
MANUAL

OS Awareness Manual
Nucleus PLUS

OS Awareness Manual Nucleus PLUS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual Nucleus PLUS ... 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Manual Configuration 6

 Automatic Configuration 7

 Quick Configuration Guide 7

 Hooks & Internals of Nucleus PLUS 8

 Features ... 9

 DBUG+ Terminal Emulation 9

 Display of Kernel Resources 9

 Display of History Component 10

 Task Stack Coverage 10

 Task-Related Breakpoints 11

 Task Context Display 12

 SMP Support 12

 Dynamic Task Performance Measurement 13

 Task Runtime Statistics 13

 Task State Analysis 14

 Function Runtime Statistics 15

 Nucleus specific Menu 17

 Debugging Nucleus Processes 17

 Symbol Autoloader 18

 Nucleus Commands .. 20

 TASK.DynMem Display dynamic memory status 20

 TASK.EventStat Display event group status 20

 TASK.FDT Display flattened device tree 21

 TASK.HIsr Display HISRs 21

 TASK.HISTory Display Nucleus history 22
OS Awareness Manual Nucleus PLUS | 2©1989-2024 Lauterbach

 TASK.MbxStat Display mailbox status 22

 TASK.PartMem Display partition memory status 23

 TASK.PipeStat Display pipe status 23

 TASK.ProcList Display process list 24

 TASK.QueueStat Display queue status 24

 TASK.REGistry Display registry entries 25

 TASK.SemaStat Display semaphore status 25

 TASK.TaskStat Display task status 25

 TASK.TImerstat Display timer status 26

 Nucleus PLUS PRACTICE Functions .. 27

 TASK.CONFIG() OS Awareness configuration information 27

 TASK.DM.AVAIL() Bytes of dyn. pool 27

 TASK.PL.ENTRY() Entry address of process 27
OS Awareness Manual Nucleus PLUS | 3©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for Nucleus contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual Nucleus PLUS | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently Nucleus is supported and tested for the following versions:

• Nucleus (PLUS) for ARM9/11, Cortex-M/R/A, ColdFire, Microblaze, MIPS, PowerPC;

• Nucleus Versions 1.x to 3.x, 2013.x, 2015.x
OS Awareness Manual Nucleus PLUS | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “nucleus.t32” (directory
~~/demo/<arch>/kernel/nucleus). It contains all necessary extensions.

Automatic configuration tries to locate the Nucleus internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If a system symbol is not available or if another address should be used for a specific system variable then
the corresponding argument must be set manually with the appropriate address. In this case, use the
manual configuration, which can require some additional arguments.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

Manual Configuration

Manual configuration for the OS Awareness for Nucleus can be used to explicitly define some memory
locations. It is recommended to use automatic configuration.

See also the example “~~/demo/<arch>/kernel/nucleus/nucleus.cmm”, which is a sample start-up script.

Format: TASK.CONFIG nucleus <magic_address> <ticktime> <args>

<magic_address> Specifies a memory location that contains the current running task. This
address can be found at the label “TCD_Current_Thread”.

<ticktime> <ticktime> tells the OS Awareness, how many milliseconds one Nucleus
PLUS tick has. This is currently only used in the TASK.HISTory command.
(Don’t forget the dot for a decimal number!)

<args> The additional arguments specify the symbols of the object lists. Use them
as shown below:
TCD_Created_Tasks_List MDB_Created_Mailboxes_List
QUD_Created_Queues_List PID_Created_Pipes_List
SMD_Created_Semaphores_List
EVD_Created_Event_Groups_List TMD_Created_Timers_List
PMD_Created_Pools_List DMD_Created_Pools_List
OS Awareness Manual Nucleus PLUS | 6©1989-2024 Lauterbach

Automatic Configuration

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

If a system symbol is not available, or if another address should be used for a specific system variable, then
the corresponding argument must be set manually with the appropriate address (see Manual Configura-
tion).

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<arch>/kernel/nucleus/nucleus.cmm”, which is a sample start-up script.

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for Nucleus with your application, follow
this roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command:

See “Automatic Configuration”.

4. Execute the command:

See “Nucleus Specific Menu”.

5. Start your application.

Now you can access the Nucleus extensions through the menu.

