
MANUAL

Integration for Rhapsody
in C/C++

Integration for Rhapsody in C/C++

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 3rd-Party Tool Integrations .. 

 Integration for Rhapsody in C/C++ ... 1

 Overview .. 3

 Architecture of Driver ... 4

 Driver Installation .. 5

 First Run of Integration Driver ... 6

 Selecting Rhapsody Version .. 8

 Preparing Rhapsody Environment .. 9

 Preparing TRACE32 .. 10

 Rhapsody Helpers Configuration .. 12

 Rebuilding OXF LangCpp libraries for eCos, GCC and PPC .. 15

 Rebuilding OXF LangC Libraries for OSE, DIAB and PPC .. 17

 Rebuilding OXF LangC Libraries for eCos, GCC and PPC .. 18

 Preparing C/C++ Application for Animation ... 26

 Integration Features .. 29

 Locating Source in Rhapsody 30

 Go and Break in TRACE32 35
Integration for Rhapsody in C/C++ | 2©1989-2024 Lauterbach

Integration for Rhapsody in C/C++

Version 06-Jun-2024

This document describes using the TRACE32 Integration Driver for Rhapsody 7.x or 8.x.

Overview

The TRACE32 Integration Driver for Rhapsody 7.x and 8.x allows you to debug, trace and animate
applications created with Rhapsody on a real target using TRACE32-ICD or on a simulated target using the
TRACE32 Instruction Set Simulator.

NOTE: This integration uses internally the TRACE32 Remote API.
The Remote API has restrictions if TRACE32 runs in demo mode.
Please see there for further details.
Integration for Rhapsody in C/C++ | 3©1989-2024 Lauterbach

Architecture of Driver
Integration for Rhapsody in C/C++ | 4©1989-2024 Lauterbach

Driver Installation

Before you install the integration driver, make sure Rhapsody is not running.

Locate the installation files in the TRACE32 directory ~~/demo/env/rhapsody/cpp.
Run setup.exe and follow the installer instructions:
Integration for Rhapsody in C/C++ | 5©1989-2024 Lauterbach

First Run of Integration Driver

Make sure Rhapsody is not running before starting the driver the first time.

Start the driver from Menu Start -> All Programs -> Rhapsody and TRACE32 Integration -> Start Integration.

The driver needs to access some Rhapsody parameter files an connects to Rhapsody and TRACE32 via
ports. For this it needs to run with administrator privileges. Please acknowledge all privilege dialogs opened
by Windows.

After the first run you will be asked about several parameters described below, required for the integration
working. Provide your own values or select “Load default values“

IDE DLL to driver Port TCP/IP port number for communication between Integration Driver
and IDE DLL located at
<RHAPSODY_ROOT>\Share\DLLs\RhT32IDE.dll

Rhapsody Helpers (local
menu) to driver Port

TCP/IP port number for communication between Driver invoked by
Helper commands and Driver which already runs for the
integration.

TRACE32 API Port UDP port number which is used to communicate between Driver
and TRACE32. Must be the same as provided in config.t32 file in
your TRACE32 installation directory. See “Preparing TRACE32”
(int_rhapsody_cpp.pdf).

TRACE32 API Packet
length

Specifies the maximum packet length in bytes for the socket
communication between Driver and TRACE32. Must be the same
as provided in config.t32 file in your TRACE32 installation
directory. See “Preparing TRACE32” (int_rhapsody_cpp.pdf).

Rhapsody animation port TCP/IP animation port. This port is defined in the rhapsody.ini file.
Instrumented applications communicate with Rhapsody on this
port during animation session. Default value is 6423.

To Rhapsody FDX Chan-
nel name

Name of FDX channel used by the “ConnectionPort” OSAL class.
Direction of data in this channel is from target to Rhapsody.

To Target FDX Channel
name

Name of FDX channel used by the “ConnectionPort” OSAL class.
Direction of data in this channel is from Rhapsody to Target. See
“Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC”
(int_rhapsody_cpp.pdf).
Integration for Rhapsody in C/C++ | 6©1989-2024 Lauterbach

FDX Buffer Length Size of FDX channels. This value must be the same as used by the
“ConnectionPort” class. See “Rebuilding OXF LangCpp Libraries
for OSE, DIAB and PPC” (int_rhapsody_cpp.pdf).

FDX Polling Interval During animation, the driver periodically checks if there is any data
pending in FDX channels. This value is interpreted as number of
milliseconds between channel checks. For a slow PC or when
using the simulator, this value should be bigger (50-100 ms).
Default value is 10ms.
Integration for Rhapsody in C/C++ | 7©1989-2024 Lauterbach

Selecting Rhapsody Version

During startup the integration driver queries the Windows registry to detect all supported Rhapsody versions
that are installed in the system. When detection completes successfully ad at least one version is present,
the combo box in the upper part of the main dialog is populated with the results.

