LAUTERBACH A

OS Awareness Manual
Windows CEG/EC7/EC20

OS Awareness Manual Windows CEG/EC7/EC20

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manuals for WindOWsccooiireeeimiirncssmeressscerssssssmsesssssssse s sessssssssessssmssneesss —~
OS Awareness Manual Windows CEB/EC7/EC20c.ccccceevvcicsssmsmmmmmnsssssssssssssssssnsmmssssssssns 1
[T o 5

L0 =T T 5
Terminology 5

Brief Overview of Documents for New Users 5
Supported Versions 6

(070 0T T - 110 o 7
Manual Configuration 7
Automatic Configuration 8
Quick Configuration Guide 8
Hooks & Internals in Windows CE 8
== 1 U= 9
Display of Kernel Resources 9
Task-Related Breakpoints 9
Thread Stack Coverage 10
Task Context Display 11
MMU Support 12
Windows CE MMU Basics 12

Space IDs 12

MMU Declaration 13
Scanning System and Processes 16
Symbol Autoloader 17

SMP Support 18
Dynamic Task Performance Measurement 18
Task Runtime Statistics 19
Function Runtime Statistics 20
Windows CE SPecCific MENUccooiiiiiiiiicciccieecccier e nn e s sss s ssssmssse s s s e e e s ss s s sssmmsmms s s s s enssennnns 22
Debugging EDOOL ... s s 24
Debugging Windows CE Kernelccoociiiimmmmniiessnnsssss s s sssssssss s ssssssssss s 25
©1989-2024 Lauterbach OS Awareness Manual Windows CE6/EC7/EC20 | 2

Windows CE Commands

Downloading the Kernel

Debugging the Kernel Startup

Debugging the Kernel

Debugging User Processes and DLLs

Debugging the Process
Debugging DLLs

Trapping Unhandled Exceptions

TASK.HaNDle
TASK.MMU.SCAN
TASK.Option
TASK.Process
TASK.ROM.FILE
TASK.ROM.MODule
TASK.sYmbol
TASK.sYmbol.DELete
TASK.sYmbol.DELeteDLL
TASK.sYmbol.DELeteRM
TASK.sYmbol.LOAD
TASK.sYmbol.LOADDLL
TASK.sYmbol.LOADRM
TASK.sYmbol.Option
TASK.Thread
TASK.Watch
TASK.Watch.ADD
TASK.Watch.DELete
TASK.Watch.DISable
TASK.Watch.DISableBP
TASK.Watch.ENable
TASK.Watch.ENableBP
TASK.Watch.Option
TASK.Watch.View
TASK.WatchDLL
TASK.WatchDLL.ADD
TASK.WatchDLL.DELete
TASK.WatchDLL.DISable

TASK.WatchDLL.DISableBP

TASK.WatchDLL.ENable
TASK.WatchDLL.ENableBP
TASK.WatchDLL.Option
TASK.WatchDLL.View

Windows CE PRACTICE Functions

Display global handles

Scan process MMU space

Set awareness options

Display processes

Display built-in files

Display built-in modules
Process/DLL symbol management
Unload process symbols and MMU
Unload DLL symbols and MMU
Unload ROM module symbols
Load process symbols and MMU
Load DLL symbols and MMU
Load ROM module symbols

Set symbol management options
Display threads

Watch processes

Add process to watch list

Remove process from watch list
Disable watch system

Disable process creation breakpoints
Enable watch system

Enable process creation breakpoints
Set watch system options

Show watched processes

Watch DLLs

Add DLL to watch list

Remove DLL from watch list
Disable DLL watch system
Disable DLL creation breakpoints
Enable DLL watch system

Enable DLL creation breakpoints
Set DLL watch system options
Show watched DLLs

25
26
27

28
28
30
31

32
32
32
33
34
35
35
36
36
36
37
37
37
38
38
39
40
40
40
41
41
41
42
42
43
46
46
46
47
47
47
48
48
49

51

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20

TASK.CONFIG()
TASK.DLL.CODEADDR()
TASK.DLL.CURRENT()
TASK.DLL.DATAADDRY()
TASK.DLL.MAGIC()
TASK.DLL.SECADDR()
TASK.DLL.SECNUM()
TASK.LOG2PHYS()
TASK.PROC.CODEADDR()
TASK.PROC.DATAADDR()
TASK.PROC.M2S()
TASK.PROC.MAGIC()
TASK.PROC.S2M()
TASK.PROC.SPACEID()
TASK.ROM.ADDR()
TASK.ROM.MAGIC()
TASK.ROM.SECADDRY()
TASK.ROM.SECNUM()
TASK. THREAD.LIST()
TASK.THREAD.PROC()
TASK.Y.O()

OS Awareness configuration information
Address of code segment

‘magic’ of DLL

Address of data segment

‘magic’ of DLL

Address of section

Number of sections

Convert virtual address to physical address
Address of code segment

Address of data segment

Convert process magic number to space ID
Process magic number of process

Convert space ID to process magic nhumber
Space ID of process

Section address of ROM module

‘Magic’ of ROM module

Address of section

Number of sections

Thread list

Process of thread

Symbol option parameters

51
51
51
52
52
52
53
53
53
54
54
54
54
55
55
55
56
56
56
57
57

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20

4

OS Awareness Manual Windows CEG/EC7/EC20

Version 06-Jun-2024

History

28-Aug-18 The title of the manual was changed from “RTOS Debugger for <x>” to “OS Awareness
Manual <x>”.

Overview

The OS Awareness for Windows CE6/EC7/EC2013 contains special extensions to the TRACE32 Debugger.
This manual describes the additional features, such as additional commands and statistic evaluations.

Terminology

Windows CE uses the terms “processes” and “threads”. If not otherwise specified, the TRACE32 term “task”
corresponds to Windows CE threads.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 5

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Windows CE is supported for the following versions:

. Windows CE 6.0 on ARM architecture, MIPS, SH4 and x86
. Windows EC 7 on ARM architecture and x86

. Windows EC 2013 on ARM architecture and x86

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 6

Configuration

The TASK.CONFIG command loads an extension definition file called “wince6.t32” or “wince7.t32”
(directory “~~/demo/<processor>/kernel/wince/ce<ver>"). It contains all necessary extensions.

Automatic configuration tries to locate the Windows CE internals automatically. For this purpose all Windows
CE tables must be accessible at any time the OS Awareness is used.

If a system address is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

It is highly recommended to use the Automatic Configuration.

Only, if your Windows CE image is built with unusual default values, you may try to use the manual

configuration:
Format: TASK.CONFIG <file> <magic_address> <kdata>
<file>: wince6 | wince7 | wince8
<magic_address> Specifies the address, where the OS Awareness finds the current running
thread. This is found in kernel internal structures and calculated automati-
cally. Set it to “0”.
<args> This argument defines the start address of the Windows CE Kernel Data

Table.

See Hooks & Internals for details.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 7

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS

Awareness. For this purpose it is necessary that all Windows CE internal tables are accessible at any time,
the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which means
that this argument will be searched and configured automatically. For a fully automatic configuration omit all

arguments:
Format: TASK.CONFIG <file>
<file>: wince6 | wince7 | wince8

If a system address is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual
Configuration).

See Hooks & Internals for details.

See also the example “~~/demo/<processor>/kernel /wince/<version>/wince.cmm’.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following road map:

1. Carefully read the PRACTICE demo start-up script

(~~/demo/<processor>/kernel /wince/<version>/wince.cmm).

2. Make a copy of the PRACTICE script file “wince.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the Windows CE extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in Windows CE

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel data table. Ensure that
access to this table is possible every time when features of the OS Awareness are used.

