LAUTERBACH A

OS Awareness Manual eCos

OS Awareness Manual eCos

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
OS AWareness MaANUAISccciicecrriiiissiriinissss s rssssss s s s ssss e s eassam s s e e s s amn e s enasame s e e ansammn e nnnsan r—~
OS Awareness ManuUal @COScccvrirecerrrrsscrrrrsssmcerrrsssmnesessssmmereesssmme s eessssmnsseasssmmesnesssnmnnnens 1

L 1= (o 3

O oY = 3
Terminology 3

Brief Overview of Documents for New Users 4
Supported Versions 4
ConfiguIration ... e 5
Quick Configuration Guide 6
Hooks & Internals in eCos 6
== LT == 7
Display of Kernel Resources 7

Task Stack Coverage 7
Task-Related Breakpoints 8
Task Context Display 9

SMP Support 10
Dynamic Task Performance Measurement 10

Task Runtime Statistics 11
Task State Analysis 12
Function Runtime Statistics 13
eCos specific Menu 15

L= 0o T= 0 0o 4T3 0 7= Lo £ 16
TASK.SCHEDuler Display scheduler information 16
TASK.THRead Display threads 16
€C0S PRACTICE FUNCHONS ...cceeciiiiiecsniinems s sssmms s ssssssmss s s s s s s ssmms s s mmss s s ssmms s s snsssmmens 18
TASK.CONFIG() OS Awareness configuration information 18
©1989-2024 Lauterbach OS Awareness Manual eCos | 2

OS Awareness Manual eCos

Version 06-Jun-2024

History

04-Feb-21 Removing legacy command TASK. TASKState.

Overview

;‘ Simulator EI@

File Edit View Var Break Run CPU Misc Trace Perf Cov MPCha eCos Window Help

(M A b rn |2 0 snilsdas @28 | 5nE s @z L

& erer=]la ==]=]
magic 1d prio_|state entryptr name i ‘@gwc 1d prio_|state entryptr |[name |
00036C48 4. 4, |SLEEPING 00022434 |0002ZF944 Thread.B - 00036C48 | 4. | 4. [SLEEPING [00022434 [000ZF944 ThreaduB A
000323A8 1. | 31. [RUNNING 00025210 0002 IdleuThread
00034408 2. 10. |[SUSPENDED |0002CD38 |0002FFBC main susp count ake count ait info sleep reason ake reason
00036BAD 3. 4. |SLEEPING 00022434 |0002F938 Threadud 0. 0. 00000000 DELAY MONE
v
< > nutex count prio dinherited prio original
0. FALSE
4 [o|[@ =] [t o
[t 003569C 0OO0036AZ8 _context current
name [1ow high sp % Towest spare max__[0 10 20 30 40 | - ~
Thread B [00035B9C 00036B9C |D00S6AZE 9% [D00364EF 00000953 41% |ee— 0O oba
Idle Thread [00031BA4 000323A4 (00032348 4% 00032041 00000490 42% |se———————
main |000324D8 00034408 4% 00034345 O000LEGD 4% |mm
Thread A |[00034B9C 00035B9C 9% 00035545 00000943 39% _—
Ea Tlabe
Y] simple_program
¥ B Trace. CHART. TASK o e | & [= = =]
2 .. ik Goups...|| 38 Config... | R Goto... || R Goto... || #4Find...|[40 In|[»0+ Out| &3 Ful t. Up Down Margs Olocals [Caller Task: | “main”
-10.000ms -5.000ms 0.0 -000[[Cyg_SchedThread_ImpTementation: :timesTice_restore(inTine) ~
range iy L -000|[Cyg_Scheduler: :unlock_inner(new_lock = 0)
IdTe Threadi | L 1]] [] [—]| Cyg_Thread: :suspend(this = 0x000344D8)
Thread AR 3 | . . — . .] main(?, 7
Thread BAy C 1. I — cvg_Tibc_invoke_main()
Cyg_HardwareThread: :thread_entry(thread = 0x000344D8)
Cyg_Thread: :exit() v
B::[TASK.|
SCHEDuler| | THRead | TASKState pravious
PR | wothreacs | powernfarchv3_0src/hal _mischal idke_thread_adion+ s Idle Thread stopped MIX UP

The OS Awareness for eCos contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands and statistic evaluations.

Terminology

eCos uses the term “threads”. If not otherwise specified, the TRACES32 term “task” corresponds to eCos
threads.

