
MANUAL

PowerView User’s Guide

PowerView User’s Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PowerView User Interface .. 

 PowerView User's Guide ... 1

 History .. 6

 Structure and Contents of the Documentation .. 7

 Online Documentation 7

 In-Circuit Debugger TRACE32-ICD 8

 Program Start .. 10

 In-Circuit Debugger TRACE32-ICD 10

 Shut Down PowerView .. 11

 Interactive Connection Mode ... 12

 Interactive Connection on PowerView Startup 13

 Connection Wizard 13

 Connection Select Dialog 14

 Automatic Connection upon Startup 16

 Connection Script Generation for Test Automation 16

 Connection Configuration Window 17

 Reboot into Interactive Connection Mode 17

 PowerView - Screen Display .. 18

 Concept 18

 Graphical User Interface - Window Modes 18

 MDI User Interface 19

 MWI User Interface 20

 Main Menu Bar 21

 Accelerators 21

 Main Toolbar 22

 Work Area 22

 Message Line 23

 Error Messages 23

 General Messages 23

 Additional Information on Cursor Position 23

 Softkeys 24

 State Line 25
PowerView User’s Guide | 2©1989-2024 Lauterbach

 Cursor 25

 Debug and Debugger Activity 26

 Trace 27

 Mode 27

 Task 28

 SMP Systems 29

 Advanced 29

 Show/Hide State Line 29

 Window Pages 30

 Colors 31

 How the TRACE32 PowerView GUI Assists You in Scripting 32

 Commands ... 34

 Command Structure 34

 Long Form and Short Form of Commands and Functions 35

 Entering Commands 36

 Command Line 36

 Device Selection 37

 Command History 38

 Command and Function Parameters 39

 Parameter Types 41

 Operators 46

 Arithmetic Rules and Operator Precedence 48

 Parentheses and Braces 49

 Parameter History 49

 File Names 50

 Path Prefixes 51

 General Command Parameter Parser .. 52

 A. Object of Description 52

 B. Support of C Language Expressions 54

 C. Radix Mode Support 55

 Operands 56

 Operand Format Examples (Literals) 57

 Operators 58

 Operator Formats 59

 Window System ... 60

 Windows 60

 Window Captions - What Makes Them Special in TRACE32 61

 Local Buttons 61

 Local Popup Menus 62

 Slider Controls 63

 Window Operations 64

 Basic Operations 64
PowerView User’s Guide | 3©1989-2024 Lauterbach

 Old Position, Bookmarks, and Current Selection 64

 Getting Information 65

 Changing Data or Setups 65

 Window Manager Menu 66

 Window Position and Name 69

 Freezing a Window 69

 Erasing a Window 69

 Window Scroll Bars 69

 Printing Window Contents 70

 Saving Window Contents 71

 Special Window Options 72

 Text-based Functions 73

 Selection Service 73

 Message Windows .. 74

 Window Tracking ... 75

 File and Folder Operations ... 77

 File Contents .. 78

 Encrypt/Execute Encrypted Files .. 79

 Host Commands .. 80

 Printer Operations ... 81

 System Setup and Configuration ... 83

 Logging Commands .. 84

 Dialog Programming ... 85

 Dialog Syntax and File Types 85

 Comments in Dialogs 87

 Dialog Commands 88

 Control Your Custom Dialogs 88

 Control Behavior of Individual Dialog Elements on Custom Dialogs 88

 Interact with the File System 88

 Display Message Boxes of the Operating System 88

 Dialog Elements 89

 Return Values and Labels 91

 PRACTICE Macros inside Dialog Definitions 92

 HELP System ... 93

 Ways to Get Help 93

 Context-Sensitive Help 94

 Structure of the Help System 95

 Configure the Help System 96

 Recommendations for Choosing a PDF Viewer 97

 Bookmarks for Help Topics 98
PowerView User’s Guide | 4©1989-2024 Lauterbach

 Create Help Bookmarks 98

 Store and Load Help Bookmarks Manually 99

 Store and Load Help Bookmarks Automatically 99

 Troubleshooting the Help System 100

 Change the Installation Path of the PDF Files 101

 Winhelp Compatibility 101

 Previous Releases - HELP System .. 102

 Previous Releases - HELP Installation and Setup 102

 Previous Releases - Configuring an Alternate PDF Viewer 102

 Previous Releases - HELP Installation Problems 106

 InterCom ... 108

 Version Management and Licensing ... 110

 Text Editors .. 111

 Built-in Editors 111

 OS-Native Editor 111

 PowerView Editor 111

 Context Sensitive Context Menu 111

 Keyboard Shortcuts

 Automatic Formatting 113

 Special Purpose Editor Windows 113

 Edit Menu 116

 External Editors 116

 Configuring an External Editor 117

 Working with TRACE32 and the External Editor 118

 Icons ... 119

 Built-in Icons and Icon Library 120

 Inserting a Placeholder for User-Defined Icons 121

 Drawing Icons 122

 Interface ... 124

 Shortcuts .. 125

 Appendix - About the TRACE32 Software Version Numbers .. 129
PowerView User’s Guide | 5©1989-2024 Lauterbach

PowerView User’s Guide

Version 06-Jun-2024

History

16-Oct-23 Chapter ‘Debug and Debugger Activity‘ updated.
PowerView User’s Guide | 6©1989-2024 Lauterbach

Structure and Contents of the Documentation

This chapter describes the structure of the TRACE32 documentation.

The release history in the documentation always lists the latest changes in the TRACE32 software. When
you get a new version of the TRACE32 software, please always check the Release history first.

Online Documentation

There are several ways to get access to the documentation:

1. If the TRACE32 software is already running, you can use the Help command in the main menu
bar.

2. On the TRACE32 software DVD and in your TRACE32 system path (e.g. C:\T32), you can find
a directory pdf. This directory contains the complete TRACE32 documentation in PDF format.

Open directory.pdf to get the table of contents for the complete TRACE32 documentation.

Documentation on how to use the online help can be found in chapter Help System.

The documentation is automatically filtered by your currently used hardware and/or software configuration.
The filter automatically reduces the whole documentation to the part that is relevant for you. If you want to
change the filter, take a look at the command HELP.FILTER.
PowerView User’s Guide | 7©1989-2024 Lauterbach

In-Circuit Debugger TRACE32-ICD

TRACE32-ICD includes all debuggers based on an on-chip debug interface (e.g. JTAG, BMD, OCDS …) as
well as ROM monitor solutions. Lauterbach also provides a trace extension for most debuggers
(TRACE32-ICT). TRACE32-ICD comes with a number of manuals that should make you familiar with
important features of TRACE32-ICD.

Manuals to help you get started:

• “Debugger Tutorial” (debugger_tutorial.pdf)

A guided tour through the TRACE32 graphical user interface (GUI) called TRACE32 PowerView.
We use a simple program example in C to illustrate the most important debug features and give
lots of helpful tips & tricks for everyday use.

• “Training Basic Debugging” (training_debugger.pdf) - An introduction to debugging with
TRACE32

• “Training Basic SMP Debugging” (training_debugger_smp.pdf) - An introduction to SMP
debugging

• “Training Script Language PRACTICE” (training_practice.pdf) - An introduction to PRACTICE,
the scripting language for TRACE32

Sources of information beyond the PDF files of the TRACE32 online help:

• https://support.lauterbach.com/downloads/files/practice-reference-card-pdf-2 - Reference
Card for the most common commands of the PRACTICE scripting language

• https://www.lauterbach.com/publications/debugging_amp_smp_systems.pdf - An introduction
to asymmetrical and symmetrical multiprocessing (AMP/SMP)

• https://www.youtube.com/user/lauterbachgmbh - A variety of tutorials on the Lauterbach
YouTube channel

For more information on the features of TRACE32-ICD, refer to the following parts of the TRACE32
online help:

• “TRACE32 Installation Guide” (installation.pdf)

This part is the general installation guide for all TRACE32 development tools.

• “ICD In-Circuit Debugger”

This part provides all CPU specific information for your TRACE32-ICD, chiefly how to set up the
debugger for your target. Here you will also find all extra features that are supported for your
CPU.

• “General Reference Guide” (general_ref_<x>.pdf)

This part provides an alphabetical list of all debugger commands.

• “TRACE32 Functions Reference” (<x>_func.pdf)

Refer to this part for information about the TRACE32 PRACTICE functions.
PowerView User’s Guide | 8©1989-2024 Lauterbach

https://support.lauterbach.com/downloads/files/practice-reference-card-pdf-2
https://www.lauterbach.com/publications/debugging_amp_smp_systems.pdf

• “PowerView User’s Guide” (ide_user.pdf)

All TRACE32 development tools share the common user interface TRACE32 PowerView. This
part describes the basic functions of the user interface (command structure, online help, editing
and managing files, printer operations, etc.)

• “PowerView Command Reference” (ide_ref.pdf)

This part provides an alphabetical list of all TRACE32 PowerView commands.

• “PRACTICE Script Language User’s Guide” (practice_user.pdf)

The TRACE32 script language PRACTICE is mainly used to perform automatic setups, to
automate test sequences or to store the system settings for later recall. This part describes the
basic structure and features of PRACTICE.

• “PRACTICE Script Language Reference Guide” (practice_ref.pdf)

This part provides an alphabetical list of all PRACTICE commands.

• “OS Awareness Manuals” (rtos_<os>.pdf)

Refer to this part if you want to use the TRACE32 OS Awarenesses (= RTOS Debuggers in
previous TRACE32 releases).

• “3rd-Party Tool Integrations” (int_<x>.pdf)

Refer to this part, if you want to run TRACE32-ICD from a 3rd-party user interface.
PowerView User’s Guide | 9©1989-2024 Lauterbach

Program Start

After installing the driver program to the appropriate host system, the executable can be started.

The TRACE32 system has to be powered up. If this is not the case, the error message "NO CARRIER …",
"LINK ERROR …" or "TRACE32 not responding" will appear.

If all environment variables are installed correctly, the driver program can be invoked from any sub-directory
or drive.

To start a TRACE32 executable, you can use:

• The T32Start utility

• The command line of the operating system

T32Start

The user interface of the T32Start utility assists you in creating as many start environments for TRACE32 as
you need for your different debug projects. Based on the start environment you have created with a few
mouse-clicks, T32Start auto-generates the configuration file that is essential for starting TRACE32 correctly.

For more information, see “T32Start” (app_t32start.pdf).

Command Line

If you want to start TRACE32 via the command line of the operating system, you need to manually create
the configuration file (by default config.t32). The configuration file settings are described in “TRACE32
Installation Guide” (installation.pdf).

For information about the command line syntax and command line options, see “TRACE32 Installation
Guide” (installation.pdf).

The following list is a selection of the available command line options:

• --t32-help

• --t32-safestart

• --t32-logautostart

In-Circuit Debugger TRACE32-ICD

t32m<cpu>.exe Windows version for TRACE32-ICD.

TRACE32-ICD system software is running on PC.

t32m<cpu> Workstation version for TRACE32-ICD.

TRACE32-ICD system software is running on workstation.
PowerView User’s Guide | 10©1989-2024 Lauterbach

Shut Down PowerView

Getting back to the operating system command level is possible by using the command QUIT or by choosing
File menu > Exit.

The QUIT command quits the driver program and resets the TRACE32 system. When the driver program is
restarted, a complete boot sequence will be executed.

If for any reason the host crashes, the TRACE32 system should be switched off for a few seconds.

QUIT Return to operating system

::QUIT

NOTE: If your TRACE32 development tool is connected to the target, it is important to use
the proper power on/power off sequence. For detailed information, refer to your
Processor Architecture Manual.
PowerView User’s Guide | 11©1989-2024 Lauterbach

Interactive Connection Mode

The interactive connection mode allows selection of the PowerView operation mode via user interface or
PRACTICE script. The interactive connection mode offers the following features:

• Configuring PowerView to connect to debug modules, to the built-in simulator or to other software
and hardware interfaces.

• Discovery of TRACE32 debug modules connected via USB and Ethernet

• Discovery of TRACE32 debug modules connected via USB to a remote computer

• Interactive error handling

• Generation of connection scripts, for PowerView startup or test automation

PowerView starts into interactive connection mode, if the following conditions are met:

• PowerView interim build 167400 or release 09/2024 or newer is used

• PowerView is started without a config file specified in the command line and there is no default
config file (config.t32) in the system directory (default with new installation from release 09/2024
or newer)

- or -

• PowerView is started via T32Start, with configuration item “PowerView (Interactive Mode)”

It is possible to configure PowerView to automatically connect on startup. See “Automatic Connection
upon Startup”, page 16 for more details.

The interactive connection is fully scriptable. See the CONNECTION command group for more details.

If PowerView is to be used in an automated environment, an extended variant of the connection wizard
offers additional options for device and error handling. More details under “Connection Script Generation
for Test Automation”, page 16.
PowerView User’s Guide | 12©1989-2024 Lauterbach

Interactive Connection on PowerView Startup

If PowerView starts into interactive connection mode for the first time, the CONNECTION.STARTUP dialog
is shown.

Get an introduction into the interactive connection mode: “Interactive Connection Mode”, page 12.

 If you checked “Remember my choice” in a previous start, either the connection wizard or the connection
dialog will be shown.

The connection wizard guides through the available PowerView operation modes, with the option to
automatically reestablish the selected operation mode the next time PowerView starts.

The CONNECTION.Select dialog is intended for the experienced user and offers a flexible and quick
interactive connection.

Connection Wizard

The connection wizard guides through the PowerView operation modes and options.

After the configuration is complete, the wizard offers to use the defined operation mode for future PowerView
startups.
PowerView User’s Guide | 13©1989-2024 Lauterbach

Connection Select Dialog

The CONNECTION.Select dialog is intended for experienced users, who want to flexibly switch between
using debug modules, simulators or other solutions. It offers an easy overview of the available debug
modules, as well as flexible selection of the operation mode in only a few steps.

First, select one of the tabs. Available tabs are:

TRACE32 Hardware Connect to TRACE32 debug modules connected via USB,
Ethernet, or to a USB port of a remote PC.

TRACE32 Simulator / Viewer Connect to the built-in instruction set simulator or viewer.

Other Solutions All other operation modes, including
- debug and trace 3rd-party simulators and emulators via
GTL (HostMCI)
- debug and trace 3rd-party simulators and emulators via
vendor specific APIs
- debug via 3rd-party hardware (XCP)
- debug via USB port of SoC
- debug via the GDB remote protocol (e.g. gdbserver)
- debug applications running on the host computer

The availability of operation modes depends on the selected
target architecture
PowerView User’s Guide | 14©1989-2024 Lauterbach

TRACE32 Hardware Tab

Select the interfaces, on which debug should be detected.

• Local connection (USB): PowerView sill detect all debug modules that are connected to a USB
port of the PC.

• Ethernet: Click on button “Ethernet Settings” and enter a list of debug module host names to be
searched for.

• USB on remote computer: Click on button “TCPUSB Settings” to define the host name of the
target PC, and the port name used by the TCPUSB client (default: 8455). The TCPUSB client
software (t32tcpusb.exe/t32tcpusb) must be running on the target PC.

If a debug module was connected or disconnected while the dialog is open, click on button “Refresh” to
update the found device list.

After selecting the debug module to connect to, click on button “Establish Connection” to connect. If the
connection was successful, the CONNECTION.Dialog window will close and the start-up scripts (system-
settings.cmm, user-settings.cmm and work-settings.cmm) will be executed.

TRACE32 Simulator / Viewer Tab

Select the desired operation mode:

• Instruction Set Simulator: Load and run programs in the TRACE32 uilt-in simulator

• Viewer: Load programs, data files and trace recordings for off-line analysis

Some features may require a license. The license source can be a license server or the license of a
TRACE32 debug hardware. If the license of a TRACE32 debug hardware should be used, select “TRACE32
Hardware” as license source and select the device with suitable licenses. If the TRACE32 hardware does
not appear in the selection, make sure that the appropriate interacted are enabled and configured in the
TRACE32 Hardware tab.

After making the appropriate settings, click on button “Establish Connection” to connect. The
CONNECTION.Dialog window will close and PowerView is ready to use.

Other solutions

Select the appropriate interface. The availability of interfaces depends on the supported architecture of the
running PowerView executable There are individual settings for most interfaces.

TRACE32 HostMCI See command CONNECTION.HOSTMCI

MCD API See command CONNECTION.MCD

GDI Interface See command CONNECTION.GDI

TRACE32 HostMCI See command CONNECTION.HOSTMCI
PowerView User’s Guide | 15©1989-2024 Lauterbach

Automatic Connection upon Startup

If you want to configure PowerView to automatically connect to a debug module, simulator or other hardware
and software solutions, open the CONNECTION.AUTOSTART.state window. Open the window by selecting
in the menu: File - Connection State, then click on “Manage autostart configuration”.

The CONNECTION.AUTOSTART.state window also allows to disable or modify the current autostart
configuration.

Connection Script Generation for Test Automation

In order to use PowerView in an automated environment, you can generate a connection script using the
command CONNECTION.Wizard.CreateScript. Open the wizard by selecting in the menu: File -
Connection State, then click on “Create connection script”.

On page “Error handling” of the CreateScript wizard, select “Shut down PowerView and return error code 1”,
so that the PowerView process ends in case of error.

In order to run the generated connection script when PowerView boots, use command line option:
-e <connection script>.

See “Command Line Arguments for Starting TRACE32” in TRACE32 Installation Guide, page 54
(installation.pdf) for more information.

MCD API See command CONNECTION.MCD

GDI Interface See command CONNECTION.GDI
PowerView User’s Guide | 16©1989-2024 Lauterbach

Connection Configuration Window

The connection configuration window (command CONNECTION.state), is the main window of the
CONNECTION feature. It gives access to all CONNECTION functions.

The CONNECTION.state window is also accessible via menu: File - Connection Configuration.

Use the Connection configuration window to

• Open the Connection Wizard

• Open the Connection.Select dialog.