Use the debug build of your platform.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 8

Features

The OS Awareness for Windows CE supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Windows CE components can be displayed:

TASK.Process Processes
TASK.Thread Threads
TASK.HaNDle Global handles
TASK.ROM.MODule Built-in modules
TASK.ROM.FILE Built-in files

For a description of the commands, refer to chapter “Windows CE Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 9

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Thread Stack Coverage

Use this feature with caution: In general, the paging mechanism of Windows CE prevents access of the
stack areas of non-running threads. Thus, the display may show only the addresses without the actual
maximum stack usage.

For stack usage coverage of Windows CE threads, you can use the TASK.STacK command. Without any
parameter, this command will set up a window with all active Windows CE threads. If you specify only a
magic number as parameter, the stack area of this threads will be automatically calculated.

To use the calculation of the maximum stack usage, flag memory must be mapped to the task stack areas,
when working with the emulation memory. When working with the target memory, a stack pattern must be
defined with the command TASK.STacK.PATtern (default value is zero).

To add/remove one thread to/from the thread stack coverage, you can either call the TASK.STacK.ADD rsp.
TASK.STacK.ReMove commands with the thread magic number as parameter, or omit the parameter and
select from the thread list window.

It is recommended to display only the thread you are interested in, because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 10

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

The TASK.Thread <thread> window contains a button (“context”) to execute this command with the
displayed thread, and to switch back to the current context (“current”).

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 11

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU commands refer to this necessity.

Windows CE MMU Basics

Windows CE divides the 32bit virtual address range into several areas.
The kernel address space covers the address range 0x80000000--OxFFFFFFFF.

All processes run in the same virtual address range that is 0x0--0x7FFFFFFF. If a process switch occurs, the
MMU of the CPU is reprogrammed, so that this address range points to the current running process.

DLLs are mapped commonly for all processes into the address range 0x40000000--Ox5fffffff.

The address range 0x70000000--0x7fffffff contains a shared heap, common to all processes.

Space IDs

Processes of Windows CE may reside virtually on the same address. To distinguish those addresses, the
Debugger uses an additional space ID that specifies to which virtual memory space the address refers. The
command SYStem.Option.MMUSPACES ON enables the additional space ID. Space ID zero is reserved
for the kernel. The space ID of processes equaled their process ID.

You may scan the whole system for space IDs using the command TRANSIation.ScanID. Use
TRANSIation.ListID to get a list of all recognized space IDs.

The function task.proc.spaceid(“<process>") returns the space ID for a given process. If the space ID is
not equal to zero, load the symbols of a process to this space ID:

LOCAL &spaceid
&spaceid=task.proc.spaceid ("myProcess")
Data.LOAD.eXe myProcess.exe &spaceid:0 /NoCODE /NoClear

See also chapter “Debugging User Processes and DLLs”.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 12

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range> Define MMU
<physical_kernel_address>]] table structure

<format> Options for ARM:

<format> Description

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes
WINCES6 Format used by Windows CE6 / EC7 / EC2013

<format> Options for MIPS:

<format> Description

WINCES6 Format used by Windows CE6

<format> Options for PowerPC:

<format> Description

STD Standard format defined by the CPU

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 13

<format> Options for RISC-V:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

Sv48 48-bit page table format (for SV64 targets only)

Sv48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Options for SH4:

<format>

Description

WINCEG6

Format used by Windows CE6

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAEG4L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20

14

<base_address>

<base_address> specifies the base address of the kernel translation table.
This is currently unused. Specify “0”.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the virtual to physical address translation of the kernel address
range. See your config.bib file and the example scripts for the kernel address range.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

When declaring the MMU layout, you should also create the kernel translation manually with
TRANSIation.Create.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. Additionally the common DLLs and the shared heap can be accessed by any process with
the same address translation. Use the command TRANSIation.COMMON to define the complete address
ranges that are addressed by the kernel, common DLLs and shared heap.

And don’t forget to switch on the debugger’s MMU translation with TRANSIation.ON
Example:

; kernel virtual address range: 0x88000000--O0x8fffffff,

; physical RAM starts at 0x20000000

MMU . FORMAT WINCE6 0 0x88000000--0x8fffffff 0x20000000
TRANSlation.Create 0x88000000--0x8fffffff 0x20000000
TRANSlation.COMMON 0x40000000--0x5fffffff 0x70000000--Oxffffffff
TRANSlation.ON

Please see also the sample scripts in the ~~/demo directory.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 15

Scanning System and Processes

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. You can either scan the MMU tables and place a copy of them into the
debugger's MMU table, or you can use a table walk, where the debugger walks through the tables each time
it accesses a virtual address.

The command MMU.SCAN only scans the contents of the current processor MMU settings. Use the
command MMU.SCAN ALL to go through all space IDs and scan their MMU settings. Note that on some
systems this may take a long time. In this case you may scan single processes

To scan the address translation of a specific process, use the command MMU.SCAN TaskPageTable
<process>. This command scans the space ID of the specified process.

TRANSIation.List shows the debugger’s address translation table for all scanned space IDs.

If you set TRANSIation.TableWalk ON, the debugger tries first to look up the address translation in its own
table (TRANSIation.List). If this fails, it walks through the target MMU tables to find the translation for a
specific address. This feature eliminates the need of scanning the MMU each time it changed, but walking
through the tables for each address may result in a very slow reading of the target. The address translations
found with the table walk are only temporarily valid (i.e. not stored in TRANSIation.List), and are invalidated
at each Go or Step.

See also chapter “Debugging Windows CE Kernel”.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 16

Symbol Autoloader

The OS Awareness for Windows CE 6/7 contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Windows CE components and the appropriate
load command. Whenever the user accesses an address within an address range specified in the
autoloader, the debugger invokes the appropriate command. The command is usually a call to a PRACTICE
script that loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader can be configured to react only on processes, ROM modules, (all) libraries, or libraries of the
current process (see also TASK.sYmbol.Option AutoLoad). It is recommended to set only those
components you are interested in, because this significantly reduces the time of the autoloader checks.

The autoloader reads the target’s tables for the chosen components and fills the autoloader list with the
components found on the target. All necessary information, such as load addresses and space IDs, are
retrieved from kernel-internal information.

I sYmbol.AutoLOAD.CHECKWINCE " <action>"

<action> Action to take for symbol load, e.g. "DO autoload"

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

I sYmbol.AutoLOAD.CHECK [ON | OFF]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process, module or library table are not covered.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 17

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

This chapter only applies to Windows CE 7.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 18

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

On ARM architectures, Windows CE serves the ContextID register with the address space ID (ASID) of the
process. This allows tracking the program flow of the processes and evaluation of the process switches. But
it does not provide performance information of threads.

To allow a detailed performance analysis on Windows CE threads, the context ID must contain the thread ID.
Set the lower 8 bit of the context ID register with the process’ ASID, and set the upper 24 bit with the ID of the
thread, i.e. “(thread.dwId << 8) | process.bASID".

The Windows CE awareness needs to be informed about the changed format of the context ID:
TASK.Option THRCTX ON

To implement the above context ID setting, either patch the kernel or implement OEMReschedule:
1) Patching the kernel

For Windows CE 6:

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 19

Patch the file WINCEG600\private\winceos\coreos\nk\kernel\arm\vmarm.c:
Edit the two(!) ARMSetASID() calls in MDSwitchVM() and MDSetCPUASID() and change it into:

ARMSetASID ((RunList.pth->dwId<<8) | pprc->bASID) ;

For Windows Embedded Compact 7:
Follow the instructions shown in ~~/demo/arm/kernel /wince/ce7/context-id-patch. txt
2) implement OEMReschedule():

In the OAL layer, implement the OAL function OEMReschedule() that writes
(dwThrdId<<8 | process)
to the ContextID register.):

All kernel activities up to the thread switch are added to the calling thread.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 20

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20 |

21

Windows CE specific Menu

The menu file “wince6.men”/"wince7.men” contains a menu with Windows CE specific menu items. Load
this menu with the MENU.ReProgram command.

