LAUTERBACH A

Onchip/NOR FLASH
Programming User’s Guide

Onchip/NOR FLASH Programming User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
FLASH Programmingccccccciriiccmmriissmssiisssssssisnssssssssmsss s sasssmsss sssssnmss s sssssmssssssssamms s ssssssmmssnnas r—~
Onchip/NOR FLASH Programming User's GUIdeccccocrmirmminismnssnisssnsssssssessssesnnass 1
0 Yo 11T T] o 5
£23 2 Ta T F=T o 7Y] o1 o Y- T o 1 6
On-chip FLASH 6
Integrated On-chip FLASH Programming 6
Target-controlled On-chip FLASH Programming 8
Off-chip FLASH Devices Supporting CFlI 11
CPU Setup 12

Bus Configuration 12
FLASH Declaration 13
Unlocking the FLASH Devices 15
Programming the FLASH Devices 15

Full Example 16
Target-controlled FLASH Programming 17

Full Example (Target-controlled) 20
Programming COMMANAScciiiiremrriiiismsrrinisssssrnsssssss s ssssss s easssss s s ssssssss s sssssnssssenssnnnens 21
FLASH.ReProgram Command (Target-controlled) 21
FLASH.ReProgram Command (TRACE32 Tool-based) 27
FLASH.Erase / FLASH.Program Command 28
The FLASH.AUTO Command 31
Software Breakpoints in FLASH 32
Code Patches in FLASH 36
CENSORSHIP Option 39
Unlocking Command 40
DualPort FLASH Programmingccccccccecsrmisismssmmnssmsssissssssssssssssssssssmsssssssssmssssssssnsnsnes 42
Benefits 42
Preconditions 42
Usage 43
Full Example 44

Full Example (ARM/Cortex) 44
Special Features for Onchip FLASHS ... snms s s ssms e 45
©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide 2

OTP Sector Programming 45
Mirrored FLASH Addresses 47
Non-Cached/Cached Addresses 47
FLASH mirrored to Boot Area 48
Hardvard Architecture with Unified Memory 48
FLASH.Create Command 49
Group Code NOP 49
INFO Option 50
KEEP Option 50
BootModeHeaDer Option 51
EraseALIAS Option 52
Autolnc Option 53
FLASH.TARGET Command 54
STACKSIZE Option 54
FirmWareRAM Option 54
FLASH.CLocK Command 55
FLASH.CHANGETYPE Command 56
FLASH.UNSECUREerase Command 57
FLASH Declaration in Detailcccoiiiiiiiiiiiiiersr e 58
Further Applications for FLASH Declarations Using CFI 58
Identical FLASH Devices in Series 58
Heterogeneous FLASH Devices in Series 61
Determining the FLASH Size 63
Truncating the FLASH Size to the CPU Address Space 66
FLASH Declaration via FLASH.CFI Dialog Window 67
Generation of Equivalent FLASH.Create Commands 68
Declarations for not CFl-conform FLASH Devices 69
Manual FLASH Declaration (TRACE32 Tool-based) 69
FLASH Devices with Uniform Sectors 70
FLASH Devices with Sectors of Different Size 71
FLASH Devices in Series 72
FLASH Devices in Parallel 73
General Recommendations 74
TRACES32 Tool-based vs. Target-controlled FLASH Programming 75
TRACES2 Tool-based FLASH Programming 76
Target-controlled FLASH Programming 77
Converting TRACES32 Tool-based to Target-controlled FLASH Programming 85
Maintaining the Declared FLASH Devices 87
List of Supported FLASH Devices 87
FLASH Programming via Boundary SCancccccciimmminissssninsssssssssssssssssssens 88
Boundary scan chain configuration 88
FLASH interface definition 89
FLASH Programming 90
©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide 3

Full Example 92

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’'s Guide | 4

Onchip/NOR FLASH Programming User’s Guide

Version 06-Jun-2024

Introduction

This manual contains all important information for programming
. On-chip FLASH memory
J Off-chip NOR FLASH devices

The programming of off-chip NAND FLASH devices is described in “NAND FLASH Programming User’s
Guide” (nandflash.pdf).

The programming of off-chip serial FLASH devices is described in “Serial FLASH Programming User’s
Guide” (serialflash.pdf).

The programming of off-chip eMMC FLASH devices is described in “eMMC FLASH Programming User’s
Guide” (emmcflash.pdf).

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’'s Guide | 5

Standard Approach

Standard Approach provides a compact description of the steps required to program on-chip/NOR FLASH
memory. The description is knowingly restricted to standard cases. A detailed description of the FLASH
programming concepts is given in the subsequent chapters of this manual.

On-chip FLASH

Integrated On-chip FLASH Programming

Integrated on-chip FLASH programming means that the FLASH programming algorithm is part of the
TRACES?2 software.

If the programming of the on-chip FLASH is integrated into the TRACES32 software, the on-chip FLASH is
automatically declared when the target CPU is selected. The FLASH declaration is listed in the FLASH.List

window.
A BuFLASH.List =R
[3 Reset || O off |[@® Program|| @ Auto || £ cr1 |

address [type width [state |unit i
:100000--1000FF MCS12XE byte
:100100--1001FF MCS12XE byte
:100200--1002FF MCS12XE byte
:100300--1003FF MCS12XE byte
:100400--1004FF MCS12XE byte
:100500--1005FF MCS12XE byte
:100600--1006FF MCS12XE byte
:100700--1007FF MCS12XE byte
:100800--1008FF MCS12XE byte
:100900--1009FF MCS12XE byte
:100A00--100AFF MCS12XE byte
:100B00--100BFF MCS12XE byte
:100C00--100CFF MCS12XE byte
:100D00--100DFF MCS12XE byte

-

OOONOO0O0OO0O000N
FRRREEERE R

If the on-chip FLASH is relocatable the address assignment for the FLASH is automatically performed
before the on-chip FLASH is accessed by TRACE32. The address assignment is based on the settings in
the corresponding configuration registers of the CPU.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’'s Guide | 6

Full example for integrated on-chip FLASH programming, here for the MCS12/S12X architecture:

; establish the communication between the debugger and the CPU
SYStem.CPU Auto
SYStem.Up

; program FLASH
FLASH.AUTO ALL
Data.LOAD.COSMIC demo.hl2
FLASH.AUTO off

; verify the FLASH contents
Data.LOAD.COSMIC demo.hl2 /DIFF
IF FOUND()
PRINT "Verify error after FLASH programming"
ELSE
PRINT "FLASH programming completed successfully”

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 7

Target-controlled On-chip FLASH Programming

Videos about the target-controlled on-chip flash programming can be found here:
support.lauterbach.com/kb/articles/flash-programming

Target-controlled on-chip FLASH programming means that the FLASH programming algorithm is not
part of the TRACES2 software. An external programming algorithm usually provided by Lauterbach has
to be linked to the TRACE32 software. This approach is demonstrated in example scripts. They can be
found in the TRACERS2 installation directory:

~~/demo/<architecture>/flash/<cpu>.cmm

e.g. ~~/demo/powerpc/flash/jpec564xbe.cmm
~~/demo/arm/flash/mk20.cmm

Where ~~ is expanded to the <TRACE32_installation_directory>, whichis c:/T32 by default.
Using target-controlled FLASH programming for the on-chip FLASH has the advantage that the FLASH
algorithm can be updated very easily. In most cases no update of the TRACES32 software is required.

If available Lauterbach uses the FLASH programming libraries provided by the chip manufacturer. Using the
provided libraries ensures that the FLASH algorithm fulfills the manufacturer’s requirements. The FLASH
algorithm provided by Lauterbach is interfacing between the TRACE32 software and the library algorithm.

The FLASH programming example scripts are written for the following major use cases:

1. Program FLASH directly after TRACE32 PowerView was started.

Edit View Var Break Run

Edit Script...
#3 Search for Script...

Open File...

2 Load File...
Type File...

i) Dump File...
@ Stop Command

E Printer Settings...
@ Window Screenshot to File...

X exit
Choose File menu > Run Script or use the following command to establish the debug
communication and to program the on-chip FLASH:

DO ~~/demo/powerpc/flash/jpc564xbc.cmm

The script queries all necessary information via suitable dialog boxes.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 8

https://support.lauterbach.com/kb/articles/flash-programming

2. Use FLASH programming script in your start-up script.

If you create your own start-up script for your target hardware, please call the flash programming
script from there. If you leave the flash programming script unchanged, you can always replace it with
its most current version.

The following parameters can be used, when the flash programming script is called:

CPU=<cpu> If a FLASH programming script supports a CPU family, you
can provide your target CPU as parameter.
PREPAREONLY Advise the FLASH programming script to prepare the

FLASH programming by declaring the FLASH sectors and
by linking the appropriate programming binary. The FLASH
programming commands are bypassed.

DUALPORT=0I1

Disable/enable DualPort FLASH programming.

For all processors/cores that allow to write to physical memory
while the CPU is running a higher FLASH programming
performance can be achieved by the use of DualPort FLASH
Programming

Not every script supports all parameters. The parameters relevant for your script are described in the

comment section of the script.

; flash.

; Example for flash declaration of Freescale MEL24 and MEL25 internal

] For example:

] Script arguments:

D0 mkl2 [FREPAREONLY]

talble listed helow.
ie done by the script.

[CPU==cpu=]

PREPARECNLY only declares flash but does not execute flash programming
example

CPU=«<cpu> selects CPU derivative =cpu>. <cpu> can be CPU name out of the

For these derivatiwves the flash declaration

DUALFORT default wvalue is O (disabled). If DualFort mode is enabled
flash algorithm stays rurming until flash programming is
finished. Data is tranferred wvia dual port memory access.

D0 --/demo/arm/flash/mkl2 CPU=MEL25Z128VFM4 DUALFORT=1 PREPAREONLY

[DUALFORT=0]1]

; List of MEL24/MKL25 derivatives and their configuration:

CPU-Type

ProgFlash
[Bytel

RamSize
[Bytel

MEL24E32VFM4
MEL24E32VFT4
MEL24E32VLH4

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’'s Guide | 9

The following framework can be used to call the flash programming script from your start-up script.

DO <flash script> [CPU=<cpu>] PREPAREONLY [DUALPORT=0|1]

; program file to on-chip FLASH
FLASH.ReProgram ALL /Erase
Data.LOAD.E1lf <file>
FLASH.ReProgram off

; reset processor/chip

; it might be necessary to reset all target settings made by the
; flash programming script

SYStem.Up

; continue with start-up script

Before the first use of the FLASH programming scripts, it is recommended to
read the comment section of the script.

In some cases the target memory layout or the programming clock has to be
adapted. The comments in the example script describe the necessary adjustments.

The FLASH.ReProgram command used in a script can be replaced by the FLASH.AUTO command if a too
old version of the TRACES32 software is used.

For some on-chip FLASHs the command FLASH.Program might fail due to:
. ECC protection of the on-chip FLASH

Each ECC row can only be programmed once, but the file format fragmentation does not match
the ECC row size.

J The on-chip FLASH programming sequence requires a specific number of bytes to be written
simultaneously.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 10

Off-chip FLASH Devices Supporting CFI

Here we focus on programming of CFl-conform FLASH devices, since most NOR FLASHSs support this
standard.

CFl stands for Common Flash memory Interface. It is an open standard that describes how self-identifying
information is provided by a FLASH device. Most relevant are:

. information about the FLASH programming algorithm

. device size and block configuration
TRACE32 queries this information to perform an easy declaration for off-chip NOR FLASH devices.
The following framework can be used to program CFl-conform FLASH devices:

; set up the CPU and configure the
; external bus interface

FLASH.RESet ; reset the FLASH declaration
FLASH.CFI .. ; declare FLASH sectors via

; CFI query
FLASH.UNLOCK ALL ; unlock FLASH if required
FLASH.ReProgram ALL ; enable the FLASH for programming
Data.LOAD.auto .. ; load the programming file
FLASH.ReProgram off ; program the FLASH and disable

; the FLASH programming

The following gives a description of the individual steps.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 11

CPU Setup

FLASH programming with TRACES32 requires, that the communication between the debugger and the target
CPU is established. The following commands are available to set up this communication:

SYStem.CPU <cpu>
SYStem.Up

SYStem.CPU MCF5272

SYStem.Up

Bus Configuration

Specify your target CPU

Establish the communication between the
debugger and the target CPU

; select ColdFire MCF5272 as target CPU

; establish the communication between the
; debugger and the target CPU

Programming of an off-chip FLASH devices requires a proper initialization of the external bus interface. The
following settings in the bus configuration might be necessary:

o Write access has to be enabled for the FLASH devices

o Definition of the base address of the FLASH devices

o Definition of the size of the FLASH devices

o Definition of the data bus size that is used to access the FLASH devices

. Definition of the timing (number of wait states for the access to the FLASH devices)

Use the PER.view command to check the settings in the bus configuration registers.

PER.Set MOV:0xcOf %Long 0x10000001 ; specify the base address for the

; special function registers

; the FLASH is connected to Chip
; Select CS0, most settings are
; already correct after reset

PER.Set SD:0x10000044 %Long 0x28 ; set the number of wait states
; to 10
PER.view , "Chip-Select Module" ; display the CSO configuration

#* B:PERwview , "Chip-Select Module" E=n R
= chip-Select ModuTle =
_:!66606561 B4 00000000 EEI RAM/ROM 16/32bit Ew word SUPER user/supervisor 11 00 1 000 C1M no ENAELE enabTed
000000268 AM 00000000 ASET no WRAH no RDAH no W5 10 RiW read/write
©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 12

FLASH Declaration

The following commands are available to set up the FLASH declaration:

FLASH.RESet

FLASH.CFI <start_address> <bus_width>

FLASH.List

Reset the FLASH declaration

Set up a declaration for CFl-conform
FLASH devices

Display the declaration

Parameters for FLASH.CFl command

<start_address>

Defines the start address of the FLASH devices.

<bus_width>

Defines the width of the data bus between the target CPU and the
FLASH devices.

Example:

FLASH.RESet

FLASH.CFI 0x0 Word

FLASH.List

" BuFLASH.List =l =]
| 2 Reset “ QO off][Q Program][® Hechram][® Auto][£r CrI]
address [type width |state unit |
C:00000000--00003FFF |aM29F100 word 1.
C:00004000--00005FFF |aM29F100 word 1.
C:00006000--00007FFF |AM29F100 word 1.
C:00008000--0003FFFF |AM29F100 word 1.
C:00040000--0007FFFF |AM29F100 word 1.
C:00080000--000BFFFF |AM29F100 word 1.
C:000c0000--000FFFFF |AM29F100 word 1.
C:00100000--0013FFFF |AM29F100 word 1.
C:00140000--0017FFFF |AM29F100 word 1.
C:00180000--001BFFFF |AM29F100 word 1.
C:001c0000--001FFFFF |AM29F100 word 1.
J 4 1 3

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

13

If two or more identical FLASH devices are used in parallel to implement the needed data bus width, it is
sufficient for the FLASH declaration to specify this <bus_width>.

