LAUTERBACH A

Serial FLASH Programming
User’s Guide

Serial FLASH Programming User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
FLASH Programmingccccccciriiccmmriissmssiisssssssisnssssssssmsss s sasssmsss sssssnmss s sssssmssssssssamms s ssssssmmssnnas r—~
Serial FLASH Programming User's GUITEccccciiiecmmiiiiminmmmnsms s s s ses s s sssssnssnssns 1
0 Yo 11T] T o 4
How This Manual is Organized 4
Related Documents 4
Contacting Support 5
List of Abbreviations ... —————— 7
Background KnOWIedge ... e 8
What is a Serial Flash Device? 8
About SPI Interface Controllers in Serial Flash Memories 8
About Blocks and Pages 9
File Name Convention for Serial Flash Drivers 10
Standard APProach ... —————— 11
Identifying and Running Scripts for Serial Flash Programming 11

If There Is No Script 13
Scripts for SPI CONrOllersccccciiiiiiimiriiiimr s e e e anmnes 14
Establishing Communication between Debugger and Target CPU 16
Configuring the SPI Controller 17
Resetting Default Values 18
Informing TRACE32 about the Serial Flash Register Addresses (SPI) 18
Informing TRACE32 about the Serial Flash Programming Algorithm 19
Memory-Mapped serial Flash 19
Non-Memory-Mapped serial Flash 19
Identifying the Correct Driver Binary File for a Serial Flash Device 20
Finding the <serialflash_code> of Your Serial Flash Device 21
Example for SPI Controllers 23
FLASHFILE Declaration Examples 24
Declaration Example for STM32F103 (Cortex-M3) 24
Declaration Example for AT91SAM9XE (ARM9) 25
Checking the Identification from the Serial Flash Device 26
Erasing the Serial Flash Device 27
Programming the Serial Flash Device 28
©1989-2024 Lauterbach Serial FLASH Programming User’s Guide 2

Copying the Serial Flash Memory 29

Modifying the Serial Flash Memory 31
Other Useful Commands 32
Reading the Serial Flash 32
Saving the Serial Flash Device 33
Full Examples 34
Example 1 34
Example 2 36
FLASH Programming via Boundary SCanccccmiiimmmmminsmssmmnsssssmssss s sssssasssssnas 37
Example 1 for the SPI Protocol 37
Example 2 for the 12C Protocol 39

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide | 3

Serial FLASH Programming User’s Guide

Version 06-Jun-2024

Introduction

This manual describes the basic concept of serial Flash programming.

How This Manual is Organized

J Background Information: Provides information about important terms in serial Flash
programming, such as SPI interface controller, block, and page.

. Standard Approach: Describes the fastest way to get started with SPI serial Flash programming.
All you need to do is to identify and run the correct script.

Demo scripts for SPI serial Flash programming are available in the folder:
- ~~/demo/<architecture>/flash/*.cmm
- e.g. at91sam9xe-spi.cmm, stm32f10x-spi.cmm, str910-spi.cmm, ...

. New Scripts for SPI Controllers: Describes how you can create a script if there is no demo script
for the SPI controller you are using.

Related Documents

A complete description of non memory mapped serial Flash programming commands can be found in
chapter “FLASHFILE” in “General Commands Reference Guide F” (general_ref_f.pdf).

A complete description of memory mapped serial Flash programming commands can be found in chapter
“FLASH” in “General Commands Reference Guide F” (general_ref_f.pdf).

The manual “List of Supported FLASH Devices” (flashlist.pdf) provides the following information:
o A list of the supported serial Flash memory devices.

. A list of the supported CPU families for the serial Flash protocol.

The Lauterbach home page provides an up-to-date list of

o Supported Flash devices under:
https://www.lauterbach.com/ylist.html

J Supported serial Flash controllers under:
https://www.lauterbach.com/ylistnand.html

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 4

https://www.lauterbach.com/ylist.html
https://www.lauterbach.com/ylistnand.html

Contacting Support

Use the Lauterbach Support Center: https://support.lauterbach.com

J To contact your local TRACES32 support team directly.

. To register and submit a support ticket to the TRACE32 global center.

. To log in and manage your support tickets.

. To benefit from the TRACES32 knowledgebase (FAQs, technical articles, tutorial videos) and our
tips & tricks around debugging.

Or send an email in the traditional way to support@ lauterbach.com.

Be sure to include detailed system information about your TRACE32 configuration.

1. To generate a system information report, choose TRACE32 > Help > Support > Systeminfo.

Lauterbach Homepage
Support
N About TRACE32

b & System Information...
2 Update TRACE32...

B Technical Support Contacts

4 Contact Lauterbach

&

Press the following button to get help on how to generate Support Information:

Company:
Prefix:
Firstname:
Surname:
Street:
City:
Country:
Telephone:
eMail:

Product:

Target CPU:

Hostsystem:

Compiler:

Realtime05:

Generate TRACE32 Support Information

Lauterbach

Andrea

Martin

Altlaufstr, 40

Hoehenkirchen-Siegertsbr.

Germany

Department:

P.O.Box:
ZIP Code:

(+49) 8102-9876-555

85635

andrea.martin@lauterbach.com

PowerTrace PX

ARMS40T

Windows 10 v

Arm

MNeno

Generate Support Information:

Safe Mode:

O

Save to Clipboard ||

Save to File

NOTE: Please help to speed up processing of your support request. By filling out the
system information form completely and with correct data, you minimize the
number of additional questions and clarification request e-mails we need to
resolve your problem.

2. Preferred: click Save to File, and send the system information as an attachment to your e-mail.
3. Click Save to Clipboard, and then paste the system information into your e-mail.

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide

5

https://support.lauterbach.com

NOTE:

In case of missing script files (* . cmm), please proceed as requested in “If There

is No Script” on page 12.

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide

6

List of Abbreviations

The abbreviations vary from chip manufacturer to chip manufacturer.

MOSI or Sl Master output, slave input
MISO or SO Master input, slave output
SCLK or SCK Serial clock
SS Slave select
SDI Serial data input
SDO Serial data output
CS or CE CS = Chip selection

CE = Chip enable
SPI Serial peripheral interface
eMMC Embedded multimedia card
MMC Multimedia card
GPIO General purpose input/output
SSI Synchronous serial interface

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide

7

Background Knowledge

This chapter of the manual is aimed at users who are new to serial Flash programming; it does not address
experts with many years of expertise in this area. This chapter gives you a brief overview of important terms
in serial Flash programming, such as serial flash device, sector, page, and SPI interface controller.