You will find a new menu called Windows CE.

. The Display menu items launch the kernel resource display windows.
See chapter “Display of Kernel Resources”.

o Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

Use Load Symbols... and Delete Symbols... to load rsp. delete the symbols of a specific
process. You may select a symbol file on the host with the Browse button.
See also TASK.sYmbol.

Debug Process on main... allows you to start debugging a process on its main() function.
Select this prior to starting the process. Specify the name of the process you want to debug.
Then start the process in Windows CE. The debugger will load the symbols and halt at
main(). See also the demo script “app_debug.cmm”.

Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

Scan Process MMU Pages... scans the MMU pages of the specified process.
Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

. DLL Debugging refers to actions related to library based debugging.
See also chapter “Debugging DLLs”.

Use Load Symboils... and Delete Symbols... to load rsp. delete the symbols of a specific
library. Please specify the library name and the process name that uses this library. You may
select a symbol file on the host with the Browse button. See also TASK.sYmbol.

Watch DLLs opens a DLL watch window or adds or removes DLLs from the DLL watch
window. Specify a DLL name. See TASK.WatchDLL for details.

Scan Process MMU Pages... scans the MMU pages of the specified process. Specify the
name of the process that uses the library you want to debug.

Scan All MMU Tables performs a scan over all target side kernel and process MMU pages.
See also chapter “Scanning System and Processes”.

J Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

List Components opens a sYmbol.AutoLOAD.List window showing all components currently
active in the autoloader.

Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

Set Loader Script... allows you to specify the script that is called when a symbol file load is
required. You may also set the automatic autoloader check.

Use Set Components Checked... to specify, which Windows CE components should be

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 22

managed by the autoloader. See also TASK.sYmbol.Option AutoLOAD.

. The Stack Coverage submenu starts and resets the Windows CE specific stack coverage and

provides an easy way to add or remove threads from the stack coverage window. See also
chapter “Thread Stack Coverage”.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 23

Debugging Eboot

Eboot is the bootloader of Windows CE. It runs on virtual addresses, but with a single address space. Keep
SYStem.Option.MMUSPACES OFF for debugging Eboot.

If you want to download Eboot with the debugger, load the plain binary “eboot.nb0” to the physical start
address of the Eboot image. The virtual start address is defined in eboot.bib as “RAMIMAGE”. Usually the
physical start address is the start address of RAM plus the offset within the RAMIMAGE address.

Example:

; eboob.bib says e.g.:

B NK 80040000 00080000 RAMIMAGE
; RAM is physically at e.g. 0x20000000

; then load image to physical address 0x20040000
Data.LOAD.Binary EBOOT.nb0 0x20040000
Register.Set PC 0x20040000

The Windows CE awareness contains a special extension that reads the header of the Eboot image. Load
this extension and specify the physical address of the Eboot image.

Example:

load eboot extension for section detection
; specify physical address of eboot image
EXTension.CONFIG eboot.t32 0x20040000

’

Now you have access to the header information and you can load the symbols of Eboot. The symbol file is
called “eboot.exe/pdb”. Use the following sequence to load the symboals:

; load eboot symbols

&text=eboot.addr (0) ; code segment

&data=eboot.addr (1) ; data segment

Data.LOAD.EXE eboot.exe /NoCODE /NoClear \
/RELOC .text AT &text /RELOC .data AT &data

If you start from reset (MMU switched off), use an on-chip breakpoint and let the MMU initialize:

Go main /Onchip ; main() or BootloaderMain ()

After this, you're ready to debug Eboot.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 24

Debugging Windows CE Kernel

Windows CE runs on virtual address spaces. The kernel uses a static address translation, usually starting
from virtual address 0x80000000 mapped to the physical start address of the RAM. Each user process gets
its own user address space when loaded, usually starting from virtual 0x0, mapped to any physical RAM
area that is currently free. Due to this address translations, debugging the Windows CE kernel and the user
processes requires some settings to the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each process that has its own
memory space gets a space ID that is equal to its process ID.

See also chapter “MMU Support”.

Downloading the Kernel

The Windows CE make process can generate different outputs (usually binary file called “nk.nb0”). For
downloading the Windows CE kernel, you may choose whatever format you prefer.

If you start the Windows CE kernel from Flash, or if you download the kernel via Ethernet, do this as you are
doing it without debugging.

If you want to download the Windows CE image using the debugger, you may use “nk.bin” (linked
executable) or “nk.nb0” (absolute binary).

The nk.bin file is linked onto virtual addresses. If the virtual addresses of the kernel equal to the physical
download address (e.g. on SH architectures), you can download it without further parameters. If the virtual
addresses differ from the physical addresses, you have to specify the offset (calculate it by physical-virtual).

Examples:

; load image to the linked addresses:
Data.LOAD.EXE nk.bin

; load image (linked to virtual 0x80000000) to physical 0x20000000
Data.LOAD.EXE nk.bin 0x20000000-0x80000000
; set PC on physical start address

If you use the plain binary image (nk.bin), you have to specify, to which address to download it. The
Windows CE kernel image is usually located at the physical start address of the RAM (note that an eventual
boot loader in RAM may be overwritten).

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 25

Examples:

; load the image to physical start address of RAM
Data.LOAD.Binary nk.nb0 0x20000000

When downloading the kernel via the debugger, remember to set startup options that the kernel may
require, before booting the kernel. Check the config.bib file for the start address of “NK” and set the PC on

the physical representation of this address:

; set PC to physical start address
Register.Set pc 0x20000000

Please see the example scripts in the ~~/demo directory.

Debugging the Kernel Startup

Use this chapter only, if you really want to debug the very early stages of the Windows CE startup.

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the nk . exe file are bound to virtual addresses. If you want to debug this (tiny) startup
sequence, you have to load and relocate the symbols.

. Downloading the kernel via debugger:
Download the kernel image as described above. The PC should be at the image entry point.
i Downloading the kernel via Ethernet:

Before booting Windows CE, set an on-chip breakpoint onto the physical image start address. E.g.:

Break.Set 0x20000000 /Onchip

Now let the boot monitor download and start the Windows CE image. It will halt on the start address,
ready to debug. Delete the breakpoint when hit.

Load the Windows CE Awareness. The MMU is not yet initialized, so we have to inform the awareness of the
physical address of the image header information:

; load wince awareness for section detection
TASK.CONFIG winceb ; or wince7 for CE7
TASK.ROM.PA 0x20000000 ; specify physical address of image

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 26

Get the section addresses from the header information and calculate the physical addresses out of these:

; load nk.exe symbols to physical addresses
&text=task.rom.addr ("nk.exe",0)-0x80000000+0x20000000
&data=task.rom.addr ("nk.exe",1)-0x80000000+0x20000000
Data.LOAD.EXE nk.exe /NoCODE \

/RELOC .text AT &text /RELOC .data AT &data

You are now ready to debug the startup of the kernel up to the point, where the MMU is switched on.

As soon as the processor MMU is switched on, you have to reload the symbol to its virtual addresses. The
global kernel data pointer is not yet set up, so inform the awareness of the now virtual address of the header

information:

; explicitely specify virtual address of image
TASK.ROM.VA 0x80000000

And reload the symbols of nk.exe:

; load nk.exe symbols to physical addresses
&text=task.rom.addr ("nk.exe",0)
&data=task.rom.addr ("nk.exe",1)
Data.LOAD.EXE nk.exe /NoCODE \

/RELOC .text AT &text /RELOC .data AT &data

Now you're ready to debug the rest of the kernel startup, with MMU switched on.

