
MANUAL

OS Awareness Manual ThreadX

OS Awareness Manual ThreadX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual ThreadX ... 1

 History .. 4

 Overview .. 4

 Terminology 5

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 7

 Hooks & Internals in ThreadX 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Task Context Display 10

 SMP Support 11

 Dynamic Task Performance Measurement 12

 Task Runtime Statistics 12

 Task State Analysis 13

 Function Runtime Statistics 15

 ThreadX specific Menu 17

 ThreadX Commands ... 18

 TASK.BLockmem Display block memory pools 18

 TASK.BYtemem Display byte memory pools 18

 TASK.EVent Display event flags 19

 TASK.ExecLOG Display thread performance log 19

 TASK.MUtex Display mutexes 20

 TASK.QUeue Display queues 20

 TASK.SEmaphore Display semaphores 21

 TASK.THread Display threads 22

 TASK.TImer Display application timers 23

 TASK.TRACE Display event trace buffer 23
OS Awareness Manual ThreadX | 2©1989-2024 Lauterbach

 TASK.TRACEVM Copy event trace buffer to LOGGER 23

 ThreadX PRACTICE Functions .. 25

 TASK.CONFIG() OS Awareness configuration information 25

 TASK.TH.MAGIC() Magic number of thread 25

 TASK.BY.MAGIC() Magic number of byte pool 25

 TASK.BL.MAGIC() Magic number of block pool 26
OS Awareness Manual ThreadX | 3©1989-2024 Lauterbach

OS Awareness Manual ThreadX

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for ThreadX contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual ThreadX | 4©1989-2024 Lauterbach

Terminology

Note the terminology: while ThreadX talks about “threads”, the OS Awareness uses the term “task”. They
are used interchangeably in this context.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently ThreadX is supported for the following versions:

• ThreadX 3.0, 4.0 and 5.x on ARC, ARM, ColdFire, MicroBlaze, MIPS32/64, Nios-II, PowerPC,
SH4, StarCore, x86, XScale and XTENSA.
OS Awareness Manual ThreadX | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “threadx.t32” (directory
“~~/demo/<processor>/kernel/threadx”). It contains all necessary extensions.

Automatic configuration tries to locate the ThreadX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and analyzer functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration,
omit all arguments:

See also the example “~~/demo/<processor>/kernel/threadx/threadx.cmm”.

TASK.CONFIG threadx
OS Awareness Manual ThreadX | 6©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for ThreadX with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command:

See “Configuration”.

4. Execute the command:

See “ThreadX Specific Menu”.

5. Start your application.

Now you can access the ThreadX extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in ThreadX

No hooks are used in the kernel.

To retrieve information on kernel objects, the OS Awareness uses the global ThreadX pointers exported by
the ThreadX library, and the structures defined in the tx_api.h file. Be sure that your application is compiled
and linked with debugging symbols switched on. The ThreadX library may be compiled without debugging
symbols.

TASK.CONFIG ~~/demo/<arch>/kernel/threadx/threadx.t32

MENU.ReProgram ~~/demo/<arch>/kernel/threadx/threadx.men
OS Awareness Manual ThreadX | 7©1989-2024 Lauterbach

Features

The OS Awareness for ThreadX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
ThreadX components can be displayed:

For a description of the commands, refer to chapter “ThreadX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.BLockmem Block memory

TASK.BYtemem Byte memory

TASK.EVent Event flags

TASK.MUtex Mutexes

TASK.QUeue Queues

TASK.SEmaphore Semaphores

TASK.THread Threads

TASK.TImer Timers
OS Awareness Manual ThreadX | 8©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual ThreadX | 9©1989-2024 Lauterbach

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual ThreadX | 10©1989-2024 Lauterbach

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.
OS Awareness Manual ThreadX | 11©1989-2024 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual ThreadX | 12©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual ThreadX | 13©1989-2024 Lauterbach

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual ThreadX | 14©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual ThreadX | 15©1989-2024 Lauterbach

OS Awareness Manual ThreadX | 16©1989-2024 Lauterbach

ThreadX specific Menu

The menu file “threadx.men” contains a menu with ThreadX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called ThreadX.

• The Display menu items launch the appropriate kernel resource display windows.

• The Stack Coverage submenu starts and resets the ThreadX specific stack coverage, and
provide an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only thread switches (if any) or thread switches together with default display.

• The Perf menu contains additional submenus for thread runtime statistics, thread related function
runtime statistics or statistics on task states.

OS Awareness Manual ThreadX | 17©1989-2024 Lauterbach

ThreadX Commands

TASK.BLockmem Display block memory pools

Displays a table with the pools of the Block Memory. Specifying a magic number or pool name will show you
detailed information about that pool.

TASK.BYtemem Display byte memory pools

Displays a table with the pools of the Byte Memory. Specifying a magic number or pool name will show you
detailed information about that pool.

Format: TASK.BLockmem <blkpool>

Format: TASK.BYtemem <bytpool>
OS Awareness Manual ThreadX | 18©1989-2024 Lauterbach

TASK.EVent Display event flags

Displays a table with the ThreadX event lag groups. Specifying an event flag magic number or name will
show you the suspended threads of that event.

