LAUTERBACH A

OS Awareness Manual MQX

OS Awareness Manual MQX

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness Manual MQXccccciiiiimiiimmmiesr s s s sas s s sss s s samssasmns sassns snssmnnas 1
L 1= (o 4

O oY = 4
Brief Overview of Documents for New Users 5
Supported Versions 5
L0704} T 11T = Lo o 6
Quick Configuration Guide 7
Hooks & Internals in MQX 7
=Y 1 = 8
Display of Kernel Resources 8
Task Stack Coverage 8
Task-Related Breakpoints 9
Task Context Display 10
Dynamic Task Performance Measurement 11
Task Runtime Statistics 12
Task State Analysis 13
Function Runtime Statistics 14
MQX specific Menu 16
170 Q0T 0T 0 14 T T3 T - 17
TASK.EVent Display events 17
TASK.KLog Display kernel log 17
TASK.LWEvent Display light weight events 18
TASK.LWMEMPool Display light weight memory pools 18
TASK.LWMsgQ Display light weight message queues 19
TASK.LWSem Display light weight semaphores 19
TASK.MEMPool Display memory pools 20
TASK.MeSsaGe.POOL Display message pools 20
TASK.MeSsaGe.QUEUE Display message queues 21
TASK.MuteX Display mutexes 22
TASK.SEMaphore Display semaphores 22
TASK.TASK Display tasks 23
©1989-2024 Lauterbach OS Awareness Manual MQX 2

TASK. TASKQueue Display task queues 23

MQX PRACTICE FUNCHIONSceeeeeiciiiiiiniiesssissssmsssmssesssnssnssssssssssmssmssssssnssssssssssssnnsmmmssnssnnssnsnns 24
TASK.CONFIG() OS Awareness configuration information 24
TASK.STRUCT() Structure information 24

©1989-2024 Lauterbach OS Awareness Manual MQX | 3

OS Awareness Manual MQX

History

Version 06-Jun-2024

04-Feb-21

Overview

Removing legacy command TASK. TASKState.

/A TRACE32 for MOX = E ==
File Edit View Var Break Run CPU Misc Trace Perf Cov MQX Window Help
Mk A dee/pn[E 2ROl anEaedas @ Q| anedas @28
-
Y Y =@ =]
imagic name 1d state magic 1d entries max type owner /Tunct
1FFF144C |Sender 00010001 [Ready TO Queue 1FFF122C 0008 none infinite private main_task .
1FFF1BOC |_mgx_idle_task (00010002 |Active 1FFF124C 0009 none infinite private Sender
1FFF245C |BTimeSliceTask (00010003 |Ready TO Queue 1FFF126C O000A none infinite private Responder
1FFF293C [ATimeSliceTask (00010004 |Ready TO
1FFF2E1C |main_task 00010005 |Rcv Spec o o e r=
1FFF192C |Responder 00010006 |Rcv Spec | & =
LFFFL9FC MutexA 00010007 Mutex Blof [(Tog enabled overwrite? current/max size |
1FFF3B1C |[MutexB 00010008 |Ready TO yes no 16./ 16. o
1FFF3FFC |SemA 00010009 |Semaphore
1FFF453C [SemB 00010004 |Ready TO Entries
1FFF484C |Eventa 00010008 |Ready TO § S50 no_ hw ticks description
1FFF4FAC |[EventB 0001000C [Event Blo 1. 178373, _mso_alloc (OxX1FFFLODC, Ox0, Ox0, Ox0)
< 2. 179502, _msg_alloc returns Ox1FFF1304, Ox0, Ox
il B Trace. Chart. TASK = =R
2 senp... || §if Gous... | 38 Gonfig... | (A Goto...|| A Goto...|| F4Find... | O In |[»0¢ Out||EH Full
-28.000ms -27.000ms -26.000ms -25.000ms
Fangex 1 1 1 1 |
SemA L T A
MutexAf L
EventAiy (A L
MutexB .. /mm L
EventB i Lo . EEmm L
SemBiy g T
—max_idle_task:/mmm P L EE———
ATimeS14iceTaskik . L R .
BTimeSTiceTaskiy) B R)
Sender iy) B .
Responder ik) v
£ > >

The OS Awareness for MQX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual MQX | 4

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently MQX is supported for the following versions:
o MQX 2.x on 68k, ColdFire, ARM and PowerPC
. MQX 3.6 to MQX 4.0 on ARM, ColdFire and PowerPC.