What is a Serial Flash Device?

A serial Flash device is a non-volatile memory that can be electrically erased and reprogrammed. It is used
for storing executable code in devices such as DVD players, DSL modems, routers, hard-disk drives, and
printers. After power-up, the executable code is downloaded from the serial Flash to RAM, and then
executed by the processor. The code in the serial Flash is not changed by the download process and is
write-protected.

Reasons for the widespread use of serial Flash devices include:

J Cost effective and space-saving solution thanks to a reduced number of pins
. Low power consumption
. Life cycle of about 20 years

About SPI Interface Controllers in Serial Flash Memories

Serial Flash memories consist of an interface controller (for example, a SPI interface controller) and a Flash
memory. Access to the Flash memory is performed by the interface controller on the SPI slave side.

SPI Master Controller SPI Slave
r-—- " - =-""=--=-=-=- = A r-r—-—n——-"--=--"=--=-—=--=--=-= A
EF‘qcessor/
P Serial Flash
GPIO SS \ Memory
c SPI SS SPI
ore Interface MOSI » SDI Interface Flash
d <+
Controller MISO |« SDO Controller Memory
SCLK » SCLK

Figure: Processor/Chip and Serial Flash Memory with a SPI Interface

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 8

Serial Flash memories are controlled by many kinds of serial interface protocols (SPI, SSP, SSI, SMI, etc.).
The protocol of the SPI interface (serial peripheral interface) specifies four signals:

J Slave select (SS)

. Master output, slave input (MOSI)

J Master input, slave output (MISO)

. Serial clock (SCLK)

Most chip manufacturers have proprietary SPI interface controllers (short: SPI controllers) and thus require
special driver binary files for programming serial Flash memories. These driver binary files are programs

executed by a core in the target and interact with the master SPI controller for controlling the SPI slave
controller in order to program the serial Flash memory.

Once the required driver binary file was loaded to the target, the TRACE32’s command group FLASHFILE
can be used to program and erase the serial Flash memory.

Lauterbach provides driver binary files for a large number of SPI controllers. See further down for
instructions how to identify the correct driver for your application.

About Blocks and Pages

The Flash memory of a serial Flash device consists of sectors, and each sector is subdivided into pages;
see example diagram below.

] Page 1
—1 Sector0
Flash Memory - Page n
—1 Sectorn
Sector A sector is the minimum size unit for erasing. A sector can have a size of 32, 64, or

256 KBytes.

The sector sizes are part of the file names of the algorithms required for serial Flash
programming: spi32*.bin, spi64*.bin, spi256*.bin.

For more information, see “File Name Convention for Serial Flash Drivers” on
page 10.

Page A page is the minimum size unit for writing and has a size of 256 bytes.

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 9

File Name Convention for Serial Flash Drivers

The serial Flash drivers for SPI controllers, i.e. the algorithm files, use the following file name convention:

Serial Flash driver name: SPInn_CPU.bin

where nn is a two-digit number that indicates the size of one sector in KByte
(the sector erase size in KByte):

nn Sector Hex Size

32 32KB 0x0--0x7FFF
64 64KB 0x0--OxFFFF

where CPU is the CPU family name.

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 10

Standard Approach

The chapter “Standard Approach” provides a compact description of the steps required to program serial
Flash memories. This description is intentionally limited to the standard use case.

Overview of the Standard Approach:
J Identify and run the required script for serial Flash programming.

o What to do if there is no script for SPI Flash programming.
The following step-by-step procedures describe the standard approach in detail.

For a detailed description of the serial Flash programming concepts, see “Scripts for SPI Controllers” on
page 14.

Identifying and Running Scripts for Serial Flash Programming

Lauterbach provides scripts (*.cmm) for serial Flash programming which can be found below the TRACE32
installation directory. The scripts support serial Flash memories that have a serial Flash controller with a SPI
interface (short: SPI controller).

Path and file name convention of scripts to be used with SPI controllers:

~~/demo/<architecture>/flash/<cpu_name>-spi.cmm, where ~~ is expanded to the TRACE32 installation
directory.

To identify and run the required script:
1. Make a note of the <cpu_name> printed on the CPU; for example, bcm5357

2. Put the <cpu_name> and spi together to form the script name: bcm5357-spi.cmm

The script file resides in this folder: ~~/demo/mips/flash/bcm5357-spi.cmm

Note: ~~ is replaced by the TRACE32 installation directory, which is ¢:/T32 by default.

If the folder does not contain the script you are looking for, see “If There Is No Script’ on page 12.
3. Run the script in TRACES32 by doing one of the following:

- Choose File > Run Script <cmm_script name>

- Orinthe TRACE32 command line, type: DO <cmm_script_name>

NOTE: Each PRACTICE script (*.cmm) includes a reference to the required serial
Flash programming algorithm (*.bin).
You do not need to program or select the algorithm.

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 11

Example

: <code_range> <data_range> <algorithm file>
FLASHFILE.TARGET 0x80020000++0x1FFF 0x80022000++0x3FFF
~~/demo/mips/flash/byte_le/spi6é4_bcm5357 .bin

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 12

If There Is No Script

If there is no script for your device in this directory (~~/demo/<architecture>/flash/), then please send a
request to support@lauterbach.com using the e-mail template below.

E-Mail Template:

Chip name:
Name of serial Flash device:

Provide the CPU datasheet for us:

Lend the target board to us by sending it to the address given in “Contacting Support”:

<system_information>

Be sure to include detailed system information about your TRACES32 configuration. For information about
how to create a system information report, see “Contacting Support”.

Normally we can provide support for a new device in two weeks.

If our support cannot provide you with a PRACTICE script, you will have to create your own PRACTICE
script (*.cmm).

For more information about how to create your own script (*.cmm), see “Scripts for SPI Controllers” on
page 14.

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 13

Scripts for SPI Controllers

This chapter describes how to create new scripts for serial Flash memories that are equipped with SPI
controllers.

The steps and the framework (see below) provide an overview of the process. They are described in detail in
the following sections.

