
MANUAL

OS Awareness Manual
DSP/BIOS

OS Awareness Manual DSP/BIOS

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 OS Awareness Manuals .. 

 OS Awareness Manual DSP/BIOS ... 1

 Overview .. 3

 Brief Overview of Documents for New Users 4

 Supported Versions 4

 Configuration ... 5

 Quick Configuration Guide 6

 Hooks & Internals in DSP/BIOS 6

 Features ... 7

 Display of Kernel Resources 7

 Task Stack Coverage 7

 Task-Related Breakpoints 8

 Dynamic Task Performance Measurement 9

 DSP/BIOS specific Menu 10

 DSP/BIOS Commands ... 11

 TASK.KerNeL Display kernel information 11

 TASK.LOG.DISable Disable system log events 11

 TASK.LOG.ENable Enable system log events 11

 TASK.LOG.View Display logs 12

 TASK.MailBoX Display mailboxes 13

 TASK.MEMory Display memory segments 13

 TASK.SEMaphore Display semaphores 14

 TASK.SWI Display SWIs 14

 TASK.TaSK Display tasks 15

 DSP/BIOS PRACTICE Functions .. 16
OS Awareness Manual DSP/BIOS | 2©1989-2024 Lauterbach

OS Awareness Manual DSP/BIOS

Version 06-Jun-2024

Overview

The OS Awareness for DSP/BIOS contains special extensions to the TRACE32 Debugger. This manual
describes the additional features, such as additional commands.
OS Awareness Manual DSP/BIOS | 3©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Supported Versions

Currently DSP/BIOS is supported for the following versions:

• Code Composer Studio v2 on TMS320C55xx and TMS320C64xx DSP.
OS Awareness Manual DSP/BIOS | 4©1989-2024 Lauterbach

Configuration

The TASK.CONFIG command loads an extension definition file called “bios.t32” (directory
“~~/demo/<processor>/kernel/bios”). It contains all necessary extensions.

Automatic configuration tries to locate the DSP/BIOS internals automatically. For this purpose all symbol
tables must be loaded and accessible at any time the OS Awareness is used.

For system resource display, you can do an automatic configuration of the OS Awareness. For this purpose
it is necessary that all system internal symbols are loaded and accessible at any time, the OS Awareness is
used. Each of the TASK.CONFIG arguments can be substituted by '0', which means that this argument will
be searched and configured automatically. For a fully automatic configuration omit all arguments:

See Hooks & Internals for details on the used symbols.

See also the example “~~/demo/<processor>/kernel/bios/bios.cmm”.

Format: TASK.CONFIG bios
OS Awareness Manual DSP/BIOS | 5©1989-2024 Lauterbach

Quick Configuration Guide

To get a quick access to the features of the OS Awareness for DSP/BIOS with your application, follow the
following roadmap:

1. Copy the files “bios.t32” and “bios.men” to your project directory
(from TRACE32 directory “~~/demo/<processor>/kernel/bios”).

2. Start the TRACE32 Debugger.

3. Load your application as normal.

4. Execute the command “TASK.CONFIG bios”

(See “Configuration”).

5. Execute the command “MENU.ReProgram bios”

(See “DSP/BIOS specific Menu”).

6. Start your application.

Now you can access the DSP/BIOS extensions through the menu.

In case of any problems, please carefully read the previous Configuration chapter.

Hooks & Internals in DSP/BIOS

No hooks are used in the kernel.

For detecting the current running task, the kernel symbol “KNL_curtask” is used.

For retrieving the kernel data structures, the OS Awareness uses the global kernel symbols and structure
definitions. Ensure that access to those structures is possible every time when features of the OS
Awareness are used.

Used symbols:
KNL_curtask, OBJ_table, KNL_swi, MEM_memtab
OS Awareness Manual DSP/BIOS | 6©1989-2024 Lauterbach

Features

The OS Awareness for DSP/BIOS supports the following features.

Display of Kernel Resources

The extension defines new commands to display various kernel resources. Information on the following
DSP/BIOS components can be displayed:

For a description of the commands, refer to chapter “DSP/BIOS Commands”.

If your target CPU provides memory access while running (SYStem.MemAccess Enable), these resources
can be displayed “On The Fly”, i.e. while the target application is running, without any intrusion to the
application.

If your target doesn’t support this memory access, the information will only be displayed if the target
application is stopped.

Task Stack Coverage

For stack usage coverage of tasks, you can use the TASK.STacK command. Without any parameter, this
command will open a window displaying with all active tasks. If you specify only a task magic number as
parameter, the stack area of this task will be automatically calculated.