©1989-2024 Lauterbach OS Awareness Manual MQX | 5

Configuration

The TASK.CONFIG command loads an extension definition file called “mqx.t32” (directory
“~~/demo/<processor>/kernel/mqgx”). It contains all necessary extensions.

Automatic configuration tries to locate the MQX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

| TASK.CONFIG mqgx

©1989-2024 Lauterbach OS Awareness Manual MQX | 6

Quick Configuration Guide

To access all features of the OS Awareness you should follow this roadmap:

1. Carefully read the demo startup script (~~/demo/<processor>/kernel/mgx/mgx.cmm).
2 Make a copy of the PRACTICE script file “mgx.cmm”.

3. Modify the file according to your application.

4 Run the modified version in your application.

This should allow you to display the kernel resources and use the trace functions (if available).

Hooks & Internals in MQX

No hooks are used in the kernel.

To retrieve all information, the pointers in the initialization structure are used.

©1989-2024 Lauterbach OS Awareness Manual MQX | 7

Features

The OS Awareness for MQX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

TASK.TASK Tasks

TASK.MEMPool Memory pools
TASK.MeSsaGe.QUEUE Message queues
TASK.MeSsaGe.POOL Message pools
TASK.SEMaphore Semaphores

TASK.EVent Events

TASK.MuteX Mutexes

TASK.KLog Kernel log

TASK.LWSem Light weight semaphores
TASK.LWEvent Light weight events
TASK.LWMsgQ Light weight message queues
TASK.LWMEMPool Light weight memory pools
TASK.TASKQueue Task queues

For a description of the commands, refer to chapter “MQX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

©1989-2024 Lauterbach OS Awareness Manual MQX | 8

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

& B:TASK STacK =R o
name |low high sp % [lowest spare max [0 10 20 30 40 50 |
Sender [LIFFF1520 1FFF1910 [LFFFL1B4C 19% [IFFFL75C OOD00Z30 437 |ee———— ~

_mgx_idle_task [LFFF1C00 1FFF1D50 [LFFF1D20 14% (1IFFF1CD4 000000D4 36%
BTimeS1iceTask [LFFF2530 1FFF2920 |LF 64 18% |IFFF2845 00000318 21% |se—
ATimeS14iceTask [LFFFZAL0 1FFF2E00 |1F 18% |LFFFZD2Z8 00000318 Z21% |e—
main_task [LFFFZEF0 1FFF32E0 |1F C 24% |IFFF311C 0000022C 44%
Responder [LFFF3300 1FFF36F0 |1F 22% |LFFF359C 0000029C 33%
MutexA [IFFF3710 1FFF3B00 |1F

MutexBE [LFFF3EF0 1FFF3FED |1F

SemA [LFFF40D0 1FFF44C0 |1F

21% |LFFF39EQ 00000ZD0 28%
17% |LFFF3ED8 Q0000ZES 26%
19% |LFFF4390 000002C0 30%
0 25% |LFFF48D0 000002C0 30%
C 19% |IFFF4DES 0O00002CE8 29%
7C 24% |LFFF5370 0O000D02ZF0 25%

SemB [LFFF4610 1FFF4A00 |1F
EventA |[IFFF4B20 1FFF4F10 |LF
EventE |[LFFF5080 1FFF5470 |LF

< >

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

©1989-2024 Lauterbach OS Awareness Manual MQX | 9

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

a B::Break.List EI@
3K Delete Al | O Disable Al @ Enabie Al @ it || & 1mpl... |52 Store...| 52 Load... | Ed Set...
address types impl task
SOFT TSender” _msgo_open
T:0000590C |Program SOFT "MutexA” _mutex_init

