LAUTERBACH A

OS Awareness Manual
PrKERNEL

OS Awareness Manual PrKERNEL

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual PrKERNELcociiiiierirrsmcesrsssme s s ssss s e s sessssms e s s ssssssessessssmssneenss 1
0 Y= = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
ConfiguIration ... 6
Quick Configuration Guide 7
Hooks & Internals in PrKERNEL 7
== T == 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
Dynamic Task Performance Measurement 11
Task Runtime Statistics 11
Function Runtime Statistics 12
PrkKERNEL specific Menu 13
PrKERNEL COMMANAS ...ccccciiieemecmmennrinsissssssssssmssmmssssssnssssssssssssnmsmmssssssnssssssssssssnmmsmsssnsssessnsnnns 14
TASK.ALarM Display alarm handlers 14
TASK.CYClic Display cyclic handlers 14
TASK.DaTaQueue Display data queues 15
TASK.FLaG Display event flags 15
TASK.MailBoX Display mailboxes 16
TASK.MemPoolF Display fixed memory pools 16
TASK.MemPoolL Display variable memory pools 17
TASK.MsgBuFfer Display message buffers 17
TASK.MuTeX Display mutexes 18
TASK.PORt Display ports 18
TASK.SEMaphore Display semaphores 19
TASK.TaSK Display tasks 19
PrKERNEL PRACTICE FUNCHIONSooiiiiiiinienrrnnsss s sssmss s s s s smmss s smmsn s 21
TASK.CONFIG() OS Awareness configuration information 21
©1989-2024 Lauterbach OS Awareness Manual PrKERNEL 2

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 3

OS Awareness Manual PrKERNEL

Ove

rview

Version 06-Jun-2024

A simulator EI@
File Edit View Var Break Run CPU Misc Trace Pef Cov LPCl7xx PrKERMEL Window Help
MkldeernFE e O HumNses @ 12
o B:TASK.TasK [= || &% B:TASK.DaTaQueue =n| Wl <
name 1d state prio [entry 1d count |max waiting |
initialotask 1. [dormant 32. [T:000023A8 ktsk_initask 1. [O. 4. rcv: 5 L
mainutask 2. |dormant 32. [T:000003DA sample_main 2. |5. 5. =nd: 2.
taskol 3. [waiting delay 32. [T:00000300 sample_task_ -
tasku2 4. |waiting eventflag | 32. |T:0000035A sample_task_| |, m 3
taskud 5. |dormant 32. [T:000003B4 sample_task_
Fa BT TASK.VIENE0A [(] |
b Butask.stack Eld magic name 1d count |waiting |
ZO07FBIC |mbxl 0. 5. T
name [Tow high % lowest spare max [0 10 20 30 5057FR54 |mbxz 73
1% |2007EFAS 00000FAS 2% |m : :
6% |2007F330 00000330 205 |e—
17% (20080424 000002FC 25% |mem—— d il L
22% |20020222 anannirs aror

task 3 (20080938 20080D38
(other)

#] B:Trace Chart. TASK == 5

[& stup.. || i Gougs... || B8 @nfig... (% Goto... | #3Find... |[4» In | p40ut|[MMFull

ms -180.000ms -170.000ms -160.000ms -150.000ms -140.
range | 1 1 1 1 L
£ | B:Trace STATistic. TASK Cunknowndgel
_ task 255 m
[& setup... |11 Goups... || 8 Gonfig... |[= [Detailed | [ENesting] |
tasks: 4. total: 294.904ms
range |total min max avr S L1 L | LI} +
Cunknown) 4.533ms 4.533ms 4.533ms 4,
task 2 54.944ms | 730.900us | 906.600us | 820.061us 67 18.631%
task 1 51.717ms | 682.900us | 858.600us | 760.54%us 23] 17.536%
(unknown) | 183.710ms 1.708ms 3.807ms 2.742ms 67 62.294%
4 m 3
E::TASK.|
[Task | [sEMaphore| [FlaG | [paTaQueud [MaiBoX | [MuTeX | [MsgBuffer|[PORt | [MemPool| [MemPooll]| [cvcic |[AlarM | [previous
ST:00003C1E \\Project01\Global\xcortexm3_sleep+0x2 (other) stopped MIX |UP

