LAUTERBACH A

OS Awareness Manual LiteOS

OS Awareness Manual LiteOS

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index
TRACE32 DOCUMENTS ciceeiiiiiiiemns s inisess s snnsss s s rassss e e s s e s ee e m s e e ea s m s e b e a s mn e e R e a s annn e nnnnnn =
OS Awareness ManUAISccccriiimiisssmiiiris s s e e n s s e e n e e e e nnnnn =
OS Awareness Manual LIHEOS ... s s s s s ms s s s s samnnas 1

OVEIVIBW ..ieeeiiireessirenssirsnnssssnsssransssssnsssssanssssensssssansssssnssssessssssansssssnsssssnsssssansssssnssssennssssnnsssnnnnns
Brief Overview of Documents for New Users
Supported Versions

ConfiguIration ...
Quick Configuration Guide
Hooks & Internals in LiteOS

== T ==
Display of Kernel Resources
Task Stack Coverage
Task-Related Breakpoints
Task Context Display

© 0O N NN OO0 bW

Dynamic Task Performance Measurement 9
Task Runtime Statistics 10
Function Runtime Statistics 10
LiteOS specific Menu 12
Y (=10 T 0o T 1 14 =T T 13
TASK.Task Display tasks 13
TASK.MUteX Display mutexes 13
TASK.QUEue Display queues 14
TASK.SEMaphore Display semaphores 14
TASK.TIMer Display timers 15
LiteOS PRACTICE FUNCHIONSooocccecieirencecerrsssssscerssssssessessssmssnessssmmsssessssmsssessssammeseassanmensens 16
TASK.CONFIG() OS Awareness configuration information 16

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 2

OS Awareness Manual LiteOS

Overview

Version 06-Jun-2024

% BuTASK Task &b B:TASK.SEMaphore
agic 1d [name state prio [entry agic 1d |state |waiting
20001464 [0. [Swt_Task pend_queue 0. [0B0O0DO555 osSwTmrTask 37C [0, [used Z. T
20001ACC (1. |Id]eCorel00 ready 31. |DBOOOF71 osIdleTask C [1. |unused 9.
2. |ApiDemo runmng 30. (08007120 LOS_Demo_Tskfunc 2. |unused 9.
Z0001B9C |3. |Sematsk2 blocked 4. (08006909 Example_SemTask2 3. |unused 9.
20001C04 |4, |[Seamtskl w_evt_timeo 5. |0800693D Example_SemTaskl 4. |unused 9.
20001C6C [5. MutexTskl blocked 5. |0800676D Example_MutexTaskl 5. (unused 9.
20001CD4 |6, MutexTsk2 blocked 4. |0B0O068E15 Example_MutexTask2 6. (unused 9.
20001D3C |7. |sendQueue delayed 9. (08006611 send_Entry ¢ |7 lunused g
20001044 (3. unused 9. |00000000
Z0001E0C 9. unusZcI 0. |oooooooo @% B:TASK.SEMAphore 0:2000237C EI@
20001E74 (10 unused 0. |C0000000
S agic 1d [state |waiting
20001EDC (11 unused 0. |00000000 mag
20001F44 |12 unused 0. 00000000 2000237C 0. Jused | 2. -
Z0001FAC (13 unused 0. |00000000
20002014 |14 unused 0. (00000000 vaiting tasks:
zooozo7C |15 unused 0. |00000000 SO00IESC — Sematsk?
20001C04 Seamtskl
&b B:TASKTIMer [E=5EoR 5
agic 1d [mode state [count handler |
Z00026F4 [0. |once ticking [1000. [0BD06F01 Timerl_Callback A
20002714 (1. |[period created | 100. |DB00GF45 Timer2_Callback
20002734 (2. |once unused 0. |C0000000 3 op.,
20002754 |5, |once unused 0. (00000000 o B:TASK QUEue [B]
20002774 |4. |once unused 0. (00000000 1d [state [Tength [s1ze |write_cnt read_cnt |
20002794 |[5. |once unused 0. (00000000 1. [used 16. |[Ox0008 16. 0. P
2. |used 5. [0x001C 4. 1
D p. 3. |unused 0. [0x0000 0. 0.
o B:TASK MUteX [e] 2. |unused 0. |0x0000 0. 0.
agic id [state |owner | 5. |unused 0. |0ox0000 0. 0.
Z000242C (0. |used 20001C6C MutexTskl A 6. |unused 0. |oxoooo 0. 0.
20002444 |1. |unused |00000000 7. |unused 0. |0x0000 0. 0.
2000245C |2. |unused |00000000 8. |unused 0. |0x0000 0. 0.
2 4 (3. |unused |00000000 9. |unused 0. [0x0000 0. 0.
2000248C |4. |unused |00000000 0. 0.
200024A4 |5. |unused |00000000 fo)
200024BC |6. |unused [00000000 s et s bl [E=%|ECR =3
20002404 |7. |unused |00000000 E§g1c 1d |state |[length [s1ze |write_cnt [read_cnt
200024EC |8. |unused |00000000 20002558 |2. lused | 5. |0x001C | 4. 1. |a
20002504 |9. |unused |00000000 -
- :
messa

