
MANUAL                                                       

Serial FLASH Programming 
User’s Guide



Serial FLASH Programming User’s Guide

TRACE32 Online Help  

TRACE32 Directory  

TRACE32 Index  

TRACE32 Documents  ...................................................................................................................... 

   FLASH Programming  .................................................................................................................... 

      Serial FLASH Programming User's Guide  ............................................................................... 1

         Introduction  ............................................................................................................................. 4

            How This Manual is Organized 4

            Related Documents 4

            Contacting Support 5

         List of Abbreviations  ............................................................................................................... 7

         Background Knowledge  ......................................................................................................... 8

            What is a Serial Flash Device? 8

            About SPI Interface Controllers in Serial Flash Memories 8

            About Blocks and Pages 9

            File Name Convention for Serial Flash Drivers 10

         Standard Approach  ................................................................................................................. 11

            Identifying and Running Scripts for Serial Flash Programming 11

            If There Is No Script 13

         Scripts for SPI Controllers  ..................................................................................................... 14

            Establishing Communication between Debugger and Target CPU 16

            Configuring the SPI Controller 17

            Resetting Default Values 18

            Informing TRACE32 about the Serial Flash Register Addresses (SPI) 18

            Informing TRACE32 about the Serial Flash Programming Algorithm 19

               Memory-Mapped serial Flash 19

               Non-Memory-Mapped serial Flash 19

               Identifying the Correct Driver Binary File for a Serial Flash Device 20

               Finding the <serialflash_code> of Your Serial Flash Device 21

               Example for SPI Controllers 23

            FLASHFILE Declaration Examples 24

               Declaration Example for STM32F103 (Cortex-M3) 24

               Declaration Example for AT91SAM9XE (ARM9) 25

            Checking the Identification from the Serial Flash Device 26

            Erasing the Serial Flash Device 27

            Programming the Serial Flash Device 28
Serial FLASH Programming User’s Guide     |    2©1989-2024   Lauterbach                                                        



               Copying the Serial Flash Memory 29

               Modifying the Serial Flash Memory 31

            Other Useful Commands 32

               Reading the Serial Flash 32

               Saving the Serial Flash Device 33

            Full Examples 34

               Example 1 34

               Example 2 36

         FLASH Programming via Boundary Scan  ............................................................................. 37

            Example 1 for the SPI Protocol 37

            Example 2 for the I2C Protocol 39
Serial FLASH Programming User’s Guide     |    3©1989-2024   Lauterbach                                                        



Serial FLASH Programming User’s Guide

Version 06-Jun-2024

Introduction

This manual describes the basic concept of serial Flash programming.  

How This Manual is Organized

• Background Information: Provides information about important terms in serial Flash 
programming, such as SPI interface controller, block, and page.

• Standard Approach: Describes the fastest way to get started with SPI serial Flash programming. 
All you need to do is to identify and run the correct script.

Demo scripts for SPI serial Flash programming are available in the folder:

- ~~/demo/<architecture>/flash/*.cmm

- e.g.  at91sam9xe-spi.cmm, stm32f10x-spi.cmm, str910-spi.cmm, …

• New Scripts for SPI Controllers: Describes how you can create a script if there is no demo script 
for the SPI controller you are using.

Related Documents

A complete description of non memory mapped serial Flash programming commands can be found in 
chapter “FLASHFILE” in “General Commands Reference Guide F” (general_ref_f.pdf).

A complete description of memory mapped serial Flash programming commands can be found in chapter 
“FLASH” in “General Commands Reference Guide F” (general_ref_f.pdf).

The manual “List of Supported FLASH Devices” (flashlist.pdf) provides the following information:

• A list of the supported serial Flash memory devices.

• A list of the supported CPU families for the serial Flash protocol.

The Lauterbach home page provides an up-to-date list of 

• Supported Flash devices under:
https://www.lauterbach.com/ylist.html

• Supported serial Flash controllers under:
https://www.lauterbach.com/ylistnand.html
Serial FLASH Programming User’s Guide     |    4©1989-2024   Lauterbach                                                        

https://www.lauterbach.com/ylist.html
https://www.lauterbach.com/ylistnand.html


Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

• To contact your local TRACE32 support team directly.

• To register and submit a support ticket to the TRACE32 global center.

• To log in and manage your support tickets.

• To benefit from the TRACE32 knowledgebase (FAQs, technical articles, tutorial videos) and our 
tips & tricks around debugging.

Or send an email in the traditional way to support@lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration. 

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.

3. Click Save to Clipboard, and then paste the system information into your e-mail.

NOTE: Please help to speed up processing of your support request. By filling out the 
system information form completely and with correct data, you minimize the 
number of additional questions and clarification request e-mails we need to 
resolve your problem.
Serial FLASH Programming User’s Guide     |    5©1989-2024   Lauterbach                                                        

https://support.lauterbach.com


NOTE: In case of missing script files (*.cmm), please proceed as requested in “If There 
is No Script” on page 12.
Serial FLASH Programming User’s Guide     |    6©1989-2024   Lauterbach                                                        



List of Abbreviations

The abbreviations vary from chip manufacturer to chip manufacturer.

