LAUTERBACH A

PowerView User’s Guide

PowerView User’s Guide

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACES2 DOCUMENTS .ccuuiiieeiireesiirensisssssssisnsssssessssssssssrsssssssnsssssssssssssssssessssssnsssssnsssssanssssnnsssssnssssnnnns r—
PowerView USer INterfacecccccccciiiiiieemeiiiiiieseeeiriiesssssssnesssssssseiesnssssssssssssnsssssssssnsnssssssnnnnnns =
PowerView USer's GUIAEcieecciiiiimismessuiiiimssmsssiiiissssssssismssnsssssssessssssssssisssnssssssssesnnssssssssnnns 1
L 1= (o 6
Structure and Contents of the Documentationcccccciiiiiecciiiiiiescrr s eane 7
Online Documentation 7
In-Circuit Debugger TRACE32-ICD 8

g LeTe | 2= 13 TR - o 10
In-Circuit Debugger TRACE32-ICD 10
Shut DOWN POWEIVIEWuiiiiiieeeeiiiiiissemeiiisssssssssisrssnssssssssssssssssissnssssssssmesnnssssssessnnnssssssannnns 11
Interactive Connection MOdeo..oiiiiiiiiiiiecrrr e r s e s e s es s e s e s s m e s s s e e s s nmmns s s s nnmnnn 12
Interactive Connection on PowerView Startup 13
Connection Wizard 13
Connection Select Dialog 14
Automatic Connection upon Startup 16
Connection Script Generation for Test Automation 16
Connection Configuration Window 17
Reboot into Interactive Connection Mode 17
PowerView - Screen DiSPlaycccccceerriirsmmrmmisssmmnssssssnssssss s s sssss s s sssss s sssssmsssssnas 18
Concept 18
Graphical User Interface - Window Modes 18
MDI User Interface 19

MW!I User Interface 20
Main Menu Bar 21
Accelerators 21
Main Toolbar 22
Work Area 22
Message Line 23
Error Messages 23
General Messages 23
Additional Information on Cursor Position 23
Softkeys 24
State Line 25
©1989-2024 Lauterbach PowerView User's Guide | 2

Cursor 25

Debug and Debugger Activity 26
Trace 27
Mode 27
Task 28
SMP Systems 29
Advanced 29
Show/Hide State Line 29
Window Pages 30
Colors 31
How the TRACES32 PowerView GUI Assists You in Scripting 32
070 3 T =T T - 34
Command Structure 34
Long Form and Short Form of Commands and Functions 35
Entering Commands 36
Command Line 36
Device Selection 37
Command History 38
Command and Function Parameters 39
Parameter Types 41
Operators 46
Arithmetic Rules and Operator Precedence 48
Parentheses and Braces 49
Parameter History 49
File Names 50
Path Prefixes 51
General Command Parameter PArsercccccoccoccemrerssscrrmssssseesssssssmessssssssmesssssssnmssssssssnnsns 52
A. Object of Description 52
B. Support of C Language Expressions 54
C. Radix Mode Support 55
Operands 56
Operand Format Examples (Literals) 57
Operators 58
Operator Formats 59
WiINAOW SYSIEM ... s mn s e amme s e e amne s e e mmmn e 60
Windows 60
Window Captions - What Makes Them Special in TRACE32 61
Local Buttons 61
Local Popup Menus 62
Slider Controls 63
Window Operations 64
Basic Operations 64

©1989-2024 Lauterbach PowerView User's Guide | 3

Old Position, Bookmarks, and Current Selection 64
Getting Information 65
Changing Data or Setups 65
Window Manager Menu 66
Window Position and Name 69
Freezing a Window 69
Erasing a Window 69
Window Scroll Bars 69
Printing Window Contents 70
Saving Window Contents 71
Special Window Options 72
Text-based Functions 73
Selection Service 73
LTS T LI T 4 o o 74
WiNAOW TracCKiNg ...cccccerriivesmsermiissmssrnsssssss s rssssss s snsssssss s rsssssss s e sssss s e smsss s enssanss s eesssnnne s enssnnnnes 75
T LY Lol o] [o 1= g0 o T=T - 1 o] T 77
L1 =00 g (= g | 78
Encrypt/Execute Encrypted Files ... s ssssss s s s ssmseas 79
L [T 0o 1413 = 3 e L 80
e T LT 0T oY1 o 17 o £ 81
System Setup and Configuration ... ————— 83
(o Yo T [T T 00 1313 F=T o T 84
(D TE=T Lo T od oY 1= Tu 0T 11T 85
Dialog Syntax and File Types 85
Comments in Dialogs 87
Dialog Commands 88
Control Your Custom Dialogs 88
Control Behavior of Individual Dialog Elements on Custom Dialogs 88
Interact with the File System 88
Display Message Boxes of the Operating System 88
Dialog Elements 89
Return Values and Labels 91
PRACTICE Macros inside Dialog Definitions 92

L I e = (= o o 93
Ways to Get Help 93
Context-Sensitive Help 94
Structure of the Help System 95
Configure the Help System 96
Recommendations for Choosing a PDF Viewer 97
Bookmarks for Help Topics 98
©1989-2024 Lauterbach PowerView User's Guide | 4

Create Help Bookmarks 98

Store and Load Help Bookmarks Manually 99
Store and Load Help Bookmarks Automatically 99
Troubleshooting the Help System 100
Change the Installation Path of the PDF Files 101
Winhelp Compatibility 101
Previous Releases - HELP SyStem ... s s s ssssss s sssssnsansnas 102
Previous Releases - HELP Installation and Setup 102
Previous Releases - Configuring an Alternate PDF Viewer 102
Previous Releases - HELP Installation Problems 106
0 (=T 0T o 108
Version Management and LICENSINGccciviiremmriniismmrmmnisssss s s sssssssss s nsssssss s s sssss s snssssnses 110
LI 0 =T 11 (o N 111
Built-in Editors 111
OS-Native Editor 111
PowerView Editor 111
Context Sensitive Context Menu 111
Keyboard Shortcuts
Automatic Formatting 113
Special Purpose Editor Windows 113
Edit Menu 116
External Editors 116
Configuring an External Editor 117
Working with TRACE32 and the External Editor 118
o) 3 119
Built-in Icons and Icon Library 120
Inserting a Placeholder for User-Defined Icons 121
Drawing Icons 122
L (=Y g T 124
£ T o (N 125
Appendix - About the TRACE32 Software Version NUmberscccocrnieninnscnnnssnsissnennnas 129

©1989-2024 Lauterbach PowerView User's Guide | 5

PowerView User’s Guide

Version 06-Jun-2024

History

16-Oct-23 Chapter ‘Debug and Debugger Activity* updated.

©1989-2024 Lauterbach PowerView User's Guide | 6

Structure and Contents of the Documentation

This chapter describes the structure of the TRACE32 documentation.

The release history in the documentation always lists the latest changes in the TRACES32 software. When
you get a new version of the TRACES32 software, please always check the Release history first.

Online Documentation

There are several ways to get access to the documentation:

1. If the TRACES2 software is already running, you can use the Help command in the main menu
bar.

2. On the TRACES32 software DVD and in your TRACE32 system path (e.g. €:\T32), you can find
a directory pd£. This directory contains the complete TRACE32 documentation in PDF format.

Open directory.pdf to get the table of contents for the complete TRACE32 documentation.

Documentation on how to use the online help can be found in chapter Help System.

The documentation is automatically filtered by your currently used hardware and/or software configuration.
The filter automatically reduces the whole documentation to the part that is relevant for you. If you want to
change the filter, take a look at the command HELP.FILTER.

©1989-2024 Lauterbach PowerView User's Guide | 7

In-Circuit Debugger TRACE32-ICD

TRACE32-ICD includes all debuggers based on an on-chip debug interface (e.g. JTAG, BMD, OCDS ...) as
well as ROM monitor solutions. Lauterbach also provides a trace extension for most debuggers
(TRACE32-ICT). TRACE32-ICD comes with a number of manuals that should make you familiar with
important features of TRACE32-ICD.

Manuals to help you get started:

“Debugger Tutorial” (debugger_tutorial.pdf)

A guided tour through the TRACE32 graphical user interface (GUI) called TRACES32 PowerView.
We use a simple program example in C to illustrate the most important debug features and give
lots of helpful tips & tricks for everyday use.

“Training Basic Debugging” (training_debugger.pdf) - An introduction to debugging with
TRACE32

“Training Basic SMP Debugging” (training_debugger_smp.pdf) - An introduction to SMP
debugging

“Training Script Language PRACTICE” (training_practice.pdf) - An introduction to PRACTICE,
the scripting language for TRACES32

Sources of information beyond the PDF files of the TRACE32 online help:

https://support.lauterbach.com/downloads/files/practice-reference-card-pdf-2 - Reference
Card for the most common commands of the PRACTICE scripting language

https://www.lauterbach.com/publications/debugging_amp_smp_systems.pdf - An introduction
to asymmetrical and symmetrical multiprocessing (AMP/SMP)

https://www.youtube.com/user/lauterbachgmbh - A variety of tutorials on the Lauterbach
YouTube channel

For more information on the features of TRACE32-ICD, refer to the following parts of the TRACE32
online help:

“TRACE32 Installation Guide” (installation.pdf)
This part is the general installation guide for all TRACE32 development tools.
“ICD In-Circuit Debugger”

This part provides all CPU specific information for your TRACE32-ICD, chiefly how to set up the
debugger for your target. Here you will also find all extra features that are supported for your
CPU.

“General Reference Guide” (general_ref_<x>.pdf)
This part provides an alphabetical list of all debugger commands.

“TRACE32 Functions Reference” (<x>_func.pdf)
Refer to this part for information about the TRACE32 PRACTICE functions.

©1989-2024 Lauterbach PowerView User's Guide | 8

https://support.lauterbach.com/downloads/files/practice-reference-card-pdf-2
https://www.lauterbach.com/publications/debugging_amp_smp_systems.pdf

. “PowerView User’s Guide” (ide_user.pdf)

All TRACES32 development tools share the common user interface TRACE32 PowerView. This
part describes the basic functions of the user interface (command structure, online help, editing
and managing files, printer operations, etc.)

. “PowerView Command Reference” (ide_ref.pdf)

This part provides an alphabetical list of all TRACE32 PowerView commands.

o “PRACTICE Script Language User’s Guide” (practice_user.pdf)

The TRACE32 script language PRACTICE is mainly used to perform automatic setups, to
automate test sequences or to store the system settings for later recall. This part describes the
basic structure and features of PRACTICE.

. “PRACTICE Script Language Reference Guide” (practice_ref.pdf)
This part provides an alphabetical list of all PRACTICE commands.

J “OS Awareness Manuals” (rtos_<os>.pdf)

Refer to this part if you want to use the TRACE32 OS Awarenesses (= RTOS Debuggers in
previous TRACES2 releases).

L “3rd-Party Tool Integrations” (int_<x>.pdf)
Refer to this part, if you want to run TRACE32-ICD from a 3rd-party user interface.

©1989-2024 Lauterbach PowerView User's Guide | 9

Program Start

After installing the driver program to the appropriate host system, the executable can be started.

The TRACES32 system has to be powered up. If this is not the case, the error message "NO CARRIER ...",
"LINK ERROR ..." or "TRACES32 not responding" will appear.

If all environment variables are installed correctly, the driver program can be invoked from any sub-directory
or drive.

To start a TRACE32 executable, you can use:
J The T32Start utility

. The command line of the operating system

T32Start

The user interface of the T32Start utility assists you in creating as many start environments for TRACE32 as
you need for your different debug projects. Based on the start environment you have created with a few
mouse-clicks, T32Start auto-generates the configuration file that is essential for starting TRACE32 correctly.

For more information, see “T32Start” (app_t32start.pdf).

Command Line

If you want to start TRACE32 via the command line of the operating system, you need to manually create
the configuration file (by default config.t32). The configuration file settings are described in “TRACE32
Installation Guide” (installation.pdf).

For information about the command line syntax and command line options, see “TRACE32 Installation
Guide” (installation.pdf).

The following list is a selection of the available command line options:

. --t32-help
. --t32-safestart
. --t32-logautostart

In-Circuit Debugger TRACE32-ICD

t32m<cpu>.exe Windows version for TRACE32-ICD.

TRACER32-ICD system software is running on PC.

t32m<cpu> Workstation version for TRACE32-ICD.

TRACER32-ICD system software is running on workstation.

©1989-2024 Lauterbach PowerView User's Guide | 10

Shut Down PowerView

Getting back to the operating system command level is possible by using the command QUIT or by choosing
File menu > Exit.

I QUIT Return to operating system

5 QUM

The QUIT command quits the driver program and resets the TRACE32 system. When the driver program is
restarted, a complete boot sequence will be executed.

If for any reason the host crashes, the TRACE32 system should be switched off for a few seconds.

NOTE: If your TRACE32 development tool is connected to the target, it is important to use
the proper power on/power off sequence. For detailed information, refer to your
Processor Architecture Manual.

©1989-2024 Lauterbach PowerView User's Guide | 11

Interactive Connection Mode

The interactive connection mode allows selection of the PowerView operation mode via user interface or
PRACTICE script. The interactive connection mode offers the following features:

. Configuring PowerView to connect to debug modules, to the built-in simulator or to other software
and hardware interfaces.

. Discovery of TRACE32 debug modules connected via USB and Ethernet

. Discovery of TRACES32 debug modules connected via USB to a remote computer
. Interactive error handling
. Generation of connection scripts, for PowerView startup or test automation

PowerView starts into interactive connection mode, if the following conditions are met:

. PowerView interim build 167400 or release 09/2024 or newer is used

. PowerView is started without a config file specified in the command line and there is no default
config file (config.t32) in the system directory (default with new installation from release 09/2024
or newer)
- Or' -

J PowerView is started via T32Start, with configuration item “PowerView (Interactive Mode)”

It is possible to configure PowerView to automatically connect on startup. See “Automatic Connection
upon Startup”, page 16 for more details.

The interactive connection is fully scriptable. See the CONNECTION command group for more details.

If PowerView is to be used in an automated environment, an extended variant of the connection wizard
offers additional options for device and error handling. More details under “Connection Script Generation
for Test Automation”, page 16.

©1989-2024 Lauterbach PowerView User's Guide | 12

Interactive Connection on PowerView Startup

If PowerView starts into interactive connection mode for the first time, the CONNECTION.STARTUP dialog
is shown.

Get an introduction into the interactive connection mode: “Interactive Connection Mode”, page 12.

If you checked “Remember my choice” in a previous start, either the connection wizard or the connection
dialog will be shown.

B =CONNECTION.STARTUP [E=N EER

TRACE32 PowerView Connection Configuration

Power\View is ready connect to a debug module, to the built-in simulator, as well as to other hardware
and software solutions. Continue by choosing an interactive connection method.
Interactive connection

Choose Wizard for more guidance, or CONNECTION. Select for more overview, CONMNECTION.Select is
intended for experienced users.

Use Connection Wizard Use COMNECTION.Select Dialog

[]Remember my choice

Help

Check the manual for more information. Open Help

The connection wizard guides through the available PowerView operation modes, with the option to
automatically reestablish the selected operation mode the next time PowerView starts.

The CONNECTION.Select dialog is intended for the experienced user and offers a flexible and quick
interactive connection.

Connection Wizard

The connection wizard guides through the PowerView operation modes and options.

After the configuration is complete, the wizard offers to use the defined operation mode for future PowerView
startups.

By =CONNECTION Wizard.Startup = =R

Intreduction

TRACE32 PowerView Connection Wizard

This wizard will assist you to connect PowerView to a debug module, simulator or to other
hardware or software solutions.

The advanced options checkbox unlocks additional features, such as
- debugging via XCP or a direct USE connection

- connecting to 3rd-party simulators, emulators or debug services
- off-line analysis of program, memory/crash dumps and trace recordings

[]5how advanced options < Previous MNext = Finish Cancel

©1989-2024 Lauterbach PowerView User's Guide | 13

Connection Select Dialog

The CONNECTION.Select dialog is intended for experienced users, who want to flexibly switch between
using debug modules, simulators or other solutions. It offers an easy overview of the available debug
modules, as well as flexible selection of the operation mode in only a few steps.

I :CONNECTION Select [E=R(E=R(C=2)

TRACE32 Hardware TRACE32 Simulator Other Solutions

Interface

Local connection (USE)

Ethernet Ethernet Settings
USE on remote computer (TCPUSE) TCPUSE Settings

Find TRACE32 Hardware
Refresh

Device 1: (USB) C-SQ
Device 2: (ETH) pod-r bach.com
Device 3: (ETH) pod-r rbach.com

TRACE32 Hardware Information
Device Type: PowerDebug or pTrace Reset Device

Device Serial Number: E?._?OB

Establish Connection

First, select one of the tabs. Available tabs are:

TRACE32 Hardware Connect to TRACE32 debug modules connected via USB,
Ethernet, or to a USB port of a remote PC.

TRACE32 Simulator / Viewer Connect to the built-in instruction set simulator or viewer.

Other Solutions All other operation modes, including

- debug and trace 3rd-party simulators and emulators via
GTL (HostMCl)

- debug and trace 3rd-party simulators and emulators via
vendor specific APIs

- debug via 3rd-party hardware (XCP)

- debug via USB port of SoC

- debug via the GDB remote protocol (e.g. gdbserver)

- debug applications running on the host computer

The availability of operation modes depends on the selected
target architecture

©1989-2024 Lauterbach PowerView User's Guide | 14

TRACE32 Hardware Tab

Select the interfaces, on which debug should be detected.

. Local connection (USB): PowerView sill detect all debug modules that are connected to a USB
port of the PC.

. Ethernet: Click on button “Ethernet Settings” and enter a list of debug module host names to be
searched for.

J USB on remote computer: Click on button “TCPUSB Settings” to define the host name of the
target PC, and the port name used by the TCPUSB client (default: 8455). The TCPUSB client
software (t32tcpusb.exe/t32tcpusb) must be running on the target PC.

If a debug module was connected or disconnected while the dialog is open, click on button “Refresh” to
update the found device list.

After selecting the debug module to connect to, click on button “Establish Connection” to connect. If the
connection was successful, the CONNECTION.Dialog window will close and the start-up scripts (system-
settings.cmm, user-settings.cmm and work-settings.cmm) will be executed.

TRACE32 Simulator / Viewer Tab

Select the desired operation mode:

. Instruction Set Simulator: Load and run programs in the TRACES32 uilt-in simulator

. Viewer: Load programs, data files and trace recordings for off-line analysis

Some features may require a license. The license source can be a license server or the license of a
TRACES32 debug hardware. If the license of a TRACE32 debug hardware should be used, select “TRACE32
Hardware” as license source and select the device with suitable licenses. If the TRACE32 hardware does

not appear in the selection, make sure that the appropriate interacted are enabled and configured in the
TRACE32 Hardware tab.

After making the appropriate settings, click on button “Establish Connection” to connect. The
CONNECTION.Dialog window will close and PowerView is ready to use.

Other solutions

Select the appropriate interface. The availability of interfaces depends on the supported architecture of the
running PowerView executable There are individual settings for most interfaces.

TRACE32 HostMClI See command CONNECTION.HOSTMCI
MCD API See command CONNECTION.MCD

GDI Interface See command CONNECTION.GDI
TRACE32 HostMCI See command CONNECTION.HOSTMCI

©1989-2024 Lauterbach PowerView User's Guide | 15

MCD API See command CONNECTION.MCD

GDI Interface See command CONNECTION.GDI

Automatic Connection upon Startup

If you want to configure PowerView to automatically connect to a debug module, simulator or other hardware
and software solutions, open the CONNECTION.AUTOSTART.state window. Open the window by selecting
in the menu: File - Connection State, then click on “Manage autostart configuration”.

The CONNECTION.AUTOSTART.state window also allows to disable or modify the current autostart
configuration.

{7 :CONNECTION.AutoStart =N =R)

Startup Behavior

(® Interactive Connection
(O Connect via autostart connection script
Connect using connection script specified via command line

Connect using config file directive

Interactive connection

COMNMECTION.STARTUP (default) ~

Connection Script Generation for Test Automation

In order to use PowerView in an automated environment, you can generate a connection script using the
command CONNECTION.Wizard.CreateScript. Open the wizard by selecting in the menu: File -
Connection State, then click on “Create connection script”.

On page “Error handling” of the CreateScript wizard, select “Shut down PowerView and return error code 17,
so that the PowerView process ends in case of error.

In order to run the generated connection script when PowerView boots, use command line option:
-e <connection script>.

See “Command Line Arguments for Starting TRACE32” in TRACE32 Installation Guide, page 54
(installation.pdf) for more information.

©1989-2024 Lauterbach PowerView User's Guide | 16

Connection Configuration Window

The connection configuration window (command CONNECTION.state), is the main window of the

CONNECTION feature. It gives access to all CONNECTION functions.

The CONNECTION.state window is also accessible via menu: File - Connection Configuration.

{7 2:CONNECTION

TRACE32 PowerView Connection Configuration

Power\View is ready connect to a debug module, to the built-in simulator, as well as to other hardware
and software solutions. Continue by choosing an interactive connection method.

Interactive connection

Choose Wizard for more guidance, or CONNECTION. Select for more overview, CONMNECTION.Select is
intended for experienced users.

Use Connection Wizard Use COMNECTION.Select Dialog

Autostart configuration

Configure PowerView to connect automatically on

startup. Manage autostart configuration

Manual connection

Create a connection script for manual use, e.g. in

automated tests. Create connection script

Help

Check the manual for more information. Open Help

(o] 2)

Use the Connection configuration window to

Open the Connection Wizard

Open the Connection.Select dialog.

Reboot PowerView into interactive connection mode (only available if in connected mode)

Manage the autstart configuration

Create a connection script for using PowerView in automation scenarios

Open this document

Reboot into Interactive Connection Mode

If PowerView is already connected to a debug module, simulator etc, it is currently not possible to change
PowerView back to interactive mode.

The CONNECTION.state window offers a button to perform the reboot into connection mode. If the
PowerView instance is connected to a debug module or MCI server and there are other PowerView
instances connected, the reboot is not allowed. Shut down the other PowerView instances first.

©1989-2024 Lauterbach

PowerView User's Guide | 17

PowerView - Screen Display

Concept

The graphical user interface (GUI) of TRACES32 is called TRACE32 PowerView. The TRACE32 user
interface is based on an extremely fast, character oriented window system. Up to 128 different windows can
be composed for display, each can contain up to 250 * 250 characters. Window type, size and status can be
defined very flexibly by the user. Each window is assigned to one task, which is sequentially executed to

update the window information.

Windows may be frozen to prevent them from being updated.

An array of windows is called a “PAGE”. Several pages can be defined in this manner, with each page
representing a part of the user’s work area. Multiple pages cause no performance degradation, as only the
visible windows are updated.

Graphical User Interface - Window Modes

The user interface TRACE32 PowerView supports 2 different window modes:

. MDI (multiple document interface): All sub-windows are placed inside the TRACE32 main
window.
. MWI (multiple window interface): The TRACE32 main window and the sub-windows are placed

freely on the desktop.

