
MANUAL

OS Awareness Manual Linux

OS Awareness Manual Linux

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness and Run Mode Debugging for Linux .. 

 OS Awareness Manual Linux ... 1

 History ... 5

 Overview ... 6

 Terminology 6

 Brief Overview of Documents for New Users 6

 Supported Versions 7

 Configuration .. 8

 Quick Configuration Guide 8

 Hooks & Internals in Linux 8

 Features .. 10

 Display of Kernel Resources 10

 Task-Related Breakpoints 10

 Task Context Display 11

 MMU Support 13

 Space IDs 13

 MMU Declaration 13

 Debugger Table Walk 19

 Symbol Autoloader 21

 SMP Support 22

 Dynamic Task Performance Measurement 23

 Task Runtime Statistics 23

 Process / thread switch support for ARM using context ID register: 24

 Task State Analysis 24

 Function Runtime Statistics 25

 Linux Specific Menu 27

 Debugging Linux Kernel and User Processes .. 28

 Linux Kernel 29

 Downloading the Kernel 29

 Debugging the Kernel Startup 30

 Debugging the Kernel 30
OS Awareness Manual Linux | 2©1989-2024 Lauterbach

 User Processes 31

 Debugging the Process 31

 Debugging into Shared Libraries 33

 Debugging Linux Threads 34

 On Demand Paging 34

 Kernel Modules 39

 Trapping Segmentation Violation 42

 Linux Commands ... 43

 TASK.CHECK Check awareness integrity 43

 TASK.DMESG Display the kernel ring buffer 43

 TASK.DTask Display tasks 44

 TASK.DTB Display the device tree blob 45

 TASK.DTS Display the device tree source 45

 TASK.NET Display network devices 45

 TASK.FS Display file system internals 46

 TASK.MAPS Display process maps 46

 TASK.MMU.SCAN Scan process MMU space 46

 TASK.MODule Display kernel modules 47

 TASK.Option Set awareness options 47

 TASK.Process Display processes 48

 TASK.PS Display “ps” output 49

 TASK.sYmbol Process/Module symbol management 50

 TASK.sYmbol.DELete Unload process symbols and MMU 50

 TASK.sYmbol.DELeteLib Unload library symbols 51

 TASK.sYmbol.DELeteMod Unload module symbols and MMU 51

 TASK.sYmbol.LOAD Load process symbols and MMU 52

 TASK.sYmbol.LOADLib Load library symbols 53

 TASK.sYmbol.LOADMod Load module symbols and MMU 53

 TASK.sYmbol.Option Set symbol management options 54

 TASK.VMAINFO Display vmalloced areas 57

 TASK.Watch Watch processes 58

 TASK.Watch.ADD Add process to watch list 58

 TASK.Watch.DELete Remove process from watch list 58

 TASK.Watch.DISable Disable watch system 59

 TASK.Watch.DISableBP Disable process creation breakpoints 59

 TASK.Watch.ENable Enable watch system 59

 TASK.Watch.ENableBP Enable process creation breakpoints 60

 TASK.Watch.Option Set watch system options 60

 TASK.Watch.View Show watched processes 61

 Linux PRACTICE Functions .. 64

 TASK.ARCHITECTURE() Target architecture 64

 TASK.CONFIG() OS awareness configuration information 64

 TASK.CURRENT() Magic or space ID of current task 64
OS Awareness Manual Linux | 3©1989-2024 Lauterbach

 TASK.ERROR.CODE() Awareness error code 65

 TASK.ERROR.HELP() Awareness error help ID 65

 TASK.LIB.ADDRESS() Library load address 65

 TASK.LIB.CODESIZE() Library code size 66

 TASK.LIB.PATH() Library target path and name 66

 TASK.MOD.CODEADDR() Code start address of module 66

 TASK.MOD.DATAADDR() Data start of module 67

 TASK.MOD.SIZE() Size of module 67

 TASK.MOD.MAGIC() Magic value of module 67

 TASK.MOD.MCB() Structure address of module 67

 TASK.MOD.NAME() Name of module magic 68

 TASK.MOD.SECTION() Address of a specified module’s section 68

 TASK.MOD.SECNAME() Name of a module section with a given number 68

 TASK.MOD.SECADDR() Address of a module section with a given number 69

 TASK.OS.VERSION() Version of the used Linux OS 69

 TASK.PROC.CODEADDR() Code start address of process 69

 TASK.PROC.CODESIZE() Code size of process 69

 TASK.PROC.DATAADDR() Data start address of process 70

 TASK.PROC.DATASIZE() Data size of process 70

 TASK.PROC.FileName() Filename of process 70

 TASK.PROC.LIST() List of processes 71

 TASK.PROC.MAGIC() Magic value of process 71

 TASK.PROC.MAGIC2SID() Space ID of process 72

 TASK.PROC.NAME() Name of process 72

 TASK.PROC.NAME2TRACEID() Trace ID of process 72

 TASK.PROC.PATH() Path and file name of executable on target 72

 TASK.PROC.PSID() Process ID 73

 TASK.PROC.SID2MAGIC() Magic value of process 73

 TASK.PROC.SPACEID() Space ID of process 73

 TASK.PROC.TCB() Control structure address of task 73

 TASK.PROC.TRACEID() Trace ID of process 74

 TASK.PROC.VMAEND() End address of a process virtual memory area 74

 TASK.PROC.VMASTART() Start address of a process virtual memory area 74

 TASK.VERSION.BUILD() Build number of Linux awareness 75

 TASK.VERSION.DATE() Build date of Linux awareness 75

 Error Messages .. 76

 Appendix ... 77

 Appendix A: insmod patch for Linux 2.4 77

 FAQ .. 80
OS Awareness Manual Linux | 4©1989-2024 Lauterbach

OS Awareness Manual Linux

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK.TASKState.
OS Awareness Manual Linux | 5©1989-2024 Lauterbach

Overview

The OS awareness for Linux contains special extensions to the TRACE32 Debugger. This manual describes
the additional features, such as additional commands and statistic evaluations.

This document describes Stop Mode debugging for Linux. If you are interested by Linux Run Mode
debugging or Integrated Run & Stop Mode debugging, please refer to “Run Mode Debugging Manual
Linux” (rtos_linux_run.pdf).

Terminology

Linux uses the terms “processes” and “tasks”. If not otherwise specified, the TRACE32 term “task”
corresponds to Linux tasks, which may be executing processes or POSIX threads.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.
OS Awareness Manual Linux | 6©1989-2024 Lauterbach

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

• Linux Debugging Reference Card (support.lauterbach.com/downloads/reference-cards)

Please also refer to the TRACE32 Linux debugging training manuals:

• “Training Linux Debugging” (training_rtos_linux.pdf)

• “Training Linux Debugging for Intel® x86/x64” (training_rtos_linux_x86.pdf)

Supported Versions

Currently Linux is supported for the following versions:

• Linux kernel versions 2.4, 2.6, 3.x, 4.x and 5.x on Andes, ARC, ARM, ARM64, Beyond, ColdFire,
MIPS, MIPS64, PowerPC, PowerPC64, RISC-V SH4, XScale, x86 and x64
OS Awareness Manual Linux | 7©1989-2024 Lauterbach

https://www.lauterbach.com/referencecards.html

Configuration

The TASK.CONFIG command loads an extension definition file. For Linux-2.x, this file is called Linux2.t32
(directory “~~/demo/<processor>/kernel/linux/linux-2.x/”). For linux-3.x and newer, the extension definition
file is called linux.t32 (directory “~~/demo/<processor>/kernel/linux/awareness/”). It contains all necessary
extensions.

Automatic configuration tries to locate the Linux internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS awareness is used.

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. This is not supported by all processor architectures. Please also to your
Processor Architecture Manual for more information.

For system resource display and trace functionality, you can do an automatic configuration of the OS
awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

Note that the default Linux kernel configuration generally does not include any debug information. Please
change your configuration to generate kernel debug information.

See Hooks & Internals for details. See also the example “~~/demo/<processor>/kernel/linux/linux.cmm”.

Quick Configuration Guide

To access all features of the OS awareness you should follow the following road map:

1. Carefully read the PRACTICE demo start-up script
(~~/demo/<processor>/kernel/linux/linux.cmm).

2. Make a copy of the PRACTICE script file “linux.cmm”. Modify the file according to your
application.

3. Run the modified version in your application. This should allow you to display the kernel
resources and use the trace functions (if available).

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in Linux

No hooks are used in the kernel.

Format: TASK.CONFIG linux.t32
OS Awareness Manual Linux | 8©1989-2024 Lauterbach

For retrieving the kernel data structures, the OS awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
awareness are used. This requires that the whole Linux kernel is compiled with debug symbols switched on,
and that the symbols of the “vmlinux” file are loaded.

If you control the compile stage by hand, just switch on debug symbols by adding the option “-g” to gcc. In
most kernel configuration scripts, you have an option “Kernel Hacking” > “Compile kernel with debug
info” that enables debug symbols to the kernel.
OS Awareness Manual Linux | 9©1989-2024 Lauterbach

Features

The OS awareness for Linux supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
Linux components can be displayed:

For a detailed description of each command, refer to chapter “Linux Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

TASK.DTask Tasks

TASK.Process Processes and threads

TASK.PS “ps” outputs

TASK.MODule Kernel modules

TASK.FS File system internals

TASK.DMESG Kernel log buffer

TASK.DTB Device tree blob

TASK.DTS Device tree source

TASK.NET Network devices

TASK.VMAINFO Vmalloc info

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.
OS Awareness Manual Linux | 10©1989-2024 Lauterbach

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

Frame.TASK [<task>] Display task context.
OS Awareness Manual Linux | 11©1989-2024 Lauterbach

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual Linux | 12©1989-2024 Lauterbach

MMU Support

To provide full debugging possibilities, the debugger has to know, how virtual addresses are translated to
physical addresses and vice versa. All MMU and TRANSlation commands refer to this necessity.

Because of the “On Demand Paging” mechanism of the Linux kernel, when single stepping the code, the
instruction pointer could jump to a not yet loaded page. The debugger will not be able to display the
assembly code and could not single step the current instruction. See “On Demand Paging” for details and
workaround.

Space IDs

Under Linux different processes may use identical virtual addresses. To distinguish between those
addresses, the debugger uses an additional identifier, the so-called space ID (memory space ID) that
specifies, which virtual memory space an address refers to. The command SYStem.Option.MMUSPACES
ON enables the use of the space ID. The space ID is zero for all processes using the kernel address space
(kernel tasks) and for the kernel code itself. For processes using their own address space, the space ID
equals the lower 16bits of the process ID. Threads of a particular process use the memory space of the
invoking parent process. Consequently threads have the same space ID as the parent process.

You may scan all the kernel’s data structures for space IDs, using the command TRANSlation.ScanID. Use
TRANSlation.ListID to get a list of all recognized space IDs.

The function task.proc.spaceid(“<process>”) returns the space ID for a given process. If the space ID is
not equal to zero, load the symbols of a process to this space ID:

MMU Declaration

To access the virtual and physical addresses correctly, the debugger needs to know the format of the MMU
tables in the target.