The Integration Driver is started when the “Select” button is pressed. The driver loads the settings of the
selected version and attempts to establish a connection using COM API.

Integration for Rhapsody in C/C++ | 8©1989-2024 Lauterbach

Preparing Rhapsody Environment

Rhapsody uses one of several Environments depending on the current value of the
“CPP_CG::Configuration::Environment” or “C_CG::Configuration::Environment” property. To check the
environment of your model in Rhapsody, expand the “Components” and “Configurations” of your model in
the “Model View”, right-click the configuration, and select Features from the pop-up menu. Select the
Properties tab and “View All”.

To enable the driver within Rhapsody for a specific environment, select “Add/Remove IDE DLL from C++
environments” in the driver dialog, then select the appropriate environments in the list. Close any open
projects before changing these settings. Settings can be edited separately for each Rhapsody installation:
select the version using the combo box near the top of the settings dialog:
Integration for Rhapsody in C/C++ | 9©1989-2024 Lauterbach

Preparing TRACE32

To enable the communication of the driver to TRACE32, some changes need to be made in config.t32. This
file can be found in your TRACE32 Installation directory. Please keep one empty line before and after the
section with RCL, PORT and PACKLEN.
Integration for Rhapsody in C/C++ | 10©1989-2024 Lauterbach

Changes described above can also be made by using the T32Start utility provided with TRACE32:
Integration for Rhapsody in C/C++ | 11©1989-2024 Lauterbach

Rhapsody Helpers Configuration

Helpers are the applications that can be added to Rhapsody menus. Integration Driver offers 10 helpers that
can be selectively included/excluded from Rhapsody menus to fit your needs. The “helpers.hep” file
contains all helpers. To generate new .hep and .sbs files, please run RhT32Driver.exe with the
parameter "-generate_profile".

Adding helper file to project:

1. Start Rhapsody with “Run as administrator”.

2. If the profile does not yet exist, import the profile:
File -> Add to Model..., select “%integratio patch%\profile.sbs”
Optionally you can copy the .sbs and .hep file to your Rhapsody project.

3. Double clock on the profile (profile property windows)

4. Select “Properties”

5. In “View” context menu, select “All”
Integration for Rhapsody in C/C++ | 12©1989-2024 Lauterbach

6. Select General -> Model -> HelpersFile and open “trace32_helpers.hep”

Helper settings can be edited separately for each Rhapsody installation detected in the systems.

Editing helper settings:

1. Click “Add/Remove Rhapsody helpers” button in Integration Driver dialog

2. Select Rhapsody version in combo box in Helpers dialog

3. Edit settings

4. Save settings by clicking “Save” button

Integration for Rhapsody in C/C++ | 13©1989-2024 Lauterbach

Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for OSE operating system, built with DIAB PPC compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during the build of OXF LangCpp libraries for OSE, DIAB and PPC environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from the driver directory.

Before building, oseppcdiabpath.bat needs to be altered to match your environment (compiler and OSE
location).

To rebuild the framework, execute batch files in a command console:

aom\oseppcdiabaom.mak
omcom\oseppcdiabomcom.mak
oxf\oseppcdiaboxf.mak
tom\oseppcdiabtom.mak

Makefiles that build specific part of OXF libraries

oseppcdiabbuild.mak Makefile that builds entire OXF.

oseppcdiabpath.bat Batch file that sets environment paths.

oseppcdiabbuild.bat Batch file that starts build process by calling dmake

oxf\oseOS.cpp
oxf\oseOS.h

OSAL classes implementation.
oseConnectionPort is changed to use FDX routines
instead of TCP/IP sockets. Original declaration and
definition of oseConnectionPort is commented with
preprocessor commands.

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation. t32fdxarm.c contains
additional ARM specific FDX DCC communication
routines, however this file is also needed by building
process if target is other than ARM.

oseppcdiabpath.bat
oseppcdiabbuild.bat
Integration for Rhapsody in C/C++ | 14©1989-2024 Lauterbach

Rebuilding OXF LangCpp libraries for eCos, GCC and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system using GCC powerpc-eabi
compiler. To rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other
Environments” (int_rhapsody_cpp.pdf).

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during the build of OXF LangCpp libraries for eCos, GCC and PPC environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosppcgccpath.bat need to be altered to match your environment (compiler and eCos
location).