T:OOOMCSOJPr‘Dgr‘a.m

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

©1989-2024 Lauterbach OS Awareness Manual MQX | 10

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
& B::Frame /TASK "SemB" EI@
1. Up Down MArgs [iocals [caller Task: | "SemB" v|

-000|[task_bTock(asm)

-003||SemE (parameter = 0

— |end of frame

3
-004 [task_exit_function_internal()

-001||sem_wait_internal (users_sem_ptr = Ox1FFF4A1C, tick_ptr = Ox0, ticks_are_ a
-002||sem_wait_ticks{users_sem_ptr = Ox1FFF4AlC, t'lmeout_'ln_t'lcks =0)

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in

changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

(o] 8)

=) Detziled | O, View || Iy Profile| @ Init || O DiSsble| @ Arm

1%

2%

runtime: 100%
5% 10% 20% 50% 100

= B:PERF.ListTASK

& ... || 28 anfig...|| [Goto..
name ratio

[mgx_idTe_task 94, 176%
SemA 1.165%
EventB 0.998%
utexB 0.832%
Responder 0.666%
utexA 0.499%
Sender 0.333%
SemB 0. 666%
Eventa 0.333%
ATimeS14iceTask 0.333%
BTimeSTiceTask 0.000%
main_task 0.000%

Ty |

©1989-2024 Lauterbach

OS Awareness Manual MQX

11

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness Manual MQX | 12

| B:Trace STATistic. TASK = =R
2 ... || 1if Goups... || 58 Gonfig... | | Detailed || {7 Nesting|| il Chart || B Profile
tasks: 12. total: 131.072ms
range [total min max avr count ratio¥ [1% 2% 5% |
SemA | 920.200us | 161.600us | 379.300us | 306.733us 3. 0.702% |+ A
MutexA | 913, 200us | 155.400us | 378.900us | 304.400us 3. 0.696% |+
Eventa 1.134ms | 374.700us | 380.300us | 377.867us 3. 0. 864% |+
MutexB | 689.700us | 155.400us | 378.900us | 229, 900us 3. 0.526% |+
EventB | 820.800us | 273.600us | 273.600us | 273.600us 3. 0.626% |+
SemB | 726.600us | 153.600us | 245.800us | 181.650us 4. 0.554% |+
_mgx_idle_task | 118.446ms | 46.271lms | 46.571lms 39.482ms 3. 90. 367%
ATimeS1iceTask | 155.300us | 155.300us | 155.300us | 155.300us 1. 0.118% |+
BTimeSTliceTask | 159.200us | 159.200us | 159.200us | 159. 200us 1. 0.121% |+
Sender | 541.000us | 246.000us | 295.000us | 270.500us 2. 0.412% |+
il B Trace. Chart. TASK = =R
— | & sewp... || iif Goups...| 38 Gonfi... | (3 Goto...| (3 Goto...|| #4Find... || 0 In |[»0¢ Out|| @3 Ful
80.000ms -70.000ms -60.000ms -50.000ms -40.000ms -30.000ms
Fangesr), | 1 1 1 1 1 |
(unknm\%“ ..
SemARd L o
MutexARd b L I
EventAuy P I o
MutexBRd | e | I
EventBuy | P LI
SemBd L PSSP S LI
—max_1d]e_task ;| S . —_—
ATimeSliceTask@l 0 I
BTimeSTiceTask@l 0 00 0L LA
Senderfl m o
Responder@hl L LI
< >« >
.
Task State Analysis

NOTE:

This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different

tasks are in a certain state (running, ready, suspended or waiting) can be evaluated

statistically or displayed graphically.

