
MANUAL

PowerView Function Reference

PowerView Function Reference

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 PRACTICE Script Language ... 

 TRACE32 Functions ... 

 PowerView Function Reference ... 1

 History ... 10

 In This Document ... 11

 AREA Functions ... 12

 In This Section 12

 AREA.COUNT() Number of existing message areas 12

 AREA.EXIST() Check if message area exists 12

 AREA.LINE() Extract line from message area 13

 AREA.MAXCOUNT() Maximum number of message areas 13

 AREA.NAME() Names of existing message areas 14

 AREA.SELECTed() Name of active message area 14

 AREA.SIZE.COLUMNS() Columns of a message area 15

 AREA.SIZE.LINES() Lines of a message area 15

 CLOCK Functions .. 16

 CONFIG Function ... 17

 CONFIG.SCREEN() Check if screen output is switched on 17

 CONNECTION Functions ... 18

 CONNECTION.DEVice.IndexByName() Get device index 18

 CONNECTION.DEVice.IndexBySerialNumber() Get device index 18

 CONNECTION.DEVice.InUse() Debug module currently in use 18

 CONNECTION.DEVice.NAME() Get device name of debug module 19

 CONNECTION.DEVice.Number() Number of detected debug modules 19

 CONNECTION.DEVice.PORT() Get host connection port of debug module 20

 CONNECTION.DEVice.SerialNumber() Get device serial number 20

 CONNECTION.GetDriverError() Get driver error of last connection attempt 21

 CONNECTION.HOSTMCI.TestMciServer() Get MCI server state information 21

 CONNECTION.INTerface.Available() Check connection interface availability 21

 CONNECTION.STATE.ERROR() Failed to establish connection 22

 CONNECTION.STATE.Interactive() Interactive connection state 22
PowerView Function Reference | 2©1989-2024 Lauterbach

 CONVert Functions .. 23

 In This Section 23

 CONVert.ADDRESSTODUALPORT() Dualport access class 23

 CONVert.ADDRESSTONONSECURE() Non-secure access class 24

 CONVert.ADDRESSTOSECURE() Secure access class 24

 CONvert.BOOLTOINT() Boolean to integer 25

 CONVert.CHAR() Integer to ASCII character 25

 CONVert.FLOATTOINT() Float to integer 26

 CONVert.HEXTOINT() Hex to integer 26

 CONVert.INTTOBOOL() Integer to boolean 27

 CONVert.INTTOFLOAT() Integer to floating point value 27

 CONVert.INTTOHEX() Integer to hex 28

 CONVert.INTTOMASK() Compose bit-mask from integer value and mask 28

 CONVert.LINEAR11TOFLOAT() LINEAR11 to float 29

 CONVert.LINEAR16TOFLOAT() LINEAR16 to float 29

 CONVert.MASKMTOINT() Bits set to don't-care in given bit-mask 30

 CONVert.MASKTOINT() Bits set to 1 in given bit-mask 31

 CONVert.OCTaltoint() Octal to decimal 31

 CONVert.SignedByte() 1 byte to 8 bytes 32

 CONVert.SignedLong() 4 bytes to 8 bytes 32

 CONVert.SignedWord() 2 bytes to 8 bytes 33

 CONVert.TIMEMSTOINT() Time to milliseconds 33

 CONVert.TIMENSTOINT() Time to nanoseconds 34

 CONVert.TIMERAWTOINT() Time to TRACE32 timer ticks 34

 CONVert.TIMESTOINT() Time to seconds 34

 CONVert.TIMEUSTOINT() Time to microseconds 35

 CONVert.TOLOWER() String to lower case 36

 CONVert.TOUPPER() String to upper case 36

 DATE Functions ... 37

 In This Section 37

 DATE.DATE() Current date 37

 DATE.DAY() Today’s date 37

 DATE.MakeUnixTime() Date to Unix timestamp 38

 DATE.MONTH() Number of current month 39

 DATE.SECONDS() Seconds since midnight 39

 DATE.TIME() Current time 39

 DATE.TimeZone() Time zone identifier and hh:mm:ss 40

 DATE.UnixTime() Seconds since Jan 1970 40

 DATE.UnixTimeUS() Microseconds since Jan 1970 40

 DATE.utcOffset() Offset of current local time to UTC 41

 DATE.YEAR() Current year 41

 DIALOG Functions ... 42

 In This Section 42
PowerView Function Reference | 3©1989-2024 Lauterbach

 DIALOG.BOOLEAN() Current boolean value of checkbox 42

 DIALOG.EXIST() Existence of dialog element 43

 DIALOG.STRing() Current string value of dialog element, e.g. EDIT box 44

 DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX 45

 ERROR Functions .. 46

 In This Section 46

 ERROR.CMDLINE() Erroneous command 46

 ERROR.FIRSTID() ID of first error 46

 ERROR.ID() ID of last error message 47

 ERROR.MESSAGE() Error text 48

 ERROR.OCCURRED() Error status 48

 ERROR.POSITION() Error position 48

 EVAL Functions .. 49

 In This Section 49

 EVAL() Value of expression evaluated with Eval command 49

 EVAL.ADDRESS() Address of expression evaluated with Eval cmd. 49

 EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean 49

 EVAL.FLOAT() Float value of expression evaluated with Eval cmd. 50

 EVAL.PARAM() Expression evaluated with Eval cmd. 50

 EVAL.STRing() String composed by expression evaluated with Eval cmd. 50

 EVAL.TIme() Value of time evaluated with Eval command 50

 EVAL.TYPE() Type of expression evaluated with Eval command 51

 FALSE Function ... 52

 FALSE() Boolean expression 52

 FILE Functions ... 53

 In This Section 53

 __FILE__() Path and file name of current PRACTICE script 53

 __LINE__() Number of script line to be executed next 53

 FILE.EOF() Check if end of read-in file has been reached 53

 FILE.EOFLASTREAD() Check if last read from file reached the end of the file 54

 FILE.EXIST() Check if file exists 55

 FILE.NEWHANDLE() Get next free handle 55

 FILE.OPEN() Check if file is open 56

 FILE.SUM() Get checksum from a file 56

 FILE.TYPE() File type of loaded file 56

 FORMAT Functions .. 58

 In This Section 58

 FORMAT.BINary() Numeric to binary value (leading spaces) 58

 FORMAT.CHAR() Numeric to ASCII character (fixed length) 59

 FORMAT.Decimal() Numeric to string (leading spaces) 60

 FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces) 61

 FORMAT.DecimalUZ() Numeric to unsigned decimal as string (leading zeros) 62
PowerView Function Reference | 4©1989-2024 Lauterbach