Example: Two Intel Strata FLASH devices 28F128J3 in 16-bit mode are used in parallel to implement a 32-
bit data bus.

FLASH.RESet
FLASH.CFI 0x0 Long

FLASH.List

S BuFLASH.List [[E s

[3 Reset | © off || @ Program |[@ fedrogren || @ Auto || £» cFI |
address [type width |state
:00000000--0003FFFF [TI28F20013 [Tong
:00040000--0007FFFF |I28F20013 |long
:00080000--000BFFFF |I28F20013 |long
:000C0000--000FFFFF |I28F20013 |long
:00100000--0013FFFF |I28F20013 |long
:00140000--0017FFFF |I28F20013 |long
:00180000--001BFFFF |I28F20013 |long
:001C0000--001FFFFF |I28F20013 |long
:00200000--0023FFFF |I28F20013 |long
:00240000--0027FFFF |I28F20013 |long
:00280000--002BFFFF |I28F20013 |long
:002C0000--002FFFFF |I28F20013 |Tong

Jf; I F

nit |

[alalalalialiaiaiaiainlinlnl
FRRREERE R

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 14

Unlocking the FLASH Devices

Many FLASH devices provide a sector/block protection to avoid unintended erasing or programming
operations.

Since some FLASH devices are locked after power-up the protection has to be unlocked in order to erase or
program the FLASH devices. Please refer to the data sheet of your FLASH device, to find out if your FLASH
provides sector/block protection.

I FLASH.UNLOCK ALL Unlock FLASH devices

FLASH.UNLOCK ALL

Programming the FLASH Devices

The following command are available to program the FLASH:

FLASH.ReProgram ALL Enable all declared FLASH devices for
programming

FLASH.ReProgram off Program the FLASH devices and disable
the FLASH programming afterwards

Data.LOAD.auto <file> Load the programming file (in most cases an
automatic detection of the file format is possible)

Data.LOAD.<file_format> <file> Please refer to the section Compilers in
the chapter Support of your Processor
Architecture Manual for the supported file
formats

Data.LOAD.EIf <file> Load the programming file
(ELF/DWARF format)

Data.LOAD.Binary <file> <start_address> Load the programming file (binary file) and
specify the <start_address> of the FLASH
devices

Data.LOAD.S3record <file> Load the programming file (S3 record file)
Example:

FLASH.ReProgram ALL
Data.LOAD.auto demo.x

FLASH.ReProgram off

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 15

Full Example

; select ColdFire MCF5272 as target CPU
SYStem.CPU MCF5272

; establish the communication between the debugger and the target CPU
SYStem.Up

; specify the base address for the special function registers
PER.Set MOV:0xcOf %Long 0x10000001

; the FLASH is connected to Chip Select CS0, most settings are already
; correct after reset - set the number of wait states to 10
PER.Set SD:0x10000044 %Long 0x28

; reset the FLASH declaration
FLASH.RESet

; declare the FLASH sectors by CFI query
FLASH.CFI 0x0 Word

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program the file and disable the FLASH programming
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 16

Target-controlled FLASH Programming

The FLASH programming steps described so far are easy to carry out, but FLASH programming is slow.
The programming time can be considerably improved by using so-called target-controlled FLASH
programming.

Target-controlled FLASH programming means that the underlying FLASH programming algorithm is no
longer part of the TRACES32 software. FLASH programming works now in principle as follows:

1. The FLASH algorithm is downloaded to the target RAM.

2. The programming data are downloaded to the target RAM.

3. The FLASH algorithm running in the target RAM programs the data to the FLASH devices.

This way the communication between the host and the debugger hardware is minimized.

Ready-to-run binary files for target-controlled FLASH programming are available for all common processor
architectures in the folder ~~/demo/<architecture>/flash. Where ~~ is expanded to the
<trace32_installation_directory>, whichis c:/T32 by default. TRACES2 loads the appropriate
FLASH programming algorithm automatically from this directory when target-controlled FLASH
programming with CFl is used.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 17

In order to initialize the communication between the TRACE32 software and the external FLASH
programming algorithm the following command is used:

I FLASH.CFI <start_address> <bus_width> [TARGET <code_range> <data_range>

Parameters
. <start_address>
Defines the start address of the FLASH devices.
. <bus_width>
Defines the width of the data bus between the target CPU and the FLASH devices.
. <code_range>

Define an address range in the target’s RAM to which the external FLASH programming
algorithm is loaded.

FLASH algorithm

32 byte

Figure: Memory mapping for the <code_range>

Required size for the code is size_of (<flash_algorithm>) + 32 byte
. <data_range>

Define the address range in the target’s RAM where the programming data are buffered for the
FLASH algorithm.

32 byte argument buffer
buffer for programming data
256 byte stack

Figure: Memory mapping for the <data_range>

The argument buffer used for the communication between the TRACE32 software and the
FLASH algorithm is located at the first 32 bytes of <data_range>. The 256 byte stack is located
at the end of <data_range>.

<buffer_size> =
size_of (<data_range>) - 32 byte argument buffer - 256 byte stack

<buffer_size> is the maximum number of bytes that are transferred from the TRACE32
software to the external FLASH programming algorithm in one call.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 18

Example:

FLASH.RESet

FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

FLASH.List
A BuFLASH.List =R
[% Reset || O off][® Pugen || ® Auto |[£ cA1 |
address [type width [state |unit ' |
C:00000000--00003FFF [TARGET word 1. -
C:00004000--00005FFF [TARGET word 1
C:00006000--00007FFF [TARGET word 1
C:00008000--0003FFFF [TARGET word 1
C:00040000--0007FFFF [TARGET word 1.
C:00080000--000BFFFF [TARGET word 1.
C:000C0000--000FFFFF [TARGET word 1
C:00100000--0013FFFF [TARGET word 1
C:00140000--0017FFFF [TARGET word 1
C:00180000--001BFFFF [TARGET word 1
C:001C0000--001FFFFF [TARGET word 1
4 3

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 19

Full Example (Target-controlled)

; select ColdFire MCF5272 as target CPU
SYStem.CPU MCF5272

; establish the communication between the debugger and the target CPU
SYStem.Up

; specify the base address for the special function registers
PER.Set MOV:0xcOf %Long 0x10000001

; the FLASH is connected to Chip Select CS0, most settings are already
; correct after reset - set the number of wait states to 10
PER.Set SD:0x10000044 %Long 0x28

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; unlock the FLASH device if required for a power-up locked device
; FLASH.UNLOCK ALL

enable the programming for all declared FLASH devices
; the option Erase ensures that unused sectors are erased
FLASH.ReProgram ALL /Erase

7

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program all modified sectors and disable the FLASH programming
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"

For all processors/cores that allow to write to physical memory while the CPU is running a higher FLASH
programming performance can be achieved by the use of DualPort FLASH Programming.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 20

Programming Commands

FLASH.ReProgram Command (Target-controlled)

The command FLASH.ReProgram is the best choice for target-controlled FLASH programming. It provides
an optimum FLASH programming performance by reducing the erasing and programming cycles to a

minimum:
J Only not-empty sectors are erased.
J Only modified sectors are programmed.

TRACERS2 allocates a Virtual FLASH Programming Memory to implement the FLASH.ReProgram

command:
Target FLASH Virtual FLASH
Programming Memory
Sector 1 Virtual Sector 1
Sector 2 Virtual Sector 2
Sector 3 Virtual Sector 3
Sector 4 Virtual Sector 4
| |
[|
Sector n Virtual Sector n

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 21

The following command sequence is recommended when using the FLASH.ReProgram command:

FLASH.ReProgram ALL /Erase ; switch target FLASH to
; reprogramming state and
; erase virtual FLASH programming
; memory

Data.LOAD.auto .. ; write the contents of the
; programming file to the virtual
; FLASH programming memory

FLASH.ReProgram off ; program only changed sectors to
; the target FLASH and erase
; obsolete code in unused sectors

Details

FLASH programming by using the FLASH.ReProgram command works in detail as follows:

FLASH.ReProgram ALL /Erase ; switch target FLASH to
; reprogramming state and
; erase virtual FLASH programming
; memory

It is recommended to initialize the Virtual FLASH Programming Memory as erased (option /Erase). This
inhibits that obsolete code is remaining in unused sectors.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide |

22

When the command FLASH.ReProgram /Erase is entered:

1. The Virtual FLASH Programming Memory is erased.

2. The target-controlled FLASH algorithm is called to deliver the following information:

- The checksum for the target FLASH sector

- The information if the target FLASH sector is erased

- The information if an erased FLASH bit is O or 1

Afterwards all not-empty FLASH sectors are marked as pending. All empty FLASH sectors are marked as

reprog.
" BuFLASH.List [=[@ ===
[3 Reset || O off |[@® Program|[@ RePogen || @ Auto || £ cr1 |
address [type width [state |unit i
C:00000000--00003FFF |[TARGET word |pending [1. -
C:00004000--00005FFF [TARGET word |pending |1.
C:00006000--00007FFF |TARGET word |reprog |1.
C:00008000--0003FFFF |[TARGET word |pending |1.
C:00040000--0007FFFF |TARGET word |reprog |1.
C:00080000--000BFFFF [TARGET word |reprog |1.
C:000C0000--000FFFFF [TARGET word |reprog |1.
C:00100000--0013FFFF |TARGET word |reprog |1.
C:00140000--0017FFFF |TARGET word |reprog |1.
C:00180000--001BFFFF [TARGET word |reprog |1.
C:001C0000--001FFFFF |TARGET word |reprog |1.
J #4 b

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

23

Data.LOAD.auto .. ; write the contents of the
; programming file into the
; virtual FLASH programming
; memory

The following actions are taken, when TRACES32 performs a write access to a sector:
3. The new data is copied to the corresponding sector in the Virtual FLASH Programming Memory.
4. The checksum for the virtual sector is calculated.

5. The state of the sector is changed from pending to reprog if the checksum of the target FLASH
sector is equal the checksum of the virtual sector.

The state of the sector is changed from reprog to pending if the checksum of the target FLASH
sector is different from the checksum of the virtual sector.

A BiFLASH.List ===
[3 Reset || O off |[@ Program| ® Heﬁcgam][® Ao || B crr |
address [type width [state |unit
C:00000000--00003FFF |TARGET word [reprog [1. B
C:00004000--00005FFF |TARGET word |reprog |1.
C:00006000--00007FFF |TARGET word |reprog |1.
C:00008000--0003FFFF |[TARGET word |pending |1.
C:00040000--0007FFFF |TARGET word |reprog |1.
C:00080000--000BFFFF [TARGET word |reprog |1.
C:000C0000--000FFFFF |TARGET word |reprog |1.
C:00100000--0013FFFF |TARGET word |reprog |1.
C:00140000--0017FFFF |TARGET word |reprog |1.
C:00180000--001BFFFF [TARGET word |reprog |1.
C:001C0000--001FFFFF |TARGET word |reprog |1.
J 1 b
FLASH.ReProgram off ; program only changed sectors to

; the target FLASH and erase
; obsolete code in unused sectors

When the command FLASH.ReProgram off is executed, all sectors marked as pending are programmed to
the target FLASH. In this process TRACES32 only erases not-empty sectors before programming.

After all pending sectors are programmed FLASH programming is disabled. This is indicated by an empty
state column in the FLASH.List window.

& BuFLASH.List [=[® ==
[3 Reset || O off |[@ Program|| @ Refogen || @ Auto || & chI]
address [type width [state |unit
C:00000000--00003FFF |TARGET viord 1. -
C:00004000--00005FFF [TARGET viord 1.
C:00006000--00007FFF [TARGET viord 1. =
C:00008000--0003FFFF [TARGET viord 1.
C:00040000--0007FFFF [TARGET viord 1.
C:00080000--000BFFFF [TARGET viord 1.
C:000C0000--000FFFFF [TARGET word 1. e
4 mn [3

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 24

NOTE: Please be aware that TRACE32 PowerView displays the contents of the Virtual
FLASH Programming Memory, if the FLASH is in reprogramming state and the
current state of the FLASH sector is pending.

NOTE: If the FLASH is in reprogramming state, the command
FLASH.ReProgram CANCEL

can be used to undo all changes and re-start from scratch.

The command syntax:

FLASH.ReProgram ALL | <address_range> | <unit_number> [[Erase] Switch FLASH device
to reprogramming state
for optimized FLASH
programming

FLASH.ReProgram off Program only changed
sectors
FLASH.ReProgram CANCEL Cancel FLASH

programming without
programming pending

changes.
TRACE32 commands that perform a write access on the memory:

Data.LOAD.auto <file> Write code from the programming file to
memory
(if an automatic detection of file format is
possible)

Data.Set [<address>I<range> % <format> <value>] Write <value> to the specified memory
location

Data.PATTERN <range> [/<option>] Fill memory with a predefined pattern

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 25

Full example:

; reset the FLASH declaration
FLASH.RESet

set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

I

; switch all declared FLASH sectors to reprogramming state
FLASH.ReProgram ALL /Erase

copy the code from the programming file to the corresponding sectors
; in the virtual FLASH and mark all changed sectors
Data.LOAD.auto demo.x

’

; program only the changed sectors
FLASH.ReProgram off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 26

FLASH.ReProgram Command (TRACE32 Tool-based)

If TRACES2 tool-based FLASH programming is used, the reprog state is handled differently:

The following actions are taken, when TRACES32 performs a write access on a sector:
1. The corresponding sector in the Virtual FLASH Programming Memory is marked as pending.

Due to performance reasons no erase status is checked and no checksum is calculated for the target
FLASH sector.

2. The corresponding sector is erased in the Virtual FLASH Programming Memory.

3. The new data is copied to the corresponding sector in the Virtual FLASH Programming Memory.

If the recommended command sequence for the FLASH.ReProgram is used, no performance benefit is
reached compared to the usage of FLASH.Erase / FLASH.Program.

J Since no erase status is maintained for a target FLASH sector empty sectors are erased.
J Since no checksum is calculated for a target FLASH sector not-modified sectors are
programmed.

A reasonable performance benefit is reached, when the Virtual FLASH Programming Memory is not erased
before the contents of the programming file is copied. Such a proceeding however includes the risk, that
obsolete code remains in unused target FLASH sectors.

FLASH.ReProgram ALL ; switch target FLASH to
; reprogramming state

Data.LOAD.auto .. ; write the contents of the
; programming file to the virtual
; FLASH programming memory

FLASH.ReProgram off ; erase and program all those
; sectors to the target FLASH to
; which the contents of the
; programming file was written

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 27

FLASH.Erase / FLASH.Program Command

Beside the FLASH.ReProgram command there are also the commands FLASH.Erase and
FLASH.Program to program the FLASH devices. Both commands work identically for TRACES32 tool-based
and target-controlled programming.

FLASH.Erase ALL ; erase the FLASH devices
FLASH.Program ALL ; enable all FLASH devices for
; programming
Data.LOAD.auto .. ; write the contents of the
; programming file to the FLASH
; devices
FLASH.Program off ; disable the programming for the

; FLASH devices

FLASH programming by using the FLASH.Erase / FLASH.Program commands works in detail as follows:

FLASH.Erase ALL ; erase the FLASH devices

All declared FLASH sectors are erased.

