LAUTERBACH A

OS Awareness Manual OKL4

OS Awareness Manual OKL4

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual OKL4ccccocoiirirecirrenssccerrssssmnsressssmme s sesssmme s eesssmmesseasssmmessesssmmnsneas 1
0 Y= = 3
Terminology 3
Brief Overview of Documents for New Users 3
Supported Versions 4

L0 o3} T 11T = Lo o 5
Quick Configuration Guide 5
Hooks & Internals in OKL4 6
== LT == 7
Display of Kernel Resources 7
Task-Related Breakpoints 7
Task Context Display 8
MMU Support 9
Scanning System and Processes 9
Dynamic Task Performance Measurement 9
Task Runtime Statistics 10
Function Runtime Statistics 10
OKL4 Specific Menu 12
OKL4 COMMANGS ...uueeeeeccimminiriisissssssssssmmmsnsssssssssssssssssassmsssssssssessssssssssnssmmsssssnssssssssssssssnnmmnsnssnns 13
TASK.ClList Display capability lists 13
TASK.MMU.SCAN Scan MMU address space 13
TASK.Space Display address spaces 14
TASK.Thread Display threads 15
OKL4 PRACTICE FUNCHONSooiiiiieccriiimcen s issmms s ssmss s smmss s ssmms s s smmss s s ssmms s e smmmn s nnas 16
TASK.CONFIG() OS Awareness configuration information 16

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 2

OS Awareness Manual OKL4

Overview

Version 06-Jun-2024

&% BuTASK.Thread

(o] 8)

mag c handle [name state
F1104E60 |[OFFFFFFF [1dle running
F1104CFOD |0 current

waiting_notify

space timeslice [|

@?. B:TASK.Space

(o] 8)

magic

FLO01CFS
F1108E4C
F110CE4C

o BaTASK.CList| = || = |[23a]

Ll

v
>

mag c id [sTots
F1105000 0. [1024.
F1500400 [256. (1024,
£

The OS Awareness for OKL4 contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

OKL4 uses the term “threads”. If not otherwise specified, the TRACES32 term “task” corresponds to OKL4

threads.

Brief Overview of Documents for New Users

Architecture-independent information:

TRACES32 debugger.

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

©1989-2024 Lauterbach

OS Awareness Manual OKL4 | 3

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently OKL4 is supported for the following versions:

. OKL4 V3 on ARM

©1989-2024 Lauterbach OS Awareness Manual OKL4 |

4

Configuration

The TASK.CONFIG command loads an extension definition file called “okl4.t32” (directory
“~~/demo/<processor>/kernel/okl4”). It contains all necessary extensions.

Automatic configuration tries to locate the OKL4 internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Format: TASK.CONFIG okl4

See also “Hooks & Internals” for details on the used symbols.

Quick Configuration Guide

To access all features of the OS Awareness you should follow the following roadmap:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<processor>/kernel/okl4/okl4.cmm).

2. Make a copy of the PRACTICE script “okl4.cmm”. Modify the file according to your application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

Now you can access the OKL4 extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 5

Hooks & Internals in OKL4

No hooks are used in the kernel.

For retrieving the kernel data and structures, the OS Awareness uses the global kernel symbols and
structure definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Both, the cells and the kernel need to be built with debugging symbols switched on. You need to rebuild the
kernel from the SDK tree. Configure the application to be linked with this specific kernel. Preserve the
kernel’s and the cells binary files to be loaded into the debugger as symbol files.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 6

Features

The OS Awareness for OKL4 supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
OKL4 components can be displayed:

TASK.Thread Threads
TASK.Space Address spaces
TASK.CList Capability lists

For a description of the commands, refer to chapter “OKL4 Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [/<option>] [TASK <task> Set task-related breakpoint.

o Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

. For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 7

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

U To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:
1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 8

MMU Support

To provide full debugging possibilities, the Debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. Al MMU commands refer to this necessity.

