
MANUAL

OS Awareness Manual QXK

OS Awareness Manual QXK

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual QXK .. 1

 Overview .. 3

 Brief Overview of Documents for New Users 3

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 6

 Hooks & Internals in QXK 6

 Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task-Related Breakpoints 8

 Task Context Display 9

 Dynamic Task Performance Measurement 10

 Task Runtime Statistics 10

 Function Runtime Statistics 11

 QXK specific Menu 13

 QXK Commands .. 14

 TASK.ActiveObj Display active objects 14

 TASK.EXtTHRead Display extended threads 14

 TASK.MuTeX Display mutexes 15

 TASK.SEMaphore Display semaphores 15

 TASK.MEMPool Display memory pools 16

 QXK PRACTICE Functions ... 17

 TASK.CONFIG() OS Awareness configuration information 17
OS Awareness Manual QXK | 2©1989-2024 Lauterbach

OS Awareness Manual QXK

Version 06-Jun-2024

Overview

The OS Awareness for QXK contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.
OS Awareness Manual QXK | 3©1989-2024 Lauterbach

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently QXK is supported for the following versions:

• v5.7.2 to v6.0.2 on ARM Cortex-M.
OS Awareness Manual QXK | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads a definition file called “qxk.t32” (directory “~~/demo/arm/kernel/qxk”)
which contains all necessary extensions.

Automatic configuration tries to locate the QXK internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

TASK.CONFIG qxk.t32
OS Awareness Manual QXK | 5©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for QXK with your application, follow
these steps:

1. Start the TRACE32.

2. Load your application as usual.

3. Load the QXK awareness:

4. Load the QXK menu:

See “QXK Specific Menu”.

Now you can access the QXK extensions through the menu.

Hooks & Internals in QXK

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

TASK.CONFIG ~~/demo/arm/kernel/qxk/qxk.t32

MENU.ReProgram ~~/demo/arm/kernel/qxk/qxk.men
OS Awareness Manual QXK | 6©1989-2024 Lauterbach

Features

The OS Awareness for QXK supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following QXK
components can be displayed:

For a detailed description of each command, refer to chapter “QXK Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places where QXK holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.ActiveObj Active objects

TASK.EXtTHRead Extended threads

TASK.MuTeX Mutexes

TASK.SEMaphore Semaphores

TASK.MEMPool Memory pools
OS Awareness Manual QXK | 7©1989-2024 Lauterbach

The stack start address and stack size are passed as parameters when starting the extended threads. They
are not saved in QXK kernel symbols, so you have to manually specify the stack size and the stack start
address in the configuration of the OS Awareness. You can use a small script to do so.

Example: This script sets the stack size of the "IDLE" task to 1024 bytes:

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

; Adapt stack characteristics of a task
; Specify the task name, e.g. the IDLE task:
&task="IDLE"

; Specify the new task size in bytes for this task, e.g. 1024 bytes:
&stacksize=0x400

; Open standard stack view and ensure a display update
TASK.STacK.view
SCREEN

; Calculate task magic number and stack start address
&magic=task.magic("IDLE")
&stackstart=<value> eg. 0x200003F4

; Remove the standard stack calculation for this task
TASK.STacK.ReMove &magic

; And add the custom one:
TASK.STacK.ADD &magic &stackstart++(&stacksize-1)

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual QXK | 8©1989-2024 Lauterbach

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual QXK | 9©1989-2024 Lauterbach

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically
OS Awareness Manual QXK | 10©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree
OS Awareness Manual QXK | 11©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual QXK | 12©1989-2024 Lauterbach

QXK specific Menu

The menu file “qxk.men” contains a menu with QXK specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called QXK.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the QXK specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.
OS Awareness Manual QXK | 13©1989-2024 Lauterbach

QXK Commands

TASK.ActiveObj Display active objects

Displays a list of active objects.

“magic” is a unique ID, used by the OS Awareness to identify the active object.

TASK.EXtTHRead Display extended threads

Displays a list of extended threads.

“magic” is a unique ID, used by the OS Awareness to identify the extended thread.

Format: TASK.ActiveObj

Format: TASK.EXtTHRead
OS Awareness Manual QXK | 14©1989-2024 Lauterbach

TASK.MuTeX Display mutexes

Displays detailed information about a mutex. Specify a variable or address that contains the mutex.

“magic” is a unique ID, used by the OS Awareness to identify the mutex.

TASK.SEMaphore Display semaphores

Displays detailed information about a semaphore. Specify a variable or address that contains the
semaphore.

“magic” is a unique ID, used by the OS Awareness to identify the semaphore.

Format: TASK.MuTeX <mutex>

Format: TASK.SEMaphore <semaphore>
OS Awareness Manual QXK | 15©1989-2024 Lauterbach

TASK.MEMPool Display memory pools

Displays detailed information about memory pools.
=

“magic” is a unique ID, used by the OS Awareness to identify the memory pool.

Format: TASK.MEMPool
OS Awareness Manual QXK | 16©1989-2024 Lauterbach

QXK PRACTICE Functions

There is a QXK specific PRACTICE function.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual QXK | 17©1989-2024 Lauterbach

	OS Awareness Manual QXK
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in QXK

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	QXK specific Menu

	QXK Commands
	TASK.ActiveObj Display active objects
	TASK.EXtTHRead Display extended threads
	TASK.MuTeX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.MEMPool Display memory pools

	QXK PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