TRACER32 is using full chip erase/bulk erase whenever possible. If the FLASH devices are declared
manually it is strongly recommended:

o To declare each FLASH device with all sectors. Otherwise if there are undeclared FLASH
sectors for a FLASH device, these sectors are also erased when a full chip erase/bulk erase is
used.

o To declare each FLASH device with its own <unit_number>, if two or more FLASH devices are

used in series to implement the needed FLASH memory size. Otherwise if the same unit number
is used for 2 or more FLASH devices only the first FLASH device is erased.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 28

FLASH

.Program ALL ; enable the FLASH devices for

; programming

When the command FLASH.Program is entered, the state of all FLASH sectors is changed to program.

A BuFLASH.List (=@ ===
[3 Reset || O off |[@® Program|[@ RePogem || @ Auto || £ cr1 |
address [type width [state |unit
C:00000000--00003FFF |[TARGET word |program [1.
C:00004000--00005FFF |TARGET word |program |1.
C:00006000--00007FFF |TARGET word |program |1.
C:00008000--0003FFFF |TARGET word |program |1.
C:00040000--0007FFFF |TARGET word |program |1.
C:00080000--000BFFFF [TARGET word |program |1.
C:000C0000--000FFFFF |TARGET word |program |1.
C:00100000--0013FFFF |TARGET word |program |1.
C:00140000--0017FFFF |TARGET word |program |1.
C:00180000--001BFFFF [TARGET word |program |1.
C:001C0000--001FFFFF |TARGET word |program |1.
J, }

If a FLASH sector is in program state each write access by TRACE32 on this sector is directly converted to
a FLASH programming command sequences. A typical TRACE32 command that writes to FLASH sectors

is:

Data.LOAD.auto .. ; write the contents of the

FLASH.

; programming file to the FLASH
; devices

Program off ; disable the programming for the
; FLASH devices

With the command FLASH.Program off FLASH programming is disabled. This is indicated by an empty
state column in the FLASH.List window.

& BuFLASH.List

alalalalialalal

:00000000--00003FFF
:00004000--00005FFF
:00006000--00007FFF
:00008000--0003FFFF
:00040000--0007FFFF
:00080000--000BFFFF
:000C0000--000FFFFF

4

1

==]
[3 Reset || O off |[@ Program|| @ Refogen || @ Auto || & chI]
address [type width [state |unit

TARGET word 1. -
TARGET word 1.
TARGET word 1. =
TARGET word 1.
TARGET word 1.
TARGET word 1.
TARGET word 1. -

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

29

The command syntax:

FLASH.Erase ALL | <address_range> | <unit_number> Erase the specified FLASH sectors

FLASH.Program ALL | <address_range> | <unit_number> Enable the specified FLASH sectors
for programming

FLASH.Program off Disable the programming state for
all FLASH sectors.

Full example:

; reset the FLASH declaration
FLASH.RESet

; set up the FLASH declaration for target-controlled programming
; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

; erase all FLASH sectors
FLASH.Erase ALL

; enable all FLASH sectors for programming
FLASH.Program ALL

; write the code from the programming file to the target FLASH
Data.LOAD.auto demo.x

; disable the programming state for all sectors
FLASH.Program off

; verify the FLASH contents
Data.LOAD.auto demo.x /DIFF

IF FOUND()

PRINT "Verify error after FLASH programming"
ELSE

PRINT "FLASH programming completed successfully"

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 30

The FLASH.AUTO Command

The command FLASH.AUTO is a special command that allows:
. to set software breakpoints to FLASH

. to patch code located in FLASH

TRACERS2 is using a Virtual FLASH Programming Memory to implement the FLASH.AUTO command:

Target FLASH Virtual FLASH
Programming Memory
Sector 1 Virtual Sector 1
Sector 2 I |
Sector 3 Virtual Sector 3
Sector 4 Virtual Sector 4
[|
[|
[|
[|
[|
[|
[|
[|
Sector n Virtual Sector n

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 31

Software Breakpoints in FLASH

Using the FLASH.AUTO command to set software breakpoints to FLASH works as follows:

When the command FLASH.AUTO ALL is entered, the state of all FLASH sectors is changed to auto.

FLASH.AUTO

ALL

; switch the target FLASH into auto

; state

" BuFLASH.List [=[@ ===
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || & cr1 |
address [type width [state |unit
C:A0000000--A000FFFF |TARGET word |auto 1. o
C:A0010000--A001FFFF |TARGET word |auto 1.
C:A0020000--A002FFFF |TARGET word |auto 1.
C:A0030000--A003FFFF |TARGET word |auto 1.
C:A0040000--A004FFFF |TARGET word |auto 1.
C:A0050000--A005FFFF |TARGET word |auto 1.
C:A0060000--A006FFFF |TARGET word |auto 1.
C:A0070000--A007FFFF |TARGET word |auto 1.
C:A0080000--A008FFFF |TARGET word |auto 1.
C:A0090000--A009FFFF |TARGET word |auto 1. -
4 n 3

Break.Set ..

/Program /SOFT

; set a software breakpoint to a

; program address located in FLASH

If a software breakpoint is set to an address within the FLASH, the following actions are taken:

1.

2
3.
4

Virtual FLASH Programming Memory is allocated for the affected sector.

The code from the target FLASH sector is copied to the virtual sector.

The code at the location of the software breakpoint is saved by TRACES2.

The software breakpoint is patched into the virtual sector.

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

32

Go ; start the program execution

All virtual sectors to which software breakpoints were patched are copied to the target FLASH when the
program execution is started.

J J

The state of the affected FLASH sectors is changed to pending to indicate that software breakpoints were
programmed into these sectors.

A BuFLASH.List (=& ===
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || £ cr1 |
address [type width [state |unit i
C: ADDODD00--ADOOFFFF [TARGET word |pending [1. -
C:A0010000--A001FFFF |TARGET word |auto 1. m
C:A0020000--A002FFFF |TARGET word |auto 1. E
C:A0030000--A003FFFF |TARGET word |auto 1.
C:A0040000--A004FFFF |TARGET word |auto 1.
C:A0050000--A005FFFF |TARGET word |auto 1.
C:A0060000--A006FFFF |TARGET word |auto 1.
C:A0070000--A007FFFF |TARGET word |auto 1.
C:A0080000--A008FFFF |TARGET word |auto 1.
C:A0090000--A009FFFF |TARGET word |auto 1.
C:AOOAOOOO——AOOAFFFFJTARGET word |auto 1. i
1 [| +

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 33

Break.Delete .. /Program /SOFT ; remove the software breakpoint

When the software breakpoint is deleted, the original code at the location of the software breakpoint is
restored in the virtual sector.

All virtual sectors that contain such a restoration are programmed to the target FLASH when the program
execution is started.

The state of the restored FLASH sectors is changed back to auto.

" BuFLASH.List [=[@ ===
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || & cr1 |
address [type width [state |unit
C:A0000000--A000FFFF |TARGET word |auto 1. o
C:A0010000--A001FFFF |TARGET word |auto 1.
C:A0020000--A002FFFF |TARGET word |auto 1.
C:A0030000--A003FFFF |TARGET word |auto 1.
C:A0040000--A004FFFF |TARGET word |auto 1.
C:A0050000--A005FFFF |TARGET word |auto 1.
C:A0060000--A006FFFF |TARGET word |auto 1.
C:A0070000--A007FFFF |TARGET word |auto 1.
C:A0080000--A008FFFF |TARGET word |auto 1.
C:A0090000--A009FFFF |TARGET word |auto 1. -
4 n 3

Please execute the command FLASH.AUTO off before you exit TRACES32. This
guarantees that all software breakpoints are removed from the target FLASH
and the original code is restored.

The following command sequence is recommended when using the FLASH.AUTO command:

FLASH.AUTO ALL ; switch the target FLASH to auto
; state to allow debugging with
; software breakpoints in FLASH

Break.Set .. /Program /SOFT

FLASH.AUTO off ; use this command to restore the
; original code at the locations of
; the software breakpoints back to
; the target FLASH

; exit TRACE32

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 34

The command syntax:

FLASH.AUTO ALL | <address_range> | <unit_number> Switch FLASH to auto state to allow

debugging with software
breakpoints in FLASH

FLASH.AUTO off Restore the original code in the
FLASH for all software breakpoints
and disable the auto state

NOTE: Please be aware that TRACES32 PowerView displays the contents of the Virtual
FLASH Programming Memory, if the FLASH is in auto state and the current
state of the FLASH sector is pending.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 35

Code Patches in FLASH

Using the FLASH.AUTO command to patch code located in FLASH works as follows:

When the command FLASH.AUTO ALL is entered, the state of all FLASH sectors is changed to auto.

FLASH.AUTO ALL

; switch the target FLASH into auto

; state

A BuFLASH.List

=@ =S

[3% Reset ||

© off |[@® Program|[@ Refogam || @ Auto || £ cr1 |

address [type width [state |unit
C:A0000000--A000FFFF |TARGET word |auto 1. o
C:A0010000--A001FFFF |TARGET word |auto 1.
C:A0020000--A002FFFF |TARGET word |auto 1.
C:A0030000--A003FFFF |TARGET word |auto 1.
C:A0040000--A004FFFF |TARGET word |auto 1.
C:A0050000--A005FFFF |TARGET word |auto 1.
C:A0060000--A006FFFF |TARGET word |auto 1.
C:A0070000--A007FFFF |TARGET word |auto 1.
C:A0080000--A008FFFF |TARGET word |auto 1.
C:A0090000--A009FFFF |TARGET word |auto 1. -

4

1

Data.Assemble ..

Data.Set ..

; patch code in FLASH

; patch hex.

If code located in FLASH is patched, the following actions are taken:

1. Virtual FLASH Programming Memory is allocated for the affected sector.
2 The code from the target FLASH sector is copied to the virtual sector.
3. The patch is copied into the virtual sector.
4 The state of the virtual sector is change to pending to indicate, that a patch needs to be
programmed.
A BuFLASH.List (=& ===
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || £ cr1 |
address [type width [state |unit

C: ADDODD00--ADOOFFFF [TARGET word |pending [1. -

C:A0010000--A001FFFF [TARGET word |auto 1.

C:A0020000--A002FFFF [TARGET word |auto 1.

C:A0030000--A003FFFF |[TARGET word |auto 1.

C:A0040000--A004FFFF [TARGET word |auto 1.

C:A0050000--A005FFFF [TARGET word |auto 1.

C:A0060000--A006FFFF [TARGET word |auto 1.

C:A0070000--AD07FFFF [TARGET word |auto 1.

C:AD080000--A008FFFF |[TARGET word |auto 1.

C:A0090000--A009FFFF [TARGET word |auto 1.

C:AOOAOOOO——AOOAFFFFJTARGET word |auto 1. e

4 1 [

value to FLASH

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

36

Go ; start the program execution

All virtual sectors which contain patches are copied to the target FLASH when the program execution is
started.

B::Go

I J J J

ting FLASH ...

The state of the affected FLASH sectors is changed back to auto after the patch is programmed.

" BuFLASH.List [=[@ ===
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || & cr1 |
address [type width [state |unit
C:A0000000--A000FFFF |TARGET word |auto 1. o
C:A0010000--A001FFFF |TARGET word |auto 1. E |
C:A0020000--A002FFFF |TARGET word |auto 1. B
C:A0030000--A003FFFF |TARGET word |auto 1.
C:A0040000--A004FFFF |TARGET word |auto 1.
C:A0050000--A005FFFF |TARGET word |auto 1.
C:A0060000--A006FFFF |TARGET word |auto 1.
C:A0070000--A007FFFF |TARGET word |auto 1.
C:A0080000--A008FFFF |TARGET word |auto 1.
C:A0090000--A009FFFF |TARGET word |auto 1. -
4 | I .

FLASH.AUTO off ; disable the auto state and

; program all pending patches

The following command sequence is recommended when using the FLASH.AUTO command to patch code
located in FLASH:

FLASH.AUTO ALL ; switch the target FLASH to auto
; state to allow code patches in
; FLASH

Data.Assemble ..

FLASH.AUTO off ; program all pending patches and

; disable the auto state

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 37

The command syntax:

FLASH.AUTO ALL | <address_range> | <unit_number> Switch FLASH to auto state to allow
code patches is FLASH
FLASH.AUTO off Program all pending patches and

disable the auto state

NOTE: Please be aware that TRACES32 PowerView displays the contents of the Virtual
FLASH Programming Memory, if the FLASH is in auto state and the current
state of the FLASH sector is pending.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 38

CENSORSHIP Option

A FLASH sector can contain sensitive data e.g. bytes that unsecure the chip and enable it for debugging. An

unintended or incorrect write to this data might secure the chip and lock it for debugging.

The FLASH programming algorithm provided by Lauterbach is aware of sensitive data. It discards all erase

and write operations to their addresses.

The CENSORSHIP option enables the erasing/programming of the sensitive data.

FLASH.AUTO <address_range>/CENSORSCHIP Enable erasing/programming of

sensitive data

Example for Kinetis MK30DX64VEX?7, the first FLASH sector contains sensitive data.

FLASH.Create 1. 0x00000000--0x0000FFFF 0x800 TARGET Long

a FLASH programming algorithm that is aware
; of sensitive data is defined
FLASH.TARGET .. ~~/demo/arm/flash/long/ftfllx.bin

7

; erasing/programming
FLASH.AUTO 0--0x7ff /CENSORSHIP

Data.Set ..
Data.Set ..

; sensitive data
FLASH.AUTO OFF

the FLASH sector with sensitive data is explicitly enabled for

program all changed data and disable the erasing/programming of

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide

39

Unlocking Command

Many FLASH devices provide a sector/block protection to avoid unintended erasing and programming
operations. Most of them are locked after power-up. They need to be unlocked in order to be erased or

programmed..

I FLASH.UNLOCK ALL | <address_range> | <unit_number>

Two unlocking schemes are used by FLASH devices:
1. Each individual sector/block has to be unlocked (individual unlocking).

2. The execution of a single unlock command sequence on an address range unlocks the complete
FLASH device (parallel unlocking).

Please refer to the data sheet of your FLASH device, to find out which scheme is used by your FLASH
device.

Example for 1 (individual unlocking):

INTEL 28F128L18 at address 0x0, connected to the CPU via a 16-bit data bus, TRACES32 tool-based
programming

FLASH.RESet ; reset FLASH declaration
FLASH.CFI 0x0 Word ; declare FLASH sectors via

; CFI query
FLASH.UNLOCK ALL ; unlock each sector individually

; erasing and programming

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 40

Example for 2 (parallel unlocking):

INTEL 28F128J3 at address 0x0, connected to the CPU via a 16-bit data bus, each sector 128 KByte,
target-controlled programming.

Please be aware that the flash device in this example only supports a full-device unlock. This means a single
FLASH.UNLOCK command unlocks the complete device.