To use the calculation of the maximum stack usage, a stack pattern must be defined with the command
TASK.STacK.PATtern (default value is zero).

To add/remove one task to/from the task stack coverage, you can either call the TASK.STacK.ADD or
TASK.STacK.ReMove commands with the task magic number as the parameter, or omit the parameter and
select the task from the TASK.STacK.* window.

It is recommended to display only the tasks you are interested in because the evaluation of the used stack
space is very time consuming and slows down the debugger display.

TASK.KerNeL Kernel information

TASK.TaSK Tasks

TASK.MailBoX Mailboxes

TASK.SEMaphore Semaphores

TASK.MEMory Memory segments

TASK.SWI SWIs
OS Awareness Manual DSP/BIOS | 7©1989-2024 Lauterbach

Task-Related Breakpoints

Any breakpoint set in the debugger can be restricted to fire only if a specific task hits that breakpoint. This is
especially useful when debugging code which is shared between several tasks. To set a task-related
breakpoint, use the command:

• Use a magic number, task ID, or task name for <task>. For information about the parameters, see
“What to know about the Task Parameters” (general_ref_t.pdf).

• For a general description of the Break.Set command, please see its documentation.

By default, the task-related breakpoint will be implemented by a conditional breakpoint inside the debugger.
This means that the target will always halt at that breakpoint, but the debugger immediately resumes
execution if the current running task is not equal to the specified task.

On some architectures, however, it is possible to set a task-related breakpoint with on-chip debug logic that
is less intrusive. To do this, include the option /Onchip in the Break.Set command. The debugger then uses
the on-chip resources to reduce the number of breaks to the minimum by pre-filtering the tasks.

For example, on ARM architectures: If the RTOS serves the Context ID register at task switches, and if the
debug logic provides the Context ID comparison, you may use Context ID register for less intrusive task-
related breakpoints:

Break.Set <address>|<range> [/<option>] /TASK <task> Set task-related breakpoint.

NOTE: Task-related breakpoints impact the real-time behavior of the application.

Break.CONFIG.UseContextID ON Enables the comparison to the whole Context ID register.

Break.CONFIG.MatchASID ON Enables the comparison to the ASID part only.

TASK.List.tasks If TASK.List.tasks provides a trace ID (traceid column), the
debugger will use this ID for comparison. Without the trace ID,
it uses the magic number (magic column) for comparison.
OS Awareness Manual DSP/BIOS | 8©1989-2024 Lauterbach

When single stepping, the debugger halts at the next instruction, regardless of which task hits this
breakpoint. When debugging shared code, stepping over an OS function may cause a task switch and
coming back to the same place - but with a different task. If you want to restrict debugging to the current task,
you can set up the debugger with SETUP.StepWithinTask ON to use task-related breakpoints for single
stepping. In this case, single stepping will always stay within the current task. Other tasks using the same
code will not be halted on these breakpoints.

If you want to halt program execution as soon as a specific task is scheduled to run by the OS, you can use
the Break.SetTask command.

Dynamic Task Performance Measurement

The debugger can execute a dynamic performance measurement by evaluating the current running task in
changing time intervals. Start the measurement with the commands PERF.Mode TASK and PERF.Arm,
and view the contents with PERF.ListTASK. The evaluation is done by reading the ‘magic’ location (=
current running task) in memory. This memory read may be non-intrusive or intrusive, depending on the
PERF.METHOD used.

If PERF collects the PC for function profiling of processes in MMU-based operating systems
(SYStem.Option.MMUSPACES ON), then you need to set PERF.MMUSPACES, too.

For a general description of the PERF command group, refer to “General Commands Reference Guide
P” (general_ref_p.pdf).
OS Awareness Manual DSP/BIOS | 9©1989-2024 Lauterbach

DSP/BIOS specific Menu

The menu file “bios.men” contains a menu with DSP/BIOS specific menu items. Load this menu with the
MENU.ReProgram command.

You will find a new menu called DSP/BIOS.

• The Display menu items launch the kernel resource display windows.

• The Log/Trace submenu allows to view the DSP/BIOS log and to enable/disable individual
events.

• The Stack Coverage submenu starts and resets the DSP/BIOS specific stack coverage, and
provide an easy way to add or remove tasks from the stack coverage window.
OS Awareness Manual DSP/BIOS | 10©1989-2024 Lauterbach

DSP/BIOS Commands

TASK.KerNeL Display kernel information

Displays internal information about the current state of the kernel.
The display is similar to the “KNL” tab of the CCS Debugger.