The OS Awareness for PrKERNEL contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989

-2024 Lauterbach

OS Awareness Manual PrKERNEL |

4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently PrkKERNEL is supported for the following versions:
. PrKERNELv4 ver2.1 for ARM and NioslI.
J PrKERNELv4 ver3.1 for ARM/Cortex

©1989-2024 Lauterbach OS Awareness Manual PPKERNEL | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “prkernel.t32” (directory
“~~/demo/<arch>/kernel/prkernel/<ver>"). It contains all necessary extensions.

Automatic configuration tries to locate the PrKERNEL internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

Format: TASK.CONFIG prkernel

See also the example “~~/demo/<arch>/kernel/prkernel/<ver>/prkernel.cmm”.

©1989-2024 Lauterbach OS Awareness Manual PPKERNEL | 6

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for PrKERNEL with your application, follow the
following roadmap:

1. Start the TRACE32 Debugger.
2. Load your application as normal.

3. Execute the command
TASK.CONFIG ~~/demo/<arch>/kernel/prkernel/<ver>/prkernel.t32”
(See “Configuration”).

4. Execute the command

MENU.ReProgram ~~/demo/<arch>/kernel/prkernel/<ver>/prkernel .men
(See “PrKERNEL Specific Menu”).

5. Start your application.
Now you can access the PrKERNEL extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in PrKERNEL

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The PrKERNEL kernel must be compiled with debug information.

©1989-2024 Lauterbach OS Awareness Manual PPKERNEL | 7

Features

The OS Awareness for PrKERNEL supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
PrKERNEL components can be displayed:

TASK.ALarM Alarm handlers
TASK.CYClic Cyclic handlers
TASK.DaTaQueue Data queues

TASK.FLaG Event flags
TASK.MailBoX Mailboxes
TASK.MemPoolF Fixed sized memory pools
TASK.MemPoolL Variable sized memory pools
TASK.MuTeX Mutexes
TASK.MsgBuFfer Message buffers
TASK.PORt Ports

TASK.SEMaphore Semaphores
TASK.TaSK Tasks

For a description of the commands, refer to chapter “PrKERNEL Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 8

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

5?. Butask.stack EI@

name | low high % [lowest spare max [0 10 20 30 |
20 FCO 1% |2007EFAS 00000FAS 2% |m
6% |2007F330 00000330 205 |e—

main task |2007F000 2007F400 |20
task 1 |20080128 20080528
task 2 |20080530 20080930

5 17% 20080424 000002FC 25%
5 22% |20080828 Q0D000DZF8 25%
F& 6% [20080Ce4 0000032C 20%

m

task 3 (20080938 20080D38 |20080CFA
(other) 2007DFD4

] 1 2

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [[<option>] [TASK <task> Set task-related breakpoint.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextlD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

©1989-2024 Lauterbach OS Awareness Manual PPKERNEL | 9

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:
I Frame.TASK [<fask>] Display task context.

. Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
NOTE: This feature is only available on some configurations. Contact Lauterbach if you

miss the context display in your environment.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 10

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

£ B:PERF ListTASK =n| Wl <
(& setup... || 28 Qonfig...][Y Goto... || =] Detaied || &3, View | jyy(Profie|[€ Init |[O Dissble | & Arm
name ratio 1% 2% 5% 10% 20% 50% 100
(other) 42.106%

task 2 35.789%
task 1 22.105%
initial task 0.000%
initial task 0.000%

main task 0.000%
task 3 0. 000%
J h }

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 11

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically
Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 12

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting
Trace.STATistic.Func
Trace.STATistic.TREE
Trace.STATistic.sYmbol /SplitTASK
Trace.Chart.Func
Trace.Chart.sYmbol /SplitTASK

Display function nesting

Display function runtime statistic
Display functions as call tree
Display flat runtime analysis
Display function timechart

Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

PrKERNEL specific Menu

The menu file “prkernel.men” contains a menu with PrKERNEL specific menu items. Load this menu with

the MENU.ReProgram command.