meszage 1: testuisumessagend

The OS Awareness for LiteOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

©1989-2024 Lauterbach

OS Awareness Manual LiteOS | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently LiteOS is supported for the following versions:

o All LiteOS versions on ARM/Cortex-M.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “liteos.t32” (directory
“~~/demo/arm/kernel/liteos”). It contains all necessary extensions.

Automatic configuration tries to locate the LiteOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

I TASK.CONFIG liteos.t32

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for LiteOS with your application, follow
these steps:

1. Start the TRACE32.
2. Load your application as usual.

3. Load the LiteOS awareness:

TASK.CONFIG ~~/demo/arm/kernel/liteos/liteos.t32

4, Load the LiteOS menu:

MENU.ReProgram ~~/demo/arm/kernel/liteos/liteos.men

See “LiteOS Specific Menu”.

Now you can access the LiteOS extensions through the menu.

Hooks & Internals in LiteOS

No hooks are used in the kernel.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 6

Features

The OS Awareness for LiteOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
LiteOS components can be displayed:

TASK.Task Display tasks
TASK.MUteX Display mutexes
TASK.QUEue Display queues
TASK.SEMaphore Display semaphores
TASK.TIMer Display timers

For a detailed description of each command, refer to chapter “LiteOS Commands”.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

o5 BiTASK.STacK view =l ===

name ||ow high % [lowest spare max 0 10 20 30 40 50 60 FO B0 90 100
Swt_Task |20002998 20002Ce8 [Z0002524 45% 20002664 Q0000LCC 367 |——— 7
Id1eCore000 (20002C80 20003180 |20 19% [2000308C 0000040C 19% |ee—
ApiDemo |20003140 200036A0 |20 3% |20003638 000004593 B |m—
Sematsk2 (200045E8 20004AES |20 24% 20004984 000003CC 24%
Seamtskl [200040C8 200045C3 24% 20004494 000003CC 24%
MutexTskl (20003AF0 20003DCO 37% |20003CB4 000001C4 37%
MutexTsk2 (20003DEQ 20004080 |20 37% |20003FA4 000001C4 37%
sendQueue (20003685 200038B3 |20 61% |2000377C 000000C4 6l1%

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 8

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all

register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer

to this task. Be aware that this is only for displaying information. When you continue debugging the

application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see

“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

& Bu:Frame /TASK "MutexTsk2"

(o] 8)

t. Up Down Margs [Cilocals [caller Task: |"Muteszk2"

> |

-000}|Los_schedule ()

-001||Los_semPend (uwSemHandle = 0, uwTimeout = 4294967295)
-002||Example_semTask2()

-003||osTaskEntry(uwTaskID = 3)

-004 losTaskExit()

— |lend of frame

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the

PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide

P” (general_ref_p.pdf).

©1989-2024 Lauterbach

OS Awareness Manual LiteOS

9

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as

colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 10

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 11

LiteOS specific Menu

The menu file “liteos.men” contains a menu with LiteOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called LiteOS.

M32Fdx LiteOS Window Help

5 | &9 | 5% Display Tasks
a5 Display Mutex

5]
.