On MS Windows systems, the MWI window mode is split into 2 sub-modes:

. FDI (floating document interface): Same as MWI; the taskbar shows only one icon for all
windows. Minimizing the main window will also minimize the sub-windows.

J MTI (multiple top-level window interface): The taskbar shows an icon for the main window and
each sub-window. Minimizing the main window does not minimize the sub-windows.

These modes can be set in the SCREEN= section of the configuration file (config.t32). Depending on the
version of TRACES32, not all window modes are supported:

Windows Linux/ Linux/ HP-UX oS X/ oS X/
Motif Qt Motif Qt
MDI + - + - - +
MwI + + + + + +

©1989-2024 Lauterbach

PowerView User’'s Guide |

18

MDI User Interface

[Back to Top]
After starting TRACES32, the main window of the TRACE32 PowerView GUI is displayed.
For more information, click the blue GUI terms.

Main menu bar Main toolbar
Local buttons

A TRACE32 PowerView ARM
HFile Edit View Var Break Run CPU Misc Trace Pef Cov ARMOD Linux Dalvik Wingow Help

Mk ALl d el run o o B eE @ S
[o B:PER.view, "ICEBrea.. | o || @ |[82 || =] [BuListauto /Track]

= ICEbreaker - Hstep | # over]LDNerge][d’Retum][cup [»G 11 Break |[}#]Mode | Find:
Debug Control = 143 d |1abel mnemonic _ |comment |
DECCTRL 00000000 ICE enabled |J SR 00002288 E280C003 a riZ,r0,#0x3 n
STEP disabled 691 k =1 + primz;
DEGSTAT O0D00303A ITBIT 1 5YSC SR:0000228C |[E052300C add r3,r2,ri2

VECTOR 0000583C FIQ dis IRQ while (k <= SIZE)

COMCTEL 00000009 VERSION 0000

COMDATA E59F0020 - 0x22AC Program Address i
B B:Register.view EI@ < I + GoTil 3
N _ RO T Rs i
7 _ R1 3 RS - - Breakpoint: L4
- T r2 2 R0 uTrace.List DEFault /Track eDTEEl Poll\: 5 ’ = @
-5 o e [#=tw... |3 Goto...|[F3Find... [Adchart !Proﬁle !MIPS L% isplay Vemory
RS 564C R13 OFE4 record |run |address |cycle |data |symb fut Bookmark... =
cmp o, #0x0 L
Ef 8 §é4 2282 -131065 R:00002280 fetch 0DADDODOOA ‘\armle\arms #f Toggle Bookmark E
C = beq 0x22B0 Set PC Here =
- PR 10 CPSR 20000003 -131064 R:00002284 fetch E1400082 “harmlelarm\s gEd'tS -
- I it Source
ol B:Varview Warmle\Gl... EI@ 690 o primz =1 + 1 + 3; * \View Info |~
= harmle\GlobaThast = L r mov ro,r2,1s1 #0x1 £ |
Eword = 0x0 — NULL, — | |-131063 R:00002288 fetch E220C003 “harmleh\arm\s Y
. count = 12346, add ri2,r0,#0x3 & Go Till There
= Teft = 0x583C — - -131062 R:0000228C fetch E082300C \\armlelarmis| .- .
Eword = 0x0, ¢ 3 691 k=1 + primz;] List There
. count = 12346, add r3,r2,ri2 Assemble here ...
left = 0x583C, -131061 R:00002290 fetch E3530012 \\ar‘m'l e\ar‘m\s)
right = 0;(0 692 while (k <= E Meodify here ...
= fieldl = cmp r3,#0x12 Patch here
. field2 =) -131060 R:00002294 fetch CADO00O04 ‘\armle\arm\s
= right = Ox0 — NULL - bgt 0x22AC
E _121n59 B-NNNIAC fetch E2811001 \iarmlelarmicievepySd 0 100ns
@ B:Var.Frame /Locals /... IEI@ gl B:BookMark.List IEI@ T e B::Break.List EIE@ [3 B:TrOnchip.s... IEI-@
e — e e e
>
emulate trigzer | [devites |[trace][Data |[varr Pt Lst |[PERF ||sSvstem |[Step |[Go][other | [previow |
| SR:00002290 \\armle\arm\sieje+0x68 stopped |T—F|— MIX |UP
Command line Softkeys State line
Message line Work area
with
windows

A Local popup menu

©1989-2024 Lauterbach PowerView User's Guide | 19

MWI User Interface

[Back to Top]
After starting TRACES32, the main window of the TRACE32 PowerView GUI is displayed.
For more information, click the blue GUI terms.
Main menu bar Main toolbar
Ai pod-csol | g i]
File Edit View Var Break Run CPU Devices Trigger Analyzer Perf Cov MPCBxx Window Help
Hw| v|sle| ofm| i e(w| | R[Rs|Re| -
F::H
=
emulate | Data || War | trigger | devicespefnalzer | PERF | | Step | other | previous |
1| P:oDOD1224 VidiabpBidiabpBisieve+0x70 |stopped at breakpoint | | | [P [Al]
Command line Softkeys
Message line State line

Local buttons

—| Fi:Var View #tree ast | - |] .
Hast = ¢ = Step | Step Over| GoMext | GoReturn| GolUp | Go | Break | Mode
wDPdtZ_BTgé% addrs/line |code [1abel mnemoni c |comment =
TDgg owiash FAEOR1220 |7F BFFZ19 add r29,r3l,ra8 K, iprimz =
e T ™ 2| while (1ZE))
nggtzzaiégjgé P: BOBBL2Z8 |1 1510010 byt B=1244 E“f“':t“:’em -
4 efault Breakpoin
Hright = B=A, _ - .
Fieldl = 1, P:BBBBlSSé IDEEEEA1 lis r~1£1§3i[F Spotpomt
Fleldz = 2), P: BOBE1230 39500460 subi r1Z,r12, Bx3B9E ot FC Here
;?9*1‘51:_@?@’ P: BEARLZ34 33600000 li SER Y Display Memory... -
Fi:ldz -3 | P:BBAA1238 |7DECEIAE Sthx r11,r12,r29 Breakpoints... - =]
. — gl ! Edit Source [
Ai F::¥ar,Frame /1 /o | a i J| Al Fiifnalyzer,ListCts ;’3%??2%%} | a | J|
COma | Stact(asm = | _Setup.. | Goto.. Find.. | View | TREE | .. v vioe hore
FABRZ |__init_mainiasm) il record run address cycle d.1 syml le here —
061 fraind) CpEERAG14 i 2]
i = 12345678 flags = (1, 1, 1, 1, 1, 1, 1, 1 Modityhere... | 1, 1,
p = BxBEC324 i=8
while { TRUE) 625 if { flags[i]2
{ EERAG11
sievel(); primz = 43976
GO0 |sievel) i=8
i=8 {
primz = 3 627 primz = 1 + 1 + 3;
k=13 primz = 3
anzahl = @ # | |FreBEneaas il
IR BN 1T B

A Local popup menu

©1989-2024 Lauterbach

PowerView User’s Guide

20

Main Menu Bar

[Back to Top]
The main menu bar provides all important commands for each functional unit of the TRACES32 development
tool. You can add user-defined menus to the main menu bar by using the MENU commands.

A TRACE32 PowerView ARM e =]

File Edit View Var Break Run CPU Misc Trace Perf Cov ARMSAC Window Help

I Mo A+ | b [2N @D] e & ¢ MapperSettings
MENU.AddMenu Allows you to quickly add one menu for temporary usage.

Default name of the temporary menu is User.

MENU.ReProgram Allows you to embed a menu definition in a PRACTICE script
(*.cmm) or create a *.men file for a menu definition.

Example: This script adds the User menu shown in the above screenshot to the main toolbar.

; menu User with two menu options
MENU.AddMenu "Mapper Settings" "MAP.List"
MENU.AddMenu "Free and Used Memory" "MAP.state"

Accelerators

Accelerators allow you to execute commands with a single keystroke. Usually the function keys are used for
this purpose. Accelerators can be changed by using the MENU commands.

A TRACE32 PowerView ARM =n| Wl <
File Edit View Var Break Run CPU Misc Trace Perf Cov ARMS40 [User| Window Help
(M3 | > [2K D] 5 | & ¢ Mappersetings

Example:

; the example shows how to include an accelerator in a temporary menu
MENU.AddMenu "Mapper Settings, ALT+F10" "MAP.List"

©1989-2024 Lauterbach PowerView User's Guide | 21

Main Toolbar

[Back to Top]

The main toolbar provides buttons for the most important TRACE32 commands. You can add user-defined
buttons with tooltips to the main toolbar by using the MENU commands.

A TRACE32 PowerView ARM [E =]

File Edit View Var Break Run CPU Misc Trace Pef Cov ARM40 Window Help
MM e[|E 2R D EHHE S @SN

Mapper Settings i
MENU.AddTool Add a temporary button to the main toolbar, i.e. the
button is available only for the current TRACE32 session
TOOLBAR Toggle main toolbar
MENU.Program Editor to write a program that customizes the TRACE32
menu
MENU.ReProgram Menu programming
MENU.RESet Restore default menu and configuration of main toolbar

Example: This script adds the button shown in the above screenshot to the main toolbar.

; the example shows how to add a temporary button to the main toolbar

B <tooltip> <button_letters, color> <command>
MENU.AddTool "Mapper Settings" "ML, B" "MAP.List"
Work Area
[Back to Top]

The work area is used as the general input and output area. For more detailed information, see Windows.

In addition to working with windows in the work area, you can place windows on user-defined pages. This is
useful if you need to open lots of windows and want to group them. For more information, see Pages.

©1989-2024 Lauterbach PowerView User's Guide | 22

Message Line

[Back to Top]

The message line displays error and general messages, information on cursor position, etc. The message
line is located below the command line.

Error Messages

Error messages are displayed by a special attribute (e.g. red or blinking). The error message is erased
automatically. If an input error was made, an arrow will point to the mistake on the command line.

The softkeys will no longer correspond to the entered data! If the error message
is still unclear, the appropriate page in the on-line manual will be displayed,
when using the «help» key.

| |
E::|d.display B

[rokl | dump |[wiew |[Prnt |[Lt | emulate trigger | [devices |[trace |[Dam][war

General Messages

When entering configuration commands, the current state is displayed during the command input. Some
command outputs are also displayed in the message line.

B: :TRANSlation.TableWalk
Address translation: OFF

Additional Information on Cursor Position

If the left mouse button is pressed down while the cursor is positioned within a window, additional information
in regard to the current context will be displayed. In the example below the variable flags is selected in the
Data.List window.

©1989-2024 Lauterbach PowerView User's Guide | 23

Softkeys

[Back to Top]

The softkey structure represents a hierarchical selection menu. Each softkey can be activated by clicking the
left mouse button.

Softkeys with pointed brackets (e.g., «<file>, <range>, <address>») are placeholders for parameters which
have to be entered in the command line.

‘B: :[Data. dump

| [ok] il <rangs> || <address=>]i options

In the case of softkeys with square brackets ([or]) the command is executed immediately after being
selected without a written entry to the command line.

Softkeys written completely in lower case characters represent command hierarchy branching which does
not alter the command line (e.g., emulation).

Softkeys written in upper case and mixed case represent command words which can also be entered via
the keyboard. You can enter either the entire word, or just the upper case letters. Upper and lower case
characters are not differentiated.

By means of the «other» softkey additional menu selections located in the same hierarchical level can be
started. By «previous» you can return to the former level in the menu hierarchy. The commands for those
softkeys which have been shadowed in on the display are inaccessible at this time.

Data Command
emulate Command path

[Stepl] Direct command
<address> Parameter
previous Previous menu

other Next menu

©1989-2024 Lauterbach PowerView User's Guide | 24

State Line

[Back to Top]
The state line is located at the bottom of the TRACE32 main window.

For more information about the individual fields in the state line, click the blue GUI terms.
Trace Mode
‘B: : | |
emulate trigger [devices | [trace] [Data] [Var] [List | [PERF] [SYSteN% [other] pr;'ous

SR:00001A34 \\arm\arm\sieve+0x48 stopped MI{ UP

* + Debugger System
Cursor Debug Activity

Cursor

[Back to Top]

The Cursor field provides:
J Boot information (Booting ..., Initializing ... etc.).
. Information on the item selected by the cursor, such as:
- Address (e.g. SR: 00001A34) and symbol (e.g. \\arm\arm\sieve+0x48)

- File name, offset, line number, column number
Cursor - In a Hypervisor Environment

In a hypervisor environment, the Cursor field provides the following information:

‘B::|

mpm.enm trace] [Data]E Var] [List

NUX:2:::03A5:00401EC0 \\sieve'sieve\fil_buffer+0x64

A Example of a fully qualified address in a hypervisor environment

a Access class (NUX:) b MachineID (2:::)
¢ Space ID (03a5:) d Logical address (00401EC0)

B Symbol (\\sieve\sieve\fill_buffer+0x64)

The machine ID [b] is displayed only if you set SYStem.Option.MACHINESPACES to ON, and the space ID
[c] is displayed only if you set SYStem.Option.MMUSPACES to ON.

©1989-2024 Lauterbach PowerView User's Guide | 25

Debug and Debugger Activity

The Debug field provides:
J Information on the debug communication (system down, system ready etc.)

J Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

The Debug field and the Debugger Activity field are usually closely related.

B::

components trace Data Var List PERF SYStem Step other previous
wong || M [up
Debug
Debugger
T Activity
B::
components trace Data Var List PERF SlStem Step other previous

ring || CTRT,

. Running in green and an empty Debugger Activity field means that the program is running in real
time.
J Running in green and a red letter sequence in the Debugger Activity field means, the debugger

shortly interrupts the program execution to realize a debugger feature. Possible are S&G for Stop
And Go Mode and SPOT if an intrusive breakpoint is set.

J If the debugger has to interrupt the program execution repeatedly for a long time to realize a
debugger feature, the going is displayed in olive. For example, if a command (short CMD) is
always executed at a breakpoint hit. CMD is additionally displayed in red in the Debugger Activity
field in this case.

. If a spot breakpoint is active, spotted is displayed in olive in the debug field and SPOT in red in
the Debugger Activity field.

J An empty debug field and RUN in green in the Debugger Activity field indicates that TRACE32
has started an algorithm on the target to realize a debugger feature, e.g. target-controlled FLASH
programming.

©1989-2024 Lauterbach PowerView User's Guide | 26

Trace

[Back to Top]

The Trace field provides:

o Information on the state of the trace (DISable, OFF, ARM ...).

The state of the trace can be changed by using the Trace pull-down.

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous
T E— e
Trace

DiSable
OFF

v ARM
Data |[var J[st J[PerF |[system |[step J[Go J[Break W sYmbol |[other || previow
systemn ready MIX |UP

A A white X against a red background indicates that the trace method is set to NONE. For more
information, see <trace>.METHOD NONE.

Mode

[Back to Top]
The Mode field indicates the debug mode. The debug mode defines how source code information is
displayed (assembler code ASM or programming language code HLL or a mixture of both MIX) and how
single stepping is performed (assembler line-wise or programming language line-wise).

The debug mode can be changed by using the Mode pull-down.

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous

P:70001400 \\triboard-tc275_sieve_intmem\taskc\sieve+0x16 stopped MI{ UP
Mede
Asm

v Mix
Hil

The System field indicates Up if the communication between the debugger and the processor/core is
established and nothing is otherwise.

©1989-2024 Lauterbach PowerView User's Guide | 27

The communication between the debugger and the processor/core can be established and ended by the
System pull-down.

‘B::

emulate trigger [devices H trace H Data H Var H List H other H previous

P:70001400 \\triboard-tc275_sieve_intmem\taskc\sieve+0x16 stopped MI{ UP

System
Down

MNeoDebug

Attach
v Up

Task

[Back to Top]

The name of the current task is displayed in the Task field after the TRACE32 OS Awareness was activated,
see [A].

‘B::

emulate trigger [devices H trace H Data H Var H List H PERF H SYStem H other H previous

P:80000F48 \\APP\Os_setjmp\Os_setjmp = stopped by extevt MIX UP
asks

Lowl

v Lowd *
Low2
High2
HighO
Highl
idle

Selecting another task from the Task pull-down allows to switch the task context (mainly Register.view
window and Frame.view window).

J A check mark is used to mark the task for which the task context is displayed.

. A asterisk is used to mark the currently active task.
This feature is not supported for all operating systems.
Task - In a Hypervisor Environment

In a hypervisor environment, the machine name precedes the task name, and the three colons : : : serve as
the separator between machine name [B] and task name [C].

B::

[J[[traee |[Dam [wvar][st |[PERF]S\Rr... [step][Go |[Break |[other |[previous
MNUX:2:::03A5:00401ECO \\sieve'\sieve\fil_buffer+0x64 Linux:::sieve Tasks {eady MIX |UP

swapper/0 ‘

kthreadd

ksoftirgd/6
maore...

©1989-2024 Lauterbach PowerView User's Guide | 28

SMP Systems

[Back to Top]

The Cores field shows the currently selected core [A].

J TRACER32 PowerView visualizes all system information from the perspective of the selected core
if not specified otherwise.

The Cores pull-down allows to change the selected core.

‘B::

emulate trigger [devices H trace H Data H var [List H FERF H 5¥Stem H other H previous

P:AD0D0020 idle D svstem ready MI{ UP
L Cores

Advanced

[Back to Top]

The Target field indicates an active target reset or a locked JTAG interface (command: SYStem.LOCK ON).

‘B::

emulate trigger [devices][trace][Data][Var][List][PERF][other][previous
T

Target

If “Integrated Run & Stop Mode Debugging via JTAG” is used TRACE32 indicates that a debug agent is
running in the Monitor field. For details refer to “Run Mode Debugging Manual Linux” (rtos_linux_run.pdf).

Monitor

B::

emulate trigger | [devices |[trace |[Datm [war J[st [PERF][system][step || GDLH other | [previous

[(unning | |w | HLL [up
Show/Hide State Line
[Back to Top]
STATUSBAR ON Show state line.
STATUSBAR OFF Hide state line.

©1989-2024 Lauterbach PowerView User's Guide | 29

Window Pages

Window pages in TRACES2 are similar to workspaces in other applications. In TRACE32, you can open
windows on different pages, but only the windows on the selected page are visible. Windows located on the
other pages are temporarily hidden.

You can create a new page and switch between pages by right-clicking anywhere on the TRACE32 main
toolbar. By default, TRACES32 auto-increments the names of new pages P001, P002, etc. But you can also
create new pages with user-defined names.

A TRACE22 PowerView ARM
File Edit View Var Break Run CPU Misc Trace Pef Cov ARM40 Window Help
IR P F Y
v PO00 Right-click the toolbar to create a
new page or switch to another page.
[y Pagelist
[Delete Page

The WinPAGE.List window serves as the table of contents for your pages. You should always open the
WinPAGE.List window with the WinResist pre-command to keep the table of contents visible on all pages.

[BewrWinPAGE List == P00O | Default page P000
5 boor i o 2
W003 (B::Var.Wat %SpotlL t t
E ':'002 EB::\-"::.Esa.;e ;'nga'l.lsg;ta'l'l:g? ast) E P0OO1 | NeW page P001
W00l (B::Data.List)
+ ANALYZE
: ED::TQ\ . ANALYZE | New pages with
user-defined names:
EDIT ANALYZE and EDIT

Currently selected page

Example:

WinResist .WinPAGE.List ;keep the table of contents visible on all pages
WinPAGE.Create ;new page with auto-incremented page name

;open these windows on the new page
Data.List
Var.Frame /Locals /Caller
Var .Watch %$SpotLight flags ast

WinPAGE.Create ANALYZE ;create a new page named ANALYZE
WinPAGE.Create EDIT ;create a new page named EDIT

©1989-2024 Lauterbach PowerView User's Guide | 30

WinPAGE.select
WinPAGE.Create
WinPAGE.Delete
WinPAGE.List
WinPAGE.REName
WinPAGE.RESet

Select page

Create page with a user-defined name
Delete page

List pages

Rename page

Reset window system

Colors

SETUP.COLOR Change colors

sYmbol.List.ColorDef List keyword colors

sYmbol.ColorDef Modify keyword colors

CmdPOS Toolbar and/or background color for multicore debugging
(TRACE32 is in MWI window mode)

FramePOS Toolbar and/or background color for multicore debugging
(TRACE32 is in MDI window mode)

CORE.SHOWACTIVE Show active cores in an SMP system. Each core has its

and own color.

CORE.List

SETUP.COLORCORE Enable coloring for core-specific info in SMP systems

<trace>.STATistic. COLOR Assign colors to function for colored graphics

GROUP.COLOR Define color for group indicator

©1989-2024 Lauterbach

PowerView User's Guide | 31

How the TRACE32 PowerView GUI Assists You in Scripting

The TRACE32 PowerView GUI is designed to assist you in writing PRACTICE scripts (*.cmm), with which

processes can be automated in TRACES32:

1. The GUI controls in TRACES32 windows are labeled such that they reveal the command syntax

for use in a PRACTICE script. See (A) below.

2. The commands shown in window captions can be modified and re-used with one mouse-click.

See (B) below.

(A) Writing Scripts based on the Text Labels of the TRACE32 PowerView GUI

Let's assume you are writing a PRACTICE script and require the configuration settings from a window, such
as the ITM.state window. A window can contain all sorts of GUI controls: radio options, check boxes, drop-

down lists, input boxes, and so on. To write a script that takes all of these GUI controls into account, follow

these two simple rules:

1. Type the GUI labels into your script file.

2. Omit the GUI labels that are all lowercase (here: itm, trace, commands)
felle =
TimeMode —7 - SyncPeriod TRACES32 does not accept:
External - .
CyclePrescaler TracelD ITM.1tm.ON
(11 -] | 18
commands v Qiedcowate |~ TracePriority TRACE32 accepts these 2 solutions:
RESet QOFF § TmeSamp(LOCK 2. ITM.ON
(@aEm | | pie "
™ Register O TimeStampModa itm.on
@ ITMTrace 1/8192 n
TPIU_ | Correlatedpata || TimeStamps
2 List CLOCK
&9 BMC

Resulting command syntax for use in a PRACTICE script:

Solution 1 Solution 2 Solution 3
IT™.ON itm.on itm.on
IT™M.DataTrace DataPC itm.datatrace datapc itm.dt dpc
ITM.PCSampler OFF itm.pcsampler off itm.pcs off
ITM.TImeMode External itm.timemode external itm.tim e
ITM.CyclePrescaler 1/1 itm.cycleprescaler 1/1 itm.cp 1/1
ITM.TimeStampMode ALL itm.timestampmode all itm.tsm all
ITM.TracelD 16. itm.traceid 16. itm.tid 16.
ITM.TracePriority 2. itm.tracepriority 2. itm. tp 2.

Solution 2 is the recommended solution in terms of typing effort and source code maintainability - for you

and your colleagues.

Solution 3 is very useful for frequently-used commands when you are working with the TRACE32

command line.