You will find a new menu called PrKERNEL.

. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the PrKERNEL specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach

OS Awareness Manual PrKERNEL |

13

PrKERNEL Commands

TASK.ALarM Display alarm handlers

Format: TASK.CYClic

Displays the table of installed alarm handlers.

o B:TASK.ALarM =n| Wl <
magic name 1d handler |
Z0083C00 |almhdrl 1. [08103200 TirstATmHdr ~
20083C30 |almhdr2 2. |08103300 secondAlmHdr

4 M b

“magic” is a unique ID, used by the OS Awareness to identify a specific alarm handler (address of the alarm
control structure).

The fields “magic” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows.
Right clicking on them will show local menu.

TASK.CYClic Display cyclic handlers

Format: TASK.CYClic

Displays the table of installed cyclic handlers.

o B:TASK.CYClic =n| Wl <
magic name 1d cycle |handler |
ZO0B3AFC |cychdrl 1. [10. DB102200 FirstCychdr .
20083B30 |cychdr2 2. |50. 08102300 secondCycHdr

4 M b

“magic” is a unique ID, used by the OS Awareness to identify a specific cyclic handler (address of the cyclic
control structure).

The fields “magic” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows.
Right clicking on them will show local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 14

TASK.DaTaQueue Display data queues

Format: TASK.DaTaQueue [<queue>]

Displays the data queue table of PrKERNEL or detailed information about one specific data queue.
Without any arguments, a table with all created data queues will be shown.
Specify a data queue magic number to display detailed information on that data queue.

5?. B::TASK.DaTaQueue EI@
magic name 1d count |max waiting |
2007F9B4 tql 1. |0. 4. rov: 5. ~
2007F9FC |dtq2 2. |5, 5. snd: 2.

4 10 3

“magic” is a unique ID, used by the OS Awareness to identify a specific data queue (address of the data
gueue control structure).
The “waiting” column shows the task IDs waiting for receiving (“rcv:”) or sending (“snd:”) data.

VTS

The fields “magic”, “start” and “read” are mouse sensitive. Double-clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.FLaG Display event flags

Format: TASK.FLaG

Displays the event flag table of PrKERNEL
o BzTASKFLaG == 5

magic name 1d events waiting |
Z0O07FBED [evtfTgl 1. [DODDODOD L
2007 FSEAJE S I P 2. |00O00CO000 |4.

4 10 3

“magic” is a unique ID, used by the OS Awareness to identify a specific event flag (address of the event flag
control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 15

TASK.MailBoX Display mailboxes

Format: TASK.MailBoX [<mailbox>]

Displays the mailbox table of PrKERNEL or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox magic number to display detailed information on that mailbox.

o B:TASK.MailBoX =n| Wl <
magic name 1d count |waiting |
2007FB1C |mbx1 1. 0. 5. i
2007FB54 |mbx2 2. |3.

4 10 s

“magic” is a unique ID, used by the OS Awareness to identify a specific mailbox (address of the mailbox
control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MemPoolF Display fixed memory pools

Format: TASK.MemPoolF

Displays the table of fixed sized memory pools.

o B:TASK.MemPoolF =n| Wl <
magic name [1d blkcount [blks1ze |waiting |
2007FFEQD |mptl 1. [10. 256. ~
20080020 |mpf2 2. |4 51z. 5.

4 1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific memory pool (address of the
memory pool control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 16

TASK.MemPoolL Display variable memory pools

Format: TASK.MemPoolL

Displays the table of variable sized memory pools.

o B:TASK.MemPooll =n| Wl <
magic name 1d =ize free waiting |
20083920 [stack.pool 1. [10240. |[7136. 0. ~
20083964 |generalupool 2. |4096. 4088, 0.

