_gs
aw_spin_lock_irg

[m

__atomic_notifier_call_chain

thumbee_notifier
- vfp_notifier
sh_task_switch
note_context_switch

raw_spin_Tock_irq
_raw_spin_lock_irgsave
- __raw_spin_lock_irgsave -

In order to hook a function entry/exit or a entry/exit of a TRAP handler into the correct call tree, TRACE32

PowerView needs to know which task/process/thread was running when the entry/exit occurred.

The standard way to get information on the current task/process/thread is to advise the ETM to export the
instruction flow and task/process/thread switches. For details refer to the chapter OS-Aware Tracing of this

training.

Optimum Configuration 1 (process switches are exported in form of a special write access):

Break.Set TASK.CONFIG (magic)

/Write

/TraceData

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

ETM.ContextID 32

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

167

Items under Analysis

In order to prepare the results for the nesting analysis TRACES32 postprocesses the instruction flow to find:

. Function entries
The execution of the first instruction of an HLL function is regarded as function entry.

Additional identifications for function entries are implemented depending on the processor
architecture and the used compiler.

Trace.Chart.Func ; function funclO as
; example

Trace.List /Track

-

% B:Trace.Chart.Func /Track
[Setup...|| iii Groups... (28 Config...|[% Goto... || #3Find... |[4» 1n |[»4 Out|[M Full]
660. 000us 680. 000us 700.000us 720.000us
range I ! ! I I
ma nE— - - - -
Funcl {x| - . |] .
FuncOth|— I E— _ _ _ _ -4
funclOfy = -)) .]] i - %
4w o4 | L
i [B::Trace.List /Track] EI@
(& setup...|[12 Goto... || #3Find... [Al chart || # More || X Less |
record run |address cycle |data symbol i

'irrt funcl0{void)

register 1, j;
| m +

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 168

. Function exits
A RETURN instruction within an HLL function is regarded as function exit.

Additional identifications for function exits are implemented depending on the processor
architecture and the used compiler.

& Bu:Trace.Chart.Func /track [E=R{EER (T
[& setup... |1 Goups... || 88 Gonfig... [Goto...][#3 Find... |[4P In |[»40ut | MM Ful
20ms 3.030ms 3.040ms

range | 1
ma1ﬂ<y ——————————————————————————— -,

3.050ms 3.060ms 3.07]

toot)pttfpiii———--——-——-"—-———7¢-/"—""—— ————————————————
<l < ¥
£ BrTrace List /Track = [= [£2

(& A Goro..][#)Find... [ﬂl%][ﬂ]ﬂ]
record |run |address cycle |data symbol t1.back |
cmp r0, #0x3 ~

+0000011119 _ R: 00001CCC ptrace Wharmlaha_Ti_aififunclo+0x4C3 0.710us

433

+0000011120 D:00000FES rd- ong 000021C3 «<0.020us

0000011133 D:00000FC8 rd-Tong O00O00D0B 1.420us
0000011136 D:00000FCC rd-Tong 00000000 «<0.020us
0000011140 D:00000FD0 rd-Tong 00000000 0.180us
0000011141 D:00000FD4 rd-Tong 00000000 «<0.020us
0000011148 D:00000FD8 rd-Tong 00000000 0.180us
0000011149 D:00000FDC rd-Tong 00000000 «<0.020us ¥
4 r
. Entries to interrupt service routines (asynchronous)

Interrupts are identified if an entry to the vector table is detected and the vector address indicates
an asynchronous/hardware interrupt

The HLL function started following the interrupt is regarded as interrupt service routine.

If a return is detected before the entry to this HLL function, TRACE32 assumes that there is an
assembly interrupt service routine. This assembler interrupt service routine has to be marked
explicitly if it should be part of the function run-time analysis (sYmbol.MARKER.Create
FENTRY/FEXIT).

. Exits of interrupt service routines

A RETURN / RETURN FROM INTERRUPT within the HLL interrupt service routine is regarded
as exit of the interrupt service routine.

. Entries to TRAP handlers (synchronous)

If an entry to the vector table was identified and if the vector address indicates a synchronous
interrupt/trap the following entry to an HLL function is regarded as entry to the trap handler.