©1989-2024 Lauterbach

PowerView User’s Guide

32

(B) Modifying and Re-using Commands Shown In Window Captions

Commands shown in window captions can easily be modified. This is a TRACE32 feature which is very
useful if you want to add, remove, or change the options or parameters of a command. This feature is also
useful when you are writing a PRACTICE script (*.cmm) and require a command that is already displayed in
a window caption; there is no need to re-type the command.

If you want to reproduce the step-by-step procedure below, use this source code:

;set a test pattern to the virtual memory of TRACE32
Data.Set VM:0--0x4f %Byte 1 0 0 O

Data.dump VM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %$Decimal.Byte VM:0++0x4f 2.0 512.

To modify / re-use commands shown in window captions:

1. As a Windows user, right-click the window caption.
As a Linux user, click the top left icon, and then select Command Line.

Vertical lines are shown in the window caption [A].

The command is inserted into the TRACE32 command line [B].

o 1{:Data DRAWFFT %Decimal Byte Y0+ +0xdf 20 512. | m Dt AT kb dihpitelvke lalol-l-bka Rlofse| | 1111111
(00 In] +0¢ Out][R Full[< In][& 0| & Full (00 In | oo 0ut (€ Full[< In |[S out][& Ful
.0 0.2 0.4 0.6 0.8 1.0 1 | . 0.2 0.4 0.6 0.8 1.0 1.2 1.4

15, ||

10. 1

N |
E::B::Data.DRAWFFT ¥Decimal.Byte WM:0++0x4f 2.0 512.
[ok] options

You can now modify the command string in the command line. You can also select and copy the
command in the TRACE32 command line and paste the command into a PRACTICE script file
(*.cmm).

Bi:pedit ~~~\demo.crmm EI@
[& setup... || P save |5 save As..|[EF quit J[#3Find... |[)[](*T)[¥ Do][M Debug |
1

2 |B::Data. DRAWFFT %Decimal.Byte WM:0++0x4f 2.0 512.
3

-

4

2. To execute the (modified) command again, click OK.

3. To deselect the window caption without executing the command again, press the Esc key.

©1989-2024 Lauterbach PowerView User's Guide | 33

Commands

Command History

Command Structure

Command Structure

Entering Commands

Long Form and Short Form of Commands and Functions

Command and Function Parameters

For information about tab completion for commands, see “Shortcuts”, page 125.

Most commands consist of a command word, parameters, and options. The command word consists of
several tokens, which are separated by a dot. Commands are combined into command groups whereby the
first token of the command designates the command group. The other tokens define subcommands.

Device Command
B:: —— Data. —
—— Break. —

Subcommand
dump
List
Print
View
Set
LOAD.

Ubrof
Teee
SAVE. —71—— BINary
direct

Set

Commands can be preceded by a pre-command. Examples of pre-commands are ChDir (for changing the
directory), WinPrint, or WinExt. Window pre-commands are used to modify the behavior of the window for

a command.

WinPrint generates a hardcopy or a file from a command.

::B::WinPrint.Data.dump 0x1000 /Byte

option
parameter
sub-command

command
L pre-command
device prompt

WinExt allows you to detach a window from the TRACE32 main window.

You can detach the window - even if TRACE32 is in MDI window mode.
WinExt.SYStem.state

©1989-2024 Lauterbach

PowerView User's Guide | 34

Long Form and Short Form of Commands and Functions

Commands and functions have a long form and an equivalent short form. The two forms can be used in the
TRACE32 command line and in PRACTICE scripts (*.cmm). In addition, the two forms are not case
sensitive.

Short forms are a time saver when you are working with the TRACE32 command line. In PRACTICE scripts,
the use of short forms is not recommended because short forms tend to make scripts difficult to maintain
later on - for you and your colleagues.

Example of the two forms:

Long form SYStem.state

Short forms SYS or just sys
o You can use short forms in UPPER CASE or lower case.
o You can omit words in all lower-case letters, e.g. state

UPPER CASE letters in the TRACE32 application and documentation are just visual cues to indicate the
short forms of commands. You can see the UPPER CASE letters of the short forms in the following places:

J On the softkeys below the TRACE32 command line:

I
B::5YStem.state

[[ok]] [state] [Up] [Down] [Mode] [Option] CFU MemAccess
TR INY
e} cpu ma

Short forms: (-) u a m
o In the TRACES32 windows; for example, in the SYStem.state window:
éy B::5Y5tem.state EI@
Mode MemAccess Option DisMode
@ Down @ CpU [masKasM @ AUTO
NoDebug (0 Denied [ClmasKHLL () ACCESS

Long form: SYStem.MemAccess CPU
Short form: sys.ma cpu

. In the online help (For example, choose Help menu > Tree to open the command tree.)

command description
= SYStem. POLLING Polling mode of CPU
= 5YStem. RESet Reset contiguration

General Commands Reference Guide 5 (general_ref_s.pdf)] Qi?g;;enzifsgnfg:tm JTAG connector

To retrieve the long form of an unfamiliar short form (e.g. for sys.d):
1. Choose Help menu > Index.

2. Type the short form in the Find Index box, and then press Enter.

Index

; a » 5Y5.D [5YStem.Down]
pudiicdexy 5vs.d 5Y5.DC [SYStem. DebugClocl set debug clock frequency
SYS5.DETECT [SYStem.DETECT] Detect target system resources

@al O basic commands © all commands SYS.DR [SYStem.DictionaryReset] Reset dictionary memory STNBSLOV

©1989-2024 Lauterbach PowerView User's Guide | 35

Entering Commands

The long and short forms of TRACE32 commands are not case sensitive.

For example: Var.Watch can be abbreviated to v.w or to v.watch or to V.WATCH or to var.w

Command Line

[Back to Top]

All line-oriented commands are entered to the TRACE32 command line. The command line will
automatically come into focus when an alphanumeric character is entered (except Editor windows or fields).
All line oriented commands are not executed until confirmed by «return» or «[ok]».

The syntax is checked immediately after every key stroke.

OS level s

devices HELP os windows practice EDIT
Device level ::B::

emulate Data Var trigger devices Analyzer
Command B::Data.

[ok] dump View Print List Set

Sub-command B::Data.List

[ok] <range> <address> options
Parameter B::Data.List 0x1000
[ok] options
Option B::Data.List /MarkPC
[ok] Mark Track TOrder SOrder MarkPC
NOTE: You can copy and paste up to 300 commands (i.e. 300 lines including

comments) into the command line.
TRACE32 executes them like a PRACTICE script (*.cmm).

;set a test pattern to the virtual memory of TRACE32
Data.Set VM:0--0x4f %$Byte 1 0 0 O

Data.dump VM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %Decimal.Byte VM:0++0x4f 2.0 512.

B::|

emulate | [trigger | [devices][trace |[Datm [wvar][st [PERE][system |[Step |[Go][other | [previous

SR:00000000 system ready MIX |UP

©1989-2024 Lauterbach PowerView User's Guide | 36

Device Selection

Each TRACE32 system has an identifier ending with two colons. The currently selected device is displayed
by the prompt of the command line. System identifiers can be entered prior to each command. When a new
device selector is entered prior to a command, the device selector is only valid for this specific command.
The permanent selection of a device is done by entering the identifier without any command word. The
TRACE32 operating system level can be accessed by entering two colons. Operating system commands
can be executed from any device without using a device identifier.

38838 ; select ICD Debugger

B::QUIT ; The QUIT command is a part of the
operating system and therefore, it is
recognized for all devices

CmdPOS Controls the position of TRACE32 in MWI window mode
FramePOS Controls the position of TRACES32 in MDI window mode

©1989-2024 Lauterbach PowerView User's Guide | 37

Command History

By clicking inside the command line and then pressing the «up» or «down» arrow keys, you can get back the
previously executed commands. By entering just a keyword before pressing the «up» arrow key, it is possible
to search for lines containing this word.

The command history is displayed with the command HISTory.type. Clicking with the mouse will copy one
line to the command line.

i BHISTorytype f=fe ==

1 :5¥5tem. Up

B

E::Register.Set PC main
B::List.Mix
B
B

::Register.view /SpotLight
1:Go sieve
4 |l Copy line

History

Execute

Copy to cmdline

P e |
HISTory.eXecute Execute command history
HISTory.SAVE Store command history log
HISTory.Set History settings
HISTory.SIZE Define command history log size
HISTory.type Display command history log

©1989-2024 Lauterbach PowerView User's Guide | 38

Command and Function Parameters

Parameters are required for an exact definition of the operation.
Every parameter is separated from the next by spaces or a comma. .

; parameter separation by space
FramePOS 10. 10. 80. 50. Top WHITE

; parameter separation by comma
FramePOS 10.,10.,80.,50.,Top, WHITE

Omitting parameters is only possible if commas are used to separate parameters. Additionally, existing
spaces are simply ignored.

FramePOS 10.,10.,80.,50., Top, WHITE
FramePOS 10.,10., , , ,WHITE

FramePOS 10.,10.,,, ,WHITE

Spaces are not allowed within parameters!
White spaces before or after operators are interpreted as separators of consecutive expressions

Wrong: Correct:

Oy 1000 0y1000

0x1000 *0x3 0x1000*0x3
(0x1000+0x3) *0x3 (0x1000+0x3) *0x3

©1989-2024 Lauterbach PowerView User's Guide |

TRACE32 supports the following syntax for the command parameters.

Decimal Number base is decimal, C-like operators are used.
Hex (default) Number base is hex, C-like operators are used.
WideDecimal Number base is decimal, C-like operators are used, but values larger than

64 bits are possible (for future use).

WideHex Number base is hex, C-like operators are used, but values larger than 64
bits are possible (for future use).

If SETUP.RADIX. is entered at the command line, the currently used RADIX mode is displayed in the
message line.

B: :SETUP.RADIX.

B::|SETUP. RADIX.
radixmode: Hex

[rekd | Hex |[Decimal |[Chssic |
SR:00001FF8 \\armle\arm\main

©1989-2024 Lauterbach PowerView User's Guide |

40

Parameter Types

Numerical values are limited to 64-bit values, strings are limited to 4095 characters. Depending on the
particular command or function, the following parameters are valid:

Parameter Type Examples
Address <address> = [<access_mode>:]
[[<machine_id>:::]
<space_id>::]
<constant>
UD:0x1000
D:0x1000

NSP:1:::0x0000::0xffff000008080004

Address Range
For details, see

D:0x4040--0x406F
D:0x4040..0x406F

Address Range NSP:1:::0x2000::0x8080004 ++0xffff
below. func11--sYmbol.END(func11)
ASCIl value ‘A’
Binary mask or bit OyX111XXX
mask
Binary value Oy1
oy0
Oy100010001

Boolean

<operandi><compare_operator><operand2>
or any function returning a boolean expression, such as the functions
TRUE() and FOUND().

Decimal value

1.
123445.

Floating point num-
ber

1.3
1.3e+34
0.123

Hex mask

OxFX
Oxff1exxxx

Hex value

0x0
0xd344
0x1234
OxEEEE

Range

0x10..0x20
10.--30.
0x10--Oxed
A7

©1989-2024 Lauterbach

PowerView User’s Guide

41

Parameter Type

Examples

String
(with quotation marks)

String
(without quotation
marks)

Ilnamell
"abc""def" - string literal value: abc"def

Strings without quotation marks are only used in PRACTICE functions for
parameters such as:

HLL expressions

J Var.FVALUE(ast.left->x)

Keywords

J TASK.STRUCT(queue)

. WINdow.POSition(WinTOP,LEFT)

The notation format with quotation marks is accepted for this kind of
function parameters as well.

Time range

10us--2ms

10us..20ms

Units of measurement:

. s (seconds)

J ms (milliseconds)

J us (microseconds)
J ns (nanoseconds)

Time value

10s or 10.s are equivalent.
23.24ms

75.0ns

Units of measurement:

J s (seconds)

J ms (milliseconds)

. us (microseconds)

J ns (nanoseconds)

©1989-2024 Lauterbach

PowerView User's Guide | 42

Parameter Type Examples

File name MS-DOS TEST
TEST.CMM
A\FOLDER\TEST.CMM

objs\abc.abs
NOTE: 'C:TEST.C' is not valid name!

File name special
(for 3rd-party tool
integration e.g.
Eclipse)

\\program\"C:\folder\helloworld.c"
\"/home/myuser/examples/demo1.cpp”