 FORMAT.FLOAT() Floating point value to string 63

 FORMAT.HEX() Numeric to hex (leading zeros) 64

 FORMAT.STRing() Output string with fixed length 65

 FORMAT.TIME() Time to string (leading spaces) 66

 FORMAT.UDECIMAL() Refer to FORMAT.DecimalU() 66

 FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ() 67

 FORMAT.UnixTime() Format Unix timestamps 67

 FOUND Functions .. 71

 In This Section 71

 FOUND() TRUE() if search item was found 71

 FOUND.COUNT() Number of occurrences found 72

 GDB Function (TRACE32 as GDB Back-End) .. 73

 GDB.PORT() Port number for communication via GDB interface 73

 HELP Function .. 74

 HELP.MESSAGE() Help search item 74

 HOST Functions ... 75

 HOSTID() Host ID 75

 HOSTIP() Host IP address 75

 IFCONFIG and IFTEST Functions ... 76

 In This Section 76

 IFCONFIG.COLLISIONS() Collisions since start-up 76

 IFCONFIG.CONFIGURATION() Connection type 77

 IFCONFIG.DEVICENAME() Name of TRACE32 device 77

 IFCONFIG.ERRORS() Errors since start-up 77

 IFCONFIG.ETHernetADDRESS() MAC address of TRACE32 device 77

 IFCONFIG.IPADDRESS() IP address of TRACE32 device 78

 IFCONFIG.RESYNCS() Resyncs since start-up 78

 IFCONFIG.RETRIES() Retries since start-up 78

 IFTEST.DOWNLOAD() Download in KByte/sec 79

 IFTEST.LATENCY() Latency in microseconds 79

 IFTEST.UPLOAD() Upload in KByte/sec 79

 InterCom Functions ... 80

 In This Section 80

 InterCom.GetGlobalMacro() Exchange strings between PowerView instances 80

 InterCom.GetPracticeState() PRACTICE run-state on other instance 81

 InterCom.NAME() InterCom name of this TRACE32 instance 81

 InterCom.PING() Check if ping is successful 82

 InterCom.PODPORT() Port number of any TRACE32 instance 83

 InterCom.PODPORTNAME() InterCom name of any TRACE32 instance 84

 InterCom.PODPORTNUMBER() Number of TRACE32 instances 85

 InterCom.PORT() Port number of this TRACE32 instance 86
PowerView Function Reference | 5©1989-2024 Lauterbach

 LICENSE Functions .. 87

 In This Section 87

 LICENSE.DATE() Expiration date of maintenance contract 87

 LICENSE.FAMILY() Name of the CPU family license 87

 LICENSE.FEATURES() List of features licensed 88

 LICENSE.getINDEX() Index of maintenance contract 88

 LICENSE.GRANTED() License state 89

 LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware 89

 LICENSE.MSERIAL() Serial number of the maintenance contract 90

 LICENSE.MULTICORE() Check if multicore debugging is licensed 90

 LICENSE.RequiredForCPU() License required for selected CPU 90

 LICENSE.SERIAL() Serial number of debug cable 91

 LOG Function ... 92

 LOG.DO.FILE() Get log file used by LOG.DO 92

 Mathematical Functions .. 93

 In This Section 93

 math.ABS() Absolute value of decimal value 93

 math.FABS() Absolute value of floating point number 93

 math.FCOS() Cosine of an angle given in radian 94

 math.FEXP() Exponentiation with base e (Euler's number) 94

 math.FEXP10() Exponentiation with base 10 94

 math.FINF() Positive infinity 94

 math.FLOG() Natural logarithm of given value 95

 math.FLOG10() Logarithm to base 10 of given value 95

 math.FMAX() Return the larger one of two floating point values 95

 math.FMIN() Return the smaller one of two floating point values 96

 math.FMOD() Floating-Point Modulus 96

 math.FNAN() Not a number value 97

 math.FPOW() Y-th power of base x 97

 math.FSIN() Sine of an angle given in radian 97

 math.FSQRT() Square-root of given value 97

 math.MAX() Return the larger one of two decimal values 98

 math.MIN() Return the smaller one of two decimal values 98

 math.SIGN() Return -1 or +1 depending on argument 98

 math.SIGNUM() Return -1 or 0 or +1 depending on argument 99

 math.TimeMAX() Return the larger one of two time values 99

 math.TimeMIN() Return the smaller one of two time values 99

 MENU Function ... 101

 MENU.EXIST() Check if menu name exists 101

 NODENAME Function .. 102

 NODENAME() Node name of connected TRACE32 device 102

 OS Functions .. 103
PowerView Function Reference | 6©1989-2024 Lauterbach

 In This Section 103

 OS.DIR() Check if directory exists 104

 OS.DIR.ACCESS() Access rights to directory 104

 OS.ENV() Value of OS environment variable 105

 OS.FILE.readable() Check if file can be opened for reading 106

 OS.FILE.ABSPATH() Absolute path to file or directory 106

 OS.FILE.ACCESS() Access rights to file 107

 OS.FILE.BASENAME() Strip directory and suffix from filenames 108

 OS.FILE.DATE() Modification date and timestamp of file 108

 OS.FILE.DATE2() Modification date of file 109

 OS.FILE.EXIST() Check if file exists 109

 OS.FILE.EXTENSION() File name extension 109

 OS.FILE.JOINPATH() Join multiple paths 110

 OS.FILE.LINK() Real file name of file link 111

 OS.FILE.NAME() Extract file name from path 112

 OS.FILE.PATH() Return path of file 113

 OS.FILE.REALPATH() Canonical absolute path to file or directory 113

 OS.FILE.SIZE() File size in bytes 114

 OS.FILE.TIME() Modification timestamp of file 114

 OS.FILE.UnixTime() Unix timestamp of file 115

 OS.FIRSTFILE() First file name matching a pattern 116

 OS.ID() User ID of TRACE32 instance 117

 OS.NAME() Basic name of operating system 118

 OS.NEXTFILE() Next file name matching a pattern 119

 OS.PORTAVAILABLE.TCP() Check if TCP port is used 119

 OS.PORTAVAILABLE.UDP() Check if UDP port is used 120

 OS.PresentConfigurationFile() Name of used TRACE32 configuration file 120

 OS.PresentDemoDirectory() Demo directory for the current architecture 121

 OS.PresentExecutableDirectory() Directory of current TRACE32 exe. 121

 OS.PresentExecutableFile() Path and file name of current TRACE32 exe. 121

 OS.PresentHomeDirectory() Path of the home directory 122

 OS.PresentHELPDirectory() Path of the TRACE32 online help directory 122

 OS.PresentLicenseFile() Current TRACE32 license file 122

 OS.PresentPracticeDirectory() Directory of currently executed script 123

 OS.PresentPracticeFile() Path and file name of currently executed script 123

 OS.PresentSystemDirectory() TRACE32 system directory 123

 OS.PresentTemporaryDirectory() TRACE32 temporary directory 124

 OS.PresentWorkingDirectory() Current working directory 124

 OS.RETURN() Return code of the last executed operating system command 125

 OS.TIMER() OS timer in milliseconds 125

 OS.TMPFILE() Name for a temporary file 125

 OS.VERSION() Type of the host operating system 127

 OS.Window.LINE() Get line from an OS.Window window 130
PowerView Function Reference | 7©1989-2024 Lauterbach