MOSI or SI Master output, slave input

MISO or SO Master input, slave output

SCLK or SCK Serial clock 

SS Slave select

SDI Serial data input

SDO Serial data output

CS or CE CS = Chip selection
CE = Chip enable

SPI Serial peripheral interface

eMMC Embedded multimedia card

MMC Multimedia card

GPIO General purpose input/output

SSI Synchronous serial interface
Serial FLASH Programming User’s Guide     |    7©1989-2024   Lauterbach                                                        



Background Knowledge

This chapter of the manual is aimed at users who are new to serial Flash programming; it does not address 
experts with many years of expertise in this area. This chapter gives you a brief overview of important terms 
in serial Flash programming, such as serial flash device, sector, page, and SPI interface controller.

What is a Serial Flash Device?

A serial Flash device is a non-volatile memory that can be electrically erased and reprogrammed. It is used 
for storing executable code in devices such as DVD players, DSL modems, routers, hard-disk drives, and 
printers. After power-up, the executable code is downloaded from the serial Flash to RAM, and then 
executed by the processor. The code in the serial Flash is not changed by the download process and is 
write-protected.

Reasons for the widespread use of serial Flash devices include:

• Cost effective and space-saving solution thanks to a reduced number of pins

• Low power consumption

• Life cycle of about 20 years

About SPI Interface Controllers in Serial Flash Memories

Serial Flash memories consist of an interface controller (for example, a SPI interface controller) and a Flash 
memory. Access to the Flash memory is performed by the interface controller on the SPI slave side.

Processor/
Chip

GPIO

Figure: Processor/Chip and Serial Flash Memory with a SPI Interface 

SPI 
Core

Serial Flash

MOSI
MISO
SCLK

SPI Master Controller

Controller
Interface

SDO
SDI

SCLK

SPI 

Controller
Interface

SS

SS

SPI Slave

Flash
Memory

Memory
Serial FLASH Programming User’s Guide     |    8©1989-2024   Lauterbach                                                        



Serial Flash memories are controlled by many kinds of serial interface protocols (SPI, SSP, SSI, SMI, etc.). 
The protocol of the SPI interface (serial peripheral interface) specifies four signals:

• Slave select (SS)

• Master output, slave input (MOSI)

• Master input, slave output (MISO)

• Serial clock (SCLK)

Most chip manufacturers have proprietary SPI interface controllers (short: SPI controllers) and thus require 
special driver binary files for programming serial Flash memories. These driver binary files are programs 
executed by a core in the target and interact with the master SPI controller for controlling the SPI slave 
controller in order to program the serial Flash memory.

Once the required driver binary file was loaded to the target, the TRACE32’s command group FLASHFILE 
can be used to program and erase the serial Flash memory. 

Lauterbach provides driver binary files for a large number of SPI controllers. See further down for 
instructions how to identify the correct driver for your application.

About Blocks and Pages

The Flash memory of a serial Flash device consists of sectors, and each sector is subdivided into pages; 
see example diagram below.

Sector A sector is the minimum size unit for erasing. A sector can have a size of 32, 64, or 
256 KBytes. 
The sector sizes are part of the file names of the algorithms required for serial Flash 
programming: spi32*.bin, spi64*.bin, spi256*.bin.
For more information, see “File Name Convention for Serial Flash Drivers” on 
page 10.

Page A page is the minimum size unit for writing and has a size of 256 bytes.

Flash Memory

...Sector 0

Page 1

Page n...

Sector n
Serial FLASH Programming User’s Guide     |    9©1989-2024   Lauterbach                                                        



File Name Convention for Serial Flash Drivers

The serial Flash drivers for SPI controllers, i.e. the algorithm files, use the following file name convention:

where nn is a two-digit number that indicates the size of one sector in KByte 

nn      Sector         Hex Size 

32      32KB       0x0--0x7FFF                   
64      64KB       0x0--0xFFFF                  

Serial Flash driver name: SPInn_CPU.bin

where CPU is the CPU family name. 

(the sector erase size in KByte):
Serial FLASH Programming User’s Guide     |    10©1989-2024   Lauterbach                                                        



Standard Approach

The chapter “Standard Approach” provides a compact description of the steps required to program serial 
Flash memories. This description is intentionally limited to the standard use case. 

Overview of the Standard Approach:

• Identify and run the required script for serial Flash programming.

• What to do if there is no script for SPI Flash programming.

The following step-by-step procedures describe the standard approach in detail.

For a detailed description of the serial Flash programming concepts, see “Scripts for SPI Controllers” on 
page 14.

Identifying and Running Scripts for Serial Flash Programming

Lauterbach provides scripts (*.cmm) for serial Flash programming which can be found below the TRACE32 
installation directory. The scripts support serial Flash memories that have a serial Flash controller with a SPI 
interface (short: SPI controller).

Path and file name convention of scripts to be used with SPI controllers:

~~/demo/<architecture>/flash/<cpu_name>-spi.cmm, where ~~ is expanded to the TRACE32 installation 
directory.

To identify and run the required script:

1. Make a note of the <cpu_name> printed on the CPU; for example, bcm5357

2. Put the <cpu_name> and spi together to form the script name: bcm5357-spi.cmm 

The script file resides in this folder: ~~/demo/mips/flash/bcm5357-spi.cmm

Note: ~~ is replaced by the TRACE32 installation directory, which is c:/T32 by default.

