
MANUAL

Arm ETM Trace

Arm ETM Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Arm/CORTEX/XSCALE .. 

 Arm ETM Trace ... 1

 History .. 6

 Installation ... 6

 Software Installation 6

 Recommendation for Starting the Software 6

 Recommendation for Power Down 7

 Hardware Installation 7

 ETM Preprocessor Hardware Versions 8

 Preprocessor for ARM-ETM 120 (LA-7889) 11

 Preprocessor for ARM-ETM 200 (LA-7921) 12

 Preprocessor for ETM 2-MICTOR (LA-7923) 13

 Preprocessor for ARM-ETM Autofocus (LA-7991) 14

 External Termination PCB (delivered before 2006) 16

 Preprocessor for ARM-ETM Autofocus II (LA-7992) 18

 Preprocessor for ARM-ETM Autofocus MIPI (LA-7993) 19

 Preprocessor for ARM-ETM HSSTP (LA-7988) 20

 PowerTrace Serial 4 GigaByte for ARM-ETM HSSTP and PCIe 21

 Utilization of the ETM .. 22

 Startup Script 22

 Example ETMv1 22

 Example HSSTP 23

 Loading and Storing Settings 25

 Displaying Trace Results 27

 Programmer’s Model of the ETM 30

 Supported Features 30

 ETM Registers 31

 Programming 32

 ETM Commands .. 33

 ETM Embedded Trace Macrocell (ETM) 33
Arm ETM Trace | 2©1989-2024 Lauterbach

 ETM.AbsoluteTimestamp Absolute cyclecount pakets 34

 ETM.AddressMunging Dig endian address munging 34

 ETM.ATBTrigger Use ATB to transfer trace trigger to trace sink 35

 ETM.AUXCTLR Set ETMv4 implementation-specific auxiliary control register 38

 ETM.BBC Branch address broadcast 38

 ETM.BBCExclude Exclude address ranges from branch-broadcasting 39

 ETM.BBCInclude Enable branch-broadcasting for dedicated address ranges 39

 ETM.CLEAR Clear sequencer settings 40

 ETM.CLOCK Set core clock frequency for timing measurements 40

 ETM.CORE Select core for ETM 41

 ETM.CPRT Monitor coprocessor register transfers 41

 ETM.COND Conditional non-branch instructions 42

 ETM.ContextID Select the width of the 'ContextID' register 42

 ETM.CycleAccurate Cycle accurate tracing 43

 ETM.CycleCountThreshold Set granularity for cycle accurate timing info 44

 ETM.CycleCountTickEnable ETMv4 cycle counter overflows 44

 ETM.CycleCountTickRate ETMv4 cycle counter rate 44

 ETM.DataSuppress Suppress data flow to prevent FIFO overflow 45

 ETM.DataTrace Configure data-trace 46

 ETM.DataTracePrestore Show program trace cycle for data trace cycle 48

 ETM.DataViewExclude Suppress data trace for specified address range 49

 ETM.DataViewInclude Restrict broadcast of data accesses to range 50

 ETM.DBGRQ Debug request control 51

 ETM.FifoFullExclude No activation of FIFOFULL in range 51

 ETM.FifoFullInclude FIFOFULL only in range 52

 ETM.FifoLevel Define FIFO level for FIFOFULL 52

 ETM.FunnelHoldTime Define minimum funnel hold time 53

 ETM.HalfRate Halfrate mode 53

 ETM.LPOVERRIDE Prohibit lower power mode 53

 ETM.INSTP0 Load and store instructions 54

 ETM.MapDecode Memory map decode control 54

 ETM.NoOverflow Enable ETMv4 feature to prevent target FiFo overflows 55

 ETM.ON Switch ETM on 55

 ETM.OFF Switch ETM off 55

 ETM.PortDisable Force trace-port enable signal to zero 56

 ETM.PortDisableOnchip Disable ETM trace port when ETB is used 57

 ETM.PortMode Select ETM mode 58

 CoreSight (deprecated) 58

 ETM.PortRoute Set up trace hardware 59

 ETM.PortSize Define trace port width 59

 ETM.PowerUpRequest Power-up request for the ETM by the debugger 60

 ETM.PseudoDataTrace Enable pseudo data trace detection 60

 ETM.QE Enable Q elements 60
Arm ETM Trace | 3©1989-2024 Lauterbach

 ETM.QTraceExclude Prohibit Q trace elements in given address range 62

 ETM.QTraceInclude Allow Q trace elements in given address range 62

 ETM.RefClock Enable STP reference clock 63

 ETM.Register Display the ETM registers 64

 ETM.RESet Reset ETM settings 65

 ETM.ReserveContextID Reserve special values used with context ID 65

 ETM.ReturnStack Enable return stack tracing mode 66

 ETM.Set Precise control of ETM trigger events 67

 ETM.SmartTrace Configure smart trace 75

 ETM.STALL Stall processor to prevent FIFO overflow 75

 ETM.state Display ETM settings 76

 ETM.StoppingBreakPoints Use ETM comparators for breakpoints 77

 ETM.SyncPeriod Set synchronization frequency 80

 ETM.TImeMode Improve ETM/PTM timestamp information 81

 ETM.TimeStampCLOCK Specify frequency of the global timestamp 86

 ETM.TimeStamps Control for global timestamp packets 86

 ETM.TimeStampsTrace Specify data trace correlation method (ETMv4) 87

 ETM.Trace Control generation of trace information 87

 ETM.TraceCORE Core specific default tracing 88

 ETM.TraceDataPriority Define data trace priority 88

 ETM.TraceERRor Force ETM to emit all system error exceptions 89

 ETM.TraceExclude Suppress program trace for specified address range 90

 ETM.TraceID Change the default ID for an ETM trace source 91

 ETM.TraceInclude Restrict program trace to specified address range 91

 ETM.TraceNoPCREL No data trace for accesses relative to program counter 92

 ETM.TraceNoSPREL No data trace for accesses relative to stack pointer 92

 ETM.TracePriority Define priority of ETM 93

 ETM.TraceRESet Forces the ETM to emit all core resets 93

 ETM.TRCIDR Define TRCIDR register values for simulator 94

 ETM.VMID Virtual machine ID tracing 94

 Keywords for the Trace Display ... 95

 Examples for Trace Controlling 96

 Tracing of a Specified Address Range 96

 Tracing of Specified Data 96

 Trigger at Address Access 96

 Tracing of a Defined Amount of Cycles 97

 Runtime Measurement of a Function 97

 Trace Setup for Real-Time OS 98

 Basics 98

 Trace Setup for LINUX 98

 FAQ ... 98

 Diagnosis ... 99
Arm ETM Trace | 4©1989-2024 Lauterbach

 Error Diagnosis 99

 Searching for Errors 100

 Error Messages 102

 HARDERRORS 102

 FLOWERRORS 102

 FIFOFULL 103

 Trace Test Failed Messages 103

 Diagnosis Check List 104

 Basic Checks 104

 Advanced Check for ETMv1.x 111

 Advanced Check for ETMv3.x 115

 Timing Requirements 118

 ARM-ETM (LA-7921, LA-7990) 121

 Configuration Test 121

 ARM-ETM AUTOFOCUS (LA-7991/LA-7992) 122

 Access the Diagnosis Tool 122

 Diagnosis Check List 123

 How to understand A.ShowFocusEye and A.ShowFocusClockEye 128

 Support Request 131

 Recommendations for Target Board Design 132

 Technical Data ... 134

 Operation Voltage 134

 Dimensions 135

 Adapters 147

 Connector Layout 148

 Signal Description 148

 ETMv1/2 signals

 ETMv3/4 signals

 JTAG signals

 MICTOR-38 154

 ETMv1/2 154

 ETMv1/2 with Multiplexed Mode 154

 ETMv1/2 with 4 bit Demultiplexed Mode 155

 ETMv1/2 with 8/16 bit Demultiplexed Mode 156

 Dual ETMv1/2 157

 ETMv3 / ETMv4 / PFTv1 158

 MIPI-60 158

 ETMv3 / ETMv4 / PFTv1

 ETMv1
Arm ETM Trace | 5©1989-2024 Lauterbach

Arm ETM Trace

Version 06-Jun-2024

History

08-Jul-22 New commands: ETM.CycleCountTickEnable and ETM.CycleCountTickRate.

Installation

Software Installation

The TRACE32 software for the ARM debugger includes support for the ETM trace. No extra software
installation for the ARM-ETM trace is required.

Recommendation for Starting the Software

• Disconnect the debug cable from the target while the target power is off.

• Connect the host system, the TRACE32 hardware and the debug cable.

• Start the TRACE32 software.

• If possible connect the debug cable directly to the target. If there is no appropriate jack on your
target, you can also connect it to the preprocessor.

• Connect the preprocessor to your target's trace port by using the mictor flex extension delivered
with your preprocessor. For port sizes greater 16 bit you need to connect port "Trace B" as well,
using a second mictor flex extension (LA-7991, LA-7992 and LA-7923 only).

NOTE: The second flex extension has to be ordered additionally.

• Switch the target power ON.

• Run your start-up script.

• If supported by your preprocessor execute Analyzer.AutoFocus
Arm ETM Trace | 6©1989-2024 Lauterbach

Recommendation for Power Down

• Switch off the target power.

• Disconnect the debug cable and mictor flex extension from the target.

Hardware Installation

If a RISC TRACE module is used, please connect the PODBUS IN connector of the RISC TRACE module
to the PODBUS OUT connector of the (POWER) DEBUG INTERFACE.

If a POWER TRACE PX or POWER TRACE II or POWER TRACE III is used please connect it to a POWER
DEBUG PRO or POWER DEBUG II via the "PODBUS EXPRESS" connectors.

The preprocessor (small PBC / probe) has to be connected to RISC TRACE, POWER TRACE, POWER
TRACE PX, POWER TRACE II, or POWER TRACE III. The three flat cables have different length and need
to be connected without crossing:

The shortest cable needs to be connected to plug A, the middle to plug B and the longest to plug C.
Arm ETM Trace | 7©1989-2024 Lauterbach

ETM Preprocessor Hardware Versions

You can identify the preprocessor version by typing VERSION.HARDWARE into the TRACE32 command
line or compare your preprocessor with the pictures below. Preprocessor versions and a description of the
main differences are described in the following:

Product Number LA-7889 LA-7921 LA-7923 LA-7990

TRACE32 ID
Full rate
Half rate
DSP mode

40 43
39
3A

46 58
57
59

Delivery year 2000-2008 since 2001 2001-2008 2004-2009

Serial number none since 04/2004 none yes

Supported target
voltage range [V]

2.5 … 3.3 1.8 … 3.3 2.5 … 3.3 1.8 … 3.3

Casing none since 04/2004 none yes

Number of flat
cables

3 3 3 2

Supported ETM
port sizes

4/8/16 4/8/16 4/8/16/32 4/8

Supported ETM
modes

Normal
-
Demux 4bit
Full rate

Normal
Mux
Demux 4bit
Full/Half rate

Normal
Mux
Demux
Full/Half rate

Normal
Mux
-
Full/Half rate

Maximum channel
data rate

120 Mbit/s 200 Mbit/s 120 Mbit/s 270 Mbit/s

Input delay resolu-
tion

- - - -

Termination none 47 
Thevenin

none 47 
Thevenin

Threshold level fixed programmable fixed both, fixed and
programmable

Input signals 2.5 V LVTTL
3.3 V LVTTL
compatible

>0.5 V 2.5 V LVTTL
3.3 V LVTTL
compatible

1.8 V LVTTL
2.5 V/3.3 V
STL
compatible
Arm ETM Trace | 8©1989-2024 Lauterbach

Product Number LA-7991 LA-7991 LA-7991 LA-7992

TRACE32 ID 70 (OTP) 70 70 71

Delivery year 11/2004-
12/2005

06-09/2005 since 08/2005 since 2006

Serial number yes yes yes yes

Supported target
voltage range [V]

1.8 … 5 1.8 … 5 1.8 … 3.3 1.2 … 3.3

Casing yes yes yes yes (with fan)

Number of ribbon
cables

3 3 3 3

Supported ETM
port sizes [bit]

4/8/16/32 4/8/16/32 4/8/16/32 4/8/16/32

Supported ETM
modes

Normal
Mux
Demux
Full/Half rate

Normal
Mux
Demux
Full/Half rate

Normal
Mux
Demux
Full/Half rate

Normal
Mux
Demux
Full/Half rate
Continuous

Maximum line
data rate

300 Mbit/s 350 Mbit/s 350 Mbit/s 600 Mbit/s

Input delay resolu-
tion

- - 480 ps 78 ps

Termination pluggable pluggable 47 
Thevenin

47 
Thevenin

Threshold level programmable programmable programmable programmable

Input signals > 0.5 V >0.5V >0.5 V >0.5 V
Arm ETM Trace | 9©1989-2024 Lauterbach

*) For ETMv1 modes please contact support@lauterbach.com

Product Number LA-7993 LA-7988

TRACE32 ID 72 ETM-HSSTP (74)

Delivery year since 2010 since 05/2008

Serial number yes yes

Supported target
voltage range [V]

1.2 … 3.3 0.1-0.7

Casing yes (with fan) yes (with fan)

Number of ribbon
cables

3 3

Supported ETM
port modes

1-40bit 1-4 lanes

Supported ETM
modes

Normal*)
Mux *)
Demux *)
Full/Half rate*)
Continuous

Normal
Continuous
Bypass

Maximum line
datarate

600 Mbit/s 6250Mbit/s

Coupling DC AC

Input delay resolu-
tion

78ps -

Termination 47 
Thevenin

-

Threshold level programmable -

Connectorisation QTH, 60pin ERF8, 40pin

Input signals > 0.5 V > 0.5 V
Arm ETM Trace | 10©1989-2024 Lauterbach

Preprocessor for ARM-ETM 120 (LA-7889)

The target hardware has to be equipped with a 38 pin mictor connector in order to connect the
Preprocessor for ARM-ETM 120. For dimensions and target connector pinout of the preprocessor refer the
chapter Technical Data.

All trace signals are connected after plugging the preprocessor into the target´s trace connector.

If it is not possible to directly plug the preprocessor to the trace target connector, a Mictor Flex Extension
(LA-1370) can be used.

The debug cable has also to be connected to the hardware. Use one of the following connectors:

• the JTAG connector of your target

• the JTAG connector of the preprocessor

The JTAG connector on the Preprocessor for ARM-ETM 120 is a 20 pin connector. The connector is
located close to the trace target connector. If you are using a 14 pin debug cable you need to use a JTAG
ARM Converter 14-20 (LA-7747).

If you power up the TRACE32 equipment and the CONNECT ERROR LED of the RISC TRACE module is
glowing, please check all flat cables again.

If you power up the TRACE32 equipment and the CON ERROR LED of the PowerTrace module is glowing,
please check the correct connection of all flat cables again.
Arm ETM Trace | 11©1989-2024 Lauterbach

Preprocessor for ARM-ETM 200 (LA-7921)

The target hardware has to be equipped with a 38 pin mictor connector in order to connect the
Preprocessor for ARM-ETM 200. For dimensions and target connector pinout of the preprocessor refer to
the chapter Technical Data.

All trace signals are connected after plugging the preprocessor into the target´s trace connector.

If it is not possible to directly plug the preprocessor to the target´s trace connector, the Mictor Flex Extension
can be used.

The debug cable has also to be connected to the hardware. Use one of the following connectors:

• the JTAG connector on your target

• the JTAG connector on the preprocessor

The JTAG connector on the Preprocessor for ARM-ETM 200 is a 20 pin connector. The connector is
located close to the blue flat cable connectors. If you are using a 14 pin debug cable you need to use a JTAG
ARM Converter 14-20 (LA-7747).

If you power up the TRACE32 equipment and the CONNECT ERROR LED of the RISC TRACE module is
glowing, please check the flat cables again.

If you power up the TRACE32 equipment and the CON ERROR LED of the PowerTrace module is glowing,
please check the correct connection of all flat cables again.
Arm ETM Trace | 12©1989-2024 Lauterbach

Preprocessor for ETM 2-MICTOR (LA-7923)

The target hardware has to be equipped with one or two 38 pin mictor connectors in order to connect this
Preprocessor for ARM-ETM. For dimensions and target connector pinout of the preprocessor see the
chapter Technical Data.

All trace signals are connected after plugging the preprocessor into the target´s trace connector.

If it is not possible to plug the preprocessor to the trace target connector directly, use a Mictor Flex
Extension. Let the second connector unused, if the target does not support 32 bit ETM modes.

Connecting the debug cable two ways are possible:

• the JTAG connector of your target

• the JTAG connector of the preprocessor

The JTAG connector of the preprocessor is a 20 pin connector. The connector is located close to the blue flat
cable connectors (DEBUG). If you are using a 14 pin debug cable you need to use a
JTAG ARM Converter 14-20 (LA-7747).

If you power up the TRACE32 equipment and the CONNECT ERROR LED of the RISC TRACE is glowing,
please check the flat cables.

If you power up the TRACE32 equipment and the CON ERROR LED of the PowerTrace is glowing, please
check the flat cables again.
Arm ETM Trace | 13©1989-2024 Lauterbach

Preprocessor for ARM-ETM Autofocus (LA-7991)

The target hardware has to be equipped with one or two 38 pin mictor connectors in order to connect this
Preprocessor for ARM-ETM. For dimensions and target connector pinout of the preprocessor refer to the
chapter Technical Data

All trace signals are connected after plugging the preprocessor (Trace A) into the target´s trace connector.

If it is not possible to plug the preprocessor to the trace target connector directly, use a Mictor Flex
Extension. Let the second connector (Trace B) unused, if the target does not support >16bit ETM modes.

Connecting the debug cable two ways are possible:

• the JTAG connector of your target

• the JTAG connector of the preprocessor
Arm ETM Trace | 14©1989-2024 Lauterbach

The JTAG connector of the preprocessor is a 20 pin connector. The connector is located under the blue flat
cable connectors. If you are using a 14 pin debug cable you need to use a JTAG ARM Converter 14-20
(LA-7747).

There are two types of LA-7991 that can be distinguished with VERSION.HARDWARE.

The LA-7991 OTP is based on a one-time-programmable FPGA that became obsolete in 2005. In the
VERSION.HARDWARE window it is marked ’(OTP)’.

The LA-7991 OTP is succeeded by a re-programmable version.

Both types have a similar performance, but there is a difference in the time resolution when it comes to
adjustment of sampling points. You might notice this in the Trace.ShowFocus window. However this should
not impact the actual trace result.

NOTE: The OTP version supports only ETM v1-3 pinouts, CTOOLs pinouts that follow the ETM v1-3
specification are supported (e.g. OMAP2420). However some CTOOLs pinouts are limited in their trace
capabilities (e.g. OMAP1030): only simple tracing without trace compression is possible. Contact
sales@lauterbach.com, if your preprocessor is OTP and you require an unsupported CTOOLs pinout.

Before 2006 both the OTP as well as its re-programmable successor were delivered. Starting 2006 only the
re-programmable Preprocessor with integrated termination is delivered.

Preprocessors delivered before 2006 might be marked "(OTP)" in the
VERSION.HARDWARE window indicating that they are one-time-
programmable. They support only ETM v1-3 pinouts (ARM7/9/10/11). Some
CTOOLs pinouts do not follow the ETM v1-3 specification (e.g. OMAP1030).
As a consequence only simple tracing without trace compression is
possible. Contact sales@lauterbach.com, if your preprocessor is OTP and
you require an unsupported CTOOLs pinout.
Arm ETM Trace | 15©1989-2024 Lauterbach

External Termination PCB (delivered before 2006)

Most Preprocessors for ARM-ETM with AUTOFOCUS delivered in 2005 came with two pairs of
Termination Daughter PCBs. One pair labeled ’1.5 … 5 V”, the other labeled ’1.5 … 3.3 V’ or ’1.5 … 2.5 V’
for early versions of the Preprocessor.

How to choose the proper termination PCB:

• Complete range version (1.5 … 5 V)

The complete range version cuts the signal amplitude roughly in half. Hence it is save to use,
even for 5 V targets, but it might not be optimal for target voltages below 2.5 V.

• Low voltage version (1.5 … 3.3 V or 1.5 … 2.5 V)

The low voltage version does not affect the signal amplitude significantly. This module is usually
showing better results in terms of data eye width, especially for target voltages below 2.5 V. For
early versions of this termination module the signal amplitude after the termination PCB was
conservatively specified for a maximum of 2.5 ,V which is why these modules were labeled
"1.5 … 2.5 V". As more data became known, the maximum voltage could be increased to 3.3 V,
so this module is now labeled "1.5 … 3.3 V".

You must not use the low voltage termination for target voltages above 3.3 V!

• Integrated low voltage termination (1.5 … 3.3 V)

The low voltage termination is now integrated in the main PCB. For target voltages greater 3.3 V
a voltage converter (LA-7922) has to be used. However this voltage converter might reduce the
maximum trace frequency. You should always contact support@lauterbach.com to discuss
solutions for target voltages outside the specified range of 1.8 … 3.3 V or if you require a
customized termination module.

Not all termination PCBs are compatible with all Preprocessors for ARM-ETM with AUTOFOCUS, so it is
best to only use the termination PCBs that were delivered together with your preprocessor. Please refer to
the table below to find out PCB ID combinations that are compatible. There is an ongoing effort to optimize
the termination module for even higher frequencies, especially for the low voltage targets. In the table below
bold Termination PCB IDs are indicating that the termination PCB contains the latest improvements. If you
are unable to trace your target application at its maximum operating frequency and you do not have the
latest available termination module, contact sales@lauterbach.com for delivery arrangements. Use the
Diagnosis Tool to find out your preprocessors PCB IDs.

Termination Daughter PCB
Arm ETM Trace | 16©1989-2024 Lauterbach

In case your Preprocessors for ARM-ETM with AUTOFOCUS came with Termination Daughter PCBs,
you may wish to find out, which of the two termination PCB types best suits your needs. You can print out
some data eye statistics on the area window by pressing the "Info" button of the Diagnosis Tool (after
executing Analyzer.AutoFocus). Here is an example for a 1.8 V target:

• Complete range version (1.5 … 5 V)

• Low voltage version (1.5 … 2.5 V targets)

The low voltage version has less setup violations, so the data eyes are broader and easier to sample, hence
it is expected to be able to handle higher frequencies than the complete range version for that particular
target.