This feature requi

res that the following data accesses are recorded:

o All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break. Set
Break. Set

Var .RANGE (TCB_array) /Write /TraceData
TASK.CONFIG (magic) /Write /TraceData

©1989-2024 Lauterbach OS Awareness Manual MQX | 13

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

©1989-2024 Lauterbach OS Awareness Manual MQX | 14

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(”
unknown)”.
% BTrace Chart Func =N =
Srszup... || fif Goups... | B8 Qonfio... | (Y Goto...||(} Goto...|| #3Find... | @ In 040t |EX Ful
Oms -76.000ms -75.900ms -75.800ms -75.700ms -75.600ms -75.500ms -75.400ms -75.300ms
range ¥ | L | L L | L L
_time_delay_internal | .,
_time_delay_ticks T —
_int_enable R |] n m 1
_kTog_log | H—HH—
_int_disable R L4] i LI)
“lwlog_write T B
_Iwlog_write_internal 8 u [
Croot) 8 }
_sem_post)
_task_ready_internal &
“sem_wait_ticks 8 3 |
_sem_wait_internal 8 =h
_queus_enqueue &
_time_deTay_internal 8 -
_time_delay_ticks 8 ¥ H
_int_enable R L] n n I
_kTog_log | H—HH—H
_int_disable R n L1} LI}
“lwlog_write pé H—
_Iwlog_write_internal T = u
root) 2 |
_mutex_unlock
= BuTroce STATistic. TREE
B ... || dif Goups... | 28 Gonfig... | 3 Goto...|| = Detaied esting % Chart
funcs: 394, total: 131.072ms
range [tree total min max avr count intern® 1% 2
{root) root) 1.134ms = T.134ms = = 0.003% |+
(root) (root) 689.700us - 689.700us - - 0.001% |+
_mutex_lock 209.800us | 149.500us [149.500us | 149.500us 2.(1/0) 0.034% |+
_time_delay_ticks 248.600us | 153.900us [153.900us | 153.900us 2.(0/1) 0.012% |+
—_mutex_unlock 229.200us | 229.200us | 229.200us | 229.200us 1 0.012% |+
(root) 820.800us - 820.800us - 0.004% |+
—event_wait_all_ticks 483.600us | 161.200us | 161.200us | 161.200us 4.(1/1) 0.024% |+
—event_clear 330.900us | 110.300us | 110.300us | 110.300us 3. 0.026% |+
(root) 726.600us - 726.600us - - 0.002% |+
—sem_wait_ticks 229.800us | 164.500us [164.500us | 164.500us 2.(1/0) 0.010% |+
_time_delay_ticks 254.600us | 156.900us [156.900us | 156.900us 2.(0/1) 0.012% |+
—sem_post 239.500us | 239.500us [239.500us | 239.500us 1 0.031% |+
(root) = (root) 118. 446ms - 118. 446ms - - £9.535% | mu—
hwtimer_systick_isr = hwtimer_systick_isr 1.090ms | 384.800us | 705.300us | 545.050us 2. 0.011% |+
| bsp_systimer_callback: —E _bsp_systimer_callback 1.076ms | 377.500us | 698.000us | 537.750us 2. 0.002% |+
—time_notify_kernel —F _time_notify_kernel 1.073ms | 376.000us | 696.500us | 536.250us 2. 0.081% |+
(root) = (root) 155. 300us - 155.300us - - <0.001% |+
_time_delay_ticks @ _time_delay_ticks 154.800us - 95. 600us - 2.(1/1) | 0.007% |+
(root) = ot 159. 200us - 159. 200us - - <0.001% |+
_time_delay_ticks L@ _time_delay_ticks 158.700us - 99.500us - 2.(1/1) | 0.007% |+
< >

©1989-2024 Lauterbach

OS Awareness Manual MQX |

15

MQX specific Menu

The menu file “mgx.men” contains a menu with MQX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called MQX.

. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the MQX specific stack coverage, and provide
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

. The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.

©1989-2024 Lauterbach OS Awareness Manual MQX | 16

MQX Commands

TASK.EVent Display events

Format: TASK.EVent <event>

Displays a table with the MQX events. Specifying an event magic number will show you the waiting tasks of
that event.

