
MANUAL

Simulator for NIOS-II

Simulator for NIOS-II

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 TRACE32 Instruction Set Simulators .. 

 Simulator for NIOS-II .. 1

 History .. 4

 Introduction ... 4

 TRACE32 Simulator License .. 5

 Start the Prepared Demo .. 6

 Quick Start ... 8

 General Restrictions ... 10

 CPU specific SYStem Commands ... 11

 SYStem.CPU Select CPU type 11

 SYStem.LOCK Lock and tristate the debug port 11

 SYStem.MemAccess Select run-time memory access method 11

 SYStem.Mode Establish the communication with the simulator 12

 SYStem.CONFIG Configure debugger according to target topology 12

 SYStem.Option.DCFLUSH Flush data cache before Step or Go 13

 SYStem.Option.Endianness Select endianness of core 13

 SYStem.Option.EXCADDR Define exception address 13

 SYStem.Option.FEXCADDR Define fast TLB miss exception address 13

 SYStem.Option.FPH Enable the simulation of floating point instructions 14

 SYStem.Option.ICFLUSH Invalidate instruction cache before go/step 14

 SYStem.Option.IMASKASM Mask interrupts during assembler step 14

 SYStem.Option.IMASKHLL Mask interrupts during HLL step 15

 SYStem.Option.IVRCode Define code for interrupt vector instruction 15

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 15

 SYStem.Option.MULDIV Define if mul and div instructions are supported 17

 SYStem.Option.SIMMMU Define properties of simulated MMU 17

 TrOnchip Commands .. 18

 TrOnchip.state Display on-chip trigger window 18

 TrOnchip.RESet Set on-chip trigger to default state 18

 CPU specific MMU Commands .. 19

 MMU.DUMP Page wise display of MMU translation table 19
Simulator for NIOS-II | 2©1989-2024 Lauterbach

 MMU.List Compact display of MMU translation table 21

 MMU.SCAN Load MMU table from CPU 22

 Memory Classes .. 24

 Overview 24

 Peripheral Simulation ... 25

 FAQ ... 25
Simulator for NIOS-II | 3©1989-2024 Lauterbach

Simulator for NIOS-II

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

Introduction

The Simulator is implemented as an Instruction Set Simulator. The full address range (32-Bit) is supported,
all peripherals are memory mapped. Peripherals themselves are not simulated. The simulated core is the
so-called “economy-core” (without cache).

The machine code is executed plainly, not cycle accurate. The following features are available:

• Disassembler

• File load

• Single Step

• Breakpoints

• Watch registers, variables and structures

• HLL debugging in C and C++

• Sampling of the program and data flow to the trace

• Runtime- and performance analysis

• CTS

The following file formats are supported:

• ELF/DWARF
Simulator for NIOS-II | 4©1989-2024 Lauterbach

TRACE32 Simulator License

[build 68859 - DVD 02/2016]

The extensive use of the TRACE32 Instruction Set Simulator requires a TRACE32 Simulator License.

For more information, see www.lauterbach.com/sim_license.html.
Simulator for NIOS-II | 5©1989-2024 Lauterbach

www.lauterbach.com/sim_license.html

Start the Prepared Demo

At startup of the TRACE32 NIOS Simulator, a demo file is loaded and started automatically. The program
execution is stopped at a breakpoint. The grey cursor line shows the current point of program execution. If
the demo does not load and start, please execute the PRACTICE script demo.cmm.

Simulator for NIOS-II | 6©1989-2024 Lauterbach

Display the Registers

F

Display Source Code

The way to load a file into the simulator manually is described in the chapter Quick Start. All general
commands are described in the “PowerView Command Reference” (ide_ref.pdf) and “General
Commands Reference”.

Register.view ; displays the cpu registers

Data.List ; displays current source code line

Mode.Hll ; select HLL mode for display
Simulator for NIOS-II | 7©1989-2024 Lauterbach

Quick Start

This section describes how:

• to prepare the simulator for debugging

• to load your own application

Starting up the simulator is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt.

The RESet command is only necessary if you do not start directly after booting the TRACE32
development tool.

2. Specify the CPU.

3. Enter the debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

4. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the reference
guide.

b::

RESet

SYStem.CPU NIOSII

SYStem.Up

Data.LOAD.Elf taskc.elf ; load program and symbol information
Simulator for NIOS-II | 8©1989-2024 Lauterbach

Complete start-up example

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

B:: ; Select the ICD device prompt

WinCLEAR ; Clear all windows

SYStem.CPU NIOSII ; Select CPU type

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.Elf taskc.elf ; Load the application

Register.Set pc main ; Set the PC to function main

List.Mix ; Open source code window *)

Register.view /SpotLight ; Open register window *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)
Simulator for NIOS-II | 9©1989-2024 Lauterbach

General Restrictions

Number of symbols In demo version, the number of symbols is limited to 5000.