TASK.LOG.DISable Disable system log events

Disables tracing of the specified event in the DSP/BIOS system log.

TASK.LOG.ENable Enable system log events

Enables tracing of the specified event in the DSP/BIOS system log.

Format: TASK.KerNeL

Format: TASK.LOG.DISable [all | SWIlog | PRDlog | CLKlog | TSKlog | SWIAcc |
PRDAcc | PIPAcc | HWIAcc | TSKAcc | User0 | User1 | User2]

Format: TASK.LOG.ENable [all | SWIlog | PRDlog | CLKlog | TSKlog | SWIAcc |
PRDAcc | PIPAcc | HWIAcc | TSKAcc | User0 | User1 | User2]
OS Awareness Manual DSP/BIOS | 11©1989-2024 Lauterbach

TASK.LOG.View Display logs

Displays a table with all created Logs of DSP/BIOS.

The display is similar to the “SWI” tab of the CCS Debugger.

Without any arguments, a table with all created logs will be shown.
Specify a log name or magic number to display the content of this log.

“magic” (= handle) is a unique ID, used by the OS Awareness to identify a specific log (address of the log
object).

The field “magic” is mouse sensitive, double clicking on it opens an appropriate window. Right clicking on it
will show a local menu.

Format: TASK.LOG.View [<log>]
OS Awareness Manual DSP/BIOS | 12©1989-2024 Lauterbach

TASK.MailBoX Display mailboxes

Displays the mailbox table of DSP/BIOS or detailed information about one specific mailbox.

The display is similar to the “MBX” tab of the CCS Debugger.

Without any arguments, a table with all created mailboxes will be shown.
Specify a mailbox name or magic number to display detailed information on that mailbox.

“magic” is a unique ID, used by the OS Awareness to identify a specific thread (address of the mailbox
object).

The fields “magic” and “name” are mouse sensitive. Double-clicking on them opens appropriate windows.

TASK.MEMory Display memory segments

Displays a table with all created memory segments of DSP/BIOS.

The display is similar to the “SEM” tab of the CCS Debugger.

Format: TASK.MailBoX [<mailbox>]

Format: TASK.MEMory
OS Awareness Manual DSP/BIOS | 13©1989-2024 Lauterbach

TASK.SEMaphore Display semaphores

Displays the semaphore table of DSP/BIOS or detailed information about one specific semaphore.

The display is similar to the “SEM” tab of the CCS Debugger.

Without any arguments, a table with all created semaphores will be shown.
Specify a semaphore name or magic number to display detailed information on that port.

TASK.SWI Display SWIs

Displays a table with all created SWIs of DSP/BIOS.

The display is similar to the “SWI” tab of the CCS Debugger.

Format: TASK.SEMaphore [<semaphore>]

Format: TASK.SWI
OS Awareness Manual DSP/BIOS | 14©1989-2024 Lauterbach

TASK.TaSK Display tasks

Displays the task table of DSP/BIOS or detailed information about one specific task.

The display is similar to the “TSK” tab of the CCS Debugger.

Without any arguments, a table with all created tasks will be shown.
Specify a task name or magic number to display detailed information on that task.

“magic” (= handle) is a unique ID, used by the OS Awareness to identify a specific task (address of the task
object).

The fields “magic” and “name” are mouse sensitive, double clicking on them opens appropriate windows.
Right clicking on them will show a local menu.

Format: TASK.TaSK [<task>]
OS Awareness Manual DSP/BIOS | 15©1989-2024 Lauterbach

DSP/BIOS PRACTICE Functions

Currently, there are no special definitions for DSP/BIOS specific PRACTICE functions.

See also general TASK functions.
OS Awareness Manual DSP/BIOS | 16©1989-2024 Lauterbach

	OS Awareness Manual DSP/BIOS
	Overview
	Brief Overview of Documents for New Users
	Supported Versions

	Configuration
	Quick Configuration Guide
	Hooks & Internals in DSP/BIOS

	Features
	Display of Kernel Resources
	Task Stack Coverage
	Task-Related Breakpoints
	Dynamic Task Performance Measurement
	DSP/BIOS specific Menu

	DSP/BIOS Commands
	TASK.KerNeL Display kernel information
	TASK.LOG.DISable Disable system log events
	TASK.LOG.ENable Enable system log events
	TASK.LOG.View Display logs
	TASK.MailBoX Display mailboxes
	TASK.MEMory Display memory segments
	TASK.SEMaphore Display semaphores
	TASK.SWI Display SWIs
	TASK.TaSK Display tasks

	DSP/BIOS PRACTICE Functions