• Reboot PowerView into interactive connection mode (only available if in connected mode)

• Manage the autstart configuration

• Create a connection script for using PowerView in automation scenarios

• Open this document

Reboot into Interactive Connection Mode

If PowerView is already connected to a debug module, simulator etc, it is currently not possible to change
PowerView back to interactive mode.

The CONNECTION.state window offers a button to perform the reboot into connection mode. If the
PowerView instance is connected to a debug module or MCI server and there are other PowerView
instances connected, the reboot is not allowed. Shut down the other PowerView instances first.
PowerView User’s Guide | 17©1989-2024 Lauterbach

PowerView - Screen Display

Concept

The graphical user interface (GUI) of TRACE32 is called TRACE32 PowerView. The TRACE32 user
interface is based on an extremely fast, character oriented window system. Up to 128 different windows can
be composed for display, each can contain up to 250 * 250 characters. Window type, size and status can be
defined very flexibly by the user. Each window is assigned to one task, which is sequentially executed to
update the window information.

Windows may be frozen to prevent them from being updated.

An array of windows is called a “PAGE”. Several pages can be defined in this manner, with each page
representing a part of the user’s work area. Multiple pages cause no performance degradation, as only the
visible windows are updated.

Graphical User Interface - Window Modes

The user interface TRACE32 PowerView supports 2 different window modes:

• MDI (multiple document interface): All sub-windows are placed inside the TRACE32 main
window.

• MWI (multiple window interface): The TRACE32 main window and the sub-windows are placed
freely on the desktop.

On MS Windows systems, the MWI window mode is split into 2 sub-modes:

• FDI (floating document interface): Same as MWI; the taskbar shows only one icon for all
windows. Minimizing the main window will also minimize the sub-windows.

• MTI (multiple top-level window interface): The taskbar shows an icon for the main window and
each sub-window. Minimizing the main window does not minimize the sub-windows.

These modes can be set in the SCREEN= section of the configuration file (config.t32). Depending on the
version of TRACE32, not all window modes are supported:

Windows Linux/
Motif

Linux/
Qt

HP-UX OS X/
Motif

OS X/
Qt

MDI + - + - - +

MWI + + + + + +
PowerView User’s Guide | 18©1989-2024 Lauterbach

MDI User Interface
[Back to Top]

After starting TRACE32, the main window of the TRACE32 PowerView GUI is displayed.

For more information, click the blue GUI terms.

A Local popup menu

Main menu bar Main toolbar

Local buttons

Command line

Message line

Softkeys

Work area
with
windows

State line

A

PowerView User’s Guide | 19©1989-2024 Lauterbach

MWI User Interface
[Back to Top]

After starting TRACE32, the main window of the TRACE32 PowerView GUI is displayed.

For more information, click the blue GUI terms.

A Local popup menu

Main menu bar Main toolbar

Command line

Message line

Softkeys

State line

Local buttons

A

PowerView User’s Guide | 20©1989-2024 Lauterbach

Main Menu Bar
[Back to Top]

The main menu bar provides all important commands for each functional unit of the TRACE32 development
tool. You can add user-defined menus to the main menu bar by using the MENU commands.

Example: This script adds the User menu shown in the above screenshot to the main toolbar.

Accelerators

Accelerators allow you to execute commands with a single keystroke. Usually the function keys are used for
this purpose. Accelerators can be changed by using the MENU commands.

Example:

MENU.AddMenu Allows you to quickly add one menu for temporary usage.
Default name of the temporary menu is User.

MENU.ReProgram Allows you to embed a menu definition in a PRACTICE script
(*.cmm) or create a *.men file for a menu definition.

; menu User with two menu options
MENU.AddMenu "Mapper Settings" "MAP.List"
MENU.AddMenu "Free and Used Memory" "MAP.state"

; the example shows how to include an accelerator in a temporary menu
MENU.AddMenu "Mapper Settings, ALT+F10" "MAP.List"
PowerView User’s Guide | 21©1989-2024 Lauterbach

Main Toolbar
[Back to Top]

The main toolbar provides buttons for the most important TRACE32 commands. You can add user-defined
buttons with tooltips to the main toolbar by using the MENU commands.

Example: This script adds the button shown in the above screenshot to the main toolbar.

Work Area
[Back to Top]

The work area is used as the general input and output area. For more detailed information, see Windows.

In addition to working with windows in the work area, you can place windows on user-defined pages. This is
useful if you need to open lots of windows and want to group them. For more information, see Pages.

MENU.AddTool Add a temporary button to the main toolbar, i.e. the
button is available only for the current TRACE32 session

TOOLBAR Toggle main toolbar

MENU.Program Editor to write a program that customizes the TRACE32
menu

MENU.ReProgram Menu programming

MENU.RESet Restore default menu and configuration of main toolbar

; the example shows how to add a temporary button to the main toolbar
; <tooltip> <button_letters,color> <command>
MENU.AddTool "Mapper Settings" "ML,B" "MAP.List"
PowerView User’s Guide | 22©1989-2024 Lauterbach

Message Line
[Back to Top]

The message line displays error and general messages, information on cursor position, etc. The message
line is located below the command line.

Error Messages

Error messages are displayed by a special attribute (e.g. red or blinking). The error message is erased
automatically. If an input error was made, an arrow will point to the mistake on the command line.

General Messages

When entering configuration commands, the current state is displayed during the command input. Some
command outputs are also displayed in the message line.

Additional Information on Cursor Position

If the left mouse button is pressed down while the cursor is positioned within a window, additional information
in regard to the current context will be displayed. In the example below the variable flags is selected in the
Data.List window.

The softkeys will no longer correspond to the entered data! If the error message
is still unclear, the appropriate page in the on-line manual will be displayed,
when using the «help» key.

B::TRANSlation.TableWalk
Address translation: OFF

B::
flag = {1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1}
PowerView User’s Guide | 23©1989-2024 Lauterbach

Softkeys
[Back to Top]

The softkey structure represents a hierarchical selection menu. Each softkey can be activated by clicking the
left mouse button.

Softkeys with pointed brackets (e.g., «<file>, <range>, <address>») are placeholders for parameters which
have to be entered in the command line.

In the case of softkeys with square brackets ([or]) the command is executed immediately after being
selected without a written entry to the command line.

Softkeys written completely in lower case characters represent command hierarchy branching which does
not alter the command line (e.g., emulation).

Softkeys written in upper case and mixed case represent command words which can also be entered via
the keyboard. You can enter either the entire word, or just the upper case letters. Upper and lower case
characters are not differentiated.

By means of the «other» softkey additional menu selections located in the same hierarchical level can be
started. By «previous» you can return to the former level in the menu hierarchy. The commands for those
softkeys which have been shadowed in on the display are inaccessible at this time.

Data Command

emulate Command path

[Step] Direct command

<address> Parameter

Previous menu

other Next menu

previous
PowerView User’s Guide | 24©1989-2024 Lauterbach

State Line
[Back to Top]

The state line is located at the bottom of the TRACE32 main window.

For more information about the individual fields in the state line, click the blue GUI terms.

Cursor
[Back to Top]

The Cursor field provides:

• Boot information (Booting …, Initializing … etc.).

• Information on the item selected by the cursor, such as:

- Address (e.g. SR:00001A34) and symbol (e.g. \\arm\arm\sieve+0x48)

- File name, offset, line number, column number

Cursor - In a Hypervisor Environment

In a hypervisor environment, the Cursor field provides the following information:

The machine ID [b] is displayed only if you set SYStem.Option.MACHINESPACES to ON, and the space ID
[c] is displayed only if you set SYStem.Option.MMUSPACES to ON.

A Example of a fully qualified address in a hypervisor environment

a Access class (NUX:) b Machine ID (2:::)

c Space ID (03A5:) d Logical address (00401EC0)

B Symbol (\\sieve\sieve\fill_buffer+0x64)

Cursor Debug

Trace

SystemDebugger
Activity

Mode

B

a b c d

A

PowerView User’s Guide | 25©1989-2024 Lauterbach

Debug and Debugger Activity

The Debug field provides:

• Information on the debug communication (system down, system ready etc.)

• Information on the state of the debugger (running, stopped, stopped at breakpoint etc.)

The Debug field and the Debugger Activity field are usually closely related.

• Running in green and an empty Debugger Activity field means that the program is running in real
time.

• Running in green and a red letter sequence in the Debugger Activity field means, the debugger
shortly interrupts the program execution to realize a debugger feature. Possible are S&G for Stop
And Go Mode and SPOT if an intrusive breakpoint is set.

• If the debugger has to interrupt the program execution repeatedly for a long time to realize a
debugger feature, the going is displayed in olive. For example, if a command (short CMD) is
always executed at a breakpoint hit. CMD is additionally displayed in red in the Debugger Activity
field in this case.

• If a spot breakpoint is active, spotted is displayed in olive in the debug field and SPOT in red in
the Debugger Activity field.

• An empty debug field and RUN in green in the Debugger Activity field indicates that TRACE32
has started an algorithm on the target to realize a debugger feature, e.g. target-controlled FLASH
programming.

Debug
Debugger
Activity
PowerView User’s Guide | 26©1989-2024 Lauterbach

Trace
[Back to Top]

The Trace field provides:

• Information on the state of the trace (DISable, OFF, ARM …).

The state of the trace can be changed by using the Trace pull-down.

Mode
[Back to Top]

The Mode field indicates the debug mode. The debug mode defines how source code information is
displayed (assembler code ASM or programming language code HLL or a mixture of both MIX) and how
single stepping is performed (assembler line-wise or programming language line-wise).

The debug mode can be changed by using the Mode pull-down.

The System field indicates Up if the communication between the debugger and the processor/core is
established and nothing is otherwise.

A A white X against a red background indicates that the trace method is set to NONE. For more
information, see <trace>.METHOD NONE.

A

PowerView User’s Guide | 27©1989-2024 Lauterbach

The communication between the debugger and the processor/core can be established and ended by the
System pull-down.

Task
[Back to Top]

The name of the current task is displayed in the Task field after the TRACE32 OS Awareness was activated,
see [A].

Selecting another task from the Task pull-down allows to switch the task context (mainly Register.view
window and Frame.view window).

• A check mark is used to mark the task for which the task context is displayed.

• A asterisk is used to mark the currently active task.

This feature is not supported for all operating systems.

Task - In a Hypervisor Environment

In a hypervisor environment, the machine name precedes the task name, and the three colons ::: serve as
the separator between machine name [B] and task name [C].

A

B

C

PowerView User’s Guide | 28©1989-2024 Lauterbach

SMP Systems
[Back to Top]

The Cores field shows the currently selected core [A].

• TRACE32 PowerView visualizes all system information from the perspective of the selected core
if not specified otherwise.

The Cores pull-down allows to change the selected core.

Advanced
[Back to Top]

The Target field indicates an active target reset or a locked JTAG interface (command: SYStem.LOCK ON).

If “Integrated Run & Stop Mode Debugging via JTAG” is used TRACE32 indicates that a debug agent is
running in the Monitor field. For details refer to “Run Mode Debugging Manual Linux” (rtos_linux_run.pdf).

Show/Hide State Line
[Back to Top]

STATUSBAR ON Show state line.

STATUSBAR OFF Hide state line.

A

Target

Monitor
PowerView User’s Guide | 29©1989-2024 Lauterbach

Window Pages

Window pages in TRACE32 are similar to workspaces in other applications. In TRACE32, you can open
windows on different pages, but only the windows on the selected page are visible. Windows located on the
other pages are temporarily hidden.

You can create a new page and switch between pages by right-clicking anywhere on the TRACE32 main
toolbar. By default, TRACE32 auto-increments the names of new pages P001, P002, etc. But you can also
create new pages with user-defined names.

The WinPAGE.List window serves as the table of contents for your pages. You should always open the
WinPAGE.List window with the WinResist pre-command to keep the table of contents visible on all pages.

Example:

WinResist.WinPAGE.List ;keep the table of contents visible on all pages

WinPAGE.Create ;new page with auto-incremented page name

 ;open these windows on the new page
Data.List
Var.Frame /Locals /Caller
Var.Watch %SpotLight flags ast

WinPAGE.Create ANALYZE ;create a new page named ANALYZE
WinPAGE.Create EDIT ;create a new page named EDIT

Right-click the toolbar to create a
new page or switch to another page.

P000

P001

ANALYZE

Default page P000

New page P001

New pages with
user-defined names:
ANALYZE and EDIT

Currently selected page

EDIT
PowerView User’s Guide | 30©1989-2024 Lauterbach

Colors

WinPAGE.select Select page

WinPAGE.Create Create page with a user-defined name

WinPAGE.Delete Delete page

WinPAGE.List List pages

WinPAGE.REName Rename page

WinPAGE.RESet Reset window system

SETUP.COLOR Change colors

sYmbol.List.ColorDef List keyword colors

sYmbol.ColorDef Modify keyword colors

CmdPOS Toolbar and/or background color for multicore debugging
(TRACE32 is in MWI window mode)

FramePOS Toolbar and/or background color for multicore debugging
(TRACE32 is in MDI window mode)

CORE.SHOWACTIVE
and
CORE.List

Show active cores in an SMP system. Each core has its
own color.

SETUP.COLORCORE Enable coloring for core-specific info in SMP systems

<trace>.STATistic.COLOR Assign colors to function for colored graphics

GROUP.COLOR Define color for group indicator
PowerView User’s Guide | 31©1989-2024 Lauterbach

How the TRACE32 PowerView GUI Assists You in Scripting

The TRACE32 PowerView GUI is designed to assist you in writing PRACTICE scripts (*.cmm), with which
processes can be automated in TRACE32:

1. The GUI controls in TRACE32 windows are labeled such that they reveal the command syntax
for use in a PRACTICE script. See (A) below.

2. The commands shown in window captions can be modified and re-used with one mouse-click.
See (B) below.

(A) Writing Scripts based on the Text Labels of the TRACE32 PowerView GUI

Let’s assume you are writing a PRACTICE script and require the configuration settings from a window, such
as the ITM.state window. A window can contain all sorts of GUI controls: radio options, check boxes, drop-
down lists, input boxes, and so on. To write a script that takes all of these GUI controls into account, follow
these two simple rules:

1. Type the GUI labels into your script file.

2. Omit the GUI labels that are all lowercase (here: itm, trace, commands)

Resulting command syntax for use in a PRACTICE script:

Solution 2 is the recommended solution in terms of typing effort and source code maintainability - for you
and your colleagues.

Solution 3 is very useful for frequently-used commands when you are working with the TRACE32
command line.

Solution 1 Solution 2 Solution 3

ITM.ON
ITM.DataTrace DataPC
ITM.PCSampler OFF
ITM.TImeMode External
ITM.CyclePrescaler 1/1
ITM.TimeStampMode ALL
ITM.TraceID 16.
ITM.TracePriority 2.

itm.on
itm.datatrace datapc
itm.pcsampler off
itm.timemode external
itm.cycleprescaler 1/1
itm.timestampmode all
itm.traceid 16.
itm.tracepriority 2.

itm.on
itm.dt dpc
itm.pcs off
itm.tim e
itm.cp 1/1
itm.tsm all
itm.tid 16.
itm.tp 2.

TRACE32 does not accept:
ITM.itm.ON

TRACE32 accepts these 2 solutions:
ITM.ON
itm.on

PowerView User’s Guide | 32©1989-2024 Lauterbach

(B) Modifying and Re-using Commands Shown In Window Captions

Commands shown in window captions can easily be modified. This is a TRACE32 feature which is very
useful if you want to add, remove, or change the options or parameters of a command. This feature is also
useful when you are writing a PRACTICE script (*.cmm) and require a command that is already displayed in
a window caption; there is no need to re-type the command.

If you want to reproduce the step-by-step procedure below, use this source code:

To modify / re-use commands shown in window captions:

1. As a Windows user, right-click the window caption.
As a Linux user, click the top left icon, and then select Command Line.

Vertical lines are shown in the window caption [A].

The command is inserted into the TRACE32 command line [B].

You can now modify the command string in the command line. You can also select and copy the
command in the TRACE32 command line and paste the command into a PRACTICE script file
(*.cmm).

2. To execute the (modified) command again, click OK.

3. To deselect the window caption without executing the command again, press the Esc key.

;set a test pattern to the virtual memory of TRACE32
Data.Set VM:0--0x4f %Byte 1 0 0 0

Data.dump VM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %Decimal.Byte VM:0++0x4f 2.0 512.

A

B

PowerView User’s Guide | 33©1989-2024 Lauterbach

Commands

• Command Structure

• Long Form and Short Form of Commands and Functions

• Entering Commands

• Command History

• Command and Function Parameters

• For information about tab completion for commands, see “Shortcuts”, page 125.

Command Structure

Most commands consist of a command word, parameters, and options. The command word consists of
several tokens, which are separated by a dot. Commands are combined into command groups whereby the
first token of the command designates the command group. The other tokens define subcommands.

Commands can be preceded by a pre-command. Examples of pre-commands are ChDir (for changing the
directory), WinPrint, or WinExt. Window pre-commands are used to modify the behavior of the window for
a command.
WinPrint generates a hardcopy or a file from a command.

WinExt allows you to detach a window from the TRACE32 main window.

You can detach the window - even if TRACE32 is in MDI window mode.
WinExt.SYStem.state

Device Command Subcommand
B:: Data. dump

List
Print
View
Set
LOAD. Ubrof

Ieee
SAVE. BINary

. .
Break. direct

Set
.

::B::WinPrint.Data.dump 0x1000 /Byte

option
parameter

sub-command
command

pre-command
device prompt
PowerView User’s Guide | 34©1989-2024 Lauterbach

Long Form and Short Form of Commands and Functions

Commands and functions have a long form and an equivalent short form. The two forms can be used in the
TRACE32 command line and in PRACTICE scripts (*.cmm). In addition, the two forms are not case
sensitive.

