
MANUAL

OS Awareness Manual MQX

OS Awareness Manual MQX

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual MQX .. 1

 History .. 4

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 7

 Hooks & Internals in MQX 7

 Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Task Context Display 10

 Dynamic Task Performance Measurement 11

 Task Runtime Statistics 12

 Task State Analysis 13

 Function Runtime Statistics 14

 MQX specific Menu 16

 MQX Commands .. 17

 TASK.EVent Display events 17

 TASK.KLog Display kernel log 17

 TASK.LWEvent Display light weight events 18

 TASK.LWMEMPool Display light weight memory pools 18

 TASK.LWMsgQ Display light weight message queues 19

 TASK.LWSem Display light weight semaphores 19

 TASK.MEMPool Display memory pools 20

 TASK.MeSsaGe.POOL Display message pools 20

 TASK.MeSsaGe.QUEUE Display message queues 21

 TASK.MuteX Display mutexes 22

 TASK.SEMaphore Display semaphores 22

 TASK.TASK Display tasks 23
OS Awareness Manual MQX | 2©1989-2024 Lauterbach

 TASK.TASKQueue Display task queues 23

 MQX PRACTICE Functions ... 24

 TASK.CONFIG() OS Awareness configuration information 24

 TASK.STRUCT() Structure information 24
OS Awareness Manual MQX | 3©1989-2024 Lauterbach

OS Awareness Manual MQX

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.

Overview

The OS Awareness for MQX contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual MQX | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently MQX is supported for the following versions:

• MQX 2.x on 68k, ColdFire, ARM and PowerPC

• MQX 3.6 to MQX 4.0 on ARM, ColdFire and PowerPC.
OS Awareness Manual MQX | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “mqx.t32” (directory
“~~/demo/<processor>/kernel/mqx”). It contains all necessary extensions.

Automatic configuration tries to locate the MQX internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

TASK.CONFIG mqx
OS Awareness Manual MQX | 6©1989-2024 Lauterbach

Quick Configuration Guide

To access all features of the OS Awareness you should follow this roadmap:

1. Carefully read the demo startup script (~~/demo/<processor>/kernel/mqx/mqx.cmm).

2. Make a copy of the PRACTICE script file “mqx.cmm”.

3. Modify the file according to your application.

4. Run the modified version in your application.

This should allow you to display the kernel resources and use the trace functions (if available).

Hooks & Internals in MQX

No hooks are used in the kernel.

To retrieve all information, the pointers in the initialization structure are used.
OS Awareness Manual MQX | 7©1989-2024 Lauterbach

Features

The OS Awareness for MQX supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. The following information can be
displayed:

For a description of the commands, refer to chapter “MQX Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

TASK.TASK Tasks

TASK.MEMPool Memory pools

TASK.MeSsaGe.QUEUE Message queues

TASK.MeSsaGe.POOL Message pools

TASK.SEMaphore Semaphores

TASK.EVent Events

TASK.MuteX Mutexes

TASK.KLog Kernel log

TASK.LWSem Light weight semaphores

TASK.LWEvent Light weight events

TASK.LWMsgQ Light weight message queues

TASK.LWMEMPool Light weight memory pools

TASK.TASKQueue Task queues
OS Awareness Manual MQX | 8©1989-2024 Lauterbach

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.
OS Awareness Manual MQX | 9©1989-2024 Lauterbach

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual MQX | 10©1989-2024 Lauterbach

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual MQX | 11©1989-2024 Lauterbach

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual MQX | 12©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData
OS Awareness Manual MQX | 13©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual MQX | 14©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.
OS Awareness Manual MQX | 15©1989-2024 Lauterbach

MQX specific Menu

The menu file “mqx.men” contains a menu with MQX specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called MQX.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the MQX specific stack coverage, and provide
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

• The Perf menu contains additional submenus for task runtime statistics and statistics on task
states.
OS Awareness Manual MQX | 16©1989-2024 Lauterbach

MQX Commands

TASK.EVent Display events

Displays a table with the MQX events. Specifying an event magic number will show you the waiting tasks of
that event.

TASK.KLog Display kernel log

Displays a table with the MQX kernel log.

Each log entry contains a sequence number, a timestamp and information about one of the following entry
types:

• Function entry (with up to 4 parameters)

• Function exit (with return value)

• Interrupt (with interrupt number)

• Interrupt end

• Context switch (with name of new task).

The task name field for the context switch is mouse sensitive. Double clicking on it will show the
corresponding TASK.TASK <name> window.

