LAUTERBACH A

Simulator for NIOS-II

Simulator for NIOS-II

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns

TRACE32 Instruction Set SIMUIators ... s

Simulator fOor NIOS-II ... s s s s s e am e e e
L 1= (o 4
L oo LU T o 4
TRACE32 Simulator LICENSEciccciiiiiiiimsiiss s s s s s s s s s ssmssnssss sassmsssnes 5
Start the Prepared DEMOciccccciriiiismnninissssinsssssss s ssssssss s sssssssss s sasssss s s nsssasss s sasssnsss s sasssnnses 6
QUICK STArt ...ooiieeiis iR nn e 8
General RestriCtioNSccccceiiiiiimmriinims s 10
CPU specific SYStem Commandscccoiccecmiiiiiicmninssr s ssssss s ssssssssssnas 11
SYStem.CPU Select CPU type 11
SYStem.LOCK Lock and tristate the debug port 11
SYStem.MemAccess Select run-time memory access method 11
SYStem.Mode Establish the communication with the simulator 12
SYStem.CONFIG Configure debugger according to target topology 12
SYStem.Option.DCFLUSH Flush data cache before Step or Go 13
SYStem.Option.Endianness Select endianness of core 13
SYStem.Option.EXCADDR Define exception address 13
SYStem.Option.FEXCADDR Define fast TLB miss exception address 13
SYStem.Option.FPH Enable the simulation of floating point instructions 14
SYStem.Option.ICFLUSH Invalidate instruction cache before go/step 14
SYStem.Option.IMASKASM Mask interrupts during assembler step 14
SYStem.Option.IMASKHLL Mask interrupts during HLL step 15
SYStem.Option.IVRCode Define code for interrupt vector instruction 15
SYStem.Option.MMUSPACES Separate address spaces by space IDs 15
SYStem.Option.MULDIV Define if mul and div instructions are supported 17
SYStem.Option.SIMMMU Define properties of simulated MMU 17
QL0143 411 o T 0075 T = g o L= 18
TrOnchip.state Display on-chip trigger window 18
TrOnchip.RESet Set on-chip trigger to default state 18
CPU specific MMU COMMANAScccccccmmmmiiiriiiisssisssssssmesessssesssssssssssssssmmssssssssessssssssssnnnmsssnssnes 19
MMU.DUMP Page wise display of MMU translation table 19
©1989-2024 Lauterbach Simulator for NIOS-II 2

MMU.List
MMU.SCAN

Memory Classes

Overview

Peripheral Simulation

Compact display of MMU translation table
Load MMU table from CPU

22

24
24

25
25

©1989-2024 Lauterbach

Simulator for NIOS-II

3

Simulator for NIOS-II

Version 06-Jun-2024

History
20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
Introduction

The Simulator is implemented as an Instruction Set Simulator. The full address range (32-Bit) is supported,
all peripherals are memory mapped. Peripherals themselves are not simulated. The simulated core is the

so-called “economy-core” (without cache).

The machine code is executed plainly, not cycle accurate. The following features are available:

Disassembler

File load

Single Step

Breakpoints

Watch registers, variables and structures

HLL debugging in C and C++

Sampling of the program and data flow to the trace
Runtime- and performance analysis

CTS

The following file formats are supported:

ELF/DWARF

©1989-2024 Lauterbach

Simulator for NIOS-II

4

TRACE32 Simulator License

[build 68859 - DVD 02/2016]
The extensive use of the TRACE32 Instruction Set Simulator requires a TRACES32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.

©1989-2024 Lauterbach Simulator for NIOS-Il | 5

www.lauterbach.com/sim_license.html

Start the Prepared Demo

At startup of the TRACE32 NIOS Simulator, a demo file is loaded and started automatically. The program
execution is stopped at a breakpoint. The grey cursor line shows the current point of program execution. If

the demo does not load and start, please execute the PRACTICE script demo . cmm.

,*L TRACE32 PowerView for MIO¢
File Edit View Var
MNew Script

Open Script...

#I Run Script...

Automatic Scripts on Start
Open File...
2 Load File...
Type File...

i) Dump File...