The following command is used to declare the basic format of MMU tables:

LOCAL &spaceid
&spaceid=task.proc.spaceid("myProcess")
Data.LOAD myProcess &spaceid:0 /NoCODE /NoClear

MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
 <physical_kernel_address>]]

Define MMU
table structure
OS Awareness Manual Linux | 13©1989-2024 Lauterbach

<format> Options for Andes:

<format> Options for ARC:

<format> Options for ARM:

<format> Options for BEYOND:

<format> Options for MicroBlaze:

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

<format> Description

LINUX Standard format used by Linux

LINUXSWAP Linux <= 2.6.37 with configured swap space (CONFIG_SWAP)

LINUXSWAP3 Linux >= 2.6.38 with configured swap space (CONFIG_SWAP)

STD Standard format defined by the CPU

TINY MMU format using a tiny page size of only 1024 bytes

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)
OS Awareness Manual Linux | 14©1989-2024 Lauterbach

<format> Options for MIPS:

<format> Options for Motorola 68000:

<format> Description

LINUX32 Linux 32-bit, page size 4kB

LINUX32P16 Linux 32-bit, page size 16kB

LINUX32P16R2 Linux 32-bit, page size 16kB, used on MIPS32 R2 or R6 (internally
identical to format LINUX32P16R41) (CONFIG_CPU_MIPSR2 or
CONFIG_CPU_MIPSR6 on Linux4.1 or later)

LINUX32P16R2 Deprecated: internally identical to format LINUX32P16R41

LINUX32R4K Linux 32-bit, page size 4kB, like LINUX32 but different page flags

LINUX32RIXI Linux 32-bit with RI/XI bits (CONFIG_USE_RI_XI_PAGE_BITS)

LINUX64 Linux 64-bit with 64-bit PTEs, page size 4kB. Separate page table for high
address range can be specified with optional extra parameter
<base_address_highrange> (For details, see MMU.FORMAT in
debugger_mips.pdf).

LINUX64HTLB Linux 64-bit with 64-bit PTEs, page size 4kB for huge TLB. Uses separate
sub table for addresses > 0xFFFFFFFFC0000000.

LINUX64HTLBP16 Linux 64-bit like LINUX64HTLB but pag esize 16kB.

LINUX64P16 Linux 64-bit with 64-bit PTEs, page size 16kB. Depth 3 levels.

LINUX64P64 Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 3 levels.

LINUX64P64LT Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 2 levels with large
level 1 table (used for BROADCOM(R) XLP SDK 3.7.10 and alike)

LINUX64RIXI Linux 64-bit with 64-bit PTEs with RI/XI bits, page size 4kB
(CONFIG_USE_RI_XI_PAGE_BITS). Separate page table for high
address range can be specified with optional extra parameter
<base_address_highrange> (For details, see MMU.FORMAT in
debugger_mips.pdf).

LINUXBIG Linux 32-bit with 64-bit PTEs on MIPS32
(CONFIG_64BIT_PHYS_ADDR && CONFIG_CPU_MIPS32)

LINUXBIG64 Linux 32-bit with 64-bit PTEs on MIPS64
(CONFIG_64BIT_PHYS_ADDR && !CONFIG_CPU_MIPS32)

<format> Description

LINUX Standard format used by Linux
OS Awareness Manual Linux | 15©1989-2024 Lauterbach

<format> Options for NIOS:

<format> Options for PowerPC:

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

LINUX64_E6 Use LINUX64_E6 for e6500 core devices

LINUXE5 Linux with 64-bit PTEs, e500 core
(CONFIG_PTE_64BIT && CONFIG_FSL_BOOKE). Covers 32-bit virtual
address range.

LINUXEXT Linux with 64-bit PTEs, no e500 core
(CONFIG_PTE_64BIT && !CONFIG_FSL_BOOKE). Covers 32-bit virtual
address range.

STD Standard format defined by the CPU
OS Awareness Manual Linux | 16©1989-2024 Lauterbach

<format> Options for RISC-V:

<format> Options for SH4:

<format> Description

STD Automatic detection of the page table format from the SATP register.

SV32 32-bit page table format (for SV32 targets only)

SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV39 39-bit page table format (for SV64 targets only)

SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV48 48-bit page table format (for SV64 targets only)

SV48X4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

SV57 57-bit page table format (for SV64 targets only)

SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)

LINUXEXTP64 Linux with extended TLBs (3 page table levels, 64-bit PTEs)
(CONFIG_X2TLB && CONFIG_PAGE_SIZE_64KB)
OS Awareness Manual Linux | 17©1989-2024 Lauterbach

<format> Options for x86:

<format> Options for XTENSA:

<base_address>

<base_address> specifies the base address of the kernel translation table. This address can generally be
found at the label “swapper_pg_dir”.

<logical_kernel_address_range>

<logical_kernel_address_range> specifies the logical to physical address translation of the kernel address
range. This spans continuously usually over the complete physical address range. Typically the virtual
address range of the kernel starts at 0xC0000000 for a 32bit CPU.

<physical_kernel_address>

<physical_kernel_address> specifies the physical start address of the kernel.

The kernel code, which resides in the kernel space, can be accessed by any process, regardless of the
current space ID. Use the command TRANSlation.COMMON to define the complete address range that is
addressed by the kernel as commonly used area. Please note that the address range, where kernel
modules are held, must be part of this area.

And don’t forget to switch on the debugger’s MMU translation with TRANSlation.ON.

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

LINUX64 PAE64 derivative with different level 1 translation table entries for
addresses >0xFFFF800000000000

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels (CONFIG_X86_PAE)

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers (some 2.6 variants)
OS Awareness Manual Linux | 18©1989-2024 Lauterbach

Example: Having 32MB RAM at physical address 0x20000000, a typical MMU declaration looks like:

Please see also the sample scripts in the ~~/demo directory.

ARM/ARM64:

For ARM/ARM64 a detection mechanism is available in
 ~~/demo/arm/kernel/linux/board/generic-template/detect_translation.cmm
The script prints the mandatory parameters into the AREA window.

ColdFire:

The MMU format on ColdFire uses kernel_pg_dir as base address, and an additional parameter for user
space memory maps. If CONFIG_NEED_MULTIPLE_NODES is *not* set, specify mem_map, otherwise
specify zero. E.g., when the kernel translation ranges from 0xC0000000--0xC3FFFFFF to physical
address zero:

x64

The MMU format on x64 uses init_level4_pgt or init_top_pgt as base address. Example:

Debugger Table Walk

To access the different process spaces correctly, the debugger needs to know the address translation of
every virtual address it uses. If the debugger table walk is enabled (TRANSlation.TableWalk ON), the
debugger walks through the MMU page tables each time it accesses a virtual address.

MMU.FORMAT LINUX swapper_pg_dir 0xC0000000--0xC1FFFFFF 0x20000000
TRANSlation.COMMON 0xC0000000--0xFFFFFFFF
TRANSlation.ON

; CONFIG_NEED_MULTIPLE_NODES is not set
MMU.FORMAT LINUX kernel_pg_dir mem_map 0xc0000000--0xc3ffffff 0x0
; CONFIG_NEED_MULTIPLE_NODES=y
MMU.FORMAT LINUX kernel_pg_dir 0 0xc0000000--0xc3ffffff 0x0

IF sYmbol.EXIST(init_level4_pgt)
 &base_address="init_level4_pgt"
ELSE
 &base_address="init_top_pgt"

MMU.FORMAT STD &base_address 0xffffffff80000000--0xffffffff9fffffff 0x0
OS Awareness Manual Linux | 19©1989-2024 Lauterbach

The debugger can also hold a local translation list. Translations can be added to this list either manually
using the command TRANSlation.Create or by scanning the MMU page tables using MMU.SCAN.
Scanning the MMU page tables is however not recommended since the scanned translation can get
outdated after resuming the program execution.

Please note that the debugger local translation list (TRANSlation.List) has always the highest priority in the
debugger translation process: the debugger tries first to look up the address translation in it’s own table
(TRANSlation.List). If this fails, it walks through the target MMU tables to find the translation for a specific
address.
OS Awareness Manual Linux | 20©1989-2024 Lauterbach

Symbol Autoloader

The OS awareness for Linux contains a so-called autoloader, which automatically loads symbol files
corresponding to executed processes, modules or libraries. The autoloader maintains a list of address
ranges, corresponding to Linux components and the appropriate load command. Whenever the user
accesses an address within an address range specified in the autoloader (e.g. via List), the debugger
invokes the command necessary to load the corresponding symbols to the appropriate addresses (including
relocation). This is usually done via a PRACTICE script.

In order to load symbol files, the debugger needs to be aware of the currently loaded components. This
information is available in the kernel data structures and can be interpreted by the debugger. The command
sYmbol.AutoLOAD.CHECK defines, when these kernel data structures are read by the debugger (only on
demand or after each program execution).

The loaded components can change over time, when processes are started and stopped and kernel
modules or libraries loaded or unloaded. The command sYmbol.AutoLOAD.CHECK configures the
strategy, when to “check” the kernel data structures for changes in order to keep the debugger’s information
regarding the components up-to-date.

Without parameters, the sYmbol.AutoLOAD.CHECK command immediately updates the component
information by reading the kernel data structures. This information includes the component name, the load
address and the space ID and is used to fill the autoloader list (shown via sYmbol.AutoLOAD.List).

With sYmbol.AutoLOAD.CHECK ON, the debugger automatically reads the component information each
time the target stops executing (even after assembly steps), having to assume that the component
information might have changed. This significantly slows down the debugger which is inconvenient and often
superfluous, e.g. when stepping through code that does not load or unload components.

With the parameter ONGO the debugger checks for changed component info like with ON, but not when
performing single steps.

With sYmbol.AutoLOAD.CHECK OFF, no automatic read is performed. In this case, the update has to be
triggered manually when considered necessary by the user.

The command TASK.sYmbol.Option AutoLoad configures which types of components the autoloader
shall consider:

• Processes,

• Kernel modules,

• All libraries

• Libraries of the current process, or

• Libraries of a specific process

It is recommended to restrict the components to the minimal set of interest (rather than all components),
because it makes the autoloader checks much faster. By default, only processes are checked by the
autoloader.

sYmbol.AutoLOAD.CHECK [ON | OFF | ONGO] Update autoloader table
OS Awareness Manual Linux | 21©1989-2024 Lauterbach

The command sYmbol.AutoLOAD.CHECKLINUX is used in the context of Linux to define which action is
to be taken, for loading the symbols corresponding to a specific address.

The action defined is invoked with Linux specific parameters (see below).

Note that defining this action, does not cause its execution. The action is executed on demand, i.e. when the
address is actually accessed by the debugger e.g. in the List or Trace.List window. In this case the
autoloader executes the <action> appending parameters indicating the name of the component, its type
(process, library, kernel module), the load address and space ID. A typical call is shown below. Please see
the default script ~~/demo/<arch>/kernel/linux/awareness/autoload.cmm for details.

For checking the currently active components use the command sYmbol.AutoLOAD.List. Together with the
component name, it shows details like the load address, the space ID, and the command that will be
executed to load the corresponding object files with symbol information. Only components shown in this list
are handled by the autoloader.

The autoloader is automatically set when the awareness is loaded with the TASK.CONFIG command (this
is only valid for awareness newer than November 2012). It is thus not needed to include the command
sYmbol.AutoLOAD.CHECKLINUX in your PRACTICE script.

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

sYmbol.AutoLOAD.CHECKLINUX <action> Configure autoloader for Linux debugging

<action> Action to take for symbol load, e.g.
"DO autoload "

NOTE: The action parameter needs to be written with quotation marks (for the parser it is a
string) and (currently) requires a space before the closing quotation mark.
OS Awareness Manual Linux | 22©1989-2024 Lauterbach

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

In SMP systems, the TASK.DTask command contains an additional column that shows at which core the
task is running, or was running the last time.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual Linux | 23©1989-2024 Lauterbach

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

Process / thread switch support for ARM using context ID register:

Most Arm Cortex-A processors do not have a data trace support. For such processors, the debugger uses
the Context ID trace messages for task aware trace. The CONTEXTIDR register have to be written by the
kernel on every task switch. This is enabled in the Linux kernel for Arm 32 and 64 bit processors with
CONFIG_PID_IN_CONTEXTIDR.