To rebuild the framework, execute batch files in a command console:

aom\ecosppcgccaom.mak
omcom\ecosppcgccomcom.mak
oxf\ecosppcgccoxf.mak
tom\ecosppcgcctom.mak

Makefiles that build specific part of OXF libraries

ecosppcgccbuild.mak Makefile that builds entire OXF.

ecosppcgccpath.bat Batch file that sets environment paths.

ecosppcgccbuild.bat Batch file that starts build process by calling GNU make

oxf\eCosOS.cpp
oxf\eCosOS.h

OSAL classes implementation.
ecosConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.

osconfig\eCos\omosconfig.h eCos adaptor configuration file

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation. t32fdxarm.c contains
additional ARM specific FDX DCC communication
routines, however this file is also needed by building
process if target is other than ARM.

ecosppcgccpath.bat
ecosppcgccbuild.bat
Integration for Rhapsody in C/C++ | 15©1989-2024 Lauterbach

Rebuilding OXF LangCpp Libraries for eCos, GCC and ARM

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC arm-elf compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf). Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody
7.x and TRACE32 Integration Driver) contains all files with necessary changes needed for proper OXF
building.

Following table lists all files from directory <driver installation directory>\Share\LangCpp that are used
during build of OXF LangCpp libraries for eCos, GCC and ARM environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangCpp directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosarmgccpath.bat need to be altered to match your environment (compiler and eCos
location).

By default, oxf\ecosarmgccoxf.mak makefile is configured for ARM9 DCC communication (line 125-126). If
the target is not ARM9, compile flags need to changed to one of possible values: ARM7, ARM9, ARM11,
XSCALE, depending on your target. Simulators and some ARM processors don’t support DCC
communication. If such a target is used, please remove both compile flags (-DT32_FDX_DCC and -
DARM9).

To rebuild framework, execute batch files in a command console:

aom\ecosarmgccaom.mak
omcom\ecosarmgccomcom.mak
oxf\ecosarmgccoxf.mak
tom\ecosarmgcctom.mak

Makefiles that build specific part of OXF libraries

ecosarmgccbuild.mak Makefile that builds entire OXF.

ecosarmgccpath.bat Batch file that sets environment paths.

ecosarmgccbuild.bat Batch file that starts build process by calling GNU make

oxf\eCosOS.cpp
oxf\eCosOS.h

OSAL classes implementation.
ecosConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.

osconfig\eCos\omosconfig.h eCos adaptor configuration file

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation.

ecosarmgccpath.bat
ecosarmgccbuild.bat
Integration for Rhapsody in C/C++ | 16©1989-2024 Lauterbach

Rebuilding OXF LangC Libraries for OSE, DIAB and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for OSE operating system with DIAB PPC compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for OSE, DIAB and PPC environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, oseppcdiabpath.bat need to be altered to match your environment (compiler and OSE
location).

To rebuild framework, execute batch files in a command console:

aom\oseppcdiabaom.mak
omcom\oseppcdiabomcom.mak
oxf\oseppcdiaboxf.mak

Makefiles that build specific part of OXF libraries

oseppcdiabbuild.mak Makefile that builds entire OXF.

oseppcdiabpath.bat Batch file that sets environment paths.

oseppcdiabbuild.bat Batch file that starts build process by calling dmake

oxf\RiCOSOSE.c
oxf\RiCOSOSE.h

OSAL classes implementation.
Original ConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.

osconfig\OSE\ricosconfig.h
osconfig\OSE\RiCOS.h

OSE adaptor and configuration files

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation. t32fdxarm.c contains
additional ARM specific FDX DCC communication
routines, however this file is also needed by building
process if target is other than ARM.

oseppcdiabpath.bat
oseppcdiabbuild.bat
Integration for Rhapsody in C/C++ | 17©1989-2024 Lauterbach

Rebuilding OXF LangC Libraries for eCos, GCC and PPC

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC powerpc-eabi
compiler. To rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other
Environments” (int_rhapsody_cpp.pdf)

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains all files with necessary changes needed for proper OXF building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for eCos, GCC and PPC environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosppcgccpath.bat need to be altered to match your environment (compiler and eCos
location).