 PATH Functions ... 131

 In This Section 131

 PATH.NUMBER() Number of path entries 131

 PATH.PATH() Search path entry 131

 ProcessID Function .. 133

 ProcessID() Process identifier of a TRACE32 PowerView instance 133

 PRACTICE Functions ... 134

 In This Section 134

 PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO 134

 PRACTICE.ARG.SIZE() Number of passed or returned arguments 135

 PRACTICE.CALLER.FILE() File name of the script/subscript caller 136

 PRACTICE.CALLER.LINE() Line number in caller script 136

 PRACTICE.CoMmanD.AVAILable() Check if command is available 137

 PRACTICE.FUNCtion.AVAILable() Check if function is available 138

 PRINTER Function ... 139

 PRINTER.FILENAME() Path and file name of next print operation 139

 RADIX Function .. 140

 RADIX() Current radix setting 140

 RANDOM Functions ... 141

 RANDOM() Pseudo random number 141

 RANDOM.RANGE() Pseudo random number from specified range 141

 RANDOM.RANGE.HEX() Pseudo hex random number from specified range 142

 RCL Function .. 143

 RCL.PORT() UDP Port number of remote API interface 143

 RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP 143

 RCL.TCP.PORT() TCP Port number of remote API interface 144

 SOFTWARE Functions ... 145

 In This Section 145

 SOFTWARE.64BIT() Check if TRACE32 executable is 64-bit 145

 SOFTWARE.BUILD() Upper build number 145

 SOFTWARE.BUILD.BASE() Lower build number 145

 SOFTWARE.VERSION() Release build or nightly build, etc. 146

 STRing Functions ... 147

 In This Section 147

 STRing.CHAR() Extract a character 147

 STRing.ComPare() Check if string matches pattern 148

 STRing.COUNT() Substring occurrences 148

 STRing.CUT() Cut string from left or right 149

 STRing.ESCapeQuotes() Double quote character inside string 149

 STRing.FIND() Check if search characters are found within string 150

 STRing.LENgth() Length of string 150
PowerView Function Reference | 8©1989-2024 Lauterbach

 STRing.LoWeR() String to lowercase 151

 STRing.MID() Extract part of string 151

 STRing.Replace() Modified string after search operation 152

 STRing.SCAN() Offset of the found string 153

 STRing.SCANAndExtract() Extract remaining string after search string 154

 STRing.SCANBack() Offset of the found string 155

 STRing.SPLIT() Return element from string list 156

 STRing.TOKEN() Extract token from string 159

 STRing.TRIM() String without leading and trailing whitespaces 161

 STRing.UPpeR() String to uppercase 162

 TCF Functions (TRACE32 as TCF Agent) .. 163

 In This Section 163

 TCF.PORT() Port number of TCF interface 163

 TCF.DISCOVERY() Check if TCF discovery is enabled 163

 TEST Function .. 164

 TEST.TIMEISVALID() Check if time value is valid 164

 TIMEOUT Function ... 165

 TIMEOUT() Check if command was fully executed 165

 TITLE Function ... 167

 TITLE() Caption of the TRACE32 main window 167

 TRUE Function ... 168

 TRUE() Boolean expression 168

 WARNINGS Function ... 168

 WARNINGS() Check if warning occurred during command execution 168

 WINdow Functions ... 169

 In This Section 169

 WINdow.COMMAND() Command string displayed in window 169

 WINdow.EXIST() Check if window name exists 170

 WINdow.LIST() Generate a comma-separated list of window names 170

 WINdow.POSition() Information on window position and dimension 171

 WINPAGE.CURRENT() Get name of currently selected window page 172

 WINPAGE.EXIST() Check if window page exists 172

 WINPAGE.LIST() Generate comma-separated list of page names 173
PowerView Function Reference | 9©1989-2024 Lauterbach

PowerView Function Reference

Version 13-May-2024

History

03-May-2024 New function group, ‘CONNECTION Functions’.

03-Mar-2024 New function FILE.NEWHANDLE().

31-Jan-2023 Solaris was removed as supported host OS.

11-Nov-2022 New function STRing.ESCapeQuotes().

07-Apr-2022 New function RCL.TCP.NrUsedCons().

07-Apr-2022 New function WINPAGE.LIST().

06-Apr-2022 New function WINPAGE.CURRENT().

05-Apr-2022 New function WINdow.LIST().

28-Mar-2022 New functions: EVAL.ADDRESS(), EVAL.BOOLEAN(), EVAL.FLOAT(), and EVAL.PARAM().

03-Mar-2022 New functions: CONVert.LINEAR11TOFLOAT() and CONVert.LINEAR16TOFLOAT().

20-Jan-2022 New function: STRing.TOKEN().
PowerView Function Reference | 10©1989-2024 Lauterbach

In This Document

This document lists all the host-related functions. These functions return information about the operating
system and the TRACE32 PowerView GUI.

Each system has additional system-specific functions:

• General Function Reference

• Stimuli Generator Function Reference

The following generic functions are available for all systems. The capital letters represent the short form of
the function. Any function name can be used in its long or short form.

For example: CONVert.SignedLong() can be abbreviated to CONV.SL()

For more information about the long and short form, see “Long Form and Short Form of Commands and
Functions” (ide_user.pdf).
PowerView Function Reference | 11©1989-2024 Lauterbach

AREA Functions

This figure provides an overview of the return values of some of the functions. For explanations of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ AREA ❏ AREA.COUNT() ❏ AREA.EXIST() ❏ AREA.LINE()
❏ AREA.MAXCOUNT() ❏ AREA.NAME() ❏ AREA.SELECTed() ❏ AREA.SIZE.COLUMNS()
❏ AREA.SIZE.LINES()

AREA.COUNT() Number of existing message areas
[build 79795 - DVD 02/2017]

Returns the number of message areas which exist in the TRACE32 instance. After starting TRACE32 you
will have just one message area, but you can create additional message areas with the command
AREA.Create.

Return Value Type: Decimal value.

AREA.EXIST() Check if message area exists
[build 79795 - DVD 02/2017]

Returns TRUE if a message area with the given name exists.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: AREA.COUNT()

Syntax: AREA.EXIST(<area_name>)

AREA.NAME()

AREA.SIZE.COLUMNS()

AREA.SIZE.LINES()

AREA.SELECTed()
PowerView Function Reference | 12©1989-2024 Lauterbach

AREA.LINE() Extract line from message area
[build 79895 - DVD 02/2017]

Returns one line from a message area.

In order to use the function, you do not need to open the AREA window of a message area. You just need to
open an AREA window if you want to display the message area output on screen.

Parameter and Description:

Return Value Type: String.

AREA.MAXCOUNT() Maximum number of message areas
[build 79795 - DVD 02/2017]

Returns the maximum number of message areas which can be created in your version of TRACE32.

Return Value Type: Decimal value.

Syntax: AREA.LINE(<area_name>,<line>)

A Positive numbers for <line> starting with 1 identify lines from the top of the message area.

B 0 and negative numbers for <line> identify lines from the bottom of the message area.

<area_name> Parameter Type: String.

<line> Parameter Type: Decimal value.

Syntax: AREA.MAXCOUNT()

B::AREA
...
...
...

...

...

...

1
2
3

-2
-1
0

A

B

PowerView Function Reference | 13©1989-2024 Lauterbach

AREA.NAME() Names of existing message areas
[build 79795 - DVD 02/2017] [Go to figure]

Returns the name of a message area specified by an <index>. The <index> corresponds to the line number
in the AREA.List window. The <index> of the first line is 0.

Parameter Type: Decimal value.

Return Value Type: String.

Example: In addition to the default message area A000, two more message areas are created. The
function AREA.NAME() is then used to return the name of the message area that has the <index> 2.

AREA.SELECTed() Name of active message area
[build 80344 - DVD 02/2017] [Go to figure]

Returns the area name of the currently active message area. A message area is made the active message
area with the command AREA.Select.

Return Value Type: String.