©1989-2024 Lauterbach OS Awareness ManualeCos | 3

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently eCos is supported for the following versions:

. eCos V1.3, V2.0 and V3.0 on ARM/Cortex, ColdFire, MIPS, NIOS-1l and PowerPC

©1989-2024 Lauterbach OS Awareness ManualeCos | 4

Configuration

The TASK.CONFIG command loads an extension definition file called “ecos.t32” (directory
“~~/demo/<processor>/kernel/ecos”). It contains all necessary extensions.

Automatic configuration tries to locate the eCos internals automatically. For this purpose all symbol tables
must be loaded and accessible at any time the OS Awareness is used.

If you want to have dual port access for the display functions (display “On The Fly”), you have to map
emulation or shadow memory to the address space of all used system tables.

For system resource display and trace functionality, you can do an automatic configuration of the OS
Awareness. For this purpose it is necessary that all system internal symbols are loaded and accessible at
any time, the OS Awareness is used. Each of the TASK.CONFIG arguments can be substituted by '0', which
means that this argument will be searched and configured automatically. For a fully automatic configuration
omit all arguments:

I TASK.CONFIG ecos

See also the example “~~/demo/<processor>/kernel/ecos/ecos.cmm?”.

©1989-2024 Lauterbach OS Awareness ManualeCos | 5

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for eCos with your application, follow this
roadmap:

1. Copy the files ecos . t32 and “ecos .men” to your project directory
(from TRACES2 directory “~~/demo/<processors/kernel/ecos”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4, Execute the command:

TASK.CONFIG ecos

See “Configuration”.

5. Execute the command:

MENU.ReProgram ecos

See “eCos Specific Menu”.

6. Start your application.
Now you can access the eCos extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapters.

Hooks & Internals in eCos

No hooks are used in the kernel.
For detecting the current running task, the kernel symbol “Cyg_Scheduler_Base::current_thread” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions (Cyg_*). Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

The OS Awareness for eCos needs a linked thread list to operate correctly. To ensure this, the
configuration of eCos must include the #define macro CYGVAR_KERNEL_THREADS_LIST. Using
the eCos Configuration Tool, enable “Configuration -> eCos kernel -> Thread-related options ->
Keep track of all threads using a linked list”.

©1989-2024 Lauterbach OS Awareness ManualeCos | 6

Features

The OS Awareness for eCos supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
eCos components can be displayed:

TASK.SCHEDuler Scheduler
TASK.THRead Threads

For a description of the commands, refer to chapter “eCos Commands”.

When working with emulation memory or shadow memory, these resources can be displayed “On The Fly”,
i.e. while the target application is running, without any intrusion to the application. If using this dual port
memory feature, be sure that emulation memory is mapped to all places, where eCos holds its tables.

When working only with target memory, the information will only be displayed if the target application is
stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

&b BTASK.STacK =N =R)
30 40 |

name |low high sp % [lowest spare max [0 10 20
Thread B [00D35B9C O0036B9C [00036A25 9% |000364EF Q0000953 415 |— A
Idle Thread |00031EA4 00032344 |00 00032041 00000490 42% |ee—
main |000324D8 000344D8 |00 00034345 00001EGD A% |—
Thread A |00034B3C 00035B9C 00035545 00000949 39%

4%
4%
9%

< >

©1989-2024 Lauterbach OS Awareness ManualeCos | 7

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

I Break.Set <address>|<range> [I<option>] [TASK <task> Set task-related breakpoint.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

J For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.

This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: Ifthe RTOS serves the Context ID register at task switches, and ifthe
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.CONFIG.UseContextiD ON Enables the comparison to the whole Context ID register.
Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK . List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

©1989-2024 Lauterbach OS Awareness ManualeCos | 8

a B::Break.List EI@

K ekte Al O Dssbe Al @ Eabie Al @ it || L 1mpl... |52 Store...| o Load... | EdiSet...

address types impl task |
C:00022434 [Program SOFT "Thread B simple_program

C:000283845Pr‘ogr‘a.m SOFT "Thread A" printf

Task Context Display

You can switch the whole viewing context to a task that is currently not being executed. This means that all

register and stack-related information displayed, e.g. in Register, Data.List, Frame etc. windows, will refer
to this task. Be aware that this is only for displaying information. When you continue debugging the
application (Step or Go), the debugger will switch back to the current context.

To display a specific task context, use the command:

I Frame.TASK [<task>] Display task context.

J Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

o To switch back to the current context, omit all parameters.

To display the call stack of a specific task, use the following command:

I Frame /Task <task> Display call stack of a task.