Task State Analysis

NOTE: This feature is only available, if your debugger equipment is able to trace memory data accesses
(flow trace is not sufficient). The scripts mentioned herein are based on state analyzers.

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically. This feature is implemented by recording all accesses to the status
words of all tasks. Additionally the accesses to the current task pointer (=magic) are traced.

“running” means the currently running task. “ready” defines runnable (R) tasks. The task states sleeping (S),
disk sleep (D) and paging (W) are counted as “suspended”. “waiting” defines zombie (Z) and stopped (T)
processes.

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual Linux | 24©1989-2024 Lauterbach

To do a selective recording on task states, the following PRACTICE commands can be used:

To evaluate the contents of the trace buffer, use these commands:

All kernel activities up to the task switch are added to the calling task. The start of the recording time, when
the calculation doesn’t know, which task is running, is calculated as “(root)”.

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Mark the magic location with an Alpha breakpoint
Break.Set task.config(magic)++(task.config(magicsize)-1) /Alpha

; Mark all task state words with Alpha breakpoints
TASK.TASKState

; Program the Analyzer to record task state transitions
Analyzer.ReProgram
(

Sample.Enable if AlphaBreak&&Write
)

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state time chart

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData
OS Awareness Manual Linux | 25©1989-2024 Lauterbach

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual Linux | 26©1989-2024 Lauterbach

Linux Specific Menu

The menu file “linux.men” contains a menu with Linux specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called Linux.

• The Display menu items launch the kernel resource display windows. See chapter “Display of
Kernel Resources”.

• Process Debugging refers to actions related to process based debugging.
See also chapter “Debugging the Process”.

- Use Load Symbols… and Delete Symbols… to load rsp. delete the symbols of a specific
process. You may select a symbol file on the host with the “Browse” button. See also
TASK.sYmbol.

- Debug New Process… allows you to start debugging a process on a selected function (per
default the main() function). Select this prior to starting the process. Specify the name of the
process you want to debug and eventually the function that you want to stop at. Then start the
process in your Linux terminal. The debugger will load the symbols and halt at the selected
function. See also the demo script “app_debug.cmm”.

- Watch Processes opens a process watch window or adds or removes processes from the
process watch window. Specify a process name. See TASK.Watch for details.

- Display Process MMU Tables executes the command MMU.List TaskPageTable for the
selected process.

- Display Kernel MMU Tables executes the command MMU.List KernelPageTable.

- See also chapter “Scanning System and Processes”.

• Module Debugging refers to actions related to kernel module based debugging.
See also chapter “Kernel Modules”.

- Use Load Symbols… and Delete Symbols… to load rsp. delete the symbols of a specific
kernel module. You may select a symbol file on the host with the “Browse” button. See also
TASK.sYmbol.

- Debug Module on init… allows you to start debugging a kernel module on it’s init function.
Select this prior to inserting the module. Specify the name of the module you want to debug.
Then insert the module in your Linux terminal. The debugger will load the symbols and halt at
the init function (if available). See also the demo script “mod_debug.cmm”.

- Display Kernel MMU Tables executes the command MMU.List KernelPageTable.

• Library Debugging refers to actions related to library based debugging.
See also chapter “Debugging into Shared Libraries”.

- Use Load Symbols… and Delete Symbols… to load rsp. delete the symbols of a specific
library. Please specify the library name and the process name that uses this library. You may
select a symbol file on the host with the “Browse” button. See also TASK.sYmbol.

- Display Process MMU Tables executes the command MMU.List TaskPageTable for the
selected process.
OS Awareness Manual Linux | 27©1989-2024 Lauterbach

- Display Kernel MMU Tables executes the command MMU.List KernelPageTable.

• Use the Autoloader submenu to configure the symbol autoloader.
See also chapter “Symbol Autoloader”.

- List Components opens a sYmbol.AutoLOAD.List window showing all components
currently active in the autoloader.

- Check Now! performs a sYmbol.AutoLOAD.CHECK and reloads the autoloader list.

- Components open a dialog to select the components that should be checked by the
autoloader. See also TASK.sYmbol.Option AutoLOAD.

- Config opens the autoloader configuration window.

- Set Target Root Path sets the target the target root path on the host using the command
TASK.sYmbol.Option ROOTPATH.

• Options open the dialog for setting different Linux awareness options. Please refer to the
documentation of the commands TASK.Option and TASK.sYmbol.Option for more information.

• Linux Terminal opens a terminal window that can be configured prior to opening with Configure
Terminal.

• Generate RAM Dump starts a RAM dump generation tool

• Integrity Check executes the command TASK.CHECK

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list
window to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional sub-menus for task runtime statistics, task-related function
runtime statistics or statistics on task states, if a trace is available. See also chapter “Task
Runtime Statistics”.

Debugging Linux Kernel and User Processes

This chapter describes the needed settings for debugging the Linux kernel, kernel modules as well as user
space processes including threads and shared libraries.

You can find more information about debugging the Linux components in the Linux Debugging training
manuals. Please refer to the following documents for more information:

• “Training Linux Debugging” (training_rtos_linux.pdf)

• “Training Linux Debugging for Intel® x86/x64” (training_rtos_linux_x86.pdf)
OS Awareness Manual Linux | 28©1989-2024 Lauterbach

Linux Kernel

The Linux make process can generate different outputs (e.g. zipped, non-zipped, with or without debug info).
For downloading the Linux kernel, you may choose whatever format you prefer. However, the Linux
awareness needs several kernel symbols, i.e. you have to compile your kernel with debug information and
preserve the resulting kernel file “vmlinux”. This file is in ELF format, and all other kernel images are derived
from this file.

Downloading the Kernel

If you want to download the kernel image using the debugger, you have to specify, to which address to
download it. The Linux kernel image is usually located at the physical start address of the RAM (sometimes
the vector table is skipped, check label _stext in the system map).

When downloading a binary image, specify the start address, where to load. E.g., if the physical address
starts at 0xA0000000:

When downloading the ELF image, you have to relocate the virtual addresses of the file to the physical
addresses of the RAM. E.g., if the kernel starts virtually at 0xC0000000 (default), and the RAM starts
physically at 0xA0000000:

When downloading the kernel via the debugger, remember to set startup options that the kernel may
require, before booting the kernel.

Data.LOAD.Binary vmlinux.bin 0xA0000000 /NosYmbol

Data.LOAD.Elf vmlinux 0xA0000000-0xC0000000 /NosYmbol
OS Awareness Manual Linux | 29©1989-2024 Lauterbach

Debugging the Kernel Startup

The kernel image starts with MMU switched off, i.e. the processor operates on physical addresses. However,
all symbols of the vmlinux file are virtual addresses. If you want to debug this (tiny) startup sequence, you
have to load and relocate the symbols as mentioned above.

• Downloading the kernel via debugger:

Just omit the /NosYmbol option, when downloading the kernel:

(assuming physical address 0xA0000000 and virtual address 0xC0000000)

After downloading, set your PC to the physical start address, and you’re ready to debug.

• Downloading the kernel via Ethernet:

Just load the symbols into the debugger before it is downloaded by the boot monitor:

(assuming physical address 0xA0000000 and virtual address 0xC0000000)

Then, set an on-chip(!) breakpoint to the physical start address of the kernel (software
breakpoints won’t work, as they would be overwritten by the kernel download):

Now let the boot monitor download and start the Linux image. It will halt on the start address,
ready to debug. Delete the breakpoint when hit.

As soon as the processor MMU is switched on, you have to reload the symbol table to it’s virtual addresses.
See the next chapter on how to debug the kernel in the virtual address space.

Debugging the Kernel

For debugging the kernel itself, and for using the Linux awareness, you have to load the virtual addressed
symbols of the kernel into the debugger. The vmlinux ELF image contains all addresses in virtual format, so
it’s enough to simply load the file:

You have to inform the debugger about the kernel address translations. See chapter “MMU Declaration”
how to set up the MMU format to the debugger.

The kernel address translation covers the kernel code and data (sections of vmlinux) and is mapped in
continuous pages to the physical RAM space.

Data.LOAD.Elf vmlinux 0xA0000000-0xC0000000

Data.LOAD.Elf vmlinux 0xA0000000-0xC0000000 /NoCODE

Break.Set 0xA0000000 /Onchip

Data.LOAD.Elf vmlinux /NoCODE
OS Awareness Manual Linux | 30©1989-2024 Lauterbach

User Processes

Each user process in Linux gets its own virtual memory space, each usually starting at address zero. To
distinguish the different memory spaces, the debugger assigns a “space ID”, which is equal to the process
ID. Using this space ID, it is possible to address a unique memory location, even if several processes use the
same virtual address.

Linux uses the “on demand paging” mechanism to load the code and data of processes and shared libraries.
Debugging those pages is not trivial, see “On Demand Paging” for details and workaround.

Note that at every time the Linux awareness is used, it needs the kernel symbols. Please see the chapters
above on how to load them. Hence, load all process symbols with the option /NoClear to preserve the
kernel symbols.

Debugging the Process

To correlate the symbols of a user process with the virtual addresses of this process, it is necessary to load
the symbols into this space ID.

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Process Symbols:

For example, if you’ve got a a process called “hello” with the process ID 12. (the dot specifies a decimal
number!):

The space ID of a process may also be calculated by using the PRACTICE function
task.proc.spaceid() (see chapter “Linux PRACTICE Functions”).

Automatically Load Process Symbols:

If a process name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of “hello” and scans the MMU of the process “hello”. See
TASK.sYmbol.LOAD for more information.

Using the Symbol Autoloader:

Data.LOAD.Elf hello 12.:0 /NoCODE /NoClear

TASK.sYmbol.LOAD "hello" ; load symbols and scan MMU
OS Awareness Manual Linux | 31©1989-2024 Lauterbach

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the process. You can also force the loading of the
symbols of a process with

Debugging a Process From Scratch, Using a Script:

The script app_debug.cmm available in the path of the Linux awareness can be used to debug a process
from the start.

The Linux menu a menu item which is based on this script: Linux -> Process Debugging -> Debug
Process on main. See also chapter “Linux Specific Menu”.

When finished debugging with a process, or if restarting the process, you have to delete the symbols and
restart the application debugging. Delete the symbols with:

If the autoloader is configured:

Debugging a Process From Scratch, with Automatic Detection:

The TASK.Watch command group implements the above script as an automatic handler and keeps track of
a process launch and the availability of the process symbols. See TASK.Watch.View for details.

Debugging Processes with the same name:

Please note that the provided awareness scripts don’t support debugging multiple processes which have the
same name. When trying e.g. to debug a new process from main from the Linux menu or using the script
app_debug.cmm and there is already a process with the same name running, you will get an error message
saying that the process is already running. Moreover, when loading process symbols using the autoloader,
the loader script autoload.cmm delete all symbols loaded on the same name. Thus, we recommend to use
different names for processes.

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH "hello"

sYmbol.Delete \\hello

sYmbol.AutoLoad.CLEAR "hello"
OS Awareness Manual Linux | 32©1989-2024 Lauterbach

Debugging into Shared Libraries

If the process uses shared libraries, Linux loads them into the address space of the process. The process
itself contains no symbols of the libraries. If you want to debug those libraries, you have to load the
corresponding symbols into the debugger.

Dynamically loaded libraries will be first linked, when they’re called the first time. I.e. when stepping into a
library function the first time, you may step into the dynamic loader instead of your library. To prevent this, set
the environment variable “LD_BIND_NOW=1” on your target. This instructs the loader, to link all functions at
load time instead of at run time.