Short forms are a time saver when you are working with the TRACE32 command line. In PRACTICE scripts,
the use of short forms is not recommended because short forms tend to make scripts difficult to maintain
later on - for you and your colleagues.

Example of the two forms:

UPPER CASE letters in the TRACE32 application and documentation are just visual cues to indicate the
short forms of commands. You can see the UPPER CASE letters of the short forms in the following places:

• On the softkeys below the TRACE32 command line:

• In the TRACE32 windows; for example, in the SYStem.state window:

• In the online help (For example, choose Help menu > Tree to open the command tree.)

To retrieve the long form of an unfamiliar short form (e.g. for sys.d):

1. Choose Help menu > Index.

2. Type the short form in the Find Index box, and then press Enter.

Long form SYStem.state

Short forms SYS or just sys
• You can use short forms in UPPER CASE or lower case.
• You can omit words in all lower-case letters, e.g. state

macpuomd(-) u

Short forms:

Long form: SYStem.MemAccess CPU
Short form: sys.ma cpu
PowerView User’s Guide | 35©1989-2024 Lauterbach

Entering Commands

The long and short forms of TRACE32 commands are not case sensitive.

For example: Var.Watch can be abbreviated to v.w or to v.watch or to V.WATCH or to var.w

Command Line
[Back to Top]

All line-oriented commands are entered to the TRACE32 command line. The command line will
automatically come into focus when an alphanumeric character is entered (except Editor windows or fields).
All line oriented commands are not executed until confirmed by «return» or «[ok]».

The syntax is checked immediately after every key stroke.

NOTE: You can copy and paste up to 300 commands (i.e. 300 lines including
comments) into the command line.
TRACE32 executes them like a PRACTICE script (*.cmm).

::
devices HELP os windows practice EDIT

::B::
emulate Data Var trigger devices Analyzer

B::Data.
[ok] dump View Print List Set

B::Data.List
[ok] <range> <address> options

B::Data.List 0x1000
[ok] options

[ok] Mark Track

B::Data.List /MarkPC

TOrder SOrder MarkPC

OS level

Device level

Command

Sub-command

Parameter

Option

;set a test pattern to the virtual memory of TRACE32
Data.Set VM:0--0x4f %Byte 1 0 0 0

Data.dump VM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %Decimal.Byte VM:0++0x4f 2.0 512.
PowerView User’s Guide | 36©1989-2024 Lauterbach

Device Selection

Each TRACE32 system has an identifier ending with two colons. The currently selected device is displayed
by the prompt of the command line. System identifiers can be entered prior to each command. When a new
device selector is entered prior to a command, the device selector is only valid for this specific command.
The permanent selection of a device is done by entering the identifier without any command word. The
TRACE32 operating system level can be accessed by entering two colons. Operating system commands
can be executed from any device without using a device identifier.

::B:: ; select ICD Debugger

B::QUIT ; The QUIT command is a part of the
; operating system and therefore, it is
; recognized for all devices

CmdPOS Controls the position of TRACE32 in MWI window mode

FramePOS Controls the position of TRACE32 in MDI window mode
PowerView User’s Guide | 37©1989-2024 Lauterbach

Command History

By clicking inside the command line and then pressing the «up» or «down» arrow keys, you can get back the
previously executed commands. By entering just a keyword before pressing the «up» arrow key, it is possible
to search for lines containing this word.

The command history is displayed with the command HISTory.type. Clicking with the mouse will copy one
line to the command line.

HISTory.eXecute Execute command history

HISTory.SAVE Store command history log

HISTory.Set History settings

HISTory.SIZE Define command history log size

HISTory.type Display command history log
PowerView User’s Guide | 38©1989-2024 Lauterbach

Command and Function Parameters

Parameters are required for an exact definition of the operation.
Every parameter is separated from the next by spaces or a comma. .

Omitting parameters is only possible if commas are used to separate parameters. Additionally, existing
spaces are simply ignored.

Spaces are not allowed within parameters!
White spaces before or after operators are interpreted as separators of consecutive expressions

; parameter separation by space
FramePOS 10. 10. 80. 50. Top WHITE

; parameter separation by comma
FramePOS 10.,10.,80.,50.,Top,WHITE

FramePOS 10.,10.,80.,50.,Top,WHITE

FramePOS 10.,10., , , ,WHITE

FramePOS 10.,10.,,,,WHITE

Wrong: Correct:

0y 1000 0y1000

0x1000 *0x3 0x1000*0x3

(0x1000+0x3)*0x3 (0x1000+0x3)*0x3
PowerView User’s Guide | 39©1989-2024 Lauterbach

TRACE32 supports the following syntax for the command parameters.

If SETUP.RADIX. is entered at the command line, the currently used RADIX mode is displayed in the
message line.

Decimal Number base is decimal, C-like operators are used.

Hex (default) Number base is hex, C-like operators are used.

WideDecimal Number base is decimal, C-like operators are used, but values larger than
64 bits are possible (for future use).

WideHex Number base is hex, C-like operators are used, but values larger than 64
bits are possible (for future use).

B::SETUP.RADIX.
PowerView User’s Guide | 40©1989-2024 Lauterbach

Parameter Types

Numerical values are limited to 64-bit values, strings are limited to 4095 characters. Depending on the
particular command or function, the following parameters are valid:

Parameter Type Examples

Address <address> = [<access_mode>:]
 [[<machine_id>:::]
 <space_id>::]
 <constant>
UD:0x1000
D:0x1000
NSP:1:::0x0000::0xffff000008080004

Address Range
For details, see
Address Range
below.

D:0x4040--0x406F
D:0x4040..0x406F
NSP:1:::0x2000::0x8080004++0xffff
func11--sYmbol.END(func11)

ASCII value 'A'

Binary mask or bit
mask

0yX111XXX

Binary value 0y1
0y0
0y100010001

Boolean <operand1><compare_operator><operand2>
or any function returning a boolean expression, such as the functions
TRUE() and FOUND().

Decimal value 1.
123445.

Floating point num-
ber

1.3
1.3e+34
0.123

Hex mask 0xFX
0xff1cxxxx

Hex value 0x0
0xd344
0x1234
0xEEEE

Range 0x10..0x20
10.--30.
0x10--0xed
'A'--'Z'
PowerView User’s Guide | 41©1989-2024 Lauterbach

String
(with quotation marks)

String
(without quotation
marks)

"name"
"abc""def" - string literal value: abc"def

Strings without quotation marks are only used in PRACTICE functions for
parameters such as:
HLL expressions
• Var.FVALUE(ast.left->x)
Keywords
• TASK.STRUCT(queue)
• WINdow.POSition(WinTOP,LEFT)

The notation format with quotation marks is accepted for this kind of
function parameters as well.

Time range 10us--2ms
10us..20ms
Units of measurement:
• s (seconds)
• ms (milliseconds)
• us (microseconds)
• ns (nanoseconds)

Time value 10s or 10.s are equivalent.
23.24ms
75.0ns
Units of measurement:
• s (seconds)
• ms (milliseconds)
• us (microseconds)
• ns (nanoseconds)

Parameter Type Examples
PowerView User’s Guide | 42©1989-2024 Lauterbach

Parameter Type Examples

File name MS-DOS TEST
TEST.CMM
A:\FOLDER\TEST.CMM
objs\abc.abs
NOTE: 'C:TEST.C' is not valid name!

File name special
(for 3rd-party tool
integration e.g.
Eclipse)

\\program\"C:\folder\helloworld.c"
\"/home/myuser/examples/demo1.cpp"

File name UNIX/OS-9 objs/abs.abs
../src/abc.def
~/proj/src/main.c
~~~~/demo/analyzer/perf.ts

File name VMS [.objs]abs.abs
[-.src]abc.def
DISK$DISK2:[t32.font]abc.d;4

PRACTICE Function Register(PC)
FOUND()
OS.ENV(HOME)
Data.Word.BigEndean(MX:0x1234)

Line numbers \100
\MCC\100
\module\100
\\program\"C:\folder\helloworld.c"\100

Column numbers \100\15
\MCC\100\15
\module\100\27
\\program\"C:\folder\helloworld.c"\100\15

Instance numbers \100\15\1
\MCC\100\15\0
\module\100\27\2
\\program\"C:\folder\helloworld.c"\100\15\1
\module\100\\2                                                    ; default column used
`(anonymous namespace)::sieve`\8\\1                ; default column used
PowerView User’s Guide     |    43©1989-2024   Lauterbach                                                        



Symbol ;<symbol_name>
main
SIEVE

;\<module_name>\<symbol_name>
\MCC\sieve   

;\\\<machine_name>\\<program_name>\<module_name>\<symbol_name>
\\\1\\linux\do_mounts\load_ramdisk 
\\\Dom0\\linux\do_mounts\load_ramdisk

;\\<program_name>\<empty>\<symbol_name> results in
\\linux\\load_ramdisk           ;2 backslashes before the <symbol_name>

;\\\<machine_name>\\<empty>\<empty>\<symbol_name> results in
\\\Dom0\\\\load_ramdisk      ;4 backslashes before the <symbol_name>

Symbol Syntax:
<symbol> = \\\<machine_name>                
                  \\[<program_name>]           
                      \[<module_name>]         
                         \<symbol_name>        
                            [\<symbol_name>]...
                        ||                                  
              [ [\\<program_name>]            
                      \[<module_name>]\ ]     
                          <symbol_name>        
                            [\<symbol_name>]...

NOTE: The use of \\\<machine_name> requires that the machine 
spaces are enabled with the command 
SYStem.Option.MACHINESPACES ON.

Symbol with special 
chars

`nestxf1::~nestxf1`
\`ops::operator<<=`

The HLL debugger commands (all commands beginning with Var.) have their 
own syntax, which is identical to the syntax of the used high-level language.

Parameter Type Examples
PowerView User’s Guide     |    44©1989-2024   Lauterbach                                                        



Details about the Parameter Type Address Range

An address range consists of a start address, an operator, and an end address. The following operators 
between the start and end address are permissible: two dots (..) or two dashes (--) or two plus signs (++). 

Example 1:  

Example 2: All four Data.SAVE.Binary commands save 0x30 bytes beginning from D:0x4040  

NOTE: The address range always includes the last byte too.

;Address range
 Data.List SP:0x0..0xFFF
;Address range
 Data.List SP:0x0--0xFFF

;Address range --
 Data.SAVE.Binary file1.bin D:0x4040--0x406F
;Address range ..
 Data.SAVE.Binary file2.bin D:0x4040..0x406F

;Offset ++
 Data.SAVE.Binary file3.bin D:0x4040++0x2F
;Range computed with offset
 Data.SAVE.Binary file4.bin D:0x4040--(0x4040+0x2F)
PowerView User’s Guide     |    45©1989-2024   Lauterbach                                                        



Operators 

White spaces before or after operators are interpreted as separators of consecutive expressions.
Values can be linked by operators.

Type Example

Brackets (main+1)*20

Range (with borders) 0x1000..0x1fff
0x1000--0x1fff
teststart--testend
(-1000.)--(-50.)
'a'--'f'
'a'..'f'

Range (with offset) 0x1000++0x33
teststart++0xff

Negation -1
-0x1
-0y10000

Binary NOT ~2e
~0x2e

Logical NOT !(i<20.)

!('a'--'z'||'A'--'Z'||0x20||0x9||'0'--'9')

!0x10

Shift left 0x10<<2.                                                    result: 0x40

0x10<<0x2                                                 result: 0x40

0x1000--0x1fff<<0x4                                  result: 0x1000--0x1FFF0

"abc"<<3.                                                   result: "abcccc"

"-"<<10.                                                      result: "-----------"

Shift right "abc">>3.                                                   result: "aaaabc"

0x10>>2.                                                    result: 0x04

0x1000--(0x1ffff>>0x2)                               result: 0x1000--0x7fff

0x1000--0x1fff>>0x10                                result: 0xff0--0x1fef

Multiplication 1000.*0x2e
1000.*0y10

Division 1000./0x2e
1000./0y10
PowerView User’s Guide     |    46©1989-2024   Lauterbach                                                        



Addition

Concatenation

0x1000+0x03
sieve+0x33

"abc"+"def"
or "abc" "def"                                             result: "abcdef"

Subtraction 0x1000-0x34
1000.-0x34

Comparisons sieve>0x1000
sieve<0x1000
sieve==0x1000
sieve!=0x1000
sieve>=0x1000
sieve<=0x1000

Data.Byte(my_char)==('a'--'z'||'0'||'1')
result: TRUE() when value is a lower alphabet character or a binary 
digit character “0“ or “1”

Register(PC)!=(P:0x1000||sYmbol.RANGE(func2)||P:0x20..P:0x2ff)

result: TRUE() when the actual program counter register value is not 
covered from the address ranges.

Binary AND mask&0x1000

Binary XOR mask^0x1000

Binary OR mask|0x1000

Binary Complement ~mask

Logical AND flag0&&flag1
(r(D0)>d.l(i))&&(d.b(x)<=0x0f)

Logical XOR flag0^^flag1

Logical OR flag0||flag1
'a'--'z'||'0'--'9'||0x20||9.

Logical NOT !FOUND()

Type Example
PowerView User’s Guide     |    47©1989-2024   Lauterbach                                                        



Arithmetic Rules and Operator Precedence

The arithmetic hierarchy is similar to that found in most other programming languages, whereby a difference 
is made between boolean and arithmetic operators of logical relations. Expressions of the same priority are 
evaluated from left to right.

Precedence Operands Meaning

1. (  )  {  } Brackets (highest priority)

2. --  ++ .. Ranges

3. +  -   ~  ! Signs, Binary NOT, Logic NOT

4. << >> Shift operations

5. *  /  % Multiplication, Division, Modulo

6. +  -  + Addition, Subtraction, Concatenation

7. ==  !=  >=  <=  >  < Comparisons

8. & Binary AND

9. ^ Binary XOR

10. | Binary OR

11. && Logical AND

12. ^^ Logical XOR

13. || Logical OR (lowest priority)
PowerView User’s Guide     |    48©1989-2024   Lauterbach                                                        



Parentheses and Braces

The braces '{' and '}' have the same mathematical function as the parentheses '(' and ')', except that the 
braces additionally convert a variable expression into a constant expression.

Parameter History

For most parameters (e.g. addresses, file names) the previous parameter entered may be recalled by using 
the appropriate softkey. Only one entry is stored for each parameter type.

B::Data.dump Register(PC) ; The Data.dump window displays a hex dump
; of the memory range indicated by the PC.
; Whenever the PC changes the
; corresponding memory range is displayed.

B::Data.dump {Register(PC)} ; The Data.dump window displays a hex dump
; of the memory range indicated by the PC.
; Since the current contents of the PC is 
; converted to a constant expression, the 
; same memory range is displayed all the 
; time, even when the PC changes.
PowerView User’s Guide     |    49©1989-2024   Lauterbach                                                        



File Names

TRACE32-PowerView supports the input of file names as follows:

• File names can be entered without extensions (*.xyz). The valid extension is added automatically 
(see SETUP.EXTension).

• Wildcard characters (‘*’ or ‘?’) are supported in file names. In this case, a file selection or folder 
picker dialog opens, from which you can select the file you want. See [A] in screenshot below.

• The file type filter can be set to automatically show the desired file types, for example c, cmm, 
txt, etc. 

In the example below, the file type filter is set to c files, i.e. the other files are temporarily hidden 
in the file selection dialog.

For MS-DOS/Windows applications, only one working directory is supported. To access a file on another 
drive, the full path name must be used. Prepending the ChDir command before the command causes the 
new directory to become the current working directory.

Examples: 

A The command you have used to open a window is shown as the window caption.

B Filter by file type.

Data.LOAD  *.abs

DO \practice\* ; execute a PRACTICE script file from
; another directory, 
; keep current working directory

ChDir.DO \practice\* ; execute a script file from another
; directory and make this directory to the
; current working directory

A

A

B

B

PowerView User’s Guide     |    50©1989-2024   Lauterbach                                                        



Path Prefixes

Tildes and periods can be used as path prefixes. There are five special path prefixes: 

Example:   

EDIT  a?.c

DIR  *.obj

;inside a PRACTICE script file only, no macro replacement in command line
&practice_dir=OS.PresentPracticeDirectory()
ChDir &practice_dir

Linux Windows Function

./ .\ Current working directory

../ ..\ Parent directory

~/ ~\ Home directory of the user (from $HOME)

~~/ ~~\ System directory of TRACE32. 
Default: c:\t32 on MS Windows