Scanning System and Processes

To scan the address translation of a specific address space, use the command TASK.MMU.SCAN
“<space>". This command scans the MMU translation of the specified address space.

TRANSIation.List shows the address translation table for all space IDs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 9

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 10

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 11

OKL4 Specific Menu

The menu file “okl4.men” contains a menu with OKL4 specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called OKLA4.

. The Display menu items launch the kernel resource display windows.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

J The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 12

OKL4 Commands

TASK.CList Display capability lists

Format: TASK.Clist [<clist>]

Displays the capability list table of OKL4 or detailed information about one specific capability list.

Without any arguments, a table with all created capability lists will be shown.
Specify a capability list ID or magic number to display detailed information on that capability list.

o BiTASK.CList EI-@

mag c 1d slots
F1105000 1024, A
F1500400 256. 1024.
v
£ >
o BiTASK. CLlstOxFHOSODO EI-@

1= ots
FI105000 | 0 |mz4 | =

1d tType C
0. thr‘ead F1104CFO
1. ipc F110EEGD A

“magic” is a unique ID, used by the OS Awareness to identify a specific capability list (address of the clist
structure).

The fields “magic”, “id” and “cb” are mouse sensitive. Double-clicking on them opens appropriate windows.

TASK.MMU.SCAN Scan MMU address space

Format: TASK.MMU.SCAN [<space>]

Scans the target MMU of this address space, and sets the Debugger MMU appropriately, to cover the
physical to logical address translation of this specific address space.

The command walks through all page tables which are defined for this address spaces and prepares the
Debugger MMU to hold the physical to logical address translation. This is needed to provide full HLL
support.

<space> Specify a space magic or ID.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 13

TASK.Space Display address spaces

Format: TASK.Space [<space>]

Displays the address space table of OKL4 or detailed information about one specific address space.
Without any arguments, a table with all created address spaces will be shown.

Specify a space ID or magic number to display detailed information on that address space.

o8 BuTASK.Space EI@

1d _ [threads [clist |

-1. 1. 00000000
0. 1. F1105000
128. 2. F1500400
v
% B:TASK Space OxF1108E4C = =R
magic 1d _ [threads [clist |
F1108E4C | 0. 1. |F1105000 | .
page directory:
= F1109E00
entry type virtual physical
= F1I10BEODOD tree FOHAHNANK
04207401 Tlcoarse 900xxxxx
04C00COE Tlsection 90Llxxxxx 04C00000
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific address space (address of the space
structure).

The fields “magic”, “id” and “clist” are mouse sensitive. Double-clicking on them opens appropriate windows.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 14

TASK.Thread

Display threads

Format:

TASK.Thread [<thread>]

Displays the thread table of OKL4 or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.
Specify a thread name, handle or magic number to display detailed information on that thread.

&% BuTASK.Thread

(o] 8)

handTe

magic

name

state

prio

space timeslice [|

running
current
waiting_notify

-1.

0.
255.

-1. .
0. 10000.
128. 10000.

% B:TASK.Thread OxF1104CFD

(o8)

handTe

name

state space timeslice

00000000
00000000
00000000
00000000
00000000
00000000
00000000

<

00000000
00000000
00000000
00000000
00000000
00000000
00000000

04240000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

[current |

prio
@. | 0. | 10000. ,

00040000
00000000
00000000
00000000
00000000 %%
00000000

00000000
00000000 %%

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the TCB).

The fields “magic”,

appropriate windows. Right clicking on them will show a local menu.

name”, “handle” and “space” are mouse sensitive, double clicking on them opens

©1989-2024 Lauterbach

OS Awareness Manual OKL4

15

OKL4 PRACTICE Functions

There are special definitions for OKL4 specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual OKL4 | 16

	OS Awareness Manual OKL4
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in OKL4

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Scanning System and Processes

	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	OKL4 Specific Menu

	OKL4 Commands
	TASK.CList Display capability lists
	TASK.MMU.SCAN Scan MMU address space
	TASK.Space Display address spaces
	TASK.Thread Display threads

	OKL4 PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