Address range All peripherals are memory mapped. The hole address range (32
bit) is supported. The simulator operates as if there is a physical
memory of 4 GByte.

Interrupt requests
while the program
execution is stopped

Exceptions and interrupts are not handled while the program
execution is stopped. (Only relevant if interrupt-triggering
peripherals are simulated.)

Pending interrupts
during single-step

(Only relevant if interrupt-triggering peripherals are simulated.)

The commands SETUP.IMASKASM and SETUP.IMASKHLL
disable interrupts while single-stepping. This prevent to always end
up in a interrupt service routine while single stepping the code.
Simulator for NIOS-II | 10©1989-2024 Lauterbach

CPU specific SYStem Commands

SYStem.CPU Select CPU type

At the moment the only CPU type which can be selected is “Nios II”.

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool. The command has no effect for the simulator.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
Simulator for NIOS-II | 11©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the simulator

SYStem.CONFIG Configure debugger according to target topology

The SYStem.CONFIG commands have no effect in Simulator. These commands describe the physical
configuration at the JTAG port and the trace port of a multi-core hardware target. Since the simulator
normally just simulates the instruction set, these commands will be ignored. Refer to the relevant Processor
Architecture Manual in case you want to know the effect of these commands on a debugger.

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up

Down The CPU is in reset. Debug mode is not active. Default state and state after fatal
errors (default).

Up The CPU is not in reset but halted. Debug mode is active. In this mode the CPU
can be started and stopped. This is the most typical way to activate debugging.

<parameter>:
(JTAG):

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]
Simulator for NIOS-II | 12©1989-2024 Lauterbach

SYStem.Option.DCFLUSH Flush data cache before Step or Go

Flush the data cache before starting the target program (Step or Go). Only relevant if cache is simulated
(necessary for cache coherence).

SYStem.Option.Endianness Select endianness of core

Default: AUTO.

This option tells the simulator if you use a Little- or Big-Endian Nios II core. If you select AUTO, the
simulator will use Little Endian byte order.

SYStem.Option.EXCADDR Define exception address

The Nios II core uses a fixed exception address, which is defined in the SOPC Builder. To mimic the
behavior of a real Nios II core, you can use this option to define the exception address, which is used by the
simulator.

SYStem.Option.FEXCADDR Define fast TLB miss exception address

A Nios II core with MMU will jump to the fast TLB miss exception address if a virtual to physical memory
address translation fails because of a missing TLB entry. To mimic the behavior of a real Nios II core, you
can use this option to define the fast TLB miss exception address.

Format: SYStem.Option.DCFLUSH [ON | OFF]

Format: SYStem.Option.Endianness [AUTO | Little | Big]

Format: SYStem.Option.EXCADDR <address>

Format: SYStem.Option.FEXCADDR <address>
Simulator for NIOS-II | 13©1989-2024 Lauterbach

SYStem.Option.FPH Enable the simulation of floating point instructions

Default: OFF.

SYStem.Option.ICFLUSH Invalidate instruction cache before go/step

Invalidates the instruction cache before starting the target program (Step or Go). This is required when the
CACHEs are enabled and software breakpoints are set to a cached location. Only relevant if cache is
simulated.

SYStem.Option.IMASKASM Mask interrupts during assembler step

If enabled, the interrupt mask bits of the cpu will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. Only relevant if interrupt-triggering peripherals are simulated.

Format: SYStem.Option.FPH [ON | OFF]

OFF Floating point instructions are not simulated.
The List window does not display the mnemonics of floating point
instructions.

ON Floating point instructions are simulated.
The List window displays the mnemonics of floating point instructions.

Format: SYStem.Option.ICFLUSH [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]
Simulator for NIOS-II | 14©1989-2024 Lauterbach

SYStem.Option.IMASKHLL Mask interrupts during HLL step

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step. Only relevant if interrupt-triggering peripherals are simulated.

SYStem.Option.IVRCode Define code for interrupt vector instruction

Altera offers a custom instruction which is called Interrupt Vector Instruction. With this instruction you can
speed up your exception handling. To mimic the behavior of a real Nios II core, the simulator is able to
simulate this special Interrupt Vector Instruction. Because this instruction doesn’t have a fixed opcode, you
have to specify the “N value” of the custom instruction (see the description of the Interrupt Vector Instruction
in the Nios II documentation from Altera).