Format: TASK.EVent <event>

Format: TASK.KLog
OS Awareness Manual MQX | 17©1989-2024 Lauterbach

The log entries are displayed in chronological order, with the oldest entry first. If the first entry is not
sequence number 1, the oldest entries are being overwritten. The timestamp is obtained from the kernel
time when the entry is logged.

TASK.LWEvent Display light weight events

Displays a table with the MQX light weight events. Specifying a light weight event magic number will show
you detailed information about the waiting tasks.

TASK.LWMEMPool Display light weight memory pools

Displays a table with the MQX light weight memory pools. Specifying a light weight memory pool magic
number will show you detailed information about the blocks in the memory pool.

Format: TASK.LWEvent <lwevent>

Format: TASK.LWMEMPool <lwmempool>
OS Awareness Manual MQX | 18©1989-2024 Lauterbach

TASK.LWMsgQ Display light weight message queues

Displays a table with the MQX light weight message queues. Specifying a light weight msg queue magic
number will show you detailed information about the waiting tasks.

TASK.LWSem Display light weight semaphores

Displays a table with the MQX light weight semaphores. Specifying a light weight semaphore magic number
will show you detailed information about the waiting tasks.

Format: TASK.LWMsgQ <lwmsgq>

Format: TASK.LWSem <lwsem>
OS Awareness Manual MQX | 19©1989-2024 Lauterbach

TASK.MEMPool Display memory pools

Displays the task memory pool table of MQX or detailed information about one specific memory pool.

Without any arguments, a table with all created memory pools will be shown.
Specify a magic number to display detailed information on that memory pool.

“magic” is a unique ID, used by the OS Awareness to identify a specific memory pool (address of the
memory pool object).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.MeSsaGe.POOL Display message pools

Displays a table with the MQX message pools. Specifying a message pool magic number will show you the
messages in that pool.

The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

Format: TASK.MEMPool <mempool>

Format: TASK.MeSsaGe.POOL <msg_p>
OS Awareness Manual MQX | 20©1989-2024 Lauterbach

TASK.MeSsaGe.QUEUE Display message queues

Displays a table with the MQX message queues. Specifying a message queue magic number will show you
the messages in that queue.

The fields 'magic' and 'message' are mouse sensitive. Double-clicking on them will perform the appropriate
action.

Format: TASK.MeSsaGe.QUEUE <msg_q>
OS Awareness Manual MQX | 21©1989-2024 Lauterbach

TASK.MuteX Display mutexes

Displays a table with the MQX mutexes. Specifying a mutex magic number will show you detailed
information about that mutex.

TASK.SEMaphore Display semaphores

Displays a table with the MQX semaphores. Specifying a semaphore magic number will show you the
owning and waiting tasks of that semaphore.

Format: TASK.MuteX <mutex>

Format: TASK.SEMaphore <sem>
OS Awareness Manual MQX | 22©1989-2024 Lauterbach

TASK.TASK Display tasks

Displays the task table of MQX or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task name, ID or magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific task (address of the task object).

The fields “magic”, “name” and “id” are mouse sensitive, double clicking on them opens appropriate
windows. Right clicking on them will show a local menu.

TASK.TASKQueue Display task queues

Displays a table with the task queues. Specifying a task queue magic number will show you detailed
information about this queue.

Format: TASK.TASK <task>

Format: TASK.TASKQueue <task_queue>
OS Awareness Manual MQX | 23©1989-2024 Lauterbach

MQX PRACTICE Functions

There are special definitions for MQX specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.STRUCT() Structure information

Parameter and Description:

Return Value Type: String.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.STRUCT(<item> | td)

<item> Parameter Type: String (without quotation marks).
Reports the name of the according structure.

td Parameter Type: String (without quotation marks).
Returns the name of the task descriptor structure.
OS Awareness Manual MQX | 24©1989-2024 Lauterbach

	OS Awareness Manual MQX
	History
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in MQX

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	MQX specific Menu

	MQX Commands
	TASK.EVent Display events
	TASK.KLog Display kernel log
	TASK.LWEvent Display light weight events
	TASK.LWMEMPool Display light weight memory pools
	TASK.LWMsgQ Display light weight message queues
	TASK.LWSem Display light weight semaphores
	TASK.MEMPool Display memory pools
	TASK.MeSsaGe.POOL Display message pools
	TASK.MeSsaGe.QUEUE Display message queues
	TASK.MuteX Display mutexes
	TASK.SEMaphore Display semaphores
	TASK.TASK Display tasks
	TASK.TASKQueue Display task queues

	MQX PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information
	TASK.STRUCT() Structure information