LA-7991 PCB ID Termination PCB ID for 1.8 … 3.3 V Termination PCB ID for 1.8 … 5 V

0x0 (OTP) 0x4 0x1

0x7 (OTP) 0x4 0x1

0xE (OTP) 0x6, 0xE, 0xF 0x2

0x0 0xF 0x2

0x1 0xF (integrated) not applicable

Not all termination PCBs are compatible with all Preprocessors for ARM-
ETM with AUTOFOCUS, so it best to only use the termination PCBs that
were delivered together with your preprocessor.
You must not use the low voltage termination for target voltages above
3.3 V
Arm ETM Trace | 17©1989-2024 Lauterbach

Preprocessor for ARM-ETM Autofocus II (LA-7992)

The Preprocessor for ARM-ETM Autofocus 2 is the next generation of Autofocus preprocessors. Its handling
is similar to ARM-ETM Autofocus (LA-7991)

The TRACE32 online help provides a “AutoFocus User’s Guide” (autofocus_user.pdf), please refer to this
manual if you are interested in details about Preprocessor AutoFocus II .
Arm ETM Trace | 18©1989-2024 Lauterbach

Preprocessor for ARM-ETM Autofocus MIPI (LA-7993)

The Preprocessor for ARM-ETM Autofocus MIPI is the next generation of Autofocus preprocessors. Its
handling is similar to ARM-ETM Autofocus (LA-7991)

The JTAG connector of the preprocessor is a 34 pin connector. The connector is located under the blue flat
cable connectors. A adapter is required, if you are using a debug cable with a non-MIPI connector (e.g. ARM
Converter ARM-20 to MIPI-34 (LA-3770)).

The TRACE32 online help provides a “AutoFocus User’s Guide” (autofocus_user.pdf), please refer to this
manual if you are interested in details about Preprocessor AutoFocus II .
Arm ETM Trace | 19©1989-2024 Lauterbach

Preprocessor for ARM-ETM HSSTP (LA-7988)

The HSSTP (High Speed Serial Trace Port) is different to the common parallel trace ports as ETM use. The
Preprocessor for ARM-ETM HSSTP opens the way to receive trace data on a serial way at higher data
rates.

The target hardware has to be equipped with a 40 pin ERM8 connector in order to connect this preprocessor
for ARM-ETM HSSTP. For dimensions and target connector pinout of the preprocessor see the chapter
Technical Data.

The outdated version is no longer available, but still supported.

Outdated version
Arm ETM Trace | 20©1989-2024 Lauterbach

All trace signals are connected after plugging the preprocessor into the target´s trace connector.

In case of no separate JTAG connector on the target, the debug cable can be conneted with the
preprocessors JTAG connector on the back side.

PowerTrace Serial 4 GigaByte for ARM-ETM HSSTP and PCIe

Please refer to “PowerTrace Serial User’s Guide” (serialtrace_user.pdf).
Arm ETM Trace | 21©1989-2024 Lauterbach

Utilization of the ETM

Startup Script

Example ETMv1

The following ETM settings are required:

• Define the width of the trace port with the command ETM.PortSize.

• Define the mode of the trace port with the command ETM.PortMode.

• Define if the ETM works in HalfRate mode or not with the command ETM.HalfRate.

• Turn on the ETM with the command ETM.ON.

Further the target must be configured:

• Setup I/O-ports

• Setup board (buffers, jumpers, etc.)

• Set operating frequency

Finally the preprocessor needs to be set up correctly:

• Setup AUTOFOCUS hardware with Analyzer.AutoFocus

• Also check the trace channel with Analyzer.TestFocus (included in Analyzer.AutoFocus)

This example is made for an ARM9 target (e.g. CM966E-S by ARM):

; JTAG DEBUGGER SETUP
SYStem.RESet
SYStem.JtagClock RTCK
SYStem.CPU ARM966E
SYStem.Up

; Initialize system
; Select JTAG clock
; Select CPU type
; Start debugger

; TARGET SETUP
Data.Set SD:0x10000014 %LE %L 0a05f
Data.Set SD:0x10000008 %LE %LONG 20
SYStem.Option.BigEndian OFF

; Unlock target registers
; Set target frequency
; Set endianism

; PROGRAM SETUP
Data.LOAD.ELF armle.axf /SPATH /LPATH
Register.Set PC main

Register.Set R13 0x1000

; Load example PRACTICE script
; Set program counter to program
; start
; Initialize stack pointer
Arm ETM Trace | 22©1989-2024 Lauterbach

Example HSSTP

The following ETM settings have to be done:

• Define the width of the trace port with the command ETM.PortSize.

• Define the mode of the trace port with the command ETM.PortMode.

• Define TPIU ETM register base

• Check HSSTP registers (PHY/Config)

• Turn on the ETM with the command ETM.ON.

• Finally check the ETM port with Analyzer.TestFocus

; ETM SETUP
ETM.PortSize 16

ETM.PortMode Normal

ETM.HalfRate OFF

ETM.DataTrace Both
ETM.ON

; Set the trace port width to 16

; Set the trace mode to Normal
; mode

; Set full rate mode for ETM

; Trace Address and Data
; Turn ETM on

; Configure Preprocessor
Analyzer.THreshold VCC

Analyzer.TERMination ON

Analyzer.AutoFocus

; set threshold to 50% of the
; voltage level of pin12 of the
; target connector
; connect termination voltage
; during trace
; Set threshold and sampling
; points automatically

; Test trace port
Analyzer.TestFocus

; Load, execute and trace test
; program and report errors

; END OF SCRIPT
ENDDO ; End of script

Don’t forget to check the ETM port with Analyzer.TestFocus. The check
must always finish with success.
Arm ETM Trace | 23©1989-2024 Lauterbach

This example is made for an Cortex-R4 target:

; JTAG DEBUGGER SETUP
SYStem.RESet
SYStem.JtagClock RTCK
SYStem.CPU CORTEXR4

SYStem.CONFIG MEMORYACCESSPORT 0
SYStem.CONFIG DEBUGACCESSPORT 1
SYStem.CONFIG COREBASE APB:0x8000A000

SYStem.CONFIG ETMBASE APB:0x80006000
SYStem.CONFIG FUNNELBASE APB:0x80004000
SYStem.CONFIG ETMFUNNELPORT 0
SYStem.CONFIG TPIUBASE APB:0x80003000

SYStem.Up

; Initialize system
; Select JTAG clock
; Select CPU type

; Define

; Start debugger

; PROGRAM SETUP
Data.LOAD.ELF armle.axf /SPATH /LPATH
Register.Set PC main
Register.Set R13 0x1000

; Load example PRACTICE
script
; Set program counter to
; main
; Initialize stack
; pointer

; ETM SETUP
ETM.PortType HSSTP
ETM.PortSize 3LANE
ETM.PortMode 6000Mbps
ETM.DataTrace Both
ETM.ON

; 3 lanes
; 6 Gbps
; Trace Address and Data
; Turn ETM on

; HSSTP CHANNEL TRAINING
Data.Set APB:0x8000D000 %LE %LONG 0xc
Data.Set APB:0x8000D000 %LE %LONG 0xd

IF Analyzer.ISCHANNELUP()
(
 Data.Set EAPB:0x8000D000 %LE %LONG 0xf
 PRINT "Channel is up"
)
ELSE
(
 PRINT "Channel up failed!"
)

; reset STP
; enable init sequence

; Channel up?

; enable transmission
Arm ETM Trace | 24©1989-2024 Lauterbach

Loading and Storing Settings

For the Preprocessors ARM-ETM without AUTOFOCUS at the most two settings need to be stored that
enable restoring the previous configuration of the Preprocessor: use Analyzer.TERMination ON | OFF
and Trace.THreshold <value> to restore settings from previous sessions.

For Preprocessors for ARM-ETM with AUTOFOCUS you can use the Store and Load buttons in the
Trace.ShowFocus window to store settings of the current session or restore settings from a previous
session.

Pressing the Store button will call STOre <file> AnalyzerFocus and generate a PRACTICE script similar
to this:

In following sessions the settings can be restored either by using the Load… button or simply by including
the PRACTICE script in your regular setup script.

B::

IF ANALYZER()
(

ANALYZER.TERMINATION ON

ANALYZER.THRESHOLD 1.19 0.99

; connect termination voltage
; during trace
; clock reference voltage
; = 1.19 V
; data reference voltage
; = 0.99 V

ANALYZER.SAMPLE TS -0.219
ANALYZER.SAMPLE PS0 -0.219
ANALYZER.SAMPLE PS1 +0.365
ANALYZER.SAMPLE PS2 +0.365
ANALYZER.SAMPLE TP0 -1.387
ANALYZER.SAMPLE TP1 -1.387
ANALYZER.SAMPLE TP2 -1.387
ANALYZER.SAMPLE TP3 -1.387
ANALYZER.SAMPLE TP4 -0.803
ANALYZER.SAMPLE TP5 -1.387
ANALYZER.SAMPLE TP6 -1.387
ANALYZER.SAMPLE TP7 -1.387

)

; Store trace channel sampling
; points

ENDDO ; End of script

Trace.ShowFocus as it
appears for a
re-programmable LA-7991
Arm ETM Trace | 25©1989-2024 Lauterbach

It is not recommended to manually edit the data related to the sampling points, instead the
Trace.ShowFocus window should be used:

• Use the left / right arrows to adjust the clock delay (all sampling points will be moved globally)

• You may move individual channel sampling points to the left or right by double-clicking a position
within the rectangle you can think of being drawn around all sampling points in the
Trace.ShowFocus window (the blue rectangle in the picture below). In the example below you
could move TS and/or PS[2:0] one position to the left and/or TP[7:0] one position to the right.
Arm ETM Trace | 26©1989-2024 Lauterbach

Displaying Trace Results

After the PRACTICE script was started by using Run Script in the File menu or by entering the command
DO <file>, display the source listing by using List Source from the View menu or by entering the command
Data.List.

Open the Trace setup window by using Configuration from the Trace menu or by entering the command
Trace.state.

Open the ETM setup window by using ETM Settings in the Trace menu or by entering the command
ETM.state.
Arm ETM Trace | 27©1989-2024 Lauterbach

Type Go sieve into the command line and the CPU will run until the entry of the function sieve and the
used field of the Trace.state window shows the amount of records that were sampled into the trace buffer.

If AutoInit is ON in the commands field of the Trace.state window the trace contents is cleared at every
program start. Enable this feature by clicking to the check box AutoInit in the Trace.state window. Type Go
sieve again and the function sieve will be executed once. The trace is filled with the program flow of the
function sieve only.

To display the trace content use List->Default in the Trace menu or enter the command Trace.List.
Arm ETM Trace | 28©1989-2024 Lauterbach

For a pure HLL trace use List->HLL Source Only in the Trace menu.

If undefinable errors occur in the trace display refer to the commands:

• Analyzer.THreshold

• Analyzer.TERMination
Arm ETM Trace | 29©1989-2024 Lauterbach

Programmer’s Model of the ETM

Supported Features

The features of the ARM-ETM trace mainly depend on the implementation of the Embedded Trace
Macrocell (ETM). All trigger and filter features are provided by the ETM. To get information about the
available resources of the ETM it is possible to read out the configuration register. Use ETM Settings in the
Trace menu or enter the command ETM.state to open the ETM.state window.

The right side of the window shows the list of all resources of the ETM:

AComp Number of pairs of address comparators

DComp Number of data comparators

CComp Number of Context ID comparators

Map Number of memory map decoders

Counter Number of counters

Seq Sequencer available

ExtIn Number of external inputs

ExtIntBus Extended external bus

ExtOut Number of external outputs

FifoFull FIFOFULL Logic of ETM available or not

Fifosize Number of bytes of ETM FIFO

Protocol Protocol version

Version ETM version
Arm ETM Trace | 30©1989-2024 Lauterbach

ETM Registers

Register
Encoding

Function Description

0000 0000 ETM control Controls the general operation of the ETM

0000 0001 ETM config code Holds the number of each resource

0000 0010 Trigger event Holds controlling event

0000 0011 Memory map decode control Configures the map decoder

0000 0100 ETM status Holds pending overflow status bit

0000 0101 Reserved

0000 0110 Reserved

0000 0111 Reserved

0000 1000
0000 1001

TraceEnable event
TraceEnable region

Holds enabling event
Holds include/exclude region

0000 1010
0000 1011

FifoFull region
FifoFull level

Holds include/exclude region
Holds the level below which the FIFO is
considered full

0000 1100
0000 1101
0000 1110
0000 1111

ViewData event
ViewData control 1
ViewData control 2
ViewData control 3

Holds the enabling event
Holds include/exclude region
Holds include/exclude region
Holds include/exclude region

0001 xxxx
0010 xxxx

Address comparator 1-16
Address access type 1-16

Holds the address of comparison
Holds the type of access

0011 xxxx
0100 xxxx

Data comparator values
Data comparator masks

Holds the data to be compared
Holds the mask for the data access

0101 00xx
0101 01xx
0101 10xx
0101 11xx

Initial counter value 1-4
Counter enable 1-4
Counter reload 1-4
Counter value 1-4

Holds initial value of the counter
Holds counter clock enable/event
Holds counter reload event
Holds current counter value

0110 0xxx Sequencer state/control Holds the next state triggering events

0110 10xx External output 1-4 Holds controlling event for each output

0110 11xx Reserved

0111 0xxx Implementation specific 8 implementation specific register

0111 1xxx Reserved
Arm ETM Trace | 31©1989-2024 Lauterbach

Programming

The ETM registers can be displayed by pushing the Register button in the ETM.state window or by using
the command ETM.Register:

The window shows a tree display of all control register groups. Details about a special group can be
displayed by clicking to the small + sign beside the group name.

A modification of each register is possible by a simple double click on the value. The following command is
automatically generated in the command line:

ETM registers can be read and modified while the program execution is running.

It is also possible to use the ETM.Set command to modify the ETM registers. A full description of all
available commands is in chapter Commands.

PER.Set EETM:<register_address> %Long <value>
Arm ETM Trace | 32©1989-2024 Lauterbach

ETM Commands

ETM Embedded Trace Macrocell (ETM)

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the ETM.state window.

The following TRACE32 commands are available to configure the ETM:

See also

■ ETM.AbsoluteTimestamp ■ ETM.AddressMunging ■ ETM.ATBTrigger ■ ETM.AUXCTLR
■ ETM.BBC ■ ETM.BBCExclude ■ ETM.BBCInclude ■ ETM.CLEAR
■ ETM.CLOCK ■ ETM.COND ■ ETM.ContextID ■ ETM.CORE
■ ETM.CPRT ■ ETM.CycleAccurate ■ ETM.CycleCountThreshold ■ ETM.CycleCountTickEnable
■ ETM.CycleCountTickRate ■ ETM.DataSuppress ■ ETM.DataTrace ■ ETM.DataTracePrestore
■ ETM.DataViewExclude ■ ETM.DataViewInclude ■ ETM.DBGRQ ■ ETM.FifoFullExclude
■ ETM.FifoFullInclude ■ ETM.FifoLevel ■ ETM.FunnelHoldTime ■ ETM.HalfRate
■ ETM.INSTP0 ■ ETM.LPOVERRIDE ■ ETM.MapDecode ■ ETM.NoOverflow
■ ETM.OFF ■ ETM.ON ■ ETM.PortDisable ■ ETM.PortDisableOnchip
■ ETM.PortMode ■ ETM.PortRoute ■ ETM.PortSize ■ ETM.PowerUpRequest
■ ETM.PseudoDataTrace ■ ETM.QE ■ ETM.QTraceExclude ■ ETM.QTraceInclude
■ ETM.RefClock ■ ETM.Register ■ ETM.ReserveContextID ■ ETM.RESet
■ ETM.ReturnStack ■ ETM.Set ■ ETM.SmartTrace ■ ETM.STALL
■ ETM.state ■ ETM.StoppingBreakPoints ■ ETM.SyncPeriod ■ ETM.TImeMode
■ ETM.TimeStampCLOCK ■ ETM.TimeStamps ■ ETM.TimeStampsTrace ■ ETM.Trace
■ ETM.TraceCORE ■ ETM.TraceDataPriority ■ ETM.TraceERRor ■ ETM.TraceExclude
■ ETM.TraceID ■ ETM.TraceInclude ■ ETM.TraceNoPCREL ■ ETM.TraceNoSPREL
■ ETM.TracePriority ■ ETM.TraceRESet ■ ETM.TRCIDR ■ ETM.VMID
❏ ETM() ❏ ETM.ADDRCOMP() ❏ ETM.ADDRCOMPTOTAL() ❏ ETM.FIFOFULL()
❏ ETM.PROTOCOL()

▲ ’ETM Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’
Arm ETM Trace | 33©1989-2024 Lauterbach

ETM.AbsoluteTimestamp Absolute cyclecount pakets

See also

■ ETM ■ ETM.state

ETM.AddressMunging Dig endian address munging

Default: OFF.

This command handles big endian address munging in ETM.

See also

■ ETM ■ ETM.state

Format: ETM.AbsoluteTimestamp [ON | OFF]

OFF Cycle counts in cycle accurate tracing mode are relative (default).

ON Cycle counts in cycle accurate tracing mode are absolute. This is the
behavior of some (non ARM) ETM units.

Format: ETM.AddressMunging [ON | OFF]
Arm ETM Trace | 34©1989-2024 Lauterbach

ETM.ATBTrigger Use ATB to transfer trace trigger to trace sink

Configures the ETMv4 to drive an ATB trigger on event 0. This means that a trace trigger occurring in the
ETM, is transported to the trace sink (TPIU, ETB, ETF, or ETR) via the CoreSight Advanced Trace Bus
(ATB). You need to configure this option manually only for advanced operations. (See below.)

• On ARM chips with CoreSight ETMv3 or PTM (e.g. Cortex-A9) ETM.ATBTrigger is not available
(or has no effect). Thus (except for Cortex-M) you have to configure the Cross Trigger Interfaces
(CTI) manually to transport a trace trigger from the ETM to the trace port (TPIU) or onchip trace
buffer (ETB/ETF/ETR) via the CoreSight Cross Trigger Matrix (CTM).

• On ARM chips without CoreSight debug infrastructure (ARM9 / ARM11) this option is not
required.

• On ARM chips with ETMv4 (e.g. Cortex-R7/R8/R52, Cortex-A3x/A5x/A7x) setting
ETM.ATBTrigger to ON configures the ETM to transport a trace trigger via the CoreSight
Advanced Trace Bus (ATB).

You can configured an event causing a trace trigger in the ETM by using the either the command
Break.Set /TraceTrigger or the advanced command ETM.Set Trigger. Both commands set automatically
ETM.ATBTrigger to ON.

When configuring an ETM trigger with ETM.Set Trigger you may use ETM.ATBTrigger OFF, to disable
trigger propagation via ATB. This makes sense, if you prefer to transport you trigger through the cross trigger
system (CTI & CTM) e.g. to stop a core directly when an ETM trigger occurs.

Example 1: Create a trace trigger when an instruction is fetched at address 0x6300100 on Cortex-R7.

Be aware that the ETMv4 of a Cortex-R and Cortex-M have (unfortunately) a "visible speculation depth" at
its output. Thus, for these cores it’s recommended to generate a trace-trigger via a SingleShot comparators.
(See example below.)

Format: ETM.ATBTrigger [ON | OFF]

NOTE: While normal trace data is usually buffered before it is emitted by the trace port,
the ATB trigger is normally not buffered. This means that a trace trigger might
be received before the associated trace data is received.

;Trace trigger is generated on Cortex-R7 when an instruction is fetched at
;0x6300100. This command sets "ETM.ATBTrigger ON" automatically.
Break.Set 0x6300100 /Program /TraceTrigger

;Configures the trace-sink to stop the recording 2400 trace records after
;the trace trigger was received
Trace.TDelay 2400.
Arm ETM Trace | 35©1989-2024 Lauterbach

Example 2: Generate a trace trigger when the execution of an instruction was confirmed on Cortex-R7.

On Cortex-A you won’t need the SingleShot comparators and both examples would generated the trigger
only when the instruction at address 0x6300100 was really executed. This is because the ETMv4 has
(luckily) no "visible speculation depth" on Cortex-A.

;Clear previous ETM.Set settings
ETM.CLEAR

;Configure 1st address comparator to raise an event on "execution" of
;program address 0x6300100
ETM.Set Address 1 Execute 0x6300100

;Configure 1st SingleShot comparator to confirm the execution
ETM.Set SingleShot 1 Address 1

;Generate an ETM trace trigger when 1st SingleShot comparator fires.
;Automatically sets "ETM.ATBTrigger ON".
ETM.Set Trigger SingleShot 1

;Configures the trace-sink to stop the recording 2400 trace records
;after the trace trigger was received
Trace.TDelay 2400.
Arm ETM Trace | 36©1989-2024 Lauterbach

Example 3: Stop Cortex-R7 core when any instructions inside address range 0x1000++0xfff was executed.

See also

■ ETM ■ ETM.state

;Clear previous ETM.Set settings
ETM.CLEAR

;Configure 1st address range comparator
ETM.Set Range 1 Execute 0x1000++0xfff

;Use SingleShot to confirm the execution
ETM.Set SingleShot 1 Range 1

;Send ETM trigger when SingleShot fires.
ETM.Set Trigger SingleShot 1

;Don’t propagate trigger via trace bus
ETM.ATBTrigger OFF

;Enable CTI of core and ETM (0x80918000 is here the base address of the
;CTI, this address differs from chip to chip)
Data.Set EDAP:0x80918000 %Long 1

;Send ETM trigger (which uses CTITRIGIN[2] on Cortex-R7) to CTM channel 2
Data.Set EDAP:0x80918028 %Long 4

;Receive CTM channel 2 on CTITRIGOUT[0], which is connected to the core’s
;EDBGRQ signal (whish stops the core)
Data.Set EDAP:0x809180A0 %Long 4
Arm ETM Trace | 37©1989-2024 Lauterbach

ETM.AUXCTLR Set ETMv4 implementation-specific auxiliary control register

Sets the value of the ETMv4 auxiliary control register "TRCAUXCTLR".

The function of this register is not defined by the ETMv4 specification, but can be used by any
implementation of the ETMv4 for implementation-specific purposes.
E.g.: Bit 0 and 1 are defined for Cortex-R7 (see "CoreSight ETM-R7 Technical Reference Manual")

TRACE32 will only write to the ETMv4 register TRCAUXCTLR, if you have specified a value with
ETM.AUXCTLR (and leave it untouched otherwise). After resetting the target chip, TRCAUXCTLR
contains 0.