If the folder does not contain the script you are looking for, see “If There Is No Script” on page 12.

3. Run the script in TRACE32 by doing one of the following:

- Choose File > Run Script <cmm_script_name> 

- Or in the TRACE32 command line, type: DO <cmm_script_name>   

NOTE: Each PRACTICE script (*.cmm) includes a reference to the required serial 
Flash programming algorithm (*.bin). 
You do not need to program or select the algorithm.
Serial FLASH Programming User’s Guide     |    11©1989-2024   Lauterbach                                                        



Example

;                <code_range>    <data_range>   <algorithm_file>
FLASHFILE.TARGET 0x80020000++0x1FFF 0x80022000++0x3FFF 
                           ~~/demo/mips/flash/byte_le/spi64_bcm5357.bin
Serial FLASH Programming User’s Guide     |    12©1989-2024   Lauterbach                                                        



If There Is No Script

If there is no script for your device in this directory (~~/demo/<architecture>/flash/), then please send a 
request to support@lauterbach.com using the e-mail template below.

E-Mail Template:

Be sure to include detailed system information about your TRACE32 configuration. For information about 
how to create a system information report, see “Contacting Support”.

Normally we can provide support for a new device in two weeks.  

If our support cannot provide you with a PRACTICE script, you will have to create your own PRACTICE 
script (*.cmm).

For more information about how to create your own script (*.cmm), see “Scripts for SPI Controllers” on 
page 14. 

Chip name: ______________________

Name of serial Flash device: ________

Provide the CPU datasheet for us: ___________

Lend the target board to us by sending it to the address given in “Contacting Support”: ________

<system_information>
Serial FLASH Programming User’s Guide     |    13©1989-2024   Lauterbach                                                        



Scripts for SPI Controllers

This chapter describes how to create new scripts for serial Flash memories that are equipped with SPI 
controllers.

The steps and the framework (see below) provide an overview of the process. They are described in detail in 
the following sections.

The following steps are necessary to create a new script:

1. “Establishing Communication between Debugger and Target CPU”, page 16

2. “Configuring the SPI Controller”, page 17

3. “Resetting Default Values”, page 18

4. “Informing TRACE32 about the Serial Flash Register Addresses (SPI)”, page 18

5. “Informing TRACE32 about the Serial Flash Programming Algorithm”, page 19

6. “Checking the Identification from the Serial Flash Device”, page 26

7. “Erasing the Serial Flash Device”, page 27

8. “Programming the Serial Flash Device”, page 28
Serial FLASH Programming User’s Guide     |    14©1989-2024   Lauterbach                                                        



The following framework can be used as base for serial Flash programming:

An ellipsis (…) in the framework indicates that command parameters have been omitted here for space 
economy.

; Establish the communication 
; between the target CPU and the
; TRACE32 debugger.

; Configure the SPI controller.

FLASHFILE.RESet ; Reset the serial Flash
; environment in TRACE32 to its
; default values.

FLASHFILE.CONFIG … ; Inform TRACE32 about 
; - the serial Flash register 
;   addresses and
; - the CS address of the serial
;   Flash

FLASHFILE.TARGET … ; Specify the serial Flash 
; programming algorithm and where
; it runs in target RAM.

FLASHFILE.Erase … ; Erase the serial Flash.

FLASHFILE.LOAD <main_file> … ; Program the file to serial Flash. 

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET 
requires expert knowledge.
Serial FLASH Programming User’s Guide     |    15©1989-2024   Lauterbach                                                        



Establishing Communication between Debugger and Target CPU

Serial Flash programming with TRACE32 requires that the communication between the debugger and the 
target CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu> Specify your target CPU.

SYStem.Up Establish the communication between the 
debugger and the target CPU.

SYStem.CPU STM32F103 ; Select STM32F103 as the target CPU.

SYStem.Up ; Establish the communication between the
; debugger and the target CPU.
Serial FLASH Programming User’s Guide     |    16©1989-2024   Lauterbach                                                        



Configuring the SPI Controller

Programming a serial Flash device requires an appropriate initialization of the serial Flash interface. The 
following settings might be necessary:

• Enable the clock (SCLK).

• Configure the registers of the serial Flash interface, such as clock, master/slave, data width, etc.

• Configure the serial Flash pins if they are muxed with other functions of the CPU.

Example: In the CPU STM32F103, all the SPI pins are muxed with the GPIOs.

Using the commands below, the pins of the serial Flash interface (SPI) can be configured for the CPU 
STM32F103. The resulting configuration allows the CPU to switch from the GPIO A4-A7 to SS,SCLK, 
MISO, and MOSI.

  

PER.Set SD:0x40021014 %Long 0x114
PER.Set SD:0x40021018 %Long 0x100C

; Enable the Clock for the 
; SPI & PIO.

PER.S SD:0x40010800 %Long 0xbbb34444
PER.S SD:0x40010810 %Long 0xFFFFFFF

; Switch the PIO.A group to
; the SPI function.

PER.S SD:0x40013000 %WORD 0x34F 
PER.S SD:0x40013010 %WORD 0x7 

; Configure the SPI
; controller.