Debugging the Kernel

For debugging the kernel itself, and for using the Windows CE awareness, you have to load the virtual
addressed symbols of the kernel into the debugger. The files “nk.exe” and “nk.pdb”, which reside in your
build directory, contain all kernel symbols with virtual addresses.

Load the kernel symbols with the command:

TASK.sYmbol .LOAD "nk.exe"

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 27

Debugging User Processes and DLLs

Windows CE runs on virtual address spaces. Each user process gets its own user address space when
loaded, usually starting from virtual 0x0, mapped to any physical RAM area that is currently free. Due to this
address translations, debugging the Windows CE kernel and the user processes requires some settings to
the Debugger.

To distinguish those different memory mappings, TRACE32 uses “space IDs”, defining individual address
translations for each ID. The kernel itself is attached to the space ID zero. Each process that has its own
memory space gets a space ID that is equal to its process ID. Using this space ID, it is possible to address a
unique memory location, even if several processes use the same virtual address.

See also chapter “MMU Support”.

Load all process symbols with the option /NoC1lear, to preserve previously loaded symbols for other
components.

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID and to scan the process’ MMU settings.

Manually Load Process Symbols:

For example, if you've got a process called “hello” with the process ID 12. (the dot specifies a decimal
number!):

Data.LOAD.EXE hello.exe 12.:0 /NoCODE /NoClear

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “Windows CE PRACTICE Functions”).

If TRANSIation.TableWalk is OFF, you need to scan the MMU translation of this process:

MMU . TaskPageTable.SCAN 12.:0 ; scan MMU of process ID 12.

See also chapter “Scanning System and Processes”.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 28

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

TASK.sYmbol .LOAD "hello" ; load symbols and scan MMU

This command loads the symbols of “hello.exe” and scans the MMU of the process “hello”. See
TASK.sYmbol.LOAD for more information.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the

symbols of a process with

sYmbol . AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH "hello"

Debugging a Process From Scratch, Using a Script:

If you want to debug your process right from the beginning (at “main()” or “WinMain()”), you have to load the
symbols before starting the process. This is a tricky thing because you have to know the process ID, which
is assigned first at the process start-up. Set a breakpoint into the process start handler of Windows CE,
when the process is already loaded but not yet started. The function CELOG_ProcessCreateEx () may
serve as a good point. When the breakpoint is hit, check if the process is already loaded. If so, extract the
process ID, scan the process’ MMU and load the symbols. Windows CE loads the code first, if it is accessed
by the CPU. So you're not able to set a software breakpoint yet into the process, because it will be
overwritten by the swapper, when it loads actually the code. Instead, set an on-chip breakpoint to the main()
routine of the process. As soon as the process is started, the code will be loaded and the breakpoint will be
hit. Now you're able to set software breakpoints. See the script “app_debug.cmm” in the ~~/demo directory,
how to do this.

The “Windows CE” menu contains this procedure in a menu item: Windows CE -> Process Debugging ->
Debug Process on main... . See also chapter “Windows CE Specific Menu”.

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with:

sYmbol .Delete \\hello

If the autoloader is configured:

sYmbol .AutoLOAD.CLEAR "hello"

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 29

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging DLLs

If the process uses DLLs, Windows CE loads them dynamically to the process. The process itself contains
no symbols of the libraries. If you want to debug those libraries, you have to load the corresponding symbols
into the debugger.

Manually Load Library Symbols:

Start your process and open a TASK.Process window. Double click on the “magic” of the process using the
library, and expand the “modules” tree (if available). A list will appear that shows the loaded libraries and the
corresponding load addresses. Load the symbols to this address and into the space ID of the process. E.g.
if the process has the space ID 12., the library is called “mylib.dII” and it is loaded on address 0xff8000, use

the command:

Data.LOAD.EXE mylib.dll 12.:0xff8000 /NoCODE /NoClear

Of course, this library must be compiled with debugging information.
Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command:

TASK.sYmbol . LOADDLL "coredll"

tries to automatically load and relocate the appropriate DLL. It additionally sets the debugger MMU to allow
access to the DLL, even if it is not paged in. See TASK.sYmbol.LOADDLL for details.

Using the Symbol Autoloader:
If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the

symbols of a library with

sYmbol .AutoLOAD.CHECK
sYmbol .AutoLOAD.TOUCH "mylib.dl1l"

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 30

Debugging a DLL From Scratch, with Automatic Detection:

The TASK.WatchDLL command group implements an automatic handler and keeps track of a DLL launch
and the availability of the DLL symbols. See TASK.WatchDLL.View for details.

Trapping Unhandled Exceptions

An “unhandled exception” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. An unhandled exception is detected inside the kernel, if the mapping of page fails. If
so, the kernel (usually) prints out an error message with “PrintException()”.

To trap unhandled exceptions, set a breakpoint onto the label “PrintException”. When halted there, execute
one single HLL step to set up local variables, then use Var.Local to display the local variables of
“PrintException()”. This function is called with three parameters:

* “dwExcpld” contains the exception ID that happened;
e “pExr’ points to some more information about the exception;

e “pCtx” points to a structure containing the complete register set at the location, where the fault
occurred.

When halted at “PrintException”, you may load the temporary register set of TRACE32 with these values:

; adapt this script to your processor registers
; read all register values

&r0=v.value (pCtx.R0)

&rl=v.value (pCtx.R1)

; continue for all registers

&sr=v.value (pCtx.Cpsr)

&pc=v.value (pCtx.Pc)

; write all register values into temporary register set
Register.Set RO &r0 /Task Temporary

Register.Set Rl &rl /Task Temporary

; continue for all registers

Register.Set SR &sr /Task Temporary

Register.Set PC &pc /Task Temporary

Use Data.List, Var.Local etc. then to analyze the fault.

For some architectures, an example script called “exception.cmm?” is prepared for this. Check the
appropriate demo directory.

As soon as debugging is continued (e.g. “Step”, “Go”, ...), the original register settings at “PrintException” are
restored.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 31

Windows CE Commands

TASK.HaNDle Display global handles

Format: TASK.HaNDle

Displays the global handle table of Windows CE.
o BrTASK.HaNDIe [E=N =R

mag c type |[object cnt 'Io_ck name |

933F7414 [EVNT [|933F7940 1. 1. [SheTTDSTEvent A
933F7640 |EVNT |933F7AZ24 1. [DSTTimeChange

933F77C0O |EVNT |9346E964 D5TTzChange

933F79DC [EVNT |933F7BB0 DCOMSShRefreshSettings

ScmCreatedEvent
RotHintTable

933F7AQDD |EVNT |934BEBA4
9346E7CO |FMAP |934BE6BE
972ZA09B8 |[EVNT |97ZA07CO
97ZADBFE |EVNT |972A0724
972A448C [EVNT |972A43F0
972A43CC |[EVNT |972A4330
9EF16024 |EVNT |9EF121D4
SEFL16FDO [EVNT |9EF1Z000
9EF16EBES |EWNT |9EF16B1C
SEF1BASC [EVNT |9EF169CO
SEF16900 |EVNT |9EFl6864
9EF167A4 |EVNT |9EF16708

IPG_ADDR_CHANGE_EVENT
IP_ROUTE_CHANGE_EVENT
IP_ADDR_CHANGE_EVENT

R:PowerManager /NotificationQueue
PowerManager /ReloadActivityTimeouts
PowerManager /SystemActivity_Inactive
PowerManager /SystemActivity_Active
PowerManager /ActivityTimer,/SystemActivity
PowerManager /UserActivity_Inactive

Fra b B R R R
= =N e e e e e =T)

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread
structure).

The fields “magic” and the address fields are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.MMU.SCAN Scan process MMU space

Format: TASK.MMU.SCAN [<process>]
NOTE: If not explicitely advised, please use MMU.TaskPageTable.SCAN instead. See
MMU Support.