~~~/ ~~~\ Temporary directory for TRACE32

~~~~/ ~~~~\ Directory where the currently executed PRACTICE script is 
located

;step through this PRACTICE script file (*.cmm) in the PSTEP window
PSTEP ~~/demo/arm/compiler/arm/arm9.cmm 

NOTE: • In the command line, please use the path prefixes instead of the func-
tions, e.g. CD ~~~~/ instead of OS.PresentPracticeDirectory().

• TRACE32 can handle forward slashes / on all operating systems.
PowerView User’s Guide     |    51©1989-2024   Lauterbach                                                        



General Command Parameter Parser

A. Object of Description

The general parameter parser for commands is the TRACE32 parser which is used for command line input, 
the batch language PRACTICE, the analyzer programming language, the peripheral description language 
and the menu programming. The parser version V2.X was introduced May 1999.

Only the command group “Var” which handles HLL debugging does not use the TRACE32 parser. For 
HLL debugging a special programming language aware parser is used. This allows the user to enter HLL 
expression like the following example:

Different HLL parsers are implemented (e.g. for C, C++, JAVA, Ada, ...).

This description is not intended for these kind of special HLL parsers.

Examples of using the general TRACE32 parameter parser:

Command line:

PRACTICE script files:

Var.View *((long*)p_firstelement->next))

Break.Set sieve /Alpha

Data.List P:0x1ACE

Data.dump P:0x10--0x200

DUMP mcc.abs 0xC00

; sets alpha breakpoint at function begin
; of sieve
; opens source list window at address
; program 0x1ACE
; opens data dump window from address 0x10
; to 0x200
; displays file dump with file offset
; of 0xC00

; check whether program stopped at correct address (0x1000)
IF  Register(PC)!=0x1000
(

PRINT "Program stopped at address: " Register(PC)
; loads program counter with address of symbol startaddress
; and restart program
Register.Set  PC  startaddress
Go

)
ENDDO
PowerView User’s Guide     |    52©1989-2024   Lauterbach                                                        



Analyzer programming files:

TIMECOUNTER delay_counter 100ns--2ms ; defines counter time 
; window

ADDRESS AlphaBreak func1--sYmbol.END(func3) ; defines address event 
; from start address of 
; func1 to end address of 
; function func3
PowerView User’s Guide     |    53©1989-2024   Lauterbach                                                        



B. Support of C Language Expressions

Parser supports a command parameter syntax that is similar to C language expressions.

Please be aware, it isn’t a full C expression implementation, which is only available for the command group 
“Var” (e.g. Var.view *(&flags+20)).

Restrictions:

1. Not implemented:

sizeof(), (typename), assignment operator (=,+=,-=,*=,/=,%=,>>=,<<=, &=,|=,^=),
array[], pointer->element, structure.element, *p_value, &flags[20], (a==2)?1:2
e.g.  a += b+3;

2. Different meaning:

++ (prefix and postfix; e.g. i++) will be used for range offset input
      e.g. 1234.++1000.,

--  (prefix and postfix; e.g. i--) will be used for range offset input
     e.g. 100ns--200ns,

Symbol names will be interpreted always as &symbolname (start address of symbol) and not as 
name or value for the complete symbol.

Example:

The character & is used to mark PRACTICE macros (e.g. &cpu="MPC860")

3. Extensions:

logical XOR (^^), data type boolean, bit constants, bit masks, hex masks, ranges,
addresses, address ranges, times, time ranges can use.. to define a range 
(e.g. 123..456)

Break.Set flags /Write ; Sets a write breakpoint to the
; start address of the variable flags

Var.Break.Set flags /Write ; Sets a write breakpoint to the
; complete address range used for
; the variable flags
PowerView User’s Guide     |    54©1989-2024   Lauterbach                                                        



C. Radix Mode Support

Parser supports radix (number base) switching.

Depending on the selected radix the written values are interpreted in a different way.

E.g. 123   could be meant as 123 decimal or 123 hexadecimal depending on the used radix mode.

RADIX Modes

The radix mode (number base) is specified by this option. Numbers without type prefix like “0X” or “0Y” 
respectively postfix “.” are interpreted in the selected number base.    

If RADIX. is entered in the command line, the currently used RADIX mode is displayed in the state line.

 

 ’d’: decimal value - ’h’: hexadecimal value.

RADIX Radix mode

Decimal number base is decimal 

Hex number base is hex - default

E::RADIX.
radixmode: Hex

Written Value Interpreted Value in Radix Mode

Decimal Hex

1000 1000d==1000d 1000h==4096d

P:1234 P:1234d==P:1234d P:1234h==P:4660d

1000. 1000d 1000d

1234. 1234d 1234d
PowerView User’s Guide     |    55©1989-2024   Lauterbach                                                        



Operands

Examples for operands:

Restriction:

Not all operand formats could be used in all radix modes. Please refer to the Operand Format Table.

Break.Set sieve /Alpha

Data.List P:0x1AF

Data.dump P:0x10--0x1ff 

; sets alpha breakpoint at function begin of
; sieve
; opens source list window at program address
; 0x1AF
; opens a data dump window from address 0x10
; to 0x1ff
PowerView User’s Guide     |    56©1989-2024   Lauterbach                                                        



Operand Format Examples (Literals) 

Operand Meaning Radix mode

Decimal Hex

0y1010 binary constant X X

0x12af hex constant X X

1234 hex constant X

1234 decimal constant X

1000. decimal constant X X

1.2 float constant X X

0y10xx10 bitmask constant X X

0x12axfx hexmask constant X X

'a' ASCII constant X X

"abcdef" string constant X X

"abc""def" string constant with escape 
sequence for using string
delimiter inside string literals

  string value: abc”def

X X

`main` backticks for HLL symbols X X

1000--2000 numeric range constant X X

1000..2000 numeric range constant X X

P:0x1af address constant (hex) X X

P:1234 address constant (hex) X

P:1234 address constant (decimal) X

P:1234. address constant (decimal) X X

P:0x1000--0x1fff address range constant X X

P:0x1000..0x1fff address range constant X X

123ms time constant X X

123ns--4.25s time range constant X X

123ns..4.25s time range constant X X
PowerView User’s Guide     |    57©1989-2024   Lauterbach                                                        



Operators

Examples for the use of operators:

Command line:

PRACTICE script files: 

Analyzer programming files:

Data.dump P:0x10++(Register(D0)%4) ; open data dump window from
; address 0x10 to offset value
; in register D0 modulo 4

IF  Register(PC)!=0x1000 ; check whether program
; stopped at the correct
; address

DATA.BYTE ascii  ’a’--’z’||’A’--’Z’ ; define data event with 
; the alphabet as valid 
; values

ADDRESS AlphaBreak !(fct1--sYmbol.END(fct3)) ; define an address event 
; over the whole 4 giga 
; address space without 
; the address range from 
; start address of func1 
; to end address of func3
PowerView User’s Guide     |    58©1989-2024   Lauterbach                                                        



Operator Formats

Operator Meaning Radix mode

Decimal Hex

! logical NOT X X

&& logical AND X X

^^ logical XOR X X

|| logical OR X X

~ binary NOT X X

& binary AND X X

^ binary XOR X X

| binary OR X X

- negation or minus X X

+ plus X X

* multiplication X X

/ division X X

% modulo (reminder) X X

<< shift left X X

>> shift right X X

< smaller than X X

> greater than X X

<= smaller or equal than X X

>= bigger or equal than X X

== equal to X X

!= not equal X X

()  {} parenthesis X X

-- range with borders X X

.. range with borders X X

++ range with offset X X
PowerView User’s Guide     |    59©1989-2024   Lauterbach                                                        



Window System

Windows
[Back to Top]

All outputs of the TRACE32 system are displayed in windows. Usually, all windows display current data 
because they are updated periodically.

Windows can be closed by the esc key. This allows to temporarily display some information and quickly 
close the window again.

TRACE32 windows typically consist of some or all of the following components:
     

A Window manager menu: Clicking the icon lets you open the window manager menu.

B Window caption: It displays the TRACE32 command that was used to open the window.

C Local buttons of a window.

D Scale area: Column headers of a window.

E Slider control (top).

F Data area: It contains the actual values or information.

G Slider control (bottom).

H Scale area: Additional information about lines, such as line numbers, record numbers, addresses, 
breakpoints, bookmarks, etc.

E

C

B

F

D

G

H

A

PowerView User’s Guide     |    60©1989-2024   Lauterbach                                                        



Window Captions - What Makes Them Special in TRACE32
[Back to Top]

The command you have used to open a window is shown as the window caption. The parameters and 
options are also included in the window caption. 

In addition, you can easily modify the window caption with a simple mouse-click. For more information, refer 
to “Modifying and Re-using Commands Shown In Window Captions”.

Example: This script allows you to reproduce the above Data.DRAWFFT window:  

Local Buttons
[Back to Top]

Many TRACE32 windows have built-in local buttons [A]. In addition, you can extend TRACE32 windows with 
user-defined local buttons [B].

 

For an example of how to program your own local buttons in TRACE32 windows, see the BUTTONS 
command.

;set a test pattern to the virtual memory of TRACE32
Data.Set AVM:0--0x4f %Byte 1 0 0 0

Data.dump AVM:0x0 ;open the Data.dump window

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %Decimal.Byte AVM:0++0x4f 2.0 512.

A B
PowerView User’s Guide     |    61©1989-2024   Lauterbach                                                        



Local Popup Menus
[Back to Top]

You can extend the built-in local popup menus of TRACE32 windows with your own local popup menus and 
menu items, as shown in this example of a List.auto window:

There are two ways to add your own menu items to popup menus in TRACE32 windows:

• You can assign your own menu items to the command short form of a TRACE32 window, e.g. to 
the command short form L. for the List.auto window. As a result, your own menu items are only 
visible in the List.auto window, but not in the List.Mix nor the List.Asm window nor any other 
window.
For information about command short forms, see “Long Form and Short Form of Commands and 
Functions”, page 35.

• You can assign your own menu items to the built-in popup menus Program Address and 
Variable. As a result, your own menu items are visible in all TRACE32 windows that have these 
popup menus, such as the following windows: List.auto, List.Mix, List.Asm, Data.dump, 
Var.Watch, etc.

For examples of how to programmatically extend a TRACE32 window with your own menu items, refer to the 
menu programming command MENU.

A Built-in local popup menu named Program Address.

B User-defined local popup menu.

C User-defined menu items.

B C

A

PowerView User’s Guide     |    62©1989-2024   Lauterbach                                                        



Slider Controls

Most windows that output data have slider controls. By dragging the slider controls, you can:

1. Open and close legends, e.g. the color legends of charts in ProfileChart windows, see [A].

2. Resize the scale area, see [B].

3. Display new columns after modifying a command on the fly. In example [C], the Data.List 
command is modified by adding ISTAT. To display the new columns, drag the slider control to the 
right.

For information about how to modify a command displayed in a window caption, see “Modifying and 
Re-using Commands Shown In Window Captions”. 

Open and close
the color legend. 

C

A

FB
PowerView User’s Guide     |    63©1989-2024   Lauterbach                                                        



Window Operations

Basic Operations

All basic operations (e.g. move window, iconize window) are fully compatible with the host operating system.

Old Position, Bookmarks, and Current Selection

You can place visible bookmarks and one hidden bookmark in TRACE32 windows that output data, e.g. in 
Trace.List or List windows. Using bookmarks, you can navigate between bookmarked locations. 

To place visible bookmarks in a window:

1. Choose View menu > e.g. Trace List to open a Trace.List window.

2. Right-click where you want to place a visible bookmark, and then select Toggle Bookmark.

- Scroll somewhere else within the same window, and then place another bookmark.

3. To view the bookmark list, choose View menu > Bookmarks. 

Tips: To go to a bookmark location, you have the following options:

• Double-click a bookmark in the BookMark.List window. A new window opens, displaying the 
bookmark location.

• Open a new window with the Track option, for example:  

Visible bookmarks View menu > Bookmarks opens the Bookmark.List window. The steps 
below describe how to place visible bookmarks. For more information 
about visible bookmarks and the difference between the bookmark colors 
yellow and green, see BookMark.

Hidden bookmark Recall Position returns to the position you have previously saved with 
Store Position. The steps below describe how to place a hidden 
bookmark.

Current Selection Goto Selection returns you to the currently selected position or last 
active view (in case the selection is no longer active).

BookMark.List ;alternatively use the TRACE32 command line to open
              ;the BookMark.List window

Trace.List /Track  

BookMark.List ;now click the bookmark you want in the BookMark.List
              ;window to jump to that bookmark location in the
              ;Trace.List /Track window
PowerView User’s Guide     |    64©1989-2024   Lauterbach                                                        



To place a hidden bookmark in a window:

1. Choose View menu > Trace to open a Trace.List window.

2. Click where you want to place the hidden bookmark.

3. Choose Edit menu > Store Position.

- Scroll somewhere else within the same window.

4. To return to the last stored position, choose Edit menu > Recall Position.

Getting Information

If the left mouse button is held down, additional information will be displayed concerning the field addressed 
by the cursor position.

Changing Data or Setups

A double click to a field with the left mouse key will invoke a change command such as «Data.Set» or 
«Register.Set».

    

Cursor position

Cursor position

Generated command
PowerView User’s Guide     |    65©1989-2024   Lauterbach                                                        



Window Manager Menu

The windows in TRACE32 provide a window manager menu with special commands. For a short description 
of the these commands, see below.

• Windows GUI: To access the window manager menu, click the icon in the top left corner of a 
window: 

• Motif GUI: To access the window manager menu, right-click the window manager button. The 
window manager button is located on the right upper or right lower corner of a Motif window.   
PowerView User’s Guide     |    66©1989-2024   Lauterbach                                                        



Short Descriptions of the Special Commands in the Window Manager Menu 

Next Jump to next window.

Command Line Inserts the window caption (= command) in the command line.
• On a Windows GUI, right-click the window caption.
• On a Motif GUI, click the window manager button, and then select 

Command line.
You can now modify and run the command again or re-use it in a 
PRACTICE script (*.cmm).
See also “Window Captions - What makes them special in TRACE32”.

Reset Position Returns to the position specified in the window caption.
Examples of window captions:
B::Data.dump (0x100) => Returns to address 0x100
B::Data.List func9 => Returns to symbol func9
B::Trace.List -000212. => Returns to record -000212.

Freeze Freezes the window contents. Executing the function again will change 
back to a cyclic update of the window.

Freeze Parameter Freezes the window parameters.

Example: Data.Dump Var.Value(MyVar)

If Freeze Parameter is used, the dumped memory addresses are not 
updated if the variable value will change.

Small, Medium, 
Large Font

Changes the size of the font for the window. Switching to Large Font is 
very useful in presentations before large audiences.
See also WinSmall, WinMid, WinLarge.

Transparent Makes the window transparent (only available for MWI interface of 
Windows 2000 and later). These kind of external windows will allow 
windows in the background to shimmer through.
See also WinTrans.
PowerView User’s Guide     |    67©1989-2024   Lauterbach                                                        



Print
Print All

The result of Print or Print All depends on the output medium you have 
selected in the PRinTer dialog:
1. Choose File menu > Printer Settings to open the PRinTer dialog.
2. Select the output medium you want: printer, ClipBoard, FILE, or Area.

Depending on your selection, the window contents can now a) be sent to 
the printer or b) copied to the clipboard or c) saved to file or d) printed to 
an AREA window.

• Print prints only the visible window contents to the selected output 
medium

• Print all behaves within a TRACE32 window as if you scroll to the 
top of the terminal buffer and choose Print, then scroll down one 
visible terminal page and do the next Print, and so on. 

NOTE: To process huge amounts of data, e.g. from a List.auto window, 
we recommend that you redirect the output to a file instead. See 
PRinTer.FILE example.
See also PRinTer and PRinTer.select.

To Clipboard To Clipboard copies the visible window contents as text to the clipboard.
See also PRinTer.

To Clipboard all To Clipboard All behaves within a TRACE32 window as if you scroll to 
the top of the terminal buffer and choose To Clipboard, then scroll down 
one visible terminal page and do the next To Clipboard, and so on. 

NOTE: To process huge amounts of data, e.g. from a List.auto window, 
we recommend that you redirect the output to a file instead. See 
PRinTer.FILE example.
See also PRinTer.

Window Screen-
shot to File

Captures a screenshot of the active window and opens the Save Window 
Screenshot dialog. Enter file name and select file type (PNG, GIF etc.)
See also SCreenShot.

Window Screen-
shot to Clipboard

Copies a screenshot of the visible part of the window to the clipboard.

Store Command Saves the window caption (= command) as a PRACTICE script (*.cmm). 
The position, size, and name of the window as well as column widths are 
also included in the script. 
See also STOre.
PowerView User’s Guide     |    68©1989-2024   Lauterbach                                                        



Window Position and Name

The size and position of a window generated by a command can be predefined by the command WinPOS. 
A name can be specified for this window. This command in mainly used in PRACTICE scripts (*.cmm), 
which were generated by the STOre command.

Example: 

Freezing a Window

A window is frozen by choosing the Freeze command of the window manager menu. A frozen window is no 
longer updated with the current state. Therefore, it can no longer be scrolled, because the required data are 
missing. The pre-command WinFreeze will generate a frozen window from the command line.

Erasing a Window

Windows are deleted like any other window on the host. All windows can be deleted without loss of data, e.g. 
when using the editor. The command WinCLEAR without parameters deletes all windows on the current 
window page. All window pages are deleted by the WinPAGE.RESet command.