Serial Flash
Memory

STM32F103
GPIO.A4 / SS 

GPIO.A5 / SCLK

GPIO.A6 / MISO 

GPIO.A7 / MOSI 

SS 

SCLK

SDI 

SDO 

CPU
Serial FLASH Programming User’s Guide     |    17©1989-2024   Lauterbach                                                        



Resetting Default Values

The following command is used to reset the serial Flash environment in TRACE32 to its default values.

Informing TRACE32 about the Serial Flash Register Addresses (SPI)

The following command is used to inform TRACE32 about the various register addresses (Flash 
declaration).       

For information about the register addresses and the CS bit, refer to the manufacturer’s microcontroller 
manual and the schematics.

Example 1 

Example 2 

FLASHFILE.RESet Reset the serial Flash environment 
in TRACE32 to its default values.

Chip selection is controlled by one GPIO pin.
FLASHFILE.CONFIG <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>

Chip selection is controlled by the SPI controller.
FLASHFILE.CONFIG <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg>

Parameters for the FLASHFILE.CONFIG command 

<SPI Tx reg> The transmit data register

<SPI Rx reg> The receive data register

<CS GPIO reg> The chip selection GPIO register which is connected to the Flash 
chip selection

<CS bit> The chip selection bit in the GPIO CS register

<SPI ChipEnable reg> The chip enable register of the serial flash

; For the serial Flash CS connected PIO A.4 (group A, port number 4)
; PIO group A register 0x4001080C
;  <SPI Tx reg>  <SPI Rx reg>   <CS GPIO reg>   <CS bit>
FLASHFILE.CONFIG 0x4001300C    0x4001300C     0x4001080C      0x4

; The AT91SAM9XE’s CS is controlled by the SPI register 0xFFFC8000, not
; the specified GPIO ports.
;  <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg> 
FLASHFILE.CONFIG 0xFFFC800C    0xFFFC8008      0xFFFC8000
Serial FLASH Programming User’s Guide     |    18©1989-2024   Lauterbach                                                        



Informing TRACE32 about the Serial Flash Programming Algorithm

Memory-Mapped serial Flash

The FLASH programming is defined using the comand FLASH.TARGET.

The name of the FLASH algorithm binary file to be used depends on the byte addressing:

• 4 Byte address; snor_xxxxxx.bin (generally the FLASH size is greater than 16 MBytes).

• 3 Byte address; snor3b_xxxxxx.bin (the FLASH size is up to 16 MBytes).

Example: 

Non-Memory-Mapped serial Flash

The FLASH programming algorithm is defined using the command FLASHFILE.TARGET. The name of the 
FLASH algorithm binary file is spi_xxxxx.bin.

Required size for the code is size_of(<file>) + 32 byte.

For detailed information about how to determine the <file> parameter, see “Identifying the Correct Driver 
Binary File for a Serial Flash Device” on page 20.

FLASH.TARGET 0x900000 0x902000 0x1000 \ 
~~/demo/arm/flash/byte/snor_imx7.bin
Serial FLASH Programming User’s Guide     |    19©1989-2024   Lauterbach                                                        



Identifying the Correct Driver Binary File for a Serial Flash Device

There are two ways to find the correct *.bin file:

• You can identify the *.bin file via our website, as described in this section.

• Alternatively, run a PRACTICE script (*.cmm), as described in “Finding the <serialflash_code> 
of Your Serial Flash Device”, page 21.

To identify the correct *.bin file:

1. For information about supported Flash devices, access the Lauterbach website.

2. Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash 
Controller (https://www.lauterbach.com/ylistnand.html).

3. Open Supported Flash Devices in a separate window or tab
(https://www.lauterbach.com/ylist.html).

4. On the Supported Flash Devices page, select the required company from the drop-down list.

5. Locate the desired Flash device.

You need the name of the Flash device to be able to identify the correct driver binary file.

6. Identify the correct *.bin file based on the name of the Flash device. The following example 
illustrate how to do this.

- The example below illustrates how to apply the file name convention in practice.

- For information about the file name convention for driver binary files, see “File Name 
Convention for Serial Flash Drivers” on page 10.
Serial FLASH Programming User’s Guide     |    20©1989-2024   Lauterbach                                                        

https://www.lauterbach.com/
https://www.lauterbach.com/ylistnand.html
https://www.lauterbach.com/ylist.html


Finding the <serialflash_code> of Your Serial Flash Device

The following step-by-step procedure helps you find the <serialflash_code> of your serial Flash device. 
Based on the <serialflash_code>, you can then identify the correct *.bin file. 

To find the <serialflash_code>:

1. Run the following PRACTICE script file (*.cmm) from the TRACE32 demo folder: 

If this demo script is missing, you can download it from www.lauterbach.com/scripts.html.

The Find SPI flash code dialog opens.

2. Under spi flash parameters, make your settings. 

- You can find the required information in the serial Flash documentation of the manufacturer.

- For an example of where to search for the information, see figure and table below:

CD.DO ~~/demo/etc/flash/find_spidef.cmm

;The path prefix ~~ expands to the system directory of TRACE32,
;by default C:\t32.

Description One-Byte
Instruction
Code (BIN)

One-Byte
Instruction
Code (HEX)

Address
Bytes

Dummy
Clock
Cycle

Data
Bytes

Instruction

READ Read Data Bytes 0000 0011 03h 0 1 to 3/4

Read Flag Status Register 1 to 00111 0000 70h 0RFSR

PP Page Program 0000 0010 02h 3/4 0 1 to 256

...