Break

A TRACE32 PowerView for NIOS = =R
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Window Help
ME A »n |2 O snsdcas @i 2
i ===
M Step | M Over JAsDiverge « Return ¢ Up b Go Il Break | % Mode &=f L. Find: taske.c
addr/Tline code label mnemonic comment |
P:00000850 [FEO02E354 ret A
P:00000854 (000185834 nop
char flags[SIZE+1];
int sieve() * zieve of erathostenes *
13421
] DEFEEAQS sieve: addi r27,r27,-0x18 ; r27,r27,-24
P:0000085C [DFOOOS1S stw r28,0x14(r27)
P : 00000860 (D A mov r28,rz7
register int i, primz, k;
int anzahl;
v
= |?||E||?| &4 Buvar.Local EI@
1. Up Down MArgs [iocals [caller Task: 5:1:?\":(11 "
-000][s1eve() ~ = primz = 55
—001|[main() = 2636
-002||P:0x4C (asm) = anzahl = 0
— |end of frame hd v
B:: 49
components trace Data Var List PERF SYStem Step Go other pravious
P:00000858 \\taskc\taskc\sieve stopped at breakpoint MIX up

©1989-2024 Lauterbach

Simulator for NIOS-II

6

Display the Registers

Register.view ; displays the cpu registers

i\ :Register,

a A RB DEADBEEF Ri16 DEADBEEF R24 DEADBEEF 5P> BBBBEODA ~
1 DEADBEEF RS9 DEADBEEF R17 DEADBEEF R25 DEADBEEF +@4 BB800O0A
2 DEADBEEF R1P DEADBEEF R18 DEADBEEF R26 DEADBEEF +A5 @@00OO0A
3 DEADBEEF R11 DEADBEEF R19 DEADBEEF RZ7 DEADBEEF +AC @@BBOOOA
4 DEADBEEF R1Z DEADBEEF R20 DEADBEEF R2Z8 DEADBEEF +10 @@90OO0A
5 DEADBEEF R13 DEADBEEF R21 DEADBEEF R2Z9 DEADBEEF +14 @@80000A
6 DEADBEEF R14 DEADBEEF R22 DEADBEEF R39 DEADBEEF +15 @@000O0A
7 DEADBEEF R15 DEADBEEF R23 DEADBEEF R31 DEADBEEF +1C @@BBOOOA
+20) APPRAAAA

e @ CTL3 @ U _ PIE_ FPC @ +24 NAPROBPAR
K1 @ CTL4 (] +28 AAOBPARA
+2[AROBRARA v
Display Source Code
Data.List ; displays current source code line
Mode.H11 ; select HLL mode for display

B::Data.List EHEWX'

M Step || M Ower || § Mewt || @ Fetum|| ¢ Up p Go Il Break Find: tas

addr/line source

char flags[SIZE+1];

int sieve() /* sieve of erathostenes */
1342 ||
register int i, primz, k;
int anzahl;
1346 anzahl = 0;
1348 for (i = 0; i ¢= 3IZE; flags[i++] = TRUE);
1350 for (i = 0; i ¢= 3IZE; i++) {
1351 if (flags[il) {
1352 primz = 1 + i + 3;
1353 k = i + primz;
1354 while (k <= SIZE) {
1355 flags[k] = FALSE;
1356 k += primz;
1358 anzahl++;
1
¥ v
< >

The way to load a file into the simulator manually is described in the chapter Quick Start. All general
commands are described in the “PowerView Command Reference” (ide_ref.pdf) and “General
Commands Reference”.

©1989-2024 Lauterbach Simulator for NIOS-Il | 7

Quick Start

This section describes how:
. to prepare the simulator for debugging

. to load your own application

Starting up the simulator is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.
193 g
RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt.

The RESet command is only necessary if you do not start directly after booting the TRACE32
development tool.

2. Specify the CPU.

SYStem.CPU NIOSIT

3. Enter the debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

4. Load the program.

Data.LOAD.E1f taskc.elf ; load program and symbol information

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

©1989-2024 Lauterbach Simulator for NIOS-Il | 8

Complete start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

182 ¢

WinCLEAR

SYStem.CPU NIOSIT
SYStem.Up

Data.LOAD.E1f taskc.elf
Register.Set pc main
List.Mix

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$Spotlight flags ast

7

Select the ICD device prompt

Clear all windows

Select CPU type

Reset the target and enter debug mode
Load the application

Set the PC to function main

Open source code window =)
Open register window *)

Open the stack frame with
local variables *)

Open watch window for wvariables *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

Simulator for NIOS-Il | 9

General Restrictions

Number of symbols

In demo version, the number of symbols is limited to 5000.