; reset FLASH declaration
FLASH.RESet

; declare FLASH sectors via CFI query
FLASH.CFI 0x0 Word /TARGET 0x10000000++0xfff 0x10001000++O0xfff

; execute a single unlock command by using
; an address range inside of a FLASH sector (faster)
FLASH.UNLOCK 0x0--0x1ffff

; erasing and programming

The FLASH devices can be re-locked after programming to avoid unintended erasing and programming
operations while debugging. Re-locking has to be executed usually sector by sector.

I FLASH.LOCK ALL | <address_range> | <unit_number>

Re-locking is not recommended if you like to use:
J Software breakpoints in FLASH
. Code patches in FLASH

Please refer to “The FLASH.AUTO Command” in Onchip/NOR FLASH Programming User’'s Guide, page
31 (norflash.pdf) for details.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 41

DualPort FLASH Programming

Benefits

Dualport FLASH programming reduces the FLASH programming time for all processors/cores that allow to
write to physical memory while the CPU is running. This time reduction is achieved by the simultaneous
execution of the following: the next block of programming data is downloaded to the target RAM while the
FLASH algorithm is programming the current block of data.

The best results can be achieved if the following times are nearly the same:

. Sector erase time
. Download time of a block of programming data (host to target RAM)
. Programming time of a block of data

The average time reduction is 5% to 30%. However, under favorable conditions, the programming time can
be shortened by up to 70%.

Preconditions

1. DualPort FLASH programming is only supported for target-controlled FLASH programming.

2. DualPort FLASH programming can only be used for processors/cores that allow to write to
physical memory while the CPU is running. For details on this feature refer to “Run-time Memory
Access” in TRACE32 Glossary, page 42 (glossary.pdf).

3. DualPort FLASH programming requires a FLASH binary that is position independent. This is the
case for nearly all FLASH binaries provided by Lauterbach.

4. FLASH programming in general requires that the data cache is disabled for the entire address
range of the FLASH.

5. For DualPort FLASH programming the data cache has to be disabled also for the RAM area that
is used to buffer the programming data, because run-time memory access can only write to
physical memory.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 42

Usage

DualPort FLASH programming achieves a time reduction for the following programming commands:
. FLASH.ReProgram
. FLASH.Auto

DualPort FLASH programming is enabled by the use of one of the following commands:

FLASH.CFI ... /TARGET <code_range> <data_range> /[DualPort

FLASH.CFI ... /TARGET <code_address> <data_address> [<buffer_size>] /DualPort
FLASH.TARGET <code_range> <data_range> <file>/DualPort

FLASH.TARGET <code_address> <data_address> [<buffer_size>] <file> /DualPort

If you use a processor/core that allows to write to physical memory while the CPU is running, but the option
DUALPORT is not accepted by TRACE32 PowerView, DualPort FLASH programming is not yet supported
for your processor architecture. Please contact flash-support@lauterbach.com for details.

The following framework can be used for DualPort FLASH programming:

; set up the CPU and configure the
; external bus interface

FLASH.RESet ; reset the FLASH declaration
FLASH.CFI .. /TARGET .. /DualPort ; declare FLASH sectors via

; CFI query
FLASH.UNLOCK ALL ; unlock FLASH if required
FLASH.ReProgram ALL /Erase ; enable the FLASH for programming
Data.LOAD.auto .. ; load the programming file
FLASH.ReProgram off ; program the FLASH and disable

; the FLASH programming

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 43

Full Example

; set up the CPU and configure the external bus interface
; reset the FLASH declaration
FLASH.RESet

set up the FLASH declaration for target-controlled programming

; target RAM at address 0x20000000
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff /DualPort

7

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL /Erase

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program only modified sectors and erase obsolete code in unused sectors
; disable the FLASH programming
FLASH.ReProgram off

I FLASH.CFI ... /TARGET <code_range> <data_range> [DualPort

<data_range> is automatically extended by the access class E: if DualPort FLASH programming is used.

Full Example (ARM/Cortex)

Because ARM/Cortex perform the run-time memory access via the AHB bus, the access class AHB: has to
specified explicitly for <data_range>.

set up debug communication for LPC4357 and configure
the external bus interface

7

7

; reset the FLASH declaration
FLASH.RESet

set up the FLASH declaration for target-controlled programming

; target RAM at address 0x10000000
FLASH.CFI 0x1C000000 Long /TARGET 0x10000000 EAHB:0x10001000 0x2000 /DualPort

7

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL /Erase

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program only modified sectors and erase obsolete code in unused sectors
; disable the FLASH programming
FLASH.ReProgram off

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 44

Special Features for Onchip FLASHs

The ready-to-run scripts for onchip FLASH programming provided by Lauterbach use in addition to the
classical FLASH programming commands special commands and options to handle characteristics of
onchip FLASHSs.

OTP Sector Programming

Nowadays many onchip FLASHSs contain OTP sectors. OTP sectors can not be erased, that's why they are
called One Time Programmable sectors. The ready-to-run FLASH programming scripts provided by
Lauterbach use the option OTP to protect those sectors from unintentional programming.

I FLASH.Create ...TARGET ... /OTP Protect OTP sector from unintentional programming

FLASH.Create 6. 0x00400000--0x00401FFF TARGET Quad /OTP

& BuFLASH.List =] ==
[% Reset || ©Qoff |[@® Program| ® Repogam || @ Auto || Fecrr |
address [type width |state |unit [extra
C:00400000--00401FFF |TARGET Quad 6. aTP o
C:00404000--00405FFF |NOP Quad 1. read only
C:00800000--00803FFF |TARGET Quad 3.
C:00804000--00807FFF |TARGET Quad 3.
C:01000000--0103FFFF |TARGET Quad 4. £
C:01040000--0107FFFF |TARGET Quad 4.
C:01080000--010BFFFF [TARGET Quad 4.
C:010C0000--010FFFFF [TARGET Quad 4.
C:01100000--0113FFFF |TARGET Quad 4.
C:01140000--0117FFFF |TARGET Quad 4. -
4 }

Whenever FLASH programming is activated by one of the following commands: FLASH.ReProgram,
FLASH.AUTO or FLASH.Program the state of all OTP sectors changes to nop to indicate that all FLASH
erasing and programming commands are blocked for these sectors.

& BuFLASH.List = & =
[XReset][Q off ”QProgram”QHech:am” ® Auto ” < CFI]
address [type width |state |unit [extra
C:00400000--00401FFF |[TARGET Quad [n 6. OTP -
C:00404000--00405FFF (NOP Quad |rop 1. read T
C:00800000--00803FFF |TARGET Quad |reprog |3.
C:00804000--00807FFF |TARGET Quad |reprog |3.
C:01000000--0103FFFF |TARGET Quad |reprog |4.
C:01040000--0107FFFF |TARGET Quad |reprog |4.
C:01080000--010BFFFF |TARGET Quad |reprog |4.
C:010C0000--010FFFFF |TARGET Quad |reprog |4.
C:01100000--0113FFFF |TARGET Quad |reprog |4.
C:01140000--0117FFFF |TARGET Quad |reprog |4. -
4 I3

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 45

In order to program an OTP sector the following command sequence is recommended:

FLASH.Program 0x00400000--0x00401FFF /OTP ; enable FLASH

Data.Set ..

FLASH.Program off

Already programmed OTP sectors can be declared with NOP as <family_code>. TRACE32 PowerView

; programming for the
; specified OTP sector

; program the data
; to sector

; disable FLASH
; programming

discards all erase and write operations to No OPeration sectors.

FLASH.Create 11.0x402000++0x1cff NOP Quad /OTP /Info

"C UTEST - Reserved"

& BuFLASH.List == ey
[3Reset || Ooff |[@® Program|| @ Repogem || @ Auto || Frcr1 |
address [type width |state |unit [extra
C:00400000--00401FFF [TARGET Quad 11. |oTP // C - R
C:00402000--00403CFF |NOP Quad 11. |oTP /) -
C:00403D00--00403DE7 [TARGET Quad 11. |oTP // -
C:00403DE8--00403DEF |TARGET Quad 11. [oTP // - E
C:00403DF0--004030DF7 [NOP Quad 11. |oTP // - &
C:00403DF8--00403E07 [TARGET Quad 11. |oTP // -
C:00403E00--00403EFF [TARGET Quad 11. |oTP // -
C:00403F00--00403FFF [NOP Quad 11. joTP // C U - S
4

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

46

Mirrored FLASH Addresses

The TRACE32 NOR FLASH programming might fail, if an on-chip FLASH or an off-chip FLASH device is
addressed in more than one way.

Non-Cached/Cached Addresses

Some processor architectures (e.g. TriCore, MIPS) provide separate address spaces for cached and non-
cached memory. Compilers may generate code for non-cached addresses for the boot sequence and code
for cached addresses for the application.

In order to program the FLASH successfully it is recommended to declare the FLASH for non-cached
addresses and use the command FLASH.CreateALIAS to mirror these addresses to the cached address
space.

; example for the TriCore architecture
; non-cached on-chip FLASH starts at address 0xa0000000
; cached on-chip FLASH starts at address 0x80000000

FLASH.RESet

; declare program FLASH in non-cached address space
FLASH.Create 1. 0xa0000000--0xa000ffff 0x4000 TARGET Long
FLASH.Create 0xa0010000--0xa001ffff 0x4000 TARGET Long
FLASH.Create 0xa0020000--0xa003ffff 0x20000 TARGET Long
FLASH.Create 0xa0040000--0xa007ffff 0x40000 TARGET Long
FLASH.Create 0xa0080000--0xa0lfffff 0x80000 TARGET Long

w w W N

; declare data FLASH in non-cached address space
FLASH.Create 4. 0xafe00000--0OxafeOffff 0x10000 TARGET Long
FLASH.Create 5. 0xafel0000--0Oxafelffff 0x10000 TARGET Long

; declare FLASH programming algorithm
FLASH.TARGET 0xd4000000 0xd0000000 0x1000
~~/demo/tricore/flash/long/tcl796.bin

; all FLASH write cycles to the address range 0x80000000--0x8fffffff

; (cached) are redirected to the address range 0xa0000000--Oxafffffff
; (non-cached)

FLASH.CreateALIAS 0x80000000--0x8fffffff 0xa0000000

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 47

The alias is also displayed in the listing of the FLASH declarations.

A BuFLASH.List = -E]
[M Reset ” O off ”QProgram”QHechmm” & Auto ” ¢ CFI]
address |type width |state |unit |extra

C:80000000--8FFFFFFF [ALIAS C : 0xAD000000--0xAFFFFFFF

C:A0000000--A000FFFF [TARGET Long 1.

C:A0010000--A001FFFF [TARGET Long 2.

C:A0020000--A003FFFF [TARGET Long 3.

C:A0040000--A007FFFF [TARGET Long 3.

C:AQ080000--A00FFFFF [TARGET Long 3.

C:A0100000--A017FFFF [TARGET Long 3.

C:A0180000--A01FFFFF [TARGET Long 3.

C:AFEQ0000--AFEQOFFFF [TARGET Long 4.

C:AFE10000--AFELFFFF [TARGET Long 5. >

4 I3

FLASH mirrored to Boot Area

Some CPUs allow to mirror the FLASH to the boot code address space. In order to program the FLASH
successfully it is recommended to declare the FLASH for its primary address space and use the command
FLASH.CreateALIAS to mirror these addresses to the boot code address space.

Hardvard Architecture with Unified Memory

For CPUs with Harvard architecture and unified FLASH memory, it is recommended to declare the FLASH
for the program memory address space and use the command FLASH.CreateALIAS to mirror these
addresses to the data address space.

; generate FLASH declaration by CFI
FLASH.CFI P:0x0 Word

; all FLASH write cycles to the data address space are redirected
; to the program address space
FLASH.CreateALIAS D:0x0++0xfffffff P:

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 48

FLASH.Create Command

Group Code NOP

TRACE32 PowerView discards all erase and write operations to No OPeration sectors. NOP sectors are
used for the following purposes:

. Some FLASH sectors are already programmed by the processor/chip manufacturer. If you debug
without a proper FLASH declaration for these sectors an unintended erase or write operation
may result in a bus error or something similar.

Declaring such sectors as NOP sectors guarantees an error-free debugging.

. Same FLASH sectors contain sensitive information. An unintended overwrite can harm the
system or lock the processor/chip for debugging. Examples for sensitive sectors are: shadow
raws, boot sectors, FLASH sectors that contain the debug monitor.

TRACES2 PowerView forces the user to handle such sectors with care by declaring them as
NOP sectors.

The chapter “FLASH.CHANGETYPE Command”, page 56 introduces a command sequence
that is recommended for the programming of sensitive sectors.

I FLASH.Create <unit_number> <address_range> [<sector_size>] NOP <bus_width>

FLASH.Create 4. OxFFC000--OxFFFFFF NOP Quad

A BuFLASH.List | <
[3Reset || ©Ooff |[@® Program| @ Rerogem || @ Auto r CF1

address [type width |state unit extra |

C:OOFFCOOO——OOFFFFFF!NOP mQuad [4. [s

Whenever FLASH programming is activated by one of the following commands: FLASH.ReProgram,
FLASH.AUTO or FLASH.Program the state of all NOP sectors changes to nop to indicate that all FLASH
erasing and programming commands are discarded for these sectors.

A BiFLASH.List ==]
[3Reset || ©Ooff |[@® Program|| @ RePogem || @ Auto || Frcrr |

address [type width lstate unit lextra |

C:OOFFCOOO——OOFFFFFFJNOP lQuad Jnop 4. =

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 49

INFO Option

TRACE32 PowerView allows to add comments to FLASH sectors.

A comment can be up to 64 characters long. TRACE32 PowerView allocated 4 kBytes for all comments.

I FLASH.Create ... /INFO <comment>

FLASH.Create 4. OxFFC000--OxFFFFFF NOP Quad /INFO "Reserved"

The comment is displayed in the extra column of the FLASH.List window.

o BuFLASH. List
[3Reset || Ooff |[@® Program|| @ Repogem || @ Auto || Focrr |
address [type width |state unit lextra |
C:OOFFCOOO——OOFFFFFFJNOP lQuad | 4. |// Reserved B
KEEP Option

FLASH sectors may contain data that should not be deleted. An example are chip trimming data stored in
FLASH.

Use the option KEEP, if you want to advise TRACES32 PowerView to preserve the data in the specified
<address_range>.

I FLASH.Create ... [KEEP <address_range>

FLASH.Create 1. 0x00000000--0x0001FFFF .. /KEEP 0x0003FC--0x0003FF

A BuFLASH.List ===
| M Reset || O off ”QProgram”QHeﬁcgam || & Auto || Frcr |

address [type width |state |unitf|extra i

C:OOOOOOOO——OOOOO3FFJTARGET lLong | 1. [|KEEP=C:Ox3FC--Ox3EF |-

The preservation of the FLASH content is implemented differently depending on the used FLASH
programming command.