Scans the target MMU of the space ID, specified by the given process, and sets the Debugger MMU
appropriately, to cover the physical to logical address translation of this specific process.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 32

The command walks through all page tables which are defined for the memory spaces of the process and
prepares the Debugger MMU to hold the physical to logical address translation of this process. This is
needed to provide full HLL support. If a process was loaded dynamically, you must set the Debugger MMU
to this process, otherwise the Debugger won’t know where the physical image of the process is placed.

To successfully execute this command, space IDs must be enabled (SYStem.Option.MMUSPACES ON).

<process> Specify a process magic, ID or name.
If no argument is specified, the command scans all current processes.

Example:

; scan the memory space of the process "hello"
TASK.MMU.SCAN "hello"

See also MMU Support.

TASK.Option Set awareness options
Format: TASK.Option <option>
<option>: THRCTX [ON | OFF]
ThrSort [NONE | Handle]

Set various options to the awareness.

THRCTX Set the context ID type that is recorded with the real-time trace (e.g.
ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

ThrSort Sort the TASK.Thread window according to the given item.
Note: sorting slows down the display of the window.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 33

TASK.Process Display processes

Format: TASK.Process [<process>]

Displays the process table of Windows CE or detailed information about one specific process.

Without any arguments, a table with all created processes will be shown.
Specify a process name, ID or magic number to display detailed information on that process.

@?. B::TASK.Process "shell.exe” EI@
magic handle name spaceid [#thr [prio main thread |

[00DD [1. [251. |9EF3F594 .
threads
modules
handles
addresses

&% B:TASK Process EI@
spaceid [#thr [prio main thread

S |
o000 B2, 10. |9EFFED24 SystemStartupFunc

9EF3F280 |(00DDO00Z |shell.exe 0ooD 1. 251. |9EF3F594
9EFO745C (01550002 |udevice.exe 0155 3. 251. |9EFO7770
9EEEB000 (01670002 |udevice.exe 0167 1. 251. |9EEEBZ7S
9EDCCZDC (01810002 |udevice. exe 0181 1. 251. |9EEEB540
97304208 (03550002 |udevice.exe 0355 1. 251. |97304000
933FA000 |03AC0O002 |wbtshell.exe 03AC 2. 251. |933FAZFO
9EF37180 |(03BAO00Z |servicesd.exe 03BA 6. 251. |9EF37494
9341B380 |03CA0002 |wbtwizrd.exe 03CA 1. 251. [9341B694

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the process
structure).

The fields “magic”, “main thread”, “thread magic” and “entry function” are mouse sensitive, double clicking
on them opens appropriate windows. Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 34

TASK.ROM.FILE

Display built-in files

Format:

TASK.ROM.FILE

o5 B:TASK.ROM.FILE

(o] 8)

Displays a table with all files that are built-in into the Windows CE image.

agic T1lename filesize [loadoff |
51CC12C0 ceconf?ﬁ.h 000044B5 51724130 A
B1CC12DC |[wince.nls 00032ECE B1ASFB50
B1CC12F8 |initobj.dat 00005442 BOBFCO48
B1CC1314 |boot.hv 0000B000D 81A92720
B1CC1330 |default.hv 00036000 B1A945F8
B1CC134C |user.hv 00008000 51AA1054
B1CC1368 |[initdb.ini 00002454 B0O72F490
B1CC1384 |[close.Zbp 00000086 BOES5B44
B1CC13A0 |ok.2bp 00000086 BOES5BCC
B1CC13BC |stdsm. Zbp 00000406 BOES5C54
B1CC13DE |viewsm.Zbp 00000346 BOEGET54
B1CC13F4 |[stdsm. bmp 000007 FE BOEGBILC
B1CC1410 [viewsm. bmp 00000676 BOEGBEDC
B1CC142C |rsaenh.dll 000241F8 B1AA2140
B1CC1448 |sysroots.p7b 00002248 B1ABGES4
B1CC1464 |[ntImssp.dll OOO015EDD B1ABB170D v

< >

TASK.ROM.MODule Display built-in modules
Format: TASK.ROM.MODule

Displays a table with all modules that are built-in into the Windows CE image.

% B:TASK.ROM.MODule = =R
agic T1lename filesize [imgsize |entry 032 address [flags subsystem |
B1CEFDE0 [nk.exe 00016A00 |OO01BOO0 [BO226ESD 80221000 [xr code [Windows CE GUI A
B1CEFDB0 |kit1.d11 0002BEQ00 |0006A000 (B0O23CCEO 80235000 |xr code |Windows CE GUI
B1CEFDAD |kernel.d11 00079800 |00OFFOO0 (BO272480 80250000 |xr code |Windows CE GUI
B1CEFDCO |kd.d11 00014200 |000ZECQOO ([COOL1SAED C0011000 |xr code |Windows CE GUI
B1CEFDEQ |hd.d11 00003800 (00006000 (COO429C0 C0041000 |xr code |Windows CE GUI
B1CBFEOQ |osaxst0.d11 00028000 |000ZDO00 (COOBS7DO C0051000 |xr code |Windows CE GUI
B1CBFE20 |osaxstl.dll 00005A00 (00008000 |(COOB3330 CO081000 |xr code |Windows CE GUI
B1CBFE40 |coredll1.d11 000BE400 |000C1000 [40028E60D 40011000 |xr code |Windows CE GUI
B1CBFEGD |oalioctl.dll 00001000 (00004000 (COOS91190 C0091000 |xr code |Windows CE GUI
B1CEBFEB0 |k.coredll.d11 |000BEG0OO (OOOBEQOO |COOBB730 CO0AL000 |xr code |Windows CE GUI
B1CBFEAD |filesys.dll 000GEEQD |0007AQQO |(COLCSFBO CO161000 |xr code |Windows CE GUI
B1CEBFECO |romfsd.d11 00002EQD (00006000 |(COLEZBFO CO1E1000 |xr code |Windows CE GUI
B1CEBFEEQ |gwes.dl11 00137E00 |0013FO00 |[CO311960 CO1F1000 |xr code |Windows CE GUI
B1CEFFO0 |mgtt_o.dll 0004E400 (00051000 |(CO3BB460 C0341000 |xr code |Windows CE GUI
B1CEBFF20 |device.d11 00001600 (00004000 (CO3ALZ230 C03A1000 |xr code |Windows CE GUI
B1CEFF40 |udevice.exe 00004400 (00006000 (00011790 00011000 |xr code |Windows CE GUI
B1CEBFF&0 |devmgr.dll 0001CAQO |00OLFO00 |CO3CABBO |® CO3Bl000 |xr code |Windows CE GUI hd
©1989-2024 Lauterbach OS Awareness Manual Windows CE6/EC7/EC20 | 35

TASK.sYmbol Process/DLL symbol management

The TASK.sYmbol command group helps to load and unload symbols and MMU settings of a given
process or DLL. In particular the commands are:

TASK.sYmbol.LOAD Load process symbols and MMU

TASK.sYmbol.DELete Unload process symbols and MMU

TASK.sYmbol.LOADDLL Load DLL symbols and MMU

TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU

TASK.sYmbol.LOADRM Load ROM module symbols

TASK.sYmbol.DELeteRM Unload ROM module symbols

TASK.sYmbol.Option Set symbol management options
TASK.sYmbol.DELete Unload process symbols and MMU

Format: TASK.sYmbol.DELete <process>

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process and deletes its MMU entries.

<process> Specify the process name or path (in quotes) or magic to unload the
symbols of this process.

TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU

Format: TASK.sYmbol.DELeteDLL <dll>

When debugging of a DLL is finished, you should remove loaded DLL symbols and MMU entries.
This command deletes the symbols of the specified DLL and deletes its MMU entries.