To rebuild framework, execute batch files in a command console:

aom\ecosppcgccaom.mak
omcom\ecosppcgccomcom.mak
oxf\ecosppcgccoxf.mak

Makefiles that build specific part of OXF libraries

ecosppcgccbuild.mak Makefile that builds entire OXF.

ecosppcgccpath.bat Batch file that sets environment paths.

ecosppcgccbuild.bat Batch file that starts build process by calling GNU make

oxf\RiCOSeCos.c
oxf\RiCOSeCos.h

OSAL classes implementation.
Original ConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.

osconfig\eCos\ricosconfig.h
osconfig\eCos\RiCOS.h

eCos adaptor and configuration files

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation. t32fdxarm.c contains
additional ARM specific FDX DCC communication
routines, however this file is also needed by building
process if target is other than ARM.

ecosppcgccpath.bat
ecosppcgccbuild.bat
Integration for Rhapsody in C/C++ | 18©1989-2024 Lauterbach

Rebuilding OXF LangC Libraries for eCos, GCC and ARM

To use Integration Driver, OXF libraries need to be rebuilt.

This chapter shows how to rebuild OXF libraries for eCos operating system with GCC arm-elf compiler. To
rebuild OXF for other OS, please refer to “Rebuilding OXF Libraries for Other Environments”
(int_rhapsody_cpp.pdf). Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody
7.x and TRACE32 Integration Driver) contains all files with necessary changes needed for proper OXF
building.

Following table lists all files from directory <driver installation directory>\Share\LangC that are used
during build of OXF LangC libraries for eCos, GCC and ARM environment.

Compare above listed files with your existing files in <RHAPSODY_ROOT>\Share\LangC directory by
using diff tool and alter your files appropriately. If some files don’t exist, copy them from driver directory.

Before building, ecosarmgccpath.bat need to be altered to match your environment (compiler and eCos
location).

By default, oxf\ecosarmgccoxf.mak makefile is configured for ARM9 DCC communication (line 125-126). If
target is not ARM9, compile flags need to changed to one of possible values: ARM7, ARM9, ARM11,
XSCALE, depending on your target. Simulators and some ARM processors don’t support DCC
communication. If such a target is used, please remove both compile flags (-DT32_FDX_DCC and -
DARM9).

To rebuild framework, execute batch files in a command console:

aom\ecosarmgccaom.mak
omcom\ecosarmgccomcom.mak
oxf\ecosarmgccoxf.mak

Makefiles that build specific part of OXF libraries

ecosarmgccbuild.mak Makefile that builds entire OXF.

ecosarmgccpath.bat Batch file that sets environment paths.

ecosarmgccbuild.bat Batch file that starts build process by calling GNU make

oxf\RiCOSeCos.c
oxf\RiCOSeCos.h

OSAL classes implementation.
ecosConnectionPort is changed to use FDX routines
instead of TCP/IP sockets.

osconfig\eCos\ricosconfig.h
osconfig\eCos\RiCOS.h

eCos adaptor and configuration files

oxf\t32fdx.c
oxf\t32fdxarm.c
oxf\t32fdx.h

FDX routines implementation.

ecosarmgccpath.bat
ecosarmgccbuild.bat
Integration for Rhapsody in C/C++ | 19©1989-2024 Lauterbach

Rebuilding OXF Libraries for Other Environments

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains source files (in “Templates” directory) that allows TRACE32 FDX
communication. These files are templates that can be used to implement FDX communication for any
environment in Rhapsody.

Rhapsody in C++

LangCpp_templateOS.h contains ConnectionPort class definition template for TRACE32 and Rhapsody in
C++ Integration.

To implement FDX communication instead of standard TCP/IP, please make following steps for your
environment:

<OS_NAME> used below is a name of operating system for which you want to implement FDX
communication, for example: 'ose', 'Vx', 'Nu', etc...

<OS_NAME>OS.h and <OS_NAME>OS.cpp files referred to in the following steps can be found in:

<RHAPSODY_ROOT>\Share\LangCpp\oxf
Integration for Rhapsody in C/C++ | 20©1989-2024 Lauterbach

5. Comment <OS_NAME>ConnectionPort class definition in file <OS_NAME>OS.h

6. Copy content of file LangCpp_templateOS.h into <OS_NAME>OS.h, below previously
commented source code.

7. Comment following method definitions and variable initializations in <OS_NAME>OS.cpp:

Make sure that there are no other not commented methods of class <OS_NAME>ConnectionPort.
If there are any, comment them too.

8. Copy content of file LangCpp_templateOS.cpp below previously commented source code.

9. Replace all occurences of T32_INT_OS_NAME with your OS name in both <OS_NAME>OS.h
and <OS_NAME>OS.cpp files.

10. ConnectionPort class can report errors in some situations. Error descriptions are simple strings.
To implement handling of these errors please fill method ErrorNotification in
<OS_NAME>ConnectionPort class with code appropriate for your system (for example
fprintf(stderr,message)). Filling this function is not obligatory.

