
MANUAL

OS Awareness Manual NORTi

OS Awareness Manual NORTi

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual NORTi ... 1

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 7

 Hooks & Internals in NORTi 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Dynamic Task Performance Measurement 10

 Task Runtime Statistics 11

 Task State Analysis 12

 Function Runtime Statistics 13

 NORTi specific Menu 15

 NORTi Commands ... 16

 TASK.ALarM Display alarm handlers 16

 TASK.CYClic Display cyclic handlers 16

 TASK.DaTaQueue Display data queues 16

 TASK.FLaG Display event flags 17

 TASK.ISR Display interrupt service routines 17

 TASK.MailBoX Display mailboxes 17

 TASK.MemPoolF Display fixed memory pools 18

 TASK.MemPoolL Display variable memory pools 18

 TASK.MsgBuFfer Display message buffers 19

 TASK.MuTeX Display mutexes 20

 TASK.PORt Display rendezvous ports 20

 TASK.SEMaphore Display semaphores 21

 TASK.TaSK Display tasks 21

 NORTi PRACTICE Functions .. 22
OS Awareness Manual NORTi | 2©1989-2024 Lauterbach

 TASK.CONFIG() OS Awareness configuration information 22
OS Awareness Manual NORTi | 3©1989-2024 Lauterbach

OS Awareness Manual NORTi

Version 06-Jun-2024

Overview

The OS Awareness for NORTi contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual NORTi | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently NORTi is supported for the following versions:

• NORTi v4 version 4.12 for ARM, Nios II and PowerPC.
OS Awareness Manual NORTi | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “norti.t32” (directory
“~~/demo/<processor>/kernel/norti”). It contains all necessary extensions.

Automatic configuration tries to locate the NORTi internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

Format: TASK.CONFIG norti
OS Awareness Manual NORTi | 6©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for NORTi with your application, follow the
following roadmap:

1. Copy the files “norti.t32” and “norti.men” to your project directory

(from TRACE32 directory “~~/demo/<processor>/kernel/norti”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG norti”

(See “Configuration”).

5. Execute the command “MENU.ReProgram norti”

(See “NORTi Specific Menu”).

6. Start your application.

Now you can access the NORTi extensions through the menu.

In case of any problems, please carefully read the previous configuration chapters.

Hooks & Internals in NORTi

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used. The NORTi kernel must be compiled with debug information.
OS Awareness Manual NORTi | 7©1989-2024 Lauterbach

Features

The OS Awareness for NORTi supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
NORTi components can be displayed:

For a description of the commands, refer to chapter “NORTi Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where NORTi holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

TASK.TaSK Tasks

TASK.SEMaphore Semaphores

TASK.FLaG Event flags

TASK.DaTaQueue Data queues

TASK.MailBoX Mailboxes

TASK.MsgBuFfer Message buffers

TASK.MuTeX Mutexes

TASK.PORt Rendezvous ports

TASK.MemPoolF Fixed sized memory pools

TASK.MemPoolL Variable sized memory pools

TASKCYClic Cyclic handlers

TASK.ALarM Alarm handlers

TASK.ISR Interrupt service routines
OS Awareness Manual NORTi | 8©1989-2024 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual NORTi | 9©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual NORTi | 10©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual NORTi | 11©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual NORTi | 12©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual NORTi | 13©1989-2024 Lauterbach

OS Awareness Manual NORTi | 14©1989-2024 Lauterbach

NORTi specific Menu

The menu file “norti.men” contains a menu with NORTi specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called NORTi.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the NORTi specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics.
OS Awareness Manual NORTi | 15©1989-2024 Lauterbach

NORTi Commands

TASK.ALarM Display alarm handlers

Displays the table of installed alarm handlers.

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.CYClic Display cyclic handlers

Displays the table of installed cyclic handlers.

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.DaTaQueue Display data queues

Displays the data queue table of NORTi or detailed information about one specific data queue.