See also

■ ETM ■ ETM.state

ETM.BBC Branch address broadcast

Enable or disable branch-broadcasting globally.

When branch-broadcasting is active, the ETM broadcasts the address information for all branches. This
consumes more trace memory and trace port bandwidth. It is usually not required.

See also

■ ETM ■ ETM.state

Format: ETM.AUXCTLR <value> (ETM4.0)

Format: ETM.BBC [ON | OFF]

OFF The ETM broadcasts only the address information when the processor
branches to a location that cannot be directly inferred from the source
code (default).

ON The ETM broadcasts the address information for all branches.
This option has to be ON, if hardware based code coverage with ETMv1
is used.
Arm ETM Trace | 38©1989-2024 Lauterbach

ETM.BBCExclude Exclude address ranges from branch-broadcasting

While command ETM.BBC OFF disables branch-broadcasting globally, this commands disables branch-
broadcasting only for certain address ranges (while it is enabled elsewhere).

When branch-broadcasting is active, the ETM broadcasts the address information for all branches. This
consumes more trace memory and trace port bandwidth. It is usually not required.

The commands ETM.BBCInclude and ETM.BBCExclude are mutually exclusive.

See also

■ ETM ■ ETM.state

ETM.BBCInclude Enable branch-broadcasting for dedicated address ranges

While command ETM.BBC ON enables branch-broadcasting globally, this commands enables branch-
broadcasting only for certain address ranges (while it is disabled elsewhere).

When branch-broadcasting is active, the ETM broadcasts the address information for all branches. This
consumes more trace memory and trace port bandwidth. It is usually not required.

The commands ETM.BBCInclude and ETM.BBCExclude are mutually exclusive.

See also

■ ETM ■ ETM.state

Format: ETM.BBCExclude <access> … <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite

Format: ETM.BBCInclude <access> … <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite
Arm ETM Trace | 39©1989-2024 Lauterbach

ETM.CLEAR Clear sequencer settings

Switches the ETM ON, clears the trace and clears all setting for the sequencer respectively clears all setting
done by the command ETM.Set.

See also

■ ETM ■ ETM.Set ■ ETM.state

ETM.CLOCK Set core clock frequency for timing measurements

Tells the debugger the core clock frequency of the traced ARM core.

• If the timing information is based on core clock cycles (ETM.TImeMode CycleAccurate), this
setting is used to calculate the elapsed time in seconds from the elapsed clock cycles.

• If the timing information is based on external timestamps or (ETM.TImeMode External or
ETM.TImeMode ExternalInterpolate), this setting is used to calculate the elapsed clock cycles
from the elapsed time in seconds.

• If the timing information is based on synchronous internal timestamps
(ETM.TImeMode SyncTimeStamp), this setting is used to calculate the elapsed clock cycles
from the elapsed time in seconds.

• If the timing information is based on asynchronous internal timestamps
(ETM.TImeMode AsyncTimeStamp), this setting is used together with ETM.TimeStampCLOCK
to calculate the elapsed clock cycles from the elapsed time in seconds.

• For timing modes which combine timestamps with cycle count information, this setting is not
required.

See also

■ ETM ■ ETM.state

Format: ETM.CLEAR

Format: ETM.CLOCK <frequency>
(alias for <trace>.CLOCK)
Arm ETM Trace | 40©1989-2024 Lauterbach

ETM.CORE Select core for ETM

Selects the core to be traced when the ETM unit can be connected to multiple cores.

See also

■ ETM ■ ETM.state

ETM.CPRT Monitor coprocessor register transfers

Monitor Coprocessor Register Transfers are traced if ETM.CPRT is set to ON. Default is OFF.

See also

■ ETM ■ ETM.state

Format: ETM.CORE <core_id>

Format: ETM.CPRT [ON | OFF] (ETM3.5)
Arm ETM Trace | 41©1989-2024 Lauterbach

ETM.COND Conditional non-branch instructions

Configures the ETM if information about the execution of conditional non-branch instructions should be
included in the trace stream. This gets implicitly enabled if a data trace for loads and/or stores is enabled.

The execution of a conditional branch instruction is always traced. This is a configuration option for ETMv4
on ARMv7-R, ARMv8-R, ARMv7-M and ARMv8-M architecture.

The command is also needed at the time of trace decoding if the Trace Configuration Register
(TRCCONFIGR) of the ETMv4 cannot be read (e.g. trace post processing in the TRACE32 simulator).

See also

■ ETM ■ ETM.state

ETM.ContextID Select the width of the "ContextID" register

Select the width of the Context ID register. By setting ETM.ContextID to any value (except OFF), the ETM
will emit a trace message containing the value written to the Context ID register.

When tracing a CPU with a target operating system, the trace recording should include information about the
active tasks and/or threads. This can be either achieved by using data-trace or by using ETM.ContextID
(especially if data-trace is not available (e.g. Cortex-A)). If you are using ETM.ContextID you have to ensure
that your target operating systems writes to the Context ID register whenever a context switch (task/thread
switched) occurs.

See also

■ ETM ■ ETM.state

Format: ETM.COND OFF | Loads | Stores | LoadsAndStores | ALL (ETM4.0)

OFF Conditional instruction tracing is disabled.

Loads Conditional load instruction are traced.

Stores Conditional store instructions are traced.

LoadsAndStores Conditional load and store instructions are traced.

ALL All conditional instructions are traced.

Format: ETM.ContextID 8 | 16 | 32 | OFF
Arm ETM Trace | 42©1989-2024 Lauterbach

ETM.CycleAccurate Cycle accurate tracing

Enables cycle accurate tracing if ON. Default is OFF.

Cycle accurate tracing can be used to observe the exact number of cycles that a particular code sequence
takes to execute. When ETM.CycleAccurate is OFF then the timestamp information from the TRACE32
hardware will be used. These timestamps are generated when the tracepaket is recorded in the tracebuffer.
As the packets may be buffered in FIFOs on the chip the packets may get a variable delay between the
generation from the ETM and the time the packets is seen on the external trace port. This results in small
errors in the timestamps. For most measurements these errors can be discarded when the time taken from
the trace is large compared with the error (e.g. taking the time of a larger function). However the errors will
become relevant when looking for the time of very small functions or even single instructions. This is the use
case for cycle accurate tracing. Cycle accurate tracing must also be used to get any time information from
onchip trace buffers. Cycle accurate tracing has two disadvantages: it requires more trace port bandwidth
and it takes more time to display the trace. Timestamps are generated based on the CPU clock if the CPU
clock is specified with the command Trace.CLOCK <cpu_clock>. It is recommended to reduce the data
trace information if cycle accurate tracing is used, because cycle accurate tracing generates extra load on
the trace port (not for ETMv1).

Here is a summary of pros and cons for cycle accurate tracing:

+ exact timestamps for small code pieces (or even single instructions)
+ timestamps for onchip trace buffers
+ trace can show number of clocks even when core clock changes dynamically
+ exact time correlation with other cores (when global timestamps are available)

- requires more traceport bandwidth (about four times more) (not ETMv1)
- reduced tracing time (more trace packets generated)
- longer trace processing time (needs to process whole trace to get timestamp of last record) (not ETMv1)
- no time correlation with other cores (except when global timestamps are available)
- no time correlation with other trace hardware

See also

■ ETM ■ ETM.DataTrace ■ ETM.state ■ <trace>.CLOCK

Format: ETM.CycleAccurate [ON | OFF]
Arm ETM Trace | 43©1989-2024 Lauterbach

ETM.CycleCountThreshold Set granularity for cycle accurate timing info

Configure the granularity of cycle accurate time information for the ETMv4. (See also command
ETM.TImeMode for details about cycle accurate timing information.)

By default the ETM.CycleCountThreshold is set to a low number which ensures that cycle information is
provided with (almost) every program trace cycle.

See also

■ ETM ■ ETM.state

ETM.CycleCountTickEnable ETMv4 cycle counter overflows
[build 149103 - DVD 09/2022]

Enables workaround for cycle counter overflows in ETMv4.

See also

■ ETM ■ ETM.state

ETM.CycleCountTickRate ETMv4 cycle counter rate
[build 149103 - DVD 09/2022]

Default: 100.

Defines the rate at which ticks are generated when ETM.CycleCountTickEnable and ETM.CycleAccurate
are enabled.

Format: ETM.CycleCountThreshold <threshold> (ETM4.0)

<threshold> The threshold value sets the minimum number of core clock cycles that need
to elapse before a cycle information is emitted on the trace port. Larger
numbers reduce the required bandwidth and required trace memory, but
make the time information less accurate.

Format: ETM.CycleCountTickEnable [ON | OFF]

Format: ETM.CycleCountTickRate <rate>
Arm ETM Trace | 44©1989-2024 Lauterbach

The ticks are a workaround for limitations of the ETMv4 cycle counter trace protocol.

The number of clocks reported for one trace message (one block of instructions between branches) is
limited. If this limit is reached the ETMv4 will just report that an “unknown” number of clocks has elapsed.
The trace will display an appropriate flow error in this case and the execution time will be taken as zero.

With enabled ticks the trace decoder has a way to determine the time from the number of ticks seen in the
trace. The accuracy of this coarse time stamping depends on the tick rate.

Ticks are traced as ETM events. This means that the trace will generate a continuous stream of messages
at the tick rate.

See also

■ ETM ■ ETM.state

ETM.DataSuppress Suppress data flow to prevent FIFO overflow

Allow the ETM to suppress the data flow information if a FIFO overflow is likely to happen.

Example:

See also

■ ETM ■ ETM.state

Format: ETM.DataSuppress [ON | OFF]

ETM.FifoLevel 16. ; Select a FifoLevel

ETM.DataSuppress ON
Arm ETM Trace | 45©1989-2024 Lauterbach

ETM.DataTrace Configure data-trace

Configures which elements are included in the data trace:

See also

■ ETM ■ ETM.CycleAccurate ■ ETM.Set ■ ETM.state
■ ETM.TimeStampsTrace

Format: ETM.DataTrace <def>

<def>: ON
Read
Write
Address
ReadAddress
WriteAddress
Data
ReadData
WriteData
Only (ETM3.0)
OnlyAddress (ETM3.0)
Only Data (ETM3.0)
OFF

ETM.DataTrace Trace of
Program Flow

Trace
Data Values of
Read Accesses

Trace
Data Values of
Write Accesses

Trace
Addresses of

Read Accesses

Trace
Addresses of

Write Accesses

ON ■ ■ ■ ■ ■

Read ■ ■ ■

Write ■ ■ ■

Address ■ ■ ■

ReadAddress ■ ■

WriteAddress ■ ■

Data ■ ■ ■

ReadData ■ ■

WriteData ■ ■

Only ■ ■ ■ ■

OnlyAddress ■ ■

OnlyData ■ ■

OFF ■
Arm ETM Trace | 46©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’
Arm ETM Trace | 47©1989-2024 Lauterbach

ETM.DataTracePrestore Show program trace cycle for data trace cycle

This command is an alias for the deprecated command Analyzer.Mode.Prestore - but supports also onchip
trace.

ETM.DataTracePrestore configures the ETM to generate an extra program trace cycle (ptrace) for every
traced data cycle in Trace.List. Thus, for every traced data access you get also the address of the
command which caused the data access. This is especially useful if you are not tracing the complete
program flow e.g. by using command:

• ETM.DataTracePrestore is mainly related to the ETMv3 (e.g. ARM11, Cortex-R4/R5, Cortex-
A5/A7/A8), where this command controls if additional trace packets are generated or not.

• The ETMv1 (e.g. ARM9) always reports program trace cycles for all data accesses. Thus, the
command ETM.DataTracePrestore just enables or disables the display of the program trace
cycle associated with a data cycle, if you have disabled the complete program trace.

• For ETMv4 (e.g. Cortex-R7) this command has no effect.

See also

■ ETM ■ ETM.state

Format: ETM.DataTracePrestore [ON | OFF] (ETM3.5)

Break.Set /TraceEnable <data_address>
Arm ETM Trace | 48©1989-2024 Lauterbach

ETM.DataViewExclude Suppress data trace for specified address range

This command can be used:

• to exclude the specified <address_range> from broadcasting of data accesses

• to exclude a small <address_range> or a single <address> from an include range

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

Format: ETM.DataViewExclude <access> … <address_range> | <address> (ETM3.5)
ETM.DataViewExclude <access> … <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite (all)
Fetch | ExecutePass | ExecuteFail | MAP (ETM3.5)

; broadcast address and data
ETM.DataTrace Both

; exclude the accesses to the address range 0x6000++0xfff from
; broadcasting
ETM.DataViewExclude ReadWrite 0x6000++0xfff
Arm ETM Trace | 49©1989-2024 Lauterbach

ETM.DataViewInclude Restrict broadcast of data accesses to range

Defines the <address_range> | <address> for which data accesses are broadcast.

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

Format: ETM.DataViewInclude <access> … <address_range> | <address> (ETM3.5)
ETM.DataViewInclude <access> … <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite
Fetch | ExecutePass | ExecuteFail | MAP (ETM3.5)

; broadcast address and data for data accesses
ETM.DataTrace Both

; restrict the broadcasting to accesses to the address range
; 0x6000++0xfff
ETM.DataViewInclude Access 0x6000++0xfff

; broadcast address and data for data accesses
ETM.DataTrace Both

; restrict the broadcasting to write accesses to the
; variable flags
ETM.DataViewInclude Write V.RANGE(flags)

; broadcast address and data for data accesses
ETM.DataTrace Both

; restrict the broadcasting to write accesses to the
; memory selected by the memory map decoder 3
ETM.DataViewInclude Write MAP 3.
Arm ETM Trace | 50©1989-2024 Lauterbach

ETM.DBGRQ Debug request control

Set debug request control. When set to ON and a trigger occurs the ARM processor can be forced to enter
the debug state.

Use this to make a trigger stop the tracing plus the program execution.

See also

■ ETM ■ ETM.state

ETM.FifoFullExclude No activation of FIFOFULL in range

Defines the <address_range> where FIFOFULL will not be generated in the case of a FIFO overflow, so
that the processor is not stalled in critical code.

The commands ETM.FifoFullInclude or ETM.FifoFullExclude are mutually exclusive.

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

Format: ETM.DBGRQ [ON | OFF] (ETM3.5 or PTM)

Format: ETM.FifoFullExclude [<access> …] <address_range>

<access>: Execute | Read | Write | ReadWrite (all)
Fetch | ExecutePass | ExecuteFail | MAP (ETM3.5 or PTM)

; do not generate FIFOFULL in the defined address range
ETM.FifoFullExclude 0x1f20--0x1ff7

; do not generate FIFOFULL for the memory selected by memory map decoder
; 3
ETM.FifoFullExclude MAP 3.
Arm ETM Trace | 51©1989-2024 Lauterbach

ETM.FifoFullInclude FIFOFULL only in range

Defines the <address_range> where FIFOFULL is generated in the case of a FIFO overflow.

The commands ETM.FifoFullInclude or ETM.FifoFullExclude are mutually exclusive.

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

ETM.FifoLevel Define FIFO level for FIFOFULL

Defines the FIFO level. If the FIFO has less then <value> number of bytes of space available FIFOFULL is
generated if enabled by ETM.FifoFullInclude or ETM.FifoFullExclude.

See also

■ ETM ■ ETM.Set ■ ETM.state

Format: ETM.FifoFullExclude [<access> <address_value> …]

; generate FIFOFULL in the defined address range
ETM.FifoFullInclude 0x10000++0xffff

; generate FIFOFULL for the memory selected by memory map decoder 3
ETM.FifoFullInclude MAP 3.

Format: ETM.FifoLevel <value>

<value>: 1 | 2 … n
Arm ETM Trace | 52©1989-2024 Lauterbach

ETM.FunnelHoldTime Define minimum funnel hold time

Define the minimum Hold Time of all Coresight Funnels that are involved to the ETM trace data.

The formatting scheme of the trace data stream can easily become inefficient if fast switching occurs so
where possible this should be minimized. If a source has nothing to transmit then another source will be
selected irrespective of the minimum no. of cycles.

See also

■ ETM ■ ETM.state

ETM.HalfRate Halfrate mode

ETM.HalfRate has to be ON if the ETM works in half rate mode, which means that trace data should be
captured on both rising and falling edge of the trace clock (aka. "Double Data Rate").

This configuration option is only available for ETMv1. All further ETM versions (including PTM/PFT) operate
always in HalfRate mode.

See also

■ ETM ■ ETM.state

ETM.LPOVERRIDE Prohibit lower power mode

ETM.LPOVERRIDE ON configures the ETMv4 not to enter low-power state when the ARM cores enters
low-power state.

See also

■ ETM ■ ETM.state

Format: ETM.FunnelHoldTime <value>

<value>: 1 | 2 … 7

Format: ETM.HalfRate [ON | OFF]

Format: ETM.LPOVERRIDE [ON | OFF]
Arm ETM Trace | 53©1989-2024 Lauterbach

ETM.INSTP0 Load and store instructions

Configures the ETMv4 if load and store instructions are included in the program flow trace. This gets
implicitly enabled if a data trace for loads and/or stores is enabled.

Branches are always traced. This is a configuration option for ETMv4 on ARMv7-R, ARMv8-R, ARMv7-M
and ARMv8-M architecture.

The command is also needed at the time of trace decoding if the Trace Configuration Register
(TRCCONFIGR) of the ETMv4 cannot be read (e.g. trace post processing in the TRACE32 simulator).

See also

■ ETM ■ ETM.state

ETM.MapDecode Memory map decode control

Sets the memory map decode control register to <code>.

See also

■ ETM ■ ETM.state

Format: ETM.INSTP0 Branches | Loads | Stores | LoadsAndStores

Branches Do not trace load and store instructions as P0 instructions.

Loads Trace load instructions as P0 instructions.

Stores Trace store instructions as P0 instructions.

LoadsAndStores Trace load and store instructions as P0 instructions.

Format: ETM.MapDecode <code>
Arm ETM Trace | 54©1989-2024 Lauterbach

ETM.NoOverflow Enable ETMv4 feature to prevent target FiFo overflows

Enables (or disables) a mechanism of the ETMv4 to prevent overflows (if supported). Similar to
ETM.STALL. Enabling the feature might have a significant performance impact.

See ARM ETMv4 architecture specification for details.

See also

■ ETM ■ ETM.state

ETM.ON Switch ETM on

Enables ETM functionality.

See also

■ ETM ■ ETM.state

ETM.OFF Switch ETM off

Disables ETM functionality.

See also

■ ETM ■ ETM.state

Format: ETM.NoOverflow [ON | OFF]

Format: ETM.ON

Format: ETM.OFF
Arm ETM Trace | 55©1989-2024 Lauterbach

ETM.PortDisable Force trace-port enable signal to zero

Default: OFF

Setting ETM.PortDisable to ON forces the ETMEN signal to 0 in the ETM main control register. This
usually disables the trace output from the ETM. Thus, you should normally not set ETM.PortDisable to ON.

On an ARM chip the ETMEN signal can be used to enable the trace port pins, which are shared with other
functions like e.g. GPIO. On some chips driving the ETMEN signal by the ETM has some fatal
consequences. In this rare case you can force ETMEN signal to 0 with this command.

This setting is mainly for ARM cores without CoreSight debug & trace infrastructure (ARM9 / ARM11). It is
considered by the ETMv1, ETMv3 and PTM, but has no effect for ETMv4.

See also the ARM Embedded Trace Macrocell Architecture Specification for ETMv1.0 to ETMv3.5.

See also

■ ETM ■ ETM.state

Format: ETM.PortDisable [ON | OFF]

ETM.ON
ETM.OFF

ETM.Trace ETM.PortDisable ETM.PortDisableOnchip ETM.PortRoute ETMEN
(port enable)

ETM.OFF x x x x 0

ETM.ON OFF x x x 0

ETM.ON ON ON x x 0

ETM.ON ON OFF ON Onchip 0

ETM.ON ON OFF ON (C)Analyzer 1

ETM.ON ON OFF OFF x 1
Arm ETM Trace | 56©1989-2024 Lauterbach

ETM.PortDisableOnchip Disable ETM trace port when ETB is used

Default: OFF

Setting ETM.PortDisable to ON forces the ETMEN signal to 0 in the ETM main control register when using
onchip trace (ETB). This usually disables the trace output from the ETM. Most (older) ETMs require the trace
port to be enabled even when tracing just to ETB. Thus, you should normally not set ETM.PortDisable to
ON.

On an ARM chip the ETMEN signal can be used to enable the trace port pins, which are shared with other
functions like e.g. GPIO. On some chips you have to set ETM.PortDisable to ON to use the onchip trace
(ETB) while using the physical pins of the trace-port for other purposes. However most ETMs require the
trace port to be enabled (according to the ETM main control register) even when just using onchip trace.

This setting is mainly for ARM cores without CoreSight debug & trace infrastructure (ARM9 / ARM11). It is
considered by the ETMv1, ETMv3 and PTM, but has no effect for ETMv4.

See also

■ ETM ■ ETM.state

Format: ETM.PortDisableOnchip [ON | OFF]

ETM.ON
ETM.OFF

ETM.Trace ETM.PortDisable ETM.PortDisableOnchip ETM.PortRoute ETMEN

ETM.OFF x x x x 0

ETM.ON OFF x x x 0

ETM.ON ON ON x x 0

ETM.ON ON OFF ON Onchip 0

ETM.ON ON OFF ON (C)Analyzer 1

ETM.ON ON OFF OFF x 1
Arm ETM Trace | 57©1989-2024 Lauterbach

ETM.PortMode Select ETM mode

Select the ETM mode or port bandwidth.

CoreSight (deprecated)

Use TPIU.PortMode instead.

The TPIU/ETB merges the trace information generated by the various trace sources within the
multicore chip to a single trace data stream. A trace source ID (e.g ETM.TraceID) allows to maintain the
assignment between trace information and its generating trace source. The task of the Formatter within
the TPIU/ETB is to embed the trace source ID within the trace information to create this single trace
stream.

ETM.PortMode specifies the Formatter operation mode.

