
MANUAL

OS Awareness Manual embOS

OS Awareness Manual embOS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual embOS ... 1

 Overview .. 4

 Brief Overview of Documents for New Users 5

 Supported Versions 5

 Configuration ... 6

 Quick Configuration Guide 6

 Hooks & Internals in embOS 7

 Requirements for Debugging 7

 Requirements for Tracing 7

 Debug Features ... 8

 Display of Kernel Resources 8

 Task Stack Coverage 8

 Task-Related Breakpoints 9

 Task Context Display 10

 Dynamic Task Performance Measurement 11

 embOS specific Menu 12

 Trace Features ... 13

 Task Runtime Statistics 13

 Task State Analysis 14

 Function Runtime Statistics 15

 embOS specific Menu for Tracing 16

 embOS Commands ... 17

 TASK.CSema Display ’CSemaphore’ 17

 TASK.EVenT Display event object 17

 TASK.MailBox Display mailbox 18

 TASK.MuTeX Display mutex 18

 TASK.Queue Display queue 19

 TASK.RWLock Display RW locks 19

 TASK.RSema Display ’RSemaphore’ 20

 TASK.SEMAphore Display semaphore 20

 TASK.TaskList Display tasks 21
OS Awareness Manual embOS | 2©1989-2024 Lauterbach

 TASK.TIMer Display timer 21

 embOS PRACTICE Functions .. 22

 TASK.CONFIG() OS Awareness configuration information 22
OS Awareness Manual embOS | 3©1989-2024 Lauterbach

OS Awareness Manual embOS

Version 06-Jun-2024

Overview

The OS Awareness for embOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.
OS Awareness Manual embOS | 4©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently embOS is supported for the following versions:

• embOS v3.x on Arm/Cortex, Nios II, PowerPC, RH850, RX and SH.

• embOS v5.x on Arm/Cortex and RISC-V.
OS Awareness Manual embOS | 5©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “embos.t32” (directory
“~~/demo/<arch>/kernel/embos”). It contains all necessary extensions.

Automatic configuration tries to locate the embOS internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used (see also “Hooks & Internals”).

If you want to display the OS objects “On The Fly” while the target is running, you need to have access to
memory while the target is running. In case of ICD, you have to enable SYStem.MemAccess or
SYStem.CpuAccess (CPU dependent).

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all other arguments:

(Note: “~~” refers to the TRACE32 installation directory)

See also the examples in the demo directories “~~/demo/<arch>/kernel/embos”.

Quick Configuration Guide

To access all features of the OS Awareness for embOS, follow the following roadmap:

1. Start the TRACE32 Debugger.

2. Load your application as normal.

3. Execute the command
TASK.CONFIG ~~/demo/<arch>/kernel/embos/embos.t32”
(See “Configuration”).

4. Execute the command
MENU.ReProgram ~~/demo/<arch>/kernel/embos/embos.men
(See “embOS Specific Menu”).

5. Start your application.

Now you can access the embOS extensions through the menu.

In case of any problems, please carefully read the previous configuration chapter.

Format: TASK.CONFIG ~~/demo/<arch>/kernel/embos/embos.t32
OS Awareness Manual embOS | 6©1989-2024 Lauterbach

Hooks & Internals in embOS

No hooks are used in the kernel.

There are some requirements to do a successful debugging and tracing with embOS. In case of problems,
please check carefully these items.

Requirements for Debugging

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

If embOS is compiled with “OS_DEBUG” defined, the kernel administers lists of created objects. The display
commands then show all available objects. Without having “OS_DEBUG” defined, you have to specify,
which object you’d like to see.

Requirements for Tracing

Tracing with embOS requires that the on-chip trace generation logic can generate task information. For
details refer to “OS-aware Tracing” (glossary.pdf).
OS Awareness Manual embOS | 7©1989-2024 Lauterbach

Debug Features

The OS Awareness for embOS supports the following debug features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
embOS components can be displayed:

For a description of the commands, refer to chapter “embOS Commands”.

If your hardware allows memory access while the target is running, these resources can be displayed “On
The Fly”, i.e. while the application is running, without any intrusion to the application.

Without this capability, the information will only be displayed if the target application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.CSema CSemaphores (embOS v3)

TASK.EVenT Event Objects

TASK.MailBox Mailboxes

TASK.MuTeX Mutexes

TASK.Queue Queues

TASK.RSema RSemaphores (embOS v3)

TASK.RWLock Readers-Writer Locks

TASK.SEMAphore Semaphores (embOS v5)

TASK.TaskList Tasks

TASK.TIMer Timers
OS Awareness Manual embOS | 8©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual embOS | 9©1989-2024 Lauterbach

you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all
register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

If you’d like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.

2. Double-click the line showing the OS service call.

Frame.TASK [<task>] Display task context.

Frame /Task <task> Display call stack of a task.
OS Awareness Manual embOS | 10©1989-2024 Lauterbach

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual embOS | 11©1989-2024 Lauterbach

embOS specific Menu

The menu file “embos.men” contains a menu with embOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called embOS.

• The Display menu items launch the kernel resource display windows.

• The Stack Coverage submenu starts and resets the embOS specific stack coverage and
provides an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

• The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with the default display.

• The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

o screenshot available
OS Awareness Manual embOS | 12©1989-2024 Lauterbach

Trace Features

The OS Awareness for embOS supports the following trace features.