...

...

In the serial Flash documentation of 
the manufacturer, search for terms 
like:
- erase capability
- sector
- granularity
in order to find the correct value.

A

A

B

B

C

C

Serial FLASH Programming User’s Guide     |    21©1989-2024   Lauterbach                                                        

www.lauterbach.com/scripts.html


3. Click Find. 

- The code box displays the <serialflash_code> of your serial Flash device.

- If the code box displays unknown, then proceed as described in “If There is No Script”.

4. Make a note of the displayed <serialflash_code>.

5. Click End to close the dialog.

6. Identify the correct *.bin file based on the <serialflash_code>. The following example illustrates how to 
do this.

- “Example for SPI Controllers”, page 23

- For information about the file name convention for driver binary files, see “File Name 
Convention for Serial Flash Drivers” on page 10.
Serial FLASH Programming User’s Guide     |    22©1989-2024   Lauterbach                                                        



Example for SPI Controllers

Target: 

• ARM-based STM32F10X CPU with the SPI controller stm 

• Serial Flash device M25P64 

Taken together, the Code column and the Controller column make up the file name of the serial Flash driver 
binary file: spi64_stm.bin. The number 64 indicates the size of one sector in KByte (the sector erase 
size in KByte).

The binary file resides in this folder: ~~/demo/arm/flash/byte 

Note: ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

This results in the following command line:

; Specify the serial Flash programming algorithm and where it runs in 
; the target RAM. <code_range> <data_range> <file>
FLASHFILE.TARGET 0x20000000++0x1FFF 0x20002000++0x1FFF 

~~/demo/arm/flash/byte/spi64_stm.bin
Serial FLASH Programming User’s Guide     |    23©1989-2024   Lauterbach                                                        



FLASHFILE Declaration Examples

Declaration Example for STM32F103 (Cortex-M3)

STM32F103 (ARM Cortex-M3) from ST Microelectronics, M25P64 (64Mbit)

• SPI Tx register/SPI Rx register: 0x4001300C

• Sector size: 64Kbytes (0x0--0xFFFF)

• Driver file: ~~/demo/arm/flash/byte/spi64_stm.bin

Note: ~~ is expanded to the TRACE32 installation directory, which is c:/T32 by default.

…

; Reset the FLASHFILE declaration within TRACE32.
FLASHFILE.RESet

; For the serial Flash CS connected PIO A.4 (Group A, port Number4)
; PIO group A register 0x4001080C
; <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x4001300C    0x4001300C    0x4001080C     0x4

; Specify the serial Flash programming algorithm and where it runs on
; the target RAM.
FLASHFILE.TARGET 0x20000000++0x1FFF 0x20002000++0x1FFF 

~~/demo/arm/flash/byte/spi64_stm.bin

…

Serial FLASH Programming User’s Guide     |    24©1989-2024   Lauterbach                                                        



Declaration Example for AT91SAM9XE (ARM9)

 AT91SAM9XE (ARM9) from ATMEL, M25P64 (64Mbit)

• SPI Tx register/SPI Rx register: 0xFFFC800C / 0xFFFC8008

• Sector size: 64Kbytes (0x0--0xFFFF) 

• Driver file:  ~~/demo/arm/flash/byte/spi64_at91sam.bin 

Note: ~~ is expanded to the TRACE32 installation directory, which is c:/t32 by default.

.

…

; Reset the FLASHFILE declaration within TRACE32.
FLASHFILE.RESet

; The AT91SAM9XE’s CS is controlled by the SPI register 0xFFFC8000 not
; the specified GPIO ports.
; <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg> 
FLASHFILE.CONFIG 0xFFFC800C    0xFFFC8008     0xFFFC8000 

; Specify the serial Flash programming algorithm and where it runs on
; the target RAM.
FLASHFILE.TARGET 0x300000++0x1FFF 0x302000++0x1FFF 

 ~~/demo/arm/flash/byte/spi64_at91sam.bin

…

Serial FLASH Programming User’s Guide     |    25©1989-2024   Lauterbach                                                        



Checking the Identification from the Serial Flash Device

The following command can be used to check if TRACE32 can access the serial Flash device:

FLASHFILE.GETID Get the ID values of the serial Flash 
device.

; Open the TRACE32 AREA window.
AREA.view

; Check the access to the serial Flash device
; by getting the manufacturer ID and the device ID.
FLASHFILE.GETID
Serial FLASH Programming User’s Guide     |    26©1989-2024   Lauterbach                                                        



Erasing the Serial Flash Device

The following command is available to erase serial Flash devices:

Example 1: Original erase range

Example 1 cont’d: Two smaller erase ranges

Example 2: Erase 8 MB in increments of 1 MB using a RePeaT loop

FLASHFILE.Erase <range> Erase the serial Flash.

NOTE: The FLASHFILE.Erase command has a time limitation.
• TRACE32 has to get a response (success or failure) from the serial Flash in 

3 minutes.
• If you get an error message because of the FLASHFILE.Erase time limita-

tion, then divide the original range into several smaller ranges. 