File name UNIX/0S-9

objs/abs.abs

../src/abc.def
~/proj/src/main.c
~~~~/demo/analyzer/perf.ts

File name VMS

[.objs]abs.abs
[-.srclabc.def
DISK$DISK2:[t32.font]abc.d;4

PRACTICE Function

Register(PC)

FOUND()

OS.ENV(HOME)
Data.Word.BigEndean(MX:0x1234)

Line numbers

\100

\MCC\100

\module\100
\\program\"C:\folder\helloworld.c"\100

Column numbers

\100\15

\MCC\100\15

\module\100\27
\\program\"C:\folder\helloworld.c"\100\15

Instance numbers

\100\15\1

\MCC\100\15\0

\module\100\27\2
\\program\"C:\folder\helloworld.c"\100\15\1
\module\100\\2

“(anonymous namespace)::sieve \8\\1

; default column used
; default column used

©1989-2024 Lauterbach

PowerView User’s Guide

43



Parameter Type

Examples

Symbol

;<symbol_name>
main
SIEVE

;\<module_name>\<symbol_name>
\MCC\sieve

;\\<machine_name>\\<program_name>\<module_name>\<symbol_name>

W1\linux\do_mounts\load_ramdisk
WDomOWinux\do_mounts\load_ramdisk

;\\<program_name>\<empty>\<symbol_name> results in

\inux\Woad_ramdisk ;2 backslashes before the <symbol_name>

;\\\<machine_name>\\<empty>\<empty>\<symbol_name> results in

\WDomOWoad_ramdisk ;4 backslashes before the <symbol_name>

Symbol Syntax:
<symbol> = \\\<machine_ name>
\\ [<program_name>]
\ [<module_name>]
\<symbol_name>
[\<symbol_name>]...

[ [\\<program name>]
\ [<module_name>]\ ]
<symbol_name>
[\<symbol_name>]...

NOTE: The use of \\\<machine_name> requires that the machine
spaces are enabled with the command
SYStem.Option.MACHINESPACES ON.

Symbol with special
chars

“nestxf1::~nestxf1
\"ops::operator<<="

The HLL debugger commands (all commands beginning with Var.) have their
own syntax, which is identical to the syntax of the used high-level language.

©1989-2024 Lauterbach

PowerView User’s Guide

44



Details about the Parameter Type Address Range

An address range consists of a start address, an operator, and an end address. The following operators
between the start and end address are permissible: two dots (. .) or two dashes (- -) or two plus signs (++).

NOTE: The address range always includes the last byte too.

Example 1:

;Address range
Data.List SP:0x0..0xXFFF
;Address range
Data.List SP:0x0--0xXFFF

Example 2: All four Data.SAVE.Binary commands save 0x30 bytes beginning from D:0x4040

iAddress range --
Data.SAVE.Binary filel.bin D:0x4040--0x406F
;Address range ..
Data.SAVE.Binary file2.bin D:0x4040..0x406F

;jOffset ++

Data.SAVE.Binary file3.bin D:0x4040++0x2F

;Range computed with offset

Data.SAVE.Binary filed4d.bin D:0x4040--(0x4040+0x2F)

©1989-2024 Lauterbach PowerView User's Guide | 45




Operators

White spaces before or after operators are interpreted as separators of consecutive expressions.

Values can be linked by operators.

Type

Example

Brackets

(main+1)*20

Range (with borders)

0x1000..0x1fff
0x1000--0x1fff
teststart--testend
(-1000.)--(-50.)
Ial__lfl

'a’..'f!

Range (with offset)

0x1000++0x33
teststart++0xff

Negation

-1
-0x1
-0y10000

Binary NOT

~2e
~0x2e

Logical NOT

1(i<20.)
I(a'--'Z[I'A-~'Z'110x20110x911'0"--'9")

10x10

Shift left

0x10<<2.

0x10<<0x2

0x1000--0x1fff<<0x4

"abc"<<3.

"'<<10.

result: 0x40

result: 0x40

result: 0x1000--Ox1FFFO

result: "abccece”

result: "-----------

Shift right

"abc">>3.
0x10>>2.
0x1000--(0x1ffff>>0x2)

0x1000--0x1fff>>0x10

result: "aaaabc”

result: 0x04

result: 0x1000--0Ox7fff

result: OxffO--0x1fef

Multiplication 1000.*0x2e
1000.*0y10
Division 1000./0x2e
1000./0y10

©1989-2024 Lauterbach

PowerView User’'s Guide |

46



Type Example
Addition 0x1000+0x03
sieve+0x33
Concatenation "abc"+"def"
or "abc" "def" result: "abcdef"

Subtraction

0x1000-0x34
1000.-0x34

Comparisons

sieve>0x1000
sieve<0x1000
sieve==0x1000
sieve!=0x1000
sieve>=0x1000
sieve<=0x1000

Data.Byte(my_char)==('a'--'Z'll'0'lI'1")
result: TRUE() when value is a lower alphabet character or a binary
digit character “0" or “1”

Register(PC)!=(P:0x1000lIsYmbol. RANGE (func2)lIP:0x20..P:0x2ff)

result: TRUE() when the actual program counter register value is not
covered from the address ranges.

Binary AND mask&0x1000
Binary XOR mask”0x1000
Binary OR maskl0x1000
Binary Complement ~mask
Logical AND flag0&&flag1
(r(DO)>d.I(i)) &&(d.b(x)<=0x0f)
Logical XOR flago”~flag
Logical OR flagOllflag1
‘a’--'Z'II'0"--'9'110x20119.
Logical NOT IFOUND()

©1989-2024 Lauterbach

PowerView User's Guide | 47



Arithmetic Rules and Operator Precedence

The arithmetic hierarchy is similar to that found in most other programming languages, whereby a difference
is made between boolean and arithmetic operators of logical relations. Expressions of the same priority are

evaluated from left to right.

Precedence Operands Meaning

1. () {1} Brackets (highest priority)

2. - 4+ Ranges

3. + - ~ Signs, Binary NOT, Logic NOT
4, << >> Shift operations

5. * | % Multiplication, Division, Modulo
6. + -+ Addition, Subtraction, Concatenation
7. = l= >= <= > < Comparisons

8. & Binary AND

9. A Binary XOR

10. I Binary OR

11. && Logical AND

12. M Logical XOR

13. Il Logical OR (lowest priority)

©1989-2024 Lauterbach

PowerView User’s Guide

48



Parentheses and Braces

The braces '{' and '} have the same mathematical function as the parentheses ‘(' and '), except that the
braces additionally convert a variable expression into a constant expression.

B::Data.dump Register (PC) ; The Data.dump window displays a hex dump
; of the memory range indicated by the PC.
; Whenever the PC changes the
; corresponding memory range is displayed.

B: :Data.dump {Register (PC)} ; The Data.dump window displays a hex dump
; of the memory range indicated by the PC.
; Since the current contents of the PC is
; converted to a constant expression, the
; same memory range is displayed all the
; time, even when the PC changes.

Parameter History

For most parameters (e.g. addresses, file names) the previous parameter entered may be recalled by using
the appropriate softkey. Only one entry is stored for each parameter type.

©1989-2024 Lauterbach PowerView User's Guide | 49



File Names

TRACE32-PowerView supports the input of file names as follows:

. File names can be entered without extensions (*.xyz). The valid extension is added automatically
(see SETUP.EXTension).

. Wildcard characters (‘*’ or ?’) are supported in file names. In this case, a file selection or folder
picker dialog opens, from which you can select the file you want. See [A] in screenshot below.

J The file type filter can be set to automatically show the desired file types, for example ¢, cmm,
txt, etc.

In the example below, the file type filter is set to c files, i.e. the other files are temporarily hidden

in the file selection dialog.

-

A B:EDIT ~~\demo\arm\compileriarmi*.c @
1\;‘:11 i | <« T32 » demo » arm » compiler » arm v|&,|| Search arm ol
( e Mew folder =~ 0 @

MName Date modified Type Size

|| arm.c 15-Jul-13 6:13 PM CFile 11 KB

File name:

- |Current *.c) 413! v|

[ Open |vl | Cancel |
‘B: ([EDIT ~~'‘demolarm'compileriarmi*. c
[l N B
el 11 FFE \\@rmle\arm\main system ready

A The command you have used to open a window is shown as the window caption.

B Filter by file type.

For MS-DOS/Windows applications, only one working directory is supported. To access a file on another
drive, the full path name must be used. Prepending the ChDir command before the command causes the
new directory to become the current working directory.

Examples:

Data.LOAD *.abs

DO \practice\*

ChDir.DO \practice\*

execute a PRACTICE script file from
another directory,
keep current working directory

execute a script file from another
directory and make this directory to the
current working directory

©1989-2024 Lauterbach

PowerView User's Guide | 50



EDIT a?.c

DIR *.obj

;inside a PRACTICE script file only,

&practice_dir=0S.PresentPracticeDirectory ()
ChDir &practice_dir

Path Prefixes

no macro replacement in command line

Tildes and periods can be used as path prefixes. There are five special path prefixes:

Linux

Windows

Function

J

A\

Current working directory

Parent directory

Home directory of the user (from $HOME)

System directory of TRACE32.
Default: c:\t32 on MS Windows

]

o\

Temporary directory for TRACE32

——

e\

Directory where the currently executed PRACTICE script is
located

Example:

;step through this PRACTICE script file (*.cmm) in the PSTEP window

PSTEP ~~/demo/arm/compiler/arm/arm9 .cmm
NOTE: . In the command line, please use the path prefixes instead of the func-
tions, e.g. cd ~~~~/ instead of OS.PresentPracticeDirectory().
. TRACE32 can handle forward slashes / on all operating systems.

©1989-2024 Lauterbach

PowerView User’'s Guide |

51




General Command Parameter Parser

A. Object of Description

The general parameter parser for commands is the TRACES32 parser which is used for command line input,
the batch language PRACTICE, the analyzer programming language, the peripheral description language
and the menu programming. The parser version V2.X was introduced May 1999.

Only the command group “Var” which handles HLL debugging does not use the TRACES32 parser. For
HLL debugging a special programming language aware parser is used. This allows the user to enter HLL
expression like the following example:

Var.View *((long*)p_firstelement->next))

Different HLL parsers are implemented (e.g. for C, C++, JAVA, Ada, ...).
This description is not intended for these kind of special HLL parsers.
Examples of using the general TRACE32 parameter parser:

Command line:

Break.Set sieve /Alpha ; sets alpha breakpoint at function begin
; of sieve

Data.List P:0x1ACE ; opens source list window at address
; program 0x1ACE

Data.dump P:0x10--0x200 ; opens data dump window from address 0x10
; to 0x200

DUMP mcc.abs 0xC00 ; displays file dump with file offset
; of 0xCO00

PRACTICE script files:

; check whether program stopped at correct address (0x1000)
IF Register(PC)!=0x1000
(
PRINT "Program stopped at address: " Register (PC)
; loads program counter with address of symbol startaddress
; and restart program
Register.Set PC startaddress
Go

ENDDO

©1989-2024 Lauterbach PowerView User's Guide | 52



Analyzer programming files:

TIMECOUNTER delay_counter 100ns--2ms ; defines counter time
; window
ADDRESS AlphaBreak funcl--s¥Ymbol.END (func3) ; defines address event

; from start address of
; funcl to end address of
; function func3

©1989-2024 Lauterbach PowerView User's Guide | 53



B. Support of C Language Expressions

Parser supports a command parameter syntax that is similar to C language expressions.

Please be aware, it isn’t a full C expression implementation, which is only available for the command group
“Var’ (e.g. Var.view * (&flags+20)).

Restrictions:
1. Not implemented:

sizeof(), (typename), assignment operator (=,+=,-=,"=,/=,%=,>>=,<<=, &=,|=,/=),
array[], pointer->element, structure.element, *p_value, &flags[20], (a==2)?71:2
eg. a += b+3;

2. Different meaning:

++ (prefix and postfix; e.g. i++) will be used for range offset input
e.g.1234.++1000.,

-- (prefix and postfix; e.g. 1--) will be used for range offset input
e.g.100ns--200ns,

Symbol names will be interpreted always as &symbolname (start address of symbol) and not as
name or value for the complete symbol.

Example:
Break.Set flags /Write ; Sets a write breakpoint to the
; start address of the variable flags
a B::break.list EI@

B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
I

address type method
C:00007E9E [[Write ONCHIP | y s>| fTags

Var .Break.Set flags /Write ; Sets a write breakpoint to the
; complete address range used for
; the variable flags

a B::Break.List EI@
B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
address type method |
C:OOOO?EQS——UUUUH:AAJWNte |ONCHIP | y s>| fTags

The character & is used to mark PRACTICE macros (e.g. &cpu="MPC860")

3. Extensions:

logical XOR ("), data type boolean, bit constants, bit masks, hex masks, ranges,
addresses, address ranges, times, time ranges can use.. to define a range
(e.g.123..456)

©1989-2024 Lauterbach PowerView User's Guide | 54



C. Radix Mode Support

Parser supports radix (number base) switching.
Depending on the selected radix the written values are interpreted in a different way.

E.g. 123 could be meant as 123 decimal or 123 hexadecimal depending on the used radix mode.

RADIX Modes

I RADIX Radix mode

The radix mode (number base) is specified by this option. Numbers without type prefix like “0X” or “0Y”
respectively postfix “” are interpreted in the selected number base.

Decimal number base is decimal

Hex number base is hex - default

If RADIX. is entered in the command line, the currently used RADIX mode is displayed in the state line.

E: :RADIX.
radixmode: Hex

Written Value Interpreted Value in Radix Mode
Decimal Hex

1000 1000d==1000d 1000h==4096d

P:1234 P:1234d==P:1234d P:1234h==P:4660d

1000. 1000d 1000d

1234. 1234d 1234d

'd’: decimal value - 'h’: hexadecimal value.

©1989-2024 Lauterbach PowerView User's Guide |



Operands

Examples for operands:

Break.Set sieve /Alpha ; sets alpha breakpoint at function begin of
; sieve
Data.List P:0x1AF ; opens source list window at program address
; Ox1AF
Data.dump P:0x10--0x1ff ; opens a data dump window from address 0x10
; to Ox1ff
Restriction:

Not all operand formats could be used in all radix modes. Please refer to the Operand Format Table.

©1989-2024 Lauterbach PowerView User's Guide | 56



Operand Format Examples (Literals)

Operand Meaning Radix mode
Decimal Hex

0y1010 binary constant X X
0x12af hex constant X X
1234 hex constant X
1234 decimal constant X
1000. decimal constant X X
1.2 float constant X X
Oy10xx10 bitmask constant X X
0x12axfx hexmask constant X X
‘a’ ASCII constant X X
"abcdef" string constant X X
"abc""def" string constant with escape X X

sequence for using string

delimiter inside string literals

string value: abc’def
“main’ backticks for HLL symbols X X
1000--2000 numeric range constant X X
1000..2000 numeric range constant X X
P:0x1af address constant (hex) X X
P:1234 address constant (hex) X
P:1234 address constant (decimal) X
P:1234. address constant (decimal) X X
P:0x1000--0x1fff address range constant X X
P:0x1000..0x1fff address range constant X X
123ms time constant X X
123ns--4.25s time range constant X X
123ns..4.25s time range constant X X

©1989-2024 Lauterbach

PowerView User’s Guide

57



Operators

Examples for the use of operators:
Command line:

Data.dump P:0x10++(Register (D0)%4) ; open data dump window from
; address 0x10 to offset value
; in register DO modulo 4

PRACTICE script files:

IF Register(PC)!=0x1000 ; check whether program
; stopped at the correct
; address

Analyzer programming files:

DATA.BYTE ascii ‘’a’=='z’]||’A’--"'Z’ ; define data event with
; the alphabet as wvalid
; values

ADDRESS AlphaBreak ! (fctl--sYmbol.END(£fct3)) ; define an address event

; over the whole 4 giga

; address space without

; the address range from
; start address of funcl
; to end address of func3

©1989-2024 Lauterbach PowerView User's Guide | 58



Operator Formats

-- range with borders

range with borders

Operator Meaning Radix mode
Decimal Hex
! logical NOT X X
&& logical AND X X
AN logical XOR X X
Il logical OR X X
~ binary NOT X X
& binary AND X X
A binary XOR X X
| binary OR X X
- negation or minus X X
+ plus X X
* multiplication X X
/ division X X
% modulo (reminder) X X
<< shift left X X
>> shift right X X
< smaller than X X
> greater than X X
<= smaller or equal than X X
>= bigger or equal than X X
== equal to X X
1= not equal X X
00 parenthesis X X
X X
X X
X X

++ range with offset

©1989-2024 Lauterbach PowerView User's Guide | 59



Window System

Windows

[Back to Top]

All outputs of the TRACES32 system are displayed in windows. Usually, all windows display current data

because they are updated periodically.

Windows can be closed by the esc key. This allows to temporarily display some information and quickly

close the window again.

TRACE32 windows typically consist of some or all of the following components:

|
sAnalyzer. ListI ﬂ EI-@

y o4 [m »
Iliill"'

[ & | Goto...|| FiFind... [ Achart |[ BProfile ]LEMIPS | % mMore |[ X Less |
record |run |address cycle |data symbol ti.back

-000007
add r2,r2,r4

-000006 R:0000224C fetch E59F 0 Yarmleharmisievet+Ox24 0.100us
Tdr r0,0x22C4

-000005 D:000022C4 rd-Tong O000GEA4 “V\armle'arm'sievet+0x9IC 0. 200us

-000004 R:00002250 fetch E7CO400E “Marmleharm'sievetOx2E 0.100us
strb r4,[ro,+rl4]

-000003 D:00006EAF wr-byte 01 YharmlelGlobal'f1ags+0x0B 0.100us

-000002 R:00002254 fetch EAFFFFFE “Marmleharm'sievetOx2C 0.100us
b 0x2234

-000001 R:00002234 fetch E3520012 “Marmleharm'sievetOx0C 0.100us

684 for ( 1 =0 ; 1 <= SIZE ; flags[ i++ ] = TRUE ) ;
4

1@

Local buttons of a window.

Scale area: Column headers of a window.

Slider control (top).

Data area: It contains the actual values or information.

Slider control (bottom).

I & M m O O W >

breakpoints, bookmarks, etc.

Window manager menu: Clicking the icon lets you open the window manager menu.

Window caption: It displays the TRACE32 command that was used to open the window.

Scale area: Additional information about lines, such as line numbers, record numbers, addresses,

©1989-2024 Lauterbach

PowerView User's Guide | 60



Window Captions - What Makes Them Special in TRACE32

[Back to Top]

The command you have used to open a window is shown as the window caption. The parameters and

options are also included in the window caption.

E::B::Data.DRAWFFT ¥Decimal.Byte WM:0++0x4f 2.0 512.

[ok] options

ol 1| Data. DRAWFFT %Decimal.Byte UM:0+ +0x4£ 20512, |

(40 In ||+« Out || K3 Full| S In || S 0ut]| [ Full
.0 0.2 0.4 0.6 0.8

1.0 alne] 1.4 1.6

15, ||

10. 1

oA L »

In addition, you can easily modify the window caption with a simple mouse-click. For more information, refer

to “Modifying and Re-using Commands Shown In Window Captions”.

Example: This script allows you to reproduce the above Data.DRAWFFT window:

;set a test pattern to the virtual memory of TRACE32

Data.Set AVM:0--0x4f %$Byte 1 0 0 O

Data.dump AVM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph

Data.DRAWFFT %Decimal.Byte AVM:0++0x4f 2.0 512.

Local Buttons

[Back to Top]

Many TRACE32 windows have built-in local buttons [A]. In addition, you can extend TRACES32 windows with

user-defined local buttons [B].

=] BuList.auto main I I

(=[O el

l[ Ml Step |[ M Over ]@Dwerge][qf?e;urln][ ¢up || »Go |[ HlBreak ]L%Imﬂwkmk] Find:

addr/Tine code mnemonic comment

arm.c

586 |{
SR:00001FF8 |E9
SR:00001FFC |E2

stmdb
sub

ri3!,{r4-r5,ri4}
ri3,rl3,#0x8

nt j;
char * p;

-

For an example of how to program your own local buttons in TRACE32 windows, see the BUTTONS

command.

©1989-2024 Lauterbach

PowerView User's Guide | 61



Local Popup Menus

[Back to Top]

You can extend the built-in local popup menus of TRACE32 windows with your own local popup menus and

menu items, as shown in this example of a List.auto window:

] BuListauto [E=5EoR 5
[ Mstep | M Over |[AaDiverge|[ ¢ Return|[ @ up || »Go [ M Break |[ B¥Mode | Find: arm.c
addr/1ine |code label mnemonic C E |
A 2

Program Address
+ GoTil

a Breakpoint...

1 e Breakpoints L4
" i& Display Memory L4

590
SR:00002000 |E
SR:00002004 |E
SR:00002008 |E r
vitripplearray[ 1 [ol[

591 £ Bookmark...
SR:0000200C |E mov rl,#0x2
SR:00002010 |E 1dr r0,0x2204 @ Toggle Bookmark | -
1| 4f Set PC Here r
% Edit Source
& ViewInfo

Assemble here ...

Meodify here ...
Patch here ...
MyPopup L4 MarkPC
Bookmark List

A Built-in local popup menu named Program Address.
B User-defined local popup menu.

C User-defined menu items.

There are two ways to add your own menu items to popup menus in TRACE32 windows:

. You can assign your own menu items to the command short form of a TRACE32 window, e.g. to
the command short form L. for the List.auto window. As a result, your own menu items are only

visible in the List.auto window, but not in the List.Mix nor the List.Asm window nor any other

window.

For information about command short forms, see “Long Form and Short Form of Commands and

Functions”, page 35.

. You can assign your own menu items to the built-in popup menus Program Address and
Variable. As a result, your own menu items are visible in all TRACE32 windows that have these
popup menus, such as the following windows: List.auto, List.Mix, List. Asm, Data.dump,

Var.Watch, etc.

For examples of how to programmatically extend a TRACE32 window with your own menu items, refer to the

menu programming command MENU.

©1989-2024 Lauterbach

PowerView User’'s Guide |

62



Slider Controls

Most windows that output data have slider controls. By dragging the slider controls, you can:

1.
2.

Open and close legends, e.g. the color legends of charts in ProfileChart windows, see [A].

Resize the scale area, see [B].

Display new columns after modifying a command on the fly. In example [C], the Data.List

command is modified by adding ISTAT. To display the new columns, drag the slider control to the

right.

For information about how to modify a command displayed in a window caption, see “Modifying and
Re-using Commands Shown In Window Captions”.

& B:ETA.PROfileChart /Track /ZoomTrack /Color AlternatingColors

(=[O sl

power |

(other‘) B start
PamM2
10.000us

000s -800.000ms

e 28 Gonfig... (I Goto... [3‘3 Find. _][0 In] NOu [|0| FuII][ 20| Joi|F

LED3 F"M-'I3 LED4 F"M-'I4
I PuaMs LEDG& PuM6 I LED?
-600.000ms -400.000ms -200.000m O.- _

1 1 _ 4

bbbl

» 4 [m

2591\1&.. 111 Goups...

d LED3 {4
g B WM 3 [
q LED4 {4

#u| B:Analyzer.Chart.s¥mbol /ZoomTrack

(& setwp... |13 Goups... || B8 Config... [ Goto...|[ #3 Find... |[4p In|[»

—1 000s
address i

-500.000ms
1

Starthy
LED1 {4
PWM1 R
LEDZ [
PwM2 [

P4 Gy

LEDS M

PWM5 [

LEDBRY

H J <[] r 4
i£] B:Data.List /ISTAT I C =n| Wl <
Mocenn L w oo 7= niovt ef Retun|[ @ Up |[ » Go |[ NN Break |[ ¥ Mode ] Find:
clocks cpi addr/1ine | |code |Tabel [mnemonic |comm
0. 0.00 48 anzahl = 0;
0.| 0.00| W5R :4A3260ED |E3ADEDOD Moy ri4,#0:0
0. 0.00 ] while { k <= SIZE )
0.| 0.00| W5R :4A3260E4 |E3510012 CHip ri, #0012
0. 0.00 a1 flags[ k 1 = FALS|®
0.| 0.00| W5R :4A3260EE |DZCCEDOT strleb ri14,[r12,+r1]
0. 0.00 62 k += prinz;
0.| 0.00 M5R :4A32E60EC |DOET1003 addle rl,r1,r3
0.| 0.00 W5R :4A3260F0 |DAFFFFFE ble 0x4A3260E4
0. 0.00 65 ahod++;
0.[ 0.00] NSR:4F’4_ ESSFEOEC Tdr r14 0x4A326 168 kv
4 I 2

Open and close
the color legend.

©1989-2024 Lauterbach

PowerView User’s Guide

63



Window Operations

Basic Operations

All basic operations (e.g. move window, iconize window) are fully compatible with the host operating system.

Old Position, Bookmarks, and Current Selection

You can place visible bookmarks and one hidden bookmark in TRACE32 windows that output data, e.g. in
Trace.List or List windows. Using bookmarks, you can navigate between bookmarked locations.

Visible bookmarks View menu > Bookmarks opens the Bookmark.List window. The steps
below describe how to place visible bookmarks. For more information
about visible bookmarks and the difference between the bookmark colors
yellow and green, see BookMark.

Hidden bookmark Recall Position returns to the position you have previously saved with
Store Position. The steps below describe how to place a hidden
bookmark.

Current Selection Goto Selection returns you to the currently selected position or last

active view (in case the selection is no longer active).

To place visible bookmarks in a window:

1. Choose View menu > e.g. Trace List to open a Trace.List window.

2. Right-click where you want to place a visible bookmark, and then select Toggle Bookmark.
- Scroll somewhere else within the same window, and then place another bookmark.

3. To view the bookmark list, choose View menu > Bookmarks.

BookMark.List ;alternatively use the TRACE32 command line to open
;the BookMark.List window

Tips: To go to a bookmark location, you have the following options:

. Double-click a bookmark in the BookMark.List window. A new window opens, displaying the
bookmark location.

J Open a new window with the Track option, for example:
Trace.List /Track
BookMark.List ;now click the bookmark you want in the BookMark.List

;window to jump to that bookmark location in the
;Trace.List /Track window

©1989-2024 Lauterbach PowerView User's Guide | 64



To place a hidden bookmark in a window:
1. Choose View menu > Trace to open a Trace.List window.
2. Click where you want to place the hidden bookmark.
3. Choose Edit menu > Store Position.
- Scroll somewhere else within the same window.

4. To return to the last stored position, choose Edit menu > Recall Position.

Getting Information

If the left mouse button is held down, additional information will be displayed concerning the field addressed

by the cursor position.

&of BuVarView flags EI@

(e |
®flags = (1, 1, 1| Ol i,1,0, 1,1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0)

< \ >

Cursor position

B::
‘F'I ags[3] =0
components trace Data

D:00007E9E \\sieve\sieve\flags+0x3

Changing Data or Setups

A double click to a field with the left mouse key will invoke a change command such as «Data.Set» or
«Register.Set».

4%, [B:Data.Dump 0x7E90] [ s
address 1] 4 8 C 0123456789ABCDEF
SD:00007E40 | 999999F1 404F5999 EC502C01 404F5999 R5555T08,, PL 5708 A

SD:00007E50 | 3DD0B461 3E24E179 00007F60 00003927 a%%=yis> ;4% 9%%
SD:00007EG0 | FAB9AF1S 405349F8 AB071364 405363F5 SA%LGISGd¥E4hcse =
SD:00007E70 | 899BFG11 40537F6E 52F57645 40539C13 4 LSatviREISE |,
SD:00007E80 | E59ED23E 00D07F58 104D3545 4053D7CE =5 @

5D:00007E90 [+00000000 0ODO0OFF 00010101 01000101 %
5D:00007EAC | 00010001 00010100 00000100 00000000 5%3
SD:00007EBO | BE9EGD58 BFCOEOEL 999999F1 404F5399
SD:00007ECO | 7522D3BC OOD03EE7 E973B227 3F21C4BD &
SD:00007EDO | AF282EBE 3F9D3B68 70000000 3C8FE05C
SD:00007EEQ | BFC55555 BF390427 A1AC8162 0D0005E39
SD:00007EF0 | AO0DDO00 BCSFSF7F BBYEGDSE BFCOEQSF %A%
SD:00007F00 | BE9EGD58 BFCOEOSF 33732DF7 3FS10F42
SD:00007F10 | 3683CE33 BF62C74B 34CDGOEE 00000000
5D:00007F20 | 00000034 00000025 00000000 DOC02BCE
5D:00007F30 | 0000007E 00000059 DO007F40 00000DIL -~
5D:00007F40 | 00000001 00000001 00002C17 O0DOCOOF %

Cursor position

B::[Data. dump Ox7E90| ~———  Generated command

[ok]
SR:00002300 \\sieve\Global\__adddf3+0x60

©1989-2024 Lauterbach PowerView User’'s Guide



Window Manager Menu

The windows in TRACES2 provide a window manager menu with special commands. For a short description
of the these commands, see below.

Windows GUI: To access the window manager menu, click the icon in the top left corner of a
window:

@  Restore Up » Go
Tabel
Move
Size =0 ; 1 <= 51z
- Minimize Z0; i« sh
o Maximize
x  Close Ctrl+F4
=0 ; 1 <= 51z
Mext Ctrl+Fo

Command Line

Reset Position
Freeze
Freeze Parameter =0; 1 <= 5L
Transparent
=0 ; 1 <= 51z
Small Font
v Medium Font
Large Font =0; 1 <= 5L
Print
Print all iF (Flags[ i
To Clipboard
To Clipboard all
Window Screenshot to File... { primz
Window 5c hot to Clipboard
k=1
Store Command while

S [= 33 30012

Motif GUI: To access the window manager menu, right-click the window manager button. The
window manager button is located on the right upper or right lower corner of a Motif window.

ri
r31,B=240r1) i J.3eirl
stw ri, B=2Cirl) pori,44ir1y

end of frame
_startiasm)
__init_main{asm)

viripplearray[0][0][0] = 1;

ast = (word = Bx@, count = @, left = Bx@, right = BxB, fieldl = @, fieldZ = @)
flags = (@, @, @, 8, @, @, @, @, @, 8, @, 8, @, @, @, @, 6, 4, @)

©1989-2024 Lauterbach PowerView User's Guide |

66



Short Descriptions of the Special Commands in the Window Manager Menu

Next

Jump to next window.

Command Line

Inserts the window caption (= command) in the command line.

. On a Windows GUI, right-click the window caption.

. On a Motif GUI, click the window manager button, and then select
Command line.

You can now modify and run the command again or re-use it in a

PRACTICE script (*.cmm).

See also “Window Captions - What makes them special in TRACE32".

Reset Position

Returns to the position specified in the window caption.
Examples of window captions:

B::Data.dump (0x100) => Returns to address 0x100
B::Data.List func9 => Returns to symbol func9
B::Trace.List -000212. => Returns to record -000212.

Freeze

Freezes the window contents. Executing the function again will change
back to a cyclic update of the window.

Freeze Parameter

Freezes the window parameters.
Example: Data.Dump Var.Value(MyVar)

If Freeze Parameter is used, the dumped memory addresses are not
updated if the variable value will change.

Small, Medium,

Changes the size of the font for the window. Switching to Large Font is

Large Font very useful in presentations before large audiences.
See also WinSmall, WinMid, WinLarge.
Transparent Makes the window transparent (only available for MWI interface of

Windows 2000 and later). These kind of external windows will allow
windows in the background to shimmer through.
See also WinTrans.

©1989-2024 Lauterbach

PowerView User's Guide | 67



Print
Print All

The result of Print or Print All depends on the output medium you have
selected in the PRinTer dialog:

1. Choose File menu > Printer Settings to open the PRinTer dialog.

2. Select the output medium you want: printer, ClipBoard, FILE, or Area.

Depending on your selection, the window contents can now a) be sent to
the printer or b) copied to the clipboard or ¢) saved to file or d) printed to
an AREA window.

. Print prints only the visible window contents to the selected output
medium

. Print all behaves within a TRACE32 window as if you scroll to the
top of the terminal buffer and choose Print, then scroll down one
visible terminal page and do the next Print, and so on.

NOTE: To process huge amounts of data, e.g. from a List.auto window,
we recommend that you redirect the output to a file instead. See
PRinTer.FILE example.

See also PRinTer and PRinTer.select.

To Clipboard

To Clipboard copies the visible window contents as text to the clipboard.
See also PRinTer.

To Clipboard all

To Clipboard All behaves within a TRACE32 window as if you scroll to
the top of the terminal buffer and choose To Clipboard, then scroll down
one visible terminal page and do the next To Clipboard, and so on.

NOTE: To process huge amounts of data, e.g. from a List.auto window,
we recommend that you redirect the output to a file instead. See
PRinTer.FILE example.

See also PRinTer.

Window Screen-
shot to File

Captures a screenshot of the active window and opens the Save Window
Screenshot dialog. Enter file name and select file type (PNG, GIF etc.)
See also SCreenShot.

Window Screen-
shot to Clipboard

Copies a screenshot of the visible part of the window to the clipboard.

Store Command

Saves the window caption (= command) as a PRACTICE script (*.cmm).
The position, size, and name of the window as well as column widths are
also included in the script.

See also STOre.

©1989-2024 Lauterbach

PowerView User's Guide | 68



Window Position and Name

The size and position of a window generated by a command can be predefined by the command WinPOS.
A name can be specified for this window. This command in mainly used in PRACTICE scripts (*.cmm),
which were generated by the STOre command.

AutoSTOre Store settings automatically
STOre Generate a script that allows to reproduce the current
setting or settings
ClipSTOre Store settings to the clipboard
WinPOS Define position, size, and name of the next window
WinOverlay Pile up windows on top of each other
Example:
; <x> <y> <w> <h> <window_name>
WinPOS 5.0 5.0 58. 8. PR TEXT1
TYPE ~~~\test.txt /LineNumbers

Freezing a Window

A window is frozen by choosing the Freeze command of the window manager menu. A frozen window is no
longer updated with the current state. Therefore, it can no longer be scrolled, because the required data are
missing. The pre-command WinFreeze will generate a frozen window from the command line.

Erasing a Window

Windows are deleted like any other window on the host. All windows can be deleted without loss of data, e.g.
when using the editor. The command WinCLEAR without parameters deletes all windows on the current
window page. All window pages are deleted by the WinPAGE.RESet command.

WinCLEAR Erase all windows on one page or a named window
WinPAGE.RESet Erase all pages

Window Scroll Bars

In the case of most windows with a finite size, the relationship between the displayed section and the entire
size of the window is represented in the scroll bars located at the borders of the window. Infinite windows,
like a hex dump, have no moving scroll bar.

©1989-2024 Lauterbach PowerView User's Guide | 69



Printing Window Contents

To print a hardcopy of the active window, select the Print command from the window manager menu. Larger
areas can be printed by adding the pre-command WinPrint.

Printers must be configured in the config file (default config.t32). The installation of printers is described in
the INSTALLATION GUIDE.

WinPrint.<command> Print one window (full printer size) to file

WinPRT Make hardcopy of existing window

PRinTer.HardCopy Print all windows on screen

PRinTer.select Select type of printer

PRinTer.ClipBoard Re-route printer output to clipboard in specified format

PRinTer.Area Re-route printer output to AREA window in specified
format

©1989-2024 Lauterbach PowerView User's Guide | 70



Saving Window Contents

[Example]

The PRinTer commands can be used to redirect and save window contents to a file. The output file can
either contain one printout or combine multiple printouts in one file. The output format of the file can be either
a plain ASCII format for postprocessing or POSTSCRIPT for use in document processing tools.

PRinTer.OPEN Open file and re-route multiple printer outputs to this file

PRinTer.FILE Define file for single printer output and select output
format for file

PRinTer.CLOSE Close file after multiple printer outputs

WinPrint Print one window (full size) to file

PRinTer.EXPORT Export CSV-formatted printer output to file

Example: The contents of the Register.view window are saved to file, which is then opened in the TYPE
window. The path prefix ~~~ expands to the temporary directory of TRACES32.

Register.view ;optional step: open the window
PRinTer .FILE ~~~\test.txt ;create and open a file for writing
WinPrint.Register.view ;print the window contents to file
TYPE ~~~\test.txt /LineNumbers ;open the file in the TYPE window
B:Register.vi : -IEI : . B:TYPE ~~~\test.txt /LineNumbers : -:
L o S — Save window contents i
- T Rq 0 RS9 o - to fil 1. of 30. = = F1 Find...
0 R10 o o tile . |B::Register.view ~
R3 0 R11 o T . [N _ RO 0 RSB 0 AS+
s o f: 1000 = TR o R10 0
ne 0 Ria 0 ——» — VT R3 o RI1 o
7 0 PC 1FF8 testint R4 0 R12 0
10 CPSR D3 RS 0 R13 1000
i RE 0 R14 o 57
4 m 3

©1989-2024 Lauterbach PowerView User's Guide | 71



Special Window Options

Windows with some special behavior can be created by the following commands:

WinBack
WinDuplicate
WinExt
WinFreeze
WinLarge
WinMid
WinOverlay
WinPAGE
WinPAGE.Create
WinPAGE.Delete
WinPAGE.List
WinPAGE.select
WinResist

WinRESIZE
WinSmall
WinTABS
WinTOP

WinTrans

Examples:

WinBack.AREA error
WinFreeze.Data.dump 0x1000

WinResist.PEDIT test

Generates a window on background

Duplicates window

Generates an external separate window (MWI like)

Generates a frozen window
Generate window with large font
Generate window with regular font
Pile up windows on top of each other
Window pages

Create page

Delete page

List pages

Select page

Generates a window which cannot be erased by
WinCLEAR

New size for window

Generate window with small font
Define TABs

Bring window to top

Generate transparent window

©1989-2024 Lauterbach

PowerView User’s Guide



Text-based Functions

The text-based functions are available in all windows. They allow searching for text and control the display
excerpt of the window.

WinFIND Search for a text string in a window

WinPAN Scroll window

The Find function can be accessed from the Edit menu window (Windows) or from the window manager
menu (Motif). This example shows that you can search for text in a peripherals file (PER.view window).

A TRACE32 PowerView ARM =n| Wl <
File View Var Break Run CPU Misc Trace Perf Cov ARM340 Window Help
| M| Undo -z RN D[ Hm N Ses @ LD
& Cut Ctrl+X
Copy Ctrl+C o BuPER.view , "ICEbreaker” /Spotlight EI@
Paste Ctrl+V M ID Registers
BEEE b= (= em Configuration and Control
B ICEbreaker
Debug Control
DEGCIRL E92D4030 1ICE disabled MONLIOR enabled
. STEP disabled INTDIS enabled DEGRQ no DEGACK
Properties Alt+Enter E24DD008 ITEIT O P 1 IFEN disable E;EE no D
E3AD0001 FIQ dis IRQ dis D_AEO dis P 15 SWI dis
Find... Ctrl+F E5C10000 VERSION 1110 WRITE idle REA e
DATA E3A01002

watchpoint 0 Find &=
Al ES2D4030
Goto Selection AN E24DD003 .
* oL E3a00001 | Findwhat:  dborg
L. D E59F1200
Store Position v E5C10000 4 Direction User
Recall Position cn E3AD1002 Us @D ENA
L . [ Match case -~ Hp 1@/ Down
. . watchpoint 1
g Save All Editor Files y E9204030
. . = AN EZ4DDO0S
%Llst all Editor Files oV £3A00001 i
4 Grep in Source Files... 1 n L
B::
"dbgrq" found.
emulate trigger | [ devices | traee |[ Dam |[ wvar |[ st |[ PERF |[SYStem |[ other || previow
system ready MIX |UP

Selection Service

The selection service allows 'drag and drop' and 'cut and paste' features between applications. Drag and
drop is started by pressing the left mouse button on a selection and then moving the mouse. Cut and Paste
can be done either with the Copy command in the window manager menu or by using the Edit menu or the
appropriate accelerator key (i.e. AC on Windows).

©1989-2024 Lauterbach

PowerView User's Guide | 73



Message Windows

By default, all information is displayed in the message line. To get a more terminal-like output and input, you
can create multiple named message areas and display the information output to the various message areas

in AREA windows. Information is printed to the AREA windows with the PRINT command. Interactive

keyboard input on an AREA window can be made with the ENTER command.

. Error messages and warnings will always be displayed in the default AREA window A000.
A000 is the name of the default message area. See [A].

J User-defined messages can be output to the same default AREA window A000O, or to extra

AREA windows having user-defined names, see [B].

[B:PLIST] (=[O el

(29 step] (2 Over][ @ up (2% Gontinue) (21 Stop| |2 Exida) [ 25 List | 255 Maous | % Edit [ 212 Beakpoints |

;by default, error messages al

H: - nd warnings are displayed
;in the AREA window named 0

44 [AREA.view ADDO

—
;create and select an additional AREA window named myMSG
48 [WinPOS 5. 5. 62. 18. ;optionally define position and size
49 |AREA.Create myM5SG

50 |AREA. view myMSG E
51

AREA. Select myMSG

;print a message to the AREA window named myMSG
54 [PRINT "This is the area myM3G."

IE I ;

= | B:AREA.view ADDD

L= ][5 5] || =B:AREAview myMSG (=[O el

arget processor 1in reset
4 n

wWarning/Error Message for:
ile c:\t32\arm.elf not found
Warning/Error Message for:

.FILE_ERRNFD

. EMU_ERRRESET
- hiz 1= the area myMSG.
3 4 M

AREA.CLEAR
AREA.CLOSE
AREA.Create
AREA.OPEN
AREA.RESet
AREA.SAVE

AREA.Select
AREA.view
LOG.toAREA
OS.Area
PRinTer.Area

Clear area

Close output file
Create in/out area
Open output file

Delete all in/out areas

Save contents of the AREA window to file. In this simple save operation,

the commands AREA.OPEN and AREA.CLOSE are not required.
Select a message area for PRINT and ENTER

Display in/out area

Log commands by writing them to an AREA window

Call host operating system with output in a TRACE32 AREA window

Re-route printer output to AREA window in specified format

©1989-2024 Lauterbach

PowerView User’s Guide

74



Window Tracking

Windows may be coupled by a global reference indicator, generated either by the mouse position within a
window or by the result of a search or goto operation. The global reference indicator can be one of the

following:

o The line number for text windows, see example 1.
o The address, see example 2.

J Or the absolute time, see example 3.

. Trace record numbers.

Window tracking is possible between different types of windows, like source text, analyzer listings or timing
diagrams. Every window which is set to track mode by the option /Track will follow the global reference
indicator.

Some windows are temporarily set to tracking when search functions are executed (e.g. the analyzer list
window during a find operation).

Example 1 - Tracking in two text windows using the mouse: The cursor position of the mouse pointer [A]
can be tracked in the other window [B], provided path and file name are identical in both windows.

[B:TYPE ~~/demo/arm/compiler/arm/arm.c /Track] EI@ # [B:DUMP ~~/demo/arm/compiler/arm/arm.c /Track | EI@
673. of 717. [=] [=] [#Fnd.. ] | [ Track 0688. of 10542. (=] [=] [(#Fnd... ] | #Track
s position |0 1 2 3 4 5 6 7 01234567 {
00002508 | 20 20 20 20 09 20 20 20 vuouTuuo ~
char ﬂagstIZE+1]B DO0D25E0 | 20 20 20 20 20 73 69 65 wowow sie &
DO0D25ES | 76 65 28 29 3B OA 09 7D we(); 57 £
int sieve() /* sieve of eratho 000025F0 [ 0OA 7D 0A OA 0A 63 68 61 %lk%hcha -
000025F8 | 72 20 66 6C 73 58 ruflags[
register int i, primz, k; 00002600 | 53 49 54 45 E bl SIZE+1]; i
int anzahl; 00002608 | 0A OA 69 BE /3 69 rintusi
00002610 | 65 76 65 28 29 09 08 09 eve()%4%
anzahl = 0; 00002618 [ 09 2F 24 20 73 69 65 76 T/*usiev
00002620 | 65 20 6F 66 20 65 72 61 e.ofuera
for (1 =0 ; i <= 5IZE ; flags[ i+ ] = TRUE ) ; ~ 00002628 | 74 68 6F 73 74 65 6E 65 thostene -
] 1 b I »

B Tracking pointer

Example 2 - Tracking by going to an address:

=1 [BuList.auto /Track] EI@
(M step || B Over |[AdDiverae ¢/ Retum|[ @& Up | » Go [ 1N Break | ¥ Mode |6 2]
addr/1ine |code label mnemonic comment |
vold TunczZb() ~
196 |{
E auto long autowvar; /= Tlong stack variable =/
! register long regvar; /= long register variable */
200 autovar = regvar = mstaticl;
(=] E
] 1 ¢

‘B: :[Data. GOTO funczb

A The Data.GOTO command is used to go to the address of func2hb.

B In the List.auto window, the corresponding position is highlighted because of the use of the Track
option.

©1989-2024 Lauterbach PowerView User's Guide | 75



Example 3 - Tracking based on absolute time: After recording trace data, the same data is displayed in
three different Trace.* windows. Each Trace.* window is opened with the Track option.

BL B:Trace.PROfileChart.sYmbol , 10.000us /TimeZero /Track /Color AlternatingColors

(=[O el

(Z ... | nl(}ums ]L{}mﬁg |(f Goto...|[ F3Find... | 0 In |[»0«0ut|[EB Ful][ S 1n ][ © out|[ E Full[ Fine |[cCoarse

abi_dsubfy| |
om_thumb ¥

«m] v «

E.585s E.586s £.587s t.5388s £.589s £.590s
r‘at'iu | L I 7 Ty 1 =
N I B
60.0 =
, C-T: -2417ms i
C-Z: 5.588s -
40.0 scale: 100.000us |
interval: 10.000us F
0.0l itern: __aeabi_dmul [ ‘E‘
1
0.0 I -
_i <[m v < e
¥4 BuTrace.Chart.sYmbel , 10.000us /TimeZero /Track EI@
[ Pz, |[ ik Gous.. ][ 58 Qrfig... (A Goto... ][ Goto...|[ #3Find... |[ 40 In ][0« Out][ EH Full
|C-T: -021116 -2.417ms | C-Z: +5.588s =cale: 100.000us
E.585s E.586s £.587s t.5388s £.589s £.590s |
1 1 =

i BuTrace.List TImeZero TIme. Trigger DEFault /Track

record [ti.zero

[ & saup... (A Goto... || F3Find... || M/Chart |[ B Profie || BIMPS || % More |[ X Less |

-021118 5.588s

|
=}
E
=~
w

.588s

I

|ti.trigger |run |address lcycle  |data s@bu] |
-2.417ms R:000036D0 Tetch E1511005 =1eveyGlobaly _adddf3+0x .
orr rl,rl,r5 —
-2.417ms R:000036D4 fetch  EBED4030 ‘\sieve\Globall__adddf3+ox/E!
ldmia ri3!,{r4-r5,rl4 =
: hs | D:00007F1C rd-long 3FD585937 \\ﬂeve\G oa \_ o
= D:00007F20 rd-long 4049C000 _end+0
-2.417ms D:00007F24 rd-Tong 00002737 \\51eve\G'Ioba'I\_bss end+0
-2.416ms R:000036D8 fetch E12FFF1E “\sieve'Global'__adddf3+0x =

3

A By clicking inside the Trace.PROfileChart.sYmbol window, a fine blue graticule marks the cursor
position. A tooltip displays more information about the selected position, including the absolute time,

here 5.588s.

B A the same time, a fine blue vertical line highlights the corresponding position in the

Trace.Chart.sYmbol window thanks to the Track option.

C The corresponding record is also highlighted in the Trace.List window, again thanks to the Track

option.

©1989-2024 Lauterbach

PowerView User’s Guide

76



File and Folder Operations

TRACE32 provides standard operating system commands for fast execution of file and folder operations.
The commands are implemented in the TRACE32 software, they don’t execute operating system
commands on the host.

ChDir Change directory

ComPare Compare files

COPY Copy file

DEL Delete file

DIR List subdirectories and files

DUMP Display binary file

EDIT Edit text file in the TRACE32 editor

FIND Find in text or binary file

LS Display directory

MKDIR Create directory

Mv Rename file

PACK Compress file (with LZW algorithm)

PATCH Modify binary file

PATH.Set Define search path

PEDIT <file> Open <file> with the PRACTICE script editor

PWD Change directory

REN Rename file

RM Delete file

RMDIR Delete directory

SETUP.EDITEXT Define an external editor

TAR Pack files into an archive without compression

TYPE Display text file

UNARchive Extract files from Linux and Microsoft libraries

UNPACK Expand packed file (with LZW algorithm)

UNZIP Expand GZIP archive file (with DEFLATE algorithm)

ZIP Compress files to GZIP archive (with DEFLATE
algorithm)

For information about wildcard characters and path prefixes supported with the file and folder handling
commands, see “File Names”, page 50 and “Path Prefixes”, page 51.

©1989-2024 Lauterbach PowerView User's Guide | 77



File Contents

TRACE32 provides a number of commands for writing data from TRACE32 to file and reading data from
files. The following list is a selection of commands:

CLOSE
Data.WRITESTRING
OPEN

READ

Var.EXPORT
Var.WRITE

WinPrint

WRITE

WRITEB

APPEND

Close file

Write string from target memory to PRACTICE file
Open data file

Read data from file

Export variables in CSV format to file

Write variables to file

Print window

Write data to file

Write binary data to file

Append data to file

©1989-2024 Lauterbach

PowerView User’'s Guide |

78



Encrypt/Execute Encrypted Files

You can encrypt PRACTICE script files (*.cmm) and PER files (*.per) in TRACE32 with user-defined keys.
This encryption is useful if you do not want other people to view your source code in human readable form.

Other users can execute any encrypted file (*.cmm or *.per) in TRACES32, provided the encrypted file is
unlocked with the same key you have defined for this file.

NOTE: With the correct key, an encrypted file can be executed in TRACE32, but the
source code itself remains encrypted.

PRACTICE script files (*.cmm):

ENCRYPTDO
DODECRYPT

Encrypt a PRACTICE script file.

Execute the encrypted PRACTICE script file.
NOTE: The PRACTICE script source code itself remains
encrypted, i.e. it is not human readable.

PER files (peripheral register definition file, *.per):

ENCRYPTPER
PER.viewDECRYPT

Text and binary files:

ENCRYPT
DECRYPT

Encrypt a PER file.

Execute and view the encrypted PER file in a PER
window.

NOTE: The PER file source code itself remains
encrypted, i.e. it is not human readable.

Encrypt a text or binary file.

Decrypt the text or binary file.
The text is displayed in human readable form again.

©1989-2024 Lauterbach

PowerView User's Guide | 79



Host Commands

Operations of the host system may be executed directly on the TRACE32 command line.

OS.screen Execute host command

OS.Area Call host operating system with output in a TRACE32
AREA window

0S.Command Execute host command

OS.Window Call host operating system with output in a TRACES32
window

OS.Hidden Call host operating system without output

OS.OPEN Open any file type in its default application

Example 1: The TRACE32 commands and functions are formatted in bold. The host command is formatted