“magic” defines a unique ID which the OS Awareness uses for the event identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

TASK.ExecLOG Display thread performance log

TASK.ExecLOG displays the kernel internal buffer of the thread performance information log.

ThreadX must be built with TX_THREAD_ENABLE_PERFORMANCE_INFO. See ThreadX documentation
more information on this ThreadX feature.

Format: TASK.EVent <event>

Format: TASK.ExecLOG
OS Awareness Manual ThreadX | 19©1989-2024 Lauterbach

TASK.MUtex Display mutexes

Displays a table with the ThreadX mutexes. Specifying a mutex magic number or name will show you the
suspended threads of that mutex.

“magic” defines a unique ID which the OS Awareness uses for the mutex identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

TASK.QUeue Display queues

Displays a table with the ThreadX queues. Specifying a queue magic number or queue name will show you
the messages in that queue and waiting threads.

“magic” defines a unique ID which the OS Awareness uses for the queue identification. The fields 'magic'
and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate action.

Format: TASK.SEmaphore <sema>

Format: TASK.QUeue <queue>
OS Awareness Manual ThreadX | 20©1989-2024 Lauterbach

TASK.SEmaphore Display semaphores

Displays a table with the ThreadX semaphores. Specifying a semaphore magic number or name will show
you the suspended threads of that semaphore.

“magic” defines a unique ID which the OS Awareness uses for the semaphore identification.
The fields 'magic' and 'name' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

Format: TASK.SEmaphore <sema>
OS Awareness Manual ThreadX | 21©1989-2024 Lauterbach

TASK.THread Display threads

Displays the thread table of ThreadX or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

You can sort the window to the entries of a column by clicking on the column header. An initial sorting can be
specified by using a comma as placeholder for “thread” and specifying the sort direction together with the
sort item. Use MAGIC, STATE, PRIO, RUNCOUNT or NAME as sort item. Example:

To display detailed information on one thread, specify a thread name in quotes or a magic number to the
command.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TCB).

The fields “magic”, “thread entry” and “timeout function” are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking on them will show a local menu.

Pressing the “context” button (if available) changes the register context to this thread. “current” resets it to the
current context. See “Thread Context Display”.

Format: TASK.THread [<thread> [/SORTup | /SORTDOWN <sortitem>]]

TASK.THread , /SORTup NAME
OS Awareness Manual ThreadX | 22©1989-2024 Lauterbach

TASK.TImer Display application timers

Displays a table with the ThreadX application timers. Specifying a timer magic number or timer name will
show you more information on that timer.

“magic” defines a unique ID which the OS Awareness uses for the timer identification. The fields “magic”
“function” and “name” are mouse sensitive. Double-clicking on them will perform the appropriate action.

TASK.TRACE Display event trace buffer

TASK.TRACE displays the kernel internal buffer of the event trace feature.

ThreadX must be built with TX_ENABLE_EVENT_TRACE. See ThreadX documentation more information
on this ThreadX feature.

TASK.TRACEVM Copy event trace buffer to LOGGER

TASK.TRACEVM copies the entries of the kernel internal event trace to a debugger-internal buffer in virtual
memory (VM:), using the LOGGER structure layout.

ThreadX must be built with TX_ENABLE_EVENT_TRACE. See ThreadX documentation more information
on this ThreadX feature.

Format: TASK.TImer <timer>

Format: TASK.TRACE

Format: TASK.TRACEVM
OS Awareness Manual ThreadX | 23©1989-2024 Lauterbach

Activate the LOGGER and copy the buffers with:

After this, you can use the Logger contents for Task Runtime Statistics and Task State Analysis.

Trace.METHOD Logger
Logger.RESet
Logger.ADDRESS VM:0x1000
Logger.TimeStamp Up
Logger.TimeStamp.Rate 1000.
Logger.Init
TASK.TRACEVM
Logger.ARM
Logger.OFF
OS Awareness Manual ThreadX | 24©1989-2024 Lauterbach

ThreadX PRACTICE Functions

There are special definitions for ThreadX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.TH.MAGIC() Magic number of thread

Returns the magic number of the given thread.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.BY.MAGIC() Magic number of byte pool

Returns the magic number of the given byte pool.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.TH.MAGIC(<thread_name>)

Syntax: TASK.BY.MAGIC(<pool_name>)
OS Awareness Manual ThreadX | 25©1989-2024 Lauterbach

TASK.BL.MAGIC() Magic number of block pool

Returns the magic number of the given block pool.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.BL.MAGIC(<pool_name>)
OS Awareness Manual ThreadX | 26©1989-2024 Lauterbach

	OS Awareness Manual ThreadX
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in ThreadX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	ThreadX specific Menu

	ThreadX Commands
	TASK.BLockmem Display block memory pools
	TASK.BYtemem Display byte memory pools
	TASK.EVent Display event flags
	TASK.ExecLOG Display thread performance log
	TASK.MUtex Display mutexes
	TASK.QUeue Display queues
	TASK.SEmaphore Display semaphores
	TASK.THread Display threads
	TASK.TImer Display application timers
	TASK.TRACE Display event trace buffer
	TASK.TRACEVM Copy event trace buffer to LOGGER

	ThreadX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.TH.MAGIC() Magic number of thread
	TASK.BY.MAGIC() Magic number of byte pool
	TASK.BL.MAGIC() Magic number of block pool