&5 Butask.ev Ox1FFFAF2C = E ==

mag c bitmask waiting valid name |
1FFF4F2C 00000000 1. yes event.Eventl

TFPFAFAC Events
. &b BiTASK EVent [E=R(E=R(E=)

mag c bitmask waiting valid name |
1FFF4F2C 00000000 1. wes event.Eventl A
£

v
>

TASK.KLog Display kernel log

Format: TASK.KLog

Displays a table with the MQX kernel log.

Each log entry contains a sequence number, a timestamp and information about one of the following entry
types:

. Function entry (with up to 4 parameters)
. Function exit (with return value)

. Interrupt (with interrupt number)

J Interrupt end

. Context switch (with name of new task).

The task name field for the context switch is mouse sensitive. Double clicking on it will show the
corresponding TASK.TASK <name> window.

©1989-2024 Lauterbach OS Awareness Manual MQX | 17

The log entries are displayed in chronological order, with the oldest entry first. If the first entry is not
sequence number 1, the oldest entries are being overwritten. The timestamp is obtained from the kernel
time when the entry is logged.

&% B:TASK KLog [E=N =R
Klog enabled overwrite? current/max size |

ves no 16./] A

10__hw ticks description

1. 178373, _msg_alloc (Ox1FFF10DC, OxD, OxD, OxD)

2. 179502, _msg_alloc returns Ox1FFF1304, Ox0, Ox0, Ox0

3. 180512, _msgg_send {Ox1FFF1304, 0x109, Ox0, 0x0)

4. 181664, _task_ready (Ox1FFF144C, Ox0, Ox0, O0x0)

5. 182656. _task_ready returns Ox0, Ox0, Ox0, Ox0

6. 183911. _unknown_ ({0000040D) returns Ox1FFF1304, 0x109, 0x0,

7. 184920. _msgg_send (Ox1FFF1304, Ox104, Ox109, 0x0)

B. 186072, _task_ready (Ox1FFF192C, Ox0, Ox0, Ox0)

9. 187064, _task_ready returns Ox0, Ox0, Ox0, Ox0

10. 188319. _unknown_ ({0000040D) returns Ox1FFF1304, Ox104, Ox10

11. 189328. _msgg_send (Ox1FFF1304, O0x109, Ox104, 0x0)

12. 190610, _msgg_send returns Ox1, Ox0, Ox0, Ox0 b
£ >

TASK.LWEvent Display light weight events

Format: TASK.LWEvent </wevent>

Displays a table with the MQX light weight events. Specifying a light weight event magic number will show
you detailed information about the waiting tasks.

o B:TASK.LWEvent OxIFFF2238 = =R
mag c valid value [fTags waiting [symbol |
’ﬁEFZZSS [yes | 000000000 | 0. .
vai .

% B:TASK.LWEvent = =R
mag c valid value [fTags waiting [symbol |
1FFF2238 [yes | 000000000 | 0.

£

>

TASK.LWMEMPool Display light weight memory pools

Format: TASK.LWMEMPool </wmempool>

Displays a table with the MQX light weight memory pools. Specifying a light weight memory pool magic
number will show you detailed information about the blocks in the memory pool.

©1989-2024 Lauterbach OS Awareness Manual MQX | 18

o B:TASK.LWMEMPool Ox1FFF0524 =n EER

mag c valid start end highest

1FFFO524 ves 1FFF0560 Z000FFFO 1FFFFFF3

agic 4 eSS owner S1zZe

1FFFO560 1FFF056C system 00000414
1FFFO980 1FFF098C system 00000164
1FFFOAFD 1FFFOAFC system 000000E4
1FFFOBED 1FFFOBEC system 00000084
1FFFOC70 1FFFOC7C system 00000014

IFFFOC90 1FFFOCOC system 00000044
1FFFOCE0 1FFFOCEC system 00000014 o B:TASK.LWMEMPool = =R
< magic valid start end highest
IFFFO524 yes 1FFF0560 2000FFF0 1FFFFFF3
v
£ >

TASK.LWMsgQ Display light weight message queues

Format: TASK.LWMsgQ </wmsgg>

Displays a table with the MQX light weight message queues. Specifying a light weight msg queue magic
number will show you detailed information about the waiting tasks.