. Exits of TRAP handlers

A RETURN/RETURN FROM INTERRUPT within the HLL trap handler is regarded as exit of the
TRAP handler.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 169

. Task/process/thread switches

Task/process/thread switches are needed to build correct call trees if a target operating system is

used.
B::Trace.List List. TASK DEFault o ==
(& setup...|[13 Goto... || #3Find... | A chart | B Profile || B MIPS][‘I‘v‘lore][v Lesd
record run |address cycle |data symbol ti.back
mow’ pc, Ir -
£ mcr pl5s, 0x0 r0, cl3,c0 0x1
45 ENDPROC (cpu_v7_proc_ '|r1'|t,
| cpy pc,rl4
= omeds v events/1 (DC&3D800) =
-0003360147 owner DCE3D800 0.000us [
-0003360142 NR.:0000:C0397D9C ptrace WYWmTinux kernel/schedyschedule+0x33C 0.004us —
0xC0O397E8E
-0003360141 NR:0000:C0397E8S ptrac \\vm'l'lnux\kerne'l/sched\schedu'le+0x428 0.156us
: switch_mm({ o'Idmm mm, next);
2812 it (likely(!prev->mm)) { -
4 F

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

170

Numerical Nested Function Run-time Analysis for all Software

Trace.STATistic.Func

Cov Window Help

1 * Perf Configuration...

| El Perf List

E| Perf List Dynamic

O Perf OFf

Function Runtime

Distribution
Duration Ato B

Distance trace records

-

- v ¥

Nested function run-time analysis
- numeric display

Show Numerical
E Show as Tree
E Show Detailed Tree

m
I

#ue] Show as Timing

Reset
£ | B:Trace.STATistic.Func [= ==
[& setwp... |13 Goups... || 38 Gonfig... [Goto...|[=] List all |[{E] Nesting|[& Chart | € Init |
funcs: 33. total: 1.059s
range total min max avr count intern% 1% 2% 5% |
funcls 0.708us 0.708us 0.708us 0.708us 1. <0.001% [+ -~
funcle 0.428us 0.428us 0.428us 0.428us 1. «<0.001% |+
funcl? 1.170us 1.170us 1.170us 1.170us 1. «<0.001% |+
funcls 0. 800us 0. 800us 0. 800us 0. 800us 1. «<0.001% |+
funclg 0. 800us 0. 800us 0. 800us 0. 800us 1. «<0.001% |+
funczo 1.942us 1.942us 1.942us 1.942us 1. «<0.001% |+
func2l 1.306us 1.306us 1.306us 1.306us 1. <0.001% |+
func22 1.21l6us 1.21l6us 1.21l6us 1.21l6us 1. <0.001% |+
func23 1.720us 1.720us 1.720us 1.720us 1. <0.001% |+
func24 0.417us 0.417us 0.417us 0.417us 1. <0.001% |+ i
func2s 0.473us 0.473us 0.473us 0.473us 1. <0.001% |+ 2
func2e 0.293us 0.293us 0.293us 0.293us 1. <0.001% |+
.938ms | 272.938ms | 272.938ms | 272.938ms 1. 25.762%
sieve | 776.696ms | 131.002us | 131.502us | 131.176us 5921. (0/1) | 73.312% ot
4 n
'
funcs: 92. total: 4.203ms 1ntr: 20.665ms
survey
func number of functions in the trace
total total measurement time
intr total time in interrupt service routines

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

171

columns

range (NAME) function name, sorted by their recording order as default

. HLL function
wvharmlaha_li_ait\func/
. (root)
The function nesting is regarded as tree, root is the root of the function nesting.