The following steps are necessary to create a new script:

1. “Establishing Communication between Debugger and Target CPU”, page 16
“Configuring the SPI Controller”, page 17

“Resetting Default Values”, page 18

“Informing TRACE32 about the Serial Flash Register Addresses (SPI)”, page 18
“Informing TRACE32 about the Serial Flash Programming Algorithm”, page 19
“Checking the Identification from the Serial Flash Device”, page 26

“Erasing the Serial Flash Device”, page 27

© N o o ~ w0 D

“Programming the Serial Flash Device”, page 28

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 14

The following framework can be used as base for serial Flash programming:

; Establish the communication
; between the target CPU and the
; TRACE32 debugger.

; Configure the SPI controller.

FLASHFILE.RESet ; Reset the serial Flash
; environment in TRACE32 to its
; default values.

FLASHFILE.CONFIG ... ; Inform TRACE32 about
; — the serial Flash register
8 addresses and
; - the CS address of the serial
g Flash

FLASHFILE.TARGET .. ; Specify the serial Flash
; programming algorithm and where
; 1t runs in target RAM.

FLASHFILE.Erase .. ; Erase the serial Flash.

FLASHFILE.LOAD <main file> .. ; Program the file to serial Flash.

An ellipsis (...) in the framework indicates that command parameters have been omitted here for space
economy.

NOTE: The parametrization of FLASHFILE.CONFIG and FLASHFILE.TARGET
requires expert knowledge.

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide |

15

Establishing Communication between Debugger and Target CPU

Serial Flash programming with TRACE32 requires that the communication between the debugger and the
target CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu>
SYStem.Up

SYStem.CPU STM32F103

SYStem.Up

I

7

7

Specify your target CPU.

Establish the communication between the
debugger and the target CPU.

Select STM32F103 as the target CPU.

Establish the communication between the

debugger and the target CPU.

©1989-2024 Lauterbach

Serial FLASH Programming User’'s Guide

16

Configuring the SPI Controller

Programming a serial Flash device requires an appropriate initialization of the serial Flash interface. The
following settings might be necessary:

. Enable the clock (SCLK).
J Configure the registers of the serial Flash interface, such as clock, master/slave, data width, etc.

. Configure the serial Flash pins if they are muxed with other functions of the CPU.

Example: In the CPU STM32F103, all the SPI pins are muxed with the GPIOs.

Serial Flash
CPU Memory
STM32F103
GPIO.A4/SS » SS
GPIO.A5/ SCLK » SCLK
GPIO.A6 / MISO |« SDI
GPIO.A7 /| MOSI » SDO

Using the commands below, the pins of the serial Flash interface (SPI) can be configured for the CPU
STM32F103. The resulting configuration allows the CPU to switch from the GPIO A4-A7 to SS,SCLK,
MISO, and MOSI.

PER.Set SD:0x40021014 %Long 0x114 ; Enable the Clock for the
PER.Set SD:0x40021018 %Long 0x100C ; SPI & PIO.

PER.S SD:0x40010800 %Long 0Oxbbb34444 ; Switch the PIO.A group to
PER.S SD:0x40010810 %Long OxXFFFFFFF ; the SPI function.

PER.S SD:0x40013000 %WORD 0x34F ; Configure the SPI

PER.S SD:0x40013010 %WORD 0x7 ; controller.

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 17

Resetting Default Values

The following command is used to reset the serial Flash environment in TRACE32 to its default values.

FLASHFILE.RESet Reset the serial Flash environment

in TRACES32 to its default values.

Informing TRACE32 about the Serial Flash Register Addresses (SPI)

The following command is used to inform TRACE32 about the various register addresses (Flash
declaration).

Chip selection is controlled by one GPIO pin.
FLASHFILE.CONFIG <SPI Tx reg> <SPl Rx reg> <CS GPIO reg> <CS bit>

Chip selection is controlled by the SPI controller.
FLASHFILE.CONFIG <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg>

Parameters for the FLASHFILE.CONFIG command

<SPI Tx reg> The transmit data register

<SPI Rx reg> The receive data register

<CS GPIO reg> The chip selection GPIO register which is connected to the Flash
chip selection

<CS bit> The chip selection bit in the GPIO CS register

<SPI ChipEnable reg> The chip enable register of the serial flash

For information about the register addresses and the CS bit, refer to the manufacturer’s microcontroller
manual and the schematics.

Example 1

; For the serial Flash CS connected PIO A.4 (group A, port number 4)

; PIO group A register 0x4001080C

g <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x4001300C 0x4001300C 0x4001080C 0x4

Example 2

; The AT91SAMI9XE’'s CS is controlled by the SPI register O0xFFFC8000, not
; the specified GPIO ports.

9 <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg>
FLASHFILE.CONFIG OxXFFFC800C O0xFFFC8008 O0xFFFC8000

©1989-2024 Lauterbach Serial FLASH Programming User's Guide |

18

Informing TRACE32 about the Serial Flash Programming Algorithm

Memory-Mapped serial Flash

The FLASH programming is defined using the comand FLASH.TARGET.

The name of the FLASH algorithm binary file to be used depends on the byte addressing:
. 4 Byte address; snor_xxxxxx.bin (generally the FLASH size is greater than 16 MBytes).
J 3 Byte address; shor3b_xxxxxx.bin (the FLASH size is up to 16 MBytes).

Example:

FLASH.TARGET 0x900000 0x902000 0x1000 \
~~/demo/arm/flash/byte/snor_imx7.bin

Non-Memory-Mapped serial Flash

The FLASH programming algorithm is defined using the command FLASHFILE.TARGET. The name of the
FLASH algorithm binary file is spi_xxxxx.bin.

Required size for the code is size_of(<file>) + 32 byte.

For detailed information about how to determine the <file> parameter, see “Identifying the Correct Driver
Binary File for a Serial Flash Device” on page 20.

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 19

Identifying the Correct Driver Binary File for a Serial Flash Device

There are two ways to find the correct *.bin file:

To identify the correct *.bin file:
1.
2.

You can identify the *.bin file via our website, as described in this section.

Alternatively, run a PRACTICE script (*.cmm), as described in “Finding the <serialflash_code>

of Your Serial Flash Device”, page 21.

For information about supported Flash devices, access the Lauterbach website.