If you'd like to see the application code where the task was preempted, then take these steps:

1. Open the Frame /Caller /Task <task> window.
2. Double-click the line showing the OS service call.
& Bu:Frame /TASK "main” EI@
1. Up Down MArgs [iocals [caller Task: | "main” |
-000[[Cyg_SchedThread_ImpTementation::timesTice_restore{inTine) ~

-000|[Cyg_Scheduler: :unTock_inner (new_lock = 0)
-001||Cyg_Thread: :suspend{this = 0x000344D8)

-002|[main{7?, 7

-003||cyg_Tibc_invoke_main()

-004 |Cyg_HardwareThread: :thread_entry(thread = 0x000344D8)
-005 Cyg_Thread::exit()

of frame

©1989-2024 Lauterbach

OS Awareness Manual eCos

9

SMP Support

The OS Awareness supports symmetric multiprocessing (SMP).

An SMP system consists of multiple similar CPU cores. The operating system schedules the threads that
are ready to execute on any of the available cores, so that several threads may execute in parallel.
Consequently an application may run on any available core. Moreover, the core at which the application runs
may change over time.

To support such SMP systems, the debugger allows a “system view”, where one TRACE32 PowerView GUI
is used for the whole system, i.e. for all cores that are used by the SMP OS. For information about how to set
up the debugger with SMP support, please refer to the Processor Architecture Manuals.

All core relevant windows (e.g. Register.view) show the information of the current core. The state line of the
debugger indicates the current core. You can switch the core view with the CORE.select command.

Target breaks, be they manual breaks or halting at a breakpoint, halt all cores synchronously. Similarly, a Go
command starts all cores synchronously. When halting at a breakpoint, the debugger automatically switches
the view to the core that hit the breakpoint.

Because it is undetermined, at which core an application runs, breakpoints are set on all cores
simultaneously. This means, the breakpoint will always hit independently on which core the application
actually runs.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).

E B:PERF.LTASK [s

& ... | 58 aonfig... |3 Goto...| B Detaled | O, View || jjy/Profile|| @ it || O Dissble| @ Arm
runtime: 100%

ratio 1% 2% 5% 10% 20% 50% 100 |

e Thread 69.608%

hread A 15.196%

hread B 15.196%

i 0. 000%

©1989-2024 Lauterbach OS Awareness ManualeCos | 10

Task Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or

Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

Based on the recordings made by the Trace (if available), the debugger is able to evaluate the time spentin
a task and display it statistically and graphically.

To evaluate the contents of the trace buffer, use these commands:

Trace.List List. TASK DEFault Display trace buffer and task switches

Trace.STATistic.TASK
Trace.Chart.TASK
Trace.PROfileSTATistic.TASK

Trace.PROfileChart.TASK

Trace.FindAll Address TASK.CONFIG(magic)

Trace.FindAll CYcle owner OR CYcle context

Display task runtime statistic evaluation
Display task runtime timechart

Display task runtime within fixed time intervals
statistically

Display task runtime within fixed time intervals as
colored graph

Display all data access records to the “magic”
location

Display all context ID records

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as

“(unknown)”.

All kernel activities up to the task switch are added to the calling task. The start of the recording time, when
the calculation doesn’t know, which task is running, is calculated as “(root)”.

| B:Trace STATistic. TASK = =R
Z2sep... || 1if Goups... || 38 Gonfig.. | = |Detailed || i Nesting| Al Chart || B Profile
tasks: 3. total: 13.107ms
range [total min max avr count ratio¥ [1% |
IdTe Thread 7.560ms [841.500us 2.892ms 1.890ms 576775 |——
Thread A 2.245ms | 195.600us 1.069ms | 748.300us 17.127% |e—
Thread B 3.302ms | 65.900us 1.089ms | 825.575us 25.194% |ee—
< g BiTrace. CHART.TASK o[B]
J2sep..,||ii Goups... | 28 Gonfig... | Goto... || (3 Goto... || #3Find...|| «Ov In | »0¢ Out &3 Full
-10.000ms -5.000ms 0.0
rangefy ;
TIdTe Thread::|s | | .| .
Thread A] | . .) . . | |
Thread BRy 1 — B —
©1989-2024 Lauterbach OS Awareness Manual eCos | 11

Task State Analysis

NOTE: This feature is only available, if your debug environment is able to trace task
switches and data accesses (program flow trace is not sufficient). It requires
either an on-chip trace logic that is able to generate a data trace, or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

The time different tasks are in a certain state (running, ready, suspended or waiting) can be evaluated
statistically or displayed graphically.

This feature requires that the following data accesses are recorded:
. All accesses to the status words of all tasks

J Accesses to the current task variable (= magic address)

Adjust your trace logic to record all data write accesses, or limit the recorded data to the area where all TCBs
are located (plus the current task pointer).