11. <OS_NAME>OS.h with new <OS_NAME>ConnectionPort class definition copied in step 2
contains following preprocessor define:

Replace ... in this define with <OS_NAME>Thread() constructor parameters. These parameters can
be found in <OS_NAME>ConnectionPort::Connect method that you commented in step 3, nearly
at the end of that method.

12. <OS_NAME>OS.h with new <OS_NAME>ConnectionPort class definition copied in step 2
contains following preprocessor define:

Replace ... in this define with delay function name specific for your OS.

13. Copy t32fdx.c and t32fdx.h files to <RHAPSODY_ROOT>\Share\LangCpp\oxf directory and
add them to your OXF compilation/linking makefile. These files can be found in driver installation
directory (usually C:\Program Files\...).

14. Add:

char* <OS_NAME>ConnectionPort::m_Buf = NULL

int <OS_NAME>ConnectionPort::m_BufSize = 0

<OS_NAME>ConnectionPort::<OS_NAME>ConnectionPort()

<OS_NAME>ConnectionPort::~<OS_NAME>ConnectionPort()

void <OS_NAME>ConnectionPort::readFromSockLoop(<OS_NAME>ConnectionPort *me)

int <OS_NAME>ConnectionPort::Connect(const char* SocketAddress = NULL, unsigned int nSocketPort = 0)

int <OS_NAME>ConnectionPort::Send(OMSData *m)

#define T32_INT_READFROMSOCKLOOP_THREAD_CREATION_PARAMETERS ...

#define T32_INT_DELAY_NAME(miliseconds) ...(miliseconds)

#include "t32fdx.h"
Integration for Rhapsody in C/C++ | 21©1989-2024 Lauterbach

to the beginning of <OS_NAME>OS.cpp file. The best place is immediately after:

Rhapsody in C

LangC_templateOS.h contains ConnectionPort struct definition template for TRACE32 and Rhapsody in C
Integration.

To implement FDX communication instead of standard TCP/IP please make following steps for your
environment:

<OS_NAME> used below is a name of operating system for which you want to implement FDX
communication, for example: 'ose', 'Vx', 'Nu', etc...

RiCOS<OS_NAME>OS.h and RiCOS<OS_NAME>OS.c files referred to in the following steps can be
found in:

#ifdef _OMINSTRUMENT

<RHAPSODY_ROOT>\Share\LangC\oxf
Integration for Rhapsody in C/C++ | 22©1989-2024 Lauterbach

1. Comment RiC<OS_NAME>ConnectionPort struct definition together with typedef below in file
RiCOS<OS_NAME>OS.h

2. Copy content of file LangC_templateOS.h into RiCOS<OS_NAME>OS.h, below previously
commented source code.

3. Comment following function definitions in RiCOS<OS_NAME>OS.c:

Make sure that there are no other not commented function RiCOSConnectionPort_... If there are
any, comment them too.

4. Copy content of file LangC_templateOS.c below previously commented source code.

5. Replace all occurences of T32_INT_OS_NAME with your OS name in RiCOS<OS_NAME>OS.h
file.

6. ConnectionPort functions can report errors in some situations. Error descriptions are simple
strings. To implement handling of these errors please fill function
RiCOSConnectionPort_ErrorNotification(char * message) with code appropriate for your
system (for example fprintf(stderr,message)). Filling this function is not obligatory.

7. RiCOS<OS_NAME>OS.h with new RiC<OS_NAME>ConnectionPort struct definition copied in
step 2 contains following preprocessor define:

Replace ... in this define with RiCOSTask_create() function parameters. These parameters can be
found in RiCOSConnectionPort_Connect function that you commented in step 3, nearly at the end
of that function.

8. RiCOS<OS_NAME>OS.h with new RiC<OS_NAME>ConnectionPort struct definition copied in
step 2 contains following preprocessor define:

Replace ... in this define with delay function name specific for your OS.

RiCBoolean RiCOSConnectionPort_init(RiCOSConnectionPort * const me)

void RiCOSConnectionPort_cleanup(RiCOSConnectionPort * const me)

RiCOSConnectionPort * RiCOSConnectionPort_create()

void RiCOSConnectionPort_destroy(RiCOSConnectionPort * const me)

static void readFromSockLoop(RiCOSConnectionPort *me);

RiCOSResult RiCOSConnectionPort_Connect(RiCOSConnectionPort * const me,const char* const SocketAddress,unsigned int
nSocketPort)

RiCOSResult RiCOSConnectionPort_Send(RiCOSConnectionPort * const me, struct RiCSData *m)

RiCBoolean RiCOSConnectionPort_SetDispatcher(RiCOSConnectionPort * const me, RiCOS_dispatchfunc dispfunc)

static void readFromSockLoop(RiCOSConnectionPort *me)

#define T32_INT_READFROMSOCKLOOP_TASK_CREATION_PARAMETERS ...

