
MANUAL

OS Awareness Manual
Rubus OS

OS Awareness Manual Rubus OS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual Rubus OS .. 1

 History .. 3

 Overview .. 3

 Brief Overview of Documents for New Users 3

 Supported Versions 4

 Configuration ... 5

 Manual Configuration 5

 Automatic Configuration 6

 Hooks in Rubus OS 6

 Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task Runtime Statistics 8

 Task State Analysis 9

 Function Runtime Statistics 10

 Rubus specific Menu 11

 Rubus Commands ... 12

 TASK.MonDev I/O device list 12

 TASK.MonFile Open file list 12

 TASK.MonLabel Rubus information 12

 TASK.MonMsg Message queue information 13

 TASK.MonMuteX Blue MUTEX table 13

 TASK.MonRSched Red thread table 14

 TASK.MonRSList Red schedule table 14

 TASK.MonThread Blue thread table 14

 Rubus PRACTICE Functions .. 15

 TASK.CONFIG() OS Awareness configuration information 15
OS Awareness Manual Rubus OS | 2©1989-2024 Lauterbach

OS Awareness Manual Rubus OS

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for Rubus OS (Arcticus Systems AB) contains special extensions to the TRACE32
Debugger. This manual describes the additional features, such as additional commands and statistic
evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
OS Awareness Manual Rubus OS | 3©1989-2024 Lauterbach

Supported Versions

Currently the Rubus OS is supported for the C167 microcontroller on the following versions:

• V1.0 (V1.1.0 beta) with large memory model

• V1.1 with small memory model
OS Awareness Manual Rubus OS | 4©1989-2024 Lauterbach

Configuration

Manual Configuration

This command configures the OS Awareness for Rubus OS with manual setup.

The TASK.CONFIG command loads an extension definition file called “rubus.t32” (directory
“~~/demo/c166/kernel/rubus/”). It contains all necessary extensions.

The configuration requires additional arguments. Specify them as shown above. They are pointers to
internal tables of system variables.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map emula-
tion memory to the address space of all used system tables.

See also the example “~~/demo/c166/kernel/rubus/rubus.cmm”

Format: TASK.CONFIG rubus <magic_address> <dpps> <args>

<magic_address> The overall magic location (“<magic_address>”) is currently not used. Spec-
ify “0”.

<dpps> The <dpps> argument configures the data page settings of the application.
Specify a long word, which least significant byte is the dpp0 content and
which most significant byte is the dpp3 content. E.g. “03060500” means
dpp0=0, dpp1=5, dpp2=6 and dpp3=3. If you don't know the dpp settings of
your application, just start it for a while and check in the 'register' window the
dpp's. If the parameter is “0”, a linear DPP setup is assumed (i.e.
“03020100”).

<args> The additional arguments specify the symbols of the object lists. Use them
as shown below:
bsVar redKernelVar redScheduleAttrList
blueKernelVar blueThreadAttrList blueMsgAttrList
blueMutexAttrList ioDevAttrList ioAttr

; manual configuration for Rubus OS support
TASK.CONFIG rubus 0 03020100 bsVar redKernelVar redScheduleAttrList
blueKernelVar blueThreadAttrList blueMsgAttrList blueMutexAttrList
ioDevAttrList ioAttr
OS Awareness Manual Rubus OS | 5©1989-2024 Lauterbach

Automatic Configuration

This command configures the OS Awareness for Rubus OS with automatic setup.

The TASK.CONFIG command loads an extension definition file called “rubus.t32” (directory
“~~/demo/c166/kernel/rubus”). It contains all necessary extensions.

This configuration tries to locate the Rubus internals automatically. For this purpose the symbols mentioned
in “Manual Configuration” must be loaded and accessible at any time, the OS Awareness is used.

Each TASK.CONFIG argument can be substituted by ’0’, which means that this argument will be searched
and configured automatically.

If the application uses a linear DPP setting, you can omit all parameters for a fully automatic configuration:

If the application uses non-linear DPP settings, they must be specified by hand. See “Manual Configura-
tion” for details on how to specify the DPPs.

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map emula-
tion memory to the address space of all used system tables.

See also the example “~~/demo/c166/kernel/rubus/rubus.cmm”

Hooks in Rubus OS

The variable “bsVar” is used to detect, whether blue or red kernel is running.
For detecting the running blue thread, the variable “blueKernelVar” is used.
For detecting the running red thread, either “redKernelVar” or “redStackFrame” is used.