See also

■ ETM ■ ETM.state

Format: ETM.PortMode Normal | Muxed | Demuxed | Demuxed2 (ETMv1.x)
ETM.PortMode Dynamic | Custom | 2/1 | 1/1 | 1/2 | 1/3 | 1/4 (ETMv3.x,
ARM11)

ETM.PortMode Bypass | Wrapped | Continuous (CoreSight) (deprecated)
ETM.PortMode 1500Mbps | 2000Mbps | 2500Mbps (serial ETM) (depre-
cated)
ETM.PortMode 3000Mbps | 3125Mbps | 4250Mbps (serial ETM) (depre-
cated)
ETM.PortMode 5000Mbps | 6000Mbps | 6250Mbps (serial ETM) (depre-
cated)

Bypass There is only one trace source, so no trace source IDs is needed. In this
operation mode the trace port interface needs to provide the TRACECTL
signal.

Wrapped The Formatter embeds the trace source IDs. The TRACECTL signal is
used to indicate valid trace information.

Continuous The Formatter embeds the trace source IDs. Idles are generated to
indicate invalid trace information. The TRACE32 preprocessor filters
these idles in order to record only valid trace information into the trace
memory.
Arm ETM Trace | 58©1989-2024 Lauterbach

ETM.PortRoute Set up trace hardware

Default: AUTO

Prepares the selected trace hardware for ETM trace capture.

See also

■ ETM ■ ETM.state

ETM.PortSize Define trace port width

Defines the width of the ETM trace port.

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

Format: ETM.PortRoute [AUTO | Analyzer | CAnalyzer | Onchip]

AUTO Automatic detection

Analyzer PowerTrace (via TPIU)

CAnalyzer Compact-Analyzer: CombiProbe or µTrace (MicroTrace)

Onchip Onchip trace buffer (ETB, ETF or ETR)

Format: ETM.PortSize 4 | 8 | 16 (ETMv1.x)
ETM.PortSize 1 | 2 | 4 | 8 | 16 | 24 | 32 (ETMv3.x and higher)
ETM.PortSize 1lane | 2lane | 3lane | 4lane (serial ETM)
Arm ETM Trace | 59©1989-2024 Lauterbach

ETM.PowerUpRequest Power-up request for the ETM by the debugger

Default: ON

When ETM.PowerUpRequest is set to ON, the debugger sets the power-up request bit in the ETM
configuration register TRCPDCR, when the ETM is used, This enables the power domain of the onchip trace
unit.

See also

■ ETM ■ ETM.state

ETM.PseudoDataTrace Enable pseudo data trace detection

Allows to generate "artificial" data cycles in the trace based on a program trace. This can be useful for
ETMs/PTMs that don’t implement data value tracing (e.g. Cortex-A8, Cortex-A9). It requires special code in
the target that executes a sequence of branch instructions to transmit the data information.

An example for the special code can be found in ~~/demo/arm/etc/tracedata (where ~~ stands for the
TRACE32 installation directory).

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

ETM.QE Enable Q elements

Controls if the ETMv4 trace stream may include Q elements. This is a configuration option for the ETMv4 on
an ARMv8-A CPU. See the ARM ETMv4 architecture specification for details.

Format: ETM.PowerUpRequest [ON | OFF]

Format: ETM.PseudoDataTrace [ON | OFF]

OFF Detection of data cycles disabled (default).

ON Detection of data cycles enabled.

Format: ETM.QE ON | Counted | OFF
Arm ETM Trace | 60©1989-2024 Lauterbach

The command is also needed at the time of trace decoding if the Trace Configuration Register
(TRCCONFIGR) of the ETMv4 can not be read (e.g. trace post processing in the TRACE32 simulator).

See also

■ ETM ■ ETM.state

OFF Q elements are disabled.

Counted Q elements with instruction counts are enabled. Q elements without
instruction counts are disabled.

ON Q elements with and without instruction counts are enabled.
Arm ETM Trace | 61©1989-2024 Lauterbach

ETM.QTraceExclude Prohibit Q trace elements in given address range

While command ETM.QE ON allows the usage of Q elements in the trace stream globally, this commands
enables Q elements only for certain address ranges (while they are forbidden elsewhere).

The commands ETM.QTraceInclude and ETM.QTraceExclude are mutually exclusive.

See also

■ ETM ■ ETM.state

ETM.QTraceInclude Allow Q trace elements in given address range

While command ETM.QE ON allows the usage of Q elements in the trace stream globally, this commands
enables Q elements only for certain address ranges (while they are forbidden elsewhere).

The commands ETM.QTraceInclude and ETM.QTraceExclude are mutually exclusive.

See also

■ ETM ■ ETM.state

Format: ETM.QTraceExclude <access> <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite

Format: ETM.QTraceInclude <access> <address_range> (ETM4.0)

<access>: Execute | Read | Write | ReadWrite
Arm ETM Trace | 62©1989-2024 Lauterbach

ETM.RefClock Enable STP reference clock

See also

■ ETM ■ ETM.state

Format: ETM.RefClock [ON | OFF]

OFF (default) Disable reference clock.

ON The STP preprocessor broadcasts a high frequency reference clock
signal to the target. The frequency is half the bitrate (ETM.PortMode) in
MHz.
This option is required to support configuration C as specified in the ARM
HSSTP architecture specification and should be disabled in other cases.
Arm ETM Trace | 63©1989-2024 Lauterbach

ETM.Register Display the ETM registers

Displays the ETM registers. The contents will vary with the ETM version.

Examples:

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

Format: ETM.Register [<file> /<option>]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

<option> For a description of the options, see PER.view.

ETM.Register , /SpotLight

ETM.Register , /DualPort

ETM.Register , /CORE 1.
Arm ETM Trace | 64©1989-2024 Lauterbach

ETM.RESet Reset ETM settings

Reset of setting of the ETM.state window to default.

See also

■ ETM ■ ETM.state

ETM.ReserveContextID Reserve special values used with context ID

Reserves a range of special values used at the ContextID register for special messages. These special
values are not interpreted for task switch or memory space switch detection.

In the trace display the cycle type task is assigned to Linux task switches, while the cycle type info is
assigned to the special values.

See also

■ ETM ■ ETM.state

Format: ETM.RESet

Format: ETM.ReserveContextID <range>
Arm ETM Trace | 65©1989-2024 Lauterbach

ETM.ReturnStack Enable return stack tracing mode

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

Format: ETM.ReturnStack [ON | OFF]

OFF Regular tracing of return instructions. Each return instruction generates
indirect branch packets. (default)

ON Return instructions that hit the return stack may be traced as direct
branches (PTM and ETMv4 only). This reduces the required trace port
bandwidth and can reduce the number of trace port FIFO overflows.
Arm ETM Trace | 66©1989-2024 Lauterbach

ETM.Set Precise control of ETM trigger events

Format: ETM.Set <complex_action> [NOT] <trg.src.A> [AND | OR [NOT] <trg.src.B>]
ETM.Set <simple_action> <addr.comp.1> [<addr.comp.2>] … [<addr.comp.3>]
ETM.Set <conf.trig.src>

<complex_
action>:
Complex
Trigger
Actions

Trigger
TraceEnable
ViewData
External <1..4>
CountReload <1..4> | CountEnable <1..4>
TimeStamp (ETM3.5 or PTM)
SEQ1TO2 | SEQ1TO3 | SEQ2TO1 | SEQ2TO3 | SEQ3TO1 | SEQ3TO2
SEQTO1 (ETM4.0)
SingleShot (ETM4.0)

<simple_
action>:
Simple
Trigger
Actions

TraceON | TraceOFF (1.2ETM or PTM)
TraceAddressInclude | TraceAddressExclude (1.2ETM3.5 or PTM)
TraceRangeInclude | TraceRangeExclude
TraceMapInclude | TraceMapExclude (ETM3.5 or PTM)
ViewDataIAddressInclude | ViewDataIAddressExclude
ViewDataIRangeInclude | ViewDataIRangeExclude
ViewDataIMapInclude | ViewDataIMapExclude (ETM3.5)
FifoFullAddressInclude | FifoFullAddressExclude (ETM3.5 or PTM)
FifoFullRangeInclude | FifoFullRangeExclude (ETM3.5 or PTM)
BBCInclude | BBCExclude (ETM4.0)

<conf.trig.src>:
Configuration
of Trigger
Resources

Address <id: 1…16.> <access_type> <marker>|<address_value>
Range <id: 1…8.> <access_type> <marker>|<address_range>
Data <id: 1…16.> <data_value>
ContextID <id: 1…3.> <comp._value> (ETM2.0 or PTM)
Count <id: 1…4> <count_value>
ExtendedExternal <id: 1…4> <input_selector> (ETM3.1 or PTM)
Arm ETM Trace | 67©1989-2024 Lauterbach

ETM.Set allows a precise controlling and programming of the ETM event resources and the actions caused
by these triggers.

You cannot use ETM.Set for Cortex-M.

In general the ETM allows to trigger several actions (like toggling an external pin) based on the occurrence
of some events (e.g. a certain value was read by the CPU from a special address) detected by an event
resource (e.g. an address comparator).

There are basically the following components:
• Resources which can detect events. Some of them can be configured.
• Actions which can be triggered by the ETM.
• Registers which control which sources cause which action.

For detailed information of the available trigger resources of the ETM see the "ARM Embedded Trace
Macrocell™ Architecture Specification" (IHI 0014Q) at http://infocenter.arm.com

<trg.src.A>,
<trg.src.b>:
Trigger
Resources

Address <id: 1…16.>
Range <id: 1…8>
ContextID <id: 1…3> (ETM2.0 or PTM)
VMID (ETM3.5 or PTM)
Count <id: 1…4>
Seq <id: 1…3>
Instrumentation <id: 1…4> (ETM3.3 or PTM)
External <id: 1…4>
ExtendedExternal <id: 1…4> (ETM3.1 or PTM)
EmbeddedICE <id: 1…8> (ETM3.5 or PTM)
MAP <id: 1…16.> (ETM3.5 or PTM)
TraceON (ETM2.0 or PTM)
NONSECURE
TraceProhibited
True
PROCESSOR <id: 1…16> (ETM4.0)
SingleShot <id: 1…8> (ETM4.0)

<access_type>: Execute | Read | Write | ReadWrite
Fetch | ExecutePass | ExecuteFail (ETM3.5)

<marker>: Alpha | Beta | Charly | Delta | Echo

<count_value>: <decimal_value> | <hex_value> | <binary_value>

<data_value>,
<comp._value>:

<decimal_value> | <hex_value> | <binary_value> | <bitmask>

<id>,
<addr.comp.>:

1,2, … , n (with n16.)
Arm ETM Trace | 68©1989-2024 Lauterbach

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0014q

Trigger Resources

Complex Trigger Actions

The complex trigger actions are based one or two Trigger Resources. You can combine two sources with
an logical AND or and OR. Optional the output from each resource can be inverted.

Trigger Resource Description IDs Configuration ETM

Address
or
Range

Address comparators trigger on a
CPU access to a certain address.
For each comparator you can
configure an address, a data value
and the access type (read, write,
read-write, fetch, execute, execute-
pass, execute-fail).
If you are using Range, two single
address comparators are combined
to an address range comparator,

1-16 ETM.Set Address
ETM.Set Range
ETM.Set Data

ContextID Context ID comparators 1-3 ETM.Set ContextID 2.0

MAP Memory map decoders 1-16 implementation specific

Count Down counting counters. Trigger is
active when counter value is zero.

1-4 ETM.Set Count

Seq Active when the "ETM three-state
sequencer" is in the specified state.

1-3

Instrumentation Events controlled by software
instructions

1-4 3.3

External External inputs 1-4

ExtendedExternal Extended external inputs 1-4 ETM.Set ExtendedExternal 3.1

EmbeddedICE EmbeddedICE™ module watchpoint
comparators

1-8 TrOnchip
Break.Set

TraceON Active when ETM trace is active - 2.0

VMID Virtual Machine ID comparator - 3.5

NONSECURE Active when CPU in non-secure state -

TraceProhibited Active -

True This resource is always active. -
Arm ETM Trace | 69©1989-2024 Lauterbach

All complex trigger actions are programmed the following, with <trg.src.A> and <trg.src.> indicating any
Trigger Resource mentioned above (e.g. Address, ContextID, Seq...)

There are the following complex trigger actions:.

Counter and Sequencer are controlled by complex trigger actions but are used as trigger resources.

.

ETM.Set <complex_action> [NOT] <trg.src.A> [AND | OR [NOT] <trg.src.B>]

Trigger
TraceEnable
ViewData
External <1..4>

Generate a trace trigger
Enable the trace recording. ANDed by some simple trigger actions.
Enable the data trace. ANDed by some simple trigger actions.
Drive external output high. (Simple command would be
Break.Set <addr.> /BusTrigger)

CountEnable <1..4>
CountReload <1..4>

Decrement 16-bit counter
Load 16-bit counter with value specified with ETM.Set Count

SEQ1TO2
SEQ2TO1
SEQ2TO3
SEQ3TO1
SEQ3TO2
SEQ1TO3

Change sequencer state from 1 to 2
Change sequencer state from 2 to 1
Change sequencer state from 2 to 3
Change sequencer state from 3 to 1
Change sequencer state from 3 to 2
Change sequencer state from 1 to 3

A & B
A or B

Address 1..16
Range 1..8
ContextID 1..3
MAP 1..16
Count 1..3
Seq 1..3
Insstrumentation 1..4
External 1..4
ExtendedExternal 1..4
EmbeddedICE 1..8
TraceON
VMID
NONSECURE
TraceProhibited
True

trg.src.A

trg.src.B

=

NOT

(optional inverting)

=

NOT

(optional inverting)

Complex
Action

Address 1..16
Range 1..8
ContextID 1..3
MAP 1..16
Count 1..3
Seq 1..3
Insstrumentation 1..4
External 1..4
ExtendedExternal 1..4
EmbeddedICE 1..8
TraceON
VMID
NONSECURE
TraceProhibited
True

Data comparator 1
Value

+
Mask

Address comparator 1

Address comparator 2

Address comparator 3

Seq 1

Seq 2 Seq 3

SEQ1TO2

SEQ2TO3

SEQ3TO1
SEQ2TO1

SEQ3TO2

SEQ1TO3

ContextID comparator 1

Counter 1
CountEnable

=
0

CountReload

Trigger

TraceEnable

ViewData

External

CountReload

CountEnable

TimeStamp

SEQxTOx
Arm ETM Trace | 70©1989-2024 Lauterbach

Simple Trigger Actions

The simple trigger actions are based on several address ranges. You can combine all address comparators
with a logical OR as a trigger source for a simple action. However the only Trigger Resources you can use
for simple triggers are the Address, Range and MAP sources.

All simple trigger actions are programmed the following, with <id> specifying IDs of Address, Range or
MAP sources depending on the used simple-action:

The following simple actions enable or disable the trace recording. From the include/exclude triggers you
can use either some trace-includes or some of the trace-excludes. But you can’t mix them.

The trace is enabled when it should be enabled according to TraceON/TraceOFF, according to
TraceAddress/Range/MapInclude (or TraceAddress/Range/MapExclude) and also according to the
complex action trigger ETM.Set TraceEnable. If you don’t configure one resource it fires an enable by
default.

ETM.Set <simple_action> <id.1> [<id.2>] … [<id.16>]

TraceON
TraceOFF

Select single address(es) where tracing gets enabled.
Select single address(es) where tracing gets disabled.

TraceAddressInclud
e
TraceRangeInclude
TraceMapInclude

Select single address(es) where tracing is done
Select address range(s) where tracing is done
Select memory map decoder regions where tracing is done

TraceAddressExclu
de
TraceRangeExclude
TraceMapExclude

Select single address(es) where tracing is disabled
Select address range(s) where tracing is disabled
Select memory map decoder regions where tracing is disabled
Arm ETM Trace | 71©1989-2024 Lauterbach

Configuring theses simple actions (to enable or disable the trace) via ETM.Set makes normally only sense,
if you use them together with a complex trigger action ETM.Set TraceEnable. Otherwise it is recommended
to use the commands Break.Set /TraceON, Break.Set /TraceOFF and Break.Set /TraceEnable (or
ETM.TraceExclude / ETM.TraceInclude).

Example: Enable recording after entering the main routine.

The following simple actions enable or disable the data tracing. You may use both data-include and data-
exclude actions at the same time.

ETM.CLEAR
ETM.Set Range 1 Execute _start
ETM.Set Range 2 Execute main
ETM.Set TraceOFF 1
ETM.Set TraceON 2

// Clear previous ETM.Set settings
// Configure 1st single addr comparator
// Configure 2nd single addr comparator
// Disable trace on 1st address
// Enable trace on 2nd address

ViewDataInclude
ViewDataRangeInclu
de
ViewDataMapInclude

Select single address(es) where data tracing is done
Select address range(s) where data tracing is done
Select memory map decoder regions where data tracing is done

ViewDataExclude
ViewDataRangeExcl
ude
ViewDataMapExclud
e

Select single address(es) where data tracing is disabled.
Select address range(s) where data tracing is disabled.
Select memory map decoder regions where data tracing is disabled

1R

C1
Q

1S

ETM.Set TraceON

ETM.Set Address 1

ETM.Set Address 2

ETM.Set Address 16

1

ETM.Set TraceRangeInclude

ETM.Set TraceOFF

Trace-Enable
&

ETM.Set Address 1

ETM.Set Address 2

ETM.Set Address 16

1

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

1

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

1
ETM.Set TraceRangeExclude

ETM.Set TraceEnable
(complex action)
Arm ETM Trace | 72©1989-2024 Lauterbach

Configuring theses simple actions (to enable or disable the data trace) via ETM.Set makes normally only
sense, if you use them together with a complex trigger action ETM.Set ViewData. Otherwise it is
recommended to use the commands Break.Set /TraceData or ETM.DataViewInclude and
ETM.DataViewExclude.

Setting ETM.DataTrace to OFF will globally disable the data trace ignoring any filter programming.

Example: Exclude call-stack and heap from data tracing.

ETM.CLEAR
ETM.Set Range 1 ReadWrite 0x8f000--0x8ffff
ETM.Set Range 2 ReadWrite Var.RANGE("heap")
ETM.Set ViewDataMapExclude 1 2

// Clear previous ETM.Set settings
// Configure 1st addr. range comparator
// Configure 2nd addr. range comparator
// Enable stalling for 1st and 2nd range

ETM.Set ViewDataInclude

ETM.Set Address 1

ETM.Set Address 2

ETM.Set Address 16

1

ETM.Set ViewDataAddressExclude

ETM.Set ViewDataRangeInclude

Data-Trace
&

ETM.Set Address 1

ETM.Set Address 2

ETM.Set Address 16

1

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

1

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

1

ETM.Set ViewDataExclude

1

1

ETM.Set ViewData
(complex action)

ETM.DataTrace
Arm ETM Trace | 73©1989-2024 Lauterbach

The following simple actions enable or disable the stalling of the CPU when the ETM output Fifo buffer
inside your chip is almost full. The Fifo is considered as "almost full"when there is less empty space in the
ETM output Fifo than configured with ETM.FifoLevel.

The actions have only an effect if stalling of the CPU is possible with your implementation of the ETM
and stalling was globally enabled with ETM.STALL ist set to ON. Usually only ETMv1.x supports stalling.
The actions have no influence on the Data Suppression of the ETMv3 (see ETM.DataSuppress)
You can use either some Fifo-include or some of the Fifo-exclude actions. But you can’t mix them.

In most cases it is easier to use the commands ETM.FifoFullInclude and ETM.FifoFullExclude instead of
ETM.Set FifoFullInclude/Exclude to allow or forbid stalling for some memory regions.

Example: Allow CPU stalls by the ETM globally but forbid them for time-critical functions like interrupt
service routines.

See also

■ ETM.STALL ■ ETM ■ ETM.CLEAR ■ ETM.DataTrace
■ ETM.DataViewExclude ■ ETM.DataViewInclude ■ ETM.FifoFullExclude ■ ETM.FifoFullInclude
■ ETM.FifoLevel ■ ETM.state ■ ETM.TraceExclude ■ ETM.TraceInclude

▲ ’Release Information’ in ’Legacy Release History’

FifoFullInclude

FifoFullMapInclude

Select address range(s) where CPU may be stalled when output Fifo is
almost full.
Select memory map decoder regions where CPU may be stalled when
output Fifo is almost full.

FifoFullExclude

FifoFullMapExclude

Select address range(s) where CPU may be stalled when output Fifo is
almost full.
Select memory map decoder regions where CPU may be stalled when
output Fifo is almost full.

ETM.CLEAR
ETM.Set Range 1 Execute 0x1000--0x1fff
ETM.Set Range 2 Execute Var.RANGE("isr2")
ETM.Set FifoFullExclude 1 2
ETM.FifoLevel 16.

ETM.STALL ON

// Clear previous ETM.Set settings
// Configure 1st addr. range comparator
// Configure 2nd addr. range comparator
// Enable stalling for 1st and 2nd range
// Set level at which Fifo is considered as

almost full
// Enable CPU stalling via the ETM

ETM.STALL Stall CPU

empty count < ETM.FifoLevel

&

ETM.Set FifoFullInclude

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

1

ETM.Set Range 1

ETM.Set Range 2

ETM.Set Range 8

ETM.Set FifoFullExclude
1

Arm ETM Trace | 74©1989-2024 Lauterbach

ETM.SmartTrace Configure smart trace

See also

■ ETM ■ ETM.state

ETM.STALL Stall processor to prevent FIFO overflow

Allows the ETM to stall the processor to prevent a output FIFO overflow. If enabled, the trace will be no
longer real time.

This feature is only supported by some CPU cores. If it is not supported it might be still possible to set this
option, but then it won’t have an effect.
In general CPU cores with ETMv1 and ETMv4 likely support ETM.STALL, while with ETMv3 and PTM/PFT
it’s likely not supported.

The following CPU cores are known for supporting ETM.STALL:
Cortex-R7, ARM926EJ-S, ARM946E-S, ARM966E-S.

The following CPU cores are known for not supporting ETM.STALL:
ARM7TDMI, ARM720T, ARM920T, ARM922T

Example:

See also

■ ETM.Set ■ ETM ■ ETM.state

Format: ETM.SmartTrace [ON | OFF] (deprecated)

Format: ETM.STALL [ON | OFF]

; Check if a FifoFull logic is available on your ETM
; FifoFull Yes

ETM.FifoLevel 16. ; Select a FifoLevel

ETM.STALL ON
Arm ETM Trace | 75©1989-2024 Lauterbach

ETM.state Display ETM settings

Shows the ETM configuration window.