FLASH.ReProgram (for details refer to “FLASH.ReProgram Command (Target-controlled)”, page 21):
After a virtual FLASH sector is erased, the information to be preserved is written back to the virtual sector.
This approach assumes that the <address_range> to be preserved is not overwritten by data loaded from
the file to be programmed.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 50

FLASH.Erase: After the FLASH sector is erased, the information is restored. This approach assumes that
the <address_range> to be preserved is not overwritten by data loaded from the file to be programmed.

FLASH.AUTO (for details refer to “The FLASH.AUTO Command”, page 31): Since the data from the

target sector are copied to the virtual FLASH sectors, the option KEEP is not required. Not overwritten
original data are programmed back to the target sectors.

BootModeHeaDer Option

For the Astep version of the TC27x debugging was locked if the onchip FLASH does not provide a valid Boot
Mode HeaDer. To avoid that the onchip FLASH contains no valid BMHD after programming, TRACE32
takes the following preventive measures:

1. TRACER32 tries to preserve all valid BMHDs.

2. The FLASH programming scripts warns you if the FLASH data to be programmed do not contain
a valid BMHD. For details refer to your FLASH programming script.

More details to 1: The option BootModeHeaDer advises TRACE32 to preserve the contents of
<address_range> if <address_range> contains a valid BMHD.

I FLASH.Create ... /BootModeHeaDer <address_range>

FLASH.Create 1. 0xA0000000--0xAOOOBFFF .. /BMHD 0xA0000000--0xA000001F

A BuFLASH.List = ===
[M Reset][O off][QProgram][QHeﬁcgam][& Auto][& CFI]
address [type width |state |unit [extra i
C:80000000--80FFFFFF [ALIAS e el
C:A0000000--A0003FFF [TARGET Long 1. BMHD:C:OXAOOOOOOO——OXAOOOOOIFI
C:A0004000--A0007FFF [TARGET Long 1.
C:A0008000--A000BFFF [TARGET Long 1.
C:A000C000--AO00FFFF [TARGET Long 1. BMHD=C : 0xACOOFFEQ--0xAOQ00FFFF
C:A0010000--A0013FFF [TARGET Long 1.
C:A0014000--A0017FFF [NOP Long 1.
C:A0018000--A001BFFF [NOP Long 1.
C:A001C000--AO0LFFFF [TARGET Long 1. BMHD=C : 0xAQQ1FFEQ--0xAQ0LFFFF
C:A0020000--A0027FFF [TARGET Long 1. BMHD=C : 0xAC0020000--0xA002001F -
4 +

The preservation of the BMHDs is implemented differently depending on the used FLASH programming
command. For details refer to “KEEP Option”, page 50.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 51

EraseALIAS Option

A physical FLASH sector can be split up into two or more logical address spaces, if it maintains different
types of information. FLASH programming writes usually to the logical address spaces, while FLASH
erasing applies to the physical FLASH sector.

To understand the use cases of the option EraseALIAS it is important to remember that the commands
FLASH.ReProgram or FLASH.AUTO erase/program only modified sectors. The option EraseALIAS
guarantees:

J That content of logical address spaces is preserved, if a physical sector has to be erased, in
order to program one of its modified logical address spaces,

. That a physical sector is only erased once while the modified FLASH content is programmed.

I FLASH.Create ... /[EraseALIAS <address_range>

FLASH.Create 2. 0x2000000++0x7fff /EALIAS 0x2100000++0x7fff /INFO "Data Flash"

FLASH.Create 3. 0x2100000++0x7fff /EALIAS 0x2000000++0x7fff /INFO "ID Tags"

& BuFLASH.List
[M Reset || O off ”QProgram” & ReProgram “ & Auto “ ¢ CFI |
address [type width |state |unit [extra
C:02000000--020007FF [TARGET Long 2. EALTIAS=C:02100000
C:02000800--02000FFF [TARGET Long 2. EALTAS=C:02100800
C:02001000--020017FF [TARGET Long 2. EALTAS=C:02101000
C:02001800--02001FFF [TARGET Long 2. EALTAS=C:02101800
C:02002000--020027FF [TARGET Long 2. EALTAS=C:02102000
C:02002800--02002FFF |[TARGET Long 2. EALTAS=C:02102800
C:02003000--020037FF [TARGET Long 2. EALTIAS=C:02103000
C:02003800--02003FFF [TARGET Long 2. EALTAS=C:02103800
C:02004000--020047FF [TARGET Long 2. EALTAS=C:02104000
C:02004800--02004FFF [TARGET Long 2. EALTAS=C:02104800
C:02005000--020057FF [TARGET Long 2. EALTAS=C:02105000
C:02005800--02005FFF [TARGET Long 2. EALTIAS=C:02105800
C:02006000--020067FF [TARGET Long 2. EALTIAS=C:02106000
C:02006800--02006FFF [TARGET Long 2. EALTAS=C:02106800
C:02007000--020077FF [TARGET Long 2. EALTIAS=C:02107000
C:02007800--02007FFF [TARGET Long 2. EALTAS=C:02107800
C:02100000--021007FF [TARGET Long 3. EALTIAS=C:02000000
C:02100800--02100FFF [TARGET Long 3. EALTAS=C:02000800
C:02101000--021017FF [TARGET Long 3. EALTAS=C:02001000
C:02101800--02101FFF [TARGET Long 3. EALTIAS=C:02001800
C:02102000--021027FF [TARGET Long 3. EALTIAS=C:02002000
C:02102800--02102FFF [TARGET Long 3. EALTAS=C:02002800
C:02103000--021037FF [TARGET Long 3. EALTIAS=C:02003000
C:02103800--02103FFF [TARGET Long 3. EALTIAS=C:02003800
C:02104000--021047FF [TARGET Long 3. EALTIAS=C:02004000
C:02104800--02104FFF [TARGET Long 3. EALTAS=C:02004800
C:02105000--021057FF [TARGET Long 3. EALTIAS=C:02005000
C:02105800--02105FFF [TARGET Long 3. EALTIAS=C:02005800
C:02106000--021067FF [TARGET Long 3. EALTIAS=C:02006000
C:02106800--02106FFF [TARGET Long 3. EALTIAS=C:02006800
C:02107000--021077FF [TARGET Long 3. EALTIAS=C:02007000
C:02107800--02107FFF [TARGET Long 3. EALTAS=C:02007800
4 13

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 52

Autolnc Option

Some FLASH algorithms need additional information to program the onchip FLASH. Typical information are:
J the FLASH control register base address

. a sector number

If additional information is required, it is the last parameter of the FLASH.Create command.

I FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width> <add_info>

The Autolnc option allows to shorten the FLASH declaration if increasing sector numbers are needed. The
extra column in the FLASH.List window shows the sector number as a hex. number.

Example 1:

FLASH.Create 1. 0x08180000--0x081FFFFF 0x20000 TARGET Byte /AutolInc

Brasin (5 e
[3Reset || Ooff |[@® Program|| @ RePogem || @ Auto || Frcr1 |
address [type width |state |unit [extra i
C:08180000--0819FFFF [TARGET Byte . -
C:081A0000--081BFFFF |TARGET Byte 1. 00000001
C:081C0000--081DFFFF |TARGET Byte 1. 00000002
C:081E0000--081FFFFF |TARGET Byte 1. 00000003 -~
4 I3

Example 2 shows that it is possible to specify the starting sector number:

FLASH.Create 1. 0x08180000--0x081FFFFF 0x20000 TARGET Byte 0x20 /AutoInc

o BaFLASH List =0 =R
[3Reset || Ooff |[@® Program|| @ RePogem || @ Auto || Frcr1 |
address [type width |state |unit [extra i
C:08180000--0819FFFF |TARGET Byte 1. 00000020 .
C:081A0000--081BFFFF |TARGET Byte 1. 00000021
C:081C0000--081DFFFF |TARGET Byte 1. 00000022
C:081E0000--081FFFFF |TARGET Byte 1. 00000023 -~
4 I3

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 53

FLASH.TARGET Command

STACKSIZE Option

Target-controlled FLASH programming (for details refer to “Target-controlled FLASH Programming”,
page 17) uses 256 bytes of stack. If the FLASH programming algorithm requires more stack, the option
STACKSIZE can be used to define the required stack size.

I FLASH.TARGET ... /ISTACKSIZE <size>

FLASH.TARGET 0x0 0x2000 0x1000 1pc4300.bin /STACKSIZE 0x200

FirmWareRAM Option

Some processors provide their FLASH programming algorithm in their firmware ROM. The option
FirmWareRAM can be used to declare the RAM <address_range> needed by the firmware FLASH

algorithm.

The option FirmWareRAM guarantees that the contents of this <address_range> is saved before and
restored after FLASH programming.

I FLASH.TARGET ... [FirmWareRAM <address_range>

FLASH.TARGET 0x0 0x2000 0x1000 .. /FirmWareRAM 0x10089FF0--0x10089FFF

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 54

FLASH.CLocK Command

Some onchip FLASHs require a FLASH programming clock within a specified frequency range. The FLASH
programming clock is derived from the system clock in most cases. The command FLASH.CLocK allows:
. to specify the system clock.

FLASH.CLocK 10.MHz

. to ask TRACE32 to measure the system clock.

FLASH.CLocK AUTO

TRACERS2 passes the system clock to the FLASH programming algorithm, which is then responsible for
deriving the FLASH programming clock.

I FLASH.CLocK <frequency> | AUTO

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 55

FLASH.CHANGETYPE Command

Sensitive FLASH sectors are declared as NOP sectors to protect them from unintended overwrite.

FLASH.Create 4. OxXFFFCO00--O0xFFFFFF NOP Quad /INFO "Shadow row"

" BuFLASH.List o ==
[Reset || ©Ooff |[@® Program|| @ RePogem || @ Auto || Frcrr |
address [type width |state unit lextra |
C:OOFFFCOO——OOFFFFFFJNOP lQuad | 4. |// shadow row E
4 }

The following command sequence is recommended if you want to program a sensitive sector:

FLASH.CHANGETYPE O0x00FFFCO00++0x3FF TARGET ; change FLASH sector
; from NOP sector to
; sector programmable by
; the FLASH programming
; algorithm specified by
; the preceding
; FLASH.TARGET command

FLASH.Program 0x00FFFCO00++0x3FF ; enable FLASH sector for
; programming
Data.Set .. ; program the data

; to sector

FLASH.Program off ; disable sector for
; programming
FLASH.CHANGETYPE O0x00FFFC00++0x3FF NOP ; change FLASH sector

; back to NOP sector

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 56

FLASH.UNSECUREerase Command

Some chips/processors are secured and require a key-code to allow debugging. Entering the keycode
(SYStem.Option.KEYCODE <key_code>) command unsecures the chip and allows to establish a debug
communication. Please refer to your Processor Architecture manual for details.

The key-code is for most chips stored in the onchip FLASH.

If the keycode is unknown you can use the command FLASH.UNSECUREerase. This command erases the
onchip FLASH completely in order to remove the key-code. The chip is unsecured afterwards.

NOTE: Please be aware that the command FLASH.UNSECUREerase is locked if it is
not implemented for the selected CPU (SYStem.CPU <cpu>).

SYSTem.CPU MK10DN32VLHS
FLASH.UNSECUREerase

SYStem.Up

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 57

FLASH Declaration in Detail

Further Applications for FLASH Declarations Using CFI

Identical FLASH Devices in Series

If two identical FLASH devices are used in series to implement the needed FLASH memory size, the

FLASH.CFI command has to be performed for each FLASH device.

Example:

. Four Intel Strata FLASH devices 28F128J3 in 16-bit mode are used to implement 64 MByte of
FLASH memory.

. Therefrom two Intel Strata FLASH devices 28F128J3 are used in parallel to implement a 32-bit

data bus.

. Target RAM at 0xa0000000.

Address Bus

CPU

OxO05FFFFFF

0x04000000

Ox01FFFFFF

'

'

28F128J3 28F128J3
in 16-bit mode | in 16-bit mode

28F128J3 28F128J3
in 16-bit mode | in 16-bit mode

TD31-D16

TD15-DO

Data Bus

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

| 58

FLASH declaration command for TRACES32 tool-based programming:

FLASH.RESet

; FLASH.CFI <start_address> <bus_width>
FLASH.CFI 0x00000000 Long
FLASH.CFI 0x04000000 Long

S BuFLASH.List [E=R[E=R(=D)
(3 Reset | © off || @ Progam || @ iefrogren || @ Auto [& cr |

address [type width |state
:01F00000--01F3FFFF [T28F20013 [Tong
:01F40000--01F7FFFF |I28F20013 |long
:01FB0000--01FBFFFF |I28F20013 |long
:01FCO000--01FFFFFF |I28F20013 |long
:04000000--0403FFFF |I28F20013 |long
:04040000--0407FFFF |I28F20013 |long
:04080000--040BFFFF |I28F20013 |long
:040C0000--040FFFFF |I28F20013 |long
:04100000--0413FFFF |I28F20013 |long
:04140000--0417FFFF |I28F20013 |long

4 | L [

nit |

[alalalalalalalalalal
LSS LS L el el el ot

FLASH declaration command for target-controlled programming:

FLASH.RESet

; FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>
FLASH.CFI 0x0 Long 0x00000000 /TARGET 0xa0000000++0xfff 0xa0001000++0x1fff
FLASH.CFI 0x0 Long 0x04000000 /TARGET 0xa0000000++0xfff 0xa0001000++0x1fff

A BiFLASH.List ===
[3 Reset | © off || @ Program |[@ fefrogren || @ Auto || £ cFI |
address [type width |state |unit i
C:01F00000--01F3FFFF |[TARGET Tong 1 -
C:01F40000--01F7FFFF [TARGET long 1
C:01F80000--01FBFFFF [TARGET long 1.
C:01FCO000--01FFFFFF [TARGET Tong i. @
C:04000000--0403FFFF |TARGET long 2
C:04040000--0407FFFF |TARGET long 2
C:04080000--040BFFFF |TARGET Tong 2 -
4| m 3

TRACE32 allocates a so-called <unit_number> for each FLASH device. The <unit_number> allows to
handle each FLASH device separately and to perform a full chip erase/bulk erase correctly.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide

59

Assigning a Fixed Unit Number

For some scripts it might be helpful to assign a fixed <unit_number>to a FLASH device. For these cases the
<unit_number> can be used as a parameter for the FLASH.CFI command.

FLASH.CFI <unit_number> <start_address> <bus_width> <unit_number> allows to
assign a fixed unit number to
a FLASH device

I FLASH.CFI <unit_number> <start_address> <bus_width> [TARGET <code_range> <data_range>

FLASH.CFI 40. 0x0 Long

o BFLASH List |E=H Eo)
[Reset]| © Off [@ Pogean || @ iengen || @ Auto |[&> cF1 |
address [type width state |unit |

p
AMZ9F100 word 40. o
AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40.