. HLL interrupt service routine

+umts_bute_buildyintr_os_wrappers_intr_os_prologuebd

. HLL trap handler

—*__fArmVYectorSui

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 172

[}

£ | B:Trace.STATistic.Func [= ==
[& setwp... |13 Goups... || 38 Gonfig... [Goto...|[=] List all |[{E] Nesting|[& Chart | € Init |
funcs: 33 total: 1.059s
range total min max avr count intern% 1% 2% 5%
funcls 0.708us 0.708us 0.708us 0.708us 1. <0.001% [+ -~
funcle 0.428us 0.428us 0.428us 0.428us 1. «<0.001% |+
funcl? 1.170us 1.170us 1.170us 1.170us 1. «<0.001% |+
funcls 0. 800us 0. 800us 0. 800us 0. 800us 1. «<0.001% |+
funclg 0. 800us 0. 800us 0. 800us 0. 800us 1. «<0.001% |+
funczo 1.942us 1.942us 1.942us 1.942us 1. «<0.001% |+
func2l 1.306us 1.306us 1.306us 1.306us 1. <0.001% |+
func22 1.21l6us 1.21l6us 1.21l6us 1.21l6us 1. <0.001% |+
func23 1.720us 1.720us 1.720us 1.720us 1. <0.001% |+
func24 0.417us 0.417us 0.417us 0.417us 1. <0.001% |+ i
func2s 0.473us 0.473us 0.473us 0.473us 1. <0.001% |+ 2
func2e 0.293us 0.293us 0.293us 0.293us 1. <0.001% |+
.938ms | 272.938ms | 272.938ms | 272.938ms 1. 25.762%
sieve | 776.696ms | 131.002us | 131.502us | 131.176us 5921. (0/1) | 73.312% ot

columns (cont.)

total total time within the function

min shortest time between function entry and exit, time spent in interrupt
service routines is excluded
No min time is displayed if a function exit was never executed.

max longest time between function entry and exit, time spent in interrupt
service routines is excluded

avr average time between function entry and exit, time spent in interrupt
service routines is excluded

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

173

E Bu:Trace.STATistic.Func

=@ =S

(& Setup... |13 Goups... || 88 Gonfig... [Goto...][=] Listal |[F]
funcs: 33. tota
range total min max
funcls 0.708us 0.708us
funcle 0.428us 0.428us
funcl? 1.170us 1.170us
funcls 0.800us 0.800us
funclg 0.800us 0.3800us
funczo 1.942us 1.942us
func2l 1.306us 1.306us
func22 1.216us 1.216us
func23 1.720us 1.720us
func24 0.417us 0.417us
func2s 0.473us 0.473us
func2e 0.293us 0.293us
.938ms | 272.938ms | 272.
sieve | 776.696ms | 131.002us | 131.

COOFKFERFEFEFOORFOO

£ Nesting|[& Chart || @ Init |
1 1.059=

avr count intern® 1% 2% 5%
708us 0. 708us 1. «<0.001% |+ -~
428us 0.428us 1. «<0.001% |+
170us 1.170us 1. «<0.001% |+
B00us 0. 300us 1. «<0.001% |+
B00us 0. 300us 1. «<0.001% |+
942us 1.942us 1. «<0.001% |+
306us 1.306us 1. «<0.001% |+
216us 1.216us 1. «<0.001% |+
720us 1.720us 1. «<0.001% |+
417us 0.417us 1. «<0.001% |+ i
473us 0.473us 1. «<0.001% |+ =
293us 0.293us 1. «<0.001% |+
938ms | 272.938ms 1. 25.762% —
502us | 131.176us 5921. (0/1) | 73.312% ot

[}

columns (cont.)

count

number of times within the function

If function entries or exits are missing, this is displayed in the following format:

<times within the function >. (<number of missing function entries><number of missing function exits>).

count

2. (2/8)

Interpretation examples:

1. 2. (2/0): 2 times within the function, 2 function entries missing
2. 4. (0/3): 4 times within the function, 3 function exits missing
3. 11. (1/1): 11 times within the function, 1 function entry and 1 function exit is missing.

If the number of missing function entries or exits is greater than 1, the analysis
performed by the command Trace.STATistic.Func might fail due to nesting

problems. A detailed view to the trace contents is recommended.

columns (cont.)

intern%
(InternalRatio,
InternalBAR.LOG)

ratio of time within the function without subfunctions, TRAP

handlers, interrupts

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

174

Pushing the Config... button allows to display additional columns

-

E Bu:Trace.STATistic.Func

===
[& setwp... |15 Goups... || 38 Config... [Goto...|[=] List all |[{E] Nesting|[& Chart || € Init |
funcs: 33. total: 1.059s
range total min max avr count intern% 1% 2% 5% |
func20 1.942us 1.942us 1.942us 1.942us 1. <0.001% [+ ~
func2l 1.306us 1.306us 1.306us 1.306us 1. «<0.001% |+
func2z 1.216us 1.216us 1.216us 1.216us 1. «<0.001% |+
func23 1.720us 1.720us 1.720us 1.720us 1. «<0.001% |+
func24 0.417us 0.417us 0.417us 0.417us 1. 0. 001% |+
func2s 0.473us 0.473us
func26 | 0.293us | 0.293us| BE Statistic Config =[]z =
func40 | 272.938ms | 272.938ms . —
sieve | 776.696ms | 131.002us | [Sort available selected —
A @ OFF NAME - Total r
) TASK MIN
i TotaRatio MAX
_ Address TotalBAR.LOC _ AVeRage
s¥mbol TotalBAR.LIN|= e Count
o) Internal = InternalRatio
=) IntemalRatio IAVeRage InternalBAR.LOG
*) TotalRatio m}\Nx —
Bt InternalBAR.L
_ Count External
EAVeRage
CRATRI
[T Al windows