Syntax: AREA.NAME(<index>)

AREA.Create ephone ;create the message areas 'ephone'
AREA.Create testlog ;and 'testlog'
AREA.List ;overview of existing message areas

AREA.Select A000 ;select the default message area A000 for output
AREA.view A000 ;display the AREA window A000
PRINT AREA.NAME(2) ;print the AREA window name that has the index 2
 ;to the AREA window A000
 ;(here: 'testlog', see AREA.List window)

Syntax: AREA.SELECTed()
PowerView Function Reference | 14©1989-2024 Lauterbach

AREA.SIZE.COLUMNS() Columns of a message area
[build 80344 - DVD 02/2017] [Go to figure]

Returns the number of columns a message area was created with. You can specify the number of columns
with the AREA.Create command.

Parameter Type: String.

Return Value Type: Decimal value.

AREA.SIZE.LINES() Lines of a message area
[build 80344 - DVD 02/2017] [Go to figure]

Returns the number of lines a message area was created with. You can specify the number of lines with the
AREA.Create command.

Parameter Type: String.

Return Value Type: Decimal value.

Syntax: AREA.SIZE.COLUMNS(<area_name>)

Syntax: AREA.SIZE.LINES(<area_name>)
PowerView Function Reference | 15©1989-2024 Lauterbach

CLOCK Functions

The CLOCK.*() functions have been renamed to DATE.*() functions, see “DATE Functions”, page 37.
PowerView Function Reference | 16©1989-2024 Lauterbach

CONFIG Function

CONFIG.SCREEN() Check if screen output is switched on
[build 22971 - DVD 11/2010]

Returns FALSE if the screen output is switched off inside the file config.t32 with SCREEN=OFF

Return Value Type: Boolean.

Syntax: CONFIG.SCREEN()
PowerView Function Reference | 17©1989-2024 Lauterbach

CONNECTION Functions

CONNECTION.DEVice.IndexByName() Get device index
[build 161831 - DVD 02/2024]

Returns device index of the debug module with the specified device name. If there is no debug module with
this device name in the list of detected debug modules, the function returns -1.

Parameter Type: String.

Return Value Type: Decimal value.

CONNECTION.DEVice.IndexBySerialNumber() Get device index
[build 161831 - DVD 02/2024]

Returns device index of the debug module with the specified device serial number. If there is no debug
module with this device serial number in the list of detected debug modules, the function returns -1.

Parameter Type: String.

Return Value Type: Decimal value.

CONNECTION.DEVice.InUse() Debug module currently in use
[build 161831 - DVD 02/2024]

Returns TRUE if the detected debug module at <index> is currently in use by this or another PowerView
instance.

Parameter Type: Decimal value.

Return Value Type: String.

Syntax: CONNECTION.DEVice.IndexByName("<device_name>")

Syntax: CONNECTION.DEVice.IndexBySerialNumber("<device_serial_number>")

Syntax: CONNECTION.DEVice.InUse(<index>)
PowerView Function Reference | 18©1989-2024 Lauterbach

CONNECTION.DEVice.NAME() Get device name of debug module
[build 161831 - DVD 02/2024]

Returns the device name of the detected debug module at <index>.

Parameter Type: Decimal value.

Return Value Type: String.

Example: Print list of USB debug module device names

CONNECTION.DEVice.Number() Number of detected debug modules
[build 161831 - DVD 02/2024]

Returns the number of found debug modules.

Return Value Type: Decimal value.

Syntax: CONNECTION.DEVice.NAME(<index>)

// Select Interface
CONNECTION.USB.scan ON

// Find debug module(s)
CONNECTION.FindDEVices

LOCAL &num_devices &i
&num_devices=CONNECTION.DEVice.Number()

PRINTF "%i debug modules(s) found. Device names are:" &num_devices
&i=0
WHILE &i<&num_devices
(
 PRINTF "%i: %s" &i CONNECTION.DEVice.NAME(&i)
 &i=&i+1
)

Syntax: CONNECTION.DEVice.Number()
PowerView Function Reference | 19©1989-2024 Lauterbach

Example: Print number of TRAC32 debug modules which are connected via USB.

CONNECTION.DEVice.PORT() Get host connection port of debug module
[build 161831 - DVD 02/2024]

Returns the device's host connection port name of the detected debug module at index <index> as string.

Parameter Type: Decimal value.

Return Value Type: String.

Return Value and Description:

CONNECTION.DEVice.SerialNumber() Get device serial number
[build 161831 - DVD 02/2024]

Returns the serial number of the detected debug module at <index>.

Parameter Type: Decimal value.

Return Value Type: String.

// Select Interface
CONNECTION.USB.scan ON

// Find debug module(s)
CONNECTION.FindDEVices

LOCAL &num_devices &i
&num_devices=CONNECTION.DEVice.Number()
PRINTF "%i USB debug modules(s) found." &num_devices

Syntax: CONNECTION.DEVice.PORT(<index>)

USB USB Port

ETH Ethernet connection

TCPUSB USB Port of remote PC

Syntax: CONNECTION.DEVice.SerialNumber(<index>)
PowerView Function Reference | 20©1989-2024 Lauterbach

CONNECTION.GetDriverError() Get driver error of last connection attempt
[build 164324 - DVD 02/2024]

Returns the driver error message, if the last call of command CONNECTION.ESTABLISH aborted with
error. If no line numbers are given, the function will return the full error message.

Parameter Type: Decimal value.

Return Value Type: String.

CONNECTION.HOSTMCI.TestMciServer() Get MCI server state information
[build 167607 - DVD 09/2024]

Returns the state of the MCI server at the given hostname and port number.

Parameter Type: String.

Return Value Type: String.

Return Value and Description:

CONNECTION.INTerface.Available() Check connection interface availability
[build 161831 - DVD 02/2024]

Returns TRUE, if the specific interface name is supported for the current PowerView instance's target
architecture. See command CONNECTION.SELect for a list of available interface names.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: CONNECTION.GetDriverError([<first_line_nr>[,<last_line_nr>]])

Syntax: CONNECTION.HOSTMCI.TestMciServer(<hostname:port>)

OK MCI server is accessible and ready to use.

ALREADY_IN_USE MCI server is accessible, but currently in use by another PowerView
instance.

VERSION_MISMATCH MCI server is accessible, but needs to be updated to a newer version.

ERROR MCI server is not running or not accessible.

Syntax: CONNECTION.INTerface.Available("<interface_name>")
PowerView Function Reference | 21©1989-2024 Lauterbach

CONNECTION.STATE.ERROR() Failed to establish connection
[build 161831 - DVD 02/2024]

Returns TRUE if the last call of command CONNECTION.ESTABLISH aborted with error.

Return Value Type: Boolean.

CONNECTION.STATE.Interactive() Interactive connection state
[build 158069 - DVD 09/2023]

Returns TRUE if the PowerView instance is in Interactive Connection Mode (“Interactive Connection
Mode” in PowerView User’s Guide, page 12 (ide_user.pdf)).
If the function returns false, the PowerView instance is already connected.

Return Value Type: Boolean.