in regular font.

;1list all PRACTICE script files (*.cmm) in the TRACE32 ~~/demo/arm/
;folder and all subfolders

LOCAL &files
&files=0S.FILE.ABSPATH(~~/demo/arm/)+"*.cmm"

OS.Window dir /s &files

8 B::05.Window dir /s c\32\dema\arm\*.cmm EI@
16.08.2012 16:12 1.075 demo.cmm ~
16.08.2012 16:12 381 timer_lpc2xxx.cmm

2 File(s) 1.456 bytes

Directory of c:yt32\demo'armisimul'wic_TpcZxxx

16.08.2012 16:12 5.601 vic_lpc2xxx_can_dialog. cmm
16.08.2012 16:12 5.508 vic_lpc2xxx_dialog. cmm E
16.08.2012 16:12 1.920 vic_lpc2xxx_init.cmm

3 File(s) 13.029 bytes

Total Files Listed:
735 File(s) 2.602.531 bytes
0 Dir(s) 910.643.675.136 bytes free

4 1 2

Example 2: This script line opens a *.csv file in your favorite spreadsheet application.

OS.OPEN ~~/demo/etc/trace/export.taskevents/temp.csv

©1989-2024 Lauterbach PowerView User's Guide | 80



Printer Operations

You can send every window or the complete screen from TRACE32 to:
. The default printer

J The clipboard

J A file

. The default AREA window A000

For each output medium, you can define the format, e.g. font, font size, ASCII, enhanced ASCII, XML, or a
more complex format, like POSTSCRIPT or WORDSTAR. When printing to file, you can specify path and file
name or browse for an existing file.

You have the following options to send information from TRACE32 to a printer or save TRACE32 windows to

file:
J Choose File menu > Window Screenshot to File to capture the TRACES32 main window and all
other TRACES32 windows displayed within the TRACE32 main window [A].
. Click the top left icon in any window to open the window manager menu [B].
Edit View Var Break File Edit View Var Break Run CPU Misc Trace Pedf Cov ARM40 Window
g:_":cﬁpt--- EEET IR rrro >y
it Script...

4 Search for Script...

. =
% Spedn::k--- IE’ = [B::Data.List sieve ]
&4 Load File...

3 ) Restore p » Go 1l Break
TypeFile... Tabel mnemonic
4] Dump File... Roee TRUE )

Size 4
@ Stop Command _ | ottt sieve();
E Printer Settings... o Maximize

.
— h
= Window Screenshot to Flle...k .

X exit L,
Print 0 o -

| Print all

=0 ; 1 <= SIZE ; flags
- The Print option prints just the visible contents of the active window [C].
- The Print all option prints more than the visible contents of the active window [D].

. Use the TRACE32 command line and PRACTICE scripts (*.cmm); commands for printing and
saving TRACES32 windows to file are listed in the table below.

. Extra commands are provided for saving the code coverage database and the instruction
statistics database to XML files.

PRinTer.select Select printer type and output style

PRinTer.FILE Define file for single printer output and select output
format for file (ASCII, CSC, XML, etc.)

PRinTer.OPEN Open file and re-route multiple printer outputs to this
file

PRinTer.CLOSE Close file after multiple printer outputs

©1989-2024 Lauterbach PowerView User's Guide | 81



PRinTer.EXPORT Export CSV-formatted printer output to file

PRinTer.HardCopy Print all windows on screen

PRinter.SIZE Define layout

PRinter.OFFSET Define left and top border

WinPRT <window_name> Prints just the visible contents of the active window

WinPrint.<command> The WinPrint pre-command prints more than the

visible contents of the active window

ISTATistic.EXPORT Export instruction statistics to an XML file

COVerage.EXPORT Export code coverage information to an XML file
Examples:

; example for print operation

PRinTer.select IBM ; select IBM printer
PRinter.SIZE 80. 65. ; select lines and columns
PRinter.OFFSET 5. 5. ; select border
WinPrint.Data.dump O0x0--0xfff ; print window

; example for copy to file operation

PRinTer.FILE test.lst ; open file for printing
WinPrint.Data.dump O0x0--0xfff ; print Data.dump window to file
PRinTer.select IBM ; switch back to line printer

; example for generating a POSTSCRIPT file
PRinTer.FILE test.ps PSPS12 ; open file for printing and select
; POSTSCRIPT, Portrait,
; Helvetica, 1l2cpi
WinPrint.Data.dump O0x0--0xfff ; print Data.dump window to file

©1989-2024 Lauterbach PowerView User's Guide | 82



System Setup and Configuration

Many system configuration options are set with the SETUP command. For more information refer to the
“PowerView Command Reference” (ide_ref.pdf) and the manual of the devices.

SETUP.ASCIITEXT Configure ASCII text display
SETUP.BAKfile Set backup file mode
SETUP.COLOR Configure colors
SETUP.DEVNAME Set logical device name
SETUP.EDITOR Configure the TRACES32 editors
SETUP.EDITEXT Define an external editor
SETUP.EXTension Set default file name extensions
SETUP.HOLDDIR Configure working directory
SETUP.ICONS Display icons in popup menus
SETUP.QUITDO Define a PRACTICE file that is executed automatically
when you quit a TRACE32 session

SETUP.ReDraw Update whole screen
SETUP.SOUND Set sound generator mode
SETUP.TabSize Configure tab width
SETUP.TIMEFORM Select scientific time format
SETUP.URATE Limit window update rate
SETUP.WARNSTOP Configure PRACTICE stops

I ZERO Set time reference

©1989-2024 Lauterbach PowerView User's Guide |



Logging Commands

You can log the command inputs and the call hierarchy of PRACTICE scripts (*.cmm) with the commands
listed below.

The logging of the command input generates a file which has the structure of a PRACTICE script (*.cmm).
This file can be edited and started with the DO command. The command log includes all commands entered
in the TRACE32 command line and all mouse commands. Every operation on TRACE32 can be referred to
a single-line command. The mouse click to a screen-based button will be stored as a single line command.
Command inputs which lead to a syntax error are not logged.

To generate a command log, the log file must be opened first. Then all executed commands are written to
this file. There is no limitation by an internal buffer size. The file can be viewed in a window, while it is being
filled. By closing the file the logging process is terminated. Only one file may be opened at the same time.
The logging may be interrupted temporarily by an OFF and ON sub-command.

LOG.OPEN Generate command log file and start logging
LOG.CLOSE Terminate logging and close command log file
LOG.type Show contents of the command log file
LOG.ON Resume logging
LOG.OFF Pause logging
LOG.toAREA Log commands by writing them to an AREA window
LOG.DO Log the call hierarchy of PRACTICE scripts (*.cmm)
For more information, see “Logging the Call Hierarchy of
PRACTICE Scripts” (practice_user.pdf).

Example:
LOG.OPEN ; opens file 't32.log’
8000 ; commands are logged
LOG.OFF ; switch off log function
9000 ; commands are not logged
LOG.ON ; switch on log function
9000 ; commands are logged
LOG.CLOSE ; close file and terminate log function

@ B:LOG.type EI@

// T32_1000001 Wed Jul 30 14:43:57 2014

B::Data.LO0AD C:%T32\demo'arm'compileriti‘arm.abs
B::Register.RESet
B::Register.view
B::Register.Set PC main
// B::LOG.ON
B::List.Mix
B::Var.View flags

©1989-2024 Lauterbach PowerView User's Guide | 84



Dialog Programming

The DIALOG command group and its dialog elements, such as buttons and edit boxes, are used to create
and display custom dialog boxes. They are normally used to increase the flexibility of PRACTICE script files
by providing user selectable actions or requesting information from the user, e.g. actual firmware file name
for the flash process.

NOTE: Examples of dialog definitions reside in the directories:
. ~~/demo/practice/dialogs
and
. ~~/demo/analyzer/trigger

In this section:

. Dialog Syntax and File Types

. Comments in Dialogs

J Dialog Commands - an Overview
. Dialog Elements - an Overview

. Return Values and Labels

. PRACTICE Macros in Dialog Programming

For information about built-in and user-defined icons, see “Built-in Icons and Icon Library”, page 120.

Dialog Syntax and File Types

The syntax of a dialog definition is line oriented. Blanks and empty lines can be inserted to structure and
indent the dialog definition. Single and multi-line programs can be assigned to dialog elements.

Single-line scripts are enclosed in straight quotation marks " . . . *; multi-line scripts are enclosed in
parentheses (...).

Single-line script Multi-line script
BUTTON "Click Me" "Data.List™ BUTTON "Click Me"
(
Data.List

Register.view

)

The opening parenthesis of a multi-line script mustimmediately follow after a dialog element. If an empty line
is erroneously inserted after a dialog element, the TRACE32 message bar displays the error message
nesting block open missing. This error message is displayed when you try to execute the defective
dialog.

©1989-2024 Lauterbach PowerView User's Guide | 85



There are two file types where you can store custom dialogs. The syntax slightly varies depending on the file

type you have chosen:

1. Embedded in PRACTICE script files with the extension *.emm. The dialog definition is placed in

parentheses after the DIALOG command. See example 1.

2. In extra files with the extension *.dlg. They are called by the DIALOG.view command.
See example 2.

Example 1: The dialog is embedded in a PRACTICE script file with the extension *.cmm:

LOCAL &file ;declare PRACTICE macro
DIALOG.view ;start the dialog definition
(
POS 1. 1. 15.
myLabel: EDIT "" ""
POSX 1. 6.

BUTTON "[:edit]File" "DIALOG.SetFile.SAVE myLabel ~~~\*.cmm"

POSY 1.
DEFBUTTON "OK" "CONTinue"

STOP ;wait for the user's response to the dialog

&fi1le=DIALOG.STRing (myLabel) ;get return value of EDIT box by label
DIALOG. END

OPEN #1 &file /Create
WRITE #1 "Begin of file"
CLOSE #1

ENDDO

Example 2: The dialog is in an extra file with the extension *.dIg:

PRACTICE script file (*.cmm) Contents of dialog.dig
LOCAL &file POS 1. 1. 10.
LAB: EDIT "" "

POS 11. 1. 5.
BUTTON "File"
(

DIALOG.view dialog.dlg

)
POS 1. 3. 5.

STOP DEFBUTTON "OK" "CONTinue"

&file=DIALOG.STRing (LAB) -
DIALOG.END

OPEN #1 &file /Create
WRITE #1 "Begin of file"
CLOSE #1

ENDDO

DIALOG.SetFile.SAVE LAB *.cmm

©1989-2024 Lauterbach PowerView User’'s Guide

| 86



Comments in Dialogs

Comment lines start with a semicolon and must be placed in separate lines.

Correct comment position Wrong comment position
DIALOG.view DIALOG.view
( (
;your comment ICON ":objects" ;your comment
ICON ":objects" TEXT "Hello World!" ;your comment
;your comment )
TEXT "Hello World!"

If a comment is erroneously placed in the same line as a dialog element, the TRACE32 message bar
displays the error message no more arguments expected. This error message is displayed when you
try to execute the defective dialog.

©1989-2024 Lauterbach PowerView User's Guide | 87



Dialog Commands

Using the DIALOG command group you can (a) control your custom dialogs, (b) control the behavior of an
individual dialog element on a custom dialog, (c) interact with the file system of the operating system (OS),
and (d) display OS message boxes.

Control Your Custom Dialogs

DIALOG.AREA Adds an output AREA to a custom dialog
DIALOG.END Close the dialog window
DIALOG.Program Editor to write a custom dialog.
DIALOG.ReProgram Dialog programming

DIALOG.SELect Programmatically focus on this dialog
DIALOG.view Show dialog window

Control Behavior of Individual Dialog Elements on Custom Dialogs

DIALOG.Disable Disable dialog elements
DIALOG.Enable Enable dialog elements
DIALOG.EXecute Execute a dialog button
DIALOG.Set Set the value of a dialog element

Interact with the File System

DIALOG.DIR Display a folder picker dialog and pass the return value of the
selected folder to your PRACTICE script (*.cmm).

DIALOG:.File Open an OS file dialog and pass the name of the selected file to your
PRACTICE script (*.cmm).

DIALOG.SetDIR Browse for folder. The selected folder an be displayed in the EDIT
box of your custom dialog.

DIALOG.SetFile Open an OS file dialog and pass the name of the selected file to a
custom dialog. The selected file can be displayed in the EDIT box of
your custom dialog.

Display Message Boxes of the Operating System

DIALOG.MESSAGE Create dialog box with an information icon (OK button only)
DIALOG.OK Create dialog box with an exclamation mark (OK button only)
DIALOG.YESNO Create dialog box with YES and NO buttons

©1989-2024 Lauterbach PowerView User's Guide | 88



Dialog Elements

Dialog elements allow you to place edit boxes, buttons, drop-down lists, etc. on your custom dialogs.
TRACE32 provides the following dialog elements for programming custom dialogs:

BAR

BOX ["<text>"]

BUTTON " <text>" [<command>]

CHECKBOX "<text>" [<command>]

<label> CHOOSEBOX " <text>" [<command>]
CLOSE [<command>]

COMBOBOX “<list_items>" [<command>]
DEFBUTTON "<text>" [<command>]
DEFCOMBOBOX "<list_items>" [<command>]
DEFEDIT "<initial_text>" [<command>]

DEFHOTCOMBOBOX “<list_items>"
[<command>]

DEFHOTEDIT " <initial_text>" [<command>]
DEFMEDIT "<initial_text>" [<command>]
DLISTBOX "<list_items>" [<command>]
DYNAMIC " <initial_text>"

DYNCOMBOBOX "<list_items>" [<command>]
DYNDEFCOMBOBOX "<list_items>"

[<command>]
DYNDEFHOTCOMBOBOX "<list_items>"

[<command>]
DYNHOTCOMBOBOX "“<list_items>"

[<command>]

DYNLTEXT " <initial_text>"

DYNPULLDOWN "<list_jtems>" [<command>]
DYNTEXT "<initial_text>"

EDIT "<initial_text>" [<command>]
HEADER "<text>"
HELP <name>

HOTEDIT " <initial_text>" [<command>]

Define a progress bar
Define a decorative border
Define a button

Define a check box

Define a choose box
Catch window close
Define a combo box
Define the default button
Define a combo box
Define an edit control

Define a default hot combo box

Define a hot edit control

Define a default multiline edit control
Define a default list box

Define a dynamic, single-line area
Define a dynamic combo box

Define a default dynamic combo box

Define a dynamic default hot combo box

Define a dynamic hot combo box

Define a dynamic single-line text area in bold and
large font size

Define a dynamic pull-down list

Define a dynamic, single-line text area in regular
font size

Define an edit control
Define window header
Define a help icon

Define a hot edit control

©1989-2024 Lauterbach

PowerView User's Guide | 89



HOTCOMBOBOX "<list_items>" [<command>]

ICON "<built_in_icon_name>" |
"<user_defined_icon>"

INFOTEXT "<msg_text>" [<formatting>]
LEDIT "<initial_text>" [<command>]
LINE " <text>"

LISTBOX "<list_items>" [<command>]

LTEXT " <text>"

MEDIT "<initial_text>" [<command>]
MLISTBOX “<list_items>" [<command>]
NAME " <text>"

POS <x> <y> <width> <height>

POSX <increment> <width> <height>
POSY <increment> <width> <height>
PULLDOWN "<list_items>" [<command>]
SPACE

STATIC "<built_in_icon_name>" |
"<user_defined_icon>

TEXT "<text>"
TEXTBUTTON " <text>" [<command>]
TREEBUTTON "" [<command>]

UPDATE ["<command_string>"]
[<update_interval>]

VLINE ""

Define a hot combo box

New icon in top left corner of dialog

Define a multiline info text box on a dialog
Define an edit control

Define a decorative line

Define a list box

Static, single-line text area in bold and large font
size

Define a multiline edit control

Define a multiline list box

Define an internal dialog name
Define position and size

Define position and size on the x-axis
Define position and size on the y-axis
Define a static pull-down list

Define space

Place an icon in a dialog

Define a text item
Define a flat button with text only
Define a +/- toggle button

Executes commands periodically

Define a decorative vertical line

©1989-2024 Lauterbach

PowerView User's Guide | 90



Return Values and Labels

Dialog elements, such as an EDIT box or a LISTBOX, can have a user-defined label in front of the
command. Labels must start in the first column and are always followed by a colon. Together with the
DIALOG.STRing() or DIALOG.STRing2() function, a label can be used to access the return value of a
dialog element.

A Dialog == =< TRACE32 PowerView ARM (=23
L i | oK ':0] The EDIT box contains the address VIV:(x) se— &retVaI

&retVal=DIALOG.STRing(</abel>)

LOCAL &retVal ;declare a PRACTICE macro

DIALOG.view ;start the dialog definition

(
POS 1.5 0.75 30.
myLAB: EDIT "x" ""

POSX 1. 5.
DEFBUTTON "OK" "CONTinue"
)

STOP ;wait for the user's response to the dialog
&retVal=DIALOG.STRing (myLAB) ;get return value by label
DIALOG. END

DIALOG.MESSAGE "The EDIT box contains the address &retVal"

The return values of built-in dialog boxes, e.g. the DIALOG.YESNO message box or the DIALOG.DIR folder
picker dialog, can be accessed with the ENTRY command. Here is an example of a simple “yesno” input:

TRACE32 PowerView ARM (=23

':e] Program FLASH Memory ?

—— ENTRY &<practice_macro>

=
m
4
=
o

LOCAL &result ;declare a PRACTICE macro

DIALOG.YESNO "Program FLASH Memory 2"
ENTRY &result ;get return value of DIALOG.YESNO

IF !&result
ENDDO

ELSE

(

;your code...

©1989-2024 Lauterbach PowerView User's Guide | 91



PRACTICE Macros inside Dialog Definitions

Two PRACTICE macros, highlighted in blue, are used in the following dialog definition. For activating

PRACTICE macro expansion inside a DIALOG definition, the following prerequisites have to be fulfilled:

1.
2.

See also: “Switching PRACTICE Macro Expansion ON or OFF” (practice_user.pdf)

“(&” must be used - instead of just “(“

“(&” must begin in the first column of the line

(&

LAB:

ENTRY &flashno &default_flash firmware file
LOCAL &file &header_text

&header_ text="program dialog for "+FORMAT.Decimal (1,&flashno)

&header_ text="&header_text"+". flash"
DIALOG.view

HEADER "&header_ text"
POS 1. 1. 30.
EDIT "&default_flash_ firmware_ file" ""
POS 31. 1. 5.
BUTTON "File"
(
DIALOG.SetFile LAB *.bin
)
POS 1. 3. 5.
DEFBUTTON "OK" "CONTinue"

STOP

&file=DIALOG.STRing (LAB)

PRINT "selected firmware file: &file"

PRINT "for flash:"+FORMAT.Decimal (1,&flashno)
DIALOG. END

ENDDO

©1989-2024 Lauterbach

PowerView User’s Guide

92



HELP System

In this section:

Ways to Get Help

Context-Sensitive Help

Structure of the Help System

Configure the Help System

Recommendations for Choosing a PDF Viewer
Bookmarks for Help Topics

Troubleshooting the Help System

Change the Installation Path of the PDF Files

Ways to Get Help

There are several methods to get help information:

Help menu in the menu bar
Context-sensitive help

HELP via the TRACE32 command line
|

B::HELP

emulate trizzer devices

The following HELP commands are available:

HELP.Bookmark Bookmark PDF files

HELP.checkUPDATE Enable the automatic help update via internet

HELP.command Command related support

HELP.FILTER Filtering all documents with the used hardware and
software

HELP.Find Full-text search across all help documents

HELP.Index Search within indexed terms, commands, functions

HELP.PDF Open PDF file in a PDF viewer

HELP.PICK Context-sensitive help

HELP.PRinT Print PDF files

HELP.Topics Display help content list

HELP.TREE Display command tree

©1989-2024 Lauterbach PowerView User's Guide | 93



Context-Sensitive Help

You can call up the HELP window via the help key. On Windows, the help key is F1. The HELP window then
displays information about the current context, with the current context being determined by the cursor

position.

J To get context-sensitive help on a window or dialog, click the window or dialog, and then press
F1.

. To get context-sensitive help for a command, type the command at the TRACE32 command line,
append an empty space, and then press F1.

J To get context-sensitive help on an individual item such as a button, check box, or menu item,
click the context help button 2] on the toolbar (HELP.PICK).

. If an error occurs, a short error help message will be displayed.
Press F1 to access the complete error help message in the error.pdf.

B::[PRINT 102110! - F1 —— = cirorpdf - Adobe Reader

A no compare operator = = = =
File Edit View Document Tools Window Hel

[ [ok] ][ <string> ][ <rangs> ][<m&ﬁ> ][ <times ]

©1989-2024 Lauterbach PowerView User's Guide | 94



Structure of the Help System

The TRACE32 help system is divided in two parts:

. The HELP window is used to navigate through the help files and to search for any topic.

. An external PDF viewer displays the selected topics.

New TRACE32 Releases

[Software Releases 02/2016 and higher]

Your favorite PDF viewer: It takes only a few mouse-clicks to configure the TRACES32 help system to relay
context-sensitive help calls to your favorite PDF viewer.

TRACE32

SETUPPDFViewer

’"—+HELP window

For a step-by-step procedure, see “Configure the Help System”, page 96.

Previous TRACE32 Releases

Alternate PDF viewers: TRACES32 relays context-sensitive help calls to a batch file, which then calls the
desired topic in the PDF file. The script is a *.bat file under Windows, or an*.sh file under Linux and MacOS.

TRACE32

——————————————————————

HELP window

&

_pdfviewer.
bat

______________________

Acrobat Reader: TRACE32 communicates with the TRACES32 plug-in to jump directly to the desired topic in

the PDF file.

TRACE32

r-—--— - -"-"--—-—-—-—-———-— - — — — — 7

Acrobat Reader

HELP window =

» TRACE32 plug-in

©1989-2024 Lauterbach

PowerView User's Guide | 95



Configure the Help System

[Recommendations] [Software Releases 02/2016 and higher]

This section describes how to proceed after you have successfully installed the TRACE32 software and the
help system.

Upon completion of the installation:

. Each TRACE32 executable (t32m<architecture>.exe) provides the HELP window.

. The file help.t32, which has to be in the system path (e.g. c:\t32), enables all help functions in
TRACES?2, like context-sensitive help and full-text search. When TRACE32 is started, the file
help.t32 is loaded. If not, you receive an error message, saying that the help.t32 file cannot be
loaded.

. The PDF help files are in the subfolder pdf of the TRACE32 system path (e.g. c:\t32\pdf). This
path can be changed in the config file.

Your next step:

. Configure the TRACE32 help system with a few mouse-clicks to display the PDF help files in your

favorite PDF viewer; see step-by-step procedure below.

To configure the TRACE32 help system:

1. Choose Help menu > Setup PDF Viewer, or at the TRACE32 command line, type:
SETUP.PDFViewer

The SETUP.PDFViewer dialog window opens.

2 B:SETUP. PDFViewer felle =
EXEcutable ——
) (%) Ok
Set or detect PDF viewer executable ——
C:\Program Files\ Tracker Software\PDF Viewer\PDFXCview.exe £l browse \M’
{B) DETect test =
=~ \G)—, i RESet
OPEN.DOCument
Set PDF viewer parameters to open a PDF document | @ preset | O clear |
/A "page=1""%1" () test placeholder parameters
%1 : PDF file to open
OPEN.NamedDest %2 : Function selector
Set PDF viewer parameters to open and goto a named destination %3 : Named destination
/A "nameddest=%3" "%1" () test

PRINT
Set PDF viewer parameters to print a PDF document

Jprint:showui=yes "%1" ) test

]

2. Do one of the following:

- Click DETect if you want to use your default PDF viewer.
The remaining input boxes are populated with the pre-configured command line parameters for
the selected PDF viewer.

- Click browse if you want to user a PDF viewer other than the default, e.g. a portable PDF
viewer.

©1989-2024 Lauterbach PowerView User's Guide | 96



Then click preset to populate the remaining input boxes with the pre-configured command line
parameters for the selected PDF viewer.

3. Click test to verify that the selected PDF viewer can be started from within TRACES32.

4. Click the remaining three test buttons to verify that your selected PDF viewer passes the
following basic tests:

- The PDF viewer opens our test document on page 1.
- The PDF viewer jumps to a named destination on another page in the same test document.
- The PDF viewer prints our test document or opens the Print dialog.
5. If the selected PDF viewer has passed all tests, click Ok.
6. Optional test - online help call via the TRACE32 command line:
- Type the following command at the TRACE32 command line: List .Mix

- Add a space, and then press F1.