Address range

All peripherals are memory mapped. The hole address range (32
bit) is supported. The simulator operates as if there is a physical
memory of 4 GByte.

Interrupt requests
while the program
execution is stopped

Exceptions and interrupts are not handled while the program
execution is stopped. (Only relevant if interrupt-triggering
peripherals are simulated.)

Pending interrupts
during single-step

(Only relevant if interrupt-triggering peripherals are simulated.)

The commands SETUP.IMASKASM and SETUP.IMASKHLL
disable interrupts while single-stepping. This prevent to always end
up in a interrupt service routine while single stepping the code.

©1989-2024 Lauterbach

Simulator for NIOS-Il |

10

CPU specific SYStem Commands

SYStem.CPU Select CPU type

At the moment the only CPU type which can be selected is “Nios II”.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach Simulator for NIOS-Il | 11

SYStem.Mode Establish the communication with the simulator
Format: SYStem.Mode <mode>
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
Up
Down The CPU is in reset. Debug mode is not active. Default state and state after fatal
errors (default).
Up The CPU is not in reset but halted. Debug mode is active. In this mode the CPU
can be started and stopped. This is the most typical way to activate debugging.
SYStem.CONFIG Configure debugger according to target topology
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The SYStem.CONFIG commands have no effect in Simulator. These commands describe the physical
configuration at the JTAG port and the trace port of a multi-core hardware target. Since the simulator
normally just simulates the instruction set, these commands will be ignored. Refer to the relevant Processor
Architecture Manual in case you want to know the effect of these commands on a debugger.

©1989-2024 Lauterbach

Simulator for NIOS-II | 12

SYStem.Option.DCFLUSH Flush data cache before Step or Go

Format: SYStem.Option.DCFLUSH [ON | OFF]

Flush the data cache before starting the target program (Step or Go). Only relevant if cache is simulated
(necessary for cache coherence).

SYStem.Option.Endianness Select endianness of core

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Default: AUTO.

This option tells the simulator if you use a Little- or Big-Endian Nios Il core. If you select AUTO, the
simulator will use Little Endian byte order.

SYStem.Option.EXCADDR Define exception address

Format: SYStem.Option.EXCADDR <address>

The Nios Il core uses a fixed exception address, which is defined in the SOPC Builder. To mimic the
behavior of a real Nios Il core, you can use this option to define the exception address, which is used by the

simulator.
SYStem.Option.FEXCADDR Define fast TLB miss exception address
Format: SYStem.Option.FEXCADDR <address>

A Nios Il core with MMU will jump to the fast TLB miss exception address if a virtual to physical memory
address translation fails because of a missing TLB entry. To mimic the behavior of a real Nios Il core, you
can use this option to define the fast TLB miss exception address.

©1989-2024 Lauterbach Simulator for NIOS-Il | 13

SYStem.Option.FPH Enable the simulation of floating point instructions

Format: SYStem.Option.FPH [ON | OFF]
Default: OFF.
OFF Floating point instructions are not simulated.

The List window does not display the mnemonics of floating point
instructions.

ON Floating point instructions are simulated.
The List window displays the mnemonics of floating point instructions.

SYStem.Option.ICFLUSH Invalidate instruction cache before go/step

Format: SYStem.Option.ICFLUSH [ON | OFF]

Invalidates the instruction cache before starting the target program (Step or Go). This is required when the

CACHEs are enabled and software breakpoints are set to a cached location. Only relevant if cache is
simulated.

SYStem.Option.IMASKASM Mask interrupts during assembler step

Format: SYStem.Option.IMASKASM [ON | OFF]

If enabled, the interrupt mask bits of the cpu will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. Only relevant if interrupt-triggering peripherals are simulated.

©1989-2024 Lauterbach Simulator for NIOS-Il | 14

SYStem.Option.IMASKHLL Mask interrupts during HLL step

Format: SYStem.Option.IMASKHLL [ON | OFF]

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step. Only relevant if interrupt-triggering peripherals are simulated.

NOTE: By changing the status register through target software, this option can affect
the flow of the target program. Accesses to the interrupt-mask bits will see the
wrong values.