Without any arguments, a table with all created data queues will be shown.
Specify a data queue ID or name to display detailed information on that data queue.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

Format: TASK.ALarM

Format: TASK.CYClic

Format: TASK.DaTaQueue [<queue>]
OS Awareness Manual NORTi | 16©1989-2024 Lauterbach

TASK.FLaG Display event flags

Displays the event flag table of NORTi or detailed information about one specific event flag.

Without any arguments, a table with all created event flags will be shown. Specify a flag ID or name to
display detailed information on that flag.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.ISR Display interrupt service routines

Displays the table of installed interrupt service routines.

The fields “id” and “handler” are mouse sensitive. Double-clicking on them open appropriate windows. Right
clicking on them will show local menu.

TASK.MailBoX Display mailboxes

Displays the mailbox table of NORTi or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.

Format: TASK.FLaG [<flag>]

Format: TASK.ISR

Format: TASK.MailBoX [<mailbox>]
OS Awareness Manual NORTi | 17©1989-2024 Lauterbach

Specify a mailbox ID or name to display detailed information on that mailbox.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MemPoolF Display fixed memory pools

Displays the fixed size memory pool table of NORTi or detailed information about one specific memory pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID or name to display detailed information on that memory pool.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MemPoolL Display variable memory pools

Displays the variable size memory pool table of NORTi or detailed information about one specific memory
pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a pool ID or name to display detailed information on that memory pool.

The “waiting” column shows the task IDs waiting.

Format: TASK.MemPoolF [<mempool>]

Format: TASK.MemPoolL [<mempool>]
OS Awareness Manual NORTi | 18©1989-2024 Lauterbach

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.MsgBuFfer Display message buffers

Displays the message buffer table of NORTi or detailed information about one specific message buffer.

Without any arguments, a table with all created message buffers will be shown.
Specify a message buffer ID or name to display detailed information on that message buffer.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

Format: TASK.MsgBuFfer [<msgbuffer>]
OS Awareness Manual NORTi | 19©1989-2024 Lauterbach

TASK.MuTeX Display mutexes

Displays the mutex table of NORTi or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
Specify a mutex ID or name to display detailed information on that mutex.

“locked” shows the task ID that locked this mutex.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.PORt Display rendezvous ports

Displays the rendezvous port table of NORTi or detailed information about one specific port.

Without any arguments, a table with all created port will be shown.
Specify a port ID or name to display detailed information on that port.

“accept” shows the task ID that is waiting for accepting this rendezvous.

The “call” column shows the task IDs waiting for calling the rendezvous.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

Format: TASK.MuTeX [<mutex>]

Format: TASK.PORt [<port>]
OS Awareness Manual NORTi | 20©1989-2024 Lauterbach

TASK.SEMaphore Display semaphores

Displays the semaphore table of NORTi or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown. Specify a semaphore ID or
name to display detailed information on that semaphore.

The “waiting” column shows the task IDs waiting.

The field “id” is mouse sensitive. Double-clicking on it opens an appropriate window. Right clicking on it will
show a local menu.

TASK.TaSK Display tasks

Displays the task table of NORTi or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.

Specify a task ID or name to display detailed information on that task.

The fields “id” and “entry” are mouse sensitive, double clicking on them opens appropriate windows. Right
clicking on them will show a local menu.

Format: TASK.SEMaphore [<semaphore>]

Format: TASK.TaSK [<task>]
OS Awareness Manual NORTi | 21©1989-2024 Lauterbach

NORTi PRACTICE Functions

There are special definitions for NORTi specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual NORTi | 22©1989-2024 Lauterbach

	OS Awareness Manual NORTi
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in NORTi

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	NORTi specific Menu

	NORTi Commands
	TASK.ALarM Display alarm handlers
	TASK.CYClic Display cyclic handlers
	TASK.DaTaQueue Display data queues
	TASK.FLaG Display event flags
	TASK.ISR Display interrupt service routines
	TASK.MailBoX Display mailboxes
	TASK.MemPoolF Display fixed memory pools
	TASK.MemPoolL Display variable memory pools
	TASK.MsgBuFfer Display message buffers
	TASK.MuTeX Display mutexes
	TASK.PORt Display rendezvous ports
	TASK.SEMaphore Display semaphores
	TASK.TaSK Display tasks

	NORTi PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