<dll> Specify the DLL name or path (in quotes) or magic to unload the symbols of
this DLL.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 36

TASK.sYmbol.DELeteRM Unload ROM module symbols

Format: TASK.sYmbol.DELeteRM <rom_module>

This command deletes the symbols of the specified ROM module.

<process> Specify the ROM module name or path (in quotes) or magic to unload the
symbols of this ROM module.

TASK.sYmbol.LOAD Load process symbols and MMU

Format: TASK.sYmbol.LOAD <process>

In order to debug a user process, the debugger needs the symbols of this process, and the process specific

MMU settings (see chapter “Debugging User Processes”).
This command retrieves the appropriate space ID and triggers the symbol autoloader to load the symbols of
this process. Note that this command works only with processes that are already loaded in Windows CE (i.e.

processes that show up in the TASK.Process window).

<process> Specify the process name or path (in quotes) or magic to load the symbols of
this process.

TASK.sYmbol.LOADDLL Load DLL symbols and MMU

Format: TASK.sYmbol.LOADDLL <d//>

In order to debug a DLL, the debugger needs the symbols of this DLL, and the DLL specific MMU settings
(see chapter “Debugging DLLs”, page 30).

This command retrieves the appropriate load addresses and triggers the symbol autoloader to load the
symbols of this process. Note that this command works only with DLLs that are already loaded in Windows
CE (i.e. DLLs that show up in the detailed process window).

<dll> Specify the DLL name or path (in quotes) or magic to load the symbols of
this DLL.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 37

TASK.sYmbol.LOADRM Load ROM module symbols

Format: TASK.sYmbol.LOADRM <rom_module>

Specify the ROM module name or path (in quotes) or magic to load the symbols of this ROM module.

For modules (EXEs and DLLs) that are not process dependent (e.g. kernel and kernel DLLs), you can use
the address information of the ROM module list (see TASK.ROM.MODule) to load the symbols. This
command retrieves the appropriate load addresses and triggers the symbol autoloader to load the symbols
of this rom module. Note that this command will not work for processes or process bound DLLs.

TASK.sYmbol.Option Set symbol management options
Format: TASK.sYmbol.Option <option>
<option>: AutolLoad <option>

Set various options to the symbol management.
AutolLoad:

This option controls, which components are checked and managed by the symbol autoloader:

Process Check processes

Library Check all libraries of all processes

RomMod Check ROM modules

CurrLib Check only libraries of current process

ALL Check processes, libraries and ROM modules
NoProcess Don’t check processes

NoLibrary Don’t check libraries

NoRomMod Don’t check modules

NONE Check nothing.

The options are set *additionally*, not removing previous settings.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 38

Example:

; check processes and ROM modules
TASK.sYmbol.Option AutoLoad Process

TASK.sYmbol.Option AutoLoad RomMod

TASK.Thread

Display threads

Format:

TASK.Thread [<thread>]

Displays the thread table of Windows CE or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread magic number to display detailed information on that thread.

% B:TASK.Thread 0x933FB00D = =R
mag c handle owner current process |start address |
933FBO00 [03930002 |NK.EXE [NK. EXE [CODEDA3D .
state wait state current prio base prio
bTocked DbTocked 145, 145,
time mode stack user block profiling last error
kern ok bTocked of 00000000
creation time elapsed time user kern
01CAASAD 9A0DZ26F0 00000000 / 00000002
wakeup time suspend count quantum Teft
FFFD1445 0. 0000000A OOCD000A
t1sPtr stack: base size
D11EFFOO D11EQCQO COO010000
context: 5P = DL1EFSBC PC = 80273A11 context current
v
& B:TASK.Thread =R o
mag c handle owner state prio |start address [current process
933FBC34 |D3A70002 |NK.EXE bTocked 249, |[C0272990 NE. EXE A
933FBS00 |03A00002 |NK.EXE blocked 249, |[CO24BA00 NK. EXE
933FB19C [03950002 |NK.EXE blocked 249, |CODBELCO NK. EXE
933FBO0O0 (03930002 |NK.EXE blocked 145. |CODBDA3D NK. EXE
971ES7DC |038A0002 |NK.EXE blocked 251. |[CODBS9AD NK. EXE
971ES61C |03880002 |NK.EXE blocked 249, |CODB7520 NK. EXE
971ES000 [03810002 |NK.EXE sleeping |249. |CO2779F0 NK. EXE
972A169C |03630002 |NK.EXE blocked 251. [C0223960 NK. EXE
972ZA0E14 |034B0002 |NK.EXE blocked 251. [CO7S2C50 NK. EXE
972ZA0ZAC |033A0002 |NK.EXE blocked 251. |[CO7D&7CO NK. EXE
972AZEG4 |(031C0002 |NK.EXE blocked 251. [CO90D&40 NK. EXE
972A3B80 (03040002 |NK.EXE blocked 251. |[COB487BO NK. EXE
972A39C0 (03020002 |NK.EXE blocked 116. |[COBL1EF30 NK. EXE
97206280 |027FO002 |NK.EXE sleeping |100. |[CO97ETAD NE. EXE hd
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the thread

structure).

The fields “magic” and the address fields are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this task. “current” resets it to the

current context. See “Task Context Display”.

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20 | 39

TASK.Watch Watch processes

The TASK.Watch command group build a watch system that watches your Windows CE target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the watch commands are:

TASK.Watch.View Activate watch system and show watched processes
TASK.Watch.ADD Add process to watch list
TASK.Watch.DELete Remove process from watch list
TASK.Watch.DISable Disable watch system
TASK.Watch.ENable Enable watch system
TASK.Watch.DISableBP Disable process creation breakpoints
TASK.Watch.ENableBP Enable process creation breakpoints
TASK.Watch.Option Set watch system options

TASK.Watch.ADD Add process to watch list

Format: TASK.Watch.ADD <process>

Adds a process to the watch list.

<process> Specify the process name (in quotes) or magic.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Format: TASK.Watch.DELete <process>

Removes a process from the watch list.

<process> Specify the process name (in quotes) or magic.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 40

Please see TASK.Watch.View for details.

TASK.Watch.DISable Disable watch system

Format: TASK.Watch.DISable

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You'll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Format: TASK.Watch.DISableBP

Prevents the debugger from setting breakpoints for the detection of process creation. After executing this
command, the target will run in real time. However, the watch system can no longer detect process creation.
Automatic loading of process symbols will still work.

This feature is useful if you'd like to use limited breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Format: TASK.Watch.ENable

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 41

TASK.Watch.ENableBP

Enable process creation breakpoints

Format: TASK

.Watch.ENable

Enables the previously disabled breakpoints for detection of process creation.
Please see TASK.Watch.View for details.

TASK.Watch.Option Set watch system options
Format: TASK.Watch.Option <option>
<option>: BreakOptC <option>
BreakOptM <option>

Set various options to the watch system.

BreakOptC Set the option in double quotes, which is used to set the breakpoint on
the process creation handler. The default option is “/Onchip”.
Example:
TASK.Watch.Option BreakOptC "/SOFT"

BreakOptM Set the option in double quotes, which is used to set the breakpoint on

the main entry point of the process. The default option is “/Onchip”.
Example:

TASK.Watch.Option BreakOptC "/Hard"

NOTE: The actual code of the process may not yet be loaded. Thus,
setting Software breakpoints is not recommended.

Please see TASK.Watch.View for details.

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20 |

42

TASK.Watch.View Show watched processes

Format: TASK.Watch.View [<process>]

Activates the watch system for processes and shows a table of the watched processes.

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

o B:TASK Watch View "ping" = =R
spaceid state entry |
‘6. Toaded main ~
- no process -
1. no symbols -
v
>
<process> Specify a process name for the initial process to be watched.