Example: This script assumes that the TCBs are located in an array named TCB_array and consequently
limits the tracing to data write accesses on the TCBs and the task switch.

Break.Set Var.RANGE (TCB_array) /Write /TraceData
Break.Set TASK.CONFIG (magic) /Write /TraceData

To evaluate the contents of the trace buffer, use these commands:

Trace.STATistic. TASKState Display task state statistic
Trace.Chart.TASKState Display task state timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

All kernel activities up to the task switch are added to the calling task. The start of the recording time, when
the calculation doesn’t know, which task is running, is calculated as “(root)”.

©1989-2024 Lauterbach OS Awareness ManualeCos | 12

Function Runtime Statistics

NOTE: This feature is only available, if your debug environment is able to trace task
switches (program flow trace is not sufficient). It requires either an on-chip trace
logic that is able to generate task information (eg. data trace), or a software
instrumentation feeding one of TRACES32 software based traces (e.g. FDX or
Logger). For details, refer to “OS-aware Tracing” (glossary.pdf).

All function-related statistic and time chart evaluations can be used with task-specific information. The
function timings will be calculated dependent on the task that called this function. To do this, in addition to the
function entries and exits, the task switches must be recorded.

To do a selective recording on task-related function runtimes based on the data accesses, use the following
command:

; Enable flow trace and accesses to the magic location
Break.Set TASK.CONFIG (magic) /TraceData

To do a selective recording on task-related function runtimes, based on the Arm Context ID, use the following
command:

; Enable flow trace with Arm Context ID (e.g. 32bit)
ETM.ContextID 32

To evaluate the contents of the trace buffer, use these commands:

Trace.ListNesting Display function nesting
Trace.STATistic.Func Display function runtime statistic
Trace.STATistic.TREE Display functions as call tree
Trace.STATistic.sYmbol /SplitTASK Display flat runtime analysis
Trace.Chart.Func Display function timechart
Trace.Chart.sYmbol /SplitTASK Display flat runtime timechart

The start of the recording time, when the calculation doesn’t know which task is running, is calculated as
“(unknown)”.

©1989-2024 Lauterbach OS Awareness ManualeCos | 13

All kernel activities up to the task switch are added to the calling task.

= | B:iTrace STATistic, TASKTREE
B, | fitGous.. | 35 Gnfig... | A Goto... | = |Detmikd || Nesting | % Chart
funcs: 747. total: 13.107ms 118 workarounds
range [tree total min max avr count intern% 1% |
(root) = (root) 3.047ms = 3.047ms = = 0.050% [+ .
cyg_mutex_lock eyg_mutex_lock 63.000us | 21.700us | 21.700us | 21.700us 3.(1/0) | 0.020% |+
printf printf 2.798ms | 957.200us | 975.000us | 966.100us 3.(0/1) 0.099% |+
cyg_mutex_unlock cyg_mutex_unlock 40.400us 20.200us 20.200us 20.200us 2. 0.016% |+
cyg_thread_delay = cyg_thread_delay 136.600us | 68.300us | 68.300us | 68.300us 2. 0.025% |+
Cyg_Thread: :delay Cyg_Thread: :delay 133.200us | 66.600us | 66.600us | 66.600us 2. 0.125% |+
rand rand 4.600us 2.300us 2.300us 2.300us 2. 0.004% |+
(root) = (root) 3.252ms - 3.252ms - - 0.041% |+
cyg_thread_delay cyg_thread_delay 204.900us | 68.300us | 68.300us | 68.300us 4.(1/1) | 0.038% |+
= rand 6.900us 2.300us 2.300us 2.300us 3. 0.006% |+
rand_r — rand_r 6.000us 2.000us 2.000us 2.000us 3. 0.045% |+
cyg_mutex_lock cyg_mutex_lock 65.100us 21.700us 21.700us 21.700us 3. 0.025% |+
printf printf 2.909ms | 958.900us | 975.200us | 969.767us 3. 0.102% |+
cyg_mutex_unlock cyg_mutex_unlock 60.600us 20.200us 20.200us 20.200us 3. 0.025% |+
(roo = (root) 6.808ms - 6.808ms - - 0.399% |+
restore_state+0x90 restore_state+0x90 6.580ms - 6.580ms - 1.(1/0) 0.177% |+
hal_idle_thread_action hal_idle_thread_action 175.700us 1.300us 91.200us 1.300us 66.(0/1) 0.651% |+
| = BuTrace CHART.TASKFUNC
Zeenp.. | iiiGous.. | 22 Qnfip.. | (A Goto... |3 Goto...|| #3Find... | «DrIn | »De0ut | ©EFul
-9.960ms -9.940ms -9.920ms -9.900ms -9.880ms
range Il 1 Il 1 L '}
Tementation: :times 1ice_cpu i] X . X =~
Cyg_ThreadTimer::al |~ S— . . .
: - u .
Cyg_Scheduler::u o1 . .
Cya_Threa - — m X i
Cyg_Alarm: 1 . - . .
cyg_thread_delay B I . .
- (= .
- - .
aH L e
¥) i N [w
| < > <