#define T32_INT_DELAY_NAME(miliseconds) ...(miliseconds)
Integration for Rhapsody in C/C++ | 23©1989-2024 Lauterbach

9. Copy t32dfx.c and t32fdx.h files to <RHAPSODY_ROOT>\Share\LangC\oxf directory and add
them to your OXF compilation/linking makefile. These files can be found in driver installation
directory (usually C:\Program Files\...)

10. Add:

to the beginning of RiCOS<OS_NAME>OS.c file. The best place is immediately after:

#include "t32fdx.h"

#ifdef _OMINSTRUMENT
Integration for Rhapsody in C/C++ | 24©1989-2024 Lauterbach

Preparing C++ Application for Animation

This section describes how to prepare a C++ application for animation in OSE, DIAB and PPC

Before you can begin animation, you must follow these steps:

1. Set the CPP_CG::Configuration::Environment property to environment you are working with.
For purposes of this manual environment is OsePpcDiab.

2. Set the Instrumentation flag for the configuration to Animation, and optionally the animation
scope using the Advanced button.

a. In the browser, expand the component, right-click the configuration, and select Features from the
pop-up menu.

b. Select the Settings tab.

c. Set the Instrumentation field to Animation.

d. To instrument operations and set a finer scope on the instrumentation, click the Advanced button.

3. For OSE, change heap share mode to yes in file:

4. Generate code for the configuration. If you don’t have a properly configured Embedded File
System in OSE, make sure that generated code doesn’t have any operations which are using file
system (stdout, stdin, cout, ...). It there are any, comment them out.

5. If DIAB PPC compiler is used together with OSE (like in this manual), -Xinit-section=2 need to
be added to CFLAGS and CXXFLAGS in <OSE_ROOT>\powerpc\makefiles\compilers\diab.mk.

6. Build application using Code->Build.

<RHAPSODY_ROOT>\Share\MakeTmp\OseDiabPPCconf.mk

INCLUDE_OSE_HEAP*= yes

.IF $(INCLUDE_OSE_HEAP) == yes
 HEAP_SHARE_MODE *= yes# [yes | no]
 HEAP_SIZE*= SIZE_276K
.END

CFLAGS+= $(FLAGS)
CFLAGS+= -Xlint
CFLAGS+= -Xinit-section=2

...

CXXFLAGS+= $(FLAGS)
CXXFLAGS+= -Xinit-section=2
Integration for Rhapsody in C/C++ | 25©1989-2024 Lauterbach

Preparing C/C++ Application for Animation

Driver installation directory (usually: C:\Program Files\Lauterbach GmbH\Rhapsody 7.x and TRACE32
Integration Driver) contains following files with environments definition:

Please refer to documentation provided by Rhapsody: “RTOS Adapter Guide - chapter: The Deployment
Environment - Adapting Rhapsody to a New RTOS - Step 5: Creating Properties for a new RTOS“.
This documentation explains in detail the meaning and use of site<language>.prp files.

In case of using OsePPCDiab environment for C language, all steps listed in “Preparing C++ Application
for Animation” (int_rhapsody_cpp.pdf) apply, except step 1, where CPP_CG is changed to C_CG.

Environments listed in the table below require additional batch files in <RHAPSODY_ROOT>\Share\etc
directory. These files are used to invoke Rhapsody application build and can be found in <Driver
Installation Directory>\Share\etc:

All above batch files need to be altered to match your environment (compiler and eCos/OSE location).

Properties\siteC++.prp eCosARM and eCosPPC environments definition for C++
language

Properties\siteC.prp eCosARM, eCosPPC and OsePPCDiab environments definition
for C language

oseppcdiabmake.bat OSE on PPC

ecosppcgccmake.bat eCos on PPC

ecosarmgccmake.bat eCos on ARM
Integration for Rhapsody in C/C++ | 26©1989-2024 Lauterbach

Downloading Application Image to Target

To download application from Rhapsody to target, Integration Driver requires a practice script
download.cmm to be provided in directory that contains linked application image. For Ping-Pong sample
this directory is
<RHAPSODY_ROOT>\Samples\CppSamples\PingPong\AnimComponent\AnimConfig.

Driver passes image path as parameter &image_path in download script.

Download scripts for LangCpp and LangC can be found at <Driver Installation Directory>\Download:

Each of download script contains section “Target initialization”. Please alter this section appropriately for
your target.