Syntax: CONNECTION.STATE.ERROR()

Syntax: CONNECTION.STATE.Interactive()
PowerView Function Reference | 22©1989-2024 Lauterbach

CONVert Functions

In This Section

See also

❏ CONVert.ADDRESSTODUALPORT() ❏ CONVert.ADDRESSTONONSECURE()
❏ CONVert.ADDRESSTOSECURE() ❏ CONVert.BOOLTOINT()
❏ CONVert.CHAR() ❏ CONVert.FLOATTOINT()
❏ CONVert.HEXTOINT() ❏ CONVert.INTTOBOOL()
❏ CONVert.INTTOFLOAT() ❏ CONVert.INTTOHEX()
❏ CONVert.INTTOMASK() ❏ CONVert.LINEAR11TOFLOAT()
❏ CONVert.LINEAR16TOFLOAT() ❏ CONVert.MASKMTOINT()
❏ CONVert.MASKTOINT() ❏ CONVert.OCTaltoint()
❏ CONVert.SignedByte() ❏ CONVert.SignedLong()
❏ CONVert.SignedWord() ❏ CONVert.TIMEMSTOINT()
❏ CONVert.TIMENSTOINT() ❏ CONVert.TIMERAWTOINT()
❏ CONVert.TIMESTOINT() ❏ CONVert.TIMEUSTOINT()
❏ CONVert.TOLOWER() ❏ CONVert.TOUPPER()

CONVert.ADDRESSTODUALPORT() Dualport access class
[build 75614 - DVD 02/2016]

Converts an address into the dualport access class if possible. If the access class was already a dualport
access class, the originally specified access class is returned.

Parameter Type: Address.

Return Value Type: Address.

Example:

Syntax: CONVert.ADDRESSTODUALPORT(<address>)

PRINT ADDRESS.ADDRESSTODUALPORT(D:0x1000) ; returns ED:0x1000
PRINT ADDRESS.ADDRESSTODUALPORT(ED:0x1000) ; returns ED:0x1000
PRINT ADDRESS.ADDRESSTODUALPORT(ETB:0x0) ; returns EETB:0x0
PRINT ADDRESS.ADDRESSTODUALPORT(EETB:0x0) ; returns EETB:0x0
PowerView Function Reference | 23©1989-2024 Lauterbach

CONVert.ADDRESSTONONSECURE() Non-secure access class
32-bit and 64-bit ARM cores [build 75614 - DVD 02/2016]

Converts an address into the non-secure access class if possible.

Parameter Type: Address.

Return Value Type: Address.

Example:

CONVert.ADDRESSTOSECURE() Secure access class
32-bit and 64-bit ARM cores [build 75614 - DVD 02/2016]

Converts an address into the secure access class if possible.

Parameter Type: Address.

Return Value Type: Address.

Syntax: CONVert.ADDRESSTONONSECURE(<address>)

PRINT CONVert.ADDRESSTONONSECURE(AHB:0x0) ; returns NAHB:0x0
PRINT CONVert.ADDRESSTONONSECURE(ZAHB:0x0) ; returns NAHB:0x0
PRINT CONVert.ADDRESSTONONSECURE(NAHB:0x0) ; returns NAHB:0x0

Syntax: CONVert.ADDRESSTOSECURE(<address>)
PowerView Function Reference | 24©1989-2024 Lauterbach

CONvert.BOOLTOINT() Boolean to integer
[build 21439 - DVD 04/2010]

Converts a boolean value to an integer.

Parameter Type: Boolean.

Return Value Type: Hex value.

• TRUE becomes 1

• FALSE becomes 0

CONVert.CHAR() Integer to ASCII character

Converts an integer to an ASCII character. For values from 0 to 127, the result is an ASCII character on
all operating systems. For values from 128 to 255, the result depends on the font setting in the
config.t32. On Windows, the result additionally depends on the active console code page.

Parameter Type: Hex or decimal value.

Return Value Type: ASCII value.

Example: If the number of the active console code page is 850, then the integers 0xA9 or 169. are
converted to the copyright character.

Syntax: CONVert.BOOLTOINT(<bool>)

Syntax: CONVert.CHAR(<integer>)

;the copyright (c) is returned as an ASCII value
PRINT %COLOR.TEAL CONVert.CHAR(169.)
PRINT %COLOR.RED CONVert.CHAR(0xA9)

;an ASCII value can be converted to a string by concatenating the ASCII
;value with a string, an empty string in this example
PRINT ""+CONVert.CHAR(169.)
PowerView Function Reference | 25©1989-2024 Lauterbach

CONVert.FLOATTOINT() Float to integer

Converts a float value to an integer value.

Parameter Type: Float.

Return Value Type: Decimal value.

Example:

CONVert.HEXTOINT() Hex to integer
[build 64298 - DVD 09/2015]

Converts a hex value to an integer value. The function is the counterpart of CONVert.INTTOHEX().

Parameter Type: Hex value.

Return Value Type: Decimal value.

Examples:

Instead of using CONVert.HEXTOINT() you can also add 0. to a hex value to get an integer value.

Syntax: CONVert.FLOATTOINT(<float>)

PRINT CONVert.FLOATTOINT(1.8887) ; result 1

Syntax: CONVert.HEXTOINT(<hex>)

PRINT CONVert.HEXTOINT(0x42) ; result 66

PRINT 0x42+0. ; the result is also 66
PowerView Function Reference | 26©1989-2024 Lauterbach

CONVert.INTTOBOOL() Integer to boolean
[build 50832 - DVD 02/2014]

Converts an integer to a boolean value.

Parameter Type: Decimal or hex value.

Return Value Type: Boolean.

• FALSE if value==0

• TRUE if value!=0

CONVert.INTTOFLOAT() Integer to floating point value
[build 64326 - DVD 09/2015]

Converts an integer to a floating point value. The function is the counterpart of
CONVert.FLOATTOINT().

Instead of using CONVert.INTTOFLOAT(), you can also add 0.0 to an integer value to get a floating
point value.

Parameter Type: Decimal or hex value.

Return Value Type: Float.

Examples:

Syntax: CONVert.INTTOBOOL(<integer>)

Syntax: CONVert.INTTOFLOAT(<integer>)

PRINT "<integer> <float>"
PRINT "11. == " CONVert.INTTOFLOAT(11.)
PRINT "0xB == " CONVert.INTTOFLOAT(0xB)
PRINT "0y1011 == " CONVert.INTTOFLOAT(0y1011)
PowerView Function Reference | 27©1989-2024 Lauterbach

CONVert.INTTOHEX() Integer to hex
[build 50832 - DVD 02/2014]

Converts an integer to a hex value.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:

CONVert.INTTOMASK() Compose bit-mask from integer value and mask

In TRACE32, there is a special data type which realize masks. Bit and hex masks differ only in the input
format. The function converts two integers to a bitmask.
The first parameter stands for the value bits and the second parameter defines the mask bits.

Parameter and Description:

Return Value Type: Bit mask.

Syntax: CONVert.INTTOHEX(<integer>)

PRINT %COLOR.RED "<integer> <hex>"
PRINT "12. == " CONVert.INTTOHEX(12.)
PRINT "0xC == " CONVert.INTTOHEX(0xC)
PRINT "0y1100 == " CONVert.INTTOHEX(0y1100)

Syntax: CONVert.INTTOMASK(<value>,<mask>)

<value> Parameter Type: Decimal or hex or binary value.

<mask> Parameter Type: Decimal or hex or binary value.
PowerView Function Reference | 28©1989-2024 Lauterbach

Examples:

CONVert.LINEAR11TOFLOAT() LINEAR11 to float
[build 128910 - DVD 02/2021]

Converts a LINEAR11 (11bit signed mantissa / 5bit signed exponent) PMBus value to a floating point
value.