columns (cont.) - times only in function

Internal total time between function entry and exit without called sub-functions,
TRAP handlers, interrupt service routines

IAVeRage average time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMIN shortest time between function entry and exit without called sub-
functions, TRAP handlers, interrupt service routines

IMAX longest time spent in the function between function entry and exit without
called sub-functions, TRAP handlers, interrupt service routines

InternalRatio <Internal time of function>/<Total measurement time> as a numeric
value.

InternalBAR <Internal time of function>/<Total measurement time> graphically.

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing | 175

columns (cont.) - times in sub-functions and TRAP handlers

External total time spent within called sub-functions/TRAP handlers
EAVeRage average time spent within called sub-functions/TRAP handlers
EMIN shortest time spent within called sub-functions/TRAP handlers
EMAX longest time spent within called sub-functions/TRAP handlers

columns (cont.) - interrupt times

ExternalINTR total time the function was interrupted
ExternalINTRMAX max. time one function pass was interrupted
INTRCount number of interrupts that occurred during the function run-time

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 176

The following graphic give an overview how times are calculated:

—— Start of measurement

N - Entry to funci

-]

- —— Exit of funci

-T- Entry to func1

func2

TRAP1

INTR of func1i
External of func1i
Total of funci
Total of (root)

= =

func3

interrupt 1

Exit of func1i

— Entry to funci

- i —— Exit of funci

—— End of measurement

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 177

Additional Statistics Items for OS or OS+MMU

£ B:Trace STATisticFUNC =8 =R =T
P Setup...][iiGroups..‘][II Conﬂg...][1 Goto...][E Detailed][Eﬂ Nesting]@ Chart][@ Init]
funcs: 997. total: 69.819s
range [total min max avr count intern¥ 1%
(r'uot)@eventafl il s| - | 1.255ms| 1. 0.001% '+ N
nish_walt 22.433us 0.079us 0.551us 0.284us 707z <0.001% |+
kthread shou'ld _stop@events,] 3.782us 0. 000us 0.252us 0.024us 158. <0.001%
raw: spwn ock_irgie 33.426us 0.032us 0.480us 0.138us 242, <0.001% «
ckh__raw_ SE‘lﬂ n_lock_irgte 24.814us 0.020us 0.443us 0.103us 242. <0.001% + ||
_raw_spin_lock_irgsave(c 24.937us 0.000us 0.298us 0.062us 405. <0.001% +
__raw_spin_lock_irgsavels 16.970us 0.000us 0.270us 0.042us 405. <0.001% +
_raw_spin_unlock_irgie 5.986us 0.000us 0.208us 0.025us 242, <0.001% |+
“wmstat_updatels 239.699%us 2.582us 4.515us 3.424us 70. <0.001% +
-t reFresh _cpu_vm_statsiec 115.058us 1.376us 2.664us 1.644us 70. <0.001% +
="first_online_pgdatiec 3.976us 0.000us 0.272us 0.057us 70. <0.001% |+
¢ _cond_reschedi= 5/] 7.928us 0.000us 0. 240us 0.099%us 80. <0.001% [+
next_zonelevents/] 7.653us 0. 000us 0.231us 0.036us 210. <0.001% + -~
€ [| +

. HLL function
_raw_spin_lock_irgsave(:

HLL function “_raw_spin_lock_irgsave” running in task/process/thread “event/1”