Result: TRACE32 help system displays the description of the List.Mix command in your
favorite PDF viewer.

NOTE: You do not need to re-start TRACE32 because your settings take immediate
effect.

Recommendations for Choosing a PDF Viewer

1. You should choose a PDF viewer for use with the TRACE32 help system that provides the
following features:

- Tabbed document view for files opened via the command line.
- Command line argument for passing file names to the PDF viewer (e.g. debugger_arm.pdf).
- Command line argument for passing named destinations to the PDF viewer (e.g. line IDs).

- One and the same PDF viewer instance allows an unlimited number of context-sensitive jumps
to named destinations within one and the same PDF file instance.

- A Back button that allows you to re-trace your navigation steps across PDF documents, and
not just the navigation steps within the same PDF document.

- A PDF viewer that is quick to start.

2. Install the latest version of the PDF viewer, in which you want to display the files of the TRACE32
help system.

©1989-2024 Lauterbach PowerView User's Guide | 97




Bookmarks for Help Topics

In this section:

J Create Help Bookmarks

. Store and Load Help Bookmarks Manually

. Store and Load Help Bookmarks Automatically
NOTE:

Unsaved help bookmarks are only available during the current TRACE32
session.

If you want to re-use your help bookmarks in future sessions, remember to store

your help bookmarks. See “Store and Load Help Bookmarks Automatically”,
page 99.

Create Help Bookmarks

. Right-click any topic in the HELP window, and then select Toggle Bookmark.

- A green rectangle indicates the bookmarked help topic.

- The help bookmark itself is added to the Bookmark tab of the HELP window.

& HELp

ith_the

- O *
? Contents ?\ Index 3“3 Find T:j Command Tree M Bookmarks E Print
I Find I | difference v| [ oty manuals relevant to cument setup
[ case sensitive
[ similar terms
) file
Iiksiaa-ila: between Intel and AMD/Spansion FLASH Devices FLASH A~

2 between Functions and Commands in TRACE32

ithe debugger's point of wview there is no [IERERENES where the dais

?eftmost bit shifted first. The [ARREEGE in both comman
single-TAP Scenario, so physically there 1s no [BERETENEE to a sce
function of the CLOCKS item group, with the
function of the TIme item group, with the

PRACTICE Script Lan?ua?e
(] (]

Help
5] Show this file
%y Print this file

15 that older v

SERCOELEE that the me
BRREENEE that the meas

ing
ing v

A Teggle Bookmark

& HELp

? Contents

Selected bookmark:

Store bookmarks to file:

description

5] Index 43 Find ' Command Tree M Bookmarks E Print

show delete

& Store... &2 Load...

title filename

wWhat 1s the difference between the c [PowerView Command Reference C:A\T3Z_ARM'\pdTi\ide_ref.pdf
Returns TRUE if a difference was fou |General Commands Reference Guide D C:\T3Z2_ARM‘\pdfigeneral_ref_d.pdf
Difference between Variables and PRA |PRACTICE Script Language User's Guide |C:\T32_ARM\pdfipractice_user.pdf

©1989-2024 Lauterbach

PowerView User's Guide | 98




Store and Load Help Bookmarks Manually

Use the steps described below if you want to transfer your bookmarks from one computer to another
computer.

To store help bookmarks:

1.
2.

On the Bookmark tab of the HELP window, click Store.

Enter a file name, and then click Save.
The bookmarks displayed on the Bookmarks tab are saved as a PRACTICE script (*.cmm).

To load help bookmarks:

1.
2.
3.

On the Bookmark tab of the HELP window, click Load.
Browse for the PRACTICE script (*.cmm) containing the bookmarks.

Click Open to load the help bookmarks into the Bookmark tab.

Store and Load Help Bookmarks Automatically

NOTE: Unsaved help bookmarks are only available during the current TRACE32
session.
1. Close TRACES2.

Add the AutoSTOre command to your PRACTICE start-up script (*.cmm):

AutoSTOre , HELP

If the AutoSTOre command is already used in your start-up script, then add just the keyword HEL P
as shown in the example below.

AutoSTOre , HISTory HELP

Restart TRACE32.

The help bookmarks you create are now automatically stored when you close TRACE32. In addition,
the bookmarks are automatically loaded back into the Bookmark tab of the HELP window when you
start TRACES2 again.

This script line returns the path and file name where TRACE32 auto-stores your help bookmarks:

PRINT VERSION.ENVironment (AUTOSTORE)

©1989-2024 Lauterbach PowerView User's Guide | 99



Troubleshooting the Help System

[Software Releases 02/2016 and higher]

Loads only old Online Help

Verify if the file help.t32 is in the TRACES32 system path (by default c:\t32), and if you have rights to read this
file.

Warning: Online help outdated, please upgrade via hitps://www.lauterbach.com/manual.html

Situation: The TRACE32 message line displays this warning message:

components trace Data Var List PERF SYStem Step Go Break

Cause: The TRACES2 help system is at least 2 software releases older than the TRACES32 executable
(t32m<architecture>.exe).

Remedy:

1. Open the VERSION.ENVironment window, and then make a note of the paths shown in the lines
SYS: and HELP:

2. Close TRACE32.

w

Download the zipped help system of the most recent TRACES32 software release from
www.lauterbach.com/manual.html

Unzip the downloaded file.
Copy the pdf files to the HELP : folder.
Copy the help.t32 file to the sYs: folder, i.e. the TRACE32 system directory.

N o g &

Restart TRACE32. The TRACES32 help system is now up to date again.

©1989-2024 Lauterbach PowerView User's Guide | 100


www.lauterbach.com/manual.html

Change the Installation Path of the PDF Files

The PDF files of the TRACES2 help system are installed to the TRACE32 system path, subfolder pdf. But
sometimes it may be necessary to change this path - for example, if you want different TRACE32

installations to share the same HELP= path.

There are two possibilities to change the installation path for the PDF files:

1. Add it to the configuration file in the OS= part:

0S=

SYS=c:\t32 ; system directory for TRACE32

TMP=c: \tmp ; temporary directory for TRACE32

HELP=c:\t32\pdf ; help directory for TRACE32 (default: c:\t32\pdf)

2. Set the environment variable “T32HELP” to the pdf installation path.

g:\trace32-help-files\pdf

supported.

The file help.t32 must reside in the system directory. A network folder is not

NOTE: The help directory for the PDF files can be a local folder or a network folder, e.g.

Winhelp Compatibility

To provide backward compatibility, the main Winhelp functions will still work.

On unix, additionally the environment variable “HHHOME” has to be set to the directory for hyperhelp (used

for displaying the online manual).

Winhelp Files:
man.t32 Online manual (error messages)
man.* Online manual (WINDOWS help)
manhh.* Online manual (UNIX hyperhelp)

©1989-2024 Lauterbach

PowerView User’s Guide

101




Previous Releases - HELP System

Previous Releases - HELP Installation and Setup

[up to Software Release 09/2015]

The installation of the help system is normally done by the software installation program, but here the
complete online help installation is described if any problem occurred:

1.
2.

The HELP window is included in the TRACE32 executable (t32*.exe).

TRACE32 help loads the file help.t32, which has to be in the system path, e.g. C:\T32\
Only this file enables all help functions in TRACE32, like context-sensitive help and full-text
search.

Acrobat Reader should be installed on the computer, and to use the TRACE32 plug-in, the
version has to be 4.0 or higher.

Acrobat loads the TRACES2 plug-in (trace32.api) which has to be in the “plug_ins” directory. If
the plug-in is loaded correctly, you can find the menu entry About TRACE32 in the Help menu.

The PDF help files are in the TRACES32 system path in the subfolder “pdf”, e.g. “C:\T32\pdf”. This
path can be changed in the config file.

On Unix you have to do manually:

The environment variable “ACROBAT_PATH” has to be set to the path where acroread is installed,
Use the setenv command or add it to your .profile - file.

>setenv ACROBAT_PATH=/opt/Acrobath

Copy the TRACE32 plug-in to the Acrobat plug_ins folder

>cp cdrom/bin/suns/trace32.api
/opt/Acrobat5/Reader/sparcsol/plug_ins/

Previous Releases - Configuring an Alternate PDF Viewer

[only Software Releases 09/2014, 02/2015, and 09/2015]

By default, the help system of TRACE32 uses Adobe Reader as PDF viewer. But, as of the release in
November 2014, the help system of TRACE32 supports any PDF viewer that can handle file names and
named destinations.

Please consult the help of the PDF viewer you want to use about how to pass file name and named
destination as command line arguments to that PDF viewer; for some examples, see below.

The following step-by-step procedure assumes that you have installed TRACE32 in the default system
directory c: \t32 on Windows, or $SHOME /t32 on Linux.

©1989-2024 Lauterbach PowerView User's Guide | 102



To configure an alternate PDF viewer for the help system of TRACE32:
1. Close TRACE32.

2. Create an OS environment variable called T32PDFVIEWER

3. Assign the following value to the variable:

- For Windows users: c: \t32\_pdfviewer.bat
The resulting entry in the Windows Environment Variables dialog looks as follows:

User variables for <User _name>

Variable Value g

- For Linux and Mac users: SHOME/t32/_pdfviewer.sh
The resulting entry in the Linux $SHOME/ .profile file looks as follows:

export T32PDFVIEWER=SHOME/t32/_pdfviewer.sh

4. To make the new OS environment variable and its value available to TRACES32, log out of your
Windows or Linux session, and then log in again.

5. In the TRACES32 system directory, create the file _pdfviewer.bat or _pdfviewer.sh

6. For Linux users: Make sure that you have execute permission for the script file, e.g.

chmod +x _pdfviewer.sh

7. Enter a script which calls the PDF viewer you want to use and passes file names and named
destinations as arguments from TRACE32 to your PDF viewer:

- Examples for Windows users
- Example for Linux users
8. Start TRACES32.

9. To test the alternate online help call, type the following command at the TRACE32 command line:
List.Mix

10. Add a space, and then press F1. Result: TRACE32 help system displays the description of the
List.Mix command in your favorite PDF viewer.

Previous Releases - Examples for Windows and Linux Users
[only Software Releases 09/2014, 02/2015, and 09/2015]

The argument $1 or ${1} in the script examples below takes the pdf file names, the argument %3 or ${3}
takes the named destinations within a pdf file.

©1989-2024 Lauterbach PowerView User's Guide | 103



Examples for Windows Users

PDF-XChange Viewer:

@echo off
set reader="C:\Program Files\Tracker Software\PDF Viewer\PDFXCview.exe"
start "Launch PDF" %reader$%$ /A nameddest=%3 %1

SumatraPDF:

@echo off

start "Launch PDF" "C:\T32\bin\SumatraPDF.exe" *
%1 »
-nameddest %3
-reuse-instance

A

The caret sign ~ serves as a line continuation character in Windows batch files (*.bat). White space
characters after » are NOT permissible.

Foxit Reader:

@echo off

set reader="C:\Program Files (x86)\Foxit Software\Foxit Reader\Foxit
Reader.exe"

start "Launch PDF" %reader% /A "nameddest=%3" %1

Adobe Acrobat X Pro:

@echo off
start acrobat.exe /n /A "nameddest=%3" %1

Example for Linux Users

evince (as of version 3.x; earlier versions do not support the -n option):

#!/bin/bash
/usr/bin/evince ${1} -n ${3} &

evince or xpdf or Firefox: This Linux shell script displays the pdf of the TRACE32 help system in the first
available pdf viewer:

#!/bin/bash
evince "${1}" -n ${3}
xpdf -remote t32xpdf -raise "S${1}" +S${3}

[\
[\
firefox file:///${1}#nameddest=${3} &

©1989-2024 Lauterbach PowerView User's Guide | 104



The backslash \ serves as a line continuation character in Linux shell scripts (*.sh).

©1989-2024 Lauterbach PowerView User's Guide | 105



Previous Releases - HELP Installation Problems

[up to Software Release 09/2015]

Some common installation problems are described here.

Loads only old Online Help

Verify if help.t32 is in TRACE32 system path (by default c:\t32), and if you have rights to read this file.

Alternate Call for Adobe Reader [only Software Releases 09/2014, 02/2015, and 09/2015]

By default, the trace32.api file relays the call for a particular help topic from TRACE32 to Adobe Reader.
However, if you encounter problems after updating your Adobe Reader version, you can bypass the
trace32.api file with the code shown below. For a step-by-step procedure, see “Previous Releases -
Configuring an Alternate PDF Viewer”, page 102.

Adobe Reader:

@echo off
start acrord32.exe /n /A "nameddest=%3" "%1"

Acrobat does not start automatic

Reinstall Acrobat Reader, verify if everybody can write to Acrobat subfolder “plug_ins” — if not, copy
“trace32.api” manually to this folder

Acrobat opens File, but does not jump to the right Chapter

Verify if there is a Acrobat menu entry “Help->About plug-ins->About Trace 32” — if not copy “trace32.api” to
Acrobat subfolder “plug_ins”

Warning “Communication with Acrobat Reader failed” always when using the Help

Copy “trace32.api” to Acrobat subfolder “plug_ins”

Warning “Communication with Acrobat Reader failed” only at first Acrobat Startup

Acrobat starts too slow.
Good trick to improve Acrobat startup time is to delete never needed plug_ins:
rename folder “plug_ins” to “plug_ins_bak”

then create empty “plug_ins” folder and copy there only “trace32.api” and other really needed plug_ins

©1989-2024 Lauterbach PowerView User's Guide | 106



Warning “Please install Acrobat Reader to see pdf help files!”

This message is displayed if the Acrobat installation could not be found on windows systems. Download the
Acrobat Reader software from www.adobe.com and install it.

If you installed Acrobat already and this message is displayed anyway, check if one of the following registry
entries exist (execute regedit.exe):

J HKEY_LOCAL_MACHINE: SOFTWARE\ Microsoft\\ Windows\\ CurrentVersion\\ App Paths\\
Acrobat.exe

. HKEY_LOCAL_MACHINE: SOFTWARE\ Microsoft\\ Windows\\ CurrentVersion\\ App Paths\\
AcroRd32.exe

If none of these keys exist, remove your current installation and install it again. You can also start Acrobat
manually before using the online help and ignore the error message.

If you have the rights and if you are skilled to change registry entries, you can add it manually. But you have
to be sure what you are doing - changing registry entries can affect the whole behavior of the Windows
system!

Add the key “AcroRd32.exe” as shown below, change the Acrobat installation where it is installed on your

system.
" Registrierungs-Editor : 10l =|
Datei Bearbeiten Ansicht  Favoriten 2
; ED Windows ;I Mame | Tvp | wert |
E‘D Currentiersion [ab](Standard) REG_SZ Ci\ProgrammelAdobelAcrobat 5.01ReaderAcroRd32, exe
-] App Management Path REG_SZ C:\ProgrammelAdobelAcrobat 5.0\Reader
4
|ArbeitspIatz'l,HKE\"_LOCAL_MACHINE'l,SOFTWARE'l,Micr0soFt'l,Windows'l,Current\u'ersion'l,App PathsiAcroRd3z . exe i

Warning “Error occurred while trying to start Acrobat Reader!”

Check the registry entries as described above - check if the (Standard) entry is really the correct installation
path

Warning “Acrobat Reader could not be started” (Unix only)

Check if environment variable “ACROBAT_PATH” is set correctly to the Acrobat installation path.

©1989-2024 Lauterbach PowerView User's Guide | 107



InterCom

The InterCom system allows the exchange of data between different TRACES32 systems. The exchange is
based on UDP. The destination system is defined by a port number of a UDP port used by this TRACE32
system. This requires an entry in the 'config.t32' file of any participating TRACES32 system:

IC=NETASSIST
PORT=20001
NAME=firstInstance

NOTE: If multiple TRACE32 systems are used on one host, the port numbers must differ!

A good way to familiarize yourself with the InterCom command group is to start with the example below.

InterCom.Evaluate
InterCom.execute
InterCom.PING
InterCom.PipeCLOSE
InterCom.PipeOPEN
InterCom.PipeREAD
InterCom.PipeWRITE
TargetSystem.state

TargetSystem.Newlinstance

Evaluates InterCom

Remote execute command line
Test the InterCom system

Close named pipe

Open named pipe

Read from named pipe

Write to named pipe

Show overview of multicore system

Start new TRACE32 PowerView instance

©1989-2024 Lauterbach

PowerView User's Guide | 108



Example: The TRACE32 PowerView instance named firstInst starts another instance named
secondInst for the purpose of debugging two cores of an AMP system.

;shut down previous debug session
InterCom.execute ALL WinCLEAR
InterCom.execute ALL SYStem.Down

;assign the user-defined InterCom name 'firstInst' to the instance
;executing this PRACTICE script
InterCom.ENable firstInst

;select the 1lst CortexA9MPCore core of OMAP4430 for this instance
SYStem.CPU OMAP4430

CORE.ASSIGN 1.

SYStem.CONFIG.CORE 1. 1.

;open a 2nd TRACE32 PowerView instance and assign the user-defined
; InterCom name 'secondInst'
TargetSystem.NewInstance secondInst /ONCE

;select the 2nd CortexA9MPCore core of OMAP4430 for the 2nd instance
InterCom.execute secondInst SYStem.CPU OMAP4430

InterCom.execute secondInst CORE.ASSIGN 2.

InterCom.execute secondInst SYStem.CONFIG.CORE 2. 1.

;display a status overview of the AMP system
TargetSystem.state DEFault /Global /UseICName

;connect to the AMP system
SYStem.Up
InterCom.execute OTHERS SYStem.Up

;<your_code> ... e.g. load your application program with
; InterCom.execute <instance_name> Data.LOAD. ..

InterCom.execute ALL Go

A B::TargetSystem.state DEFault /Global /UselCName EI@
target system core type core state
=1 1: OMAP4430
1: firstInst
2: secondInst

CORTEXASMPCOREMARM |running
CORTEXASMPCOREMARM |running

©1989-2024 Lauterbach PowerView User’'s Guide

109



Version Management and Licensing

The VERSION.view window provides information about the TRACE32 software version and licenses as well
as TRACE32 hardware and environment information.

1. To open the VERSION.view window, choose Help menu > About TRACE32.

2. For details, click the more buttons.
A B:VERSION.view |- ]
TRACE32 PowerView for PowerPC A
MICROPROCESSOR DEVELOPMENT SYSTEM
Copyright (c) 1989-2012 Lauterbach GmbH
Software: Interim Build | more... |
Software Version: 5.2012.02.000034604
Build: 34604. 02/2012
License: | more... |
Cable: PowerPC  (MPCSxo+MPC83cx) 04/2012
Hardware: PowerDebug USB 2.0 | more... |
Debug Cable: C11010140741 Debug Cable V1
Environment: Windows 7 more...
SYS: C:\T32_MPC
TMP: C:\Users\amartin\AppData\Local\Temp
CONFIG: C:\Users\amartin\AppData\L....\andT32_1000001.t32 | edit... |

For more information on finding serial numbers, see “Serial Numbers” in Software Updates, page 12
(updates.pdf).

The following commands are described in the “PowerView Command Reference” (ide_ref.pdf).

VERSION.HARDWARE Displays the version of the used debug hardware

VERSION.SOFTWARE Displays detailed information about the used TRACE32
software

VERSION.view Displays window with version info

LICENSE.state Displays the currently used maintenance contract

LICENSE.List Displays all license information

LICENSE.UPDATE Updates the maintenance contract inside a debug cable

©1989-2024 Lauterbach PowerView User's Guide | 110



Text Editors

This chapter describes how TRACE32 PowerView supports editing text files.

Built-in Editors

TRACE32 PowerView includes two built-in editor types.
1. OS-Native Editor: This editor has a limited feature set as provided by the GUI framework.

2. PowerView Editor: Advanced editor with syntax highlighting and context specific features.

The editor type can be selected using SETUP.EDITOR.TYPE.

OS-Native Editor

The features of this editor are limited to the features provided by the GUI framework / OS API that provides
the edit control. There are no configurable options for highlighting, indentation etc. The are keyboard
shortcuts available as provided by the GUI framework (Windows API, Qt, MOTIF).

PowerView Editor

This editor has a variety of features that are available on all supported host operating systems:

. Syntax Highlighting for all TRACE32 programming languages

. Nesting-aware editing

. Highlighting of matching block, braces, current cursor line, keywords and matching selection

. Configurable visible whitespace and ASCII view

. Automatic indentation during input

J Individual settings for tab size, indentation size and type for several file types (PRACTICE, C,
Python, ASM Text and TRACE32 trigger languages.

. Context sensitive context menus (e.g. Help for command / function, Goto label)

J Input suggestions and automatic input completion, see also SETUP.EDITOR.AutoSuggest

. Automatic script formatting and command expansion, see EDIT.FORMAT.

For a detailed description of available configuration options see the SETUP.EDITOR command group.

Context Sensitive Context Menu

Below is an overview of the context sensitive context menu features The context menu is opened by right-
click on the item of interest.

©1989-2024 Lauterbach PowerView User's Guide | 111



Context menu of command or PRACTICE function leads to link info TRACE32 Help:
[B::PEDIT] =N SR

B setup... & save || EFsave As..| B quit || #FiFind... | |[0x] ] 2EDo M Debug
1J.Ana vzer.ACCESS AutoWM

7' Help for Command ‘

[ [e:PeD) [= ][ &S]
Paste CTRLA | B setup... | & save || FFsave As.| B oquit || #3Find... [0 Do M Debug
1 [PRINT STRing.SPLIT( hello™,"e™,1)
7' Help for Function {
Paste CTRL+V ‘

Open destination text file addresses in a command in new edit window:

[B:PEDIT] (o ][O usa]

2 setup... & cave ||SFsave As.|| B ouit || #FAnd... ||| [ Do 2 Debug
_‘LJCD. D0 ~/demo /powerpc/TTash,/Jpc560x. cmm PREPARECONLY

2 Help for Command

E4 Open File "~~/demo/powerpc/flash/jpc360x.cmm”

Jump to labels of e.g. subroutines:

(B B:PEDIT C:\T32\demo\practice\scriptconverter\windriver\scga2practice.cmm [=]
p p gazp
Hsetup... | Fsave | Fsavess.| B ouit | #iFind.. [0 0|9 Do | M Debug
{ 89 GOSUE Decode_SCGA &readline ~
oA IR Goto 1abel "Decode SCGA”
92 ELSE IF "&cof A

Keyboard Shortcuts

Below is a list of keyboard shortcuts supported by the PowerView editor:

CTRL+SPACE Open Auto Completion box. See also SETUP.EDITOR.AutoSuggest.

CTRL+A Select all text

CTRL+C Copy selected text to clipboard

CTRL+D Comment line or selection (D = Disable)
CTRL+E Uncomment line or selection (E = Enable)
CTRL+F Open Find dialog

CTRL+G Open Goto Line dialog

CTRL+H Open Replace dialog

CTRL+S Save document

©1989-2024 Lauterbach

PowerView User’'s Guide |

112



CTRL+V Paste from clipboard

CTRL+X Cut (copy to clipboard and delete)
CTRL+Y Redo

CTRL+Z Undo

CTRL+ Navigate cursor word-wise

<cursor key>

SHIFT+ Select text
<cursor key>

CTRL+SHIFT Select text word-wise
+<cursor
key>

CTRL+ Delete text word-wise
BACKSPACE

Automatic Formatting

Automatic formatting is available for PRACTICE (PEDIT), Menu (MENU.Program) and Peripheral View
(PER.Program) and re-indents the selected file or block.

Automatic formatting is available from context menu and also from command line with additional features
like bringing all commands into the correct camel cased form. See EDIT.FORMAT for more information.

Unformatted block: Formatted block:
[B:PEDIT CAT32\demo'\arm\compiler\armiarmd.crnm] [B:PEDIT CAT32\demo'\arm\compiler\armiarmd.crnm]
[ & setup... || P save |[FFsavens. | BFouic [ FFind... (][] [ Zsetup... || P save |[FFsaveas.| BFoui || FiFind.. [D)[0x]
42 42
43 |//-set-endianism- according-to-the-selection 43 |//-set-endianism-according-to-the-selection
44 |/ /- (Data. Set- command- for-920T-and- 940T-only) 44 [/ /- (Data. Set- command-for-920T-and- 940T-only)
45 |IF- (&sel&{(0x1)))==0x0
46
47 |-+ - - 5¥5tem.Option-BigEndian-ON
48 |-+ - -Data.Set-C15:2-%Long- 0xf8
49y
50 |ELSE
51((
52 |-+ 5¥5tem.Option-BigEndian- OFF
Data.Set C15:2 I:Long 0x78 53 |- ---Data.5et-C15:2-%Long- Ox78