If you use Nucleus Processes, please also set up the Symbol Autoloader.

In case of any problems, please carefully read the previous Configuration chapters.

Format: TASK.CONFIG nucleus

TASK.CONFIG ~~/demo/<arch>/kernel/nucleus/nucleus.t32

MENU.ReProgram ~~/demo/<arch>/kernel/nucleus/nucleus.men
OS Awareness Manual Nucleus PLUS | 7©1989-2024 Lauterbach

Hooks & Internals of Nucleus PLUS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that the kernel is compiled with debug information and that access to the kernel
structures is possible every time when features of the OS Awareness are used.

Be sure that your application is compiled and linked with debugging symbols switched on.

For detecting the running task, the variable “TCD_Current_Thread” is used.

To find the OS objects, the labels mentioned in “Manual Configuration” are used.
OS Awareness Manual Nucleus PLUS | 8©1989-2024 Lauterbach

Features

The OS Awareness for Nucleus supports the following features.

DBUG+ Terminal Emulation

The terminal emulation window can be used to communicate with the target resident Nucleus debugger,
called DBUG+. The communication via two memory cells requires no external hardware interface. See the
TERM command group for a description of the terminal emulation. On request LAUTERBACH can provide
you with the source code for the target interface routine.

The 68k example (“~~/demo/m68k/kernel/nucleus/nucleus.cmm”) contains this interface and the terminal
emulation for the Nucleus debugger DBUG+.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Nucleus PLUS components can be displayed:

For a description of the commands, refer to chapter “Nucleus Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

TASK.TaskStat Tasks

TASK.MbxStat Mailboxes

TASK.QueueStat Queues

TASK.PipeStat Pipes

TASK.SemaStat Semaphores

TASK.EventStat Events

TASK.TImerstat Timers

TASK.PartMem Partitions

TASK.DynMem Dynamic pools

TASK.HIsr HISRs

TASK.ProcList Processes
OS Awareness Manual Nucleus PLUS | 9©1989-2024 Lauterbach

Display of History Component

NOTE: This feature is not available on all platforms. If you’d like to use this feature on your platform, but it is
not yet supported, please contact LAUTERBACH.

If you added the History Component of Nucleus to your application, the OS Awareness can display the
contents of the Nucleus history buffer (which contains kernel calls). See TASK.HISTory for details.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

To have the task stacks initialized with a pattern, you need to configure the Nucleus kernel accordingly.
Depending on the Nucleus version, this may be the configuration option
CFG_NU_OS_KERN_PLUS_CORE_STACK_FILL or CFG_NU_OS_KERN_PLUS_COMMON_STACK_FILL.
OS Awareness Manual Nucleus PLUS | 10©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual Nucleus PLUS | 11©1989-2024 Lauterbach

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual Nucleus PLUS | 12©1989-2024 Lauterbach

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual Nucleus PLUS | 13©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual Nucleus PLUS | 14©1989-2024 Lauterbach

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All waiting conditions (in Nucleus PLUS called 'suspend') are counted as 'waiting'. The conditions 'finished'
and 'terminated' are counted as 'suspended'. The states ’running’ and ’ready’ calculated as is.

All kernel activities except the scheduler are added to the calling task. The scheduler itself is calculated as
“(kernel)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual Nucleus PLUS | 15©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Nucleus PLUS | 16©1989-2024 Lauterbach

Nucleus specific Menu

The menu file “nucleus.men” contains a menu with Nucleus PLUS specific menu items. Load this menu with
the MENU.ReProgram command.

You will find a new menu called Nucleus+.

• The DBUG+ Terminal menu item (if available) brings up a terminal emulation window, which
communicates with the preconfigured DBUG+ debugger.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the Nucleus specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

Debugging Nucleus Processes

Nucleus can load and link additional software parts, so-called “Processes”. Debugging of these processes is
possible with the help of the OS Awareness for Nucleus.