Parameter Type: Decimal value.

Return Value Type: Float.

CONVert.LINEAR16TOFLOAT() LINEAR16 to float
[build 128910 - DVD 02/2021]

Converts a LINEAR16 (16bit signed mantissa / 5 bit signed exponent) PMBus value to a floating point
value.

Parameter Type: Decimal value.

Return Value Type: Float.

; all examples represent the same mask value and print 0y0101xxxx
; bitmask: 0y0101XXXX
; hexmask: 0x5X
; bits 6 and 4 must be 1
; bits 3…0 are don’t care
PRINT 0x5X
PRINT CONVert.INTTOMASK(0y01010000,0y00001111)
PRINT CONVert.INTTOMASK(0x50,0x0f)
PRINT CONVert.INTTOMASK(0y01010000,0x0f)
PRINT CONVert.INTTOMASK(0x50,0y00001111)
PRINT CONVert.INTTOMASK(0y01010000,15.)
PRINT CONVert.INTTOMASK(80.,0y00001111)

Syntax: CONVert.LINEAR11TOFLOAT(<value>)

Syntax: CONVert.LINEAR16TOFLOAT(<mantssa>,<exponent>)
PowerView Function Reference | 29©1989-2024 Lauterbach

CONVert.MASKMTOINT() Bits set to don't-care in given bit-mask

Converts a mask to an integer and returns the mask part.

Parameter Type: Bit or hex mask.

Return Value Type: Hex value.

Examples:

Syntax: CONVert.MASKMTOINT(<mask_value>)

; bitmask: 0y0101XXXX
; hexmask: 0x5X
; bits 6 and 4 must be 1
; bits 3…0 are don’t care
PRINT CONVert.MASKMTOINT(0y0101XXXX) ; prints 0f
PRINT CONVert.MASKMTOINT(0x5X) ; prints 0f

; bitmask: 0y01XXXX10
; bits 6 and 2 must be 1
; bits 5…2 are don’t care
PRINT CONVert.MASKMTOINT(0y01XXXX10) ; prints 3c
PowerView Function Reference | 30©1989-2024 Lauterbach

CONVert.MASKTOINT() Bits set to 1 in given bit-mask

Converts a bitmask to an integer and CONVert.MASKTOINT() returns the value part.

Parameter Type: Bit or hex mask.

Return Value Type: Hex value.

Examples:

CONVert.OCTaltoint() Octal to decimal
[build 46260 - DVD 08/2013]

Converts a string of octal digits into a number.

Parameter Type: String.

Return Value Type: Decimal value.

Examples:

Syntax: CONVert.MASKTOINT(<value>)

; bitmask: 0y0101XXXX
; hexmask: 0x5X
; bits 6 and 4 must be 1
; bits 3…0 are don’t care
PRINT CONVert.MASKTOINT(0y0101XXXX) ; prints 50
PRINT CONVert.MASKTOINT(0x5X) ; prints 50

; bitmask: 0y01XXXX10
; bits 6 and 2 must be 1
; bits 5…2 are don’t care
PRINT CONVert.MASKTOINT(0y01XXXX10) ; prints 42

Syntax: CONVert.OCTaltoint("<string>")

PRINT CONVert.OCTaltoint("71") ; prints 57

PRINT "0y" %BINary CONVert.OCTaltoint("71") ; prints 0y00111001
PowerView Function Reference | 31©1989-2024 Lauterbach

CONVert.SignedByte() 1 byte to 8 bytes

Converts a byte to a quad word with sign extension. A quad word has eight bytes.
Only the lowest byte (B0) from <value> is evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:

CONVert.SignedLong() 4 bytes to 8 bytes

Converts a long word (four bytes) to a quad word with sign extension. A quad word has eight bytes.
Only the lowest four bytes (B0…B3) from <value> are evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:

Syntax: CONVert.SignedByte(<value>)

PRINT CONVert.SignedByte(0x70) ; result 70
PRINT CONVert.SignedByte(0x80) ; result 0ffffffffffffff80
PRINT CONVert.SignedByte(0x12345670) ; result 70
PRINT CONVert.SignedByte(0x12345680) ; result 0ffffffffffffff80
PRINT CONVert.SignedByte(0y101010000000) ; result 0ffffffffffffff80

Data.dump Register(bp)+CONVert.SignedByte(Register(bx))

Syntax: CONVert.SignedLong(<value>)

PRINT CONVert.SignedLong(0x7766554433221100) ; result 33221100
PRINT CONVert.SignedLong(0x7766554483221100) ; result 0ffffffff83221100
PRINT CONVert.SignedLong(0x70561234) ; result 70561234
PRINT CONVert.SignedLong(0x80561234) ; result 0ffffffff80561234
PowerView Function Reference | 32©1989-2024 Lauterbach

CONVert.SignedWord() 2 bytes to 8 bytes

Converts a word (two bytes) to a quad word with sign extension. A quad word has eight bytes.
Only the lowest two bytes (B0 and B1) from <value> are evaluated and all higher bytes will be ignored.

Parameter Type: Decimal or hex or binary value.

Return Value Type: Hex value.

Examples:

CONVert.TIMEMSTOINT() Time to milliseconds

Converts <time> to milliseconds.

Parameter Type: Time value.

Return Value Type: Decimal value.

Example:

Syntax: CONVert.SignedWord(<value>)

PRINT CONVert.SignedWord(0x7012) ; result 7012
PRINT CONVert.SignedWord(0x8012) ; result 0ffffffffffff8012
PRINT CONVert.SignedWord(0x12347056) ; result 7056
PRINT CONVert.SignedWord(0x12348056) ; result 0ffffffffffff8056
PRINT CONVert.SignedWord(0y00010010001101001000000001010110)
 ; result 0ffffffffffff8056

Data.dump Register(bp)+CONVert.SignedWord(Register(bx))

Syntax: CONVert.TIMEMSTOINT(<time>)

PRINT CONVert.TIMEMSTOINT(1.8887s) ; result 1888
PowerView Function Reference | 33©1989-2024 Lauterbach

CONVert.TIMENSTOINT() Time to nanoseconds
[build 66884 - DVD 02/2016]

Converts <time> to nano seconds.

Parameter Type: Time value.

Return Value Type: Decimal value.

Example:

CONVert.TIMERAWTOINT() Time to TRACE32 timer ticks
[build 110672 - DVD 09/2019]

Converts <time> to TRACE32 timer ticks. One tick = 78.125ps

Parameter Type: Time value.

Return Value Type: Hex value.

CONVert.TIMESTOINT() Time to seconds

Converts <time> to seconds.

Parameter Type: Time value.

Return Value Type: Decimal value.

Example:

Syntax: CONVert.TIMENSTOINT(<time>)

PRINT CONVert.TIMENSTOINT(1.8887s) ; result 1888700000

Syntax: CONVert.TIMERAWTOINT(<time>)

Syntax: CONVert.TIMESTOINT(<time>)

PRINT CONVert.TIMESTOINT(150000ms) ; result 150
PowerView Function Reference | 34©1989-2024 Lauterbach

CONVert.TIMEUSTOINT() Time to microseconds

Converts <time> to micro seconds.