©1989-2024 Lauterbach

OS Awareness Manual eCos

14

eCos specific Menu

The menu file “ecos.men” contains a menu with eCos specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called eCos.
. The Display menu items launch the kernel resource display windows.

J The Stack Coverage submenu starts and resets the eCos specific stack coverage and provides
an easy way to add or remove tasks from the stack coverage window.

In addition, the menu file (*.men) modifies these menus on the TRACE32 main menu bar:

. The Trace menu is extended. In the List submenu, you can choose if you want a trace list window
to show only task switches (if any) or task switches together with default display.

o The Perf menu contains additional submenus for task runtime statistics, task-related function
runtime statistics or statistics on task states.

©1989-2024 Lauterbach OS Awareness ManualeCos | 15

eCos Commands

TASK.SCHEDuler Display scheduler information

Format: TASK.SCHEDuler

Displays detailed information about the used scheduler.

o B:TASK.SCHEDuler = =R
l@g'l [type |

|
00032450 MuTti-Level Queue

current thread thread switches ock cou
00036C48 16336. 0.

index head list
= 4. 00036C48 end of Tist
= 31. O000323A8 end of Tist

“magic” is a unique ID, used by the OS Awareness to identify the scheduler (address of the scheduler
object).

The fields “magic” and “head” are mouse sensitive, double clicking on them opens appropriate windows.

TASK.THRead Display threads

Format: TASK.THRead [<thread>]

Displays the thread table of eCos or detailed information about one specific thread.

Without any arguments, a table with all created threads will be shown.

©1989-2024 Lauterbach OS Awareness ManualeCos | 16

Specify a thread name or magic number to display detailed information on that thread.

&% BuTASK.Thread =N SR
I

agic 1d prio_|[state entryptr |name
00036C458 4. 4. |SLEEPING 00022434 [0002F944 ThreaduBE A
000323A8 1. | 31. |RUNNING 00025210 0 IdleuThread
00034408 2. 10. |SUSPENDED |0002CD38 |0002FFBC main
00036BA0 3. 4. |SLEEPING 00022434 |0002F938 ThreaduA
W
£
% B:TASK.THRead "Thread B" = =R
Eg'lc 1d prio_|state entryptr |name |
00036C48 | 4. | 4. |SLEEPING |00022434 [0002F94%4 ThreadoB .
susp count wake count wait info sleep reason wake reason
0. 0. 0Qoooo00 DELAY NONE
mutex count prio inherited prio original
[{] FALSE

=tack base size Timit ptr
00035B9C 00001000 00035B9C 00036AZ8 context current

exception control: global

timer: 000

entry ptr entry data Tabel
00022434 00000001 simple_program

v
£ >

“magic” is a unique 1D, used by the OS Awareness to identify a specific thread (address of the thread object).

The “magic” field and various other fields are mouse sensitive. Double-clicking on them opens appropriate

windows. Right clicking on the “magic” will show a local menu.

©1989-2024 Lauterbach OS Awareness Manual eCos

17

eCos PRACTICE Functions

There are special definitions for eCos specific PRACTICE functions.

TASK.CONFIG() OS Awareness configuration information

Syntax: TASK.CONFIG(magic | magicsize)

Parameter and Description:

magic Parameter Type: String (without quotation marks).
Returns the magic address, which is the location that contains the
currently running task (i.e. its task magic number).

magicsize Parameter Type: String (without quotation marks).
Returns the size of the task magic number (1, 2 or 4).

Return Value Type: Hex value.

©1989-2024 Lauterbach OS Awareness ManualeCos | 18

	OS Awareness Manual eCos
	History
	Overview
	Terminology
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in eCos

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Task Context Display
	SMP Support
	Dynamic Task Performance Measurement
	Task Runtime Statistics
	Task State Analysis
	Function Runtime Statistics
	eCos specific Menu

	eCos Commands
	TASK.SCHEDuler Display scheduler information
	TASK.THRead Display threads

	eCos PRACTICE Functions
	TASK.CONFIG() OS Awareness configuration information