Format: TASK.CONFIG rubus 0 <dpps>

<dpps>: <dpp_settings>

; fully automatic configuration for Rubus support, linear DPPs
task.config rubus

; fully automatic configuration for Rubus support, non-linear DPPs
task.config rubus 0 03050600
OS Awareness Manual Rubus OS | 6©1989-2024 Lauterbach

Features

The OS Awareness for Rubus OS supports the following features:

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

For a description of the commands, refer to chapter “Rubus PRACTICE Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where Rubus holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

TASK.MonDev I/O devices

TASK.MonFile Open files

TASK.MonLabel Rubus Label

TASK.MonMsg Blue message queues

TASK.MonMuteX Blue mutexes

TASK.MonRSList Red schedules

TASK.MonRSched Red schedule threads

TASK.MonThread Blue threads
OS Awareness Manual Rubus OS | 7©1989-2024 Lauterbach

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual Rubus OS | 8©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual Rubus OS | 9©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Rubus OS | 10©1989-2024 Lauterbach

Rubus specific Menu

The menu file “rubus.men” contains a menu with Rubus specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Rubus.

• The List menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the Rubus specific stack coverage and provides
an easy way to add or remove threads from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu contains two new submenus:

- Rubus Selective allows to program the analyzer to record only blue thread switches, red
thread calls or both.

- Rubus List displays the analyzer content with Rubus specific information.

• The Perf menu contains the additional submenus for thread runtime statistics, thread related
function runtime statistics and statistics on thread states. For the function runtime statistics,
prepare command files called “men_ptfp.cmm”, “men_pb.cmm” and “men_pr.cmm” are used.
These command files must be adapted to your application.
OS Awareness Manual Rubus OS | 11©1989-2024 Lauterbach

Rubus Commands

TASK.MonDev I/O device list

Displays a table with all configured I/O devices.

'devInit' shows the address of the initialization routine and is mouse sensitive. I.e. the status line will show the
symbolic information.

TASK.MonFile Open file list

Displays a table with all open I/O files.

TASK.MonLabel Rubus information

Displays Rubus compilation information.

Format: TASK.MonDev

Format: TASK.MonFile

Format: TASK.MonLabel
OS Awareness Manual Rubus OS | 12©1989-2024 Lauterbach

TASK.MonMsg Message queue information

Displays information about message queues.

Without any parameter you get a table with all configured message queues.

Double clicking on a message queue name or ID gives you detailed information about a specific queue.

You can specify a specific queue as argument. The command accepts IDs (task.mm 41004) or names
(task.mm "shellReply"). When specifying a name, be sure to use straight quotation marks, otherwise you will
get wrong results.

Double clicking on the 'ptr' address opens a dump window with the buffer contents.

TASK.MonMuteX Blue MUTEX table

Displays a table with all configured mutexes.

Format: TASK.MonMsg <message>

Format: TASK.MonMuteX
OS Awareness Manual Rubus OS | 13©1989-2024 Lauterbach

TASK.MonRSched Red thread table

Displays all configured red threads in a given red schedule.

You can specify a specific schedule by its name. When omitting the parameter, the current active schedule is
displayed.

TASK.MonRSList Red schedule table

Displays a table with all configured red schedules.

TASK.MonThread Blue thread table

Displays a table with all configured blue threads in Rubus.

The display is similar to the monitor service 'monThreadList'.

 The states of the threads are displayed grey, if the application is running in real time, or if the application is
halted, while the red kernel is running.

Format: TASK.MonRSched <schedule>

Format: TASK.MonRSList

Format: TASK.MonThread
OS Awareness Manual Rubus OS | 14©1989-2024 Lauterbach

Rubus PRACTICE Functions

There are special definitions for Rubus specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(<keyword>)

<keyword>: bluemagic | bsmagic | magic | magicsize | redmagic

bluemagic Parameter Type: String (without quotation marks).
Returns the address of the blue magic number.

bsmagic Parameter Type: String (without quotation marks).
Returns the address of the basic magic number.

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

redmagic Parameter Type: String (without quotation marks).
Returns the address of the red magic number.
OS Awareness Manual Rubus OS | 15©1989-2024 Lauterbach

	OS Awareness Manual Rubus OS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Hooks in Rubus OS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Rubus specific Menu

	Rubus Commands
	TASK.MonDev I/O device list
	TASK.MonFile Open file list
	TASK.MonLabel Rubus information
	TASK.MonMsg Message queue information
	TASK.MonMuteX Blue MUTEX table
	TASK.MonRSched Red thread table
	TASK.MonRSList Red schedule table
	TASK.MonThread Blue thread table

	Rubus PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