Parameter Type: Time value.

Return Value Type: Decimal value.

Example:

Syntax: CONVert.TIMEUSTOINT(<time>)

PRINT CONVert.TIMEUSTOINT(20.1234s) ; result 20123400
PowerView Function Reference | 35©1989-2024 Lauterbach

CONVert.TOLOWER() String to lower case
[build 27143 - DVD 06/2011]

Converts a string to lower case.

Parameter Type: String.

Return Value Type: String.

Example:

CONVert.TOUPPER() String to upper case

Converts a string to upper case.

Parameter Type: String.

Return Value Type: String.

Example:

Syntax: CONVert.TOLOWER("<string>")

PRINT CONVert.TOLOWER("aBcDeF") ; result abcdef

Syntax: CONVert.TOUPPER("<string>")

PRINT CONVert.TOUPPER("aBcDeF") ; result ABCDEF
PowerView Function Reference | 36©1989-2024 Lauterbach

DATE Functions

In This Section

See also

■ DATE ❏ DATE.DATE() ❏ DATE.DAY() ❏ DATE.MakeUnixTime()
❏ DATE.MONTH() ❏ DATE.SECONDS() ❏ DATE.TIME() ❏ DATE.TimeZone()
❏ DATE.UnixTime() ❏ DATE.UnixTimeUS() ❏ DATE.utcOffset() ❏ DATE.YEAR()

DATE.DATE() Current date

Returns the current date.

Return Value Type: String.

Example:

DATE.DAY() Today’s date
[build 13598 - DVD 10/2008]

Returns the today’s date.

Return Value Type: Decimal value.

Syntax: DATE.DATE()
CLOCK.DATE() (deprecated)

;returns the current date, e.g. 5. Aug 2015
PRINT DATE.DATE()

;equivalent to the previous example:
PRINT FORMAT.UnixTime("j. M Y",DATE.UnixTime(),DATE.utcOffset())

Syntax: DATE.DAY()
CLOCK.DAY() (deprecated)
PowerView Function Reference | 37©1989-2024 Lauterbach

DATE.MakeUnixTime() Date to Unix timestamp
[build 64298 - DVD 09/2015]

Creates a Unix timestamp from a human readable date given in UTC. You can also use a local date, but then
you have to subtract your local offset from UTC afterwards, e.g. with DATE.utcOffset().

Parameter and Description:

Return Value Type: Decimal value.

Examples:

Syntax: DATE.MakeUnixTime(<year>,<month>,<day>,<hour>,<minute>,<second>)

<year> Parameter Type: Decimal value. Four-digit representation of a year (e.g.
2000. or 2004.).

<month> Parameter Type: Decimal value. Numeric representation of a month (1. …
12.).

<day> Parameter Type: Decimal value. Day of the month (1. … 31.).

<hour> Parameter Type: Decimal value. 24-hour format of an hour (0. … 23.).

<minute> Parameter Type: Decimal value. Minutes (0. … 59.)

<second> Parameter Type: Decimal value. Seconds (0. … 59.)

NOTE: Remember to append a dot so that the arguments are interpreted as decimal
constants.

;converts 21-July-2015, 12:45 given in UTC to the Unix time 1437482700
PRINT DATE.MakeUnixTime(2015.,7.,21.,12.,45.,0.)

;returns -11644473600.
PRINT DATE.MakeUnixTime(1601.,1.,1.,0.,0.,0.)

;returns the Unix time of last midnight
PRINT DATE.MakeUnixTime(DATE.YEAR(),DATE.MONTH(),DATE.DAY(),0.,0.,0.)
PowerView Function Reference | 38©1989-2024 Lauterbach

DATE.MONTH() Number of current month
[build 12210 - DVD 10/2008]

Returns the number of the current month (1 to 12).

Return Value Type: Decimal value.

DATE.SECONDS() Seconds since midnight

Returns the time since midnight in seconds.

Return Value Type: Decimal value.

DATE.TIME() Current time

Returns the current time.

Return Value Type: String.

Example:

Syntax: DATE.MONTH()
CLOCK.MONTH() (deprecated)

Syntax: DATE.SECONDS()
CLOCK.SECONDS() (deprecated)

Syntax: DATE.TIME()
CLOCK.TIME() (deprecated)

;returns the current time, e.g. 18:35:02
PRINT DATE.TIME()

;equivalent to the previous example:
PRINT FORMAT.UnixTime("H:i:s",DATE.UnixTime(),DATE.utcOffset())
PowerView Function Reference | 39©1989-2024 Lauterbach

DATE.TimeZone() Time zone identifier and hh:mm:ss

Returns a three to five letter time zone identifier and the UTC offset in hh:mm:ss. The UTC offset is
positive if the time zone is west of UTC and negative if east of UTC.

Return Value Type: String.

Example:

DATE.UnixTime() Seconds since Jan 1970
[build 64298 - DVD 09/2015]

Returns the time in UNIX format (in seconds since Jan 1970).

Return Value Type: Decimal value.

DATE.UnixTimeUS() Microseconds since Jan 1970
[build 115649 - DVD 02/2020]

Returns the elapsed Microseconds since the Unix epoch (1 January 1970 00:00:00 UTC) without leap
seconds.

Return Value Type: Decimal value.

Syntax: DATE.TimeZone()

PRINT DATE.TimeZone() ; returns: CEST-02:00:00

Syntax: DATE.UnixTime()
CLOCK.UNIX() (deprecated)

Syntax: DATE.UnixTimeUS()
PowerView Function Reference | 40©1989-2024 Lauterbach

DATE.utcOffset() Offset of current local time to UTC
[build 64298 - DVD 09/2015]

The offset of the current local time to UTC, including an offset caused by daylight saving time. As in ISO
8601, positive values are east of UTC. Negative values are west of UTC.

Return Value Type: Decimal value.

Example:

DATE.YEAR() Current year
[build 12210 - DVD 10/2008]

Returns the current year.

Return Value Type: Decimal value.

Syntax: DATE.utcOffset()

;prints 7200. during summer in central Europe
PRINT DATE.utcOffset()

;prints the current local time, e.g. 12:03:52
PRINT FORMAT.UnixTime("H:i:s",DATE.UnixTime(),DATE.utcOffset())

Syntax: DATE.YEAR()
CLOCK.YEAR() (deprecated)
PowerView Function Reference | 41©1989-2024 Lauterbach

DIALOG Functions

In This Section

See also

■ DIALOG ❏ DIALOG.BOOLEAN() ❏ DIALOG.EXIST() ❏ DIALOG.STRing()
❏ DIALOG.STRing2()

DIALOG.BOOLEAN() Current boolean value of checkbox

Returns the current value of a dialog element of the type boolean, e.g. a checkbox.

Parameter Type: String. A user-defined label identifying a dialog element.

Return Value Type: Boolean.

Example:

Syntax: DIALOG.BOOLEAN(<label>)

DIALOG.view
(; define checkbox
 POS 33. 2. 10.
HEX: CHECKBOX "HEX Value" "GOSUB SelectedOrCleared"
)
STOP

; <your_code>

SelectedOrCleared:
 ; checks whether the CHECKBOX with the label HEX was activated by the
 ; user or not

 IF DIALOG.BOOLEAN(HEX)==TRUE()
 PRINT "Selected"
 ELSE
 PRINT "Cleared"

RETURN
PowerView Function Reference | 42©1989-2024 Lauterbach

DIALOG.EXIST() Existence of dialog element
[build 25341 - DVD 02/2012]

Returns TRUE if a certain dialog element exists, FALSE otherwise.