Please watch out for demand paging (see chapter “On Demand Paging”).

Manually Load Library Symbols:

1. Start your process and open a TASK.DTask window.

2. Double-click the magic value of the process that uses the library.

3. Expand the “code files” tree (if available).

A list will appear that shows the loaded libraries and the corresponding load addresses.

4. Load the symbols to this address and into the space ID of the process.

E.g. if the process has the space ID 12., the library is called “lib.so” and it is loaded on address
0xff8000, then use the command:

Of course, this library must be compiled with debugging information.

Automatically Load Library Symbols:

If a library name is unique, and if the symbol files are accessible at the standard search paths, you can use
an automatic load command

This command loads the symbols of the library “libc.so”, used by the process “hello”, and scans the MMU of
the process “hello”. See TASK.sYmbol.LOADLib for more information.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the library. You can also force the loading of the
symbols of a library with

Data.LOAD.Elf lib.so 12.:0xff8000 /NoCODE /NoCLEAR

TASK.sYmbol.LOADLib "hello" "libc.so" ; load symbols and scan MMU

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH "libc.so"
OS Awareness Manual Linux | 33©1989-2024 Lauterbach

Debugging Linux Threads

Linux Threads are implemented as tasks that share the same virtual memory. The OS awareness for Linux
assigns one space ID for all threads that belong to a specific process. It is sufficient, to load the debug
information of this process only once (onto its space ID) to debug all threads of this process. See chapter
“Debugging the Process” for loading the process’ symbols.

There are several different mechanisms how threads are managed inside the Linux kernel. The Linux
awareness tries to detect them automatically, but this may fail on some systems. If the TASK.DTask window
doesn’t show all threads correctly, declare the threading method manually with the TASK.Option
Threading command.

The TASK.DTask window shows which thread is currently running (“current”).

On Demand Paging

When a process is started, Linux doesn’t load any code or data of this process. Instead, it uses the “on
demand paging” mechanism. This means, Linux loads memory pages first, when they are accessed. As
long as they aren't accessed by the CPU, they're not present in the system.

A “memory page” is a continuous memory region (e.g. 4 KByte), with a dedicated virtual and physical
address range. The MMU handles the whole (user space) memory in such pages.

When starting a process, Linux just sets up it’s task structures and loads the characteristics of the process’
code and data sections from the process’ file (size and addresses of the sections), but not the sections
themselves. Then the kernel jumps to the “main” routine of the process. The first instruction fetch will then
cause a code page fault, because the code is not yet present. The page fault handler then loads the actual
code page (4 KByte) that contains the code of the “main” entry point, from the file. Note that only one page is
loaded. If the program jumps to a location outside this page, or steps over a page boundary, another code
page fault happens. While running, more and more pages will be loaded. (While on desktop systems it is
common that pages are also discarded, on embedded systems this is usually not the case.) If a process
terminates, all pages of this process are removed.

The same page loading mechanism applies to data and stack addresses. Variables are first visible to the
system, after the CPU accessed them (by reading or writing the address and thus urging a page load). The
stack grows page wise, as it is used.

When debugging those paged processes, you have to take care about this paging.

• The process’ code and data is first visible to the debugger, after the pages were loaded.

• You cannot set a software breakpoint onto a function that is located in a page which is not yet
loaded. The code for this function simply not yet exists, and thus cannot be patched with the
breakpoint instruction. In such cases, use on-chip breakpoints instead.

• The CPU handles on-chip breakpoints before code page faults. If the CPU jumps onto an on-chip
breakpoint, and the appropriate page is not yet loaded, the debugger will halt before the page is
loaded. You’ll see the program counter on a location with no actual code (usually the debugger
shows “???” then). The same may happen, if you single step over a page boundary. In such
cases, set an on-chip(!) breakpoint onto the next instruction and let the system “Go”. The page
fault handler will then load the page, the processor will execute the first instruction and halt on the
next breakpoint. A simple workaround for functions is to set the breakpoint at the function entry
OS Awareness Manual Linux | 34©1989-2024 Lauterbach

plus 4 (e.g. "main+4") for 32 bit fixed opcode length. Then the application will halt *after* the page
was loaded. An another solution is to load the code to the debugger virtual memory and enable
the option TRANSlation.SHADOW ON. If the code is not yet available, the debugger reads it from
the loaded image in the debugger virtual memory. In this case, the code will be displayed in grey. The
debugger could then calculate the next instruction when executing a step over for example and will
automatically use an on-chip breakpoint. Moreover, if the option TASK.sYmbol.Option AutoLOAD
VM is set, the autoloader will load the code for process to the debugger virtual memory an will enable
TRANSlation.SHADOW. However this will only work for processes but not for libraries.

For already loaded processes, the demo directory contains a script called “app_page_load.cmm” that forces
loading all code and data pages of the process by patching the application’s code. Please see the
comments inside this script for details.

The on demand paging is a basic design feature of Linux that cannot be switched off.

However, there are two (different) ways to force Linux to load the appropriate pages in advance, before
they’re actually used. This eases debugging in those pages. The solutions need modifications (patches) to
the kernel. You may use one of both, or both patched together, depending on your needs.

Please note that beginning from Linux version 4.3.x, it is necessary to disable the kernel configuration
CONFIG_CPU_SW_DOMAIN_PAN otherwise the proposed patches will not work correctly.

1. Forcing the load of pages used by processes (without libraries)

The following kernel modification accesses (reads) each code and data page, right before the process’ main
entry point is started. This forces a page load to all pages in advance. As soon as the process entry point is
called, all pages are present in the system. You may then set software breakpoints anywhere in the process’
code, and view the data area at any time.

A note to the stack: The stack space of a Linux process is not limited. If the stack grows, while the application
is running, the stack pages will be allocated. Thus, there's no chance to calculate the stack space in
advance. The following patch loads only the first stack page (4 kB).

Libraries used by the process are still subject to the demand paging.

Please note that this patch changes the behavior of the system.

This loading in advance will only work, if there is enough (physical) memory free to load the whole process
code and data pages. If this is not the case, pages will be discarded again!

There is a variable called "t32_force_process_page_load" initialized to zero. Only if this variable is
non-zero, the loading of the pages is performed. To enable the page loading, set

The function "load_elf_binary()" in fs/binfmt_elf.c calls "start_thread()". start_thread() is
either defined as function in arch/mips/kernel/process.c, or as a macro in include/asm-<arch>/processor.h.

Data.Set t32_force_process_page_load 1
OS Awareness Manual Linux | 35©1989-2024 Lauterbach

At the beginning of start_thread, add a call to load all pages; e.g.:

then, somewhere in process.c, add the following code snippet:

void start_thread() {
/**** TRACE32 patch ****/

void t32_load_all_process_pages (void);

/* prototype */

t32_load_all_process_pages();

/* load all pages before start */

…

/**** TRACE32 patch to force loading of all pages ***/
/**** of the new thread in advance ***/

volatile char t32_force_process_page_load = 0;

/* to be set by TRACE32 */

void t32_process_page_load_done (void)
{

/* dummy function to inform TRACE32 */

}

void t32_load_all_process_pages (void)
{

unsigned long page, end;
volatile char dummy;

if (!t32_force_process_page_load)
return;

if (!current->mm)
return;

/* load code pages */
page = current->mm->start_code & 0xfffff000;
end = (current->mm->end_code-1) & 0xfffff000;
if (page)

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */
OS Awareness Manual Linux | 36©1989-2024 Lauterbach

Now, if "t32_force_process_page_load" is set to one, all pages of the process are loaded. When
debugging a process from scratch, set a breakpoint to "t32_process_page_load_done()". The MMU
Scan at that stage then scans all code and data pages that the process might use. After that, you should be
able to debug your process without the demand paging troubles.

2. Forcing the load of all ELF pages (of processes and static libraries)

The following kernel modification accesses (reads) each page, right after Linux built a virtual memory map
for it (actually, after reading the ELF memory map of the file). This forces a page load to all pages of
processes and libraries that are read with the Linux kernel ELF loader. As soon as the process entry point is
called, all pages are present in the system. You may then set software breakpoints anywhere in the process’
or libraries’s code, and view the data area at any time. (Please note that this does not cover dynamic libraries
that are loaded with ld.so.)

The pages of uninitialized data (.bss segment) and the stack are not subject to the ELF loader, thus these
pages are NOT forced to load, using this patch.

Please note that this patch changes the behavior of the system.

This loading in advance will only work, if there is enough (physical) memory free to load the whole process’
and libraries code and data pages. If this is not the case, pages will be discarded again!

There is a variable called "t32_force_elf_page_load" initialized to zero. Only if this variable is non-
zero, the loading of the pages is performed. To enable the page loading, set

/* load data pages */
page = current->mm->start_data & 0xfffff000;
end = (current->mm->brk-1) & 0xfffff000;
if (page)

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */

/* load stack page */
page = current->mm->start_stack & 0xfffff000;
dummy = *((char*) page);

/* force page load */

t32_process_page_load_done();
}

Data.Set t32_force_elf_page_load 1
OS Awareness Manual Linux | 37©1989-2024 Lauterbach

Modify the function “elf_map()” in fs/binfmt_elf.c. Add right before return (but after up_write()!):

then, somewhere in binfmt_elf.c, add the following code snippet:

Now, if "t32_force_elf_page_load" is set to one, all pages of all processes and static libraries are
loaded in advance. After that, you should be able to debug your process without the demand paging
troubles.

…
up_write(¤t->mm->mmap_sem);
{

/**** TRACE32 patch ****/
void t32_load_elf_page (unsigned long addr, unsigned long len);
t32_load_elf_page(map_addr,

eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr));
}
return(map_addr);
…

/**** TRACE32 patch to force load of mapped page in advance ****/

volatile char t32_force_elf_page_load = 0;

/* to be set by TRACE32
*/

void t32_load_elf_page (unsigned long addr, unsigned long len)
{

volatile char dummy;
unsigned long page, end;

if (!t32_force_elf_page_load)
return;

if (!addr || !len)
return;

/* load all mapped pages */

page = addr & 0xfffff000;
end = (addr + len-1) & 0xfffff000;

for (; page <= end; page += 0x1000)
dummy = *((char*) page);

/* force page load */

}

OS Awareness Manual Linux | 38©1989-2024 Lauterbach

Kernel Modules

Kernel modules are dynamically loaded and linked by the kernel into the kernel space. If you want to debug
kernel modules, you have to load the symbols of the kernel module into the debugger, and to relocate the
code and data address information.

All information about a module is stored in the module’s header that is created dynamically while the module
loads. In order to get access to all module headers after a new module was loaded, the debugger needs to
get informed about the newly created module’s address translation.

The handling of kernel modules in Linux is completely different in Kernel versions 2.4 and 2.6.

Kernel Modules in Linux Kernel Version 2.4

The kernel does not hold any information about the module’s loaded sections. To successfully load the
symbols of a kernel modules, you may 1) manually load and relocate the sections or 2) let the debugger
guess the section addresses or 3) patch the modutils to provide the necessary information.

1. Manually Load Symbols (2.4)

If you’re using insmod of the standard modutils (not busybox), then load your kernel module and
generate relocation information with the option “-m”:

The output of this command will tell you where Linux has relocated the sections of the module.