AMZSF100 word 40. 2
4 | 1 '

:00000000--00003FFF
1 00004000--00005FFF
:00006000--00007FFF
:00008000--0003FFFF
1 00040000--0007FFFF
:00080000--000BEFFFF
1 000C0000--000FFFFF
:00100000--0013FFFF
:00140000--0017FFFF
:00180000--001EFFFF
:001C0000--001FFFFF

[alalalalalalialalalala

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 60

Heterogeneous FLASH Devices in Series

Since TRACE32 can only handle one external FLASH algorithm at a time, a special proceeding is required if
target-controlled FLASH programming is used to program two or more FLASH devices with different FLASH

algorithms.

Example 1:

U AM29DL323DB FLASH device in 16-bit mode as boot FLASH

o Two Intel Strata FLASH devices 28F128J3 in 16-bit mode as user FLASH

. Target RAM at 0x00400000
. One programming file per FLASH device

0x0DFFFFFF
28F128J3
in 16-bit mode
0x0D000000
0x0CFFFFFF
28F128J3
CPU in 16-bit mode
0x0C000000
0x003FFFFF
AM29DL323DB
in 16-bit mode
0x0

FLASH declaration command for target-controlled programming:

7

; boot FLASH
FLASH.RESet

userfile.x

bootfile.x

FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>

FLASH.CFI 0x0 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff

FLASH.ReProgram ALL
Data.LOAD.auto bootfile.x
FLASH.ReProgram off

; user FLASH 1 + 2
FLASH.RESet

FLASH.CFI 0x0c000000 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff
FLASH.CFI 0x0d000000 Word /TARGET 0x00400000++0xfff 0x00401000++0x1fff

FLASH.ReProgram ALL
Data.LOAD.auto userfile.x
FLASH.ReProgram off

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide

61

No special proceeding is required if TRACE32 tool-based programming is used:

FLASH.RESet
; FLASH.CFI <start_address> <bus_width>

FLASH.CFI 0x00000000 Word ; boot FLASH
FLASH.CFI 0x0c000000 Word ; user FLASH 1
FLASH.CFI 0x0d000000 Word ; user FLASH 2

FLASH.ReProgram ALL
Data.LOAD.auto bootfile.x
Data.LOAD.auto userfile.x
FLASH.ReProgram off

Example 2:

. On-chip FLASH of TriCore TC1796

J Two AMD FLASH devices Am29BL162CB in parallel to implement a 32-bit data bus

. PMI Scratch-Pad RAM at address 0xD4000000, DMI Scratch-Pad RAM at address 0xD0O000000

. One programming file for both FLASHs
FLASH declaration command for target-controlled programming:

; on-chip FLASH

FLASH.RESet

FLASH.Create 1. 0xA0000000++0x1FFFF 0x004000 TARGET Long

FLASH.Create 2. 0xA0020000++0x1FFFF 0x020000 TARGET Long

FLASH.Create 2. 0xA0040000++0x3FFFF 0x040000 TARGET Long

FLASH.Create 2. 0xA0080000++0x7FFFF 0x080000 TARGET Long

FLASH.Create 2. 0xA0100000++0x6FFFF 0x008000 TARGET Long

FLASH.TARGET 0xD4000000++0xFFF 0xD0000000++0x1FFF \
~~/demo/tricore/flash/long/tcl796.bin

FLASH.ReProgram ALL
Data.LOAD.El1f demo.elf 0xA0000000++0x16FFFF
FLASH.ReProgram off

; off-chip FLASH
FLASH.RESet
FLASH.CFI 0xA1000000 Long /TARGET 0xD4000000++0xFFF 0xD0000000++0x1FFF

FLASH.ReProgram ALL
Data.LOAD.E1f demo.elf 0xA1000000++0x3FFFFF
FLASH.ReProgram off

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 62

Determining the FLASH Size

FLASH.CFL.SIZE(<address>,<bus_width>)

Returns the size of single or parallel CFI-
conform FLASH devices as a hex.
number.

Returns 0 if TRACE32 can't read the
CFl information.

PRINT FLASH.CFI.SIZE(P:0x0,Word)

Expert example for the MPC85xx architecture:

Preconditioned the boot configuration works correctly it is possible to set up the FLASH declaration and the
required bus configuration to program the FLASH automatically by a script.

™ B:PER., "Local Bus Controller"

B Local Bus Controller
; 00001001
00000FF7

GPC

4 [

ATOM dis. TDECC no check
)1

PS5 16 bit WP 0

SCy 15 belk SETA O TRLX 1 EHTR 1

Bus configuration after reset

1. Configure the start address of the FLASH devices by setting BRO/BASEADDR to 0xff800000
(Boot ROM Location). This setting is preliminary and will be corrected later.

&flashbase=0xf£800000

Data.Set ANC:iobase()+0x00005000 %Long \
(Data.LONG (ANC: iobase () +0x00005000) &0x00007FFF) | &flashbase

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User's Guide | 63

2. Read BRO/PS to determine the data <bus_width> between the CPU and the FLASH devices.

&port_size=(Data.LONG (ANC:iobase ()+0x00005000)>>11.)&0x00000003
IF &port_size==
&bus_width="BYTE"
ELSE IF &port_size==
&bus_width="WORD"
ELSE IF &port_size==
&bus_width="LONG"

ELSE
(
PRINT %ERROR "ERROR: Invalid bus width"
ENDDO
)
3. Determine the flash size via a CFI query.

&flash size=FLASH.CFI.SIZE (ANC:&flashbase, &bus_width)
IF (&flash _size==0)
(
PRINT $ERROR "ERROR: FLASH module could not be detected"

ENDDO

4. Calculate the start address of the FLASH device.

&end_address=0xffffffff
&address==&end_address-&flash size+0x1

5. Correct the start address of the FLASH devices by setting BRO/BASEADDR to the calculated
&address.

Data.Set ANC:iobase()+0x00005000 %$Long\
(Data.LONG (ANC: iobase ()+0x00005000) &0x00007FFF) | &address

6. Reduce the wait states for the FLASH devices to improve the programming performance by
setting ORO/SCY to 6.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide |

64

&waitstates=6.

Data.Set ANC:iobase()+0x00005004 %Long \
(Data.LONG (ANC:iobase () +0x00005004)&0x00007F0F) \
|&flashbase| (&waitstates<<4.)

™ B::Perview, "Local Bus Controller”

f= e =

B Local Bus Controller

BRO FEDO1001 BASEADDR FEQDQ000 xEA O P5 16 bit WP O V1
MSEL GPCM ATOM dis. ~DECC no check
ORO FEODOOF67 AM _FEQOQ0QO xam 0 AD 1

GPCM Mode: BCTLD O CSNT 1 ACS 3 Xacs 1 sCY 6 bclk SETA O
UPM Mode: BCTLD 0 BI 1 TRLX 1 EHTR 1
SDRAM Mode: (COLS 10 ROwWS 14 PMSEL 1

4 | 1]

TRLX 1 EHTR 1

Correct bus configuration for the FLASH programming

7. Program the FLASH.

; program FLASH device
FLASH.Reset

FLASH.CFI &address &bus_width
FLASH.Erase

FLASH.ReProgram ALL
Data.LOAD.auto * /WORD
FLASH.ReProgram off

The script for this example is also available in the TRACE32 folder:

~~/demo/powerpc/hardware/mpc85xx/all_boards/flash_cfi.cmm

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

65

Truncating the FLASH Size to the CPU Address Space

If the FLASH size is bigger then the address space of the CPU, it is necessary to specify the usable address
range for the FLASH.CFI command.
Example:

J In order to have more GPIO pins an Infineon XC2xxx CPU is using only 18 of the 24 address
lines. Thus the external address space of the CPU is 256 KByte.

. Due to any reason (better availability, smaller packages, better price) a 1 MByte FLASH is used.

. Target RAM at 0x00e00000

FLASH declaration command for TRACES32 tool-based programming:

FLASH.RESet
; FLASH.CFI <address_range> <bus_width>
FLASH.CFI 0x0x00100000++0x3ffff Word

FLASH declaration command for target-controlled programming:

FLASH.CFI <address_range> <bus_width> /TARGET <code_range> <data_range>

’

FLASH.RESet
FLASH.CFI 0x0x00100000++0x3f£fff Word /TARGET 0x00e00000++0xfff 0x00e01000++0x1£fff

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 66

FLASH Declaration via FLASH.CFI Dialog Window

FLASH declaration with CFl is mostly used in scripts so the command line version is more common then the
corresponding dialog window.

Trace Perf Cov Window

| & Frequency Counter

@ Runtime

@ Mermory Map

. Flash Programming k

% Choose Colors...
éylnterface Config... * B:FLASH.List (=] =)

Japanese Menu [M Reset || O off |[@ Program|| @ fePogan || @ Auto || £ cAI C£
address [type width [state |unit

[}

" B:FLASH.CFI == 5

— F|ash dedaration ...
Flash startaddress or range

Data bus width ~ Flash unit number (opt.)
Byte i

— Target based flashing

[T Enable target based flashing DualPort

[Ok] [To (;Iipboard] [Clear] [Cancel

The FLASH.CFI-dialog opens also if the command FLASH.CFlI is used without parameters.

FLASH.CFI ; open FLASH.CFI dialog

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 67

Generation of Equivalent FLASH.Create Commands

TRACE32 displays the equivalent commands for the manual FLASH declaration in the TRACE32 message
area, if the command FLASH.CFl is used. This is especially helpful to check which binary file is loaded as
FLASH programming algorithm.

AREA.CLEAR ; clear the message area
AREA.view ; open the message area

FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

= | B:AREA.view [E=R[E=R(=<T

C:0x0--0x3FFF Ox4000 TARGET WORD

C:0x4000--0x7FFF 0x2000 TARGET WORD

FLASH.Create C:0x8000--0x3FFFF 0x38000 TARGET WORD

FLASH.Create 1. C:0x40000--0x1FFFFF 0x40000 TARGET WORD

FLASH. TARGET C:0x20000000--0x20000FFF C:0x20001000--0x20001FFF ~~/demo/coldfire/flash/word/am29f100.bin -~

4 1 v

FLASH.Create
FLASH.Create

[el

A detailed description of the FLASH.Create command is given in the next chapter.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 68

Declarations for not CFl-conform FLASH Devices

Not CFl-conform FLASH devices require that all characteristics are provided in the FLASH declaration.

Manual FLASH Declaration (TRACE32 Tool-based)

I FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

Parameters:

. <unit_number>

TRACES32 maintains each FLASH device by its own <unit_number>.
. <address_range>

Specifies the address range of the FLASH devices.
. <sector_size>

Specifies the size of the individual sectors within the FLASH devices.
. <family_code>

Specifies the TRACES32 tool-based programming algorithm. The FLASH device and the
corresponding <family_code> is listed under “List of Supported FLASH Devices” (flashlist.pdf).

. <bus_width>

Defines the width of the data bus between the target CPU and the FLASH devices.

The syntax for the manual FLASH declaration for target-controlled programming is described in
“Converting TRACE32 Tool-based to Target-controlled FLASH Programming” in Onchip/NOR FLASH
Programming User’s Guide, page 85 (norflash.pdf).

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 69

FLASH Devices with Uniform Sectors

Example:

J Sharp LH28F016 FLASH device
J 32 sectors each with 64 KBytes
8-bit FLASH

FLASH.RESet
; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

FLASH.Create 1. 0x0--Ox1fffff 0x10000 I28F001B Byte

S BuFLASH.List [E=R[E=R|E<E)
[3 Reset || O off |[@® Program|[@ Repogem || @ Auto || £ cr1 |

address [type width [state |unit i
C:00000000--0000FFFF |[I28F001E |[byte
C:00010000--0001FFFF |I28F001B byte
C:00020000--0002FFFF |I28F001B byte
C
C

([
:00030000--0003FFFF (I28F001B |byte
:00040000--0004FFFF [I28F001B |byte

e [| +

e

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 70

FLASH Devices with Sectors of Different Size

If a FLASH device contains sectors of different size an extra FLASH.Create command has to be used for

each address range with the same <sector_size>. TRACES32 knows that all the commands are related to a
single FLASH device if the same <unit_number> is used with all FLASH.Create commands.

Example:

J Spansion S29AL008D bottom boot sector device

. 1 sector with 16 KByte, 2 sectors with 8 KByte, 1 sector with 32 KByte, 15 sectors with 64 KByte

o 16-bit mode

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family code> <bus_width>

FLASH.Create
FLASH.Create
FLASH.Create
FLASH.Create

B RBR

0x00000--0x03£f£ff 0x04000 AM29LV100 Word
0x04000--0x07£££f 0x02000 AM29LV100 Word
0x08000--0x0ffff 0x08000 AM29LV1I00 Word
0x10000--Oxff£f£ff 0x10000 AM29LV1I00 Word

& BuFLASH.List

=@ =S

[3 Reset || © off |[@ Program| @ Refogam || @ Auto || E.'k cr |

address

type

width [state |unit i

C
C
Ce
C
C
C

:00000000--00003FFF
:00004000--00005FFF
:00006000--00007FFF
:00008000--0000FFFF
:00010000--0001FFFF
:00020000--0002FFFF

4

AMZOLVI00 [word 1. -
AMZ29LV100 |word 1
AMZ29LV100 |word 1.
AMZ29LV100 |word 1.
AMZ29LV100 |word 1
AMZ29LV100 |word 1

1 S

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

71

FLASH Devices in Series

If two or more identical FLASH devices are used in series to implement the needed FLASH memory size

each FLASH device has to be declared with a different <unit_number>.

Example:

. Two Spansion S29AL008D bottom boot sector devices

. Each providing 1 sector with 16 KByte, 2 sectors with 8 KByte, 1 sector with 32 KByte, 15 sectors

with 64 KByte
o 16-bit mode

CPU

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family code> <bus_width>

0x1FFFFF
S29AL008D
in 16-bit mode
0x100000
0x0FFFFF
S29AL008D
in 16-bit mode
0x0

; declaration for the first FLASH device

FLASH.Create 1. 0x000000--0x003fff 0x04000 AM29LV100 Word
FLASH.Create 1. 0x004000--0x007fff 0x02000 AM29LV100 Word
FLASH.Create 1. 0x008000--0x00ffff 0x08000 AM29LV100 Word
FLASH.Create 1. 0x010000--0x0fffff 0x10000 AM29LV100 Word
; declaration for the second FLASH device
FLASH.Create 2. 0x100000--0x103fff 0x04000 AM29LV100 Word
FLASH.Create 2. 0x104000--0x107fff 0x02000 AM29LV100 Word
FLASH.Create 2. 0x108000--0x10ffff 0x08000 AM29LV100 Word
FLASH.Create 2. 0x110000--0x1fffff 0x10000 AM29LV100 Word
A BuFLASH. List ==
[3 Reset || O off |[@ Program”&ﬂeﬁcgmm” ® Ao || B crr |
address [type width [state |unit i
C:000D0000--000DFFFF [AM29LV100 [word 1. -~
C:000E0000--000EFFFF |AM29LV100 |word 1.
C:000F0000--000FFFFF |AM29LV100 |word 1.
C:00100000--00103FFF |AM29LV100 |word 2.
C:00104000--00105FFF |AM29LV100 |word 2.
C:00106000--00107FFF |AM29LV100 |word 2. -

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

72

FLASH Devices in Parallel

If two or more identical FLASH devices are used in parallel to implement the needed data bus width, the
FLASH declaration has to be performed as follows:

n identical FLASH devices in parallel

J <address_range> = n x <address_range_of_single_device>
. <sector_size> = n x <sector_size_of_single_device>

J <bus_width> = n x <bus_width_of_single_device>
Example:

J Four 8-bit Sharp LH28F016 FLASH devices are used in parallel to implement a 32-bit data bus

. Each providing 32 sectors with 64 KBytes

Address Bus

!