Description of Columns in the TASK.Watch.View Window

process The name of the process to be watched.

spaceid The current space ID (= process ID) of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).

state The current watch state of the process.

If grayed, the debugger is currently not able to determine the watch state.

no process: The debugger couldn’t find the process in the current Windows CE
process list.

no symbols: The debugger found the process and loaded the MMU settings of
the process but couldn’t load the symbols of the process (most likely because
the corresponding .exe and .pdb files were missing).

loaded: The debugger found the process and loaded the process’s MMU
settings and symbols.

entry The process entry point, which is either main () or WinMain ().

If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 43

The watch system for processes is able to automatically load and unload the symbols of a process and its
MMU settings, depending on their state in the target. Additionally, the watch system can detect the creation
of a process and halts the process at its entry point.

TASK.Watch.ADD Adds processes to the watch list.

TASK.Watch.DELete Removes processes from the watch list.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the Windows CE process list, the
watch system unloads the symbols and removes the MMU settings from the debugger MMU table. The
watch system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets a breakpoint on a kernel function that is called upon
creation of processes. Every time the breakpoint is hit, the debugger checks if a watched process is started.
If not, it simply resumes the target application. If the debugger detects the start of a newly created (and

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 44

watched) process, it sets a breakpoint onto the main entry point of the process (either main () or
WinMain ()) and resumes the target application. A short while after this, the main breakpoint will hit and
halt the target at the entry point of the process. The process is now ready to be debugged.

NOTE: By default, this feature uses one permanent on-chip breakpoint and one temporary
on-chip breakpoint when a process is created. Please ensure that at least those
two on-chip breakpoints are available when using this feature. Use
TASK.Watch.Option to change the nature of the breakpoints.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 45

TASK.WatchDLL Watch DLLs

The TASK.WatchDLL command group build a watch system that watches your Windows CE target for
specified DLLs. It loads and unloads DLL symbols automatically. Additionally it covers DLL creation and may
stop watched DLLs at their entry points.

In particular the watch commands are:

TASK.WatchDLL.View Activate watch system and show watched DLLs

TASK.WatchDLL.ADD Add DLL to watch list

TASK.WatchDLL.DELete Remove DLL from watch list

TASK.WatchDLL.DISable Disable watch system for DLLs

TASK.WatchDLL.ENable Enable watch system for DLLs

TASK.WatchDLL.DISableBP Disable DLL creation breakpoints

TASK.WatchDLL.ENableBP Enable DLL creation breakpoints

TASK.WatchDLL.Option Set DLL watch system options
TASK.WatchDLL.ADD Add DLL to watch list

Format: TASK.WatchDLL.ADD <d/l>

Specify the DLL name (in quotes) or magic to add this DLL to the watched DLLs list.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.DELete Remove DLL from watch list

Format: TASK.WatchDLL.DELete <d//>

Specify the DLL name (in quotes) or magic to remove this DLL from the watched DLLs list.

Please see TASK.WatchDLL.View for details.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 46

TASK.WatchDLL.DISable Disable DLL watch system

Format: TASK.WatchDLL.DISable

Disables the complete watch system. The watched DLLs list is no longer checked against the target and is
not updated. You'll see the TASK.WatchDLL.View window grayed out.

This feature is useful if you want to keep DLL symbols in the debugger, even if the DLL terminated.

TASK.WatchDLL.DISableBP Disable DLL creation breakpoints

Format: TASK.WatchDLL.DISableBP

Prevents the debugger from setting breakpoints for the detection of DLL creation. After executing this
command, the target will run in real time. However, the watch system can no longer detect DLL creation.
Automatic loading of DLL symbols will still work.

This feature is useful if you'd like to use limited breakpoints for other purposes.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.ENable Enable DLL watch system

Format: TASK.WatchDLL.ENable

Enables the previously disabled watch system. It enables the automatic loading of DLL symbols as well as
the detection of DLL creation.

Please see TASK.WatchDLL.View for details.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 47

TASK.WatchDLL.ENableBP Enable DLL creation breakpoints

Format:

TASK.WatchDLL.ENable

Enables the previously disabled breakpoints for detection of DLL creation.

Please see TASK.WatchDLL.View for details.

TASK.WatchDLL.Option Set DLL watch system options

Format:

<option>:

TASK.WatchDLL.Option <option>

BreakOptC <option>
BreakOptM <option>

Set various options to the watch system.

BreakOptC

BreakOptM

Set the option in double quotes, which is used to set the breakpoint on
the DLL creation handler. The default option is “/Onchip”.

Example:

TASK.WatchDLL.Option BreakOptC "/SOFT"

Set the option in double quotes, which is used to set the breakpoint on
the main entry point of the DLL. The default option is “/Onchip”.
Example:

TASK.WatchDLL.Option BreakOptC "/Hard"

NOTE: The actual code of the DLL may not yet be loaded. Thus, setting
Software breakpoints is not recommended.

Please see TASK.WatchDLL.View for details.

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20 | 48

TASK.WatchDLL.View

Show watched DLLs

Format:

TASK.WatchDLL.View [<dl/>]

Activates the watch system for DLLs and shows a table of the watched DLLs.

NOTE:

This feature may affect the real-time behavior of the target application!
Please see below for details.

b BTASK.WatchDLL View "mydIl”

d11 state

entry

(o8)

Toaded
no d11
no symbols

myd 11
visadm
coredll

DTTMain

‘ -

v

<process>

Specify a DLL name for the initial DLL to be watched.

Description of Columns in the TASK.WatchDLL.View Window

dil

The name of the DLL to be watched.

state

The current watch state of the DLL.

If grayed, the debugger is currently not able to determine the watch state.

no dil: The debugger couldn’t find the DLL in the current Windows CE DLL list.
no symbols: The debugger found the DLL and loaded the MMU settings of the
DLL but couldn’t load the symbols of the DLL (most likely because the
corresponding .dll and .pdb files were missing).

loaded: The debugger found the DLL and loaded the DLL's MMU settings and
symbols.

entry

The DLL entry point, which is usually DlIMain ().

If grayed, the debugger is currently not able to detect the entry point or is unable
to set the DLL entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).

The watch system for DLLs is able to automatically load and unload the symbols of a DLL and its MMU
settings, depending on their state in the target. Additionally, the watch system can detect the creation of a
DLL and halts the DLL at its entry point.

TASK.WatchDLL.ADD
TASK.WatchDLL.DELete

Add DLLs to the watch list

Remove DLLs from the watch list.

©1989-2024 Lauterbach

OS Awareness Manual Windows CE6/EC7/EC20 |

49

The watch system for DLLs is active, as long as the TASK.WatchDLL.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of DLL Symbols

In order to detect the current DLL, the debugger must have full access to the target, i.e. the target application
must be stopped (with one exception, see below for creation of DLLs). As long as the target runs in real time,
the watch system is not able to get the current DLL list, and the display will be grayed out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the DLL in the watch list, it determines the state of this DLL in the target.

If a DLL is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOADDLL for the new
DLL.

If a watched DLL was previously loaded, but is no longer found on the Windows CE DLL list, the watch
system unloads the symbols and removes the MMU settings from the debugger MMU table. The watch
system executes TASK.sYmbol.DELeteDLL for this DLL.

If the DLL was previously loaded, and is now found on another address (e.g. if the DLL terminated and
started again), the watch system first removes the DLL symbols and reloads them to the appropriate
address.

You can disable the loading / unloading of DLL symbols with the command TASK.WatchDLL.DISable.

Detection of DLL Creation

To halt a DLL at its main entry point, the watch system can detect the DLL creation and set the appropriate
breakpoints.