Click the + tree button next to Tool Chain, and then click Supported NAND/Serial Flash
Controller (https://www.lauterbach.com/ylistnand.html).

Open Supported Flash Devices in a separate window or tab
(https://www.lauterbach.com/ylist.html).

On the Supported Flash Devices page, select the required company from the drop-down list.

| Supported FLASH Devices |

LAUTERBACH

i[content]

iv|

HYNIX
INFINEQN
INTEL
MACROND{
MICRON
MICRONAS
MICROSEMI
NEC

NXP

Kl
RENESAS
SAMSUNG
SANDISK

Locate the desired Flash device.

* Supported Flash Devices El

Supported FLASH Devices

NAND FLASH devices are marked in GREEN.
SERIAL FLASH devices are marked in RED.

You need the name of the Flash device to be able to identify the correct driver binary file.

Identify the correct *.bin file based on the name of the Flash device. The following example

illustrate how to do this.

- The example below illustrates how to apply the file name convention in practice.

- Forinformation about the file name convention for driver binary files, see “File Name
Convention for Serial Flash Drivers” on page 10.

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide

20

https://www.lauterbach.com/
https://www.lauterbach.com/ylistnand.html
https://www.lauterbach.com/ylist.html

Finding the <serialflash_code> of Your Serial Flash Device

The following step-by-step procedure helps you find the <serialflash_code> of your serial Flash device.
Based on the <serialflash_code>, you can then identify the correct *.bin file.

To find the <serialflash_code>:

1. Run the following PRACTICE script file (*.cmm) from the TRACE32 demo folder:

CD.DO ~~/demo/etc/flash/find spidef.cmm

; The path prefix ~~ expands to the system directory of TRACE32,
;by default C:\t32.

If this demo script is missing, you can download it from www.lauterbach.com/scripts.html.
The Find SPI flash code dialog opens.
2. Under spi flash parameters, make your settings.
- You can find the required information in the serial Flash documentation of the manufacturer.

- For an example of where to search for the information, see figure and table below:

e =]

A Find SPIflash code

spi flash parameters

- Address Cycle: : ¥ | Byte
- Ei ize b d (D8h): = - | KB . .
fase 520 by amd (08h): |y] KBYt2 In the serial Flash documentation of

the manufacturer, search for terms

E Support Page Program cmd (02h): @ ON () OFF
| - Support Read Flag Status cmd (70h) @ ON () OFF (ex. Numonyx) like:
- Support Read Bank Register cmd (16h)) ON @ OFF (ex. Spansion) - erase capablllty
code
—— - sector
SPI4B64FS Find - granularity
End in order to find the correct value.
Instruction Description One-Byte One-Byte Address | Dummy | Data
Instruction | Instruction | Bytes Clock Bytes
Code (BIN) | Code (HEX) Cycle
READ |Read Data Bytes 0000 0011 03h 3/4 0 |1tow
PP Page Program 0000 0010 02h 3/4 0 [1to256
RFSR Read Flag Status Register] 0111 0000 70h 0 0 1 to o

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide | 21

www.lauterbach.com/scripts.html

3. Click Find.

- The code box displays the <serialflash_code> of your serial Flash device.

- If the code box displays unknown, then proceed as described in “If There is No Script’.
4. Make a note of the displayed <serialflash_code>.
5. Click End to close the dialog.

6. Identify the correct *.bin file based on the <serialflash_code>. The following example illustrates how to
do this.

“Example for SPI Controllers”, page 23

- For information about the file name convention for driver binary files, see “File Name
Convention for Serial Flash Drivers” on page 10.

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide | 22

Example for SPI Controllers

Target:
o ARM-based STM32F10X CPU with the SPI controller stm
o Serial Flash device M25P64

Taken together, the Code column and the Controller column make up the file name of the serial Flash driver
binary file: spi64_stm.bin. The number 64 indicates the size of one sector in KByte (the sector erase
size in KByte).

B Tool Chai
l ST Microelectronics N.V.

I Supported Compilers
" Supported Host CPU CONTROLLER COMMENT

Operating Systems SPEAR300 generic NAND
™ Supported Flash Devices . F

[[Supported NAMD/Serial Flash . . .
Controller STM32F103ZE cortexma3 NAMND
" Supported Target stm SPI

Operating Systems ey — — L

E Tool Chain

[Supported Compilers
™ Supported Host

l ST Microelectronics N.V.

Operating Systems TYPE COMPANY CODE COMMENT
[r Supported Flash Devices]_kl%i STM smzsa./ Serial Flash, 256KB sector
T Supporied NAND/Serial Flash M25P64 STt 1 SPI64 6 Serial Flash
Controller M28F101 STH W28F256
I Supporied Target M28F102 STH W28F256
UEE T RERENS M28F201 STM 1128F256

[” Supported Tool Integrations

[T Supported Simulators/virtual
Prototypes/Target Servers

Support

The binary file resides in this folder: ~~/demo/arm/flash/byte
Note: ~~ is expanded to the TRACES32 installation directory, which is ¢:/t32 by default.

This results in the following command line:

; Specify the serial Flash programming algorithm and where it runs in

; the target RAM. <code_range> <data_range> <file>

FLASHFILE.TARGET 0x20000000++0x1FFF 0x20002000++0x1FFF
~~/demo/arm/flash/byte/spi64_stm.bin

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 23

FLASHFILE Declaration Examples

Declaration Example for STM32F103 (Cortex-M3)

STM32F103 (ARM Cortex-M3) from ST Microelectronics, M25P64 (64Mbit)
. SPI Tx register/SPI Rx register: 0x4001300C
J Sector size: 64Kbytes (0x0--OxFFFF)

J Driver file: ~~/demo/arm/flash/byte/spi64_stm.bin

Note: ~~ is expanded to the TRACE32 installation directory, which is ¢:/T32 by default.