'

'

'

CPU

LH28F016
8-bit

LH28F016
8-bit

LH28F016
8-bit

LH28F016
8-bit

¢D31-D24

¢ D23-D16

¢ D15-D8

¢ D7-DO

Data Bus

FLASH.RESet

; FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

; <address_range> = 4 x 0x200000

; <sector_size> = 4 x 0x10000

; <bus_width> = 4 x 8 bit = Long

FLASH.Create 1.

0x800000
0x40000

& BuFLASH.List

= EEd

[3% Reset ||

© off |[@® Program|[@ Refogam || @ Auto || & cr1 |

address [type

width |state

u

nit |

alalalalalal

:00000000--0D003FFFF |[I28F001B
:00040000--0007FFFF |I28F00LB
:00080000--000BFFFF |I28F001B
:000C0000--000FFFFF |I28F00L1B

:00100000--0013FFFF |I28F001B
:00140000--0017FFFF |I28F001B

4

Tong
long
long
long
long
Tong

1

e e el

-

0x0--0x7fffff 0x40000 I28F001B Long

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User's Guide | 73

General Recommendations

o Declare each FLASH device with all sectors.

TRACES2 is using full chip erase/bulk erase if possible. In doing so also not declared FLASH
sectors are erased.

. Use the same unit number for all sector declarations applying to the same FLASH device.

. If two or more identical FLASH devices are used in parallel to implement the needed data bus width
with the CPU, use the same unit number and calculate the parameters for the FLASH.Create
command as follows:

n identical FLASH devices in parallel
<address_range> = n x <address_range_of_single_device>
<sector_size> = n x <sector_size_of_single_device>

<bus_width> = n x <bus_width_of_single_device>

. If two or more FLASH devices are used in series to implement the needed FLASH memory size,
declare each FLASH device with its own unit number.

TRACERS2 is using full chip erase/bulk erase if possible. In doing so only the sectors within the
first FLASH device are erased, even if other FLASH sectors are declared with the same unit
number.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 74

TRACE32 Tool-based vs. Target-controlled FLASH Programming

TRACE32 provides two techniques to program off-chip FLASH devices:
J TRACERS2 tool-based programming
The FLASH programming algorithm is part of the TRACES32 software and runs on the host.

. Target-controlled programming

The FLASH programming algorithm is not part of the TRACE32 software. It is linked to TRACE32
and downloaded to the target RAM if required.

TRACE32-tool based programming Target-controlled programming

Simple to set up because no target resources Simple setup, but the usage of more target
are required resources adds sources of errors

Slow Very fast

Update of FLASH programming algorithm FLASH programming algorithm can be updated
requires complete TRACE32 software update independently from the TRACE32 software

Very flexible, every FLASH device can be
supported. If required refer to “How to Write
your own FLASH Algorithm”
(flash_app_own_algorithm.pdf)

Specifics in the target design (e.g. switched
data lines) can be corrected by the FLASH
algorithm.

Despite the obvious disadvantages of TRACE32 tool-based programming it is recommended to start with
this technique, because errors are less likely since no target resources are required.

If TRACES32 tool-based FLASH programming runs faultless, you can almost be sure that:
. The bus configuration registers for the FLASH devices are set up correctly.
J The interface between the CPU and the FLASH devices on your target hardware works faultless.

J TRACERS2 can erase and program the FLASH devices correctly.

After TRACES32 tool-based FLASH programming works correctly, you can easy migrate to the faster target-
controlled FLASH programming. The migration procedure is described in “Converting TRACE32 Tool-
based to Target-controlled FLASH Programming” in Onchip/NOR FLASH Programming User’s Guide,
page 85 (norflash.pdf).

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 75

TRACE32 Tool-based FLASH Programming

TRACE32 Software
on Host
Power
Debug Module
UsSB

Target

]7

JTAG
Connector

EBI=External Bus Interface

CPU

rn
@

Control Lines
Address Bus

Data Bus

'ﬂ<
5
n
T

The FLASH declaration requires only information on the FLASH devices since the FLASH algorithm is

integrated into the TRACES32 software.
FLASH declaration commands:

1. FLASH declaration via CFI query

I FLASH.CFI <start_address> <bus_width>

2. FLASH declaration for not CFl-conform FLASH devices

I FLASH.Create <unit_number> <address_range> <sector_size> <family_code> <bus_width>

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

76

Target-controlled FLASH Programming

TRACE32 Software

on Host Target CPU

EBI

Power JTAG
Debug Module Connector

i Y Control Lines
uUsB i Address Bus
' i DataBus |
vy ¢ é vy
FLASH RAM

EBI=External Bus Interface

If target-controlled FLASH programming is used, the FLASH algorithm is not part of the TRACES32 software.
FLASH programming works now in principle as follows:

If any TRACE32 command is used that unlocks or locks, erases, programs the FLASH devices:

. The TRACE32 software is saving the RAM contents of FLASH Algorithm Program/Data Range.
. The TRACE32 software is saving the register context.

. The TRACES32 software is loading the external FLASH algorithm to the FLASH Algorithm
Program Range and sets a software breakpoint at the exit of the FLASH algorithm.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 77

To execute any action on the FLASH device (unlock or lock, block erase, chip erase, program) by the FLASH
algorithm

1. The TRACE32 software is loading the argument buffer for the FLASH algorithm.
2 The TRACE32 software is loading the data to FLASH Programming Data Range.
3 The PC, stack pointer and the registers for the argument passing are set.

4. The external FLASH algorithm is started.
5

After the software breakpoint at the exit of the FLASH algorithm is reached, the TRACE32
software checks if there are any further actions to perform. Step 1 - 4 are repeated until all
actions are performed.

After the TRACE32 FLASH command is done:
J The TRACE32 software is restoring the contents of the FLASH Algorithm Program/Data Range.

. The TRACE32 software is restoring the register context.

Only one external FLASH algorithm can be used at a time.

This procedure requires additional setups in order to program off-chip NOR FLASH devices. This includes:
. The definition of the external FLASH programming algorithm

J The definition of the FLASH Algorithm Program Range

. The definition of the FLASH Algorithm Data Range

. The definition of the maximum number of bytes that are transferred from the TRACE32 software.

Before these requirements are described in detail a short command overview:

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 78

FLASH Declaration Commands (Overview)

FLASH declaration commands for CFl-conform FLASH devices:

FLASH.CFI <start_address> <bus_width> ITARGET <code_range> <data_range>
FLASH.CFI <start_address> <bus_width> [TARGET <code_address> <data_address> [<buffer_size>]

FLASH declaration commands for not CFl-conform FLASH devices:

FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.TARGET <code_range> <data_range> <file>

FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.TARGET <code_address> <data_address> [<buffer_size>] <file>

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 79

Localization of External FLASH Algorithm

A binary file is used as external FLASH algorithm.

Ready-to-run binary files for target-controlled FLASH programming are available for the most common
processor architectures in the folder ~~/demo/<architecture>/flash; where ~~ is expanded to the
<TRACE32_installation_directory>, whichis c:\T32 by default.

CFl-conform FLASH devices

TRACERS2 loads the appropriate FLASH programming algorithm automatically from
~~/demo/<architecture>/flash when target-controlled FLASH programming for CFI-conform
FLASH devices is used.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 80

Not CFl-conform FLASH devices

The file name and the path for the FLASH programming algorithm needs to be specified explicitly for not

CFl-conform FLASH devices.

In the directory ~~/demo/<architecture>/flash the FLASH algorithms are organized by

<bus_width> and by <endianness>.

<bus_width>_be stands for FLASH support for big endian mode.

<bus_width>_le stands for FLASH support for little endian mode.

Name = Date modified Type
i byte_be 23.05.2007 11:04 File Folder
ol More]
i byte le 23.05.2007 11:04 File Folder
File S i long_be 23.05.2007 11:04 File Folder
i | | 23.05.2007 11:04 File Fold
|| T32mips32 & [l B
L B ders i, quad_be 23.05.2007 11:04 File Folder
e |:| i quad_le 23.05.2007 11:04 File Folder
. analyzer i
i i i word_be 23.05.2007 11:04 File Folder
J api
o 4 word_le 23.05.2007 11:05 File Folder
. apu
Il decypherBl00al - | | D RSSSSEE
”E 8 items
=

e o

If your processor architecture has a preferred endianness, this <endianness> is left out and only the
<bus_width> is listed. The preferred endianness for the ARM architecture as an example is little endian

mode.

Favorite Links Name Date modified Type

Folders v ;. long 19.05.2008 16:07 File Folder

§ 174 items

+3 WMl Search

Mare » i byte 19.05.2008 16:07 File Folder E
19.05.2008 16:07 File Folder

¥ 32arm . | 5ilong be 19.05.2008 16:07 File Folder

i B demo D ;. quad_be 19.05.2008 16:07 File Folder
§ analyzer 5. word 19.05.2008 16:07 File Folder
T £ i word_be 19.05.2008 16:07 File Folder -
- - [] ;

SR

The name of the binary file for the FLASH algorithm corresponds to the name listed in the CODE column for

the

FLASH device in “List of Supported FLASH Devices” (flashlist.pdf).

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

81

Example 1:

J MIPS32 CPU in big endian mode

J Intel Strata FLASH 28L256L30

. 16-bit data bus width between CPU and FLASH

Programming algorithm: ~~/demo /mips/flash/word_be/i28£200k3.bin

Example 2:

. ARM9 CPU in little endian mode

. AM29DL323C FLASH

. 16-bit data bus width between CPU and FLASH

Programming algorithm: ~~/demo/arm/flash/word/am291v100.bin

If the binary file for the FLASH algorithm is not provided in ~~/demo/<architecture>/flash please
contact flash-support@lauterbach.com.

If you would like to write your own FLASH programming algorithm, please refer to the application note “How
to Write your own FLASH Algorithm” (flash_app_own_algorithm.pdf).

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 82

FLASH Algorithm Program/Data Range

If target-controlled FLASH programming is used TRACE32:
1. Downloads the external FLASH algorithm to the target RAM (FLASH Algorithm Program Range).

2. Downloads the programming data to the target RAM (FLASH Algorithm Data Range).
This proceeding requires the specification of both address ranges in the FLASH declaration.

Memory mapping for the FLASH Algorithm Program Range:

FLASH algorithm

32 byte

Required size for the external FLASH algorithm is size_of (<flash_algorithm>) + 32 byte

Memory mapping for the FLASH Algorithm Data Range:

32 byte argument buffer
Buffer for programming data

256 byte stack

J The argument buffer used for the communication between the TRACE32 software and the
FLASH algorithm is located at the first 32 bytes of the FLASH Algorithm Data Range.

J The 256 byte stack is located at the end of the FLASH Algorithm Data Range.

. The size of the buffer for programming data (<buffer_size>) specifies the maximum number of
bytes that are transferred from the TRACES32 software to the external FLASH programming
algorithm in one call.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 83

TRACE32 supports two formats to provide this information.

Format 1: <code_range> <data_range>

; FLASH.CFI <start_address> <bus_width> /TARGET <code_range> <data_range>
FLASH.CFI 0x0 Word /TARGET 0x20000000++0x7ff 0x20001000++0xfff

. <code_range>

TRACES2 downloads the external FLASH algorithm to <code_range>.

. <data_range>

TRACES32 loads the programming data to <data_range> in the target RAM.

. The maximum number of bytes that are transferred from the TRACE32 software to the external
FLASH programming algorithm in one call is calculated out of the <data_range> as follows:

size_of (<data_range>) - 32 byte argument buffer - 256 byte stack

Format 2: <code_address> <data_address> <buffer_size>

; FLASH.CFI <start_address> <bus_width> \
; /TARGET <code_address> <data_address> <buffer size>
FLASH.CFI 0x0 Word /TARGET 0x20000000 0x20001000 0x4000

. <code_address>

TRACERS2 loads the external FLASH algorithm to the target RAM starting at <code_address>.
. <data_address>
TRACERS2 loads the programming data to the target RAM starting at <data_address>.

J <buffer_size> specifies the maximum number of bytes that are transferred from the TRACE32
software to the external FLASH programming algorithm in one call.

If <buffer_size> is not specified 4 KByte is used by default.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 84

Converting TRACE32 Tool-based to Target-controlled FLASH Programming

CFl-conform FLASH Devices

Conversion from TRACE32 tool-based FLASH declaration to target-controlled FLASH declaration:

Add the option /TARGET and the information about the FLASH Algorithm Program/Data Range to the
FLASH.CFI command.

&FLASH_PROGRAMMING_METHOD="Tool-based"
; &FLASH_PROGRAMMING_METHOD="Target-controlled"

FLASH.RESet

(
IF "&FLASH_PROGRAMMING_METHOD"=="Tool-based"

; FLASH.CFI <start_address> <bus_width>
FLASH.CFI 0x0 Word
)

IF "&FLASH_PROGRAMMING_METHOD"=="Target-controlled"

(
; FLASH.CFI <start_address> <bus_width>/TARGET <code_range> <data_range>
FLASH.CFI 0x0 Word /TARGET 0x20000000++0xfff 0x20001000++0xfff

)

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 85

Not CFl-conform FLASH Devices

Conversion from TRACES32 tool-based FLASH declaration to target controlled FLASH declaration:
1. Replace the <family_code> by the keyword TARGET when using the FLASH.Create command.

2. Use the FLASH.TARGET command to specify the <code_range>, <data_range> and the
<flash_algorithm>. Please remember to use the FLASH algorithm from the directory with the
adequate <bus_width> and the correct <endianness>. The name of <flash_algorithm> matches
with the <family_code>.