TASK.LWSem Display light weight semaphores

Format: TASK.LWSem </wsem>

Displays a table with the MQX light weight semaphores. Specifying a light weight semaphore magic number
will show you detailed information about the waiting tasks.

o B:TASK.LWSem Ox1FFF030C | = || & |3
magic valid value waiting [symbol |
1FFFO30C [yes | 1] 0. .

] Tasks:

&5 BHTASK.LWSem [rolE-]

valid value waiting [symbol |
ves]

ves
ves
ves
ves

FEEEE
o000

©1989-2024 Lauterbach OS Awareness Manual MQX | 19

TASK.MEMPool Display memory pools

Format: TASK.MEMPool <mempool>

Displays the task memory pool table of MQX or detailed information about one specific memory pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a magic number to display detailed information on that memory pool.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory pool (address of the
memory pool object).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.
o B:TASK.LWEvent OxIFFF2238 = =R

mag c valid value [fTags waiting [symbol |
1FFF2238 [yes | 000000000 | 0. .

. &5 BTASK.LWEvent [rolE-]

mag c valid value [fTags waiting [symbol |
1FFF2238 [yes | 000000000 | 0.
£

>

TASK.MeSsaGe.POOL Display message pools

Format: TASK.MeSsaGe.POOL <msg_p>

Displays a table with the MQX message pools. Specifying a message pool magic number will show you the
messages in that pool.

% Bitask.msg.pool 0x1FFF10DC = =R
magic size total free grow Timit type valid |

0008 10. 9. 0. 10. private yes A
nagic status valid message size target p/g source p/g
1FFF1310 free Ves 1FFF1324 &l6E 74 / 73 6B / 61
1FFF1330 free ves 1FFF1344 616B 74 / 73 6B / 61
1FFF1350 free ves 1FFF1364 616B 74 / 73 6B / 61
1FFF1370 free ves 1FFF1384 616B 74 / 73 6B / 61 hd
£ S

o B:TASK.MeSsaGe.POOL = =R

v
>

magic size total free grow Timit type valid |
1FFF10DC 0008 10. 9. 0. 10. private yes A
£

The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

©1989-2024 Lauterbach OS Awareness Manual MQX | 20

TASK.MeSsaGe.QUEUE Display message queues

Format: TASK.MeSsaGe.QUEUE <msg_g>

Displays a table with the MQX message queues. Specifying a message queue magic number will show you
the messages in that queue.

oh Bu:task.msg.queue Ox1FFF122C EI@

magic 1d entries max tyvpe owner /Tunction |
1FFF1Z2C 0008 none infinite private main_task ~

valic size target p/g source p/g
v
< o B:TASK.MeSsaGe.QUEUE = =R
agic 1d entries max tyvpe owner /Tunction |
1FFF122C 0008 none infinite private main_task ~

1FFF124C 0009 none infinite private Sender
1FFF126C 000A none infinite private Responder
v

< >

The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

©1989-2024 Lauterbach OS Awareness Manual MQX | 21

TASK.MuteX

Display mutexes

Format:

TASK.MuteX <mutex>

Displays a table with the MQX mutexes. Specifying a mutex magic number will show you detailed

information about that mutex.