See also

■ ETM ■ ETM.AbsoluteTimestamp ■ ETM.AddressMunging ■ ETM.ATBTrigger
■ ETM.AUXCTLR ■ ETM.BBC ■ ETM.BBCExclude ■ ETM.BBCInclude
■ ETM.CLEAR ■ ETM.CLOCK ■ ETM.COND ■ ETM.ContextID
■ ETM.CORE ■ ETM.CPRT ■ ETM.CycleAccurate ■ ETM.CycleCountThreshold
■ ETM.CycleCountTickEnable ■ ETM.CycleCountTickRate ■ ETM.DataSuppress ■ ETM.DataTrace
■ ETM.DataTracePrestore ■ ETM.DataViewExclude ■ ETM.DataViewInclude ■ ETM.DBGRQ
■ ETM.FifoFullExclude ■ ETM.FifoFullInclude ■ ETM.FifoLevel ■ ETM.FunnelHoldTime
■ ETM.HalfRate ■ ETM.INSTP0 ■ ETM.LPOVERRIDE ■ ETM.MapDecode
■ ETM.NoOverflow ■ ETM.OFF ■ ETM.ON ■ ETM.PortDisable
■ ETM.PortDisableOnchip ■ ETM.PortMode ■ ETM.PortRoute ■ ETM.PortSize
■ ETM.PowerUpRequest ■ ETM.PseudoDataTrace ■ ETM.QE ■ ETM.QTraceExclude
■ ETM.QTraceInclude ■ ETM.RefClock ■ ETM.Register ■ ETM.ReserveContextID
■ ETM.RESet ■ ETM.ReturnStack ■ ETM.Set ■ ETM.SmartTrace
■ ETM.STALL ■ ETM.StoppingBreakPoints ■ ETM.SyncPeriod ■ ETM.TImeMode
■ ETM.TimeStampCLOCK ■ ETM.TimeStamps ■ ETM.TimeStampsTrace ■ ETM.Trace
■ ETM.TraceCORE ■ ETM.TraceDataPriority ■ ETM.TraceERRor ■ ETM.TraceExclude
■ ETM.TraceID ■ ETM.TraceInclude ■ ETM.TraceNoPCREL ■ ETM.TraceNoSPREL
■ ETM.TracePriority ■ ETM.TraceRESet ■ ETM.TRCIDR ■ ETM.VMID
❏ ETM() ❏ ETM.ADDRCOMP() ❏ ETM.ADDRCOMPTOTAL() ❏ ETM.FIFOFULL()
❏ ETM.PROTOCOL()

Format: ETM.state

A For descriptions of the commands in the ETM.state window, please refer to the ETM.* commands
in this chapter. Example: For information about ON, see ETM.ON.

Exceptions:
• The Trace button opens the main trace control window (Trace.state).
• The TPIU button opens the TPIU.state window.
• The List button opens the main trace list window (Trace.List).

A

Arm ETM Trace | 76©1989-2024 Lauterbach

ETM.StoppingBreakPoints Use ETM comparators for breakpoints

The command ETM.StoppingBreakPoints ON allows the debugger to use

• ETM/PTM Address Comparators as program range breakpoints.

• ETM/PTM Address/Data Comparators as Read/Write breakpoints with data value.

Use cases

Cortex-A9

Debugger resources: 6 single address breakpoints for instructions

PTM (Version PFT 1.0) resources

Format: ETM.StoppingBreakPoints ON | OFF
ETM.ReadWriteBreak ON | OFF (deprecated)

ETM.StoppingBreakPoints ON ; allows up to two address range
; breakpoints for program addresses

Var.Break.Set func10 ; set address range breakpoint on
; the address range of function
; func10

4. address comparator pairs on program
 addresses
- no address comparators for load/store
 addresses
Arm ETM Trace | 77©1989-2024 Lauterbach

Cortex-A5

Debugger resources: 3 single address breakpoints for instructions
 4 bitmasks for load/store breakpoints, break before make
 no data value possible

ETM (Version 3.5) resources

Notes

1. Since the configuration of the ETM/PTM is done via the JTAG interface, no Preprocessor for
ARM-ETM has to be connected, in order to use the ETM Address/Data Comparators, but the
ETM has to be enabled by ETM.ON.

2. Please be aware that these so-called ETM breakpoints are asynchronous. The trigger is usually
visible with the next branch and then it takes some time until the program stops.

ETM.StoppingBreakPoints ON ; allows up to two address
; range breakpoints for
; program addresses
; or
; up to two read/write
; breakpoints with data values

; address range breakpoints
; have priority

Var.Break.Set func10 ; set address range breakpoint
; on the address range of
; function func10

Var.Break.Set flags /Write /DATA 0x0 ; set write breakpoint on
; address range of variable
; flags plus data value 0x0

- 4 address comparators pairs
- 2 data value comparators
Arm ETM Trace | 78©1989-2024 Lauterbach

3. The so-called ETM breakpoints are implemented via the ETM event logic setting (TEVENT) "A or
B". That is the reason why there are only two ETM breakpoints possible for the
ETMv1/ETMv3/PTM.

4. As long as ETM.StoppingBreakPoints is ON, it is not possible to use the option /TraceTrigger for
a breakpoint.

See also

■ ETM ■ ETM.state

Trace.List TPINFO DEFault ; use the More button in the
; Trace.List window to see
; the Trigger info
Arm ETM Trace | 79©1989-2024 Lauterbach

ETM.SyncPeriod Set synchronization frequency

Synchronisation and timestamp packets are generated periodically. The default frequency is chosen
depending on the trace method.

The command ETM.SyncPeriod allows to change this value. Please refer to your ETM/PTM manuals for
details (ETMSYNCFR register).

See also

■ ETM ■ ETM.state

Format: ETM.SyncPeriod [<period>]
Arm ETM Trace | 80©1989-2024 Lauterbach

ETM.TImeMode Improve ETM/PTM timestamp information

There are three methods to timestamp trace information generated by an ETM/PTM:

External (off-chip trace)

The trace information is timestamped with the global TRACE32 timestamp when it is stored into the trace
memory of the TRACE32 trace tool.

• Pros

No extra bandwidth is required for the timestamp.

ETM/PTM trace information can be correlated with the trace information exported by other trace
sources on the chip.

ETM/PTM trace information can be correlated with the trace information recorded with other
TRACE32 tools e.g. the logic analyzer PowerIntegrator.

• Cons

Timestamp might be imprecise due to delays caused by the trace infrastructure of the chip and
due to delays caused by the TRACE32 recording technology.

On ARM Cortex-A/R CPUs external timestamps might be wrong when only parts of the program
flow gets traced (e.g. by using trace filters TraceEnable, TraceON or TraceOFF), which is caused
by the CoreSight trace infrastructure on the chip.

Format: ETM.TImeMode <mode>

<mode>: OFF | External | ExternalInterpolated |
SyncTimeStamps | AsyncTimeStamps |
CycleAccurate
CycleAccurate+External
CycleAccurate+ExternalTrack
CycleAccurate+SyncTimeStamps
CycleAccurate+AsyncTimeStamps
Arm ETM Trace | 81©1989-2024 Lauterbach

CycleAccurate (on-chip and off-chip trace)

The ETM/PTM protocol provides the number of core clock cycles that were needed by an instruction or an
instruction range.

• Pros

Provides accurate core clock cycle information.

Accurate time information can be calculated, if the core clock was constant while recording the
trace information.

• Cons

Cycle accurate tracing requires up to 4 times more bandwidth.

ETM/PTM trace information can not be correlated with any other trace information.

Trace information has to be processed always from the start of the trace memory. "Tracking"
indicates that the display of the trace information might need some time.

TimeStamps (on-chip and off-chip trace)

Timestamp Packets are exported by the ETM/PTM.

• Pros

ETM/PTM trace information can be correlated with the trace information exported by other trace
sources on the chip.

• Cons

Timestamp Packets are not generated too often. Thus, only a rather inaccurate time information
is possible.

Timestamp Packets require some bandwidth.
Arm ETM Trace | 82©1989-2024 Lauterbach

TRACE32 PowerView provides various TImeMode based on these three methods:

OFF Timestamping is disabled (default setting for on-chip trace).

External The trace information is timestamped with the global TRACE32
timestamp when it is stored into the trace memory of the TRACE32 trace
tool (off-chip trace only, default setting for off-chip trace).

ExternalInterpolated Tries to improve the precision of the time information for wrapped
multicore traces (ETM.PortMode Wrapped/Continuous) by linear
interpolation of trace sections. Section borders are trace packets that
have a precise timestamp (off-chip trace only).

CycleAccurate Cycle accurate tracing (on-chip and off-chip trace).

Related commands:
ETM.CycleAccurate ON (automatically set when CycleAccurate is
selected as TImeMode)
Trace.CLOCK <core_clock> specifies the clock that is used to calculate
time information out of the cycle count information. This requires that the
core clock was constant while recording the trace information.

SyncTimeStamps Time information is generated by linear interpolation of trace sections.
Section borders are the Timestamp Packets. The clock of the global
timestamp is the same as the core clock.

This setting is recommended for onchip trace if a time correlation with
trace information generated by other trace sources on the chip is
required.

Related commands:
ETM.TimeStamps ON (automatically set when SynchTimeStamps is
selected as TImeMode)
It is recommended to inform TRACE32 PowerView about the core clock
by using the command Trace.CLOCK <core_clock>.
ETM.SyncPeriod <frequency> allows to increase the Timestamp Packet
rate.
Arm ETM Trace | 83©1989-2024 Lauterbach

AsyncTimeStamps Time information is generated by linear interpolation of trace sections.
Section borders are the Timestamp Packets. The clock of the global
timestamp is different from the core clock.

This setting is recommended for onchip trace if a time correlation with
trace information generated by other trace sources on the chip is
required.

Related commands:
ETM.TimeStamps ON (automatically set when AsynchTimeStamps is
selected as TImeMode)
ETM.TimeStampCLOCK <timestamp_clock> specifies the frequency of
the global timestamp.
ETM.SyncPeriod <frequency> allows to increase the Timestamp Packet
rate.

CycleAccu-
rate+External

Combines external timestamps with cycle accurate information to provide
very exact time information (off-chip trace only).

Recommended if the core clock changes occasionally.

It solves three issues of CycleAccurate tracing:
- Core clock does not have to be constant while recording the trace
information.
- Correlation with other trace information exported by other trace sources
on the chip is possible.
- Correlation with the trace information recorded with other TRACE32
tools e.g. the logic analyzer PowerIntegrator is possible.

Calculates time information by linear interpolation of trace sections.
Section borders are trace packets that have a precise external
timestamp.

Related commands:
ETM.CycleAccurate ON (automatically set when
CycleAccurate+External is selected as TImeMode)

CycleAccurate+
ExternalTrack

Similar to CycleAccurate+External but smaller trace sections are used
for the interpolation.

Recommended if the core clock changes frequently.

Related commands:
ETM.CycleAccurate ON (automatically set when
CycleAccurate+ExternalTrack is selected as TImeMode)
Arm ETM Trace | 84©1989-2024 Lauterbach

See also

■ ETM ■ ETM.state

CycleAccurate+
SyncTimeStamps

Combines Timestamp Packets with cycle accurate information to provide
very exact time information (mainly for on-chip traces).

Provides more precise time information then SyncTimeStamps mode
and allows a time correlation with trace information generated by other
trace sources on the chip.

Related commands:
ETM.CycleAccurate ON (automatically set when
CycleAccurate+SynchTimeStamps is selected as TImeMode)
ETM.TimeStamps ON (automatically set when
CycleAccurate+SynchTimeStamps is selected as TImeMode)

It is recommended to inform TRACE32 PowerView about the core clock
by using the command Trace.CLOCK <core_clock>.
ETM.SyncPeriod <frequency> allows to increase the Timestamp Packet
rate.

CycleAccurate+
AsyncTimeStamps

Combines Timestamp Packets with cycle accurate information to provide
very exact time information (mainly for on-chip traces).

Provides more precise time information then AsyncTimeStamps mode
and allows a time correlation with trace information generated by other
trace sources on the chip.

Related commands:
ETM.CycleAccurate ON (automatically set when
CycleAccurate+AsyncTimeStamps is selected as TImeMode)
ETM.TimeStamps ON (automatically set when
CycleAccurate+AsyncTimeStamps is selected as TImeMode)

ETM.TimeStampCLOCK <timestamp_clock> specifies the frequency of
the global timestamp.
ETM.SyncPeriod <frequency> allows to increase the Timestamp Packet
rate.
Arm ETM Trace | 85©1989-2024 Lauterbach

ETM.TimeStampCLOCK Specify frequency of the global timestamp

If the trace infrastructure of the SoC provides a global timestamp and if the clock of the global timestamp is
different from the core clock, TRACE32 needs to know the frequency of this timestamp.

See also

■ ETM ■ ETM.state

ETM.TimeStamps Control for global timestamp packets

Requires that the frequency of the timestamp is specified if the clock of the global timestamp is different from
the core clock (ETM.TimeStampCLOCK).

See also

■ ETM ■ ETM.state

Format: ETM.TimeStampCLOCK <frequency>

Format: ETM.TimeStamps [ON | OFF]

OFF (default) ETM does not generate Timestamp Packets.

ON ETM generates Timestamp Packets.
Arm ETM Trace | 86©1989-2024 Lauterbach

ETM.TimeStampsTrace Specify data trace correlation method (ETMv4)

This command specifies how TRACE32 assigns the data address/data value information of the data trace
stream to the appropriate load/store instruction.

See also

■ ETM ■ ETM.DataTrace ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

ETM.Trace Control generation of trace information

See also

■ ETM ■ ETM.state

Format: ETM.TimeStampsTrace [ON | OFF] (ETM4.0)

OFF (default) TRACE32 uses the P0, P1, P2 keys.

ON TRACE32 uses the timestamp. This method requires a timestamp unit.

Format: ETM.Trace [ON | OFF]

ON (default) Trace information is generated and triggers/external signals are activated
as programmed.

OFF No trace information is generated. Only triggers/external signals are
activated as programmed.
Arm ETM Trace | 87©1989-2024 Lauterbach

ETM.TraceCORE Core specific default tracing

Allows core specific default tracing.

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

ETM.TraceDataPriority Define data trace priority

Defines data trace priority.

See also

■ ETM ■ ETM.state

▲ ’Release Information’ in ’Legacy Release History’

Format: ETM.TraceCORE <cores>

Format: ETM.TraceDataPriority <priorities> (ETM4.0)
Arm ETM Trace | 88©1989-2024 Lauterbach

ETM.TraceERRor Force ETM to emit all system error exceptions

When ETM.TraceERRor is set to ON the ETMv4 is forced to emit all system error exceptions. Consider this
setting if you are using trace filters for a selective trace instead of a complete program flow trace..

System error exception are:

• asynchronous Data Abort exceptions (only ARMv7 (Cortex-R7/R8, Cortex-M7/M33))

• SError interrupt (only ARMv8-A (Cortex-A3x/A5x/7x) and ARMv8-R (Cortex-R52)).

• MemManage exceptions (only Cortex-M)

• BusFault exceptions (only Cortex-M)

• HardFault exceptions (only Cortex-M)

• Lockup exceptions (only Cortex-M)

• SecureFault exceptions (only Cortex-M)

See "TRCVICTLR.TRCERR" in ETMv4 architecture specification for details.

See also

■ ETM ■ ETM.state

Format: ETM.TraceERRor [ON | OFF] (ETM4.0)

ON The ETMv4 always emits any system error exception, regardless of the
configured trace-filter.

OFF (default) The ETMv4 emits only a system error exception if it has also traced the
exception or instruction immediately prior to the system error exception.
Arm ETM Trace | 89©1989-2024 Lauterbach

ETM.TraceExclude Suppress program trace for specified address range

Configures the ETM to generate a program trace for all addresses except for the specified address range(s).

The commands ETM.TraceInclude or ETM.TraceExclude are mutually exclusive.

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

Format: ETM.TraceExclude <access> … <address_range> | <address> (1.2ETM3.5)
ETM.TraceExclude <access> … <address_range> (PTM or ETM4.0)

<access>: Execute | Read | Write | ReadWrite (all)
Fetch | ExecutePass | ExecuteFail | MAP (PTM or ETM3.5)

; exclude program flow in the specified address range from broadcasting
ETM.TraceExclude 0x1f20--0x1ff7

; exclude program flow for the memory selected by memory map decoder 3
; from broadcasting
ETM.TraceExclude MAP 3.
Arm ETM Trace | 90©1989-2024 Lauterbach

ETM.TraceID Change the default ID for an ETM trace source

By default TRACE32 automatically assigns a trace source ID to all cores with a CoreSight ETM, the first
ITM, and the first HTM. The command ETM.TraceID allows to assign an ID to a trace source overriding the
defaults.

The current trace source ID is displayed in the ETM.state window.

See also

■ ETM ■ ETM.state

ETM.TraceInclude Restrict program trace to specified address range

Configures the ETM to generate a program trace only for the specified address range(s).

The commands ETM.TraceInclude or ETM.TraceExclude are mutually exclusive.

Format: ETM.TraceID <id>

Format: ETM.TraceInclude <access> … <address_range> | <address> (1.2ETM3.5)
ETM.TraceInclude <access> … <address_range> (PTM or ETM4.0)

<access>: Execute | Read | Write | ReadWrite (all)
Fetch | ExecutePass | ExecuteFail | MAP (PTM or ETM3.5)
Arm ETM Trace | 91©1989-2024 Lauterbach

Example:

See also

■ ETM ■ ETM.Set ■ ETM.state

ETM.TraceNoPCREL No data trace for accesses relative to program counter

If enabled, the ETMv4 does not provide a data trace for read/write accesses relative to the program counter.

See also

■ ETM ■ ETM.state

ETM.TraceNoSPREL No data trace for accesses relative to stack pointer

If enabled, the ETMv4 does not provide a data trace for read/write accesses relative to the stack pointer.

See also

■ ETM ■ ETM.state

ETM.TraceInclude 0x1f20--0x1ff7 ; broadcast only program flow in
; the specified address range

ETM.TraceInclude MAP 3. ; broadcast only program flow for
; memory selected by memory map
; decoder 3

Format: ETM.TraceNoPCREL [ON | OFF] (ETM4.0)

Format: ETM.TraceNoSPREL [ON | OFF] (ETM4.0)
Arm ETM Trace | 92©1989-2024 Lauterbach

ETM.TracePriority Define priority of ETM

The CoreSight Trace Funnel combines 2 to 8 ATB input ports to a single ATB output. An arbiter determines
the priority of the ATB input port. Port 0 has the highest priority (0) and port 7 the lowest priority (7) by
default.

The command ETM.TracePriority allows to change the default priority of an ATB input port.

See also

■ ETM ■ ETM.state

ETM.TraceRESet Forces the ETM to emit all core resets

When ETM.TraceRESet is set to ON the ETMv4 is forced to emit all reset exceptions. Consider this setting
if you are using trace filters for a selective trace instead of a complete program flow trace..

See "TRCVICTLR.TRCRESET" in ARM ETMv4 architecture specification for details.

See also

■ ETM ■ ETM.state

Format: ETM.TracePriority <priority>

Format: ETM.TraceRESet [ON | OFF] (ETM4.0)

ON The ETMv4 always emits any reset exception, regardless of the
configured trace-filter.

OFF (default) The ETMv4 emits only a reset exception if it has also traced the exception
or instruction immediately prior to the reset error exception.
Arm ETM Trace | 93©1989-2024 Lauterbach

ETM.TRCIDR Define TRCIDR register values for simulator

Sets the values of the registers TRCIDR8, TRCIDR9, TRCIDR10, TRCIDR11, TRCIDR12, TRCIDR13,
TRCIDR0 in the simulator.

They are needed for offline analysis of traces with ETMv4 of custom cores (with LA.IMPORT command).

See also

■ ETM ■ ETM.state

ETM.VMID Virtual machine ID tracing

The command ETM.VMID configures, if the ETM should emit Virtual Machine IDs to the trace stream. This
command has an effect on Cortex-A (32- or 64-bit) target systems supporting virtualization (hypervisor), e.g.
Cortex-A15 or Cortex-A57.

See also

■ ETM ■ ETM.state

Format: ETM.TRCIDR <spec_max> <p0_key_max> <p1_key_max> <p1_special_key_max>
 <cond_key_max> <cond_special_key_max> <id0> <id1> <id2>
ETM.TRCIDR <trcidr8> <trcidr9> <trcidr10> <trcidr11> <trcidr12> <trcidr13> <trcidr0>
<trcidr1> <trcidr2>

Format: ETM.VMID [ON | OFF]

ON Enables Virtual Machine ID tracing. The VMID option shall be switched on
when the hypervisor is used to switch between different guest operating
systems on the target. Then special trace packages will be generated
whenever the Virtual Machine ID (VMID) changes. This ensures the trace
analysis tool knows about the complete context before decompressing any
instructions.

OFF (default) Disables Virtual Machine ID tracing.
Arm ETM Trace | 94©1989-2024 Lauterbach

Keywords for the Trace Display

OOO Out-of-order data packet

CORECLOCK
Arm ETM Trace | 95©1989-2024 Lauterbach

Examples for Trace Controlling

Tracing of a Specified Address Range

Tracing of Specified Data

Trigger at Address Access

ETM.CLEAR ; reset ETM

ETM.SET RANGE 0x1 EXECUTE P:0x9400--0x9500 ; define range1 for tracing
; execution cycles

ETM.SET TRACEENABLE RANGE 0x1 ; trace only if in range 1

ETM.SET TRIGGER NOT TRUE ; switch trigger off

ETM.CLEAR ; reset ETM

ETM.SET RANGE 0x1 ACCESS v.range(flags) ; define range 1 as variable
; flags for READ or WRITE
; access cycles

ETM.SET TRACEENABLE TRUE
ETM.SET VIEWDATA RANGE 0x1

; trace all instructions
; data trace only for range
; 1

ETM.SET TRIGGER NOT TRUE ; switch trigger off

ETM.CLEAR ; reset ETM

ETM.SET RANGE 0x1 ACCESS v.range(flags) ; define range 1 as variable
; flags for READ or WRITE
; access cycles

ETM.SET TRIGGER RANGE 0x1 ; trigger on first access to
; range 1
Arm ETM Trace | 96©1989-2024 Lauterbach

Tracing of a Defined Amount of Cycles

Runtime Measurement of a Function

ETM.CLEAR ; reset ETM

ETM.SET RANGE 0x1 EXECUTE sieve--(sieve+30.) ; define range 1 as
; first 30 lines of
; sieve

ETM.SET COUNT 1 0x10 ; define count max value
; to 10h

ETM.SET TRACEENABLE ! COUNT 1 ; trace from count
; reload until 0

ETM.SET COUNTENABLE 1 RANGE 0x1 ; decement count 1 if
; range 1

ETM.SET TRIGGER NOT TRUE ; switch trigger off

ETM.CLEAR ; reset ETM

ETM.SET RANGE 0x1 EXECUTE sieve--
(sieve+1.)
ETM.SET RANGE 0x2 EXECUTE (sieve+0x98)--
(sieve+0xa0)

; range 1 begin of sieve
; range 2 end of sieve

ETM.SET TRACEENABLE RANGE 0x1 || RANGE 0x2 ; trace if range1 or range2

ETM.SET TRIGGER NOT TRUE ; switch trigger off
Arm ETM Trace | 97©1989-2024 Lauterbach

Trace Setup for Real-Time OS

Basics

Data trace is required by tracing real time operating systems (e.g. LINUX). This would be done by setting the
data trace option of the ETM to BOTH (ETM.DataTrace or ETM.state).