. Root of call tree for task/process/thread “event/1”

root J@events/1

£ | B:Trace STATistic FUNC E=n EoR ==
(& setup... || iii Groups... || 28 Config...][¥ Goto... Hchart | @ mit |
funcs: 997. total: ©9.819s
range [total min max avr count intern® 1% '
(root) 19.631ms - 19.631ms | 19.631ms - <0.001% [¢ .
menu_select 1.600us 1.600us 1.600us 1.600us 1k <0.001% |+
pm_gos_request 0.039%us 0.03%us 0.039us 0.03%us 11 <0.001% « —
tick_nohz_get_sTleep_length 0. 016us 0.016us 0.016us 0.016us 1. <0.001% [+ ~
< M 3
. Unknow task/process/thread

menu_select

Before the first task/process/thread switch is found in the trace, the task/process/thread ID is
unknown

J Root of unknow task/process/thread

{root) |

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 178

= | B:Trace STATistic.FUNC

[ﬁ Setup...][iiGmups...][== Cnnﬂg..-][3 Goto...][E Detailed][{E] Nesting][_E Chart][© Init]

funcs: 3164. total: 5.031s
total min max avr count intern® [1% '
(root) .002s - 3.002s 3.002s [EE A
\Sy'S ' Sys_execve 380.705us - 380.705us | 380.705us 1.(1/0) | <0.001%
mlir o' do_execve 380.220us - 380.220us | 380.220us 1.{1/0) | <0.001% |+
search_binary_handler 379.171us - 379.171us | 379.171us 1.(1/0) | <0.001% |«
_elf 1oad_e{f_b1‘nary 377.485us - 377.485us | 377.485us 1.(1/0) | <0.001%]
flush_old_exec 161.255us - 161.255us | 161.255us 1.{1/0) | <0.001% |+
o\ add_partial 0.480us 0.480us 0.480us 0.480us 1. <0.001% «
s flush_threadic: 1.376us 1.376us 1.376us 1.376us 1. <0.001% ¢ ~
4| m | *
The process/thread ID or the TRACES32 traceid is displayed if a process is already ended. The UNKNOWN

cycles are assigned to
{root)

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

179

= | B:Trace STATistic. FUNC [=rE =
(& setup... | iii Groups... |38 Config... | A Goto...][J Deta\le_]@ Nesting || % chart | @ mit |
total: 69.819s
range [total ‘taskcount |etask etaskmax |min max avr count intern% |1% |
F'l nish_task_switch@he bop | 21.780us = - = 0.000us 0.458us 0.157us 139. <0.00I% [+ -
=r\do_nanosleepihelloloop 1.163ms 140. 69.797s 1.000s 11.573us | 18.973us | 16.378us 71.(1/1) | <0.001% |+
t hrtimer_cance : 0 25.530us = = = 0.213us 0.620us 0.365us 70. <0.001% 4
-r hrtimer _try_to_cancel 18.749us - - - 0.160us 0.366us 0.268us 70. <0.001% [¢ —
tiner\lock_hrtimer_base 29.377us - - - 0.032us | 0.370us | 0.210us 140. <0.001% [¢
raw: sp'm Tock_ 1rqsave 210 o | 109.075us S = - 0.000us 3.798us 0.082us 1332. <0.001% |+
ock'_raw_spin_lock_irgsave loloop | 87.378us - - - 0.000us 3.632us 0.066us 1332. <0.001% |+
ra\-q__sp'! n_unlock_irgrestore oloop | 416.657us 69. | 741.725us | 11.220us 0.000us 7.973us 0.425us 980. <0.001% |¢ ~
< i] v
columns - task/thread related information
TASKCount number of tasks that interrupt the function
ExternalTASK total time in other tasks
ExternalTASKMAX max. time 1 function pass was interrupted by a task

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 180

I Start of measurement

First task switch recorded to trace
First entry to TASK1 —

- ~|: Entry to func1 in TASK1

func2 in TASK1

TASK2
T func2 in TASK1
- T - - func3 in TASK1
¥4 (/)] 4 X -
q £+ 7| 2] ¢
= ® = - ®
® o ® ® =
© s T © 5| 8 -
Q E Q 5 o TRAP1 in TASK1
2 5 T 2 s [<
Y— o Y Y o
f £ s S| 5
z £ I L el func4 in TASK1
1]
TASK3
:I: func4 in TASK1

:I: :|: interrupt1 in TASK1

4 —— Exit of func1 in TASK1

— — Entry to func1 in TASK1

- 5 —— Exit of func1 in TASK1

Last exit of TASK1 __

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 181

More Nesting Analysis Commands

Trace.Chart.Func Nested function run-time analysis
- graphical display

Cov Window Help
éb Perf Configuration...
E| Perf List

E| Perf List Dynamic

O Perf OFf

Distribution L4 E Show Numerical
Duration Ato B L4 E Show as Tree
L4 E Show Detailed Tree