&% Btask.mx Ox1FFF0130

(o] 8)

magic Tocked walt status policy wait,spin policy priority |
1FFFO130 1FFFL19FC 1. Tocked queusing no prio inh ~
valid destroy boost
es no 0.
waiting tasks:
nagic 1ame
1FFF3B1C MutexB
LY
< o B:TASK MuteX =R IR
magic Tocked walt status policy wait,spin policy priority |
1FFFO130 1FFFL19FC 1. Tocked queusing no prio inh -
v
£ >

TASK.SEMaphore

Display semaphores

Format:

TASK.SEMaphore <sem>

Displays a table with the MQX semaphores. Specifying a semaphore magic number will show you the

owning and waiting tasks of that semaphore.

o B:TASK.SEMaphore x1FFF44DC

(o8)

magic owning waiting count max
1FFF44DC 0. 1. 0.

valid destroy policy name |

-1. yes no none

sem. Seml

vaiting tasks:

I RC:: C name
1FFF453C SemB
e % B:TASK.SEMaphore

=R o
< magic owning waiting count max valid destroy policy name |
1FFF44DC 0. 1. 0. -1. yes no none sem. Seml A
v
£ >

©1989-2024 Lauterbach

OS Awareness Manual MQX | 22

TASK.TASK Display tasks

Format: TASK.TASK <task>

Displays the task table of MQX or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, ID or magic number to display detailed information on that task.

o BTASK Task =R o
mag c name 1d state prio msgs error code |
1FFF144C |Sender 00010001 [Ready TO Queue 10. 0. |OK
1FFF1EOC |_mgx_idle_task |00010002 |Active 13, 0. |OK
1FFF245C |BTimeSliceTask (00010003 |Ready TO Queue 9. 0. (0K
1FFF293C [ATimeSliceTask (00010004 |Ready TO Queue 9. 0. (0K
1FFF2ELC |main_task 00010005 |Rcv Spec Blocked 11. 0. (0K
FaZEFd) Responder 00010006 |Rcv Spec Blocked 9. 0. (0K
1FFF19FC [Mutexi 00010007 |Ready TO Queue 9. 0. |OK
1FFF3B1C |MutexB 00010008 |Mutex Blocked Queue 9. 0. (0K
1FFF3FFC [SemA 00010009 |Ready TO Queue 9. 0. |OK
1FFF453C |SemB 00010004 |Semaphore Blocked 10. 0. (0K
1FFF444C |Eventad 0001000B |Ready TO Queue 9. 0. |OK
1FFF4FAC |EventB 0001000C |Event Blocked 9. 0. |OK
< @?. B:TASK. Task "Responder” EI@
mag c name 1d state prio msgs [error code '
1FFF192C [Responder [00010006 |Rcv Spec Blocked [9.7 0. oK ~
father SR disabled boost message timeout timeslice
00010001 0000 1. 0. 00000000 0. 0. [
Template:
index entry parameter prio stksize timeslice
0000000E OOOD00AGL OCOOOOCD 9. 00000400 OOCO
Attributes: NO AUTO_START, NO FLOTIMG_POINT, NO TIME_SLICE
v
£ >

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task object).

U

The fields “magic”, “name” and “id” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.TASKQueue Display task queues

Format: TASK.TASKQueue <task_queue>

Displays a table with the task queues. Specifying a task queue magic number will show you detailed
information about this queue.

©1989-2024 Lauterbach OS Awareness Manual MQX | 23

MQX PRACTICE Functions

There are special definitions for MQX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

TASK.STRUCT() Structure information

Syntax: TASK.STRUCT(<item> | td)

Parameter and Description:

<item> Parameter Type: String (without quotation marks).
Reports the name of the according structure.

td Parameter Type: String (without quotation marks).
Returns the name of the task descriptor structure.

Return Value Type: String.

©1989-2024 Lauterbach OS Awareness Manual MQX | 24

	OS Awareness Manual MQX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in MQX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	MQX specific Menu

	MQX Commands
	TASK.EVent Display events
	TASK.KLog Display kernel log
	TASK.LWEvent Display light weight events
	TASK.LWMEMPool Display light weight memory pools
	TASK.LWMsgQ Display light weight message queues
	TASK.LWSem Display light weight semaphores
	TASK.MEMPool Display memory pools
	TASK.MeSsaGe.POOL Display message pools
	TASK.MeSsaGe.QUEUE Display message queues
	TASK.MuteX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.TASK Display tasks
	TASK.TASKQueue Display task queues

	MQX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() Structure information