; Reset the FLASHFILE declaration within TRACE32.
FLASHFILE.RESet

For the serial Flash CS connected PIO A.4 (Group A, port Number4)

PIO group A register 0x4001080C
; <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>

FLASHFILE.CONFIG 0x4001300C 0x4001300C 0x4001080C 0x4

I

I

; Specify the serial Flash programming algorithm and where it runs on

; the target RAM.
FLASHFILE.TARGET 0x20000000++0x1FFF 0x20002000++0x1FFF
~~/demo/arm/flash/byte/spi64_stm.bin

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 24

Declaration Example for AT91SAM9XE (ARM9)

AT91SAM9IXE (ARM9) from ATMEL, M25P64 (64Mbit)
. SPI Tx register/SPI Rx register: OxFFFC800C / OxFFFC8008
. Sector size: 64Kbytes (0x0--OxFFFF)

. Driver file: ~~/demo/arm/flash/byte/spi64_at91sam.bin

Note: ~~ is expanded to the TRACES2 installation directory, which is c:/t32 by default.

; Reset the FLASHFILE declaration within TRACE32.
FLASHFILE.RESet

The ATI91SAMI9XE’'s CS is controlled by the SPI register OxXFFFC8000 not

the specified GPIO ports.
5 <SPI Tx reg> <SPI Rx reg> <SPI ChipEnable reg>

FLASHFILE.CONFIG OxFFFC800C 0xFFFC8008 0xFFFC8000

7

7

; Specify the serial Flash programming algorithm and where it runs on

; the target RAM.
FLASHFILE.TARGET 0x300000++0x1FFF 0x302000++0x1FFF
~~/demo/arm/flash/byte/spi64_at9lsam.bin

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 25

Checking the Identification from the Serial Flash Device

The following command can be used to check if TRACE32 can access the serial Flash device:

Get the ID values of the serial Flash

FLASHFILE.GETID
device.

; Open the TRACE32 AREA window.
AREA.view

Check the access to the serial Flash device
by getting the manufacturer ID and the device ID.

I

7

FLASHFILE.GETID

Bl B::area E”Elgl

TMa2F103, MASPE4
\Manufacturer I = 0=2020, Device ID = Dx1D1?|

1]

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide |

26

Erasing the Serial Flash Device

The following command is available to erase serial Flash devices:

I FLASHFILE.Erase <range> Erase the serial Flash.
NOTE: The FLASHFILE.Erase command has a time limitation.
. TRACERS2 has to get a response (success or failure) from the serial Flash in
3 minutes.
. If you get an error message because of the FLASHFILE.Erase time limita-
tion, then divide the original range into several smaller ranges.

Example 1: Original erase range

; Erase 2MB starting from 0x0.
FLASHFILE.Erase 0x0--0x1FFFFF

Example 1 cont’'d: Two smaller erase ranges

; Erase 2MB starting from 0x0.
FLASHFILE.Erase 0x0--0xXFFFFF
FLASHFILE.Erase 0x100000--0x1FFFFF

Example 2: Erase 8 MB in increments of 1 MB using a RePeaT loop

&addr=0x0

RePeaT 8.

(

FLASHFILE.Erase &addr++0xFFFFF
&addr=&addr+0x100000

)

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 27

Programming the Serial Flash Device

The following commands are available to program the serial Flash:

FLASHFILE.LOAD <file> [<address> | <range>] Program serial Flash.
FLASHFILE.LOAD <file> [<address> | <range>] /IComPare

The data from <file> is written to the address range specified by <range>. If no <range> or <address> is
specified, programming starts at address 0xO0.

Example 1

; Program the contents of my file.bin to the serial Flash memory starting
; at address 0x0.

FLASHFILE.LOAD my file.bin 0x0

Example 2

; Verify the contents of my file.bin against the serial Flash memory
; starting at address 0xO0.

FLASHFILE.LOAD my file.bin 0x0 /ComPare

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 28

Copying the Serial Flash Memory

The following command is available to copy:

. Any data from any CPU memory area to the serial Flash memory, or

. Any data from one address range of the serial Flash to another address range within the same
serial Flash memory; for example, for backup purposes.

Example 1

FLASHFILE.COPY <source range> <target addr>

FLASHFILE.COPY <source range> <target addr>/ComPare

Copy data from the source range

to the defined address of the

serial Flash.

Verify the source range data
against the target range data.

; Copy the 1MB virtual memory data at 0x0 to the serial Flash address
; at 0x100000.
; VM: The virtual memory of the TRACE32 software.
FLASHFILE.COPY VM:0x0--0xFFFFF 0x100000

Long % [JE [OTrack [#]Hex
5 ¢ 0123456789ABCDEF
V00000000 [+4ESE533B 7EES5220 BFESVY3ES 7SZ203ABE :SWN_Revision:ou s
YM:00000010 | GFEEGBEE DADDEE?? 3BOADDIE 43504020 nknownk; &k; MPC
YM:00000020 | 58353535 43504D2F 58363535 43504D2F 555%/MPCGSER/MPC
YM:00000030 | 58333535 504D202C 33363543 532F4D78 553X, _MPCIEIRM/S ¥
YM:00000040 | 36354350 78784D33 GF4D2820 GFE3E1EE PCSE3Mxx_(Monaca A
YM:00000050 | 4D202C23 36354350 00203437 20203B0A
YM:00000060 | 20202020 20202020 20202020 20202020 B::FLASHFILE.DUMP 0x100000
YM:00000070 | 20202020 20202020 20202020 20202020
M:00000080 | 20202020 20202020 20202020 20202020 0100000 MAIN v long v| OTrack[FIH
YM:00000030 | 0AOD202D GF432038 20206572 20202020
YM:000000A0 | 20202020 32652034 OD203030 4D203B0A address 0 4 8 € 0123456783ABCDEF
WM:000000B0 | BEFSEERY 75746361 20726572 46203420 +4ESES33E VEES5220 BFE973E3 7SZ203ABE SWN_Revwisiaon:ou A~
MBI S36mas72 AoacRIRd RNADDRD IeBADDZD GFEEEBEE 0ADDEE?? 3BOADD3E 43504020 nknowngh; &k; _MPC
WMECTTTEI| ~aomaon SOUoERRS 20202020 3A202090 . 58353535 43504D2F 53363535 43504D2F 5554/MPCSSER/MPC
WMEEETTE| fo4mo220 3EMADO B174530 20737594 58333535 504D202C 33363543 532F4D78 553K, MPCIEIxM/S
WM 20205050 3A202020 ECES290 B5YIRIES 36354350 78754033 GF4D2820 GFEIE1EE PCOE3Mex_(Manaco a
yM:00000100 | DADD20R4 2D2D2038 2D2D2D2D 2D2D2D2D 40202029 36354350 00203437 2D203B0A), MPCSE74.Ek; -
YM:00000110 | 2D2D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2b 2D2b2b2b zbzbzbab -
YM:00000120 | 202D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2D 2D2D2D2b 2D2b2b2b zbzbzbab -
YM:00000130 | 20202020 20202020 3B0ADDZ0 43504020 S A P I e
YM:00000140 | 58583535 23284020 0ADD2029 2040020 0ADD202D BF432038 20206572 20202020 -off; Core. o n
20202020 32652034 00203030 4D203B0A oco.i 6200 %k;.
FE7SEEET 75746361 20726572 46203420 anufacturer i F
00000000001000C0 | 73656572 656C6163 3BOANDZ0 3BOAND20 reescale th; Gh;
0000000000100000 | 74754120 20726FE8 20202020 34202020 _AULROT e
00000000001000ED | 43455220 3B0AOD20 £1745320 20737574 _REI_4;._Status
. . 00000000001000F0 | 20202020 34202020 ECES7220 E573E165
Data is copied from the 0000000000100100 | DAODZ0E4 20202038 202D2D2D 202D2D2D
; 0000000000100110 | 20202020 20202020 20202020 20202020
CPU to the serial Flash 0000000000100120 | 202D2D2D 2D2D202D 20202020 2D2D2D2D
0000000000100130 | 20202020 20202020 3B0AND20 43504020 LRk MR
0000000000100140 | 53583535 23234020 0A0D2029 62040020 55X B(H)_Ch_tth v
Example 2
; Verify the data between virtual memory and serial Flash.
FLASHFILE.COPY VM:0x0--0xFFFFF 0x100000 /ComPare
©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 29