First, load your process into the target. After loading, TASK.ProcList should show the newly loaded
process. Then, load the symbols of the process using the Symbol Autoloader, by either using the
command sYmbol.AutoLOAD.TOUCH, or by right clicking on the process’ “magic” in TASK.ProcList and
selecting “Load Symbols”. After this you have access to all symbols of the process. E.g. set a breakpoint on
main() and start the process. It should halt at its main entry point.
OS Awareness Manual Nucleus PLUS | 17©1989-2024 Lauterbach

Symbol Autoloader

The OS Awareness for Nucleus contains an autoloader, which automatically loads symbol files. The
autoloader maintains a list of address ranges, corresponding Nucleus processes and the appropriate load
command. Whenever the user accesses an address within an address range specified in the autoloader, the
debugger invokes the appropriate command. The command is usually a call to a PRACTICE script that
loads the symbol file to the appropriate addresses.

The command sYmbol.AutoLOAD.List shows a list of all known address ranges/components and their
symbol load commands.

The autoloader reads the target’s tables for the processes and fills the autoloader list with the processes
found on the target. All necessary information, such as load addresses, are retrieved from kernel-internal
information.

If an address is accessed that is covered by the autoloader list, the autoloader calls <action> and appends
the load addresses and the space ID of the component to the action. Usually, <action> is a call to a
PRACTICE script that handles the parameters and loads the symbols. Please see the example script
“autoload.cmm” in the ~~/demo directory.

The point in time when the component information is retrieved from the target can be set:

sYmbol.AutoLOAD.CHECKCoMmanD "<action>"

<action> Action to take for symbol load, e.g.
"DO ~~/demo/arm/kernel/nucleus/autoload.cmm"

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO]

(no argument) A single sYmbol.AutoLOAD.CHECK command refreshes the information
about the target.

ON The debugger automatically reads the information on every go/halt or
step cycle. This significantly slows down the debugger’s speed when
single stepping.

ONGO The debugger automatically reads the information on every go/halt cycle,
but not when single stepping.

OFF no automatic update of the autoloader table will be done, you have to
manually trigger the information read when necessary. To accomplish
that, execute the sYmbol.AutoLOAD.CHECK command without
arguments.

NOTE: The autoloader covers only components that are already started. Components that
are not in the current process table are not covered.
OS Awareness Manual Nucleus PLUS | 18©1989-2024 Lauterbach

OS Awareness Manual Nucleus PLUS | 19©1989-2024 Lauterbach

Nucleus Commands

TASK.DynMem Display dynamic memory status

Displays a table with the Nucleus dynamic memory pools. Specifying a dynamic pool magic number will
show you the waiting tasks of that dynamic pool.

'wait' shows the number of task waiting on this pool.
'first' is the first task waiting.

TASK.EventStat Display event group status

Displays a table with the Nucleus event groups. Specifying an event group magic number will show you the
waiting tasks of that event group.

'waiting' shows the number of task waiting on this event group.

'first' is the first task waiting.

Format: TASK.DynMem <dynamic>

Format: TASK.EventStat <eventgr>
OS Awareness Manual Nucleus PLUS | 20©1989-2024 Lauterbach

TASK.FDT Display flattened device tree

Shows the flattened device tree (aka DTB) used by Nucleus.

TASK.HIsr Display HISRs

Displays a table with the Nucleus HISRs. Specifying a HISR magic number will show you detailed
information on that HISR.

The fields “magic”, “name” and “entry” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking a HISR magic number will show a local menu.

Format: TASK.FDT

Format: TASK.HIsr <hisr>
OS Awareness Manual Nucleus PLUS | 21©1989-2024 Lauterbach

TASK.HISTory Display Nucleus history

This feature is not available on all platforms. If you’d like to use this feature on your platform, but it is not yet
supported, please contact Lauterbach.

This command shows a window with the content of the Nucleus History Component entries. This is only
available, if you included the Nucleus History Component in your application. The display is sorted with
showing the oldest entry first and the newest entry last.

Some fields (depending on their meaning) are mouse sensitive. Double click on them to get more
information. Double clicking on the entry number will show you the raw data.

TASK.MbxStat Display mailbox status

Displays a table with the Nucleus mailboxes. Specifying a mailbox magic number will show you the message
content and the waiting tasks of that mailbox.

The field 'msg' specifies, whether a message is present or not.
'waiting' shows the number of task waiting on this mailbox.
'first' is the first task waiting.