Now, load the symbols of the modules into the debugger, using the sections and addresses given by
insmod. Give the option “/reloc” to the load command for each section:

/sbin/insmod -m mymodul

Data.LOAD.Elf mymodul.o /gnu /nocode /noclear /reloc .text at 0x…
/reloc .data at 0x… /reloc .bss at 0x… …
OS Awareness Manual Linux | 39©1989-2024 Lauterbach

2. Debugger’s Address Guessing (2.4)

While it is easy to compute the address of the .text section of a kernel module, calculating the others
is very hard and not safe. The debugger makes some wild guesses to get the address of the .data
section. It may give correct results, but it may also be wrong.

Open the TASK.MODule window. It will give you a correct code address, and a guessed data
address. Use these addresses to load the module’s symbols.In PRACTICE script files, you may use
the functions TASK.MOD.CODEADDR() and TASK.MOD.DATAADDR() to retrieve the load
addresses:

TASK.sYmbol.LOADMod will use the same addresses to automatically load the symbols.

3. Patching modutils (2.4)

The Linux awareness contains a special detection of section’s addresses that needs a patch to
insmod. When using this patch, all section information will be available in the module header, and all
sections can be loaded correctly. Appendix A shows the necessary patch.

Now use the function task.mod.section() to get the addresses of all sections and relocate the symbols
accordingly. Example PRACTICE script file for a module called “mymod”:

If the section information is available, TASK.sYmbol.LOADMod will use the standard sections to
automatically load the symbols.

Kernel Modules in Linux Kernel Version 2.6 and Newer

In Linux kernel version 2.6 and newer, the kernel contains all section information, if the kernel is configured
with CONFIG_KALLSYMS=y and CONFIG_SYSFS=y. When configuring the kernel, set the option “General
Setup”->”Configure standard kernel features”->”Load all symbols” to yes. You may say no to all sub-options.
Also, set the option “File systems”->”Pseudo filesystems”->”sysfs file system support” to yes.

&code=task.mod.codeaddr("mymodule");
&data=task.mod.dataaddr("mymodule");
Data.LOAD.Elf mymodul.o /gnu /nocode /noclear \

/reloc .text at &code /reloc .rodata after .text \
/reloc .data at &data /reloc .bss after .data

local &modulename &modulemagic &text &rodata &data &bss

&modulename="mymod" ; without ".o" !

&modulemagic=task.mod.magic("&modulename")

&text=task.mod.section(".text",&modulemagic)
&rodata=task.mod.section(".rodata",&modulemagic)
&data=task.mod.section(".data",&modulemagic)
&bss=task.mod.section(".bss",&modulemagic)

Data.LOAD.Elf &modulename.o /nocode /noclear /gnu \
/reloc .text at &text /reloc .rodata at &rodata \
/reloc .data at &data /reloc .bss at &bss
OS Awareness Manual Linux | 40©1989-2024 Lauterbach

Without setting KALLSYMS or SYSFS, no section information is available, and debugging kernel modules is
not possible.

If the section information is available, the debugger can read out this information to get the addresses of all
sections and relocate the symbols accordingly. The option /reloctype of the Data.LOAD.ElfData.LOAD.Elf
command instructs the debugger to use the relocation information on the target. Internally to the Linux
awareness, kernel modules have the type 3, so specify this as reloctype. Please note that access to the
kernel variables must be possible whenever executing this command.

Example command for a module called “mymod”:

TASK.sYmbol.LOADMod will try to automatically load the symbols.

Using the Symbol Autoloader:

If the symbol autoloader is configured (see chapter “Symbol Autoloader”), the symbols will be
automatically loaded when accessing an address inside the kernel module. You can also force the loading of
the symbols of a kernel module with

Debugging the kernel module’s init routine:

To debug the kernel module’s init routine, you need to break into the kernel, right when the module is loaded.
Either use the script “mod_debug.cmm” from the demo directory, or use the “Linux” menu item: “Linux” ->
“Module Debugging” -> “Debug Module on init…”. See also chapter “Linux Specific Menu”.

Data.LOAD.Elf mymod.ko /NoCODE /NoClear /reloctype 3

sYmbol.AutoLoad.CHECK
sYmbol.AutoLoad.TOUCH "mymod"
OS Awareness Manual Linux | 41©1989-2024 Lauterbach

Trapping Segmentation Violation

“Segmentation Violation” happens, if the code tries to access a memory location that cannot be mapped in
an appropriate way. E.g. if a process tries to write to a read-only area, or if the kernel tries to read from a
non-existent address. A segmentation violation is detected inside the kernel routine “do_page_fault()” (in
arch/<processor>/mm/fault.c), if the mapping of page fails. If so, it (usually) jumps to a local label called
“bad_area:”.

To trap segmentation violations, set a breakpoint onto the label “bad_area”. Some compilers don’t expose
local labels; in this case, search the appropriate line in “do_page_fault()” and set the breakpoint manually, or
modify the code to call a dummy function after “bad_area:” and set the breakpoint onto this dummy function.

Use the command Var.Local to display the local variables of “do_page_fault()”. This function is called with
three parameters:

• “address” contains the memory address that caused the fault;

• “write” specifies, if it was a write (true) or read (false) access;

• “regs” is a structure containing the complete register set at the location, where the fault occurred.

When halted at “bad_area”, you may load the temporary register set of TRACE32 with these values. See the
example script “segv.cmm” in the ~~/demo directory.

Use Data.List, Var.Local etc. then to analyze the fault.

As soon as debugging is continued (e.g. “Step”, “Go”, …), the original register settings at “bad_area” are
restored.
OS Awareness Manual Linux | 42©1989-2024 Lauterbach

Linux Commands

TASK.CHECK Check awareness integrity

This command does some integrity checks and displays the result of these.

No error should occur here.

TASK.DMESG Display the kernel ring buffer

Display the kernel messages in a window similar to the dmesg Linux command.

Format: TASK.CHECK

Format: TASK.DMESG [/<option>]

<option>: Level <log_level>
Facility <log_facility>
DETAILED
COLOR

Level Restrict the displayed log messages to the specified log levels. This
option can be used multiple times. Log levels names or numbers can be
used with this options. Level names: EMERG, ALERT, CRIT, ERR,
WARN, NOTICE, INFO, DEBUG.

Facility Restrict the displayed log messages to the specified log facilities. This
option can be used multiple times. Log facility names or numbers can be
used with this options. Facility names: KERN, USER, MAIL, DAEMON,
AUTH, SYLOG, LPR, NEWS.

DETAILED Display the log level and facility as readable strings.

COLOR Enable the coloring of the log messages according to the log level and
facility.
OS Awareness Manual Linux | 43©1989-2024 Lauterbach

TASK.DTask Display tasks

Displays the task table of Linux or detailed information about one specific task.
“Tasks” are activated processes.

Without any arguments, a table with all created tasks will be shown.

Format: TASK.DTask [<task_magic>] [/<option>]

<option>: SORT [<item>]
SORTUP [<item>]
SORTDOWN [<item>]

SORT [<item>] Sort up the TASK.DTask lines based on the given item. Item is a
TASK.DTask column and can be MAGIC, CMD, STATE, UID, SPACEID or
CPU. MAGIC is used if no sort item is specified.

SORTUP [<item>] Same as SORT.

SORTDOWN
[<item>]

Same as SORT, the lines are however sorted down.
OS Awareness Manual Linux | 44©1989-2024 Lauterbach

Specify a task name, ID or magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS awareness to identify a specific task (address of the task struct).
The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

A “task” in Linux maps to a non-threaded process and to each thread of a threaded process.

There are several different mechanisms how threads are managed inside the Linux kernel. The Linux
awareness tries to detect them automatically, but this may fail on some systems. If the TASK.DTask window
doesn’t show all threads correctly, declare the threading method manually with the TASK.Option
Threading command.

TASK.DTB Display the device tree blob

Display the device tree blob as a tree view.

TASK.DTS Display the device tree source

Display the source code of the device tree.

TASK.NET Display network devices

Display network devices.

Format: TASK.DTB

Format: TASK.DTS

Format: TASK.NET
OS Awareness Manual Linux | 45©1989-2024 Lauterbach

TASK.FS Display file system internals

This command displays internal data structures of the used file systems. See the appropriate command
description for details.

TASK.MAPS Display process maps

Display the mapped memory regions and their access permissions similar to the /proc/<pid>/maps file.

TASK.MMU.SCAN Scan process MMU space

This command is deprecated. Please use MMU.SCAN instead.

Format: TASK.FS.<option>

<option>: Types [<type_magic>] | Mount | MountDevs [<device_magic>] | PROC |
PART

Types [<type_magic>] Display file system types.
Without any arguments, this command displays all file system types that
are currently registered in the Linux kernel. Specify a file system type
magic to open a detailed view.

Mount Display the current mount points.

MountDevs
[<device_magic>]

Display mounted devices.
Without any arguments, this command displays all currently mounted devices
(i.e. super blocks). Specify a mounted device magic to open a detailed view.

PROC Display /proc file system.
PROC displays the contents of the “/proc” file system (procfs), even if it is
not mounted.

SYS Display /sys file system.
SYS displays the contents of the “/sys” file system (sysfs), even if it is not
mounted.

PART Display the partition table.

Format: TASK.MAPS <process>

Format: TASK.MMU.SCAN [<process>] (deprecated)
OS Awareness Manual Linux | 46©1989-2024 Lauterbach

TASK.MODule Display kernel modules

Displays a table with all loaded kernel modules of Linux. The display is similar to the output of “lsmod”.

“magic” is a unique ID, used by the OS awareness to identify a module (address of the module struct).
“code addr” and “data addr” specify the address of the .text segment rsp. the .data segment.
The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

TASK.Option Set awareness options

Sets various options to the awareness.

Format: TASK.MODule

Format: TASK.Option <option>

<option>: Threading <threading> [ON | OFF]
MEMMAP <mem_map>
NameMode [comm | TaskName | ARG0 | ARG0COMM]
THRCTX [ON | OFF]
SIDCACHE [ON | OFF]
CORES <assignment>
AutoLOAD ProcName [TaskName | INODE]

Threading Set the Threading type used by Linux.
TGROUP: threads are organized by the thread_group list (default). Set
this to OFF if you encounter doubled thread entries.
See also chapter “Debugging Threads”.

MEMMAP deprecated
OS Awareness Manual Linux | 47©1989-2024 Lauterbach

TASK.Process Display processes

Display processes with their threads. Threads are grouped to their belonging process.

Without any arguments, this command displays a table with all created processes
Click on the plus sign in front of the process name to see the threads (if any).

Specify a process magic or name to see the threads of this process.

The option /Open expands all thread trees automatically. This option may be useful when printing the output
of the window into a file (see WinPrint).

NameMode Set the mode how the task names are evaluated.
comm: use the “comm” field in the task structure (default).
TaskName: use the name evaluated by TASK.NAME and “comm” (allows
renaming of the tasks with TASK.NAME.Set).
ARG0: use the arg[0] statement of the process call.
ARG0COMM: use arg[0] as process name and “comm” as thread name
(suitable for Android)

THRCTX Set the context ID type that is recorded with the real-time trace (e.g.
ETM).
If set to on, the context ID in the trace contains thread switch detection.
See Task Runtime Statistics.

SIDCACHE The Linux awareness uses a caching mechanism for the current space
ID. In some rare conditions, this caching may fail. When setting this
option to OFF, the caching is switched off; this is safer but slows down
debugging (esp. single stepping).

CORES This command can be used for SMP systems if the Linux kernel is using
a different core assignment that the physical one e.g.
TASK.Option CORES 4 2 1 3

AutoLOAD ProcName
Autoloader will use the name of the Task (selected by TASK.Option
NameMode) per default to find the symbol file. With mode INODE the
Autoloader will use the name of the real file. The latter mode is useful
when symlinks (e.g. busybox) or prctl(PR_SET_NAME,...) is used to
rename the process.