Example 3

Copy the 1MB serial Flash data at 0x0 to the serial Flash

; at 0x800000.
FLASHFILE.COPY 0x0--0xFFFFF 0x800000

I

; Verify the 1MB serial Flash data between 0x0 and 0x800000.
FLASHFILE.COPY 0x0--0xFFFFF 0x800000 /ComPare

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 30

Modifying the Serial Flash Memory

The following command is available to modify the contents of the serial Flash memory. The maximum range
that one FLASHFILE.Set command can modify is only one sector of the Flash memory. If you want to
modify three sectors, you need three FLASHFILE.Set commands, etc.

FLASHFILE.Set [<address> | <range>] Y%<format> <data>

Example 1

Flash.

Modify the contents of the serial

; Write 4 bytes of data 0x12345678 to the address 0x100000.

; LE =

little endian

FLASHFILE.Set 0x100000 %LE %Long 0x12345678

Example 2

; Write data 0x0 to the address range 0x100000++0xFFF.
FLASHFILE.Set 0x100000++0xXFFF %Byte 0x0

Result (1)

2= B::FLASHFILE.DUMP 0x100000

0%100000 Long ¥ | [dTrack [¥]
4 B ¢ 0123456769ABCDEF
FFFFFFEF FRFFFFFF FRFFFFFF RWALLEEERResicis a
FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEeeceerreee
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF EEEEEEEEEeEseeee o
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FEEEEEEEEEEEEEEE o
0000000000100050 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF GEDEEEEEEEEEEEee o
Result (2)
£5 B::FLASHFILE.DUMP 0x100FE0 =([=E3
MalM W Long % [Track [¥]
0 4 g L 0123456789ABCDEF |
+00000000 00000000 00000000 00000000 [TRaRTmaeiaRaeaes o
00000000 00000000 00000000 00000000 fREERERyEEsEEssERY
00000000 00000000 00000000 00000000 fREERERyEEsEEssERY
00000000 00000000 00000000 00000000 [RERRREEsSEEmEERY
00000000 00000000 00000000 00000000 [REREEEESSEEREREY A
00000000 00000000 00000000 00000000 fREERERyEEsEEssERY
00000000 00000000 00000000 00000000 fREERERyEEsEEssERY
00000000 00000000 00000000 00000000 B4 SN EENEEYS
FFFFFFFF FRFFFFRF FRFFFFFE FRFFFFFF CREECEEcEcerrercr
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF fEEEEEEEceeerree
0000000000101070 | FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF SECDEEEEEEEEEEEE o
Example 3
; A serial Flash has 64KB per sector (0x10000).
; Write data 0x0 from 0x100000 to Ox12FFFF in the serial Flash.
FLASHFILE.Set 0x100000++0xFFFF %Long 0x0
FLASHFILE.Set 0x110000++0xFFFF %Long 0x0
FLASHFILE.Set 0x120000++0xFFFF %Long 0x0
©1989-2024 Lauterbach Serial FLASH Programming User’s Guide | 31

Other Useful Commands

The CPU cannot read serial Flash memories directly. But TRACE32 provides special commands for reading
serial Flash memories. The contents of the serial Flash are displayed in a window.

Reading the Serial Flash

The following command allows to read the serial Flash memory.
I FLASHFILE.DUMP [<address>] [/<format>] Display a hex-dump of the serial Flash.
Example

; Display a hex-dump of the serial Flash starting at 0x1000.
; Display the information in a 32-bit format (/Long option).
FLASHFILE.DUMP 0x1000 /Long