Task Runtime Statistics

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spent in
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Trace.List List.TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK Display task runtime statistic evaluation

Trace.Chart.TASK Display task runtime timechart

Trace.PROfileSTATistic.TASK Display task runtime within fixed time intervals
statistically

Trace.PROfileChart.TASK Display task runtime within fixed time intervals as
colored graph

Trace.FindAll Address TASK.CONFIG(magic) Display all data access records to the “magic”
location

Trace.FindAll CYcle owner OR CYcle context Display all context ID records
OS Awareness Manual embOS | 13©1989-2024 Lauterbach

Task State Analysis

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:

• All accesses to the status words of all tasks

• Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

To evaluate the contents of the trace buffer, use these commands:

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Break.Set Var.RANGE(TCB_array) /Write /TraceData
Break.Set TASK.CONFIG(magic) /Write /TraceData

Trace.STATistic.TASKState Display task state statistic

Trace.Chart.TASKState Display task state timechart
OS Awareness Manual embOS | 14©1989-2024 Lauterbach

Function Runtime Statistics

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

To evaluate the contents of the trace buffer, use these commands:

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACE32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG(magic) /TraceData

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

Trace.ListNesting Display function nesting

Trace.STATistic.Func Display function runtime statistic

Trace.STATistic.TREE Display functions as call tree
OS Awareness Manual embOS | 15©1989-2024 Lauterbach

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

o screenshot available

embOS specific Menu for Tracing

The menu entries specific to tracing are already described in the menu for debug features.

Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis

Trace.Chart.Func Display function timechart

Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart
OS Awareness Manual embOS | 16©1989-2024 Lauterbach

embOS Commands

TASK.CSema Display ’CSemaphore’

Displays the CSemaphore table of embOS (v3) or detailed information about one specific CSemaphore.

Without any arguments, a table with all created CSemaphores will be shown.
Note: A list of semaphores is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a CSemaphore address or symbol to display detailed information on that semaphore.

TASK.EVenT Display event object

Displays the Event object table of embOS or detailed information about one specific Event object.

Without any arguments, a table with all created Event objects will be shown.
Note: A list of events is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify an Event address or symbol to display detailed information on that event.

Format: TASK.CSema [<csema>]

Format: TASK.Event [<event>]
OS Awareness Manual embOS | 17©1989-2024 Lauterbach

TASK.MailBox Display mailbox

Displays the mailbox table of embOS or detailed information about one specific mailbox.

Without any arguments, a table with all created mailboxes will be shown.
NOTE: A list of mailboxes is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a mailbox address or symbol to display detailed information on that mailbox.

TASK.MuTeX Display mutex

Displays the mutex table of embOS or detailed information about one specific mutex.

Without any arguments, a table with all created mutexes will be shown.
NOTE: A list of mutexes is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a mutex address or symbol to display detailed information on that mutex.

Format: TASK.MailBox [<mailbox>]

Format: TASK.MuTeX [<mutex>]
OS Awareness Manual embOS | 18©1989-2024 Lauterbach

TASK.Queue Display queue

Displays the queue table of embOS or detailed information about one specific queue.

Without any arguments, a table with all created queues will be shown.
NOTE: A list of queues is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a queue address or symbol to display detailed information on that queue.

TASK.RWLock Display RW locks

Displays the readers-writer lock table of embOS or detailed information about one specific lock.

Without any arguments, a table with all created locks will be shown.
NOTE: A list of locks is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a lock address or symbol to display detailed information on that lock.

Format: TASK.Queue [<queue>]

Format: TASK.RWLock [<rwlock>]
OS Awareness Manual embOS | 19©1989-2024 Lauterbach

TASK.RSema Display ’RSemaphore’

Displays the RSemaphore table of embOS (v3) or detailed information about one specific RSemaphore.

Without any arguments, a table with all created RSemaphores will be shown.
Note: A list of semaphores is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a RSemaphore address or symbol to display detailed information on that semaphore.

TASK.SEMAphore Display semaphore

Displays the semaphore table of embOS (v5) or detailed information about one specific semaphore.

Without any arguments, a table with all created semaphores will be shown.
Note: A list of semaphores is only available, if the embOS kernel is compiled with “OS_DEBUG” defined.

Specify a semaphore address or symbol to display detailed information on that semaphore.

Format: TASK.RSema [<rsema>]

Format: TASK.SEMAphore [<semaphore>]
OS Awareness Manual embOS | 20©1989-2024 Lauterbach

TASK.TaskList Display tasks

Displays the task table of embOS or detailed information about one specific task.

Without any arguments, a table with all created tasks will be shown.
Specify a task magic number to display detailed information on that task.

“magic” is a unique ID, used by the OS Awareness to identify a specific process (address of the TCB).

The fields “magic” and “data” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

The “context” and “current” buttons switch the actual viewing context. Please see chapter Task Context
Display for details.

TASK.TIMer Display timer

Displays the timer table with all created timers of embOS.

Format: TASK.TaskList [<task>]

Format: TASK.TIMer
OS Awareness Manual embOS | 21©1989-2024 Lauterbach

embOS PRACTICE Functions

There are special definitions for embOS specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Parameter and Description:

Return Value Type: Hex value.

Syntax: TASK.CONFIG(magic | magicsize)

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).
OS Awareness Manual embOS | 22©1989-2024 Lauterbach

	OS Awareness Manual embOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in embOS
	Requirements for Debugging
	Requirements for Tracing

	Debug Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	Dynamic Task Performance Measurement
	embOS specific Menu

	Trace Features
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	embOS specific Menu for Tracing

	embOS Commands
	TASK.CSema Display ’CSemaphore’
	TASK.EVenT Display event object
	TASK.MailBox Display mailbox
	TASK.MuTeX Display mutex
	TASK.Queue Display queue
	TASK.RWLock Display RW locks
	TASK.RSema Display ’RSemaphore’
	TASK.SEMAphore Display semaphore
	TASK.TaskList Display tasks
	TASK.TIMer Display timer

	embOS PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