; Erase 2MB starting from 0x0.
FLASHFILE.Erase 0x0--0x1FFFFF 

; Erase 2MB starting from 0x0.
FLASHFILE.Erase 0x0--0xFFFFF 
FLASHFILE.Erase 0x100000--0x1FFFFF 

&addr=0x0
RePeaT 8.
( 
 FLASHFILE.Erase &addr++0xFFFFF
 &addr=&addr+0x100000
)

Serial FLASH Programming User’s Guide     |    27©1989-2024   Lauterbach                                                        



Programming the Serial Flash Device

The following commands are available to program the serial Flash: 

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is 
specified, programming starts at address 0x0.

Example 1

Example 2 

FLASHFILE.LOAD <file> [<address> | <range>] Program serial Flash.

FLASHFILE.LOAD <file> [<address> | <range>] /ComPare

; Program the contents of my_file.bin to the serial Flash memory starting
; at address 0x0.
FLASHFILE.LOAD my_file.bin 0x0 

; Verify the contents of my_file.bin against the serial Flash memory
; starting at address 0x0.
FLASHFILE.LOAD my_file.bin 0x0 /ComPare
Serial FLASH Programming User’s Guide     |    28©1989-2024   Lauterbach                                                        



Copying the Serial Flash Memory

The following command is available to copy:

• Any data from any CPU memory area to the serial Flash memory, or

• Any data from one address range of the serial Flash to another address range within the same 
serial Flash memory; for example, for backup purposes.

Example 1 

Result (1)

Example 2

FLASHFILE.COPY <source range> <target addr> Copy data from the source range 
to the defined address of the 
serial Flash.

FLASHFILE.COPY <source range> <target addr> /ComPare Verify the source range data 
against the target range data.

; Copy the 1MB virtual memory data at 0x0 to the serial Flash address 
; at 0x100000.
; VM: The virtual memory of the TRACE32 software.
FLASHFILE.COPY VM:0x0--0xFFFFF 0x100000

; Verify the data between virtual memory and serial Flash.
FLASHFILE.COPY VM:0x0--0xFFFFF 0x100000 /ComPare

Data is copied from the
CPU to the serial Flash    
Serial FLASH Programming User’s Guide     |    29©1989-2024   Lauterbach                                                        



Example 3

; Copy the 1MB serial Flash data at 0x0 to the serial Flash 
; at 0x800000.
FLASHFILE.COPY 0x0--0xFFFFF 0x800000

; Verify the 1MB serial Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0xFFFFF 0x800000 /ComPare
Serial FLASH Programming User’s Guide     |    30©1989-2024   Lauterbach                                                        



Modifying the Serial Flash Memory

The following command is available to modify the contents of the serial Flash memory. The maximum range 
that one FLASHFILE.Set command can modify is only one sector of the Flash memory. If you want to 
modify three sectors, you need three FLASHFILE.Set commands, etc. 

Example 1

Example 2

 

Example 3 

FLASHFILE.Set [<address> | <range>] %<format> <data> Modify the contents of the serial 
Flash.

; Write 4 bytes of data 0x12345678 to the address 0x100000.
; LE = little endian
FLASHFILE.Set 0x100000 %LE %Long 0x12345678

; Write data 0x0 to the address range 0x100000++0xFFF.
FLASHFILE.Set 0x100000++0xFFF %Byte 0x0

; A serial Flash has 64KB per sector (0x10000).
; Write data 0x0 from 0x100000 to 0x12FFFF in the serial Flash.
FLASHFILE.Set 0x100000++0xFFFF %Long 0x0
FLASHFILE.Set 0x110000++0xFFFF %Long 0x0
FLASHFILE.Set 0x120000++0xFFFF %Long 0x0

Result (1)

Result (2)
Serial FLASH Programming User’s Guide     |    31©1989-2024   Lauterbach                                                        



Other Useful Commands

The CPU cannot read serial Flash memories directly. But TRACE32 provides special commands for reading 
serial Flash memories. The contents of the serial Flash are displayed in a window.

Reading the Serial Flash

The following command allows to read the serial Flash memory.

Example

FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the serial Flash.

; Display a hex-dump of the serial Flash starting at 0x1000.
; Display the information in a 32-bit format (/Long option).
FLASHFILE.DUMP 0x1000 /Long

Result
Serial FLASH Programming User’s Guide     |    32©1989-2024   Lauterbach                                                        



Saving the Serial Flash Device

The following command is available to save the contents of the serial Flash memory to a file.

Example

FLASHFILE.SAVE <file> <range> Save the contents of the serial Flash 
memory into <file>.