Each download script also contains a &dcc_fdx_mode variable, that sets appropriate FDX communication
mode: DCC (&dcc_fdx_mode=1) or BUFFERE/BUFFERC (&dcc_fdx_mode=0). DCC communication can
be used only on targets that support Debug Communication Channel (most ARMs). BUFFERC can be used
on other targets (not supporting DCC) and TRACE32 simulators. BUFFERE can be used only on
simulators. FDX communication mode has to match mode used during OXF building. See “Rebuilding
OXF LangCpp Libraries for eCos, GCC and ARM” (int_rhapsody_cpp.pdf) and “Rebuilding OXF LangC
Libraries for eCos, GCC and ARM” (int_rhapsody_cpp.pdf) for details.

After preparing download script, please follow below steps to download application to target:

LangCpp\download_OSE_FADS860.cmm

LangCpp\download_ECOS_FADS860.cmm

LangCpp\download_ECOS_ARM9Excalibur.cmm

LangC\download_OSE_FADS860.cmm

LangC\download_ECOS_FADS860.cmm

LangC\download_ECOS_ARM9Excalibur.cmm
Integration for Rhapsody in C/C++ | 27©1989-2024 Lauterbach

1. Run Integration Driver.

2. Run TRACE32 Simulator or ICD.

3. From Rhapsody menu select Code->Target->Connect. If connection is estabilished, Rhapsody
status bar should contain “Connected” message. Driver indicates succesfull connection by
message in log window and “CONNECTED” status under TRACE32 icon. If connecting failed try
to connect again.

4. In Rhapsody select Code->Target->Download to download application image. Successfull
downloading is indicated by “Download complete“ message in Rhapsody status bar and by
availability of Code->Run option in Rhapsody menu.
Integration for Rhapsody in C/C++ | 28©1989-2024 Lauterbach

Integration Features

General purpose of Integration Driver is to allow animation of application in target/simulator without
performing TCP/IP connection link beetween Rhapsody and instrumented application. Additionally
Integration Driver offers some features which can be helpfull during debbuging Rhapsody created
applications using TRACE32.
Integration for Rhapsody in C/C++ | 29©1989-2024 Lauterbach

Locating Source in Rhapsody

To use this feature, additional PRACTICE command - SETUP.EDITEXT ON - need to be executed in
download script. Please refer to “Downloading Application Image to Target” (int_rhapsody_cpp.pdf).

To edit source in Rhapsody, right-click source line of function (other than constructor and destructor) in
TRACE32 and select Edit Source.
Integration for Rhapsody in C/C++ | 30©1989-2024 Lauterbach

To locate model element in Rhapsody project browser, right-click on function header (or on any line of
constructor or destructor) in TRACE32 and select Edit Source.
Integration for Rhapsody in C/C++ | 31©1989-2024 Lauterbach

Locating Source in TRACE32

To locate source in TRACE32 right-click on model element in diagram or project browser and select Show
In TRACE32. The selected method is displayed in the Data.List window. For classes TRACE32 lists
constructor source.
Integration for Rhapsody in C/C++ | 32©1989-2024 Lauterbach

Breakpoints

Integration Driver allows setting/clearing/disabling/enabling breakpoints directly from Rhapsody by using
right-click menu.

To set, clear, enable or disable a breapoint right-click on model element in diagram or project browser and
select appropriate option. Refer to “Supported Model Elements” (int_rhapsody_cpp.pdf) to see details
about model elements support.
Integration for Rhapsody in C/C++ | 33©1989-2024 Lauterbach

To manage breakpoints, click “Breakpoints“ button in Integration Driver dialog. Tool window “TRACE32
Breakpoints“ allows deleting, enabling and disabling each breakpoint that was set in Rhapsody model.

To locate model element in Rhapsody, right-click on breakpoint in the list and select “Show In Rhapsody”.
Additionaly, model element can be located by double-clicking on breakpoint.

To open source code for model element in TRACE32, right-click on breakpoint and select “Show in
TRACE32”.

If application is downloaded to target (see “Downloading Application Image to Target”
(int_rhapsody_cpp.pdf)), driver disables all breakpoints. Please check “Enable breakpoints after download“
to enable breakpoints after download is finished.
Integration for Rhapsody in C/C++ | 34©1989-2024 Lauterbach

NOTE: Symbols used by breakpoints are evaluated only once during set. If statechart implementation is
changed, breakpoints need to be deleted and set again to evaluate new symbols.