Window Scroll Bars

In the case of most windows with a finite size, the relationship between the displayed section and the entire 
size of the window is represented in the scroll bars located at the borders of the window. Infinite windows, 
like a hex dump, have no moving scroll bar.

AutoSTOre Store settings automatically

STOre Generate a script that allows to reproduce the current 
setting or settings

ClipSTOre Store settings to the clipboard

WinPOS Define position, size, and name of the next window

WinOverlay Pile up windows on top of each other

;        <x>   <y>   <w>   <h>         <window_name>
WinPOS   5.0   5.0   58.   8.   , , ,     TEXT1
TYPE ~~~\test.txt /LineNumbers

WinCLEAR Erase all windows on one page or a named window

WinPAGE.RESet Erase all pages
PowerView User’s Guide     |    69©1989-2024   Lauterbach                                                        



Printing Window Contents

To print a hardcopy of the active window, select the Print command from the window manager menu. Larger 
areas can be printed by adding the pre-command WinPrint. 

Printers must be configured in the config file (default config.t32). The installation of printers is described in 
the INSTALLATION GUIDE.      

WinPrint.<command> Print one window (full printer size) to file

WinPRT Make hardcopy of existing window

PRinTer.HardCopy Print all windows on screen

PRinTer.select Select type of printer

PRinTer.ClipBoard Re-route printer output to clipboard in specified format

PRinTer.Area Re-route printer output to AREA window in specified 
format
PowerView User’s Guide     |    70©1989-2024   Lauterbach                                                        



Saving Window Contents
[Example]

The PRinTer commands can be used to redirect and save window contents to a file. The output file can 
either contain one printout or combine multiple printouts in one file. The output format of the file can be either 
a plain ASCII format for postprocessing or POSTSCRIPT for use in document processing tools.

Example: The contents of the Register.view window are saved to file, which is then opened in the TYPE 
window. The path prefix ~~~ expands to the temporary directory of TRACE32.

PRinTer.OPEN Open file and re-route multiple printer outputs to this file

PRinTer.FILE Define file for single printer output and select output 
format for file

PRinTer.CLOSE Close file after multiple printer outputs

WinPrint Print one window (full size) to file

PRinTer.EXPORT Export CSV-formatted printer output to file

Register.view                   ;optional step: open the window
PRinTer.FILE ~~~\test.txt       ;create and open a file for writing
WinPrint.Register.view          ;print the window contents to file
TYPE ~~~\test.txt /LineNumbers  ;open the file in the TYPE window

Save window contents
to file
PowerView User’s Guide     |    71©1989-2024   Lauterbach                                                        



Special Window Options

Windows with some special behavior can be created by the following commands:

Examples: 

WinBack Generates a window on background

WinDuplicate Duplicates window

WinExt Generates an external separate window (MWI like)

WinFreeze Generates a frozen window

WinLarge Generate window with large font

WinMid Generate window with regular font

WinOverlay Pile up windows on top of each other

WinPAGE Window pages

WinPAGE.Create Create page

WinPAGE.Delete Delete page

WinPAGE.List List pages

WinPAGE.select Select page

WinResist Generates a window which cannot be erased by 
WinCLEAR

WinRESIZE New size for window

WinSmall Generate window with small font

WinTABS Define TABs

WinTOP Bring window to top

WinTrans Generate transparent window

WinBack.AREA error

WinFreeze.Data.dump 0x1000

WinResist.PEDIT test
PowerView User’s Guide     |    72©1989-2024   Lauterbach                                                        



Text-based Functions

The text-based functions are available in all windows. They allow searching for text and control the display 
excerpt of the window.

The Find function can be accessed from the Edit menu window (Windows) or from the window manager 
menu (Motif). This example shows that you can search for text in a peripherals file (PER.view window).

Selection Service

The selection service allows 'drag and drop' and 'cut and paste' features between applications. Drag and 
drop is started by pressing the left mouse button on a selection and then moving the mouse. Cut and Paste 
can be done either with the Copy command in the window manager menu or by using the Edit menu or the 
appropriate accelerator key (i.e. ^C on Windows).

WinFIND Search for a text string in a window

WinPAN Scroll window
PowerView User’s Guide     |    73©1989-2024   Lauterbach                                                        



Message Windows

By default, all information is displayed in the message line. To get a more terminal-like output and input, you 
can create multiple named message areas and display the information output to the various message areas 
in AREA windows. Information is printed to the AREA windows with the PRINT command. Interactive 
keyboard input on an AREA window can be made with the ENTER command.

• Error messages and warnings will always be displayed in the default AREA window A000. 
A000 is the name of the default message area. See [A]. 

• User-defined messages can be output to the same default AREA window A000, or to extra 
AREA windows having user-defined names, see [B]. 

AREA.CLEAR Clear area

AREA.CLOSE Close output file

AREA.Create Create in/out area

AREA.OPEN Open output file

AREA.RESet Delete all in/out areas

AREA.SAVE Save contents of the AREA window to file. In this simple save operation, 
the commands AREA.OPEN and AREA.CLOSE are not required.

AREA.Select Select a message area for PRINT and ENTER 

AREA.view Display in/out area

LOG.toAREA Log commands by writing them to an AREA window

OS.Area Call host operating system with output in a TRACE32 AREA window

PRinTer.Area Re-route printer output to AREA window in specified format

A B
PowerView User’s Guide     |    74©1989-2024   Lauterbach                                                        



Window Tracking

Windows may be coupled by a global reference indicator, generated either by the mouse position within a 
window or by the result of a search or goto operation. The global reference indicator can be one of the 
following:

• The line number for text windows, see example 1.

• The address, see example 2.

• Or the absolute time, see example 3.

• Trace record numbers.

Window tracking is possible between different types of windows, like source text, analyzer listings or timing 
diagrams. Every window which is set to track mode by the option /Track will follow the global reference 
indicator. 

Some windows are temporarily set to tracking when search functions are executed (e.g. the analyzer list 
window during a find operation).

Example 1 - Tracking in two text windows using the mouse: The cursor position of the mouse pointer [A] 
can be tracked in the other window [B], provided path and file name are identical in both windows.

Example 2 - Tracking by going to an address: 

B Tracking pointer

A The Data.GOTO command is used to go to the address of func2b. 

B In the List.auto window, the corresponding position is highlighted because of the use of the Track 
option.

A

B

B

A

PowerView User’s Guide     |    75©1989-2024   Lauterbach                                                        



Example 3 - Tracking based on absolute time: After recording trace data, the same data is displayed in 
three different Trace.* windows. Each Trace.* window is opened with the Track option. 

A By clicking inside the Trace.PROfileChart.sYmbol window, a fine blue graticule marks the cursor 
position. A tooltip displays more information about the selected position, including the absolute time, 
here 5.588s.

B A the same time, a fine blue vertical line highlights the corresponding position in the 
Trace.Chart.sYmbol window thanks to the Track option.

C The corresponding record is also highlighted in the Trace.List window, again thanks to the Track 
option.

A

B

C

PowerView User’s Guide     |    76©1989-2024   Lauterbach                                                        



File and Folder Operations

TRACE32 provides standard operating system commands for fast execution of file and folder operations. 
The commands are implemented in the TRACE32 software, they don’t execute operating system 
commands on the host.

For information about wildcard characters and path prefixes supported with the file and folder handling 
commands, see “File Names”, page 50 and “Path Prefixes”, page 51.

ChDir Change directory

ComPare Compare files

COPY Copy file

DEL Delete file

DIR List subdirectories and files

DUMP Display binary file

EDIT Edit text file in the TRACE32 editor

FIND Find in text or binary file

LS Display directory

MKDIR Create directory

MV Rename file

PACK Compress file (with LZW algorithm)

PATCH Modify binary file

PATH.Set Define search path

PEDIT <file> Open <file> with the PRACTICE script editor

PWD Change directory

REN Rename file

RM Delete file

RMDIR Delete directory

SETUP.EDITEXT Define an external editor

TAR Pack files into an archive without compression

TYPE Display text file

UNARchive Extract files from Linux and Microsoft libraries

UNPACK Expand packed file (with LZW algorithm)

UNZIP Expand GZIP archive file (with DEFLATE algorithm)

ZIP Compress files to GZIP archive (with DEFLATE 
algorithm)
PowerView User’s Guide     |    77©1989-2024   Lauterbach                                                        



File Contents

TRACE32 provides a number of commands for writing data from TRACE32 to file and reading data from 
files. The following list is a selection of commands: 

CLOSE Close file

Data.WRITESTRING Write string from target memory to PRACTICE file

OPEN Open data file

READ Read data from file

Var.EXPORT Export variables in CSV format to file

Var.WRITE Write variables to file

WinPrint Print window

WRITE Write data to file

WRITEB Write binary data to file

APPEND Append data to file
PowerView User’s Guide     |    78©1989-2024   Lauterbach                                                        



Encrypt/Execute Encrypted Files

You can encrypt PRACTICE script files (*.cmm) and PER files (*.per) in TRACE32 with user-defined keys. 
This encryption is useful if you do not want other people to view your source code in human readable form. 

Other users can execute any encrypted file (*.cmm or *.per) in TRACE32, provided the encrypted file is 
unlocked with the same key you have defined for this file.

PRACTICE script files (*.cmm): 

PER files (peripheral register definition file, *.per): 

Text and binary files: 

NOTE: With the correct key, an encrypted file can be executed in TRACE32, but the 
source code itself remains encrypted.

ENCRYPTDO Encrypt a PRACTICE script file.

DODECRYPT Execute the encrypted PRACTICE script file.
NOTE: The PRACTICE script source code itself remains 
encrypted, i.e. it is not human readable.

ENCRYPTPER Encrypt a PER file.

PER.viewDECRYPT Execute and view the encrypted PER file in a PER 
window. 
NOTE: The PER file source code itself remains 
encrypted, i.e. it is not human readable.

ENCRYPT Encrypt a text or binary file.

DECRYPT Decrypt the text or binary file. 
The text is displayed in human readable form again.
PowerView User’s Guide     |    79©1989-2024   Lauterbach                                                        



Host Commands

Operations of the host system may be executed directly on the TRACE32 command line.

Example 1: The TRACE32 commands and functions are formatted in bold. The host command is formatted 
in regular font. 

Example 2: This script line opens a *.csv file in your favorite spreadsheet application.

OS.screen Execute host command

OS.Area Call host operating system with output in a TRACE32 
AREA window

OS.Command Execute host command

OS.Window Call host operating system with output in a TRACE32 
window

OS.Hidden Call host operating system without output

OS.OPEN Open any file type in its default application

;list all PRACTICE script files (*.cmm) in the TRACE32 ~~/demo/arm/
;folder and all subfolders

LOCAL &files

&files=OS.FILE.ABSPATH(~~/demo/arm/)+"*.cmm"

OS.Window dir /s &files

OS.OPEN ~~/demo/etc/trace/export.taskevents/temp.csv
PowerView User’s Guide     |    80©1989-2024   Lauterbach                                                        



Printer Operations

You can send every window or the complete screen from TRACE32 to:

• The default printer

• The clipboard

•  A file

• The default AREA window A000 

For each output medium, you can define the format, e.g. font, font size, ASCII, enhanced ASCII, XML, or a 
more complex format, like POSTSCRIPT or WORDSTAR. When printing to file, you can specify path and file 
name or browse for an existing file.

You have the following options to send information from TRACE32 to a printer or save TRACE32 windows to 
file:

• Choose File menu > Window Screenshot to File to capture the TRACE32 main window and all 
other TRACE32 windows displayed within the TRACE32 main window [A].

• Click the top left icon in any window to open the window manager menu [B].

- The Print option prints just the visible contents of the active window [C].

- The Print all option prints more than the visible contents of the active window [D]. 

• Use the TRACE32 command line and PRACTICE scripts (*.cmm); commands for printing and 
saving TRACE32 windows to file are listed in the table below. 

• Extra commands are provided for saving the code coverage database and the instruction 
statistics database to XML files.

PRinTer.select Select printer type and output style

PRinTer.FILE Define file for single printer output and select output 
format for file (ASCII, CSC, XML, etc.)

PRinTer.OPEN Open file and re-route multiple printer outputs to this 
file

PRinTer.CLOSE Close file after multiple printer outputs

A

B

C
D

PowerView User’s Guide     |    81©1989-2024   Lauterbach                                                        



Examples:      

PRinTer.EXPORT Export CSV-formatted printer output to file

PRinTer.HardCopy Print all windows on screen

PRinter.SIZE Define layout

PRinter.OFFSET Define left and top border

WinPRT <window_name> Prints just the visible contents of the active window

WinPrint.<command> The WinPrint pre-command prints more than the 
visible contents of the active window

ISTATistic.EXPORT Export instruction statistics to an XML file

COVerage.EXPORT Export code coverage information to an XML file

; example for print operation
PRinTer.select      IBM           ; select IBM printer
PRinter.SIZE        80. 65.       ; select lines and columns
PRinter.OFFSET       5.  5.       ; select border
WinPrint.Data.dump  0x0--0xfff    ; print window

; example for copy to file operation
PRinTer.FILE       test.lst       ; open file for printing
WinPrint.Data.dump 0x0--0xfff     ; print Data.dump window to file
PRinTer.select     IBM            ; switch back to line printer

; example for generating a POSTSCRIPT file
PRinTer.FILE test.ps  PSPS12      ; open file for printing and select
                                  ; POSTSCRIPT, Portrait, 
                                  ; Helvetica, 12cpi
WinPrint.Data.dump 0x0--0xfff     ; print Data.dump window to file
PowerView User’s Guide     |    82©1989-2024   Lauterbach                                                        



System Setup and Configuration

Many system configuration options are set with the SETUP command. For more information refer to the 
“PowerView Command Reference” (ide_ref.pdf) and the manual of the devices.

SETUP.ASCIITEXT Configure ASCII text display

SETUP.BAKfile Set backup file mode

SETUP.COLOR Configure colors

SETUP.DEVNAME Set logical device name

SETUP.EDITOR Configure the TRACE32 editors

SETUP.EDITEXT Define an external editor

SETUP.EXTension Set default file name extensions

SETUP.HOLDDIR Configure working directory

SETUP.ICONS Display icons in popup menus

SETUP.QUITDO Define a PRACTICE file that is executed automatically 
when you quit a TRACE32 session

SETUP.ReDraw Update whole screen

SETUP.SOUND Set sound generator mode

SETUP.TabSize Configure tab width

SETUP.TIMEFORM Select scientific time format

SETUP.URATE Limit window update rate

SETUP.WARNSTOP Configure PRACTICE stops

ZERO Set time reference
PowerView User’s Guide     |    83©1989-2024   Lauterbach                                                        



Logging Commands

You can log the command inputs and the call hierarchy of PRACTICE scripts (*.cmm) with the commands 
listed below.

The logging of the command input generates a file which has the structure of a PRACTICE script (*.cmm). 
This file can be edited and started with the DO command. The command log includes all commands entered 
in the TRACE32 command line and all mouse commands. Every operation on TRACE32 can be referred to 
a single-line command. The mouse click to a screen-based button will be stored as a single line command. 
Command inputs which lead to a syntax error are not logged.

To generate a command log, the log file must be opened first. Then all executed commands are written to 
this file. There is no limitation by an internal buffer size. The file can be viewed in a window, while it is being 
filled. By closing the file the logging process is terminated. Only one file may be opened at the same time. 
The logging may be interrupted temporarily by an OFF and ON sub-command. 

Example: 

LOG.OPEN Generate command log file and start logging

LOG.CLOSE Terminate logging and close command log file

LOG.type Show contents of the command log file

LOG.ON Resume logging

LOG.OFF Pause logging

LOG.toAREA Log commands by writing them to an AREA window

LOG.DO Log the call hierarchy of PRACTICE scripts (*.cmm)

For more information, see “Logging the Call Hierarchy of 
PRACTICE Scripts” (practice_user.pdf).

LOG.OPEN
;...

LOG.OFF
;...

LOG.ON
;...
LOG.CLOSE

; opens file 't32.log'
; commands are logged

; switch off log function
; commands are not logged

; switch on log function
; commands are logged
; close file and terminate log function
PowerView User’s Guide     |    84©1989-2024   Lauterbach                                                        



Dialog Programming

The DIALOG command group and its dialog elements, such as buttons and edit boxes, are used to create 
and display custom dialog boxes. They are normally used to increase the flexibility of PRACTICE script files 
by providing user selectable actions or requesting information from the user, e.g. actual firmware file name 
for the flash process.

In this section:

• Dialog Syntax and File Types

• Comments in Dialogs

• Dialog Commands - an Overview

• Dialog Elements - an Overview

• Return Values and Labels

• PRACTICE Macros in Dialog Programming  

For information about built-in and user-defined icons, see “Built-in Icons and Icon Library”, page 120.

Dialog Syntax and File Types

The syntax of a dialog definition is line oriented. Blanks and empty lines can be inserted to structure and 
indent the dialog definition. Single and multi-line programs can be assigned to dialog elements. 

Single-line scripts are enclosed in straight quotation marks "..."; multi-line scripts are enclosed in 
parentheses (...). 

The opening parenthesis of a multi-line script must immediately follow after a dialog element. If an empty line 
is erroneously inserted after a dialog element, the TRACE32 message bar displays the error message 
nesting block open missing. This error message is displayed when you try to execute the defective 
dialog.