&FLASH_PROGRAMMING_METHOD="Tool-based"
; &FLASH_PROGRAMMING_METHOD="Target-controlled"

FLASH.RESet

(
IF "&FLASH_PROGRAMMING_METHOD"=="Tool-based"

; FLASH.Create <unit_number> <address_range> <sector_size> <family code> <bus_width>
FLASH.Create 1. 0x0++0x3fffff 0x20000 I28F200B Long

)

IF "&FLASH_PROGRAMMING_METHOD"=="Target-controlled"
(
; FLASH.Create <unit_number> <address_range> <sector_size> TARGET <bus_width>
FLASH.Create 1. 0x0++0x3fffff 0x20000 TARGET Long
; FLASH.Target <code_range> <data_range> <flash_algorithm>
FLASH.TARGET 0x20000000++0xfff 0x20001000++0xfff ~~/demo/arm/flash/long be/i28£200b.bin
)

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 86

Maintaining the Declared FLASH Devices

TRACE32 maintains all declared FLASH devices in the so-called FLASH declaration table. The following
commands are provided:

FLASH.List List the contents of the FLASH declaration
table
FLASH.REset Clear the FLASH declaration table and

reset all FLASH programming setups
within TRACE32 to its default value

FLASH.Delete ALL | <range> | <unit_number> Remove entries from the FLASH
declaration table

List of Supported FLASH Devices

A list of all supported FLASH devices plus the corresponding <family_code> can be found in the online help

under:
< HELP [-E] s
| % Content || “ Index I $3 Find | [% command Tree | [g Bookmarks || __j Print |
Content
| close all | | open all V] use filter: bdmésk;tpu;
= TRACE3Z OnTine Help AI

= TRACE32 Directory
= TRACE3Z Index
+ TRACE32 Getting Started
=l TRACE3Z2 Documents
+ ser Llnterface
PRACTICE Script Language
General Commands and Functions

=l FLASH Programmin . .
= NOR FEKEH Programming User's Guide

List of Supported FLASH Devices
+ Application Notes Tor FLASH

Analyzer System

Front-end

ICD In-Circuit Debugger

Trigger Probe

#HMisc

TRACE32 Training

m

An up-to-date list of all supported FLASH devices is always available on our
web-page under:
https://www.lauterbach.com/ylist.html.

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 87

https://www.lauterbach.com/ylist.html

FLASH Programming via Boundary Scan

External NOR FLASH memories can be programmed via boundary scan, if the FLASH memory is
connected to an IC with a boundary scan chain and this boundary scan chain is accessible to the debugger.
After initializing the boundary scan FLASH mode, the tool based FLASH programming is used. All FLASH
commands like FLASH.CFI, FLASH.Program, ... can be used (target based programming is not possible!).

FLASH
—_»[TDI TDOl—p[TDI TDO—p{TDI TDOl—»/TDI TDO
IC4 IC3 IC2 IC1
™S ™S ™S ™S
PITCK I TCK »ITCK TCK

To avoid disturbances of the FLASH programming due to communication between the debugger and the
target CPU, the system should be set to down state:

SYStem.Down

Boundary scan chain configuration

The first step for FLASH programming via boundary scan is the scan chain configuration. Configuration is
done by loading the BSDL files in the right order. The following commands are available for the scan chain

configuration:

BSDL.UNLOAD ALL Removes all previous boundary scan chain configurations

BSDL.FILE <file> Loads a BSDL file

The BSDL file for the IC, which is closest to the board TDO connector, must be loaded first:

BSDL.UNLOAD ALL ; remove previous configuration

BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC1

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 88

BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC2
BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC3

BSDL.FILE LCMXCO1200C_£ftBGA256.bsdl ; load the BSDL file for IC4

The scan chain configuration can be viewed in the BSDL.state window:

&4 B::BSDL.state |E||E||E|
Configure Check Run
[Zrme | [«moveur | JtagClock ITAG.LOCK
[X unwoaDp | [+ moveDown| — 20.0MHz ~ [ClLocked
No. [Entity InstruEt'ion DR _Name DR Size| |

is pPAC:CLKSGlOAV_X) BYPASS*
1SpPAC_CLKS5610AV_X» |[BYPASS*

With the commands BSDL.BYPASSall and BSDL.IDCODEall (or the functions bsdl.check.bypass() and
bsdl.check.idcode() in a PRACTICE script) the correct function of the boundary scan chain can be verified.

FLASH interface definition

The FLASH interface definition is done with the two commands:

BSDL.FLASH.IFDefine Defines the FLASH memory interface
BSDL.FLASH.IFMap Maps the generic FLASH ports to the driving IC ports

The definition requires the number of the IC in the boundary scan chain, to which the FLASH memory is
connected, the number of address and data ports.

BSDL.FLASH.IFDefine RESet ; remove previous configuration
BSDL.FLASH.IFDefine NOR 4. 24. 16. ; defines a NOR FLASH memory with
; 24 address bits and 16 data
; bits

; the FLASH is connected to IC4

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 89

BSDL.FLASH.IFMap CE PR7C ; map the FLASH chip enable port
; to pin PR7C of IC4

BSDL.FLASH.IFMap OE PR7D ; map the FLASH output enable
; port to port PR7D of IC4

BSDL.FLASH.IFMap A0 PB7E ; map the FLASH address bit 0
; to port PB7E of IC4

If two or more FLASH memories are used in parallel, up to 4 sets of control ports are provided (e.g. CE,
CE2, CE3 and CE4).

The FLASH interface configuration can be checked with the command BSDL.FLASH.IFCheck (or
bsdl.check.flashconf() in a PRACTICE script).

FLASH Programming

To start the FLASH programming, the boundary scan chain must be initialized and the boundary scan
FLASH mode must enabled:

BSDL.FLASH.INIT SAFE Initializes the boundary scan chain
FLASH.BSDLACCESS ON Switch to boundary scan mode for FLASH access
BSDL.FLASH.INIT SAFE ; Initializes the boundary scan chain: sets the

; required instructions (BYPASS or EXTEST),

; set all ports, which are not used for FLASH
; programming to SAFE state according BSDL

; file and sets the FLASH ports to idle state

FLASH.RESET ; remove previous FLASH configuration

FLASH.BSDLaccess ON ; switch to boundary scan FLASH mode

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 90

ot
Title changes /

to “BSDL address”
when FLASH BSDL
access is on

o BFLASH. List

[=][=][=]

[XResetJL_ﬂ.nﬁ‘_uﬂ.ﬁogram”QHeﬁogram” ® Ao || Frcr |

1
o3
E:
C:
C:
oy
i
E
Ly
24
B
&
E5
E:
e
fE
{5
C:
i
2y
23
i
I

[BsSDL address [Yype

:00040000--0007FFFF
00080000--000BFFFF
000CD000--000FFFFF
00100000--0013FFFF
00140000--0017FFFF
00180000--001BFFFF
001C0000--001FFFFF
00200000--0023FFFF
00240000--0027FFFF
00280000--002BFFFF
002C0000--002FFFFF
00300000--0033FFFF
00340000--0037FFFF
00380000--003BFFFF
003C0000--003FFFFF
00400000--0043FFFF
00440000--0047FFFF
00480000--004BFFFF
004C0000--004FFFFF
00500000--0053FFFF
00540000--0057FFFF
00580000--005BFFFF
005C0000--005FFFFF

4

width |state unit |
BMZINZ5E [Tong [auto 1. -
AM29NZ256 |long |auto 1.
AM29N256 |Tong |auto ik i
AM29NZ256 |long |auto 1. 3
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1.
AM29NZ256 |long |auto 1. -

For the initialization of the boundary scan chain, the SAFE mode is recommended. Other modes are:
SAMPLE (the current state of the driving IC is sampled and these values are used during FLASH
programming), ZERO and ONE (sets all unused boundary scan register bits to ’0’ or ’1’). With the mode
NONE, the unused boundary scan register bits are not initialized and a previous configuration is used.

Caution:

board.

Initializing the unused boundary scan register bits to all zero or one could
enable output drivers which leads to unintended behavior or could damage the

After switching to boundary scan mode, the FLASH commands for tool based programming are used. The

boundary scan FLASH mode is terminated either by FLASH.BSDLaccess OFF or FLASH.RESet.

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide

91

Full Example

; stop the debugger
SYStem.Down

; configure the boundary scan chain

BSDL.UNLOAD ALL ; remove previous configuration
BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC1
BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC2
BSDL.FILE ispCLOCK5610Av_isc.bsm ; load the BSDL file for IC3
BSDL.FILE LCMXCO01200C_ftBGA256.bsdl ; load the BSDL file for IC4

; configure the FLASH interface

BSDL.FLASH.IFDefine RESet ; remove previous configuration
BSDL.FLASH.IFDefine NOR 4. 24. 16. ; defines a 16 bit NOR FLASH

; with 24 address bits on IC4
BSDL.FLASH.IFMap CE PR7C ; map the FLASH CE to port PR7C
BSDL.FLASH.IFMap OE PR7D ; map the FLASH OE to port PR7D
BSDL.FLASH.IFMap WE PB4C ; map the FLASH WE to port PB4C

; map the address ports
BSDL.FLASH.IFMap AO PB7E
BSDL.FLASH.IFMap Al PB7F
BSDL.FLASH.IFMap A2 PB8A
BSDL.FLASH.IFMap A3 PB8B
BSDL.FLASH.IFMap A4 PB8C
BSDL.FLASH.IFMap A5 PB8D
BSDL.FLASH.IFMap A6 PB8E
BSDL.FLASH.IFMap A7 PB8F
BSDL.FLASH.IFMap A8 PBY9A
BSDL.FLASH.IFMap A9 PB9B
BSDL.FLASH.IFMap Al10 PBSC
BSDL.FLASH.IFMap All PB9D
BSDL.FLASH.IFMap Al2 PBY9E
BSDL.FLASH.IFMap Al3 PBOF
BSDL.FLASH.IFMap Al4 PB10A
BSDL.FLASH.IFMap Al5 PB10B
BSDL.FLASH.IFMap Al6 PB10C
BSDL.FLASH.IFMap Al7 PB10D
BSDL.FLASH.IFMap Al8 PB10OF
BSDL.FLASH.IFMap Al9 PBl1A
BSDL.FLASH.IFMap A20 PBl1l1B
BSDL.FLASH.IFMap A21 PBllC
BSDL.FLASH.IFMap A22 PB1l1D
BSDL.FLASH.IFMap A23 PB6E

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User's Guide | 92

; map the data ports

BSDL.FLASH.IFMap DQO PR16B
BSDL.FLASH.IFMap DQl1 PR16A
BSDL.FLASH.IFMap DQ2 PR15B
BSDL.FLASH.IFMap DQ3 PRI15A
BSDL.FLASH.IFMap DQ4 PR14D
BSDL.FLASH.IFMap DQ5 PR14C
BSDL.FLASH.IFMap DQ6 PR14B
BSDL.FLASH.IFMap DQ7 PRI14A
BSDL.FLASH.IFMap DQ8 PR13D
BSDL.FLASH.IFMap DQS9 PR13C
BSDL.FLASH.IFMap DQ10 PR13B
BSDL.FLASH.IFMap DQl11l PR13A
BSDL.FLASH.IFMap DQl12 PR12D
BSDL.FLASH.IFMap DQ13 PR12C
BSDL.FLASH.IFMap DQl14 PR12B
BSDL.FLASH.IFMap DQ15 PR12A

; check the boundary scan chain
if bsdl.check.bypass()
(

if bsdl.check.idcode()

(

; initialize boundary scan chain
BSDL.FLASH.INIT SAFE

; reset the FLASH declaration
FLASH.RESet

; switch to boundary scan FLASH mode
FLASH.BSDLaccess ON

; declare the FLASH sectors by CFI query
FLASH.CFI 0x0 Word

; unlock the FLASH device if required
; FLASH.UNLOCK ALL

; enable the programming for all declared FLASH devices
FLASH.ReProgram ALL

; specify the file that should be programmed
Data.LOAD.auto demo.x

; program the file and disable the FLASH programming
FLASH.ReProgram off

; verify FLASH data

FLASH.AUTO ALL

Data.LOAD.auto demo.x /ComPare
FLASH.AUTO off

©1989-2024 Lauterbach Onchip/NOR FLASH Programming User’s Guide

; finish the boundary scan FLASH mode
FLASH.BSDLaccess OFF

FAQ

Please refer to https://support.lauterbach.com/kb.

Further Information

List of supported FLASH
devices

“List of Supported FLASH Devices” (flashlist.pdf) or
https://www.lauterbach.com/ylist.html

Command list
(NOR FLASH)

FLASH command list in “General Commands Reference Guide F”
(general_ref_{f.pdf).

Troubleshooting

“Tips to Solve NOR FLASH Programming Problems”
(flash_diagnosis.pdf)

Write your own FLASH
programming algorithm

“How to Write your own FLASH Algorithm”
(flash_app_own_algorithm.pdf)

©1989-2024 Lauterbach

Onchip/NOR FLASH Programming User’s Guide |

94

https://www.lauterbach.com/ylist.html
https://support.lauterbach.com/kb

	Onchip/NOR FLASH Programming User’s Guide
	Introduction
	Standard Approach
	On-chip FLASH
	Integrated On-chip FLASH Programming
	Target-controlled On-chip FLASH Programming

	Off-chip FLASH Devices Supporting CFI
	CPU Setup
	Bus Configuration
	FLASH Declaration
	Unlocking the FLASH Devices
	Programming the FLASH Devices
	Full Example
	Target-controlled FLASH Programming
	Full Example (Target-controlled)

	Programming Commands
	FLASH.ReProgram Command (Target-controlled)
	FLASH.ReProgram Command (TRACE32 Tool-based)
	FLASH.Erase / FLASH.Program Command
	The FLASH.AUTO Command
	Software Breakpoints in FLASH
	Code Patches in FLASH
	CENSORSHIP Option

	Unlocking Command

	DualPort FLASH Programming
	Benefits
	Preconditions
	Usage
	Full Example
	Full Example (ARM/Cortex)

	Special Features for Onchip FLASHs
	OTP Sector Programming
	Mirrored FLASH Addresses
	Non-Cached/Cached Addresses
	FLASH mirrored to Boot Area
	Hardvard Architecture with Unified Memory

	FLASH.Create Command
	Group Code NOP
	INFO Option
	KEEP Option
	BootModeHeaDer Option
	EraseALIAS Option
	AutoInc Option

	FLASH.TARGET Command
	STACKSIZE Option
	FirmWareRAM Option

	FLASH.CLocK Command
	FLASH.CHANGETYPE Command
	FLASH.UNSECUREerase Command

	FLASH Declaration in Detail
	Further Applications for FLASH Declarations Using CFI
	Identical FLASH Devices in Series
	Heterogeneous FLASH Devices in Series
	Determining the FLASH Size
	Truncating the FLASH Size to the CPU Address Space
	FLASH Declaration via FLASH.CFI Dialog Window
	Generation of Equivalent FLASH.Create Commands

	Declarations for not CFI-conform FLASH Devices
	Manual FLASH Declaration (TRACE32 Tool-based)
	FLASH Devices with Uniform Sectors
	FLASH Devices with Sectors of Different Size
	FLASH Devices in Series
	FLASH Devices in Parallel
	General Recommendations

	TRACE32 Tool-based vs. Target-controlled FLASH Programming
	TRACE32 Tool-based FLASH Programming
	Target-controlled FLASH Programming
	Converting TRACE32 Tool-based to Target-controlled FLASH Programming

	Maintaining the Declared FLASH Devices
	List of Supported FLASH Devices

	FLASH Programming via Boundary Scan
	Boundary scan chain configuration
	FLASH interface definition
	FLASH Programming
	Full Example

	FAQ
	Further Information