Format: TASK.Process [<process>] [/Open]
OS Awareness Manual Linux | 48©1989-2024 Lauterbach

TASK.PS Display “ps” output

Displays the process table of Linux.
The display is similar to the output of the “ps” shell command.

Format: TASK.PS <items>

<items>: pid | ppid | uid | sid | pgid | cmd | pri | flags | tty | time | stat | nice | stackp |
tmout | alarm | pending | blocked | vsz | rss | start | majflt | minflt | trs | drs
| rss | count | nswap | ttb | vctxsw | nvctxsw
OS Awareness Manual Linux | 49©1989-2024 Lauterbach

TASK.sYmbol Process/Module symbol management

(Not available for all processors!)

The TASK.sYmbol command group helps to load and unload symbols and MMU settings of a given
process or kernel module. In particular the commands are:

TASK.sYmbol.DELete Unload process symbols and MMU

When debugging of a process is finished, or if the process exited, you should remove loaded process
symbols and MMU entries. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified process and deletes its MMU entries.

Example: When deleting the above loaded symbols with the command:

the debugger will internally execute the commands:

TASK.sYmbol.LOAD Load process symbols and MMU

TASK.sYmbol.DELete Unload process symbols and MMU

TASK.sYmbol.LOADMod Load module symbols and MMU

TASK.sYmbol.DELeteMod Unload module symbols and MMU

TASK.sYmbol.LOADLib Load library symbols

TASK.sYmbol.DELeteLib Unload library symbols

TASK.sYmbol.Option Set symbol management options

Format: TASK.sYmbol.DELete <process>

<process> Specify the process name or path (in quotes) or magic to unload the
symbols of this process.

TASK.sYmbol.DELete "hello"

TRANSlation.Delete 24.:0--0xffffffff
sYmbol.Delete \\hello
OS Awareness Manual Linux | 50©1989-2024 Lauterbach

TASK.sYmbol.DELeteLib Unload library symbols

 When debugging of a library is finished, or if the library is removed from the kernel, you should remove
loaded library symbols. Otherwise the remaining entries may interfere with further debugging.
This command deletes the symbols of the specified library.

Example:

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.DELeteMod Unload module symbols and MMU

Specify the module name (in quotes) or magic to unload the symbols of this kernel module.

When debugging of a module is finished, or if the module is removed from the kernel, you should remove
loaded module symbols and MMU entries. Otherwise the remaining entries may interfere with further
debugging.
This command deletes the symbols of the specified module and deletes its MMU entries.

Example:

See also chapter “Debugging Kernel Modules”.

Format: TASK.sYmbol.DELeteLib <process> <library>

<process> Specify the process to which the desired library belongs (name in quotes
or magic).

<library> Specify the library name in quotes. The library name must match the
name as shown in TASK.DTask <process>, ”code files”.

TASK.sYmbol.DELeteLib "hello" "libc-2.2.1.so"

Format: TASK.sYmbol.DELeteMod <module>

TASK.sYmbol.DELeteMod "pcmcia_core"
OS Awareness Manual Linux | 51©1989-2024 Lauterbach

TASK.sYmbol.LOAD Load process symbols and MMU

Specify the process name or path (in quotes) or magic to load the symbols of this process.

In order to debug a user process, the debugger needs the symbols of this process, and the process specific
MMU settings (see chapter “Debugging User Processes”).
This command retrieves the appropriate space ID, loads the symbol file of an existing process and reads its
MMU entries. Note that this command works only with processes that are already loaded in Linux (i.e.
processes that show up in the TASK.DTask window).

Example: If the TASK.DTask window shows the entry:

If the symbol autoloader is enabled for processes (TASK.sYmbol.Option AutoLoad Process), the
following commands will be internally executed:

Otherwise, the following command will be internally executed:

If the symbol file is not within the current directory, specify the path to the ELF file. E.g.:

Loads the ELF file “C:\mypath\hello” of the process “hello”. Note that the process name must equal to the
filename of the ELF file.

Format: TASK.sYmbol.LOAD <process>

TASK.sYmbol.LOAD "hello"

sYmbol.AutoLOAD.CHECK
sYmbol.AutoLOAD.TOUCH "hello"

Data.LOAD.Elf hello 24.:0 /GNU /NoCODE /NoClear

TASK.sYmbol.LOAD "C:\mypath\hello"
OS Awareness Manual Linux | 52©1989-2024 Lauterbach

TASK.sYmbol.LOADLib Load library symbols

As first parameter, specify the process to which the desired library belongs (name in quotes or magic).
Specify the library name in quotes as second parameter. The library name must match the name as shown
in TASK.DTask <process>, ”code files”.

In order to debug a library, the debugger needs the symbols of this library, relocated to the correct addresses
where Linux linked this library. This command retrieves the appropriate load addresses and loads the .so
symbol file of an existing library. Note that this command works only with libraries that are already loaded in
Linux (i.e. libraries that show up in the TASK.DTask <process> window).

Example:

See also chapter “Debugging Into Shared Libraries”.

TASK.sYmbol.LOADMod Load module symbols and MMU

Specify the module name (in quotes) or magic to load the symbols of this module.

In order to debug a kernel module, the debugger needs the symbols of this module, and the module specific
MMU settings. This command retrieves the appropriate load addresses, loads the .o/.ko symbol file of an
existing module and reads its MMU entries. Note that this command works only with modules that are
already loaded in Linux (i.e. modules that show up in the TASK.MODule window).

Example:

See also chapter “Debugging Kernel Modules”.

Format: TASK.sYmbol.LOADLib <process> <library>

TASK.sYmbol.LOADLib "hello" "libc-2.2.1.so"

Format: TASK.sYmbol.LOADMod <module>

TASK.sYmbol.LOADMod "pcmcia_core"
OS Awareness Manual Linux | 53©1989-2024 Lauterbach

TASK.sYmbol.Option Set symbol management options

Set a specific option to the symbol management.

LOADCMD:
This setting is only active, if the symbol autoloader for processes is off.
TASK.sYmbol.LOAD uses a default load command to load the symbol file of the process. This loading
command can be customized using this option with the command enclosed in quotes. Two parameters are
passed to the command in a fixed order:

Examples:

LOADMCMD:
This setting is only active, if the symbol autoloader for kernel modules is off.
TASK.sYmbol.LOADMod uses a default load command to load the symbol file of the module. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

Format: TASK.sYmbol.Option <option>

<option>: LOADCMD <command>
LOADMCMD <command>
LOADLCMD <command>
MMUSCAN [ON | OFF]
AutoLoad <option>
ROOTPATH <path>
PROCRANGE <start> <size>
LIBFLAGS <action> <flags>

%s name of the process

%x space ID of the process

TASK.sYmbol.Option LOADCMD "Data.LOAD.Elf %s 0x%x:0 /NoCODE /NoClear"

TASK.sYmbol.Option LOADCMD "DO myloadscript %s 0x%x"

%s name of the module

%x start (=code) address of the module

%x data address of the module (if applicable)
OS Awareness Manual Linux | 54©1989-2024 Lauterbach

LOADLCMD:
This setting is only active, if the symbol autoloader for libraries is off.
TASK.sYmbol.LOADLib uses a default load command to load the symbol file of the library. This loading
command can be customized using this option with the command enclosed in quotes. Three parameters are
passed to the command in a fixed order:

Examples:

AutoLoad:
This option controls, which components are checked and managed by the symbol autoloader:

The options are set *additionally*, not removing previous settings.

The default is “Process”, i.e. the only processes are checked by the symbol autoloader (if configured).

TASK.sYmbol.Option LOADMCMD "Data.LOAD.Elf %s /NoCODE /NoClear /GCC3
/RELOC .text AT 0x%x /RELOC .data AT 0x%x /RELOC .bss AFTER .data"

TASK.sYmbol.Option LOADMCMD "do myloadmscript %s 0x%x 0x%x"

%s name of the library

%x space ID of the library

%x load address of the library

TASK.sYmbol.Option LOADLCMD "D.LOAD.Elf %s 0x%x:0x%x /NoCODE /NoClear"

TASK.sYmbol.Option LOADMCMD "DO myloadlscript %s 0x%x 0x%x"

Process check processes

Library check all libraries of all processes

Module check kernel modules

CurrLib check only libraries of current process

ProcLib <process> check libraries of specified process

ALL check processes, libraries and kernel modules

NoProcess don’t check processes

NoLibrary don’t check libraries

NoModule don’t check modules

VM load process code to debugger virtual memory

NOVM don’t load process code to debugger virtual memory

NONE check nothing.
OS Awareness Manual Linux | 55©1989-2024 Lauterbach

Example:

MMUSCAN:

This option controls, if the symbol loading mechanisms of TASK.sYmbol scan the MMU page tables of the
loaded components, too. Default is OFF for use with TRANSlation.TableWalk. Set this to ON if you do not
use the table walk.

ROOTPATH:
If this option is set, the symbol autoloader tries to find the symbol files in the directory, starting with the path
given with this option, and appending the path that the file uses on the target.
This is essentially useful, if the root path of your target maps to a specific path on your development
machine. The symbol autoloader will then find all files automatically in the given tree.

Example, e.g. your root path on the target (“/”) maps to /nfsroot/device/root on your host:

PROCRANGE:
The symbol autoloader uses a dummy address range for a process, if it cannot determine the correct range
from the task structure. This is especially necessary when loading the symbols before starting the process.
In some rare cases, the built-in dummy area does not fit to the actual Linux system. This option then
specifies the start address and size of the dummy process range.
Use this option only if you are told to do so.

LIBFLAGS:

Set the shared object flags that control the loading of the debug symbols. Possible actions are:

Please refer to the kernel source file include/linux/mm.h for more information about the possible flags.
LOAD is set by default to 0x00000004 (VM_EXEC). NOLOAD is set by default to 0x00101002
(VM_EXECUTABLE|VM_ACCOUNT|VM_WRITE).

Please do not use this option if unsure.

; check processes and kernel modules
TASK.sYmbol.Option AutoLoad Process
TASK.sYmbol.Option AutoLoad Module

TASK.sYmbol.Option ROOTPATH "/nfsroot/device/root"

LOAD set the flags that must be present so that the debug symbols of the
library will be loaded.

NOLOAD set the flags that will prevent the debug symbols of the library from
being loaded.
OS Awareness Manual Linux | 56©1989-2024 Lauterbach

TASK.VMAINFO Display vmalloced areas

Displays vmalloc info.

Format: TASK.VMAINFO
OS Awareness Manual Linux | 57©1989-2024 Lauterbach

TASK.Watch Watch processes

The TASK.Watch command group builds a watch system that watches your Linux target for specified
processes. It loads and unloads process symbols automatically. Additionally it covers process creation and
may stop watched processes at their entry points.

In particular the TASK.Watch commands are:

TASK.Watch.ADD Add process to watch list

Adds a process to the watch list.

Please see TASK.Watch.View for details.

TASK.Watch.DELete Remove process from watch list

Removes a process from the watch list.

Please see TASK.Watch.View for details.

TASK.Watch.View Activate watch system and show watched processes

TASK.Watch.ADD Add process to watch list

TASK.Watch.DELete Remove process from watch list

TASK.Watch.DISable Disable watch system

TASK.Watch.ENable Enable watch system

TASK.Watch.DISableBP Disable process creation breakpoints

TASK.Watch.ENableBP Enable process creation breakpoints

TASK.Watch.Option Set watch system options

Format: TASK.Watch.ADD <process>

<process> Specify the process name (in quotes) or magic.