NOTE: Examples of dialog definitions reside in the directories:
• ~~/demo/practice/dialogs

and
• ~~/demo/analyzer/trigger 

Single-line script Multi-line script 

BUTTON "Click Me"  "Data.List" BUTTON "Click Me"  
       (
         Data.List
         Register.view
       )
PowerView User’s Guide     |    85©1989-2024   Lauterbach                                                        



There are two file types where you can store custom dialogs. The syntax slightly varies depending on the file 
type you have chosen:

1. Embedded in PRACTICE script files with the extension *.cmm. The dialog definition is placed in 
parentheses after the DIALOG command. See example 1.

2. In extra files with the extension *.dlg. They are called by the DIALOG.view command. 
See example 2.

Example 1: The dialog is embedded in a PRACTICE script file with the extension *.cmm: 

Example 2: The dialog is in an extra file with the extension *.dlg:
 

LOCAL &file                  ;declare PRACTICE macro
        DIALOG.view          ;start the dialog definition
        (
         POS 1. 1. 15.
myLabel: EDIT "" ""
         POSX 1.  6.
         BUTTON "[:edit]File"  "DIALOG.SetFile.SAVE myLabel ~~~\*.cmm"
         POSY 1. 
         DEFBUTTON "OK" "CONTinue"
        )
STOP                         ;wait for the user's response to the dialog
&file=DIALOG.STRing(myLabel) ;get return value of EDIT box by label
DIALOG.END

OPEN  #1 &file /Create
WRITE #1 "Begin of file"
CLOSE #1
ENDDO

PRACTICE script file (*.cmm)

LOCAL &file

DIALOG.view dialog.dlg

STOP
&file=DIALOG.STRing(LAB)
DIALOG.END

OPEN  #1 &file /Create
WRITE #1 "Begin of file"
CLOSE #1
ENDDO

Contents of dialog.dlg

POS 1. 1. 10.
LAB: EDIT "" ""

POS 11. 1. 5.
BUTTON "File"

    (
     DIALOG.SetFile.SAVE LAB *.cmm

)
POS 1. 3. 5.
DEFBUTTON "OK" "CONTinue"
PowerView User’s Guide     |    86©1989-2024   Lauterbach                                                        



Comments in Dialogs

Comment lines start with a semicolon and must be placed in separate lines. 

If a comment is erroneously placed in the same line as a dialog element, the TRACE32 message bar 
displays the error message no more arguments expected. This error message is displayed when you 
try to execute the defective dialog.

Correct comment position Wrong comment position

DIALOG.view
(
 ;your comment
  ICON ":objects"
 ;your comment
  TEXT "Hello World!"
)

DIALOG.view
(
 ICON ":objects"     ;your comment
 TEXT "Hello World!" ;your comment
)

PowerView User’s Guide     |    87©1989-2024   Lauterbach                                                        



Dialog Commands

Using the DIALOG command group you can (a) control your custom dialogs, (b) control the behavior of an 
individual dialog element on a custom dialog, (c) interact with the file system of the operating system (OS), 
and (d) display OS message boxes.

Control Your Custom Dialogs 

Control Behavior of Individual Dialog Elements on Custom Dialogs 

Interact with the File System 

Display Message Boxes of the Operating System  

DIALOG.AREA Adds an output AREA to a custom dialog

DIALOG.END Close the dialog window

DIALOG.Program Editor to write a custom dialog.

DIALOG.ReProgram Dialog programming

DIALOG.SELect Programmatically focus on this dialog

DIALOG.view Show dialog window

DIALOG.Disable Disable dialog elements

DIALOG.Enable Enable dialog elements

DIALOG.EXecute Execute a dialog button

DIALOG.Set Set the value of a dialog element

DIALOG.DIR Display a folder picker dialog and pass the return value of the 
selected folder to your PRACTICE script (*.cmm).

DIALOG.File Open an OS file dialog and pass the name of the selected file to your 
PRACTICE script (*.cmm).

DIALOG.SetDIR Browse for folder. The selected folder an be displayed in the EDIT 
box of your custom dialog.

DIALOG.SetFile Open an OS file dialog and pass the name of the selected file to a 
custom dialog. The selected file can be displayed in the EDIT box of 
your custom dialog.

DIALOG.MESSAGE Create dialog box with an information icon (OK button only)

DIALOG.OK Create dialog box with an exclamation mark (OK button only)

DIALOG.YESNO Create dialog box with YES and NO buttons
PowerView User’s Guide     |    88©1989-2024   Lauterbach                                                        



Dialog Elements

Dialog elements allow you to place edit boxes, buttons, drop-down lists, etc. on your custom dialogs. 
TRACE32 provides the following dialog elements for programming custom dialogs:

BAR Define a progress bar

BOX ["<text>"] Define a decorative border

BUTTON "<text>" [<command>] Define a button

CHECKBOX "<text>" [<command>] Define a check box

<label> CHOOSEBOX "<text>" [<command>] Define a choose box

CLOSE [<command>] Catch window close

COMBOBOX "<list_items>" [<command>] Define a combo box

DEFBUTTON "<text>" [<command>] Define the default button

DEFCOMBOBOX "<list_items>" [<command>] Define a combo box

DEFEDIT "<initial_text>" [<command>] Define an edit control

DEFHOTCOMBOBOX "<list_items>"
                                                       [<command>]

Define a default hot combo box

DEFHOTEDIT "<initial_text>" [<command>] Define a hot edit control

DEFMEDIT "<initial_text>" [<command>] Define a default multiline edit control

DLISTBOX "<list_items>" [<command>] Define a default list box

DYNAMIC "<initial_text>" Define a dynamic, single-line area

DYNCOMBOBOX "<list_items>" [<command>] Define a dynamic combo box

DYNDEFCOMBOBOX "<list_items>"
                                                       [<command>]

Define a default dynamic combo box

DYNDEFHOTCOMBOBOX "<list_items>"
                                                       [<command>]

Define a dynamic default hot combo box

DYNHOTCOMBOBOX "<list_items>" 
                                                       [<command>]

Define a dynamic hot combo box

DYNLTEXT "<initial_text>" Define a dynamic single-line text area in bold and 
large font size

DYNPULLDOWN "<list_items>" [<command>] Define a dynamic pull-down list

DYNTEXT "<initial_text>" Define a dynamic, single-line text area in regular 
font size

EDIT "<initial_text>" [<command>] Define an edit control

HEADER "<text>" Define window header

HELP <name> Define a help icon

HOTEDIT "<initial_text>" [<command>] Define a hot edit control
PowerView User’s Guide     |    89©1989-2024   Lauterbach                                                        



HOTCOMBOBOX "<list_items>" [<command>] Define a hot combo box

ICON "<built_in_icon_name>" | 
                                        "<user_defined_icon>"

New icon in top left corner of dialog

INFOTEXT "<msg_text>" [<formatting>] Define a multiline info text box on a dialog

LEDIT "<initial_text>" [<command>] Define an edit control

LINE "<text>" Define a decorative line

LISTBOX "<list_items>" [<command>] Define a list box

LTEXT "<text>" Static, single-line text area in bold and large font 
size

MEDIT "<initial_text>" [<command>] Define a multiline edit control

MLISTBOX "<list_items>" [<command>] Define a multiline list box

NAME "<text>" Define an internal dialog name

POS <x> <y> <width> <height> Define position and size

POSX <increment> <width> <height> Define position and size on the x-axis

POSY <increment> <width> <height> Define position and size on the y-axis

PULLDOWN "<list_items>" [<command>] Define a static pull-down list

SPACE Define space

STATIC "<built_in_icon_name>" | 
                                        "<user_defined_icon>"

Place an icon in a dialog

TEXT "<text>" Define a text item

TEXTBUTTON "<text>" [<command>] Define a flat button with text only

TREEBUTTON "" [<command>] Define a +/- toggle button

UPDATE ["<command_string>"] 
                                              [<update_interval>]

Executes commands periodically

VLINE "" Define a decorative vertical line
PowerView User’s Guide     |    90©1989-2024   Lauterbach                                                        



Return Values and Labels

Dialog elements, such as an EDIT box or a LISTBOX, can have a user-defined label in front of the 
command. Labels must start in the first column and are always followed by a colon. Together with the 
DIALOG.STRing() or DIALOG.STRing2() function, a label can be used to access the return value of a 
dialog element.

       

The return values of built-in dialog boxes, e.g. the DIALOG.YESNO message box or the DIALOG.DIR folder 
picker dialog, can be accessed with the ENTRY command. Here is an example of a simple “yesno” input:

     

LOCAL &retVal                ;declare a PRACTICE macro

DIALOG.view                  ;start the dialog definition
(
          POS 1.5   0.75   30.
myLAB:    EDIT "x" ""

          POSX 1.   5.
          DEFBUTTON "OK" "CONTinue"
)
STOP                         ;wait for the user's response to the dialog

&retVal=DIALOG.STRing(myLAB) ;get return value by label

DIALOG.END
DIALOG.MESSAGE "The EDIT box contains the address &retVal"

LOCAL &result                ;declare a PRACTICE macro

DIALOG.YESNO "Program FLASH Memory ?"
ENTRY &result                ;get return value of DIALOG.YESNO

IF !&result
    ENDDO
ELSE
(
   ;your code...
)

&retVal=DIALOG.STRing(<label>)

&retVal

ENTRY &<practice_macro>
PowerView User’s Guide     |    91©1989-2024   Lauterbach                                                        



PRACTICE Macros inside Dialog Definitions

Two PRACTICE macros, highlighted in blue, are used in the following dialog definition. For activating 
PRACTICE macro expansion inside a DIALOG definition, the following prerequisites have to be fulfilled:

1.  “(&” must be used - instead of just “(“

2.  “(&” must begin in the first column of the line

See also: “Switching PRACTICE Macro Expansion ON or OFF” (practice_user.pdf)

ENTRY &flashno &default_flash_firmware_file
LOCAL &file    &header_text
&header_text="program dialog for "+FORMAT.Decimal(1,&flashno)
&header_text="&header_text"+". flash"

DIALOG.view
(&

HEADER "&header_text"
POS 1. 1. 30.

LAB: EDIT "&default_flash_firmware_file" ""
POS 31. 1. 5.
BUTTON "File"
(

DIALOG.SetFile LAB *.bin
)
POS 1. 3. 5.
DEFBUTTON "OK" "CONTinue"

)
STOP
&file=DIALOG.STRing(LAB)
PRINT "selected firmware file: &file"
PRINT "for flash:"+FORMAT.Decimal(1,&flashno)
DIALOG.END
ENDDO
PowerView User’s Guide     |    92©1989-2024   Lauterbach                                                        



HELP System

In this section:

• Ways to Get Help

• Context-Sensitive Help

• Structure of the Help System

• Configure the Help System

• Recommendations for Choosing a PDF Viewer

• Bookmarks for Help Topics

• Troubleshooting the Help System

• Change the Installation Path of the PDF Files

Ways to Get Help

There are several methods to get help information:

• Help menu in the menu bar

• Context-sensitive help

• HELP via the TRACE32 command line

• The following HELP commands are available:

HELP.Bookmark Bookmark PDF files

HELP.checkUPDATE Enable the automatic help update via internet

HELP.command Command related support

HELP.FILTER Filtering all documents with the used hardware and 
software

HELP.Find Full-text search across all help documents

HELP.Index Search within indexed terms, commands, functions

HELP.PDF Open PDF file in a PDF viewer

HELP.PICK Context-sensitive help

HELP.PRinT Print PDF files

HELP.Topics Display help content list

HELP.TREE Display command tree
PowerView User’s Guide     |    93©1989-2024   Lauterbach                                                        



Context-Sensitive Help

You can call up the HELP window via the help key. On Windows, the help key is F1. The HELP window then 
displays information about the current context, with the current context being determined by the cursor 
position.

• To get context-sensitive help on a window or dialog, click the window or dialog, and then press 
F1.

• To get context-sensitive help for a command, type the command at the TRACE32 command line, 
append an empty space, and then press F1.

• To get context-sensitive help on an individual item such as a button, check box, or menu item, 
click the context help button  on the toolbar (HELP.PICK).

• If an error occurs, a short error help message will be displayed. 
Press F1 to access the complete error help message in the error.pdf.

F1
PowerView User’s Guide     |    94©1989-2024   Lauterbach                                                        



Structure of the Help System

The TRACE32 help system is divided in two parts:

• The HELP window is used to navigate through the help files and to search for any topic. 

• An external PDF viewer displays the selected topics. 

New TRACE32 Releases [Software Releases 02/2016 and higher]

Your favorite PDF viewer: It takes only a few mouse-clicks to configure the TRACE32 help system to relay 
context-sensitive help calls to your favorite PDF viewer.

For a step-by-step procedure, see “Configure the Help System”, page 96.

Previous TRACE32 Releases

Alternate PDF viewers: TRACE32 relays context-sensitive help calls to a batch file, which then calls the 
desired topic in the PDF file. The script is a *.bat file under Windows, or an*.sh file under Linux and MacOS.

Acrobat Reader: TRACE32 communicates with the TRACE32 plug-in to jump directly to the desired topic in 
the PDF file.

TRACE32 Your favorite PDF Viewer

HELP window

SETUP.PDFViewer

TRACE32

HELP window

Alternate PDF Viewer

TRACE32

HELP window

Acrobat Reader

TRACE32 plug-in
PowerView User’s Guide     |    95©1989-2024   Lauterbach                                                        



Configure the Help System
[Recommendations] [Software Releases 02/2016 and higher]

This section describes how to proceed after you have successfully installed the TRACE32 software and the 
help system.

Upon completion of the installation:

• Each TRACE32 executable (t32m<architecture>.exe) provides the HELP window.

• The file help.t32, which has to be in the system path (e.g. c:\t32), enables all help functions in 
TRACE32, like context-sensitive help and full-text search. When TRACE32 is started, the file 
help.t32 is loaded. If not, you receive an error message, saying that the help.t32 file cannot be 
loaded.

• The PDF help files are in the subfolder pdf of the TRACE32 system path (e.g. c:\t32\pdf). This 
path can be changed in the config file.

Your next step: 

• Configure the TRACE32 help system with a few mouse-clicks to display the PDF help files in your 
favorite PDF viewer; see step-by-step procedure below.

To configure the TRACE32 help system:

1. Choose Help menu > Setup PDF Viewer, or at the TRACE32 command line, type: 
SETUP.PDFViewer

The SETUP.PDFViewer dialog window opens.

2. Do one of the following:

- Click DETect if you want to use your default PDF viewer.
The remaining input boxes are populated with the pre-configured command line parameters for 
the selected PDF viewer.

- Click browse if you want to user a PDF viewer other than the default, e.g. a portable PDF 
viewer.
PowerView User’s Guide     |    96©1989-2024   Lauterbach                                                        



Then click preset to populate the remaining input boxes with the pre-configured command line 
parameters for the selected PDF viewer.

3. Click test to verify that the selected PDF viewer can be started from within TRACE32.

4. Click the remaining three test buttons to verify that your selected PDF viewer passes the 
following basic tests:

- The PDF viewer opens our test document on page 1.

- The PDF viewer jumps to a named destination on another page in the same test document.

- The PDF viewer prints our test document or opens the Print dialog. 

5. If the selected PDF viewer has passed all tests, click Ok.

6. Optional test - online help call via the TRACE32 command line:

- Type the following command at the TRACE32 command line: List.Mix

- Add a space, and then press F1. 
Result: TRACE32 help system displays the description of the List.Mix command in your 
favorite PDF viewer.

Recommendations for Choosing a PDF Viewer

1. You should choose a PDF viewer for use with the TRACE32 help system that provides the 
following features:

- Tabbed document view for files opened via the command line.

- Command line argument for passing file names to the PDF viewer (e.g. debugger_arm.pdf).

- Command line argument for passing named destinations to the PDF viewer (e.g. line IDs).

- One and the same PDF viewer instance allows an unlimited number of context-sensitive jumps 
to named destinations within one and the same PDF file instance.

- A Back button that allows you to re-trace your navigation steps across PDF documents, and 
not just the navigation steps within the same PDF document.

- A PDF viewer that is quick to start.

2. Install the latest version of the PDF viewer, in which you want to display the files of the TRACE32 
help system.

NOTE: You do not need to re-start TRACE32 because your settings take immediate 
effect.
PowerView User’s Guide     |    97©1989-2024   Lauterbach                                                        



Bookmarks for Help Topics

In this section:

• Create Help Bookmarks

• Store and Load Help Bookmarks Manually

• Store and Load Help Bookmarks Automatically

Create Help Bookmarks

• Right-click any topic in the HELP window, and then select Toggle Bookmark.

- A green rectangle indicates the bookmarked help topic.

- The help bookmark itself is added to the Bookmark tab of the HELP window.

NOTE: Unsaved help bookmarks are only available during the current TRACE32 
session. 

If you want to re-use your help bookmarks in future sessions, remember to store 
your help bookmarks. See “Store and Load Help Bookmarks Automatically”, 
page 99.
PowerView User’s Guide     |    98©1989-2024   Lauterbach                                                        



Store and Load Help Bookmarks Manually

Use the steps described below if you want to transfer your bookmarks from one computer to another 
computer.

To store help bookmarks:

1. On the Bookmark tab of the HELP window, click Store.

2. Enter a file name, and then click Save.
The bookmarks displayed on the Bookmarks tab are saved as a PRACTICE script (*.cmm).

To load help bookmarks:

1. On the Bookmark tab of the HELP window, click Load.

2. Browse for the PRACTICE script (*.cmm) containing the bookmarks.

3. Click Open to load the help bookmarks into the Bookmark tab.

Store and Load Help Bookmarks Automatically

1. Close TRACE32.

2. Add the AutoSTOre command to your PRACTICE start-up script (*.cmm):  

If the AutoSTOre command is already used in your start-up script, then add just the keyword HELP 
as shown in the example below.    

3. Restart TRACE32.

The help bookmarks you create are now automatically stored when you close TRACE32. In addition, 
the bookmarks are automatically loaded back into the Bookmark tab of the HELP window when you 
start TRACE32 again.

This script line returns the path and file name where TRACE32 auto-stores your help bookmarks: 

NOTE: Unsaved help bookmarks are only available during the current TRACE32 
session. 

AutoSTOre , HELP

AutoSTOre , HISTory HELP

PRINT VERSION.ENVironment(AUTOSTORE)
PowerView User’s Guide     |    99©1989-2024   Lauterbach                                                        



Troubleshooting the Help System
[Software Releases 02/2016 and higher]

Loads only old Online Help

Verify if the file help.t32 is in the TRACE32 system path (by default c:\t32), and if you have rights to read this 
file.

Warning: Online help outdated, please upgrade via https://www.lauterbach.com/manual.html

Situation: The TRACE32 message line displays this warning message:

Cause: The TRACE32 help system is at least 2 software releases older than the TRACE32 executable 
(t32m<architecture>.exe).

Remedy: 