Show as Timing

Distance trace records

Reset
Show Mesting

Look and Feel (No OS)

% B:Trace.Chart.Func ==
[& cetup... |13 Goups... || 88 Gonfig... [Goto...|[#1 Find... |[4 In | »40ut MM Ful
2.700ms 2.750ms 2. 800ms
range] 1 1 i
MAT | —— - . —— - - —+ - + - y -
funcliy i . .
= 1
funcdiy | - A S 1 1
func3iy b A S 1
funcs L} | . . .
funca iy | . . .
func7ie . .))) I . . .
funcagy . . I | i . .
funcagy IR .)
functosm| L —
<l v < [b
Look and Feel (OS or OS+MMU)
& B::Trace. CHART.FUNC oo =
[ﬂ Setup...][iiGmups.”][:: Conﬂg...][i Goto...][41 Find...] 4p In || p4 Out | MM Ful
-22.103691000s -22.103630000s -22.103689000s
1 I I i
_ 1 -
EHE "‘3”%9_'0;5? o N .
sys_write } t
fget_light |
vfs_write —H—
rw_verify_area L
redirected_tty_write — e —— - - T
_raw_spin_lock —— - | . . I
__raw_spin_lock I . .
_raw_spin_unlock . . .
tty_write o B ' L T
«[m]r < r

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 182

Trace.STATistic.TREE

Nested function run-time analysis

- tree display

Cov Window Help
1 * Perf Configuration...
| B Perf List

E| Perf List Dynamic

O Perf Off
Distribution L4 ﬂ Show Numerical
Duration Ato B L4 Show as Tree k
Distance trace records L4 Show Detailed Tree
Reset #uf Show as Timing

| Show Nesting

Look and Feel (No OS)

£ | B:Trace.STATistic. TREE [=|[E =)
[& Setwp... |13 Goups...|[a8 G)nﬂg JI[=® Goto =] List all L|:_| Nesting|[% Chart || € Init |
funcs: total: 1.059=
range [tree total min max avr count intern% 1% 2
(r‘oot) = 1.059s - 1.059s 1.059s - 0.216% |+
main 1.057s - 1.057s 1.057s 1.(0/1) 0.637% |+
func2 —rT"FLII"ICZ 33.870us 33.870us 33.870us 33.870us 1. 0.003% |+
funcl . funcl 1.273us 0.293us 0.535us 0.424us 3. <0.001% |4
funcza = func2a 19.560us 19.560us 19.560us 19.560us 1. 0.0015% |+
funczb = funczb 18.048us | 18.048us | 18.048us | 18.048us 1. 0.001% |+
funczc = func2c 271.728us | 271.728us | 271.728us | 271.72Bus 1. 0.025% |+
funczd = funczd 20.148us | 20.148us | 20.148us | 20.148us 1. 0.001% |+
func4 —= func4 8.000us 8.000us 8.000us 8.000us 1. <0.001% |+
func3 = func3 0.710us 0.710us 0.710us 0.710us 1. <0.001% |+
funcs = funcs 0.770us 0.770us 0.770us 0.770us 1. <0.001% |+
funcé —= funcé 14.045us | 14.045us | 14.045us | 14.045us 1. 0.001% |+
func? = func? 19.730us 19.730us 19.730us 19.730us 1. 0.0015% |+
funcs —= funca 36.715us 36.715us 36.715us 36.715us 1. 0.003% |+
funcg = funca 18.760us | 18.760us | 18.760us | 18.760us 1. 0.001% |+
funcl . funcl 1.743us 0.297us 0.593us 0.436us 4. <0.001% |+
funclo —= funclo 254.423us | 254.423us | 254.423us | 254.423us 1. 0.024% |+
funcll = funcii 2.984us 2.984us 2.984us 2.984us 1. «<0.001% |+ s
4 [+
Look and Feel (OS or OS+MMU)
= | B:Trace STATistic. TREE [= | & |
(& setup...| iii Groups... | % Config...| [Goto... |[=| Detailed ||] Nesting || = chart || @ mit |
funcs: 1916. total: 29.126s
ranqe tree i
(root)@h C = (root) o~