Full data trace increases the need for bandwidth. At this point the trace port could reach its limit (Fifofull).
Here it is required to reduce the amount of traced data with filters. Depending on the ETM revision two ways
are possible: using ProcID or simple data filtering.

Trace Setup for LINUX

FAQ

Please refer to https://support.lauterbach.com/kb.

; reset ETM
ETM.CLEAR

; define range 1 as process data for READ or WRITE access cycles
ETM.SET RANGE 0x1 ACCESS TASK.CONFIG(MAGIC)++3

; trace all instructions
ETM.SET TRACEENABLE TRUE

; data trace only for range 1
ETM.SET VIEWDATA RANGE 0x1

; switch trigger off
ETM.SET TRIGGER NOT TRUE
Arm ETM Trace | 98©1989-2024 Lauterbach

https://support.lauterbach.com/kb

Diagnosis

Error Diagnosis

Error messages are displayed:

• In the upper left corner of the Trace.List window:

• In the message line:

• In the Area.view window:

Advanced trace analysis commands like Trace.STATistic.Func,
Trace.STATistic.TASK or PERF.List display only accurate results if the
trace recording works error free.
Arm ETM Trace | 99©1989-2024 Lauterbach

Searching for Errors

TRACE32 uploads only the requested trace information to the host to provide a quick display of the trace
information. Due to this errors might be out of the uploaded range and therefore not visible immediately.

There are several ways to search for errors within the trace, all of them will force TRACE32 to upload the
complete trace information to the host:

1. The Trace Find window

Pushing the Find button of the Trace.List window a special search window opens:

Select Expert and enter "flowerror" in the item field. The item entry is not case sensitive. Use the Find
First/Find Next button to jump to the next flowerror within the trace. Find All will open a separate
window with a list of all flowerrors.

2. Using command Trace.FindAll , FLOWERROR

This command will search within the entire trace buffer for errors. The records will be listed within a
separate window. This command corresponds to the FindAll option described above.
Arm ETM Trace | 100©1989-2024 Lauterbach

3. Using command Trace.Chart.sYmbol

This command will start a statistic analysis. An additional symbol (ERROR) is shown if errors are
found.

The search could take a long time depending on the used memory size of
the trace module and the type of host interface. Check the status to estimate
the time.
Arm ETM Trace | 101©1989-2024 Lauterbach

Error Messages

One of the following 3 errors may occur:

• HARDERROR

• FLOWERROR

• FIFOFULL

Please see Diagnosis Check List.

HARDERRORS

There are no valid ETM data. Possible reasons are:

• ETM port multiplexed with other IO functions (no valid trace data)

• Trace signal capturing failed (setup/hold time violations)

• Wrong version of PowerTrace module

• Target frequency too high

Please see Diagnosis Check List.

FLOWERRORS

The traced data are not consistent with the code in the target memories. Possible reasons are:

• Memory contents have changed (e.g. self modifying code).

• Wrong trace data (as result of HARDERRORS)

Please see Diagnosis Check List.
Arm ETM Trace | 102©1989-2024 Lauterbach

FIFOFULL

The ETM output FIFO overflowed. The amount of trace data generated by the ETM was greater than the
ETM port band width. To reduce the risk of a FIFO overflow:

• Increase the port size if possible (ETM.PortSize).

• Restrict the DataTrace to read cycles (write accesses can be reconstructed via CTS).

• Restrict the DataTrace to write cycles, a FIFO overflow becomes less likely.

• Reduce amount of trace data by using filters: use the filter TraceEnable or TraceData

• STALL the CPU if a FIFO overflow is likely to happen - ETMv1.x (ETM.STALL).

• Suppress the output of the data flow information if a FIFO overflow is likely to happen - ETMv3.x
(ETM.DataSuppress).

Trace Test Failed Messages

Trace.TestFocus supports a built in trace test. This command loads a short test program up to the target
memory (RAM) and traces its execution. Afterwards the recorded program flow and data pattern will be
checked for any errors.

"Analyzer data capture o.k." will be shown if the test was successful.

Test failures might be caused by a variety of reasons, usually error messages such as "Trace test failed:
not enough samples in the trace" will give a clue to what might have caused the failure. Refer to "Error
Message Emulator" in “Error Messages” (error.pdf) to find explanations on these messages.

The Embedded Trace Macrocell is not always able to prevent overflows of
the internal FIFO. Even when STALL is enabled overflows may occur.
Arm ETM Trace | 103©1989-2024 Lauterbach

Diagnosis Check List

Basic Checks

1. Did your debugger remain control over the target at all times when attempting to capture a trace?
Error messages such as "emulation debug port fail" indicate that the debugger lost control over
the target.

In case your debugger lost control over the target:

Is there a separate JTAG connector on your target?
If available, connect the debug cable directly to this connector

Double check your targets supply voltage. Is it stable when the trace port is active?

2. TRACE32 supports a build in ETM trace port check. It can simply be performed by clicking on the
 "TestFocus" button of the Trace window:

This command loads a short test program up to the target memory (RAM) and traces its execution.
Afterwards the recorded program flow and data pattern will be checked for any errors.

"Analyzer data capture o.k." will be shown if the test was successful.

Test failures might be caused by a variety of reasons, usually error messages such as "Trace test
failed: not enough samples in the trace" will give a clue to what might have caused the failure.
Refer to "Error Message Emulator" in “Error Messages” (error.pdf) to find explanations on these
messages.
Arm ETM Trace | 104©1989-2024 Lauterbach

In case of the Preprocessor for ARM-ETM with AUTOFOCUS execute Trace.AutoFocus instead.
Both an automatic hardware configuration as well as the trace test described above will be
executed.

3. Some cpu types do not have dedicated trace port pins. Instead trace signals are muxed with
other signals. A special port pin setup may be required to get trace functionality. Example:

Check your cpu manual for the correct port pin configuration.

4. In case of shared ETM pins additional buffers may be used on the target hardware. Make sure
that these buffers are enabled.

; Example: extended trace test for LA-7991

; 1.) Hardware configuration and trace test
Trace.AutoFocus

; 2.) Extended trace test
; Accumulate data eye information (10 runs)

&i = 0

WHILE (&i<10.)
(

Trace.TestFocus /Accumulate
&i=&i+1

)

; 3.) Show results
Trace.ShowFocus

PER.Set SD:0x111D640 %Word 0x9AA0
PER.Set SD:0x111D6A4 %Word 0x2901

; Enable ETM functionality on
; GPIO’s

PER.Set 0x111600D %Long %LE 0x01E ; Enable CLK

Advanced target applications could use more than one initialisation
procedure or the setup might change during run time again. Make sure that
the ETM port is actually enabled when attempting to trace.
Arm ETM Trace | 105©1989-2024 Lauterbach

5. Check your CPU manual for correct ETM settings such as ETM.PortSize, ETM.PortMode,
ETM.HalfRate. Wrong settings result in errors.

Additional help offers the ETM register called SYSCON. It is available for ETM versions 1.2 or higher
by executing ETM.Register:

6. Most of the ETM trace hardware is set up automatically. Special care has to be given to the
threshold level (Trace configuration):

The threshold value(s) for clock and/or data signals is/are set automatically at software start,
depending on the voltage level of pin 12 of the target connector. However, if your target is turned off or
not connected during software start you may need to execute Trace.THreshold VCC or manually set
it to the proper value (e.g. 0.9 V , 1.25 V or 1.65 V).

Should be close to 50% of the
ETM signal voltage level.
Arm ETM Trace | 106©1989-2024 Lauterbach

7. Check trace port datarate. Depending on the ETM version the data rate of the trace port is
coupled on the core clock frequency or not:

ETMv1/2: Bw=fcore * 1bit/ch

ETMv3: Bw=fport * 2bit/ch

8. Check the version of your PowerTrace 1 module. Version 6 is required for targets running faster
than 200 MHz (VERSION.HARDWARE2).

9. Check the preprocessor seen by TRACE32 software. VERSION.HARDWARE shows all scanned
hardware. The different ID’s are explained below.

Product Number Datarate (Bw)

PowerTrace
LA-7690,
LA-7707

<320Mbit/ch

PowerTrace II
LA-7692,
LA-7693,
LA-7694

800Mbit/ch

Has to be 06-00 or higher

Detected preprocessor hardware
Arm ETM Trace | 107©1989-2024 Lauterbach

For ARM-ETM200 and ARM-ETM270 also refer to configuration test for more details.

10. In case of preprocessors with more than one Mictor connector double-check that the mictor
connectors are connected properly to your target. For ETM trace port sizes below 16 bit TRACE B
remains unconnected. For further information on the correct connection of TRACE A / TRACE B
refer to Dimensions.

11. Check trace port pinout?

Did your target board work with other PowerTrace/Preprocessor combinations (or TPAs from other
vendors)? If your target worked with other PowerTrace/Preprocessor combinations your trace port
pinout can be assumed to be correct. This is not always true for TPAs from other vendors.
LAUTERBACH tools assume that trace port pinout follows exactly the ETM specification (please refer
to Connector Layout).

Did the PowerTrace/Preprocessor combination work for other targets? If yes, what has changed on
your new target board? Often messages such as Trace test failed: not enough samples in the
trace or Trace test failed: pin connection error might indicate the source of error.

Also check the voltage level of the reference voltage on pin 12. It is used as a reference for all ETM
signals. It should correspond to the amplitude of your trace signals. For some targets this might differ
from the JTAG signals. Pin 14 is used as reference for all JTAG signals in case the JTAG debugger is
connected via the trace preprocessor probe.

ETM120 LA-7889

ETM-Full
ETM-Full V2

LA-7923 without ETMv3 support
LA-7923 with full support

ETM200-HR
ETM200-FR
ETM200-cTools

LA-7921 HalfRate
LA-7921 FullRate
LA-7921 for cTools

ETM270-HR 1.8V
ETM270-FR 1.8V
ETM270-HR 3.3V
ETM270-FR 3.3V

LA-7990
1.8V/3.3 V depends on the threshold level. Values
higher than 1 V are marked as 3.3 V, levels lower
than 1 V are marked as 1.8 V

ETM-AF
ETM-AF(OTP)

LA-7991(re-programmable)
LA-7991(one-time-programmable)

ETM-HSSTP LA-7988

Error message Possible reason

Trace test failed:
not enough samples in the trace

-trace port not enabled
-buffers not enabled
-threshold out of signal range

Trace test failed:
pin connection error

-short-circuit between pins
-wrong connector pin out
-unsupported ETM mode
-trace port not enabled
Arm ETM Trace | 108©1989-2024 Lauterbach

One way of testing the voltage on pin 12 is executing Trace.THreshold VCC and double-checking
that the voltage displayed in Trace Configuration window is approximately 50% of your target
voltage.

12. If supported by your Preprocessor try both settings for the termination voltage: .

In most cases it is best to have the termination voltage connected during trace capture. However for
lower frequencies and/or weak output drivers it can be helpfull to disable the termination. This feature
is supported by ARM-ETM200 and ARM-ETM270 as wells as ARM-ETM with AUTOFOCUS.

Usually an unterminated signal will result in slower rise and fall times and it might have have over- and
undershots. For Preprocessors ARM-ETM with AUTOFOCUS you will notice the slower rise and fall
times by a reduced data eye size (white areas in the Trace.ShowFocus window):

Trace.TERMination ON ; Connect termination voltage during
; trace capture

Trace.TERMination OFF ; Always disconnect termination voltage
Arm ETM Trace | 109©1989-2024 Lauterbach

The terminated signal however will have a reduced amplitude, "gravitating" towards 50% of the
reference voltage on pin 12 of the target connector (see Connector Layout), as well as faster rise
and fall times:

13. Is the TRACE32 software up-to-date?

Check www.lauterbach.com/download_trace32.htmlor ask your local support team for an update
or contact support@lauterbach.com.

VERSION.SOFTWARE
Arm ETM Trace | 110©1989-2024 Lauterbach

https://www.lauterbach.com/download_trace32.html

Advanced Check for ETMv1.x

If the basic check was completed and the trace results are still not faultless the following procedure might
help you to determine the source of error. By manually disassembling the captured trace data (for a single
step) you might notice swapped pins or data channels that might have timing issues.

Electrical measurements must be done by trained personal only. Special
care has to be taken concerning electrostatic discharge.

The target must run and the trace has to be armed during electrical
measurements to ensure trace port activity.
Arm ETM Trace | 111©1989-2024 Lauterbach

1. Checking the ETM trace signals can be done with special options within the Trace.List window.
Use "Trace.List TS PS2 PS1 PS0 TPH TPL" to display the captured trace data in a format that is
easily human readable:

When using the option ETM (Trace.List ETM) all trace signals independent of the ETM version are
shown. Although the format is slightly different than what we have seen previously.

ETMv1 signal Description

TS Trace sync signals are synchronization points for the TRACE32
software. Invalid states will cause Harderrors and Flowerrors

PS2, PS1, PS0 Trace status signals correspond to pipline states at execution time.
Invalid states will cause Harderrors and could freeze TRACE32 for
a while.

TP (TPH, TPL) Trace packet signals hold information about data, address and
program counter.
TPL correspond to TP[7..0] and
TPH correspond to TP[15..8]. Invalid values will
cause Flowerrors

Example: 16bit ETMv1.x port
Arm ETM Trace | 112©1989-2024 Lauterbach

This what our 16bit ETMv1.x port would look like, if we use "Trace.List ETM":

2. Enable the AutoInit mode (Analyzer.AutoInit ON) and do one single step to get a trace capture.
The trace list window for ETMv1.x will look similar to this:

When looking for sources of error (e.g. pin swapping in your trace port pinout or timing issues) you
may want to disassemble the captured data manually. Generally this requires some knowledge of the
trace protocol (for more information refer to the ETM architecture specification). However below is an
example of how to reconstruct the execution address from the traced data without knowing too much

This trace syncronisation (ts)
 is similar for all single steps.
Arm ETM Trace | 113©1989-2024 Lauterbach

about the trace protocol. Note that 5 bytes are needed to transmitt a 32-bit address on the trace port:

Now compare this address to the one you would expect by looking at the Data.List window. Since
you executed a single step you would expect the address before the current PC location to be the one
transmitted on the trace port:

3. You may need to perform a couple of single steps to see, if there is a logical error (pairs of trace
channels are swapped) indicating an erroneous pinout or if the errors seem to be related to
certain channels being wrong every now and than. For the later timing violations could be the
problem. All Preprocessors but the ETM-AF Preprocessor (LA-7991) have no or a rather limited
ability to adjust the sampling point(s) so they will work only, if their timing requirements are
satiesfied. In addition the maximum operation frequency has to be considered.

1 1000100 1 1010000
1 0000000 1 0000000
 0 0010000

Trace packet bits can be structured as shown to the left.
Each eighth bit is set to one if a packet follows and is
cleared for the last packet.

1 1010000
1 1000100
1 0000000
1 0000000
0 0010000

Trace packet bits can be sorted as shown to the left.

 101.0000
 10.0010.0
 0.0000.00
 0000.000
 001.0000

Dividing the row into groups of four bits (nibble) gives the
address in binary format. Since the address is transmitted
LSB first, this is done from right to left and top to bottom.

 0101.0000
 0010.0010
 0000.0000
 0000.0000
 001

Now we write two nibbles per line again from right to left and
top to bottom. Bits[6:4] of the fifth packet of a full branch
address contain a reason code (here: 0x1 = "tracing has
been enabled").

 5 0
 2 2
 0 0
 0 0
 001

Finally the conversion to the hexadecimal format gives the
full address 0x00002250.

The grey cursor indicated the
PC location
Arm ETM Trace | 114©1989-2024 Lauterbach

Advanced Check for ETMv3.x

If the basic check was completed and the trace results are still not faultless the target connector pinout
should be checked again (ETMv3).

If the basic check was completed and the trace results are still not faultless the following procedure might
help you to determine the source of error. By manually disassembling the captured trace data (for a single
step) you might notice swapped pins or data channels that might have timing issues.

Pin 34,36 and 38 of the connector are handled by the trace hardware as normal data signals. That means
this signals will also be affected by the termination circuitry. .

It is required to connect pin 34 directly to VCC and pin 30 and 32 directly
to GND.

Electrical measurements must be done by trained personal only. Special
care has to be taken concerning electrostatic discharge.

The target must run and the trace has to be armed during electrical
measurements to ensure trace port activity.
Arm ETM Trace | 115©1989-2024 Lauterbach

1. Checking the ETM trace signals can be done with special options within the Trace.List window.
Use "Trace.List TP" to display the captured trace data in a format that is human readable:

2. Enable the AutoInit mode (Analyzer.AutoInit ON) and do one single step to get a trace capture.
The trace list window will look similar to this:

When looking for sources of error (e.g. pin swapping in your trace port pinout or timing issues) you
may want to disassemble the captured data manually. Generally this requires some knowledge of the
trace protocol (for more information refer to the ETM architecture specification). However below an
example of how to reconstruct the execution address from the traced data without knowing too much

ETMv3 signal Description

TCTL Trace control signal defines valid TP packets. The signal is low
active. Invalid states will cause Harderrors and Flowerrors

TP Trace packet signals hold information about data, address and
program counter. Invalid values will cause Flowerrors

Example: 8bit ETMv3.x port
Arm ETM Trace | 116©1989-2024 Lauterbach

about the trace protocol.:

3. Now compare this address to the one you would expect by looking at the Data.List window. Since
you executed a single step you would expect the address before the current PC location to be the
one transmitted on the trace port:

4. You may need to perform a couple of single steps to see, if there is a logical error (pairs of trace
channels are swapped) indicating an erroneous pinout or if the errors seem to be related to
certain channels being wrong every now and than. For the later timing violations could be the
problem. All Preprocessors but the ETM-AF Preprocessor (LA-7991) have no or a rather limited
ability to adjust the sampling point(s) so they will work only, if their timing requirements are
satiesfied. In addition the maximum operation frequency has to be considered.

00 00 00 00 00 80 syncronization sequence (ISYNC)

66 66 idle sequence (IDLE)

08 61 address syncronization sequence (ASYNC)

AC 22 00 00 address (0x000022AC)

84 D9 A2 80 80 B8 program execution information sequence (PHEADER)

The grey cursor indicated the
PC location
Arm ETM Trace | 117©1989-2024 Lauterbach

Timing Requirements

If you suspect timing issues to be the source of error, you may need to take a closer look at the setup and
hold times of your trace port channels. An oscilloscope (2 channel, bandwidth >500 MHz, >5 GS/s, probe
<5pF) is required for the following measurements.

Make sure that you use short ground connections. The following two screen shots show the influence of
probe and ground connection length:

Long GND connection, Probe: 500 MHz, 8 pF, 10 M, x10

Short GND connection, Probe: 750 MHz, < 2 pF, 1 M, x10
Arm ETM Trace | 118©1989-2024 Lauterbach

Measure the setup and hold times for all data channels, which will also give you the maximum channel to
channel skew. No trace probe can handle data skew, except the Preprocessor for ARM-ETM with
AUTOFOCUS (LA-7991). So for all other probes setup and hold times have to be fullfilled for all channels.
The following picture shows how to measure setup/hold times.

The threshold level should be set to the middle of the trace signal. The following table shows setup and hold
time requirements for all ETM trace probes.

ARM ETM120
LA-7889, LA-7923

Ts: 3 ns
Th: 2 ns

ARM ETM200
LA-7921

Ts: 3 ns
Th: 1 ns

ARM ETM270
LA-7990

Ts: 0.9 ns
Th: 1.1 ns

ARM ETM
AUTOFOCUS
LA-7991

Ts + Th >= 1.2 ns

ARM ETM
AUTOFOCUS 2
LA-7992

Ts + Th >= 0.6 ns
Arm ETM Trace | 119©1989-2024 Lauterbach

The Preprocessor for ARM-ETM with AUTOFOCUS is very powerful, if it comes to configuring itself for
different target trace ports. Usually you do not need to worry about setup and hold times for data rates
as high as 200 Mbit/s, although it is always a good idea to keep the channel to channel skew low and the
clock duty cycle close to 50/50. Depending on your trace port data rate the maximum channel to channel
skew has to stay below:

For instance a trace port with a data rate of 300 Mbit/s should have no more than (1/300 MHz - 0.6 ns) =
1.33 ns channel to channel skew. In addition the maximum operation frequency has to be considered.

ARM ETM
AUTOFOCUS 1/2
LA-7991/LA-7992

ch2ch_skew <= t_period - (Ts + Th)
Arm ETM Trace | 120©1989-2024 Lauterbach

ARM-ETM (LA-7921, LA-7990)

Configuration Test

The extensions HR and FR specify the selected clocking mode: halfrate or fullrate.

The preprocessors ARM-ETM200 and ARM-ETM270 become firmware reconfigured in case of changing
clocking modes and/or changing threshold levels (ARM-ETM270). A proceeding reconfiguration is shown in
the status line by a moving bar after the target was started.

The preprocessor ID will be changed in case of success. Check VERSION.HARDWARE. The test should
be done as follows:

• Change halfrate option (ETM.HalfRate ON->OFF or vice versa)

• Start target program and break (Go, Break)

TRACE32 should reprogram the preprocessor.

• Check VERSION.HARDWARE

The ID should have changed as expected. Especially check the HR/FR index.

• Change halfrate option (ETM.HalfRate back)

• Start target program and break again (Go, Break)

TRACE32 should reprogram the preprocessor again.