1. Open the VERSION.ENVironment window, and then make a note of the paths shown in the lines 
SYS: and HELP:

2. Close TRACE32.

3. Download the zipped help system of the most recent TRACE32 software release from 
www.lauterbach.com/manual.html

4. Unzip the downloaded file.

5. Copy the pdf files to the HELP: folder.

6. Copy the help.t32 file to the SYS: folder, i.e. the TRACE32 system directory.

7. Restart TRACE32. The TRACE32 help system is now up to date again.
PowerView User’s Guide     |    100©1989-2024   Lauterbach                                                        

www.lauterbach.com/manual.html


Change the Installation Path of the PDF Files

The PDF files of the TRACE32 help system are installed to the TRACE32 system path, subfolder pdf. But 
sometimes it may be necessary to change this path - for example, if you want different TRACE32 
installations to share the same HELP= path.

There are two possibilities to change the installation path for the PDF files:

1. Add it to the configuration file in the OS= part:

2. Set the environment variable “T32HELP” to the pdf installation path.

Winhelp Compatibility

To provide backward compatibility, the main Winhelp functions will still work.

On unix, additionally the environment variable “HHHOME” has to be set to the directory for hyperhelp (used 
for displaying the online manual).

Winhelp Files:

OS=
SYS=c:\t32        ; system directory for TRACE32
TMP=c:\tmp        ; temporary directory for TRACE32
HELP=c:\t32\pdf   ; help directory for TRACE32 (default: c:\t32\pdf)

NOTE: The help directory for the PDF files can be a local folder or a network folder, e.g. 
g:\trace32-help-files\pdf

The file help.t32 must reside in the system directory. A network folder is not 
supported.

man.t32 Online manual (error messages)

man.* Online manual (WINDOWS help)

manhh.* Online manual (UNIX hyperhelp)
PowerView User’s Guide     |    101©1989-2024   Lauterbach                                                        



Previous Releases - HELP System

Previous Releases - HELP Installation and Setup
[up to Software Release 09/2015]

The installation of the help system is normally done by the software installation program, but here the 
complete online help installation is described if any problem occurred:

1. The HELP window is included in the TRACE32 executable (t32*.exe).

2. TRACE32 help loads the file help.t32, which has to be in the system path, e.g. C:\T32\
Only this file enables all help functions in TRACE32, like context-sensitive help and full-text 
search.

3. Acrobat Reader should be installed on the computer, and to use the TRACE32 plug-in, the 
version has to be 4.0 or higher. 

4. Acrobat loads the TRACE32 plug-in (trace32.api) which has to be in the “plug_ins” directory. If 
the plug-in is loaded correctly, you can find the menu entry About TRACE32 in the Help menu.

5. The PDF help files are in the TRACE32 system path in the subfolder “pdf”, e.g. “C:\T32\pdf”. This 
path can be changed in the config file.

6. On Unix you have to do manually:

The environment variable “ACROBAT_PATH” has to be set to the path where acroread is installed, 
Use the setenv command or add it to your .profile - file.

Copy the TRACE32 plug-in to the Acrobat plug_ins folder

Previous Releases - Configuring an Alternate PDF Viewer
[only Software Releases 09/2014, 02/2015, and 09/2015]

By default, the help system of TRACE32 uses Adobe Reader as PDF viewer. But, as of the release in 
November 2014, the help system of TRACE32 supports any PDF viewer that can handle file names and 
named destinations.

Please consult the help of the PDF viewer you want to use about how to pass file name and named 
destination as command line arguments to that PDF viewer; for some examples, see below.

The following step-by-step procedure assumes that you have installed TRACE32 in the default system 
directory c:\t32 on Windows, or $HOME/t32 on Linux.

>setenv ACROBAT_PATH=/opt/Acrobat5

>cp cdrom/bin/suns/trace32.api 
/opt/Acrobat5/Reader/sparcsol/plug_ins/
PowerView User’s Guide     |    102©1989-2024   Lauterbach                                                        



To configure an alternate PDF viewer for the help system of TRACE32:

1. Close TRACE32.

2. Create an OS environment variable called T32PDFVIEWER

3. Assign the following value to the variable:

- For Windows users: c:\t32\_pdfviewer.bat
The resulting entry in the Windows Environment Variables dialog looks as follows:

- For Linux and Mac users: $HOME/t32/_pdfviewer.sh
The resulting entry in the Linux $HOME/.profile file looks as follows:   

4. To make the new OS environment variable and its value available to TRACE32, log out of your 
Windows or Linux session, and then log in again.

5. In the TRACE32 system directory, create the file _pdfviewer.bat or _pdfviewer.sh

6. For Linux users: Make sure that you have execute permission for the script file, e.g.
chmod +x _pdfviewer.sh

7. Enter a script which calls the PDF viewer you want to use and passes file names and named 
destinations as arguments from TRACE32 to your PDF viewer:

- Examples for Windows users

- Example for Linux users

8. Start TRACE32.

9. To test the alternate online help call, type the following command at the TRACE32 command line:
List.Mix

10. Add a space, and then press F1. Result: TRACE32 help system displays the description of the 
List.Mix command in your favorite PDF viewer. 

Previous Releases - Examples for Windows and Linux Users
[only Software Releases 09/2014, 02/2015, and 09/2015]

The argument %1 or ${1} in the script examples below takes the pdf file names, the argument %3 or ${3} 
takes the named destinations within a pdf file.

export T32PDFVIEWER=$HOME/t32/_pdfviewer.sh
PowerView User’s Guide     |    103©1989-2024   Lauterbach                                                        



Examples for Windows Users

PDF-XChange Viewer: 

SumatraPDF: 

The caret sign ^ serves as a line continuation character in Windows batch files (*.bat). White space 
characters after ^ are NOT permissible.

Foxit Reader: 

Adobe Acrobat X Pro: 

Example for Linux Users 

evince (as of version 3.x; earlier versions do not support the -n option):

evince or xpdf or Firefox: This Linux shell script displays the pdf of the TRACE32 help system in the first 
available pdf viewer: 

@echo off
set reader="C:\Program Files\Tracker Software\PDF Viewer\PDFXCview.exe"
start "Launch PDF" %reader% /A nameddest=%3 %1

@echo off
start "Launch PDF" "C:\T32\bin\SumatraPDF.exe" ^
                               %1 ^
                               -nameddest %3 ^
                               -reuse-instance

@echo off
set reader="C:\Program Files (x86)\Foxit Software\Foxit Reader\Foxit 
Reader.exe"
start "Launch PDF" %reader% /A "nameddest=%3" %1

@echo off
start acrobat.exe  /n /A "nameddest=%3" %1

#!/bin/bash
/usr/bin/evince ${1} -n ${3} &

#!/bin/bash 
evince "${1}" -n ${3}                     || \
xpdf -remote t32xpdf -raise "${1}" +${3}  || \
firefox file:///${1}#nameddest=${3}       &
PowerView User’s Guide     |    104©1989-2024   Lauterbach                                                        



The backslash \ serves as a line continuation character in Linux shell scripts (*.sh).
PowerView User’s Guide     |    105©1989-2024   Lauterbach                                                        



Previous Releases - HELP Installation Problems
[up to Software Release 09/2015]

Some common installation problems are described here.

Loads only old Online Help

Verify if help.t32 is in TRACE32 system path (by default c:\t32), and if you have rights to read this file.

Alternate Call for Adobe Reader [only Software Releases 09/2014, 02/2015, and 09/2015]

By default, the trace32.api file relays the call for a particular help topic from TRACE32 to Adobe Reader. 
However, if you encounter problems after updating your Adobe Reader version, you can bypass the 
trace32.api file with the code shown below. For a step-by-step procedure, see “Previous Releases - 
Configuring an Alternate PDF Viewer”, page 102.

Adobe Reader: 

Acrobat does not start automatic

Reinstall Acrobat Reader, verify if everybody can write to Acrobat subfolder “plug_ins” – if not, copy 
“trace32.api” manually to this folder

Acrobat opens File, but does not jump to the right Chapter

Verify if there is a Acrobat menu entry “Help->About plug-ins->About Trace 32” – if not copy “trace32.api” to 
Acrobat subfolder “plug_ins”

Warning “Communication with Acrobat Reader failed” always when using the Help

Copy “trace32.api” to Acrobat subfolder “plug_ins” 

Warning “Communication with Acrobat Reader failed” only at first Acrobat Startup

Acrobat starts too slow. 

Good trick to improve Acrobat startup time is to delete never needed plug_ins: 

rename folder “plug_ins” to “plug_ins_bak” 

then create empty “plug_ins” folder and copy there only “trace32.api” and other really needed plug_ins

@echo off
start acrord32.exe /n /A "nameddest=%3" "%1"
PowerView User’s Guide     |    106©1989-2024   Lauterbach                                                        



Warning “Please install Acrobat Reader to see pdf help files!”

This message is displayed if the Acrobat installation could not be found on windows systems. Download the 
Acrobat Reader software from www.adobe.com and install it.

If you installed Acrobat already and this message is displayed anyway, check if one of the following registry 
entries exist (execute regedit.exe):

• HKEY_LOCAL_MACHINE: SOFTWARE\\ Microsoft\\ Windows\\ CurrentVersion\\ App Paths\\    
Acrobat.exe

• HKEY_LOCAL_MACHINE: SOFTWARE\\ Microsoft\\ Windows\\ CurrentVersion\\ App Paths\\   
AcroRd32.exe

If none of these keys exist, remove your current installation and install it again. You can also start Acrobat 
manually before using the online help and ignore the error message.

If you have the rights and if you are skilled to change registry entries, you can add it manually. But you have 
to be sure what you are doing - changing registry entries can affect the whole behavior of the Windows 
system!

Add the key “AcroRd32.exe” as shown below, change the Acrobat installation where it is installed on your 
system.

Warning “Error occurred while trying to start Acrobat Reader!”

Check the registry entries as described above - check if the (Standard) entry is really the correct installation 
path

Warning “Acrobat Reader could not be started” (Unix only)

Check if environment variable “ACROBAT_PATH” is set correctly to the Acrobat installation path.
PowerView User’s Guide     |    107©1989-2024   Lauterbach                                                        



InterCom

The InterCom system allows the exchange of data between different TRACE32 systems. The exchange is 
based on UDP. The destination system is defined by a port number of a UDP port used by this TRACE32 
system. This requires an entry in the 'config.t32' file of any participating TRACE32 system:    

A good way to familiarize yourself with the InterCom command group is to start with the example below.   

IC=NETASSIST
PORT=20001
NAME=firstInstance

...

NOTE: If multiple TRACE32 systems are used on one host, the port numbers must differ!

InterCom.Evaluate Evaluates InterCom

InterCom.execute Remote execute command line

InterCom.PING Test the InterCom system

InterCom.PipeCLOSE Close named pipe

InterCom.PipeOPEN Open named pipe

InterCom.PipeREAD Read from named pipe

InterCom.PipeWRITE Write to named pipe

TargetSystem.state Show overview of multicore system

TargetSystem.NewInstance Start new TRACE32 PowerView instance
PowerView User’s Guide     |    108©1989-2024   Lauterbach                                                        



Example: The TRACE32 PowerView instance named firstInst starts another instance named 
secondInst for the purpose of debugging two cores of an AMP system. 

    

;shut down previous debug session
InterCom.execute ALL WinCLEAR
InterCom.execute ALL SYStem.Down

;assign the user-defined InterCom name 'firstInst' to the instance  
;executing this PRACTICE script
InterCom.ENable firstInst

;select the 1st CortexA9MPCore core of OMAP4430 for this instance
SYStem.CPU OMAP4430
CORE.ASSIGN 1.
SYStem.CONFIG.CORE 1. 1.

;open a 2nd TRACE32 PowerView instance and assign the user-defined 
;InterCom name 'secondInst'
TargetSystem.NewInstance secondInst /ONCE

;select the 2nd CortexA9MPCore core of OMAP4430 for the 2nd instance
InterCom.execute secondInst SYStem.CPU OMAP4430 
InterCom.execute secondInst CORE.ASSIGN 2.    
InterCom.execute secondInst SYStem.CONFIG.CORE 2. 1.

;display a status overview of the AMP system
TargetSystem.state DEFault /Global /UseICName

;connect to the AMP system
SYStem.Up
InterCom.execute OTHERS SYStem.Up

;<your_code> ... e.g. load your application program with 
;InterCom.execute <instance_name> Data.LOAD...

InterCom.execute ALL Go
PowerView User’s Guide     |    109©1989-2024   Lauterbach                                                        



Version Management and Licensing

The VERSION.view window provides information about the TRACE32 software version and licenses as well 
as TRACE32 hardware and environment information.

1. To open the VERSION.view window, choose Help menu > About TRACE32.

2. For details, click the more buttons.

For more information on finding serial numbers, see “Serial Numbers”  in Software Updates, page 12 
(updates.pdf). 

The following commands are described in the “PowerView Command Reference” (ide_ref.pdf).

VERSION.HARDWARE Displays the version of the used debug hardware

VERSION.SOFTWARE Displays detailed information about the used TRACE32 
software

VERSION.view Displays window with version info

LICENSE.state Displays the currently used maintenance contract

LICENSE.List Displays all license information

LICENSE.UPDATE Updates the maintenance contract inside a debug cable
PowerView User’s Guide     |    110©1989-2024   Lauterbach                                                        



Text Editors

This chapter describes how TRACE32 PowerView supports editing text files.

Built-in Editors

TRACE32 PowerView includes two built-in editor types. 

1. OS-Native Editor: This editor has a limited feature set as provided by the GUI framework.

2. PowerView Editor: Advanced editor with syntax highlighting and context specific features.

The editor type can be selected using SETUP.EDITOR.TYPE.

OS-Native Editor

The features of this editor are limited to the features provided by the GUI framework / OS API that provides 
the edit control. There are no configurable options for highlighting, indentation etc. The are keyboard 
shortcuts available as provided by the GUI framework (Windows API, Qt, MOTIF).

PowerView Editor

This editor has a variety of features that are available on all supported host operating systems:

• Syntax Highlighting for all TRACE32 programming languages

• Nesting-aware editing

• Highlighting of matching block, braces, current cursor line, keywords and matching selection

• Configurable visible whitespace and ASCII view

• Automatic indentation during input

• Individual settings for tab size, indentation size and type for several file types (PRACTICE, C, 
Python, ASM Text and TRACE32 trigger languages.

• Context sensitive context menus (e.g. Help for command / function, Goto label)

• Input suggestions and automatic input completion, see also SETUP.EDITOR.AutoSuggest

• Automatic script formatting and command expansion, see EDIT.FORMAT.

For a detailed description of available configuration options see the SETUP.EDITOR command group.

Context Sensitive Context Menu

Below is an overview of the context sensitive context menu features The context menu is opened by right-
click on the item of interest.
PowerView User’s Guide     |    111©1989-2024   Lauterbach                                                        



Context menu of command or PRACTICE function leads to link info TRACE32 Help:

Open destination text file addresses in a command in new edit window:

Jump to labels of e.g. subroutines:

Keyboard Shortcuts

Below is a list of keyboard shortcuts supported by the PowerView editor:

CTRL+SPACE Open Auto Completion box. See also SETUP.EDITOR.AutoSuggest.

CTRL+A Select all text

CTRL+C Copy selected text to clipboard

CTRL+D Comment line or selection (D = Disable)

CTRL+E Uncomment line or selection (E = Enable)

CTRL+F Open Find dialog

CTRL+G Open Goto Line dialog

CTRL+H Open Replace dialog

CTRL+S Save document
PowerView User’s Guide     |    112©1989-2024   Lauterbach                                                        



Automatic Formatting

Automatic formatting is available for PRACTICE (PEDIT), Menu (MENU.Program) and Peripheral View 
(PER.Program) and re-indents the selected file or block.

 Automatic formatting is available from context menu and also from command line with additional features 
like bringing all commands into the correct camel cased form. See EDIT.FORMAT for more information.

Special Purpose Editor Windows

TRACE32 includes editor windows that are specific for a certain programming language:

CTRL+V Paste from clipboard

CTRL+X Cut (copy to clipboard and delete)

CTRL+Y Redo

CTRL+Z Undo

CTRL+
<cursor key>

Navigate cursor word-wise

SHIFT+
<cursor key>

Select text

CTRL+SHIFT
+<cursor 
key>

Select text word-wise

CTRL+
BACKSPACE

Delete text word-wise

Unformatted block: Formatted block:
PowerView User’s Guide     |    113©1989-2024   Lauterbach                                                        



The special purpose editor windows allow easy access to commands that are specific to the respective 
editor and file type. For examples of editor-specific buttons, see [B] and [C].

    

In addition to, or as an alternative to the TRACE32 editors, you can configure an external editor for use in 
TRACE32 using the SETUP.EDITEXT command. For more information about the use of external editors in 
TRACE32, see “External Editors”, page 116.

C

Editor for menu 
programming
(special-purpose 
editor)

The general-
purpose editor

Editor for 
PRACTICE scripts
(special-purpose 
editor)

B

B

A

A

A

PowerView User’s Guide     |    114©1989-2024   Lauterbach                                                        



Overview of the Various TRACE32 Editors

General-purpose editor:  

Special-purpose editors:  

If your TRACE32 tool provides a trigger language for your processor architecture or timing analyzers, a 
trigger programming editor is provided: 

Examples

 

EDIT Primarily used to create and edit text files, e.g. *.txt, *.log, 
*.dat, etc. 

PEDIT [<file>] Editor for PRACTICE scripts (*.cmm).

PER.Program [<file>] Editor for programming the peripheral description files 
(*.per).

MENU.Program [<file>] Editor for creating your own menus or customizing the 
TRACE32 menus (*.men).

DIALOG.Program [<file>] Editor for creating your own dialogs (*.dlg).

BITMAPEDIT [<file>] BItmap editor for drawing user-defined icons. They can 
be embedded in these TRACE32 file types: *.cmm, 
*.men, or *.dlg.

Data.PROGRAM [<address>] [<file>] Editor for writing an assembler program (*.asm).

Break.Program [<file>]
Integrator.Program [<file>]
Probe.Program [<file>]

Editor for on-chip breakpoint programs (*.ctl).
Editor for Integrator trigger programs (*.tap).
Editor for PowerProbe trigger programs (*.tap).

EDIT config.t32 ; edit one file

EDIT *.c ; the asterisk opens a file selection 
; dialog, where you can browse for the
; file you want to edit

EDIT test.txt
EDIT test.txt

; open file and edit
; access the same file through a second
; EDIT window 
PowerView User’s Guide     |    115©1989-2024   Lauterbach                                                        



Edit Menu

Below is an overview of the Edit menu tools displayed in the menu bar.
    