Format: TASK.Watch.DELete <process>
OS Awareness Manual Linux | 58©1989-2024 Lauterbach

TASK.Watch.DISable Disable watch system

Disables the complete watch system. The watched processes list is no longer checked against the target
and is not updated. You’ll see the TASK.Watch.View window grayed out.

This feature is useful if you want to keep process symbols in the debugger, even if the process terminated.

TASK.Watch.DISableBP Disable process creation breakpoints

Prevents the debugger from setting on-chip breakpoints for the detection of process creation. After executing
this command, the target will run in real-time. However, the watch system can no longer detect process
creation. Automatic loading of process symbols will still work.

This feature is useful if you’d like to use the on-chip breakpoints for other purposes.

Please see TASK.Watch.View for details.

TASK.Watch.ENable Enable watch system

Enables the previously disabled watch system. It enables the automatic loading of process symbols as well
as the detection of process creation.

Please see TASK.Watch.View for details.

Format: TASK.Watch.DISable

Format: TASK.Watch.DISableBP

Format: TASK.Watch.ENable
OS Awareness Manual Linux | 59©1989-2024 Lauterbach

TASK.Watch.ENableBP Enable process creation breakpoints

Enables the previously disabled on-chip breakpoints for detection of process creation.

Please see TASK.Watch.View for details.

TASK.Watch.Option Set watch system options

Set various options to the watch system.

Please see TASK.Watch.View for details.

Format: TASK.Watch.ENable

Format: TASK.Watch.Option <option>

<option>: BreakFunC <function>

BreakFunC Set the breakpoint location for process creation detection.
The default value is “set_binfmt”.
Example: TASK.Watch.Option BreakFunC "set_binfmt"

BreakOptC Set the option that is used to set the breakpoint for process creation
detection.
The default value is “/Onchip”
Example: TASK.Watch.Option BreakOptC "/Soft"
OS Awareness Manual Linux | 60©1989-2024 Lauterbach

TASK.Watch.View Show watched processes

Activates the watch system for processes and shows a table of the watched processes.

.

Description of Columns in the TASK.Watch.View Window

Format: TASK.Watch.View [<process>]

NOTE: This feature may affect the real-time behavior of the target application!
Please see below for details.

<process> Specify a process name for the initial process to be watched.

process The name of the process to be watched.

spaceid The current space ID (= process ID) of the watched process.
If grayed, the debugger is currently not able to determine the space ID of the
process (e.g. the target is running).

state The current watch state of the process.
If grayed, the debugger is currently not able to determine the watch state.
no process: The debugger couldn’t find the process in the current Linux
process list.
no symbols: The debugger found the process and loaded the MMU settings of
the process but couldn’t load the symbols of the process (most likely because
the corresponding symbol files were missing).
loaded: The debugger found the process and loaded the process’s MMU
settings and symbols.

entry The process entry point, which is main().
If grayed, the debugger is currently not able to detect the entry point or is unable
to set the process entry breakpoint (e.g. because it is disabled with
TASK.Watch.DISableBP).
OS Awareness Manual Linux | 61©1989-2024 Lauterbach

The watch system for processes is able to automatically load and unload the symbols of a process and its
MMU settings, depending on their state in the target. Additionally, the watch system can detect the creation
of a process and halts the process at its entry point.

The watch system for processes is active as long as the TASK.Watch.View window is open or iconized. As
soon as this window is closed, the watch system will be deactivated.

Automatic Loading and Unloading of Process Symbols

In order to detect the current processes, the debugger must have full access to the target, i.e. the target
application must be stopped (with one exception, see below for creation of processes). As long as the target
runs in real time, the watch system is not able to get the current process list, and the display will be grayed
out (inactive).

If the target is halted (either by hitting a breakpoint, or by halting it manually), the watch system starts its
work. For each of the processes in the watch list, it determines the state of this process in the target.

If a process is active on the target, which was previously not found there, the watch system scans its MMU
entries and loads the appropriate symbol files. In fact, it executes TASK.sYmbol.LOAD for the new process.

If a watched process was previously loaded but is no longer found on the Linux process list, the watch
system unloads the symbols and removes the MMU settings from the debugger MMU table. The watch
system executes TASK.sYmbol.DELete for this process.

If the process was previously loaded and is now found with another space ID (e.g. if the process terminated
and started again), the watch system first removes the process symbols and reloads them to the appropriate
space ID.

You can disable the loading / unloading of process symbols with the command TASK.Watch.DISable.

Detection of Process Creation

To halt a process at its main entry point, the watch system can detect the process creation and set the
appropriate breakpoints.

To detect the process creation, the watch system sets an on-chip breakpoint on a kernel function that is
called upon creation of processes. Every time the breakpoint is hit, the debugger checks if a watched
process is started. If not, it simply resumes the target application. If the debugger detects the start of a newly

TASK.Watch.ADD Add processes to the watch list.

TASK.Watch.DELete Remove processes from the watch list.
OS Awareness Manual Linux | 62©1989-2024 Lauterbach

created (and watched) process, it sets an on-chip breakpoint onto the main entry point of the process
(main()) and resumes the target application. A short while after this, the main breakpoint will hit and halt
the target at the entry point of the process. The process is now ready to be debugged.

If you don’t want the watch system to set breakpoints, you can disable them with the command
TASK.Watch.DISableBP. Of course, detection of process creation won’t work then.

NOTE: This feature uses one permanent on-chip breakpoint and one temporary on-chip
breakpoint when a process is created. Please ensure that at least those two
on-chip breakpoints are available when using this feature.

Upon every process creation, the target application is halted for a short time and
resumed after searching for the watched processes. This impacts the real-time
behavior of your target.
OS Awareness Manual Linux | 63©1989-2024 Lauterbach

Linux PRACTICE Functions

There are special definitions for Linux specific PRACTICE functions.

TASK.ARCHITECTURE() Target architecture

Returns the target architecture of the Linux awareness.

Return Value Type: String.

TASK.CONFIG() OS awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

TASK.CURRENT() Magic or space ID of current task

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.ARCHITECTURE()

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Syntax: TASK.CURRENT(process | spaceid)

process Parameter Type: String (without quotation marks).

spaceid Parameter Type: String (without quotation marks).
OS Awareness Manual Linux | 64©1989-2024 Lauterbach

TASK.ERROR.CODE() Awareness error code

Checks for awareness errors and returns the bit wise OR of the following error codes.

Return Value Type: Hex value.

Return Value and Description:

TASK.ERROR.HELP() Awareness error help ID

Checks for awareness errors and returns the error help ID.

Return Value Type: String.

TASK.LIB.ADDRESS() Library load address

Returns the load address of the library, loaded by the specified process.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.ERROR.CODE()

0 No error.

1 Failed to detect kernel symbols.

2 Failed to detect kernel structures.

4 Failed to detect kernel structure members.

8 Pointer size does not fit.

Syntax: TASK.ERROR.HELP()

Syntax: TASK.LIB.ADDRESS("<library_name>", <process_magic>)

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual Linux | 65©1989-2024 Lauterbach

TASK.LIB.CODESIZE() Library code size

Returns the code size of the library, loaded by the specified process.

Parameter and Description:

Return Value Type: Hex value.

TASK.LIB.PATH() Library target path and name

Returns the path and file name of the library on the target, loaded by the specified process.

Parameter and Description:

Return Value Type: String.

TASK.MOD.CODEADDR() Code start address of module

Returns the code start address of the module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.LIB.CODESIZE("<library_name>", <process_magic>)

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.LIB.PATH("<library_name>", <process_magic>)

<library_name> Parameter Type: String (with quotation marks).

<process_magic> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.MOD.CODEADDR("<module_name>")
OS Awareness Manual Linux | 66©1989-2024 Lauterbach

TASK.MOD.DATAADDR() Data start of module

Returns the data start of the module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.SIZE() Size of module

Returns the size of the module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.MAGIC() Magic value of module

Returns the “magic” value of the module.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.MOD.MCB() Structure address of module

Returns the module’s structure address.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.MOD.DATAADDR("<module_name>")

Syntax: TASK.MOD.SIZE("<module_name>")

Syntax: TASK.MOD.MAGIC("<module_name>")

Syntax: TASK.MOD.MCB(<module_magic>)
OS Awareness Manual Linux | 67©1989-2024 Lauterbach

TASK.MOD.NAME() Name of module magic

Returns the name of the given module magic.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.MOD.SECTION() Address of a specified module’s section

Returns the address of the section of the specified kernel module.

Parameter and Description:

Return Value Type: Hex value.

TASK.MOD.SECNAME() Name of a module section with a given number

Returns the name of the section specified by the iteration number.

Parameter and Description:

Return Value Type: String.

Syntax: TASK.MOD.NAME(<module_magic>)

Syntax: TASK.MOD.SECTION("<section_name>",<module_magic>)

<section_name> Parameter Type: String (with quotation marks).

<module_magic> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.MOD.SECNAME(<module_magic>,<section_number>)

<module_magic> Parameter Type: Decimal or hex or binary value.

<section_number> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual Linux | 68©1989-2024 Lauterbach

TASK.MOD.SECADDR() Address of a module section with a given number

Returns the address of the section specified by the iteration number.

Parameter and Description:

Return Value Type: Hex value.

TASK.OS.VERSION() Version of the used Linux OS

Returns the version of the used Linux OS.

Return Value Type: Hex value.

TASK.PROC.CODEADDR() Code start address of process

Returns the code start address of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.CODESIZE() Code size of process

Returns the code size of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.MOD.SECADDR(<module_magic>,<section_number>)

<module_magic> Parameter Type: Decimal or hex or binary value.

<section_number> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.OS.VERSION()

Syntax: TASK.PROC.CODEADDR("<process_name>")

Syntax: TASK.PROC.CODESIZE("<process_name>")
OS Awareness Manual Linux | 69©1989-2024 Lauterbach

TASK.PROC.DATAADDR() Data start address of process

Returns the data start address of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.DATASIZE() Data size of process

Returns the data size of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.FileName() Filename of process

Returns the name of the main application file.

Parameter Type: Hex value.

Return Value Type: String.

Syntax: TASK.PROC.DATAADDR("<process_name>")

Syntax: TASK.PROC.DATASIZE("<process_name>")

Syntax: TASK.PROC.FileName(<task_magic>)
OS Awareness Manual Linux | 70©1989-2024 Lauterbach

TASK.PROC.LIST() List of processes

Returns the next magic in the process list. Returns zero if no further process is available.

Parameter Type: Decimal or hex or binary value.

Parameter and Description:

Return Value Type: Hex value.

Example:

TASK.PROC.MAGIC() Magic value of process

Returns the “magic” value of the process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

Syntax: TASK.PROC.LIST(<magic_value>)

0 Specify zero for the first process. E.g.
PRINT TASK.PROC.LIST(0) ; e.g. prints 1234

<magic_value> Get the magic value of the process in list following the parameter. E.g.
PRINT TASK.PROC.LIST(0x1234) ; e.g. prints 2456
PRINT TASK.PROC.LIST(0x2456) ; e.g. prints 0

&magicvalue=TASK.PROC.LIST(0)
WHILE &magicvalue!=0
(
 PRINT &magicvalue
 &magicvalue=TASK.PROC.LIST(&magicvalue)
)

Syntax: TASK.PROC.MAGIC("<process_name>")
OS Awareness Manual Linux | 71©1989-2024 Lauterbach

TASK.PROC.MAGIC2SID() Space ID of process

Returns the space ID of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.NAME() Name of process

Returns the name of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

TASK.PROC.NAME2TRACEID() Trace ID of process

Returns the trace ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.PATH() Path and file name of executable on target

Returns the path and file name of the executable on the target.