5403
550 4 Cut CTRL+X =

Copy CTRL+C =
Paste CTRL+V

4 Format Selection
— |

Special Purpose Editor Windows

TRACE32 includes editor windows that are specific for a certain programming language:

©1989-2024 Lauterbach PowerView User's Guide | 113



The special purpose editor windows allow easy access to commands that are specific to the respective
editor and file type. For examples of editor-specific buttons, see [B] and [C].

Bf BEDITfile  ~~-\any-filetxt ==E=E= The genera_l-
[ Zsetup... || & save | saveas.| BB quit || #iFind... |[)[0e][1] purpose editor
(Al |
4 ¥
|! B:MENU.Program ~~\mymenu.men 4. EI@ Edltor for r_nenu
[ Psetup... || @ save || Save As..| B3 Qut | #3Find... ][2)()(¥7) itk Compie] progr‘j‘r?m'”g
A 2 [; adds a user-defined menu item to the built-in View menu of TR# E i (SPeCIa -purpose
3 faod 4| editon)
4 |MENU 1
510( ™
[ POPUP "View"
7
|: 8 AFTER "Dump. .. "
9 R <icon> <item_names> <shortcut> <command=
10 MENUITEM "[:colorred]Set PC to main,ALT+M" "Register.Set PC main”
11
12 |) a &
1+ | i b
{ okl |[ MENU |MENUITEM || POPUP || SEPARATOR |[ other
[f B:PEDIT ~-\to-ara.crm e ng’éﬁéE "
(& setup... |2 save (¥ ave As..]|_[5 Que J( 3Fnd... () ][(41){_#2Do ) Debug | o SCripts
A 4 [OPEN #1 "~~~\my-Tog.dat” /Read B (SF_)eCIa -purpose
I I é READ #1 XLINE &myline ed|’(or)
7 [WHILE FILE.EOFLASTREAD()==FALSE() ‘E‘
8 |
|: 9 . PRINT "&myline” ;print Tine to AREA window AQQO
10 READ #1 %LINE &myline ;assigns all characters up to the
1) ;mext EOL to &myline
12
13 |CLOSE #1
14 -
4 ¥

In addition to, or as an alternative to the TRACES32 editors, you can configure an external editor for use in
TRACES2 using the SETUP.EDITEXT command. For more information about the use of external editors in
TRACE32, see “External Editors”, page 116.

©1989-2024 Lauterbach PowerView User's Guide | 114



Overview of the Various TRACE32 Editors

General-purpose editor:

EDIT

Special-purpose editors:

PEDIT [<file>]
PER.Program [<file>]

MENU.Program [<file>]
DIALOG.Program [<file>]

BITMAPEDIT [<file>]

Data.PROGRAM [<address>] [<file>]

Primarily used to create and edit text files, e.g. *.txt, *.log,
*.dat, etc.

Editor for PRACTICE scripts (*.cmm).

Editor for programming the peripheral description files
(*.per).

Editor for creating your own menus or customizing the
TRACES32 menus (*.men).

Editor for creating your own dialogs (*.dlg).

Bltmap editor for drawing user-defined icons. They can
be embedded in these TRACE32 file types: *.cmm,
*.men, or *.dlg.

Editor for writing an assembler program (*.asm).

If your TRACE32 tool provides a trigger language for your processor architecture or timing analyzers, a

trigger programming editor is provided:

Break.Program [<file>]
Integrator.Program [<file>]
Probe.Program [<file>]

Examples

Editor for on-chip breakpoint programs (*.ctl).
Editor for Integrator trigger programs (*.tap).
Editor for PowerProbe trigger programs (*.tap).

EDIT config.t32

EDIT *.c

EDIT test.txt
EDIT test.txt

; edit one file

the asterisk opens a file selection

; dialog, where you can browse for the

file you want to edit

; open file and edit
; access the same file through a second
; EDIT window

©1989-2024 Lauterbach

PowerView User's Guide | 115



Edit Menu

Below is an overview of the Edit menu tools displayed in the menu bar.

B TRACE32 PowerView for ARM O [SIM @ ] - [[Bu:List.aute]]

= File | Edit | View Var Bresk Run CPU Misc Trace Pef Cov ARMS Window Help

- 8 X

Find: cppdemo.cpp

Properties...  Alt+Enter

| w2 Undo Gz ||| 2N D e s @i 2
M Ste] ¥ cut Ct+X fetum| ¢ Up » Go || Il Break
*| By Copy Ctrl+C

Paste Crley  [Rtor+Cint n )

Delete Del E +=n;
nis;

Save Ctrl+5

Enable Ctrlef JRtor+( Tree & t2)

Disable ctrl+p JE.+= t2.branch_cnt;
nis;

#3 Find... Ctrl+F
J Undo: same action as pressing key Ctrl+z or command EDIT.UNDO.
. Cut: same action as pressing key Ctrl+x.

Removes current selected content from text and transfer into clipboard.

. Copy: same action as pressing key Ctrl+c.

Transfers current selected text into clipboard.

. Paste: same action as pressing key Ctrl+v.

Inserts content of clipboard at current cursor position.

J Delete: same action as pressing key Del.

Removes character right of current cursor position or delete selected text.

J Enable: changes current line to a comment line (prefix with //).

J Disable: removes comment from current line (remove prefix //).

External Editors

In addition to, or as an alternative to the built-in TRACES32 editors, you can configure an external editor for
use in TRACE32. This allows you to take advantage of the combined features of both (a) the respective built-
in TRACE32 editor you have selected and (b) the external editor - while you are working on the same file at

the same time in both editors.

Syntax highlighting files for external editors reside under ~~/demo/practice/syntaxhighlighting and are

available for the following external editors:

U TextPad

A UltraEdit

. Kate

J Notepad++

©1989-2024 Lauterbach

PowerView User’s Guide

116



The syntax highlighting files for external editors cover the following TRACE32 file types:

PRACTICE script files (*.cmm)
Menu files (*.men)
Dialog files (*.dlg)
OCTL files (*.octl)

Configuring an External Editor

Before configuring an external editor for use in TRACES32, you should consult the online help of your favorite
external editor for information about (a) syntax highlighting files or syntax definition files and (b) command
line parameters for file name and line number.

Background information is also provided in the headers of the syntax files and in the readme.ixt residing
under ~~/demo/practice/syntaxhighlighting

To configure an external editor for TRACE32:

1.
2.

In your TRACE32 system directory, navigate to ~~/demo/practice/syntaxhighlighting/<editor>.

Copy the required syntax highlighting file, and paste it into the folder where your external editor
expects syntax highlighting files.

The remaining steps for registering a syntax highlighting file depend on the external editor.

In TextPad, for example, you need to create a new document class and assign the TRACES32 file
types *.cmm, *.men, and *.dIg to this new document class.

Look up the examples and description of the following TRACE32 command. They tell you how to
replace the TRACE32 editor call with an external editor call.

I SETUP.EDITEXT Define an external editor

©1989-2024 Lauterbach PowerView User's Guide | 117



Working with TRACE32 and the External Editor

The interaction between a TRACES32 editor and an external editor allows you to take advantage of the
combined features of both editors. For example, after saving your PRACTICE script in the external editor,
you can immediately execute and/or debug your script in TRACE32.

Prerequisite:

J You have configured an external editor for use in TRACES2. If not, then the EDIT command will
continue to open the TRACE32 EDIT window instead of your external editor.

To work with TRACE32 and the external editor in parallel:
1. Run the PSTEP and EDIT commands for the same PRACTICE script file. For example:

PSTEP c:\temp\demo.cmm ;open file in the PSTEP window
EDIT c:\temp\demo.cmm ;open same file in the external editor

2. In the external editor, type your PRACTICE script. Let’s use this very simple demo script:

AREA.view ;display the default AREA window
AREA.RESet ;reset the AREA window
RePeaT 10. ;repeat the PRINT command

PRINT "Hello TRACE32!"

ENDDO

3. In TRACE32, right-click the window caption of the PSTEP window, and then press Enter.
- The saved PRACTICE script file is loaded into the PSTEP window.

- You are now ready to step through your script line by line (STEP button), execute it (Continue
button), set PRACTICE breakpoints (see PBREAK).

NOTE: If your script starts with a WinCLEAR command, you can prevent the PSTEP
window from being erased by opening it with the WinResist pre-command.

In our example: WinResist.PSTEP c:\temp\demo.cmm

©1989-2024 Lauterbach PowerView User's Guide | 118



lcons

TRACE32 allows you to customize the user interface and add icons to your customized user interface. This
chapter informs you about the supported icon types, tells you where you can add icons, and describes step-
by-step how you can create your own icons.

TRACE32 supports two icon types:
J Built-in icons

o User-defined icons

Both icon types can be added to the following dialog, menu, and toolbar elements:

BUTTON Define a button

DEFBUTTON Define the default button

DYNAMIC Define a dynamic, single-line area

ICON Define an icon for the top left corner of a dialog
MENUITEM Define an item in a menu, popup menu or a local button
STATIC Define a non-dynamic area in a dialog

TOOLITEM Define a button in the toolbar

Icon-capable elements can be used in the following TRACE32 file types:
. PRACTICE script files (*.cmm)
. Menu files (*.men)

J Dialog files (*.dlg)

Which Icon Type Do You Need for Your Project?

You can choose built-in icons from the icon library. For more information, see “Built-in Icons and Icon
Library”, page 120.

You can create your own, user-defined icons with the TRACE32 bitmap editor. For step-by-step instructions,
see “Inserting a Placeholder for User-Defined Icons”, page 121.

I BITMAPEDIT <file> Open the bitmap editor

©1989-2024 Lauterbach PowerView User's Guide | 119



Built-in Ilcons and Icon Library

TRACE32 provides a number of built-in icons. You can easily include these built-in icons in icon-capable
dialog, menu, and toolbar elements. Using the TRACES32 icon library, you can:

Get an overview of all available icons

Get the built-in name of each icon

To display the TRACE32 icon library:

1.

2.

3.

Choose Misc menu > Tools > Display internal icon library.

DO "~~/demo/menu/internal_icons.cmm"
A Predefined TRACE32 icons =n| Wl <
(ot (02 ) m ) /[ )~ () &) 5] (F|[&)=]E]
[ ][t [ © ][ m ][ & ][] = ][R ][ @] ] EIENEIEN
H@-E- HEEERRNEIEI
X][e)[=])®)~]&[x]a])] (]2 ]s]a] E]
--E-@-EE- (o] fe#t][R ][]
EE-@-E- o]~ &)@ +]
HIIOVIFIEEIF I [ (= Jf&](&][»]
MOt EIEIra [ )(= (&)
ElEINDOEREIIEEY BRNCIME
Bm] )@ -]+ ][] B
S Tt et @]

W@[ﬁmm@]m@-

I Icon name:  [[:var]

Click any icon.
The built-in icon name is displayed in the lcon name field.

Observe this syntax for built-in icons: "[:<built_in_icon_name>]<your_text>"

DIALOG.view
(; Assigns the icon to BUTTON

BUTTON "[:var]Any text" "Var.View"
)
STOP
DIALOG. END

To try this script, simply copy it to a test . cmm file, and then run it in TRACE32 (See “How to...”).

©1989-2024 Lauterbach PowerView User's Guide | 120



Inserting a Placeholder for User-Defined Icons

Icon-capable dialog, menu, and toolbar elements require an icon placeholder in the form of two square

brackets [1].

To insert an icon placeholder for a user-defined icon:

1. In TRACE32, open the file where you want to add an icon, e.g.:

PEDIT ~~/demo/practice/dialogs/dialog_edit.cmm ; PRACTICE script file

MENU.Program ~~/demo/menu/demo .men

DIALOG.Program <your_file>.dlg

2. Observe this syntax for the icon placeholder: " []1<your_text>"

Examples:

(*.dlg or *.cmm file)
"GOTO cancel"
"GOTO cancel"

;DIALOG element
BUTTON "Cancel"
BUTTON "[]1Cancel"

;MENU element (*.men file)
MENUITEM "Edit .c File..."
MENUITEM "[]lEdit .c File...™"

"EDIT *.c"
"EDIT *.c"

3. Click Save.

Next: “Drawing Icons”, page 122.

;or
;menu file
;or

;dialog file

©1989-2024 Lauterbach

PowerView User’'s Guide |

121



Drawing Icons

After inserting the icon placeholders (see previous section), you can open the file in the BITMAPEDIT
window and draw an icon on the canvas.

| & B:BITMAPEDIT ~-\demo\practice\dialogs\dialog_editemm | = || & |[m23]

Show M Track [lcursor [#Grid —[«]

Save Encode: |NATIVE - E] E]
Que | Zoom: B =

Bitrmap

(] = Nro 1. Start: 977.  End: 1122.

o O W »

r R]

gl x W

bl E IE

m transparent
foreground

= topshadow
bottomshadow

Lt |(Ctr Rgt-l

J»NCU—!'UH@H-’.

Muusebutturj
pOs 1. 6. 10. 1.

DEFBUTTON "[,,, iiiiiiiiia, iiiiiiiiia, 119099g99GG,

«[0]

Opens the Preview Icon window.

" Previewicon [ o |5 )
Usage examples
Enabled button

M Test | Disabled button
W Test Static text

Right click for pulldown

Preview Icon
W Enabled entry

Bitmap format (For more information, see the BITMAPEDIT command.)

Assign a color to a mouse button by clicking a color in the palette with that mouse button.

The source code of an icon is inserted between the corresponding icon placeholder [1 while you are

drawing the icon.

Up and down arrow buttons let you navigate from one icon or icon placeholder to the next.

To draw an icon:

1.

Open your file in two TRACE32 editor windows.

- The first editor window contains the source code of your project.

- The second editor window, i.e. the BITMATEDIT window, provides the icon drawing tools.

Example:

PEDIT ~~/demo/practice/dialogs/dialog_edit.cmm ;1. editor
BITMAPEDIT ~~/demo/practice/dialogs/dialog_edit.cmm ;2. editor

;or
MENU.Program ~~/demo/menu/demo .men ;1. editor
BITMAPEDIT ~~/demo/menu/demo .men ;2. editor

;or
DIALOG.Program <file>.dlg ;1. editor
BITMAPEDIT <file>.dlg ;2. editor

©1989-2024 Lauterbach PowerView User's Guide | 122



The same file should now be open in two TRACE32 editor windows.

2. In the BITMAPEDIT window, under Bitmap, click the up and down arrow to navigate to the icon
placeholder you want [E].

3. From the color palette, choose the colors you want, and draw an icon.
4. When done, click Save.

5. Click in the window of the first editor: the PEDIT window or the MENU.Program window or the
DIALOG.Program window. You are prompted to reload the file.

6. Click Yes to reload.

You are now ready to execute the file to view the finished icon.
o In the PEDIT window, click DO.
. In the MENU.Program window, click Compile.

. In the DIALOG.Program window, click Comp+Show.

©1989-2024 Lauterbach PowerView User's Guide | 123



Interface

For more information about the configuration of the interface, see “TRACE32 Installation Guide”

(installation.pdf). Commands are described in the “PowerView Command Reference” (ide_ref.pdf).

% BIFCONFIG = =R
ip address host ip address DHCP details
10.2.22.96 10.2.10.143 Server IP:
Relay IP:
ethernet address host ethernet address Router IP:
00-C0-8A-82-70-74 70-4D-7B-B5-F2-FA Leasetime: 0.
Select Reqs: 0.
device name statistics Select Acks: 0.
E18110012345 recy packets | 7008. Select NAcks: 0.
Set default device name send packets | 2358. Renewaltime: 0.
kbytes 5231. Renew Reqs: 0.
ethernet settings collisions 0. Renew Acks: 0.
RARP retries 0. Renew MAcks: 0.
BOOTP resyncs 0. Rebindingtime: 0.
DHCP (via device name) errors 0. Rebind Reqs: 0.
full duplex configuration:  USB3 Rebind Acks: 0.
TEST Rebind NAcks: 0.
Save to device
IFCONFIG.state Interface configuration
IFCONFIG.TEST Test interface function and speed
IFCONFIG.PROfile Display operation profiles

©1989-2024 Lauterbach PowerView User’'s Guide

124



Shortcuts

ALT+ Spacebar

Opens the window manager menu of the active window.
J Available for the TRACE32 window modes FDI and MTI.

o If the TRACES32 window mode is MDI, then the ALT+spacebar shortcut works only for windows
preceded by the WinExt pre-command, e.g. WinExt.Register.view or WinExt.List

Alt+F4

o Closes the TRACE32 main window if no WIinExt.<window> is selected.

. Closes the active WinExt.<window>. See also esc key.

Ctrl+A

Select all in the TRACE32 editors.

Ctrl+C

Copy in the TRACE32 editors.

Ctri+F

. Opens the Find dialog window. TRACE32 searches in the active window.

o Find operation in the TRACE32 editors.

Ctrl+G

Go to <line> in the TRACE32 editors.

Ctrl+Left

Move to previous word in the TRACES32 editors.

Ctrl+H

Find-and-replace operation in the TRACES32 editors.

Ctrl+F4

Closes the active window (i.e. windows without the WinExt. pre-command).
See also esc key.

Ctrl+F6

Selects the next window (i.e. windows without the WinExt. pre-command).

©1989-2024 Lauterbach PowerView User's Guide | 125



Ctrl+Right

Move to next word in the TRACE32 editors.

Ctrl+S

Save a file in the TRACE32 editors.

Ctrl+V

Paste in the TRACE32 editors.

Ctrl+X

Cut in the TRACE32 editors.

Ctrl+Y

Redo in the TRACE32 editors.

Ctrl+Z

Undo in the TRACE32 editors.

Ctrl+D and Ctrl+E

Ctrl+D disables the selected breakpoint.

Ctrl+E enables the selected breakpoint.

esc

Closes the active window - regardless of whether the active window is preceded by the WinExt. pre-

command or not.

F1
. To get context-sensitive help on a window or dialog, click the window or dialog, and then press
F1.
J To get context-sensitive help for a command, type the command at the command line, append an
empty space, and then press F1.
F2 Single step
F3 Step over function call or subroutines
F4 Step Diverge Path: Leave loops, go till something new happens.
F5 Go return / Go to the last instruction
F6 Go up / return to the caller function

©1989-2024 Lauterbach

PowerView User’s Guide

126



F7 Go / Start real-time execution
F8 Break / Stop real-time execution
F9 Toggle between the debug modes HLL and MIX
Up and down Go up / down in the command line history.
arrow keys

Shift+Tab

Navigate back through the softkeys of a command group:

1. At the command line, type for example: Data .LOAD.

2. Press Shift+Tab to navigate back through the softkeys.
(Alternatively, click [es=vie= |)

Tab and Tab Completion for Commands

(A) Navigate forward through the softkeys of a command group:
1. At the command line, type for example: Data.
2. Press Tab repeatedly to navigate forward through the softkeys.
(Alternatively, click [_eter )
(B) Access the list of PRACTICE functions:
1. At the command line, type: PRINT or Data.Print
2. Type the first few letters of the PRACTICE function you want, e.g. ad
3. Press Tab repeatedly to cycle through the list of matching PRACTICE functions.

B::|PRINT AD
| ADDRESS.ACCESS( | ADDRESS.DATA( |

(C) Cycle through the list of symbols:

1. At the command line, type for example: List .Mix
2. Press Tab repeatedly to cycle through the list of recently used symbols.
B::List.Mix

| func9 | main | SR:0x2228 | wW:0x0 | sieve |

- Type the first few letters of the symbol you want.

- Press Tab repeatedly to cycle through the list of matching symbols.

(D) Complete a command:

J At the command line, type for example symb and then press Tab.
TRACE32 completes symb to the command sYmbol

(E) Display suggestions for completing a command:

©1989-2024 Lauterbach PowerView User's Guide | 127



1. At the command line, type for example tr and then press Tab.
TRACES32 suggests TrBus | TrOnchip | Trace | TRANSlation

2. Press Tab repeatedly to cycle through the list of matching commands.

Pause / Break

Moves the insertion point from any TRACE32 window back to the TRACE32 command line.

©1989-2024 Lauterbach PowerView User's Guide | 128



Appendix - About the TRACE32 Software Version Numbers

The version number consists of the following building blocks:

Format: <type>.<year>.<month>.<build_number>
<type>: RIPINISIF
<type> . R: release build
] P: pre-release build
. N: nightly build
. S: interim build (“snapshot”)
. F: feature build

<year> . Year of the software version. This is the year in which a release or
pre-release was branched from the development trunk.
. Four-digit representation of a year (Return value example: 2018).
<month> . Month of the software version. This is the month in which a release
or pre-release was branched from the development trunk.
. Two-digit representation of a month with leading zeros (Return val-
ues: 01 ... 12).
<build_number> Build number.

Examples of Version Numbers:

R.2018.09.000103893 ;release build

S$.2018.12.000104075 ;interim build

Information about the version number is displayed in the following windows:

VERSION.SOFTWARE Displays software version information.

VERSION.view Displays software, license, hardware, and environment information.

Information about the version can be returned with the following functions:

VERSION.SOFTWARE() Returns the entire version number string.
VERSION.SOFTWARE.TYPE() Returns the software build type only.

VERSION.BUILD() Returns the upper build number from the release branch.
VERSION.BUILD.BASE() Returns the lower build number from the release branch.
VERSION.DATE() Returns the software version date, e.g. 2018/09

©1989-2024 Lauterbach PowerView User's Guide | 129



	PowerView User’s Guide
	History
	Structure and Contents of the Documentation
	Online Documentation
	In-Circuit Debugger TRACE32-ICD

	Program Start
	In-Circuit Debugger TRACE32-ICD

	Shut Down PowerView
	Interactive Connection Mode
	Interactive Connection on PowerView Startup
	Connection Wizard
	Connection Select Dialog
	Automatic Connection upon Startup
	Connection Script Generation for Test Automation
	Connection Configuration Window
	Reboot into Interactive Connection Mode

	PowerView - Screen Display
	Concept
	Graphical User Interface - Window Modes
	MDI User Interface
	MWI User Interface

	Main Menu Bar
	Accelerators
	Main Toolbar
	Work Area
	Message Line
	Error Messages
	General Messages
	Additional Information on Cursor Position

	Softkeys
	State Line
	Cursor
	Debug and Debugger Activity
	Trace
	Mode
	Task
	SMP Systems
	Advanced
	Show/Hide State Line

	Window Pages
	Colors
	How the TRACE32 PowerView GUI Assists You in Scripting

	Commands
	Command Structure
	Long Form and Short Form of Commands and Functions
	Entering Commands
	Command Line
	Device Selection

	Command History
	Command and Function Parameters
	Parameter Types
	Operators
	Arithmetic Rules and Operator Precedence
	Parentheses and Braces
	Parameter History
	File Names
	Path Prefixes


	General Command Parameter Parser
	A. Object of Description
	B. Support of C Language Expressions
	C. Radix Mode Support
	Operands
	Operand Format Examples (Literals)

	Operators
	Operator Formats


	Window System
	Windows
	Window Captions - What Makes Them Special in TRACE32
	Local Buttons
	Local Popup Menus
	Slider Controls

	Window Operations
	Basic Operations
	Old Position, Bookmarks, and Current Selection
	Getting Information
	Changing Data or Setups
	Window Manager Menu
	Window Position and Name
	Freezing a Window
	Erasing a Window
	Window Scroll Bars
	Printing Window Contents
	Saving Window Contents
	Special Window Options

	Text-based Functions
	Selection Service

	Message Windows
	Window Tracking
	File and Folder Operations
	File Contents
	Encrypt/Execute Encrypted Files
	Host Commands
	Printer Operations
	System Setup and Configuration
	Logging Commands
	Dialog Programming
	Dialog Syntax and File Types
	Comments in Dialogs
	Dialog Commands
	Control Your Custom Dialogs
	Control Behavior of Individual Dialog Elements on Custom Dialogs
	Interact with the File System
	Display Message Boxes of the Operating System

	Dialog Elements
	Return Values and Labels
	PRACTICE Macros inside Dialog Definitions

	HELP System
	Ways to Get Help
	Context-Sensitive Help
	Structure of the Help System
	Configure the Help System
	Recommendations for Choosing a PDF Viewer
	Bookmarks for Help Topics
	Create Help Bookmarks
	Store and Load Help Bookmarks Manually
	Store and Load Help Bookmarks Automatically

	Troubleshooting the Help System
	Change the Installation Path of the PDF Files
	Winhelp Compatibility

	Previous Releases - HELP System
	Previous Releases - HELP Installation and Setup
	Previous Releases - Configuring an Alternate PDF Viewer
	Previous Releases - HELP Installation Problems

	InterCom
	Version Management and Licensing
	Text Editors
	Built-in Editors
	OS-Native Editor
	PowerView Editor
	Context Sensitive Context Menu
	Keyboard Shortcuts
	Automatic Formatting


	Special Purpose Editor Windows
	Edit Menu
	External Editors
	Configuring an External Editor
	Working with TRACE32 and the External Editor

	Icons
	Built-in Icons and Icon Library
	Inserting a Placeholder for User-Defined Icons
	Drawing Icons

	Interface
	Shortcuts
	Appendix - About the TRACE32 Software Version Numbers