• Undo: same action as pressing key Ctrl+z or command EDIT.UNDO.

• Cut: same action as pressing key Ctrl+x.

Removes current selected content from text and transfer into clipboard.

• Copy: same action as pressing key Ctrl+c.

Transfers current selected text into clipboard.

• Paste: same action as pressing key Ctrl+v.

Inserts content of clipboard at current cursor position.

• Delete: same action as pressing key Del.

Removes character right of current cursor position or delete selected text.

• Enable: changes current line to a comment line (prefix with //).

• Disable: removes comment from current line (remove prefix //).

External Editors

In addition to, or as an alternative to the built-in TRACE32 editors, you can configure an external editor for 
use in TRACE32. This allows you to take advantage of the combined features of both (a) the respective built-
in TRACE32 editor you have selected and (b) the external editor - while you are working on the same file at 
the same time in both editors. 

Syntax highlighting files for external editors reside under ~~/demo/practice/syntaxhighlighting and are 
available for the following external editors: 

• TextPad

• UltraEdit

• Kate

• Notepad++
PowerView User’s Guide     |    116©1989-2024   Lauterbach                                                        



The syntax highlighting files for external editors cover the following TRACE32 file types:

• PRACTICE script files (*.cmm)

• Menu files (*.men)

• Dialog files (*.dlg)

• OCTL files (*.octl)

Configuring an External Editor

Before configuring an external editor for use in TRACE32, you should consult the online help of your favorite 
external editor for information about (a) syntax highlighting files or syntax definition files and (b) command 
line parameters for file name and line number. 

Background information is also provided in the headers of the syntax files and in the readme.txt residing 
under ~~/demo/practice/syntaxhighlighting

To configure an external editor for TRACE32:

1. In your TRACE32 system directory, navigate to ~~/demo/practice/syntaxhighlighting/<editor>. 

2. Copy the required syntax highlighting file, and paste it into the folder where your external editor 
expects syntax highlighting files.

The remaining steps for registering a syntax highlighting file depend on the external editor. 

In TextPad, for example, you need to create a new document class and assign the TRACE32 file 
types *.cmm, *.men, and *.dlg to this new document class.

3. Look up the examples and description of the following TRACE32 command. They tell you how to 
replace the TRACE32 editor call with an external editor call. 

SETUP.EDITEXT Define an external editor
PowerView User’s Guide     |    117©1989-2024   Lauterbach                                                        



Working with TRACE32 and the External Editor

The interaction between a TRACE32 editor and an external editor allows you to take advantage of the 
combined features of both editors. For example, after saving your PRACTICE script in the external editor, 
you can immediately execute and/or debug your script in TRACE32.

Prerequisite:

• You have configured an external editor for use in TRACE32. If not, then the EDIT command will 
continue to open the TRACE32 EDIT window instead of your external editor.

To work with TRACE32 and the external editor in parallel:

1. Run the PSTEP and EDIT commands for the same PRACTICE script file. For example: 

2. In the external editor, type your PRACTICE script. Let’s use this very simple demo script: 

3. In TRACE32, right-click the window caption of the PSTEP window, and then press Enter.

- The saved PRACTICE script file is loaded into the PSTEP window.

- You are now ready to step through your script line by line (STEP button), execute it (Continue 
button), set PRACTICE breakpoints (see PBREAK).

PSTEP c:\temp\demo.cmm      ;open file in the PSTEP window
EDIT  c:\temp\demo.cmm      ;open same file in the external editor

AREA.view                   ;display the default AREA window
AREA.RESet                  ;reset the AREA window

RePeaT 10.                  ;repeat the PRINT command
   PRINT "Hello TRACE32!"

ENDDO

NOTE: If your script starts with a WinCLEAR command, you can prevent the PSTEP 
window from being erased by opening it with the WinResist pre-command. 

In our example: WinResist.PSTEP c:\temp\demo.cmm
PowerView User’s Guide     |    118©1989-2024   Lauterbach                                                        



Icons

TRACE32 allows you to customize the user interface and add icons to your customized user interface. This 
chapter informs you about the supported icon types, tells you where you can add icons, and describes step-
by-step how you can create your own icons.

TRACE32 supports two icon types: 

• Built-in icons

• User-defined icons

Both icon types can be added to the following dialog, menu, and toolbar elements:

Icon-capable elements can be used in the following TRACE32 file types: 

• PRACTICE script files (*.cmm)

• Menu files (*.men)

• Dialog files (*.dlg)

Which Icon Type Do You Need for Your Project?

You can choose built-in icons from the icon library. For more information, see “Built-in Icons and Icon 
Library”, page 120. 

You can create your own, user-defined icons with the TRACE32 bitmap editor. For step-by-step instructions, 
see “Inserting a Placeholder for User-Defined Icons”, page 121. 

BUTTON Define a button

DEFBUTTON Define the default button

DYNAMIC Define a dynamic, single-line area

ICON Define an icon for the top left corner of a dialog

MENUITEM Define an item in a menu, popup menu or a local button

STATIC Define a non-dynamic area in a dialog

TOOLITEM Define a button in the toolbar

BITMAPEDIT  <file> Open the bitmap editor
PowerView User’s Guide     |    119©1989-2024   Lauterbach                                                        



Built-in Icons and Icon Library

TRACE32 provides a number of built-in icons. You can easily include these built-in icons in icon-capable 
dialog, menu, and toolbar elements. Using the TRACE32 icon library, you can:

• Get an overview of all available icons

• Get the built-in name of each icon

To display the TRACE32 icon library:

1. Choose Misc menu > Tools > Display internal icon library. 

2. Click any icon.
The built-in icon name is displayed in the Icon name field.

3. Observe this syntax for built-in icons: "[:<built_in_icon_name>]<your_text>" 

To try this script, simply copy it to a test.cmm file, and then run it in TRACE32 (See “How to...”).

DO "~~/demo/menu/internal_icons.cmm"

DIALOG.view
(; Assigns the icon to BUTTON
 BUTTON "[:var]Any text"  "Var.View"
)
STOP 
DIALOG.END
PowerView User’s Guide     |    120©1989-2024   Lauterbach                                                        



Inserting a Placeholder for User-Defined Icons

Icon-capable dialog, menu, and toolbar elements require an icon placeholder in the form of two square 
brackets [].

To insert an icon placeholder for a user-defined icon:

1. In TRACE32, open the file where you want to add an icon, e.g.:

2. Observe this syntax for the icon placeholder: "[]<your_text>"

Examples:       

3. Click Save.

Next: “Drawing Icons”, page 122.

PEDIT ~~/demo/practice/dialogs/dialog_edit.cmm ;PRACTICE script file
                                               ;or
MENU.Program ~~/demo/menu/demo.men             ;menu file
                                               ;or
DIALOG.Program <your_file>.dlg                 ;dialog file

;DIALOG element (*.dlg or *.cmm file)
BUTTON   "Cancel"   "GOTO cancel"
BUTTON   "[]Cancel" "GOTO cancel"

;MENU element   (*.men file)
MENUITEM "Edit .c File..."   "EDIT *.c"
MENUITEM "[]Edit .c File..." "EDIT *.c"
PowerView User’s Guide     |    121©1989-2024   Lauterbach                                                        



Drawing Icons

After inserting the icon placeholders (see previous section), you can open the file in the BITMAPEDIT 
window and draw an icon on the canvas. 

To draw an icon:

1. Open your file in two TRACE32 editor windows.

- The first editor window contains the source code of your project.

- The second editor window, i.e. the BITMATEDIT window, provides the icon drawing tools.

Example: 

A Opens the Preview Icon window.

B Bitmap format (For more information, see the BITMAPEDIT command.)

C Assign a color to a mouse button by clicking a color in the palette with that mouse button. 

D The source code of an icon is inserted between the corresponding icon placeholder [] while you are 
drawing the icon. 

E Up and down arrow buttons let you navigate from one icon or icon placeholder to the next. 

PEDIT      ~~/demo/practice/dialogs/dialog_edit.cmm   ;1. editor
BITMAPEDIT ~~/demo/practice/dialogs/dialog_edit.cmm   ;2. editor
                                                      ;or
MENU.Program ~~/demo/menu/demo.men                    ;1. editor
BITMAPEDIT   ~~/demo/menu/demo.men                    ;2. editor
                                                      ;or
DIALOG.Program <file>.dlg                             ;1. editor
BITMAPEDIT     <file>.dlg                             ;2. editor

A A

E

C

B

D

A

PowerView User’s Guide     |    122©1989-2024   Lauterbach                                                        



The same file should now be open in two TRACE32 editor windows.

2. In the BITMAPEDIT window, under Bitmap, click the up and down arrow to navigate to the icon 
placeholder you want [E].

3. From the color palette, choose the colors you want, and draw an icon.

4. When done, click Save.

5. Click in the window of the first editor: the PEDIT window or the MENU.Program window or the 
DIALOG.Program window. You are prompted to reload the file.

6. Click Yes to reload. 

You are now ready to execute the file to view the finished icon. 

• In the PEDIT window, click DO. 

• In the MENU.Program window, click Compile. 

• In the DIALOG.Program window, click Comp+Show.
PowerView User’s Guide     |    123©1989-2024   Lauterbach                                                        



Interface

For more information about the configuration of the interface, see “TRACE32 Installation Guide” 
(installation.pdf). Commands are described in the “PowerView Command Reference” (ide_ref.pdf).

IFCONFIG.state Interface configuration

IFCONFIG.TEST Test interface function and speed

IFCONFIG.PROfile Display operation profiles
PowerView User’s Guide     |    124©1989-2024   Lauterbach                                                        



Shortcuts

ALT+ Spacebar

Opens the window manager menu of the active window.

• Available for the TRACE32 window modes FDI and MTI.

• If the TRACE32 window mode is MDI, then the ALT+spacebar shortcut works only for windows 
preceded by the WinExt pre-command, e.g. WinExt.Register.view or WinExt.List

Alt+F4

• Closes the TRACE32 main window if no WinExt.<window> is selected.

• Closes the active WinExt.<window>. See also esc key.

Ctrl+A

Select all in the TRACE32 editors.

Ctrl+C

Copy in the TRACE32 editors.

Ctrl+F

• Opens the Find dialog window. TRACE32 searches in the active window. 

• Find operation in the TRACE32 editors.

Ctrl+G

Go to <line> in the TRACE32 editors.

Ctrl+Left

Move to previous word in the TRACE32 editors.

Ctrl+H

Find-and-replace operation in the TRACE32 editors.

Ctrl+F4

Closes the active window (i.e. windows without the WinExt. pre-command). 
See also esc key.

Ctrl+F6

Selects the next window (i.e. windows without the WinExt. pre-command).
PowerView User’s Guide     |    125©1989-2024   Lauterbach                                                        



Ctrl+Right

Move to next word in the TRACE32 editors.

Ctrl+S

Save a file in the TRACE32 editors.

Ctrl+V

Paste in the TRACE32 editors.

Ctrl+X

Cut in the TRACE32 editors.

Ctrl+Y

Redo in the TRACE32 editors.

Ctrl+Z

Undo in the TRACE32 editors.

Ctrl+D and Ctrl+E

Ctrl+D disables the selected breakpoint. 

Ctrl+E enables the selected breakpoint. 

esc

Closes the active window - regardless of whether the active window is preceded by the WinExt. pre-
command or not.

F1

• To get context-sensitive help on a window or dialog, click the window or dialog, and then press 
F1.

• To get context-sensitive help for a command, type the command at the command line, append an 
empty space, and then press F1.  

F2 Single step

F3 Step over function call or subroutines

F4 Step Diverge Path: Leave loops, go till something new happens.

F5 Go return / Go to the last instruction

F6 Go up / return to the caller function
PowerView User’s Guide     |    126©1989-2024   Lauterbach                                                        



Shift+Tab

Navigate back through the softkeys of a command group:

1. At the command line, type for example: Data.LOAD.

2. Press Shift+Tab to navigate back through the softkeys.

(Alternatively, click .)

Tab and Tab Completion for Commands

(A) Navigate forward through the softkeys of a command group:

1. At the command line, type for example: Data.

2. Press Tab repeatedly to navigate forward through the softkeys.

(Alternatively, click .)

(B) Access the list of PRACTICE functions:

1. At the command line, type: PRINT or Data.Print

2. Type the first few letters of the PRACTICE function you want, e.g. ad 

3. Press Tab repeatedly to cycle through the list of matching PRACTICE functions.

(C) Cycle through the list of symbols:

1. At the command line, type for example: List.Mix

2. Press Tab repeatedly to cycle through the list of recently used symbols.

- Type the first few letters of the symbol you want.

- Press Tab repeatedly to cycle through the list of matching symbols.

(D) Complete a command:

• At the command line, type for example symb and then press Tab. 
TRACE32 completes symb to the command sYmbol

(E) Display suggestions for completing a command:

F7 Go / Start real-time execution

F8 Break / Stop real-time execution

F9 Toggle between the debug modes HLL and MIX

Up and down 
arrow keys

Go up / down in the command line history.
PowerView User’s Guide     |    127©1989-2024   Lauterbach                                                        



1. At the command line, type for example tr and then press Tab. 
TRACE32 suggests TrBus | TrOnchip | Trace | TRANSlation

2. Press Tab repeatedly to cycle through the list of matching commands.

Pause / Break

Moves the insertion point from any TRACE32 window back to the TRACE32 command line.
PowerView User’s Guide     |    128©1989-2024   Lauterbach                                                        



Appendix - About the TRACE32 Software Version Numbers

The version number consists of the following building blocks: 

Examples of Version Numbers: 

Information about the version number is displayed in the following windows: 

Information about the version can be returned with the following functions: 

Format: <type>.<year>.<month>.<build_number>

<type>: R | P | N | S | F

<type> • R: release build
• P: pre-release build
• N: nightly build
• S: interim build (“snapshot”)
• F: feature build

<year> • Year of the software version. This is the year in which a release or 
pre-release was branched from the development trunk.

• Four-digit representation of a year (Return value example: 2018).

<month> • Month of the software version. This is the month in which a release 
or pre-release was branched from the development trunk.

• Two-digit representation of a month with leading zeros (Return val-
ues: 01 … 12).

<build_number> Build number.

R.2018.09.000103893   ;release build

S.2018.12.000104075   ;interim build 

VERSION.SOFTWARE Displays software version information.

VERSION.view Displays software, license, hardware, and environment information.

VERSION.SOFTWARE() Returns the entire version number string.

VERSION.SOFTWARE.TYPE() Returns the software build type only.

VERSION.BUILD() Returns the upper build number from the release branch.

VERSION.BUILD.BASE() Returns the lower build number from the release branch.

VERSION.DATE() Returns the software version date, e.g. 2018/09
PowerView User’s Guide     |    129©1989-2024   Lauterbach                                                        


	PowerView User’s Guide
	History
	Structure and Contents of the Documentation
	Online Documentation
	In-Circuit Debugger TRACE32-ICD

	Program Start
	In-Circuit Debugger TRACE32-ICD

	Shut Down PowerView
	Interactive Connection Mode
	Interactive Connection on PowerView Startup
	Connection Wizard
	Connection Select Dialog
	Automatic Connection upon Startup
	Connection Script Generation for Test Automation
	Connection Configuration Window
	Reboot into Interactive Connection Mode

	PowerView - Screen Display
	Concept
	Graphical User Interface - Window Modes
	MDI User Interface
	MWI User Interface

	Main Menu Bar
	Accelerators
	Main Toolbar
	Work Area
	Message Line
	Error Messages
	General Messages
	Additional Information on Cursor Position

	Softkeys
	State Line
	Cursor
	Debug and Debugger Activity
	Trace
	Mode
	Task
	SMP Systems
	Advanced
	Show/Hide State Line

	Window Pages
	Colors
	How the TRACE32 PowerView GUI Assists You in Scripting

	Commands
	Command Structure
	Long Form and Short Form of Commands and Functions
	Entering Commands
	Command Line
	Device Selection

	Command History
	Command and Function Parameters
	Parameter Types
	Operators
	Arithmetic Rules and Operator Precedence
	Parentheses and Braces
	Parameter History
	File Names
	Path Prefixes


	General Command Parameter Parser
	A. Object of Description
	B. Support of C Language Expressions
	C. Radix Mode Support
	Operands
	Operand Format Examples (Literals)

	Operators
	Operator Formats


	Window System
	Windows
	Window Captions - What Makes Them Special in TRACE32
	Local Buttons
	Local Popup Menus
	Slider Controls

	Window Operations
	Basic Operations
	Old Position, Bookmarks, and Current Selection
	Getting Information
	Changing Data or Setups
	Window Manager Menu
	Window Position and Name
	Freezing a Window
	Erasing a Window
	Window Scroll Bars
	Printing Window Contents
	Saving Window Contents
	Special Window Options

	Text-based Functions
	Selection Service

	Message Windows
	Window Tracking
	File and Folder Operations
	File Contents
	Encrypt/Execute Encrypted Files
	Host Commands
	Printer Operations
	System Setup and Configuration
	Logging Commands
	Dialog Programming
	Dialog Syntax and File Types
	Comments in Dialogs
	Dialog Commands
	Control Your Custom Dialogs
	Control Behavior of Individual Dialog Elements on Custom Dialogs
	Interact with the File System
	Display Message Boxes of the Operating System

	Dialog Elements
	Return Values and Labels
	PRACTICE Macros inside Dialog Definitions

	HELP System
	Ways to Get Help
	Context-Sensitive Help
	Structure of the Help System
	Configure the Help System
	Recommendations for Choosing a PDF Viewer
	Bookmarks for Help Topics
	Create Help Bookmarks
	Store and Load Help Bookmarks Manually
	Store and Load Help Bookmarks Automatically

	Troubleshooting the Help System
	Change the Installation Path of the PDF Files
	Winhelp Compatibility

	Previous Releases - HELP System
	Previous Releases - HELP Installation and Setup
	Previous Releases - Configuring an Alternate PDF Viewer
	Previous Releases - HELP Installation Problems

	InterCom
	Version Management and Licensing
	Text Editors
	Built-in Editors
	OS-Native Editor
	PowerView Editor
	Context Sensitive Context Menu
	Keyboard Shortcuts
	Automatic Formatting


	Special Purpose Editor Windows
	Edit Menu
	External Editors
	Configuring an External Editor
	Working with TRACE32 and the External Editor

	Icons
	Built-in Icons and Icon Library
	Inserting a Placeholder for User-Defined Icons
	Drawing Icons

	Interface
	Shortcuts
	Appendix - About the TRACE32 Software Version Numbers