SYStem.Option.IVRCode Define code for interrupt vector instruction

Format: SYStem.Option.IVRCode <code>

Altera offers a custom instruction which is called Interrupt Vector Instruction. With this instruction you can
speed up your exception handling. To mimic the behavior of a real Nios Il core, the simulator is able to
simulate this special Interrupt Vector Instruction. Because this instruction doesn’'t have a fixed opcode, you
have to specify the “N value” of the custom instruction (see the description of the Interrupt Vector Instruction
in the Nios Il documentation from Altera).

If you leave out the “N value”, the simulator will assume that you don’t have an Interrupt Vector Instruction.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach Simulator for NIOS-Il | 15

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

©1989-2024 Lauterbach Simulator for NIOS-Il | 16

SYStem.Option.MULDIV Define if mul and div instructions are supported

Format:

<mode>:

SYStem.Option.MULDIV <mode>

NONE
MUL
DIV
MULDIV

The Nios Il core can either support multiply and divide assembler instructions or it can trigger an exception if
such an instruction is executed. The behavior depends on the settings you choose, when you generate the
core in the SOPC Builder. To mimic the behavior of a real Nios Il core, you can use this option to define if the
multiply and divide assembler instructions are implemented or not.

NONE No multiply or divide assembler instruction is implemented. Trap to exception
vector if such an instruction is executed

MUL Multiply assembler instructions work as expected. Divide assembler instructions
will trap to the exception vector.

DIV Divide assembler instructions work as expected. Multiply assembler instructions
will trap to the exception vector.

MULDIV Multiply and Divide instructions work as expected.

SYStem.Option.SIMMMU Define properties of simulated MMU
Format: SYStem.Option.SIMMMU <number>

The Nios Il core offers the option to implement an MMU. The simulator supports MMU simulation. To enable
MMU simulation you have to specify the properties of the MMU with this option.

<number>

Bit 3..0 : Logarithm of base two of the total number of TLB entries. This means:
0 => 1 entry, 1 => 2 entries, 2 => 4 entries, 3 => 8 entries, ...

Bit 7..4 : Logarithm of base two of the number of TLB ways. This means:
0 =>1 way, 1 => 2 ways, 2 => 4 ways, 3 => 8 ways, 4 => 16 ways, ...

Bit 11..8 : Number of bits used for the process ID (PID).

©1989-2024 Lauterbach

Simulator for NIOS-II | 17

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach Simulator for NIOS-Il | 18

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Simulator for NIOS-II | 19

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables for MMU.DUMP

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.
DTLB Displays the contents of the Data Translation Lookaside Buffer.
TLB Displays the contents of the Translation Lookaside Buffer.

©1989-2024 Lauterbach Simulator for NIOS-Il | 20

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.
©1989-2024 Lauterbach Simulator for NIOS-II | 21

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Simulator for NIOS-Il | 22

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

©1989-2024 Lauterbach

Simulator for NIOS-II | 23

Memory Classes

Overview
Access Class Description
D Data
P Program
NC No Cache

All storage classes operate on the same simulated memory. In real environment, the P and NC class
operate directly on memory, while D accesses via cache.

©1989-2024 Lauterbach

Simulator for NIOS-II

24

Peripheral Simulation

o Not supported.

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach Simulator for NIOS-Il | 25

https://support.lauterbach.com/kb

	Simulator for NIOS-II
	History
	Introduction
	TRACE32 Simulator License
	Start the Prepared Demo
	Quick Start
	General Restrictions
	CPU specific SYStem Commands
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the simulator
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.Option.DCFLUSH Flush data cache before Step or Go
	SYStem.Option.Endianness Select endianness of core
	SYStem.Option.EXCADDR Define exception address
	SYStem.Option.FEXCADDR Define fast TLB miss exception address
	SYStem.Option.FPH Enable the simulation of floating point instructions
	SYStem.Option.ICFLUSH Invalidate instruction cache before go/step
	SYStem.Option.IMASKASM Mask interrupts during assembler step
	SYStem.Option.IMASKHLL Mask interrupts during HLL step
	SYStem.Option.IVRCode Define code for interrupt vector instruction
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MULDIV Define if mul and div instructions are supported
	SYStem.Option.SIMMMU Define properties of simulated MMU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	Memory Classes
	Overview

	Peripheral Simulation
	FAQ