Go and Break in TRACE32

By using Go In TRACE32 and Break in TRACE32 you can control the execution of animated application
separately from Rhapsody. Go In TRACE32 is a way to resume execution after stopping at breakpoint
Integration for Rhapsody in C/C++ | 35©1989-2024 Lauterbach

Supported Model Elements

The table below shows supported model elements and their mapping into C++/C source code symbols in
TRACE32. These mapping is used by “Locating Source in TRACE32” (int_rhapsody_cpp.pdf) and
“Breakpoints” (int_rhapsody_cpp.pdf) features of this integration.

Class Example: Player

Symbols of following elements are used: constructor, destructor,
primitive and triggered operations. See below for examples of each
element.

Constructor Example: Player::Player

C++: Player::Player
C, public: Player_Init
C, private: \Player\Init

Destructor Example: Player::~Player

C++: Player::~Player
C, public: Player_Cleanup
C, private: \Player\Cleanup

Primitive
Operation

Example: Player::doHit

C++: Player::doHit
C, public: Player_doHit
C, private: \Player\doHit

Triggered
Operation

Example: Player::catch

C++: Player::catch
C, public: Player_catch
C, private: \Player\catch

Event Example: serve

C++: serve::serve
C: serve_Init
Integration for Rhapsody in C/C++ | 36©1989-2024 Lauterbach

State NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForInlining” to “0”, to generate method calls
instead of inlining.

Example: Class Ping inherits from class Player. States Ready and
Playing are defined in class Player, while state GameEnd is defined in
class Ping. Class Ping has below statechart:

Driver will use below symbols for state Playing:

• C++ (reusable): Player_Playing::enterState

• C++ (flat): Ping::Playing_enter

• C: Ping_Playing_enter

Driver will use below symbols for state GameEnd:

• C++ (reusable): Ping_GameEnd::enterState

• C++ (flat): Ping::GameEnd_enter

• C: Ping_GameEnd_enter

Default Tran-
sition

NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForInlining” to “0”, to generate method calls
instead of inlining.

Example: Class Ping inherits from class Player. State Playing is
defined in class Player. Class Ping has below statechart:

Driver will use below symbols for default transition:

• C++ (reusable): Player_Ready::entDef

• C++ (flat): Ping::Ready_entDef

• C: \Ping\Ready_entDef
Integration for Rhapsody in C/C++ | 37©1989-2024 Lauterbach

Integration for Rhapsody in C/C++ | 38©1989-2024 Lauterbach

Transition NOTE: If statechart implementation is set to “Flat” for current
configuration, change value of property
“CG::Class::ComplexityForInlining” to “0”, to generate method calls
instead of inlining.

Driver supports following types of transitions in both Flat and Reusable
Statechart implementation:

• transition without trigger

• transition with trigger: timeout, event or triggered operation

Example: Class Ping inherits from class Player. Class Ping has below
statechart:

Driver will use following symbols for each transition:

• tm(1000)

C++ (reusable): Player::ReadyTakeTimeout

C++ (flat): Ping::ReadyTakeTimeout

C: Ping_ReadyTakeTimeout

• serve_event

C++ (reusable): Player::ReadyTakeserve

C++ (flat): Ping::ReadyTakeserve

C: Ping_ReadyTakeserve

• triggeredop_1

C++: Ping::ReadyTaketriggeredop_1_Ping_Event

C: Ping_ReadyTaketriggeredop_1_Ping_Event

NOTE: last “Ping” in symbol is an owner of triggered
operation.

• no trigger

C++ (reusable): Player::PlayingTakeNull

C++ (flat): Ping::PlayingTakeNull

C: Ping_PlayingTakeNull
Integration for Rhapsody in C/C++ | 39©1989-2024 Lauterbach

	Integration for Rhapsody in C/C++
	Overview
	Architecture of Driver
	Driver Installation
	First Run of Integration Driver
	Selecting Rhapsody Version
	Preparing Rhapsody Environment
	Preparing TRACE32
	Rhapsody Helpers Configuration
	Rebuilding OXF LangCpp Libraries for OSE, DIAB and PPC
	Rebuilding OXF LangCpp libraries for eCos, GCC and PPC
	Rebuilding OXF LangCpp Libraries for eCos, GCC and ARM
	Rebuilding OXF LangC Libraries for OSE, DIAB and PPC
	Rebuilding OXF LangC Libraries for eCos, GCC and PPC
	Rebuilding OXF LangC Libraries for eCos, GCC and ARM
	Rebuilding OXF Libraries for Other Environments
	Preparing C++ Application for Animation
	Preparing C/C++ Application for Animation
	Downloading Application Image to Target
	Integration Features
	Locating Source in Rhapsody
	Locating Source in TRACE32
	Breakpoints
	Go and Break in TRACE32
	Supported Model Elements