; Save 1MB of the serial Flash data starting at 0x0 to the file
; my_dump.bin. 
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF 
Serial FLASH Programming User’s Guide     |    33©1989-2024   Lauterbach                                                        



Full Examples

Example 1

CPU: STM32F103 (Cortex-M3 core) 

Serial Flash: M25P64 (STMicroelectronics, 64Mbit) 

Serial Flash CS: Connected to GPIO B.2

RESet
SYStem.RESet
SYStem.CPU STM32F103ZE
SYStem.Up 

gosub enable_SPI

; Reset the Flash declaration within TRACE32.
FLASHFILE.RESet

; For the serial Flash CS connected GPIO B.2 (group B, port number2)
; GPIO B.2 data output register 0x40010C0C 
;  <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x4001300C   0x4001300C   0x40010C0C     0x2 

FLASHFILE.TARGET 0x20000000++0x1fff 0x20002000++0x1FFF 
~~/demo/arm/flash/byte/spi64_stm.bin

; Read Flash manufacture and device ID.
FLASHFILE.GETID

; Erase serial Flash.
FLASHFILE.Erase 0x0--0xFFFFF

; Program my_file.bin to serial Flash.
FLASHFILE.LOAD my_file.bin 0x0
Serial FLASH Programming User’s Guide     |    34©1989-2024   Lauterbach                                                        



; Save to my_dump.bin from serial Flash
FLASHFILE.SAVE my_dump.bin 0x0--0xFFFFF

enable_SPI:

; Clock Enable related with the SPI and GPIO group
PER.S SD:0x40021014 %Long 0x114     ; FSCM Clock Enable
PER.S SD:0x40021018 %Long 0x100C    ; SPI1 & GPIO A/B Enable

PER.S SD:0x40010C00 %LONG 44444344 ; GPIOB.2 output
PER.S SD:0x40010C0C %LONG 00000004 ; deselect the SPI FLASH CS(GPIOB.2)

PER.S SD:0x40013000 %WORD 0x30F ; SPI_Init
PER.S SD:0x40013010 %WORD 0x7   ; SPI_CRC pol

&spi_enable=Data.word(SD:0x40013000)|0x40
PER.S SD:0x40013000 %WORD &spi_enable ; SPI1 Enable

return

ENDDO
Serial FLASH Programming User’s Guide     |    35©1989-2024   Lauterbach                                                        



Example 2

CPU: The STR91x is based on a ARM966E core. It has a SSP protocol which is 
similar to a STM SPI controller.

Serial Flash: ST Microelectronics M25P64 (64Mbit)
Serial Flash is connected to GPIO 5.7 on the STR91x. 
Then it is controlled by GPIO5 register (0x5800B3FC).

; Select str910 as target CPU.
; Establish the communication between the debugger and the target CPU.
SYStem.RESet
SYStem.CPU STR910
SYStem.Option.ResBreak OFF
SYStem.JtagClock RTCK
SYStem.Up

; Enable SSP (Synchronous Serial Peripheral) & configuration of pins. 
PER.Set ASD:0x5C002018 %Long 0x80300
PER.Set ASD:0x5C002020 %Long 0x80300
PER.Set ASD:0x5C002028 %Long 0x80300
PER.Set ASD:0x5800B400 %Long 0xb0 
PER.Set ASD:0x5C002058 %Long 0x4a00 
PER.Set ASD:0x5C002098 %Long 0x0 
PER.Set ASD:0x5C002078 %Long 0x40 
PER.Set ASD:0x5C007000 %Long 0x5c7 ;SSP0_CR0
PER.Set ASD:0x5C007010 %Long 0x2   ;SSP0_PR 
PER.Set ASD:0x5C007004 %Long 0x2   ;SSP0 Enable 

FLASHFILE.RESet

;  <SPI Tx Reg> <SPI Rx Reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x5C007008    0x5C007008   0x5800B3FC     0x7

;   <code_range>  <data_range> <algorithm_file>
FLASHFILE.TARGET 0x4000000++0x1FFF 0x4002000++0x1FFF 
                                     ~~/demo/arm/flash/byte/spi64_stm.bin

; Programming for the serial Flash
FLASHFILE.GETID
FLASHFILE.ERASE 0x0--0xFFFFF 
FLASHFILE.LOAD  * 0x0 
FLASHFILE.SAVE dump.bin 0x0--0xFFFFF
ENDDO
Serial FLASH Programming User’s Guide     |    36©1989-2024   Lauterbach                                                        



FLASH Programming via Boundary Scan

The BSDL commands of TRACE32 are used to program external FLASH memories via boundary scan. 
Important BSDL-specific steps are:

• Check that the bypass mode works.

• Check that the IDCODE matches.

• Define the FLASH pin connection.

• Enable serial FLASH programming via boundary scan and define the flash type.

Serial FLASH programming then continues with the FLASHFILE commands described in this manual. The 
following PRACTICE script (*.cmm) illustrates the BSDL-specific steps by way of these examples:

• Example 1 for the SPI protocol

• Example 2 for the I2C protocol

Example 1 for the SPI Protocol

CPU: AT91SAM3U4

Serial FLASH: M25P64 (STMicroelectronics, 64Mbit) 

Pin connection: SPI_CE: Port A16
SPI_SCK: Port A15
SPI_MOSI: Port A14
SPI_MISO: Port A13
Serial FLASH Programming User’s Guide     |    37©1989-2024   Lauterbach                                                        



SYStem.JtagClock 15.Mhz           ; set JTAG clock
BSDL.RESet                        ; reset boundary scan configuration
BSDL.FILE ./sam3u4e_lqfp144.bsdl  ; load the required BSDL file

BSDL.HARDRESET                    ; toggle TRST_N pin
BSDL.SOFTRESET                    ; do a sequential JTAG reset