To detect the DLL creation, the watch system sets a breakpoint on a kernel function that is called upon
creation of DLLs. Every time the breakpoint is hit, the debugger checks if a watched DLL is started. If not, it
simply resumes the target application. If the debugger detects the start of a newly created (and watched)
DLL, it sets a breakpoint onto the main entry point of the DLL (D11Main ()) and resumes the target
application. A short while after this, the main breakpoint will hit and halt the target at the entry point of the
DLL. The DLL is now ready to be debugged.

NOTE: By default, this feature uses one permanent on-chip breakpoint and one temporary
on-chip breakpoint when a DLL is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature. Use
TASK.WatchDLL.Option to change the nature of the breakpoints.

Upon every DLL creation, the target application is halted for a short time and
resumed after searching for the watched DLLs. This impacts the real-time
behavior of your target.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.WatchDLL.DISableBP. Of course, detection of DLL creation won’t work then.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 50

Windows CE PRACTICE Functions

There are special definitions for Windows CE specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.DLL.CODEADDR() Address of code segment

Syntax: TASK.DLL.CODEADDR(" <dll_name>")

Returns the address of the code segment of the specified DLL.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.DLL.CURRENT() ‘magic’ of DLL

Syntax: TASK.DLL.CURRENT(" <dll_name>")

Returns the magic number of the given DLL of the current process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 51

TASK.DLL.DATAADDR() Address of data segment

Syntax: TASK.DLL.DATAADDR(" <dll_name>")

Returns the address of the data segment of the specified DLL.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.DLL.MAGIC() ‘magic’ of DLL

Syntax: TASK.DLL.MAGIC("<dll_name>",<process_magic>)

Returns the magic of the given DLL belonging to the given process.

Parameter and Description:

<dll_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.DLL.SECADDR() Address of section

Syntax: TASK.DLL.SECADDR(<dll_magic>,<section_id>)

Returns the address of the given section.

Parameter and Description:

<dll_magic> Parameter Type: Decimal or hex or binary value.

<section_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 52

TASK.DLL.SECNUM() Number of sections

Syntax: TASK.DLL.SECNUM(<dlImagic>)

Returns the number of sections.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.LOG2PHYS() Convert virtual address to physical address

Syntax: TASK.LOG2PHYS(<logical_address>,<process_magic>)

Convert virtual address of given process to physical address.

Parameter and Description:

<logical_address> Parameter Type: Decimal or hex or binary value.

<process_magic> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.CODEADDR() Address of code segment

Syntax: TASK.PROC.CODEADDR("<process_name>")

Returns the address of the code segment of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 53

TASK.PROC.DATAADDR() Address of data segment

Syntax: TASK.PROC.DATAADDR(" <process_name>")

Returns the address of the data segment of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.M2S() Convert process magic number to space ID

Syntax: TASK.PROC.M2S(<process_magic>)

Converts the process magic number to the space ID.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.MAGIC() Process magic number of process

Syntax: TASK.PROC.MAGIC("<process_name>")

Returns the process magic number of the given process name.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.S2M() Convert space ID to process magic number

Syntax: TASK.PROC.S2M(<space_id>)

Converts the space ID to the process magic number.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 54

TASK.PROC.SPACEID() Space ID of process

Syntax: TASK.PROC.SPACEID(" <process_name>")

Returns the space ID of the specified process.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.ROM.ADDR() Section address of ROM module

Syntax: TASK.ROM.ADDR(" <module_name>",<section>)

Finds the section address of the given ROM module.

Parameter and Description:

<module_name> Parameter Type: String (with quotation marks).

<section> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.ROM.MAGIC() ‘Magic’ of ROM module

Syntax: TASK.ROM.MAGIC("<module_name>")

Returns the “magic” of the given ROM module.
Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 55

TASK.ROM.SECADDR() Address of section

Syntax: TASK.ROM.SECADDR(<module>,<section_id>)

Returns the address of the given section.

Parameter and Description:

<module> Parameter Type: Decimal or hex or binary value.

<section_id> Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.ROM.SECNUM() Number of sections

Syntax: TASK.ROM.SECNUM(<module>)

Returns the number of sections.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.THREAD.LIST() Thread list

Syntax: TASK.THREAD.LIST(<thread_magic>)

Returns the next thread magic number in the thread list.
Parameter Type: Decimal or hex or binary value. Specify zero for the first thread.

Return Value Type: Hex value. Returns zero if no further thread is available.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 56

TASK.THREAD.PROC() Process of thread

Syntax: TASK.THREAD.PROC(<task_magic>)

Returns the magic number of the process owning the thread given by the parameter.
Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.Y.O() Symbol option parameters

Syntax: TASK.Y.O(<item> | autoload)

Parameter and Description:

<item> Parameter Type: String (without quotation marks).
Reports symbol option parameters.

autoload Parameter Type: String (without quotation marks).
Returns the flags which components are checked by the symbol
autoloader.

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual Windows CEG/EC7/EC20 | 57

	OS Awareness Manual Windows CE6/EC7/EC20
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals in Windows CE

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Thread Stack Coverage
	Task Context Display
	MMU Support
	Windows CE MMU Basics
	Space IDs
	MMU Declaration
	Scanning System and Processes

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics

	Windows CE specific Menu
	Debugging Eboot
	Debugging Windows CE Kernel
	Downloading the Kernel
	Debugging the Kernel Startup
	Debugging the Kernel

	Debugging User Processes and DLLs
	Debugging the Process
	Debugging DLLs
	Trapping Unhandled Exceptions

	Windows CE Commands
	TASK.HaNDle Display global handles
	TASK.MMU.SCAN Scan process MMU space
	TASK.Option Set awareness options
	TASK.Process Display processes
	TASK.ROM.FILE Display built-in files
	TASK.ROM.MODule Display built-in modules
	TASK.sYmbol Process/DLL symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.DELeteDLL Unload DLL symbols and MMU
	TASK.sYmbol.DELeteRM Unload ROM module symbols
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.LOADDLL Load DLL symbols and MMU
	TASK.sYmbol.LOADRM Load ROM module symbols
	TASK.sYmbol.Option Set symbol management options
	TASK.Thread Display threads
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.Option Set watch system options
	TASK.Watch.View Show watched processes
	TASK.WatchDLL Watch DLLs
	TASK.WatchDLL.ADD Add DLL to watch list
	TASK.WatchDLL.DELete Remove DLL from watch list
	TASK.WatchDLL.DISable Disable DLL watch system
	TASK.WatchDLL.DISableBP Disable DLL creation breakpoints
	TASK.WatchDLL.ENable Enable DLL watch system
	TASK.WatchDLL.ENableBP Enable DLL creation breakpoints
	TASK.WatchDLL.Option Set DLL watch system options
	TASK.WatchDLL.View Show watched DLLs

	Windows CE PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.DLL.CODEADDR() Address of code segment
	TASK.DLL.CURRENT() ‘magic’ of DLL
	TASK.DLL.DATAADDR() Address of data segment
	TASK.DLL.MAGIC() ‘magic’ of DLL
	TASK.DLL.SECADDR() Address of section
	TASK.DLL.SECNUM() Number of sections
	TASK.LOG2PHYS() Convert virtual address to physical address
	TASK.PROC.CODEADDR() Address of code segment
	TASK.PROC.DATAADDR() Address of data segment
	TASK.PROC.M2S() Convert process magic number to space ID
	TASK.PROC.MAGIC() Process magic number of process
	TASK.PROC.S2M() Convert space ID to process magic number
	TASK.PROC.SPACEID() Space ID of process
	TASK.ROM.ADDR() Section address of ROM module
	TASK.ROM.MAGIC() ‘Magic’ of ROM module
	TASK.ROM.SECADDR() Address of section
	TASK.ROM.SECNUM() Number of sections
	TASK.THREAD.LIST() Thread list
	TASK.THREAD.PROC() Process of thread
	TASK.Y.O() Symbol option parameters