Format: TASK.HISTory

Format: TASK.MbxStat <mailbox>
OS Awareness Manual Nucleus PLUS | 22©1989-2024 Lauterbach

TASK.PartMem Display partition memory status

Displays a table with the Nucleus partition memory pools. Specifying a partition magic number will show you
the waiting tasks of that partition pool.

'wait' shows the number of task waiting on this pool.
'first' is the first task waiting.

TASK.PipeStat Display pipe status

Displays a table with the Nucleus pipes. Specifying a pipe magic number will show you the pipe pointers,
pipe message contents and the waiting tasks of that pipe.

'wait' shows the number of task waiting on this pipe. 'first' is the first task waiting.

Format: TASK.PartMem <part>

Format: TASK.PipeStat <pipe>
OS Awareness Manual Nucleus PLUS | 23©1989-2024 Lauterbach

TASK.ProcList Display process list

Displays a table with all created Nucleus processes. Specifying a process magic number or name will show
you detailed information on that process.

The fields “magic”, “name”, “load addr” and “entry” are mouse sensitive, double clicking on them opens
appropriate windows. Right -clicking a process magic number will show a local menu.

TASK.QueueStat Display queue status

Displays a table with the Nucleus queues. Specifying a queue magic number will show you the queue
pointers, queue message contents and the waiting tasks of that queue.

'wait' shows the number of task waiting on this queue. 'first' is the first task waiting.

Format: TASK.ProcList <process>

Format: TASK.QueueStat <queue>
OS Awareness Manual Nucleus PLUS | 24©1989-2024 Lauterbach

TASK.REGistry Display registry entries

Shows the registry entries of Nucleus.

TASK.SemaStat Display semaphore status

Displays a table with the Nucleus semaphores. Specifying a semaphore magic number will show you the
waiting tasks of that semaphore.

'waiting' shows the number of task waiting on this semaphore.
'first' is the first task waiting.

TASK.TaskStat Display task status

Displays the task table of Nucleus or detailed information about one specific task.

Format: TASK.REGistry

Format: TASK.SemaStat <sema>

Format: TASK.TaskStat <task>
OS Awareness Manual Nucleus PLUS | 25©1989-2024 Lauterbach

The display is similar to the DBUG+ 'ts' dump.

Without any arguments, a table with all created tasks will be shown.

Specify a task name or magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the TCB).

The fields “magic”, “name”, “stkbase” and “handler” are mouse sensitive, double clicking on them opens
appropriate windows. Right clicking a value in the magic column will show a local menu.

TASK.TImerstat Display timer status

Displays a table with the Nucleus application timers.

Format: TASK.TImerstat
OS Awareness Manual Nucleus PLUS | 26©1989-2024 Lauterbach

Nucleus PLUS PRACTICE Functions

There are special definitions for Nucleus PLUS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.DM.AVAIL() Bytes of dyn. pool

Returns the available bytes of the specified dyn. pool.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PL.ENTRY() Entry address of process

Returns the entry address of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.DM.AVAIL("<dyn_pool_name>")

Syntax: TASK.PL.ENTRY(<process_magic>)
OS Awareness Manual Nucleus PLUS | 27©1989-2024 Lauterbach

	OS Awareness Manual Nucleus PLUS
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Manual Configuration
	Automatic Configuration
	Quick Configuration Guide
	Hooks & Internals of Nucleus PLUS

	Features
	DBUG+ Terminal Emulation
	Display of Kernel Resources
	Display of History Component
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	Nucleus specific Menu
	Debugging Nucleus Processes
	Symbol Autoloader

	Nucleus Commands
	TASK.DynMem Display dynamic memory status
	TASK.EventStat Display event group status
	TASK.FDT Display flattened device tree
	TASK.HIsr Display HISRs
	TASK.HISTory Display Nucleus history
	TASK.MbxStat Display mailbox status
	TASK.PartMem Display partition memory status
	TASK.PipeStat Display pipe status
	TASK.ProcList Display process list
	TASK.QueueStat Display queue status
	TASK.REGistry Display registry entries
	TASK.SemaStat Display semaphore status
	TASK.TaskStat Display task status
	TASK.TImerstat Display timer status

	Nucleus PLUS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.DM.AVAIL() Bytes of dyn. pool
	TASK.PL.ENTRY() Entry address of process