IF BSDL.CHECK.BYPASS()            ; check, if BYPASS mode works
(
    IF BSDL.CHECK.IDCODE()        ; check, if the IDCODE matches
    (
       BSDL.FLASH.IFDefine RESet  ; reset the boundary scan flash
                                  ; configuration
        BSDL.FLASH.IFDefine SPI 1. ; define boundary scan flash interface:
                                  ; - protocol: SPI
                                  ; - SPI flash memory connected to IC1
                                  ;   of the boundary scan chain

       BSDL.FLASH.IFMap CE  PA16  ; map generic SPI pin CE to port PA16
       BSDL.FLASH.IFMap SCK PA15  ; map generic SPI pin SCK to port PA15
       BSDL.FLASH.IFMap SI  PA14  ; map generic SPI pin SI to port PA14
       BSDL.FLASH.IFMap SO  PA13  ; map generic SPI pin SO to port PA13
       BSDL.FLASH.INIT SAFE       ; Initialize boundary scan chain to
                                  ; safe values according to SAFE state 
                                  ; from BSDL file

       FLASHFILE.BSDLaccess  ON   ; Enable serial flash programming via
                                  ; boundary scan
       FLASHFILE.BSDLFLASHTYPE SPI64 ; define serial flash type

       FLASHFILE.GETID            ; get the SPI flash memory ID
       ; continue with serial flash programming, e.g.:
       ; FLASHFILE.DUMP 0x0
       ; FLASHFILE.ERASE 0x0--0xFFFFF
       ; FLASHFILE.LOAD  * 0x0
    )
)
ENDDO
Serial FLASH Programming User’s Guide     |    38©1989-2024   Lauterbach                                                        



Example 2 for the I2C Protocol     

CPU: AT91SAM3U4

eMMC FLASH: ST24C08 (STMicroelectronics, 8kbit)

Pin connection: I2C_SCL: Port A25
I2C_SDA: Port A24

SYStem.JtagClock 15.Mhz          ; set JTAG clock

BSDL.RESet                       ; reset boundary scan configuration

BSDL.FILE ./sam3u4e_lqfp144.bsdl ; load the required BSDL file

BSDL.HARDRESET                   ; toggle TRST_N pin
BSDL.SOFTRESET                   ; do a sequential JTAG reset

IF BSDL.CHECK.BYPASS()           ; check, if BYPASS mode works
(
   IF BSDL.CHECK.IDCODE()        ; check, if the IDCODE matches
   (
     BSDL.FLASH.IFDefine RESet   ; reset the boundary scan flash
                                 ; configuration

     BSDL.FLASH.IFDefine I2C 1.  ; define boundary scan flash interface:
                                 ; - protocol: I2C
                                 ; - I2C flash memory connected to IC1 of
                                 ;   the boundary scan chain

     BSDL.FLASH.IFMap SCL  PA25  ; map generic I2C pin SCL to port PA25
     BSDL.FLASH.IFMap SDA  PA24  ; map generic I2C pin SDA to port PA24
     BSDL.FLASH.INIT SAFE        ; Initialize boundary scan chain to safe
                                 ; values according to SAFE state
                                 ; from BSDL file

     FLASHFILE.BSDLaccess ON     ; Enable serial flash programming via
                                 ; boundary scan
     FLASHFILE.BSDLFLASHTYPE I2C08  ; define serial flash type

     FLASHFILE.GETID             ; get the I2c flash memory ID
     ; continue with serial flash programming, e.g.:
     ; FLASHFILE.DUMP 0x0
     ; FLASHFILE.ERASE 0x0--0x3FF
     ; FLASHFILE.LOAD  * 0x0
    )
)
ENDDO
Serial FLASH Programming User’s Guide     |    39©1989-2024   Lauterbach                                                        


	Serial FLASH Programming User’s Guide
	Introduction
	How This Manual is Organized
	Related Documents
	Contacting Support

	List of Abbreviations
	Background Knowledge
	What is a Serial Flash Device?
	About SPI Interface Controllers in Serial Flash Memories
	About Blocks and Pages
	File Name Convention for Serial Flash Drivers

	Standard Approach
	Identifying and Running Scripts for Serial Flash Programming
	If There Is No Script

	Scripts for SPI Controllers
	Establishing Communication between Debugger and Target CPU
	Configuring the SPI Controller
	Resetting Default Values
	Informing TRACE32 about the Serial Flash Register Addresses (SPI)
	Informing TRACE32 about the Serial Flash Programming Algorithm
	Memory-Mapped serial Flash
	Non-Memory-Mapped serial Flash
	Identifying the Correct Driver Binary File for a Serial Flash Device
	Finding the <serialflash_code> of Your Serial Flash Device
	Example for SPI Controllers

	FLASHFILE Declaration Examples
	Declaration Example for STM32F103 (Cortex-M3)
	Declaration Example for AT91SAM9XE (ARM9)

	Checking the Identification from the Serial Flash Device
	Erasing the Serial Flash Device
	Programming the Serial Flash Device
	Copying the Serial Flash Memory
	Modifying the Serial Flash Memory

	Other Useful Commands
	Reading the Serial Flash
	Saving the Serial Flash Device

	Full Examples
	Example 1
	Example 2


	FLASH Programming via Boundary Scan
	Example 1 for the SPI Protocol
	Example 2 for the I2C Protocol