Tmer sys_nanos leep
hrtimer_nanos]leep
do_nanosleep
1 schedule
at0m1c _notifier_call_chain
__atomic_notifier_call_chain
notifier_call_chain
13 thumbee notifier
vfp_notifier
C F1n1sh _task_switch
rcu note context_switch
= reu_sched_gs

= sys_nanosleep
= hrtimer_nanosleep
= do_nanos leep
= schedule
= atomic_notifier_call_chain
L __atomic_notifier_call_chain
= notifier_call_chain
t: thumbee_notifier
- vfp_notifier
- finish_task_switch
B reu_note_context_switch
— . rcu_sched_gs

Trace.STATistic.TREE /TASK "helloloop"

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing

| 183

Trace.STATistic.LINKage <address>

Look and Feel (No OS)

Nested function run-time analysis
- linkage analysis

£ | B:Trace.STATistic. FUNC

=)

[seup... (i Goups...]L&mﬁg][n,Goto]_—: List all)]

Nesting|[% Chart || & Init |

33.870us

.0l6us | 0.293us |

.593us |

33.870us

funcs: total: 1.059s
range [total avr |count [intern® [1%
Troot) 1.059s = 1.059s 0. 216% |+ "
3 i 1.057s —

|"<0.001% |+

ke Il

a 15.560us 15.560us e
a 18.048us 18.048us Slathstic
4 | 1] |
|
£ | Duration Analysis
here... L4
= | B:Trace. STAT.LINK R:0x10D4 [|[E][]
(& setup... | i Goups.. Lmﬁg (=3 Goto. J(] st all || E Nestmg]LE Chart || @ Intt_|
funcs: 2. uta'l
range [total min max avr‘ |count [totals [1% 2% 5% |_|
funcz 1.273us 0.293us 0.535us 0.424us 3. 42.221%i N
31 T Funcd 1.743us 0.297us 0.593us 0.436us 4. 57.778% |
< 1] 3
Look and Feel (OS or OS+MMU)
= | B:Trace STATistic. FUNC . (=l ® |5
[Setup... || i Groups... |88 Config...|[@ Goto... |[E] Detailed|[E] Nesting || S chart || @ mit |
uncs: 897. total: 29.126s
range [total i avr
ux I'sys_rt_sigactiol 20.943us 0. 0.909us 0.
m1 do_sigactiol 12.474us 0. 0.514us 0.
hrtimer_ini 4.77%us 0. 0.303us 0.
5. 224us | 0. 0.3 0.
mer .478us 0. 0. 0.
hrtimer_init. _sleepa 0.848us 0. 0. 0.
hrtimer_start_range_n 233.500us 7. 8. 7.
__hrtimer_start_range_ns® 231.016us 7. 8. i

1

I} Goto Max
g Bookmark Max

arents

= | Children
£ | Duration
£ | Distance
here...
| BxAnalyzer. STAT LINKage 0088534 /CORE L. ol & =
(& setup... || i Groups... |38 Config...|[R Goto...]IJ Detailed| i Nesting || S chart || @ mit |
funcs: 6. total: 1.355ms
range total min max |avr |count [total¥% [1% 2% =
m uxitimekeep ktime_get [924.014us 0. 000us 0. 260us 0.047us 194/8. 68. 206% |e———
S i | Edate jiffiese4 | 80.35lus 0.000us 0.440us 0.112us 720 5.931%
~timer' hrtimer_forward 9.673us 0.000us 0.220us 0.073us 132. 0.713% ¢
er_start_range_ns 64.264us 0.000us 0. 260us 0.058us 1110. 4. 743K | —
hrtimer nanos'leeE 4.950us 0.002us 0.347us 0.083us 60. 0.365% [+
s d\ti ck nohz _stop_sched_tick | 271.488us 0.000us 0.481us 0.069us 3915. 20. 039% | ———————
4| m | +

©1989-2024 Lauterbach

Training Arm CoreSight ETM Tracing |

184

Trace-based Code Coverage

The manual “Application Note for Trace-Based Code Coverage” (app_code_coverage.pdf) gives a
detailed introduction to the trace-based code coverage. However, the manual does not contain details about
the architecture-specific setups. Here is an overview of the setups for ARM-ETM.