• Check VERSION.HARDWARE

The preprocessor hardware of ETM200 and ETM270 consist of two
levels which can be updated. The high level part will be configured in
case of changing the clocking mode (halfrate/fullrate) and/or threshold
level. If design updates are available they are included in every software
update. Reconfigurations as described above will activate these design
updates. However the low-level part is not software updatable.
Arm ETM Trace | 121©1989-2024 Lauterbach

ARM-ETM AUTOFOCUS (LA-7991/LA-7992)

Access the Diagnosis Tool

Lauterbach provides a diagnosis tool for the Preprocessor with AUTOFOCUS. It is recommended that you
add the AF Diagnosis button to the TRACE32 toolbar for quick access to the diagnosis tool.

To access the diagnosis tool via a toolbar button:

1. Add this script line to the PRACTICE script file system-settings.cmm in your TRACE32 system
directory:

2. Re-start TRACE32.

The AF Diagnosis button is now available on the TRACE32 toolbar.

To just start the diagnosis tool, execute the following command:

If there is no Preprocessor for ARM-ETM with AUTOFOCUS attached executing this script will generate
an error message, otherwise it displays some diagnosis results in the following window:

The diagnosis tool is just a way of communicating the current state of the Preprocessor for ARM-ETM with
AUTOFOCUS (or at least what the low-level driver software thinks the current state should be). Do not feel
discouraged, if some of the diagnosis results displayed in the window are meaningless to you. Instead follow
the steps under Diagnosis Check List.

DO ~~/demo/etc/diagnosis/autofocus/add_afdiag_button.cmm

DO ~~/demo/etc/diagnosis/autofocus/afdiagnosis.cmm
Arm ETM Trace | 122©1989-2024 Lauterbach

Diagnosis Check List

1. Make sure that you completed the basic check list, especially do not forget to execute
Trace.AutoFocus after setting up your trace port with the frequency you wish to trace and before
attempting to trace signals. Do you get any error or warning messages? (for very high
frequencies you may need to repeat this command until the hardware configuration is
successful).

2. What is your target voltage? For Preprocessors with pluggable termination module: is the proper
termination PCB plugged in? For further information refer to The Termination PCB.

3. Use the diagnosis tool for Preprocessor for ARM-ETM with AUTOFOCUS to read in the current
state of the driver software / Preprocessor. After executing commands that might change the
state of the Preprocessor (e.g. Trace.AutoFocus) use the Refresh button to load current values
Arm ETM Trace | 123©1989-2024 Lauterbach

from the low-level driver into the diagnosis window. Press the "Measure" button, if you want to
repeat measurements like the target voltage, frequency etc.. The Info button will display even
more detailed information and also generate a log file.

Check the following:

Target Info - Voltage
Target Info - Frequency (displays the ETM frequency)

Clock and Data reference voltage should normally be somewhere close to 50% of the target
voltage

Termination - Bus A / Bus B (unplugged indicates that no termination is connected)
Check the stability of your target voltage by pressing the Measure button a couple of times and
viewing the minimum and maximum values that were measured for that session by pressing the Info
button:

4. The trace data are sampled at clock edges, on rising only or rising & falling. They must be stable
around the clock edge over a short time. This time window of stable data is reflected in so-called
data eyes.

The ETM clock frequency does not necessarily equal the CPU clock
frequency. E.g. an ETMv1 or ETMv2 operating at HalfRate results in an ETM
clock frequency that is half the CPU clock frequency, an ETMv3 operating
with PortMode 1/2 results in an ETM frequency that is a quarter of the CPU
clock frequency. The frequency measurement might not be very accurate for
frequencies below 50 MHz.

The data seen by the TRACE32 preprocessor depend highly from the
clock threshold setup. Depending on the signal integrity the data eyes are
more or less wide open.
Arm ETM Trace | 124©1989-2024 Lauterbach

TRACE32 offers a powerful feature called Trace.ShowFocus to analyse the signal integrity of the
trace port. The functionality is similar to a sampling scope

TRACE32 differs two types of data eyes: analog and digital. The analog view is available for clock and
data separately. Analyzer.ShowFocus opens the digital showfocus window:

The horizontal axis reflects time line in nano seconds. On the left hand side the current delay is shown
for each trace signal. The red line shows the sampling point. It can be different for each signal. Data
lines are delayed if values smaller than zero are set or not all sampling points are equal. In case of
values larger than zero the clock line is delayed.

The horizontal axis shows all enabled signals listed. That means the number of signals depends on
the trace port setup. The window needs to be re-opened after the trace port setup has changed.

Pressing the SCAN button will execute Analyzer.TestFocus to update the window. In best case it
should look like the following:

In this case no timing issue are expected. The sampling point should be placed in the middle of the
white areas.

The data delay is used to eliminate data skew.
Clock delay is used to correct setup and hold times.
Both delays types can be used at the same time.

 Analyzer.ShowFocus is a kind of digital view of the data eyes.
White areas mean stable data. Grey areas mean instable data (setup
violations) on rising & falling clock edges. Red lines mean instable data
on rising edges (upper line) or falling edges (lower line).
Arm ETM Trace | 125©1989-2024 Lauterbach

In comparison to the following scan results, where more investigations are required:

Red lines mark setup violations on single edges (red top: rising edge, red bottom: falling edge), grey
areas mark setup violation on both, rising and falling edges.

Use the bottons DATA and CLOCK to open Analyzer.ShowFocusEye and
Analyzer.ShowFocusClockEye. The vertical axis now shows the voltage [V], the horizontal axis still
is the time [ns] axis:

At the beginning the message NOT SCANNED is shown. The data threshold should be set to the
middle of the trace port I/O voltage, before pressing the SCAN-button:

The ShowFocusClockEye window must be observed first. The integrity of the clock signal is important
Arm ETM Trace | 126©1989-2024 Lauterbach

for any further data eye analysis, because it is used for sampling. The result may look like the
following figures:

The graph does NOT show data eyes, but can be interpreted in a similar way (How to understand).

After the clock threshold is set, press the SCAN button of the Analyzer.ShowFocusEye window.
The result may look like the following:

The colored parts should define a white area, which can be enclosed or
open on the upper/lower side. The clock threshold should be set to the
middle of this area (as shown above).
Arm ETM Trace | 127©1989-2024 Lauterbach

How to understand A.ShowFocusEye and A.ShowFocusClockEye

The Analyzer.ShowFocusClockEye window is frequently confused with Analyzer.ShowFocusEye. Both
windows show similar graphs, but contain totally different information.

The following figures show the resulting sample clock signal in dependency of the clock threshold level
setup:

The threshold can be set manually using the command Analyzer.ThresHold <value> or automatically with
the command Analyzer.ThresHold Clock. The algorithm attempts to find a threshold level close to a duty
cycle of 50/50 as seen in the figure B.

Important to know: The clock threshold level influences the data setup (Ts) and hold (Th) times in
dependency of the clock waveform:

The graph shown in Analyzer.ShowFocusEye is similar to a scope
measurement. It reflects the trace signal seen by the preprocessor. The
given values can not be guaranteed, but give an suitable image of the signal
integrity.

The dimensions of both, the data eyes and the clock waveform, do highly
depend on the clock threshold level.

Target clock
Clock threshold
Sample clock

Fig.A Fig.B
Arm ETM Trace | 128©1989-2024 Lauterbach

This is more important to care of as higher the trace port data rates are.

With the given background it is easy to understand, why data eyes change with the clock threshold level. The
following scans where made with different clock threshold levels. The given graphs show the same data
signal.

Even if it is possible to change the data setup&hold times by the clock
threshold level, this is not the right way to compensate data or clock
skew.
Anyway, sometimes it is the last way to get a suitable trace listing for
non-Autofocus preprocessors.

Ts Th Ts Th

Ts > Th Ts < Th

Target clock
Clock threshold
Sample clock

Data
Timing

Sample clock

Clock threshold at 0.8V

Clock threshold at 1.7V
This setup would give suitable trace results.

Clock threshold at 2.6V
Arm ETM Trace | 129©1989-2024 Lauterbach

The number of different data eye scans lead us to the clock eye window (Analyzer.ShowFocusClockEye)
which may look like the following:

Green color means sampling on rising clock edge, Red color means sampling on falling clock edge.

The correlation between Analyzer.ShowFocusEye and Analyzer.ShowFocusClockEye is shown with the
following 3D-figure:

On the lower part of the figure different data eye scans are cascaded. The data threshold level and the
sampling point are marked by black lines. The data threshold line also define the level where the clock eye
picture would be normally placed.
Basically, the clock eye scan shows a third dimension of the data eye scan..

The scan of Analyzer.ShowFocusEye keeps the clock threshold constant
during the data threshold is changed.

The scan of Analyzer.ShowFocusClockEye keeps the data threshold
constant during the clock threshold is changed.

Sampling on rising clock edges

Sampling on both clock edges
(e.g. ETMv3)

(e.g. ETMv1 normal mode)

Different scans of Analyzer.ShowFocusEye

Scan of Analyzer.ShowFocusClockEye

Data threshold level
Arm ETM Trace | 130©1989-2024 Lauterbach

Support Request

If you can not detect any problem on your side, please send the following information
to support@lauterbach.com:

• used start-up/configuration scripts

• the complete text of the error messages you get (AREA.view)

• a screenshot of VERSION.SOFTWARE

• a screenshot of VERSION.HARDWARE

• a screenshot of VERSION.HARDWARE2

• a screenshot of the ETM window

• JTAG voltage level

• JTAG frequency

• ETM voltage level

• cpu core frequency

• ETM connector pinout (board schematics and layout)

• Is the problem frequency dependent?

• Does another trace hardware behave different?

For ARM-ETM with AUTOFOCUS also do the following:
Please execute Trace.AutoFocus once more and add the following information to your request:

• a screenshot of Trace.ShowFocus (press SCAN before)

• a screenshot of Trace.ShowFocusEye (press SCAN before)

• a screenshot of Trace.ShowFocusClockEye (set threshold to VCC and press SCAN)

• the log file generated with Support.cmm (menu Help/About/Support) script
Arm ETM Trace | 131©1989-2024 Lauterbach

Recommendations for Target Board Design

• Place the trace MICTOR connector close to the target processor. Make sure that the MICTOR
ground Pins are connected to your target's ground plane.

AMP part numbers for MICTOR connectors (designed for 50  systems) can be found on:

www.lauterbach.com/adetmmictor.html

For information on MICTOR connectors please refer to: www.amp.com

Additional information on MICTOR connectors and the MICTOR flex extension can be obtained
by contacting support@lauterbach.com.

• Consider setup and hold time requirements. Especially for Preprocessors without AutoFocus it is
important to meet their timing requirements.

• Match your traces to reduce channel to channel skew: same length, same PCB layer and same
amount of vias for all traces. Avoid stubs.

Ideally traces should have a 50  impedance

• Avoid parallel routing of the trace bus. The closer the tracks the more cross talk will influence the
signal integrity. Special routing (meandering, e.g. used for length equalization) should be used to
prevent large areas of parallel track placment.
Even at higher data rates this is an important point.

• Sufficient bypass capacitors are crucial to keep the supply voltage stable when the trace port is
driven by your application. This is esp. important for portsizes greater 8 bit at high frequencies. If
your supply voltages are not stable, the target processor might assume illegal JTAG tap states
and the TPA might loose control over the target (typically this might result in messages such as
"emulation debug port fail").

If you have to safe cost, just allocate additional footprints for bypass capacitors in your PCB
layout. That way you can mount additional bypass capacitors for the development PCBs that
have to drive TPAs and omitt them for the production PCBs.

• Use Power and ground planes:

Capacitor vias should never be shared. Each capacitor requires at least 2 vias: one for
connecting to ground and one for its vcc connection. Vias should descend directly to the power
and ground planes (traces should not be used to connect bypass capacitors to the power pins
they are servicing).

• A series termination on the target is usually not required. All trace channels are terminated on
the Preprocessor to 50% of the voltage level of pin12 of the trace mictor.

If desirable, footprints for a series termination on the target can be implemented and mounted
with O . If necessary, sophisticated users can implement a series-parallel combination. Contact
support@lauterbach.com for ECDs of the Preprocessor’s termination.

• Pin 12 (VTREF) of the trace port mictor has to be on the same voltage level than the amplitude of
the trace port's clock and data channels. Pin 14 has to be on the same voltage level than the
amplitude of the JTAG signals (usually the same as Pin 12). Again: the termination voltage of the
TPA will be 50% of VTREF.

• The target voltage has to be within the specified range specified range. For other voltage levels
contact support@lauterbach.com.

NOTE: for very high data rates (> 300 Mbit/s) 1.8 V signals are usually easier to support by the target
than higher voltage levels.
Arm ETM Trace | 132©1989-2024 Lauterbach

https://www.lauterbach.com/adetmmictor.html

• Recommendations for output drivers:

If possible keep output drive strength and slew rate programmable (e.g. 8, 12, 16 mA for both low
and high slew).

NOTE: For very high data rates (> 300 Mbit/s) 12-16mA drivers should be used to get sharp edges
and sufficient data eye opening .

If you cannot support high drive strength, at least make an investment in the clock signal. Usually the clock
signal is the bottle neck, so the clock signal should have at least 6 mA, better 8 … 12 mA, drive strength.
Also you should use HalfRate, whenever possible to divide the clock frequency by two.

Keep in mind that the drive strength of the output buffers has to be supported by proper PCB layout and
sufficient bypass capacitors for all frequencies ranges!

Your trace port supply voltage should not show any significant ripple, even if signals are traced by the TPA
(contact support@lauterbach.com for ECDs of the TPA termination).
Arm ETM Trace | 133©1989-2024 Lauterbach

Technical Data

Operation Voltage

Adapter OrderNo Voltage Range

Preprocessor for ARM-ETM 120 LA-7889 2.5 .. 3.6 V
Preprocessor for ETM 2-MICTOR 2 flex cables LA-7923 2.5 .. 3.6 V
Preprocessor for ARM-ETM with AUTOFOCUS Flex LA-7991 1.8 .. 3.3 V
Preproc. for ARM-ETM/AUTOFOCUS II 600 Flex LA-7992 1.2 .. 3.3 V
Preproc. for ARM-ETM/AUTOFOCUS 600 MIPI LA-7993 1.2 .. 3.3 V
Arm ETM Trace | 134©1989-2024 Lauterbach

Dimensions

Dimension

LA-7921 PP-ARM-ETM/200

SIDE VIEW

48
0

CABLE

1200

4 X 100 0/

4200
4376
4475

10
010

25
24

00
25

00

PIN1

TOP VIEW

D
EB

U
G

C
AB

LE

4100
2800

ALL DIMENSIONS IN 1/1000 INCH

ALL DIMENSIONS IN 1/1000 INCH

CABLE

275

675
475

SIDE VIEW

5700
1400

400

PIN1

2475
1525

TOP VIEW

new case, delivery from december 2003
Arm ETM Trace | 135©1989-2024 Lauterbach

LA-7923 PP-ARM-ETM-TWO

LA-7990 PP-ARM-ETM/270

Dimension

SIDE VIEW

TOP VIEW
ALL DIMENSIONS IN MILS

PIN1

PIN1

3725
3825

30
016

50
24

00
55

0

CABLE

TOP VIEW

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

CABLE

275

67
5

475

3950
1400

400

PIN1

24
75

15
25
Arm ETM Trace | 136©1989-2024 Lauterbach

LA-7991 PP-ARM-ETM-AF

LA-7992 PP-ARM-ETM-AF-2

Dimension

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

675

1

1

TR
AC

E
A

TR
AC

E
B

Note: TRACE B is only used for Demux 2 (ARM7-10) or PortSize >16 (ARM11)

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

67
5

1

1

TR
AC

E
A

TR
AC

E
B

LAU
TER

BAC
H

12
00

Note: TRACE B is only used for Demux 2 (ARM7-10) or PortSize >16 (ARM11)
Arm ETM Trace | 137©1989-2024 Lauterbach

LA-7993 PP-ARM-ETM-AF-MIPI

Dimension

12
00

47
5

1400

400

PIN1
15

25
24

75

5700

TOP VIEW CABLE

ALL DIMENSIONS IN 1/1000 INCH

SIDE VIEW

LAU
TER

BAC
H

Arm ETM Trace | 138©1989-2024 Lauterbach

LA-7995 PP-C5500-AF-2
LA-3300 TRACE-RISCV-AFII-P
LA-3308 TRACE-ARM-ETM-AF-2
LA-3917 PP-NIOS-AF-2
LA-3918 PP-RH850-AFII
LA-3920 PP-STRED-AF-2
LA-3921 PP-XTENSA-AF-2
LA-3927 PP-RISCV-AF-2

Dimension

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

67
5

1

1

TR
AC

E
A

TR
AC

E
B

LAU
TER

BAC
H

12
00
Arm ETM Trace | 139©1989-2024 Lauterbach

LA-7996 PP-CEVA-AF-2

LA-7998 PP-HEXAGON-AF-2

Dimension

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

67
5

1

1

TR
AC

E
A

TR
AC

E
B

LAU
TER

BAC
H

12
00

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

67
5

1

1

TR
AC

E
A

TR
AC

E
B

LAU
TER

BAC
H

12
00
Arm ETM Trace | 140©1989-2024 Lauterbach

LA-7999 PP-STARCORE-AF-2

Dimension

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

TOP VIEW CABLE

13
50

5250

67
5

1

1

TR
AC

E
A

TR
AC

E
B

LAU
TER

BAC
H

12
00
Arm ETM Trace | 141©1989-2024 Lauterbach

LA-7889 PP-ARM-ETM/120

Dimension

Top View

ALL DIMENSIONS
IN 1/1000 INCH

Target View

Side View
Flat cable
Arm ETM Trace | 142©1989-2024 Lauterbach

LA-1370 MICTOR-FLEXEXT

Dimension

4680
3190

TOP VIEW

PIN1 PIN1

FLEX

10
00

MICTOR-EXTENDER

HORIZONTAL-HORIZONTAL

ALL DIMENSIONS IN 1/1000 INCH

SIDE VIEW

27
5

20
0

Arm ETM Trace | 143©1989-2024 Lauterbach

LA-7649 CONV-MIC38-2.54MM

LA-3808 CONV-L8540-MIPI

Dimension

SIDE VIEW

TOP VIEW

2175

1400

500

ALL DIMENSIONS IN 1/1000 INCH

ALL DIMENSIONS IN 1/1000 INCH / mm

600/15.2

2350/58.7

1013/25.7

1 1

1

1

TR
AC

E
B

TR
AC

E
A

TOP VIEW

SIDE VIEW
Arm ETM Trace | 144©1989-2024 Lauterbach

LA-3809 CONV-IDC20A-MIC/MIPI

LA-3842 CONV-IDC20A-MIPI34

Dimension

TOP VIEW

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

2200
413

CABLE

1750

12001514

1988

575

27
5

TOP VIEW

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH

2200
413

CABLE

1750

12001514

1988

575

27
5

Arm ETM Trace | 145©1989-2024 Lauterbach

LA-3816 CON-2XMICTOR-MIPI60

LA-3817 CON-MIPI60-MICTOR38

Dimension

TOP VIEW

SIDE VIEW

SAMTEC 60600

425

2450

1512

1350 775
325

ALL DIMENSIONS IN 1/1000 INCH

PIN1

TRACE B

TRACE APIN1 PIN1

1000

51
3

48
0

TOP VIEW

SIDE VIEW

ALL DIMENSIONS IN 1/1000 INCH
Arm ETM Trace | 146©1989-2024 Lauterbach

Adapters

Not necessary.

LA-3818 CONV-AFMIC38-MIPI60

Dimension

2500
1543

1650

SAMTEC 60
600

SIDE VIEW

TOP VIEW

85
0

70
6 32

5

PIN1

ALL DIMENSIONS IN 1/1000 INCH
Arm ETM Trace | 147©1989-2024 Lauterbach

Connector Layout

Signal Description

ETMv1/2 signals

Signal Description Direction
from target

Compliance

VTREF ”Voltage Reference” is the target reference voltage. It
indicates if the target power is applied, it is used to
create the logic-level reference (VTREF/2) for the trace
tool input comparators and it auto adjusts the
termination voltage level.

It shall be directly connected to the power supply of the
processors IO pins. Decoupling capacitors are optional
(100nF).

If the signal is not connected then trace recording will
fail in most cases.

output required

EXTTRIG The function of “External Trigger” is not exactly defined
by the ARM-ETM specification. It can be input or
output.
TRACE32 can use this signal to trigger (high-active)
the trace hardware. This signal is pulled down via a
>10kOhm resistor on tool side.

It is recommended to pull-down the signal via 10kOhm
if not used. This allows easy access in future if
necessary.
Alternatively connect to GND or let it not connected.

Tracing is not limited if the signal is not available.

input/
output

not used/
optional

TRACECLK “Trace Clock” is used as sampling clock for all trace
signals.

If the signal is not connected then no trace recording
will be possible.

output required

TRACEPKT
TRACEPKTA
TRACEPKTB

“Trace Packets” transmit main trace information.

Unused pins must be directly connected to GND.

If the signals is are connected then no trace recording
will be possible.

output required
Arm ETM Trace | 148©1989-2024 Lauterbach

TRACESYNC “Trace Sync” marks trace packets as valid or invalid.

If the signal is not connected then no trace recording
will be possible.

If the signal is connected to GND no trace packet
filtering will happen. Tracing is basically possible, but
trace decoding needs longer and could report errors
due to too many idle patterns.

output required

PIPESTAT “Pipeline Status” transmits the CPU pipeline
information like “instruction executed”.

If the signal is not connected then no trace recording
will be possible.

output required

GND ”Ground”. All pins (including the metal bar in the
middle of the connector) must be connected to
minimize noise pickup.

If no sufficient ground connection is given then no
trace recording will be possible due to instable data
eyes.

required

Signal Description Direction
from target

Compliance
Arm ETM Trace | 149©1989-2024 Lauterbach

ETMv3/4 signals

Signal Description Direction
from target

Compliance

VREF-TRACE ”Voltage Reference” is the target reference voltage. It
indicates if the target power is applied, it is used to
create the logic-level reference (VTREF/2) for the trace
tool input comparators and it auto adjusts the
termination voltage level.

It shall be directly connected to the power supply of the
processors IO pins.

output required

VCC VCC on pin 34 is handled as trace signal. It must have
the same level as VREF-TRACE (pin 12). The signal
will be terminated like the other trace signals (e.g.
TRACECLK). It must be directly connected to VTREF-
TRACE.