4 1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific memory pool (address of the
memory pool control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MsgBuFfer Display message buffers

Format: TASK.MsgBuFfer

Only available on PrKERNELv4 version 3.

Displays the message buffer table of PrKERNEL.

o B:TASK.MsgBuFfer =n| Wl <
magic name 1d count [free waiting |
Z007FD24 |mbT1l 1. |0, 00001000 |rov: 5. ~
2007FD74 |mbf2 2. |2, 000010F3

4 M b

“magic” is a unique ID, used by the OS Awareness to identify a specific message buffer (address of the
buffer control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 17

TASK.MuTeX Display mutexes

Format: TASK.MuTeX

Displays the mutex table of PrKERNEL.
o B:TASK.MuTeX =n| Wl <

magic name [1d ceiling waiting |
2007FC34 |mixl 1. 32. ~
2007FCE4 |mix2 2. 16. 5.

]

M 3

“magic” is a unique ID, used by the OS Awareness to identify a specific mutex (address of the mutex control
structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.PORt Display ports

Format: TASK.PORt

Only available on PrKERNELv4 version 3.

Displays the port table of PrKERNEL.

o B:TASK.PORt =n| Wl <
magic name 1d waiting |
2007FEB4 |porl 1. i
Z007FEF0 |por2 2. |call: 5.

4 10 3

“magic” is a unique ID, used by the OS Awareness to identify a specific port (address of the port control
structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 18

TASK.SEMaphore Display semaphores

Format: TASK.SEMaphore

Displays the semaphore table of PrKERNEL.
o B:TASK.SEMaphore =n| Wl <

magic name 1d count |max waiting

i |seml 1. (1. 3. ~
2007F7FD |sem2 2. |0, 5. 5.
4 1 3

“magic” is a unique ID, used by the OS Awareness to identify a specific semaphore (address of the
semaphore control structure).

The field “magic” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.TaSK Display tasks

Format: TASK.TaSK [<task>]

Displays the task table of PrKERNEL or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a magic number to display detailed information on that task.

o B:TASK.TasK =n| Wl <
name 1d state prio [entry |
initialotask 1. [dormant 32. [T:000023A8 ktsk_initask_entry .
mainutask 2. |dormant 32. [T:000003DA sample_main
taskol 3. [waiting delay 32. [T:00000300 sample_task_1
tasku2 4. |waiting eventflag | 32. |T:0000035A sample_task_2
tasku3 5. |dormant 32. [T:000003B4 sample_task_3
1 3
o B:TASK.TaSK 0:2007F4F0 =n| Wl <
magic name 1d state prio [entry
Z007F4F0D [taskaz2 [4. [waiting e| 32. [T:0000035A sample_task_2Z
priority base initial current
32. 32. 32.
wtex Tocked
none
ounter a on _wakeup suspension 1
o o
exception pattern routine
o000 [V
stack dinitial size pointer
20080530 00000400 20080343
4 m 3

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task control
structure).

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 19

The fields “magic” and “entry” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 20

PrKERNEL PRACTICE Functions

There are special definitions for PrKERNEL specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual PrKERNEL | 21

	OS Awareness Manual PrKERNEL
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in PrKERNEL

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	PrKERNEL specific Menu

	PrKERNEL Commands
	TASK.ALarM Display alarm handlers
	TASK.CYClic Display cyclic handlers
	TASK.DaTaQueue Display data queues
	TASK.FLaG Display event flags
	TASK.MailBoX Display mailboxes
	TASK.MemPoolF Display fixed memory pools
	TASK.MemPoolL Display variable memory pools
	TASK.MsgBuFfer Display message buffers
	TASK.MuTeX Display mutexes
	TASK.PORt Display ports
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks

	PrKERNEL PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