Result

£E B::flashfile.dump 0x1000

0x1000

MalN v m [Track [#] Hex

address a 4 8 LU lestab g IABCDEF 1

0000000000001000 FE3510201 31510003 31A01201 31A02202 SERE5RQ15L515 51 -
0000000000001010 | 3AFFFFFA E3510102 31510003 31A01081 LE6:5E0E5HQ15481
0000000000001020 | 31A02082 3AFFFFEA E3A00000 E1530001 3_f15EF :HNAEGNSE
0000000000001030 | 20433001 21800002 E1530041 20433041 S0C 54319455400 v
0000000000001040 | 21800042 E1530121 20433121 21800122 24811558 10 " 520 A
0000000000001050 | 1530141 20433141 21800142 E3530000 4555910 058 1HNSE
0000000000001060 | 116802222 11401221 1AFFFFEF E35C0000 “"5iT181ERE aie
0000000000001070 | 42600000 E1ADFOOE E13C0000 42600000 44 EBSEA5HN<EEN B
0000000000001080 | E1ADFO0E 33A00000 01AD0FCC 03800001 $58504A3C5035505
0000000000001090 | E1ADFO0E E3510801 21A01821 23402010 $585 50814811, 84
000000000000104A0 | 33802000 E3510C01 21A01421 22522008 §R35E0E14018.3"
00000000000010B0 | E3510010 21401221 22822004 E3510004 LHOEVLR1EE"ENAE
00000000000010C0 | 82822003 90822041 E35C0000 E1A00233 5529 534NAE33AE
0000000000001000 | 42600000 E1ADFOOE ES2DE004 EBO00230 H4°EBERASEE-Enghe
00000000000010E0 | E3AD0000 E49DF004 E1AD0000 E1A00000 HHAESEECHNAEUARE
00000000000010F0 | E1A00000 E1AD0000 E1AD0000 E1AD0000 GHASHNASHNAEdNAE
0000000000001100 | 3510000 04000032 42611000 E1BOCOO0 HHOEZHHLHLaBHLES
0000000000001110 | 426500000 E2512001 11500001 03A00000 $E°BE_0554P1HNAE
0000000000001120 | 81110002 00000002 9A000026 E3A02000 $41554WHaN2d RE
0000000000001130 | E3510201 31510000 31401201 32822004 §308440153818.52
0000000000001140 | TAFFFFFA E3510102 31510000 31401081 SEF : SE0EHHQ1S 481
0000000000001150 | 32822001 3AFFFFFA 2522003 BAOODODE §_%25EC:5 RESHHE
0000000000001160 | E1500001 20400001 E1500041 20400041 54PS SHE_THPE T E.
0000000000001170 | E1500121 20400121 E1500141 20400141 15PS 1 EE_ 5PE Y SE v

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide | 32

Saving the Serial Flash Device

The following command is available to save the contents of the serial Flash memory to a file.

FLASHFILE.SAVE <file> <range> Save the contents of the serial Flash
memory into <file>.

Example

; Save 1MB of the serial Flash data starting at 0x0 to the file
; my_dump.bin.
FLASHFILE.SAVE my dump.bin 0x0--0xFFFFF

©1989-2024 Lauterbach Serial FLASH Programming User's Guide | 33

Full Examples

Example 1
CPU: STM32F103 (Cortex-M3 core)
Serial Flash: M25P64 (STMicroelectronics, 64Mbit)
Serial Flash CS: Connected to GPIO B.2
RESet
SYStem.RESet
SYStem.CPU STM32F103ZE
SYStem.Up

gosub enable_ SPI

; Reset the Flash declaration within TRACE32.
FLASHFILE.RESet

; For the serial Flash CS connected GPIO B.2 (group B, port number2)
; GPIO B.2 data output register 0x40010COC

9 <SPI Tx reg> <SPI Rx reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x4001300C 0x4001300C 0x40010co0C 0x2

FLASHFILE.TARGET 0x20000000++0x1fff 0x20002000++0x1FFF
~~/demo/arm/flash/byte/spi64_stm.bin

; Read Flash manufacture and device ID.
FLASHFILE.GETID

; Erase serial Flash.
FLASHFILE.Erase 0x0--0xXFFFFF

; Program my file.bin to serial Flash.
FLASHFILE.LOAD my file.bin 0x0

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 34

; Save to my dump.bin from serial Flash
FLASHFILE.SAVE my dump.bin 0x0--0xFFFFF

enable SPI:

; Clock Enable related with the SPI and GPIO group
PER.S SD:0x40021014 %Long 0x114 ; FSCM Clock Enable
PER.S SD:0x40021018 %Long 0x100C ; SPI1 & GPIO A/B Enable

PER.S SD:0x40010C00 %LONG 44444344 ; GPIOB.2 output
PER.S SD:0x40010C0C %LONG 00000004 ; deselect the SPI FLASH CS(GPIOB.2)

PER.S SD:0x40013000 %WORD O0x30F ; SPI_TInit
PER.S SD:0x40013010 %WORD 0x7 ; SPI_CRC pol

&spi_enable=Data.word(SD:0x40013000) | 0x40
PER.S SD:0x40013000 %WORD &spi_enable ; SPI1 Enable

return

ENDDO

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 35

Example 2

CPU: The STR91x is based on a ARM966E core. It has a SSP protocol which is
similar to a STM SPI controller.
Serial Flash: ST Microelectronics M25P64 (64Mbit)

Serial Flash is connected to GPIO 5.7 on the STR91x.
Then it is controlled by GPIO5 register (0x5800B3FC).

; Select str910 as target CPU.

; Establish the communication between the debugger and the target CPU.

SYStem.RESet

SYStem.CPU STR910
SYStem.Option.ResBreak OFF
SYStem.JtagClock RTCK
SYStem.Up

; Enable SSP (Synchronous Serial Peripheral) & configuration of pins.
PER.Set ASD:0x5C002018 %Long 0x80300

PER.Set ASD:0x5C002020 %Long 0x80300

PER.Set ASD:0x5C002028 %Long 0x80300

PER.Set ASD:0x5800B400 %Long 0xbO0

PER.Set ASD:0x5C002058 %Long 0x4a00

PER.Set ASD:0x5C002098 %Long 0x0

PER.Set ASD:0x5C002078 %Long 0x40

PER.Set ASD:0x5C007000 %Long 0x5c7 ;SSPO0_CRO
PER.Set ASD:0x5C007010 %Long 0x2 ;SSPO0_PR
PER.Set ASD:0x5C007004 %Long 0x2 ;SSP0 Enable

FLASHFILE.RESet

9 <SPI Tx Reg> <SPI Rx Reg> <CS GPIO reg> <CS bit>
FLASHFILE.CONFIG 0x5C007008 0x5C007008 0x5800B3FC 0x7

5 <code_range> <data_range> <algorithm_ file>

FLASHFILE.TARGET 0x4000000++0x1FFF 0x4002000++0x1FFF

~~/demo/arm/flash/byte/spi64_stm.bin

; Programming for the serial Flash
FLASHFILE.GETID

FLASHFILE.ERASE 0x0--0xXFFFFF
FLASHFILE.LOAD * 0x0

FLASHFILE.SAVE dump.bin 0x0--0xXFFFFF
ENDDO

©1989-2024 Lauterbach Serial FLASH Programming User’s Guide

36

FLASH Programming via Boundary Scan

The BSDL commands of TRACES32 are used to program external FLASH memories via boundary scan.
Important BSDL-specific steps are:

. Check that the bypass mode works.
. Check that the IDCODE matches.
J Define the FLASH pin connection.