If the signal is not connected then some trace
tools will fail to record the trace data correctly.

output required

EXTTRIG The function of “External Trigger” is not exactly defined
by the ARM-ETM specification. It can be input or
output.
TRACE32 can use this signal to trigger (high-active)
the trace hardware. This signal is pulled down via a
>10kOhm resistor on tool side.

It is recommended to pull-down the signal via 10kOhm
if not used. This allows easy access in future if
necessary.
 Alternatively connect to GND or let it not connected.

Tracing is not limited if the signal is not available.

input/
output

not used/
optional

TRACECLK “Trace Clock” is used as sampling clock for all trace
signals.

If the signal is not connected then no trace recording
will be possible.

output required

TRACEDATA “Trace Data” transmit main trace information.

Unused pins must be directly connected to GND.

If the signals are not connected then no trace
recording will be possible.

output required
Arm ETM Trace | 150©1989-2024 Lauterbach

TRACECTL “Trace Control” marks trace packets as valid or invalid.

Continuous-mode operation:
The signal is not required/available. The pin should be
connected directly to GND.

Other modes:
If the signal is not connected then no trace recording
will be possible.
If the signal is connected to GND then no trace packet
filtering will happen. Tracing is basically possible, but
trace decoding needs longer and could report errors
due to too many idle patterns.

output

optional

required

GND ”Ground”.

All pins must be connected to minimize noise pickup.

required

Signal Description Direction
from target

Compliance
Arm ETM Trace | 151©1989-2024 Lauterbach

JTAG signals

Signal Description Direction
from target

Compliance

VREF-DEBUG ¨Voltage Reference¨ of the debug signals. It indicates if
the target power is applied, it is used to create the
logic-level reference (VTREF/2) for the debug signal
input comparators and it auto-adjusts the voltage
levels of the debug signal output driver. It shall be
directly connected to the debug signal reference
voltage. Furthermore, it might have a series resistor,
although this is not recommended. It has to be strong
enough to overdrive the 100 kOhms pull-down resistor
of the debug cable.

output required

TDI ¨Test Data In¨ is the data signal from debugger to
processor. You can place a pull-up or pull-down
resistor (1 kOhms - 47 kOhms) on this line to ensure a
defined state even when the line is not driven by the
debugger.

input required

TDO ¨Test Data Out¨ is the data signal from processor to
debugger. You can place a 33 Ohms series resistor
close to the processor for series termination. You can
place a pull-up or pull-down resistor (1 kOhms - 47
kOhms) on this line.

output required

TMS ¨Test Mode Select¨ is the control signal for the TAP
controller. You can place a pull-up or pull-down resistor
(1 kOhms - 47 kOhms) on this line in order to give it a
defined state even when the line is not driven by the
debugger.

input required

TCK ¨Test Clock¨ is the clock signal from debugger to
processor. You should place a pull-up or pull-down
resistor (1 kOhms - 47 kOhms) on this line in order to
give it a defined state even when the line is not driven
by the debugger.

input required

RTCK ”Return Test Clock” can be used to synchronize the
JTAG signals to internal clocks. For CoreSight/Cortex
systems it is not needed and in this case we
recommend not to connect it or to connect it to GND.
Do not directly connect it to TCK on the target. This
causes a stub on TCK and reflections and often
causes the JTAG communication to fail.

output optional, not
recommend
ed
Arm ETM Trace | 152©1989-2024 Lauterbach

The pinout of the Mictor connector optionally includes the debug signals which needs to go to the Debug
Cable (20-pin standard header). The Preprocessors have a 20-pin connector where the user can plug in the
Debug Cable. Alternatively the Debug Cable can be plugged on a separate 20-pin connector on the target.
In this case there is no need to connect the debug signals to the Mictor. For better signal quality it is even
better not to connect them. The debug signals are the signals listed in the table above: VREF-DEBUG, TDI,
TDO, TMS, TCK, RTCK, TRST-, RESET-, DBGACK, DBGRQ. Just leave them all not connected.

TRST- ¨Test Reset¨ (low active) is used for an asynchronous
reset of the JTAG Test Access Port (TAP). It resets the
TAP state machine. The debugger drives it by a push-
pull driver. From the debugger point of view it is
optional, because it resets the TAP also by a certain
JTAG sequence. Leave it open if the target does not
have this signal. You should place a pull-down resistor
(1 kOhms - 47 kOhms) on this signal on target side,
although this is not JTAG conform. It ensures the on-
chip debug logic is inactive when the debugger is not
connected.

input optional,
connect if
available

RESET- “System Reset¨ (low active) is used to reset the target
system. The signal is also used by the debugger to
detect if the processor is held in reset. There is no
need to provide this indication, but if a reset condition
is not signalized by this line it should be high (= no
reset). The debugger drives it open-drain. A 47 kOhms
pull-up is within the debug cable. There might be the
need to place a pull-up (1 kOhms - 47 kOhms) on
target side to avoid unintentional resets when the
debugger is not connected and probably to strengthen
the weak 47 kOhms pull-up in the debug cable. If the
signal is not available, leave it open or place a pull-up
(1 kOhms - 47 kOhms).

input optional,
recommend
ed

DBGACK ”Debug Acknowledge” (high active) is an input of the
debugger to sense the processors halt status. This
signal is typically not used anymore on
CoreSight/Cortex systems. We recommend not to
connect it or to connect it to GND.

output optional, not
recommend
ed

DBGRQ ¨Debug Request¨ (high active) is an output of the
debugger to cause the processor to enter debug mode
(to halt the processor). This signal is typically not used
anymore on CoreSight/Cortex systems. We
recommend not to connect it. If this signal is provided
by the processor you should place a pull-down resistor
(1 kOhms - 47 kOhms) on target side for the case the
debugger is not connected.

input optional, not
recommend
ed

Signal Description Direction
from target

Compliance
Arm ETM Trace | 153©1989-2024 Lauterbach

MICTOR-38

ETMv1/2

ETMv1/2 with Multiplexed Mode

Signal Pin Pin Signal

N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK

DBGRQ 7 8 DBGACK
RESET- 9 10 EXTRIG

TDO 11 12 VREF-TRACE
RTCK 13 14 VREF-DEBUG

TCK 15 16 TRACEPKT7
TMS 17 18 TRACEPKT6
TDI 19 20 TRACEPKT5

TRST- 21 22 TRACEPKT4
TRACEPKT15 23 24 TRACEPKT3
TRACEPKT14 25 26 TRACEPKT2
TRACEPKT13 27 28 TRACEPKT1
TRACEPKT12 29 30 TRACEPKT0
TRACEPKT11 31 32 TRACESYNC
TRACEPKT10 33 34 PIPESTAT2

TRACEPKT9 35 36 PIPESTAT1
TRACEPKT8 37 38 PIPESTAT0

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK

DBGRQ 7 8 DBGACK
SRST- 9 10 EXTRIG

TDO 11 12 VTREF
RTCK 13 14 VCC

TCK 15 16 N/C
TMS 17 18 N/C
TDI 19 20 TRACEPKT1415

TRST- 21 22 TRACEPKT1213
N/C 23 24 TRACEPKT1011
N/C 25 26 TRACEPKT0809
N/C 27 28 TRACEPKT0607
N/C 29 30 TRACEPKT0405
N/C 31 32 TRACEPKT0003
N/C 33 34 PS02TPKT02
N/C 35 36 PS01TPKT01
N/C 37 38 PS00TSYNC
Arm ETM Trace | 154©1989-2024 Lauterbach

ETMv1/2 with 4 bit Demultiplexed Mode

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLKA

DBGRQ 7 8 DBGACK
SRST- 9 10 EXTRIG

TDO 11 12 VTREF
RTCK 13 14 VCC

TCK 15 16 N/C
TMS 17 18 N/C
TDI 19 20 N/C

TRST- 21 22 N/C
TRACEPKTB3 23 24 TRACEPKTA3
TRACEPKTB2 25 26 TRACEPKTA2
TRACEPKTB1 27 28 TRACEPKTA1
TRACEPKTB0 29 30 TRACEPKTA0

TRACESYNCB 31 32 TRACESYNCA
PIPESTATB2 33 34 PIPESTATA2
PIPESTATB1 35 36 PIPESTATA1
PIPESTATB0 37 38 PIPESTATA0
Arm ETM Trace | 155©1989-2024 Lauterbach

ETMv1/2 with 8/16 bit Demultiplexed Mode

Connector 1:

Connector 2:

Signal Pin Pin Signal

N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK

DBGRQ 7 8 DBGACK
SRST- 9 10 EXTRIG

TDO 11 12 VTREF
RTCK 13 14 VCC

TCK 15 16 TRACEPKTA7
TMS 17 18 TRACEPKTA6
TDI 19 20 TRACEPKTA5

TRST- 21 22 TRACEPKTA4
TRACEPKTA15 23 24 TRACEPKTA3
TRACEPKTA14 25 26 TRACEPKTA2
TRACEPKTA13 27 28 TRACEPKTA1
TRACEPKTA12 29 30 TRACEPKTA0
TRACEPKTA11 31 32 TRACESYNCA
TRACEPKTA10 33 34 PIPESTATA2

TRACEPKTA9 35 36 PIPESTATA1
TRACEPKTA8 37 38 PIPESTATA0

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 N/C
N/C 7 8 N/C
N/C 9 10 N/C
N/C 11 12 N/C
N/C 13 14 N/C
N/C 15 16 TRACEPKTB7
N/C 17 18 TRACEPKTB6
N/C 19 20 TRACEPKTB5
N/C 21 22 TRACEPKTB4

TRACEPKTB15 23 24 TRACEPKTB3
TRACEPKTB14 25 26 TRACEPKTB2
TRACEPKTB13 27 28 TRACEPKTB1
TRACEPKTB12 29 30 TRACEPKTB0
TRACEPKTB11 31 32 TRACESYNCB
TRACEPKTB10 33 34 PIPESTATB2

TRACEPKTB9 35 36 PIPESTATB1
TRACEPKTB8 37 38 PIPESTATB0
Arm ETM Trace | 156©1989-2024 Lauterbach

Dual ETMv1/2

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C

TRACECLKB 5 6 TRACECLKA
DBGRQ 7 8 DBGACK

SRST- 9 10 EXTRIG
TDO 11 12 VTREF

RTCK 13 14 VCC
TCK 15 16 ATRACEPKT7
TMS 17 18 ATRACEPKT6
TDI 19 20 ATRACEPKT5

TRST- 21 22 ATRACEPKT4
BTRACEPKT3 23 24 ATRACEPKT3
BTRACEPKT2 25 26 ATRACEPKT2
BTRACEPKT1 27 28 ATRACEPKT1
BTRACEPKT0 29 30 ATRACEPKT0

BTRACESYNC 31 32 ATRACESYNC
BPIPESTAT2 33 34 APIPESTAT2
BPIPESTAT1 35 36 APIPESTAT1
BPIPESTAT0 37 38 APIPESTAT0
Arm ETM Trace | 157©1989-2024 Lauterbach

ETMv3 / ETMv4 / PFTv1

Connector 1:

Connector 2:

MIPI-60

ETMv3 / ETMv4 / PFTv1

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C

GND 5 6 TRACECLK
DBGRQ 7 8 DBGACK
RESET- 9 10 EXTRIG

TDO|-|SWO 11 12 VREF-TRACE
RTCK 13 14 VREF-DEBUG

TCK|TCKC|SWCLK 15 16 TRACEDATA[7]
TMS|TMSC|SWDIO 17 18 TRACEDATA[6]

TDI 19 20 TRACEDATA[5]
TRST- 21 22 TRACEDATA[4]

TRACEDATA[15] 23 24 TRACEDATA[3]
TRACEDATA[14] 25 26 TRACEDATA[2]
TRACEDATA[13] 27 28 TRACEDATA[1]
TRACEDATA[12] 29 30 GND
TRACEDATA[11] 31 32 GND
TRACEDATA[10] 33 34 VCC

TRACEDATA[9] 35 36 TRACECTL
TRACEDATA[8] 37 38 TRACEDATA[0]

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C

GND 5 6 N/C
N/C 7 8 N/C
N/C 9 10 N/C
N/C 11 12 N/C
N/C 13 14 N/C
N/C 15 16 TRACEDATA[23]
N/C 17 18 TRACEDATA[22]
N/C 19 20 TRACEDATA[21]
N/C 21 22 TRACEDATA[20]

TRACEDATA[31] 23 24 TRACEDATA[19]
TRACEDATA[30] 25 26 TRACEDATA[18]
TRACEDATA[29] 27 28 TRACEDATA[17]
TRACEDATA[28] 29 30 GND
TRACEDATA[27] 31 32 GND
TRACEDATA[26] 33 34 VCC
TRACEDATA[25] 35 36 GND
TRACEDATA[24] 37 38 TRACEDATA[16]
Arm ETM Trace | 158©1989-2024 Lauterbach

Signal Pin Pin Signal
VREF-DEBUG 1 2 TMS|TMSC|SWDIO

TCK|TCKC|SWCLK 3 4 TDO|-|SWO
TDI 5 6 RESET-

RTCK 7 8 TRST- PULLDOWN
TRST- 9 10 DBGRQ TRIGIN

DBGACK TRIGOUT 11 12 VREF-TRACE
TRACECLK 13 14 GND

GND 15 16 GND
TRACECTL 17 18 TRACEDATA[19]

TRACEDATA[0] 19 20 TRACEDATA[20]
TRACEDATA[1] 21 22 TRACEDATA[21]
TRACEDATA[2] 23 24 TRACEDATA[22]
TRACEDATA[3] 25 26 TRACEDATA[23]
TRACEDATA[4] 27 28 TRACEDATA[24]
TRACEDATA[5] 29 30 TRACEDATA[25]
TRACEDATA[6] 31 32 TRACEDATA[26]
TRACEDATA[7] 33 34 TRACEDATA[27]
TRACEDATA[8] 35 36 TRACEDATA[28]
TRACEDATA[9] 37 38 TRACEDATA[29]

TRACEDATA[10] 39 40 TRACEDATA[30]
TRACEDATA[11] 41 42 TRACEDATA[31]
TRACEDATA[12] 43 44 GND
TRACEDATA[13] 45 46 GND
TRACEDATA[14] 47 48 GND
TRACEDATA[15] 49 50 GND
TRACEDATA[16] 51 52 GND
TRACEDATA[17] 53 54 GND
TRACEDATA[18] 55 56 GND

GND 57 58 GND
GND 59 60 GND
Arm ETM Trace | 159©1989-2024 Lauterbach

ETMv1

Signal Pin Pin Signal
VREF DEBUG 1 2 TMS

TCK 3 4 TDO
TDI 5 6 RESET-

RTCK 7 8 TRST- PULLDOWN
TRST- 9 10 DBGRQ TRIGIN

DBGACK TRIGOUT 11 12 VREF TRACE
TRACECLK 13 14 GND

GND 15 16 GND
PIPESTAT[0] 17 18 GND
PIPESTAT[1] 19 20 GND
PIPESTAT[2] 21 22 GND

TRACESYNC 23 24 GND
TRACEPKT[0] 25 26 GND
TRACEPKT[1] 27 28 GND
TRACEPKT[2] 29 30 GND
TRACEPKT[3] 31 32 GND
TRACEPKT[4] 33 34 GND
TRACEPKT[5] 35 36 GND
TRACEPKT[6] 37 38 GND
TRACEPKT[7] 39 40 GND
TRACEPKT[8] 41 42 GND
TRACEPKT[9] 43 44 GND

TRACEPKT[10] 45 46 GND
TRACEPKT[11] 47 48 GND
TRACEPKT[12] 49 50 GND
TRACEPKT[13] 51 52 GND
TRACEPKT[14] 53 54 GND
TRACEPKT[15] 55 56 GND

GND 57 58 GND
GND 59 60 GND
Arm ETM Trace | 160©1989-2024 Lauterbach

	Arm ETM Trace
	History
	Installation
	Software Installation
	Recommendation for Starting the Software
	Recommendation for Power Down
	Hardware Installation
	ETM Preprocessor Hardware Versions
	Preprocessor for ARM-ETM 120 (LA-7889)
	Preprocessor for ARM-ETM 200 (LA-7921)
	Preprocessor for ETM 2-MICTOR (LA-7923)
	Preprocessor for ARM-ETM Autofocus (LA-7991)
	External Termination PCB (delivered before 2006)

	Preprocessor for ARM-ETM Autofocus II (LA-7992)
	Preprocessor for ARM-ETM Autofocus MIPI (LA-7993)
	Preprocessor for ARM-ETM HSSTP (LA-7988)
	PowerTrace Serial 4 GigaByte for ARM-ETM HSSTP and PCIe

	Utilization of the ETM
	Startup Script
	Example ETMv1
	Example HSSTP
	Loading and Storing Settings

	Displaying Trace Results
	Programmer’s Model of the ETM
	Supported Features
	ETM Registers
	Programming

	ETM Commands
	ETM Embedded Trace Macrocell (ETM)
	ETM.AbsoluteTimestamp Absolute cyclecount pakets
	ETM.AddressMunging Dig endian address munging
	ETM.ATBTrigger Use ATB to transfer trace trigger to trace sink
	ETM.AUXCTLR Set ETMv4 implementation-specific auxiliary control register
	ETM.BBC Branch address broadcast
	ETM.BBCExclude Exclude address ranges from branch-broadcasting
	ETM.BBCInclude Enable branch-broadcasting for dedicated address ranges
	ETM.CLEAR Clear sequencer settings
	ETM.CLOCK Set core clock frequency for timing measurements
	ETM.CORE Select core for ETM
	ETM.CPRT Monitor coprocessor register transfers
	ETM.COND Conditional non-branch instructions
	ETM.ContextID Select the width of the "ContextID" register
	ETM.CycleAccurate Cycle accurate tracing
	ETM.CycleCountThreshold Set granularity for cycle accurate timing info
	ETM.CycleCountTickEnable ETMv4 cycle counter overflows
	ETM.CycleCountTickRate ETMv4 cycle counter rate
	ETM.DataSuppress Suppress data flow to prevent FIFO overflow
	ETM.DataTrace Configure data-trace
	ETM.DataTracePrestore Show program trace cycle for data trace cycle
	ETM.DataViewExclude Suppress data trace for specified address range
	ETM.DataViewInclude Restrict broadcast of data accesses to range
	ETM.DBGRQ Debug request control
	ETM.FifoFullExclude No activation of FIFOFULL in range
	ETM.FifoFullInclude FIFOFULL only in range
	ETM.FifoLevel Define FIFO level for FIFOFULL
	ETM.FunnelHoldTime Define minimum funnel hold time
	ETM.HalfRate Halfrate mode
	ETM.LPOVERRIDE Prohibit lower power mode
	ETM.INSTP0 Load and store instructions
	ETM.MapDecode Memory map decode control
	ETM.NoOverflow Enable ETMv4 feature to prevent target FiFo overflows
	ETM.ON Switch ETM on
	ETM.OFF Switch ETM off
	ETM.PortDisable Force trace-port enable signal to zero
	ETM.PortDisableOnchip Disable ETM trace port when ETB is used
	ETM.PortMode Select ETM mode
	CoreSight (deprecated)

	ETM.PortRoute Set up trace hardware
	ETM.PortSize Define trace port width
	ETM.PowerUpRequest Power-up request for the ETM by the debugger
	ETM.PseudoDataTrace Enable pseudo data trace detection
	ETM.QE Enable Q elements
	ETM.QTraceExclude Prohibit Q trace elements in given address range
	ETM.QTraceInclude Allow Q trace elements in given address range
	ETM.RefClock Enable STP reference clock
	ETM.Register Display the ETM registers
	ETM.RESet Reset ETM settings
	ETM.ReserveContextID Reserve special values used with context ID
	ETM.ReturnStack Enable return stack tracing mode
	ETM.Set Precise control of ETM trigger events
	ETM.SmartTrace Configure smart trace
	ETM.STALL Stall processor to prevent FIFO overflow
	ETM.state Display ETM settings
	ETM.StoppingBreakPoints Use ETM comparators for breakpoints
	ETM.SyncPeriod Set synchronization frequency
	ETM.TImeMode Improve ETM/PTM timestamp information
	ETM.TimeStampCLOCK Specify frequency of the global timestamp
	ETM.TimeStamps Control for global timestamp packets
	ETM.TimeStampsTrace Specify data trace correlation method (ETMv4)
	ETM.Trace Control generation of trace information
	ETM.TraceCORE Core specific default tracing
	ETM.TraceDataPriority Define data trace priority
	ETM.TraceERRor Force ETM to emit all system error exceptions
	ETM.TraceExclude Suppress program trace for specified address range
	ETM.TraceID Change the default ID for an ETM trace source
	ETM.TraceInclude Restrict program trace to specified address range
	ETM.TraceNoPCREL No data trace for accesses relative to program counter
	ETM.TraceNoSPREL No data trace for accesses relative to stack pointer
	ETM.TracePriority Define priority of ETM
	ETM.TraceRESet Forces the ETM to emit all core resets
	ETM.TRCIDR Define TRCIDR register values for simulator
	ETM.VMID Virtual machine ID tracing

	Keywords for the Trace Display
	Examples for Trace Controlling
	Tracing of a Specified Address Range
	Tracing of Specified Data
	Trigger at Address Access
	Tracing of a Defined Amount of Cycles
	Runtime Measurement of a Function
	Trace Setup for Real-Time OS
	Basics
	Trace Setup for LINUX

	FAQ
	Diagnosis
	Error Diagnosis
	Searching for Errors
	Error Messages
	HARDERRORS
	FLOWERRORS
	FIFOFULL
	Trace Test Failed Messages

	Diagnosis Check List
	Basic Checks
	Advanced Check for ETMv1.x
	Advanced Check for ETMv3.x
	Timing Requirements

	ARM-ETM (LA-7921, LA-7990)
	Configuration Test

	ARM-ETM AUTOFOCUS (LA-7991/LA-7992)
	Access the Diagnosis Tool
	Diagnosis Check List
	How to understand A.ShowFocusEye and A.ShowFocusClockEye

	Support Request
	Recommendations for Target Board Design

	Technical Data
	Operation Voltage
	Dimensions
	Adapters
	Connector Layout
	Signal Description
	ETMv1/2 signals
	ETMv3/4 signals
	JTAG signals

	MICTOR-38
	ETMv1/2
	ETMv1/2 with Multiplexed Mode
	ETMv1/2 with 4 bit Demultiplexed Mode
	Dual ETMv1/2

	MIPI-60
	ETMv3 / ETMv4 / PFTv1
	ETMv1