F 3
&% Display Queue
F 3

Display Semaphore

a4 Display Timer
@ Stack Coverage L4
. The Display menu items launch the kernel resource display windows.
J The Stack Coverage submenu starts and resets the LiteOS specific stack coverage and provides

an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

J The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 12

LiteOS Commands

TASK.Task

Display tasks

Format:

TASK.Task

Displays detailed information about the tasks.

unused

I

o B:TASK Task =n| Wl <
|@g1c 1d [name state prio [entry |
20001464 [0. [Swt_Task pend_queue 0. [0B0O0DO555 osSwTmrTask L
20001ACC (1. |Id]eCorel00 ready . |DBOOOF71 osIdleTask
20001B34 |2. |ApiDemo runming . |0B00712D LO5 Demo_Tskfunc
Z0001B9C |3. |Sematsk2 blocked . |DB0069D3 Example_SemTask2
20001C04 |4, |[Seamtskl w_evt_timeo . |0800693D Example_SemTaskl
20001C6C [5. MutexTskl blocked . |0800676D0 Example_MutexTaskl
20001CD4 |6, MutexTsk2 blocked . |DBDOGB1S Example_MutexTask2
20001D3C |7. |sendQueue delayed . |DBOO6E11 send_Entry
O

“magic” is a unique ID, used by the OS Awareness to identify the task.

TASK.MUteX

Display mutexes

Format:

TASK.MUteX

Displays the list of mutexes including the unused ones (in gray).

&b B:TASKMUteX [E=% (B =3
magic 1d |state |owner |
20 0. [used 20001C6C MutexTskl P

00242C
4

1. |unused

6. |unused
. |unused

“magic” is a unique ID, used by the OS Awareness to identify the mutex.

©1989-2024 Lauterbach

OS Awareness Manual LiteOS | 13

TASK.QUEue

Display queues

Format:

TASK.QUEue

Displays the list of queu

es including the unused ones (in gray).

o5 B:TASK.QUEue

[E=N Noh/)

. |unused
. |unused

3. |unused
0 |unused

@2915 1d |state |[length [s1ze |write_cnt [read_cnt
2000252C [1. [used 16. |0x0008 16. o
20002338 |12 ﬁﬁf,d 5. [ox001c o% BxTASK.QUEUe 0:x20002558 o o=
=d @2915 id [state [length [s1ze |write_cnt [read_cnt
20002558 |2. lused | 5. |0x001C | N 1. |2

MmESsages :

meszage 1: testuisumessagend

I 2

“magic” is a unique ID, used by the OS Awareness to identify the queue.

TASK.SEMaphore

Display semaphores

Format:

TASK.SEMaphore

&b B:TASK.SEMaphore

(=[O el

1d [state wa1t1ng

. |used
. unu;—d
ad

W00 W0 WD O]

. ed
. unu;—d

-

o B:TASK.SEMAphore 0:2000237C El-@
jmagic 1d [state |waiting
2000237C [0. |used | Z. »
waiting tasks:
20001E9C Sematsk2
20001C04 Seamtskl

“ 1 ¢

Displays the list of semaphores including the unused ones (in gray).

“magic” is a unique ID, used by the OS Awareness to identify the semaphore.

©1989-2024 Lauterbach

OS Awareness Manual LiteOS | 14

TASK.TIMer Display timers

Format: TASK.TIMer
Displays the list of timers including the unused ones (in gray).
o B:TASK.TIMer =n| Wl <
magic 1d [mode state [count handler
Z00026F4 [0. |once ticking [1000. [0BD06F01 Timerl_Callback A
20002714 (1. |[period created | 100. |DB00GF45 Timer2_Callback
4 (2. |once unused
3. |once unused
4. |once unused
5. |once unused
6. [once unused
7. |once unused
8. |once
9. |once
10 |once
11 [once unused
12 [once unused
13 [once unused
14 [once unused
15 [once unused
] 1 ¢

“magic” is a unique ID, used by the OS Awareness to identify the timer.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 15

LiteOS PRACTICE Functions

There are special definitions for LiteOs specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness Manual LiteOS | 16

	OS Awareness Manual LiteOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in LiteOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Function Runtime Statistics
	LiteOS specific Menu

	LiteOS Commands
	TASK.Task Display tasks
	TASK.MUteX Display mutexes
	TASK.QUEue Display queues
	TASK.SEMaphore Display semaphores
	TASK.TIMer Display timers

	LiteOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