Parameter Type: Decimal or hex or binary value.

Return Value Type: String.

Syntax: TASK.PROC.MAGIC2SID(<process_magic>)

Syntax: TASK.PROC.NAME(<process_magic>)

Syntax: TASK.PROC.NAME2TRACEID("<process_name>")

Syntax: TASK.PROC.PATH(<process_magic>)
OS Awareness Manual Linux | 72©1989-2024 Lauterbach

TASK.PROC.PSID() Process ID

Returns the process ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.SID2MAGIC() Magic value of process

Returns the “magic” value of the process that has the given space ID.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.SPACEID() Space ID of process

Returns the space ID of the specified process.

Parameter Type: String (with quotation marks).

Return Value Type: Hex value.

TASK.PROC.TCB() Control structure address of task

Returns the task’s control structure address.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Syntax: TASK.PROC.PSID("<process_name>")

Syntax: TASK.PROC.SID2MAGIC(<space_id>)

Syntax: TASK.PROC.SPACEID("<process_name>")

Syntax: TASK.PROC.TCB(<process_magic>)
OS Awareness Manual Linux | 73©1989-2024 Lauterbach

TASK.PROC.TRACEID() Trace ID of process

Returns the trace ID of the specified process.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

TASK.PROC.VMAEND() End address of a process virtual memory area

Returns the end address of the given process virtual memory area holding the given address.

Parameter and Description:

Return Value Type: Hex value.

TASK.PROC.VMASTART() Start address of a process virtual memory area

Returns the start address of the given process virtual memory area holding the given address.

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.PROC.TRACEID(<process_magic>)

Syntax: TASK.PROC.VMAEND("<process_name>", <address>)

<process_name> Parameter Type: String (with quotation marks).

<address> Parameter Type: Decimal or hex or binary value.

Syntax: TASK.PROC.VMASTART("<process_name>", <address>)

<process_name> Parameter Type: String (with quotation marks).

<address> Parameter Type: Decimal or hex or binary value.
OS Awareness Manual Linux | 74©1989-2024 Lauterbach

TASK.VERSION.BUILD() Build number of Linux awareness

Returns the build number of the Linux awareness.

Return Value Type: String.

TASK.VERSION.DATE() Build date of Linux awareness

Returns the build date of the Linux awareness.

Return Value Type: String.

Syntax: TASK.VERSION.BUILD()

Syntax: TASK.VERSION.DATE()
OS Awareness Manual Linux | 75©1989-2024 Lauterbach

Error Messages

While using the Linux awareness, error messages may occur. This chapter explains the meanings of the
messages, and what could cause the error.

No error.

No error was detected by the awareness.

Failed to detect kernel symbols.

The awareness couldn’t find the necessary kernel symbols.

Are the symbols of the Linux kernel loaded?
Are the kernel symbols still accessible?
Maybe a missing “/NoClear” option when loading symbols of other components?

Failed to detect kernel structures.

The awareness couldn’t find the HLL information of the kernel.

Is the kernel compiled with debug information?

Failed to detect kernel structure members.

The awareness couldn’t find the HLL structure member information of the kernel structures.

Is the kernel fully compiled with debug information?
Try to execute “sYmbol.CLEANUP”.

Unknown Error Id.

An error was detected, but the error code couldn’t be resolved.

Probably a bug in the Linux awareness. Please execute “PRINT task.error.code()” and report it to
LAUTERBACH.
OS Awareness Manual Linux | 76©1989-2024 Lauterbach

Appendix

Appendix A: insmod patch for Linux 2.4

This patch provides section information in the kernel module headers, to ease symbol loading for kernel
modules in Linux 2.4.
The patch applies to two function in the file modutils/obj/obj_reloc.c

Change the function obj_load_size():

unsigned long
obj_load_size (struct obj_file *f)
{

unsigned long dot = 0;
struct obj_section *sec;

/* TRACE32: next lines inserted */

unsigned long strsize = 0;

/* calculate space for section names in front of sections */
for (sec = f->load_order; sec ; sec = sec->load_next)
{

strsize += 4 + strlen(sec->name)+1; /* address plus zero
terminated name */
if (strsize & 3) strsize += 4-(strsize&3); /* align to 32bit */

}
strsize += 8; /* start and end marker */

/* preserve first (struct module) section */
sec = f->load_order;
{

ElfW(Addr) align;

align = sec->header.sh_addralign;
if (align && (dot & (align - 1)))
dot = (dot | (align - 1)) + 1;

sec->header.sh_addr = dot;
dot += sec->header.sh_size;

}
sec = sec->load_next;
OS Awareness Manual Linux | 77©1989-2024 Lauterbach

/* add section name size */
if (dot & 3) dot += 4-(dot&3);
dot += strsize;

/* TRACE32: end insert */

/* Finalize the positions of the sections relative to one */
/* another.*/

/* TRACE32: line changed: */
/*for (sec = f->load_order; sec ; sec = sec->load_next)*/
for (; sec ; sec = sec->load_next)
{

ElfW(Addr) align;

align = sec->header.sh_addralign;
if (align && (dot & (align - 1)))
dot = (dot | (align - 1)) + 1;

sec->header.sh_addr = dot;
dot += sec->header.sh_size;

}

return dot;
}

OS Awareness Manual Linux | 78©1989-2024 Lauterbach

Change the function obj_create_image():

int
obj_create_image (struct obj_file *f, char *image)
{

struct obj_section *sec;
ElfW(Addr) base = f->baseaddr;

/* TRACE32: next lines inserted */

struct obj_section *sec2;

/* preserve first (struct module) section */
sec = f->load_order;
{

char *secimg = image;

if (sec->contents != 0)
{

secimg = image + (sec->header.sh_addr - base);

/* Note that we allocated data for NOBITS sections */
/* earlier. */
memcpy(secimg, sec->contents, sec->header.sh_size);

}

/* create section names in front of sections */
secimg += (sec->header.sh_size);
if ((int)secimg & 3) secimg += 4-((int)secimg&3);
strncpy (secimg, "T32S", 4); /* start marker */
secimg += 4;
for (sec2 = f->load_order; sec2 ; sec2 = sec2->load_next)
{

((unsigned long) secimg) = sec2->header.sh_addr;
secimg += 4;
strcpy (secimg, sec2->name);
secimg += strlen (sec2->name) + 1;
if ((int)secimg & 3) secimg += 4-((int)secimg&3);

}
strncpy (secimg, "T32E", 4); /* end marker */

}

sec = sec->load_next;

/* TRACE32: end insert */
OS Awareness Manual Linux | 79©1989-2024 Lauterbach

FAQ

Please refer to https://support.lauterbach.com/kb.

/* TRACE32: line changed: */
/* for (sec = f->load_order; sec ; sec = sec->load_next)*/
for (; sec ; sec = sec->load_next)
{

char *secimg;

if (sec->contents == 0)
continue;

secimg = image + (sec->header.sh_addr - base);

/* Note that we allocated data for NOBITS sections */
/* earlier. */
memcpy(secimg, sec->contents, sec->header.sh_size);

}

return 1;
}

OS Awareness Manual Linux | 80©1989-2024 Lauterbach

https://support.lauterbach.com/kb

	OS Awareness Manual Linux
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in Linux

	Features
	Display of Kernel Resources
	Task-Related Breakpoints
	Task Context Display
	MMU Support
	Space IDs
	MMU Declaration
	Debugger Table Walk

	Symbol Autoloader
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Process / thread switch support for ARM using context ID register:
	Task State Analysis
	Function Runtime Statistics
	Linux Specific Menu

	Debugging Linux Kernel and User Processes
	Linux Kernel
	Downloading the Kernel
	Debugging the Kernel Startup
	Debugging the Kernel

	User Processes
	Debugging the Process
	Debugging into Shared Libraries
	Debugging Linux Threads
	On Demand Paging

	Kernel Modules
	Trapping Segmentation Violation

	Linux Commands
	TASK.CHECK Check awareness integrity
	TASK.DMESG Display the kernel ring buffer
	TASK.DTask Display tasks
	TASK.DTB Display the device tree blob
	TASK.DTS Display the device tree source
	TASK.NET Display network devices
	TASK.FS Display file system internals
	TASK.MAPS Display process maps
	TASK.MMU.SCAN Scan process MMU space
	TASK.MODule Display kernel modules
	TASK.Option Set awareness options
	TASK.Process Display processes
	TASK.PS Display “ps” output
	TASK.sYmbol Process/Module symbol management
	TASK.sYmbol.DELete Unload process symbols and MMU
	TASK.sYmbol.DELeteLib Unload library symbols
	TASK.sYmbol.DELeteMod Unload module symbols and MMU
	TASK.sYmbol.LOAD Load process symbols and MMU
	TASK.sYmbol.LOADLib Load library symbols
	TASK.sYmbol.LOADMod Load module symbols and MMU
	TASK.sYmbol.Option Set symbol management options
	TASK.VMAINFO Display vmalloced areas
	TASK.Watch Watch processes
	TASK.Watch.ADD Add process to watch list
	TASK.Watch.DELete Remove process from watch list
	TASK.Watch.DISable Disable watch system
	TASK.Watch.DISableBP Disable process creation breakpoints
	TASK.Watch.ENable Enable watch system
	TASK.Watch.ENableBP Enable process creation breakpoints
	TASK.Watch.Option Set watch system options
	TASK.Watch.View Show watched processes

	Linux PRACTICE Functions
	TASK.ARCHITECTURE() Target architecture
	TASK.CONFIG() OS awareness configuration information
	TASK.CURRENT() Magic or space ID of current task
	TASK.ERROR.CODE() Awareness error code
	TASK.ERROR.HELP() Awareness error help ID
	TASK.LIB.ADDRESS() Library load address
	TASK.LIB.CODESIZE() Library code size
	TASK.LIB.PATH() Library target path and name
	TASK.MOD.CODEADDR() Code start address of module
	TASK.MOD.DATAADDR() Data start of module
	TASK.MOD.SIZE() Size of module
	TASK.MOD.MAGIC() Magic value of module
	TASK.MOD.MCB() Structure address of module
	TASK.MOD.NAME() Name of module magic
	TASK.MOD.SECTION() Address of a specified module’s section
	TASK.MOD.SECNAME() Name of a module section with a given number
	TASK.MOD.SECADDR() Address of a module section with a given number
	TASK.OS.VERSION() Version of the used Linux OS
	TASK.PROC.CODEADDR() Code start address of process
	TASK.PROC.CODESIZE() Code size of process
	TASK.PROC.DATAADDR() Data start address of process
	TASK.PROC.DATASIZE() Data size of process
	TASK.PROC.FileName() Filename of process
	TASK.PROC.LIST() List of processes
	TASK.PROC.MAGIC() Magic value of process
	TASK.PROC.MAGIC2SID() Space ID of process
	TASK.PROC.NAME() Name of process
	TASK.PROC.NAME2TRACEID() Trace ID of process
	TASK.PROC.PATH() Path and file name of executable on target
	TASK.PROC.PSID() Process ID
	TASK.PROC.SID2MAGIC() Magic value of process
	TASK.PROC.SPACEID() Space ID of process
	TASK.PROC.TCB() Control structure address of task
	TASK.PROC.TRACEID() Trace ID of process
	TASK.PROC.VMAEND() End address of a process virtual memory area
	TASK.PROC.VMASTART() Start address of a process virtual memory area
	TASK.VERSION.BUILD() Build number of Linux awareness
	TASK.VERSION.DATE() Build date of Linux awareness

	Error Messages
	Appendix
	Appendix A: insmod patch for Linux 2.4

	FAQ