If you leave out the “N value”, the simulator will assume that you don’t have an Interrupt Vector Instruction.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

Format: SYStem.Option.IMASKHLL [ON | OFF]

NOTE: By changing the status register through target software, this option can affect
the flow of the target program. Accesses to the interrupt-mask bits will see the
wrong values.

Format: SYStem.Option.IVRCode <code>

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)
Simulator for NIOS-II | 15©1989-2024 Lauterbach

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
Simulator for NIOS-II | 16©1989-2024 Lauterbach

SYStem.Option.MULDIV Define if mul and div instructions are supported

The Nios II core can either support multiply and divide assembler instructions or it can trigger an exception if
such an instruction is executed. The behavior depends on the settings you choose, when you generate the
core in the SOPC Builder. To mimic the behavior of a real Nios II core, you can use this option to define if the
multiply and divide assembler instructions are implemented or not.

SYStem.Option.SIMMMU Define properties of simulated MMU

The Nios II core offers the option to implement an MMU. The simulator supports MMU simulation. To enable
MMU simulation you have to specify the properties of the MMU with this option.

Format: SYStem.Option.MULDIV <mode>

<mode>: NONE
MUL
DIV
MULDIV

NONE No multiply or divide assembler instruction is implemented. Trap to exception
vector if such an instruction is executed

MUL Multiply assembler instructions work as expected. Divide assembler instructions
will trap to the exception vector.

DIV Divide assembler instructions work as expected. Multiply assembler instructions
will trap to the exception vector.

MULDIV Multiply and Divide instructions work as expected.

Format: SYStem.Option.SIMMMU <number>

<number> Bit 3..0 : Logarithm of base two of the total number of TLB entries. This means:
0 => 1 entry, 1 => 2 entries, 2 => 4 entries, 3 => 8 entries, ...

Bit 7..4 : Logarithm of base two of the number of TLB ways. This means:
0 => 1 way, 1 => 2 ways, 2 => 4 ways, 3 => 8 ways, 4 => 16 ways, ...

Bit 11..8 : Number of bits used for the process ID (PID).
Simulator for NIOS-II | 17©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

Format: TrOnchip.state

Format: TrOnchip.RESet
Simulator for NIOS-II | 18©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
Simulator for NIOS-II | 19©1989-2024 Lauterbach

CPU specific Tables for MMU.DUMP

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB Displays the contents of the Translation Lookaside Buffer.
Simulator for NIOS-II | 20©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID: list the translation table

of the specified process
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
Simulator for NIOS-II | 21©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation table

of the specified process
• else, this command loads the table the CPU currently uses for MMU

translation.
Simulator for NIOS-II | 22©1989-2024 Lauterbach

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.
• For information about the first three parameters, see “What to know

about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL [Clear] Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.
Simulator for NIOS-II | 23©1989-2024 Lauterbach

Memory Classes

Overview

All storage classes operate on the same simulated memory. In real environment, the P and NC class
operate directly on memory, while D accesses via cache.

Access Class Description

D Data

P Program

NC No Cache
Simulator for NIOS-II | 24©1989-2024 Lauterbach

Peripheral Simulation

• Not supported.

FAQ

Please refer to https://support.lauterbach.com/kb.
Simulator for NIOS-II | 25©1989-2024 Lauterbach

https://support.lauterbach.com/kb

	Simulator for NIOS-II
	History
	Introduction
	TRACE32 Simulator License
	Start the Prepared Demo
	Quick Start
	General Restrictions
	CPU specific SYStem Commands
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the simulator
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.Option.DCFLUSH Flush data cache before Step or Go
	SYStem.Option.Endianness Select endianness of core
	SYStem.Option.EXCADDR Define exception address
	SYStem.Option.FEXCADDR Define fast TLB miss exception address
	SYStem.Option.FPH Enable the simulation of floating point instructions
	SYStem.Option.ICFLUSH Invalidate instruction cache before go/step
	SYStem.Option.IMASKASM Mask interrupts during assembler step
	SYStem.Option.IMASKHLL Mask interrupts during HLL step
	SYStem.Option.IVRCode Define code for interrupt vector instruction
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MULDIV Define if mul and div instructions are supported
	SYStem.Option.SIMMMU Define properties of simulated MMU

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	Memory Classes
	Overview

	Peripheral Simulation
	FAQ