J Enable serial FLASH programming via boundary scan and define the flash type.

Serial FLASH programming then continues with the FLASHFILE commands described in this manual. The
following PRACTICE script (*.cmm) illustrates the BSDL-specific steps by way of these examples:

J Example 1 for the SPI protocol

J Example 2 for the 12C protocol

Example 1 for the SPI Protocol

CPU: AT91SAM3U4
Serial FLASH: M25P64 (STMicroelectronics, 64Mbit)
Pin connection: SPI_CE: Port A16

SPI_SCK: Port A15
SPI_MOSI: Port A14
SPI_MISO: Port A13

©1989-2024 Lauterbach Serial FLASH Programming User’'s Guide | 37

SYStem.JtagClock 15.Mhz
BSDL.RESet
BSDL.FILE ./sam3ude_lqgfpld4d.bsdl

BSDL . HARDRESET
BSDL . SOFTRESET

IF BSDL.CHECK.BYPASS ()
(
IF BSDL.CHECK.IDCODE ()

(
BSDL.FLASH.IFDefine RESet

BSDL.FLASH.IFDefine SPT 1.

BSDL.FLASH.IFMap CE PAl6
BSDL.FLASH.IFMap SCK PAlS5
BSDL.FLASH.IFMap SI PAl4
BSDL.FLASH.IFMap SO PAl3
BSDL.FLASH.INIT SAFE

FLASHFILE.BSDLaccess ON

FLASHFILE.BSDLFLASHTYPE SPI64

FLASHFILE.GETID

7

7

’

set JTAG clock
reset boundary scan configuration
load the required BSDL file

toggle TRST N pin
do a sequential JTAG reset

check, if BYPASS mode works
check, if the IDCODE matches

reset the boundary scan flash
configuration

define boundary scan flash interface:

- protocol: SPI

- SPI flash memory connected to IC1

of the boundary scan chain

map generic SPI pin CE to port PAl6

map generic SPI pin SCK to port PALS

map generic SPI pin SI to port PAl4
map generic SPI pin SO to port PAl3

Initialize boundary scan chain to

safe values according to SAFE state

from BSDL file

Enable serial flash programming via

boundary scan
; define serial flash type

get the SPI flash memory ID

; continue with serial flash programming, e.g.:

; FLASHFILE.DUMP 0x0

; FLASHFILE.ERASE 0x0--OxFFFFF

; FLASHFILE.LOAD * 0x0

ENDDO

©1989-2024 Lauterbach

Serial FLASH Programming User’s Guide

38

Example 2 for the 12C Protocol

CPU: AT91SAM3U4
eMMC FLASH: ST24C08 (STMicroelectronics, 8kbit)
Pin connection: 12C_SCL: Port A25

12C_SDA: Port A24

SYStem.JtagClock 15.Mhz

BSDL.RESet

BSDL.FILE ./sam3ude_lgfpl44d.bsdl

BSDL .HARDRESET
BSDL.SOFTRESET

IF BSDL.CHECK.BYPASS ()

(
IF BSDL.CHECK.IDCODE

(

BSDL.FLASH.IFDefine RESet

BSDL.FLASH.IFDefine I2C 1.

BSDL.FLASH.IFMap SCL
BSDL.FLASH.IFMap SDA PA24

()

BSDL.FLASH.INIT SAFE

FLASHFILE.BSDLaccess ON

PA25

7

7

7

7

7

7

FLASHFILE.BSDLFLASHTYPE I2C08

FLASHFILE.GETID

7

set JTAG clock
reset boundary scan configuration
load the required BSDL file

toggle TRST N pin
do a sequential JTAG reset

check, if BYPASS mode works
check, if the IDCODE matches

reset the boundary scan flash
configuration

define boundary scan flash interface:

- protocol: I2C

- I2C flash memory connected to IC1l of
the boundary scan chain

map generic I2C pin SCL to port PA25
map generic I2C pin SDA to port PA24
Initialize boundary scan chain to safe
values according to SAFE state

from BSDL file

Enable serial flash programming via
boundary scan

; define serial flash type

get the I2c flash memory ID

; continue with serial flash programming, e.dg.:
; FLASHFILE.DUMP 0x0

; FLASHFILE.ERASE 0x0--0x3FF

; FLASHFILE.LOAD

* 0x0

©1989-2024 Lauterbach

Serial FLASH Programming User's Guide | 39

	Serial FLASH Programming User’s Guide
	Introduction
	How This Manual is Organized
	Related Documents
	Contacting Support

	List of Abbreviations
	Background Knowledge
	What is a Serial Flash Device?
	About SPI Interface Controllers in Serial Flash Memories
	About Blocks and Pages
	File Name Convention for Serial Flash Drivers

	Standard Approach
	Identifying and Running Scripts for Serial Flash Programming
	If There Is No Script

	Scripts for SPI Controllers
	Establishing Communication between Debugger and Target CPU
	Configuring the SPI Controller
	Resetting Default Values
	Informing TRACE32 about the Serial Flash Register Addresses (SPI)
	Informing TRACE32 about the Serial Flash Programming Algorithm
	Memory-Mapped serial Flash
	Non-Memory-Mapped serial Flash
	Identifying the Correct Driver Binary File for a Serial Flash Device
	Finding the <serialflash_code> of Your Serial Flash Device
	Example for SPI Controllers

	FLASHFILE Declaration Examples
	Declaration Example for STM32F103 (Cortex-M3)
	Declaration Example for AT91SAM9XE (ARM9)

	Checking the Identification from the Serial Flash Device
	Erasing the Serial Flash Device
	Programming the Serial Flash Device
	Copying the Serial Flash Memory
	Modifying the Serial Flash Memory

	Other Useful Commands
	Reading the Serial Flash
	Saving the Serial Flash Device

	Full Examples
	Example 1
	Example 2

	FLASH Programming via Boundary Scan
	Example 1 for the SPI Protocol
	Example 2 for the I2C Protocol