Optimum ETM Configuration (No OS or OS)

Code coverage does not require any data information if no OS or an OS is used. That's why it is
recommended to switch the broadcasting of data information off.

ETM.DataTrace off

Optimum ETM Configuration (OS+MMU)

Virtual address: 0x97E4

The virtual address exported by the ETM
is not enough to identify the function/ 02C1: OX97E4 sieve
symbol range.)

The Address Space ID is required!

02C2: 0x97E4 func1+0x6

TRACE32 Symbol Database

If an target operating system is used, that uses dynamic memory management to handle processes, the
instruction flow plus information on the Address Space ID is required in order to perform a code coverage
analysis.

The standard way to get the Address Space ID is to advise the ETM to export the instruction flow and the
process switches. For details refer to the chapter OS-Aware Tracing of this training.

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 185

Optimum Configuration 1 (process switches are exported in form of a special write access):

Break.Set TASK.CONFIG (magic) /Write /TraceData

Optimum Configuration 2 (process switches are exported in form of a Context ID packet):

ETM.ContextID 32

©1989-2024 Lauterbach Training Arm CoreSight ETM Tracing | 186

	Training Arm CoreSight ETM Tracing
	ETM Setup
	ETM Versions
	Main Setup Windows
	ETM.state Window
	Trace.state Window

	ETMv1
	Interface and Trace Protocol
	Basic Setup

	ETMv3
	Interface and Protocol
	Basic Setups
	Additional Settings

	PTM (aka. PFT)
	Block Diagram
	Protocol Description
	Basic Setup
	Additional Settings

	FLOWERROR
	Diagnostic Commands

	Displaying the Trace Contents
	Source for the Recorded Trace Information
	Sources of Information for the Trace Display
	Influencing Factors on the Trace Information
	ETM Features and Settings
	Settings in the TRACE32 Trace Configuration Window

	States of the Trace
	The AutoInit Command
	Basic Display Commands
	Default Listing
	Basic Formatting
	Correlating the Trace Listing with the Source Listing
	Browsing through the Trace Buffer

	Display Items
	Default Display Items
	Further Display Items

	Find a Specific Record
	Belated Trace Analysis
	Save the Trace Information to an ASCII File
	Postprocessing with TRACE32 Instruction Set Simulator
	Export the Trace Information as ETM Byte Stream

	Trace-based Debugging (CTS)
	Forward and Backward Debugging
	CTS Technique
	Belated Trace-based Debugging
	HLL Analysis of the Trace Contents
	Details on each HLL Instruction
	Function Nesting

	Trace Control by Filter and Trigger
	Context
	Filters and Trigger by Using the Break.Set Dialog
	Examples for TraceEnable on Read/Write Accesses
	Examples for TraceEnable on Instructions
	Example for TraceData
	Example for TraceON/TraceOFF
	Example for BusTrigger
	Example for BusCount

	OS-Aware Tracing
	OS (No Dynamic Memory Management)
	Activate the TRACE32 OS Awareness (Supported OS)
	Exporting the Task Switches (OS)
	Belated Trace Analysis (OS)
	Enable an OS-aware Tracing (Not-Supported OS)

	OS+MMU (Dynamic Memory Management)
	Activate the TRACE32 OS Awareness
	Exporting the Process/Thread-ID (OS+MMU)
	Belated Trace Analysis

	Specific Write Access vs. Context ID Packet
	Task Statistics
	Ended Processes (OS+MMU)

	Context ID Comparator

	Function Run-Times Analysis
	Software under Analysis (no OS, OS or OS+MMU)
	Flat vs. Nesting Analysis
	Basic Knowledge about Flat Analysis
	Basic Knowledge about Nesting Analysis
	Summary

	Flat Analysis
	Optimum ETM Configuration (No OS or OS)
	Optimum ETM Configuration (OS+MMU)
	Dynamic Program Behavior
	Function Timing Diagram
	Hot-Spot Analysis

	Nesting Analysis
	Restrictions
	Optimum ETM Configuration (No OS)
	Optimum ETM Configuration (OS or OS+MMU)
	Items under Analysis
	Numerical Nested Function Run-time Analysis for all Software
	Additional Statistics Items for OS or OS+MMU
	More Nesting Analysis Commands

	Trace-based Code Coverage
	Optimum ETM Configuration (No OS or OS)
	Optimum ETM Configuration (OS+MMU)