Parameter Type: String. A user-defined label identifying a dialog element.

Return Value Type: Boolean.

Example:

Syntax: DIALOG.EXIST(<label>)

DIALOG
(
 NAME "MyDlg" ; name of dialog window
 POS 1. 0.25 10.
HEX: CHECKBOX "HEX Value" "" ; labeled checkbox, empty command
 POS 1. 1.5 10.
 BUTTON "Ok" "CONTinue" ; continue in script
 CLOSE
 (
 DIALOG.END ; close and destroy dialog window
 CONTinue ; continue in script
)
)
STOP
…
IF WINDOW.EXIST("MyDlg") ; check if dialog window still exists
(
 IF DIALOG.EXIST(“HEX”) ; check if label exists
 (
 PRINT "HEX value checked: " DIALOG.BOOLEAN("HEX”)
)
 DIALOG.END ; close dialog now
)
…
ENDDO
PowerView Function Reference | 43©1989-2024 Lauterbach

DIALOG.STRing() Current string value of dialog element, e.g. EDIT box

Returns the current string value of a dialog element, such as EDIT, DYNTEXT, or DYNLTEXT. If the
dialog element is a list that supports multiple selections, then DIALOG.STRing() returns the currently
selected values.

Parameter Type: String. User-defined label identifying a dialog element.

Return Value Type: String. Depending on the type of the dialog element, the string is an individual string or
a parameter array consisting of multiple comma-separated values.

Example 1: The function DIALOG.STRing() is used to check whether the user has entered a value in the
EDIT box or not.

Example 2: A user has made multiple selections in a LISTBOX, a dialog element that supports multiple
selections. Using the function DIALOG.STRing(), the selected values can be returned as a comma-
separated parameter array. In addition, the example shows how to loop through the elements of the
parameter array. In this example, the elements are file names of PRACTICE script test cases.

Syntax: DIALOG.STRing(<label>)

DIALOG.view
(
 POS 17. 2. 15. 1.
CE: EDIT "" ""
 POS 33. 2. 10.
HEX: CHECKBOX "HEX Value" ""
)
…
; checks whether the EDIT box labeled CE is empty or not
IF DIALOG.STRing(CE)!=""
…

A The dialog element LISTBOX is labeled myTESTS.

B Parameter array returned by DIALOG.STRing(myTESTS)+","

A

B

PowerView Function Reference | 44©1989-2024 Lauterbach

DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX

Retrieves the complete list of values from a list dialog element, e.g. from a LISTBOX, MLISTBOX,
DLISTBOX, and COMBOBOX.

Parameter Type: String. User-defined label identifying a list dialog element.

Return Value Type: String. The string is a parameter array containing all list items as comma-separated
values.

&list=DIALOG.STRing(myTESTS)+"," ;return the list of selected test
 ;cases (*.cmm) as a parameter array
AREA.view
PRINT "&list" ;print the list to the AREA window

;loop through the list of selected test cases and scan for the first
;comma-separator
WHILE STRing.SCAN("&list", ",", 0.)>-1.
(
 PRIVATE &testCase ;declare macro for WHILE block

 ;split list at the first comma-separator to get the first test case
 &testCase=STRing.Split("&list", ",", 0.)

 DO ~~\&testCase ;execute the first test case

 ;remove the first test case and its comma-separator from the list
 ;by replacing test case and comma-separator with an empty string ""
 &list=STRing.Replace("&list", "&testCase,", "", 0.)
)

Syntax: DIALOG.STRing2(<label>)
PowerView Function Reference | 45©1989-2024 Lauterbach

ERROR Functions

The ERROR functions give access to an information structure of PRACTICE which contains data of the last
occurred error.

The error structure can be cleared by the command ERROR.RESet.

In This Section

See also

❏ ERROR.ADDRESS() ❏ ERROR.CMDLINE() ❏ ERROR.FIRSTID() ❏ ERROR.ID()
❏ ERROR.MESSAGE() ❏ ERROR.OCCURRED() ❏ ERROR.POSITION()

ERROR.CMDLINE() Erroneous command
[build 110397 - DVD 09/2019]

Returns the command line content of the last occurred error. The buffer can be deleted with the
command ERROR.RESet.

Return Value Type: String.

Example: See ERROR.ID().

ERROR.FIRSTID() ID of first error
[build 105170 - DVD 02/2019]

Return ID of first error encountered after last error reset.

Return Value Type: String.

Syntax: ERROR.CMDLINE()

Syntax: ERROR.FIRSTID()
PowerView Function Reference | 46©1989-2024 Lauterbach

ERROR.ID() ID of last error message
[build 67160 - DVD 02/2016]

Returns the search item string of the last error message for the online help. The search item can be
deleted with the command ERROR.RESet.

Return Value Type: String.

Example:

Syntax: ERROR.ID()

 ERROR.RESet ; clear PRACTICE error structure

l_system_up:
 SYStem.Up
 IF ERROR.OCCURRED()
 (
; check for target power fail
 IF ERROR.ID()=="#emu_errpwrf"
 (
; PRINT "Please power up the target board!"
 DIALOG.OK "Please power up the target board!"
 GOTO l_system_up
)
 ELSE IF ERROR.ID()!=""
 (
 PRINT "other error occurred: " ERROR.ID()
)
 OPEN #1 my_errorlog.txt /Create /Write
 WRITE #1 "error - faulty cmd:" ERROR.CMDLINE()
 IF ERROR.POSITION()!=-1.
 WRITE #1 " ^">>ERROR.POSITION()
 WRITE #1 "error - message :" ERROR.MESSAGE()
 CLOSE #1
)
PowerView Function Reference | 47©1989-2024 Lauterbach

ERROR.MESSAGE() Error text
[build 110397 - DVD 09/2019]

Returns the error message text if an error occurred since the last TRACE32 software start or since the
last error structure reset by the command ERROR.RESet.

Return Value Type: String.

Example: See ERROR.ID().

ERROR.OCCURRED() Error status
[build 76289 - DVD 09/2016]

Returns TRUE if an error occurred since the last TRACE32 software start or since the last error
structure reset by the command ERROR.RESet.

Return Value Type: Boolean.

Example: See ERROR.ID().

ERROR.POSITION() Error position
[build 110397 - DVD 09/2019]

Returns the error position inside the command line if an error occurred since the last TRACE32
software start or since the last error structure reset by the command ERROR.RESet.

Return Value Type: Decimal value.

Example: See ERROR.ID().

Syntax: ERROR.MESSAGE()

Syntax: ERROR.OCCURRED()

Syntax: ERROR.POSITION()

-1 Indicates an unknown or an undetermined error position.
PowerView Function Reference | 48©1989-2024 Lauterbach

EVAL Functions

In This Section

See also

■ Eval ❏ EVAL() ❏ EVAL.ADDRESS() ❏ EVAL.BOOLEAN()
❏ EVAL.FLOAT() ❏ EVAL.PARAM() ❏ EVAL.STRing() ❏ EVAL.TIme()
❏ EVAL.TYPE()

EVAL() Value of expression evaluated with Eval command
[build 17384 - DVD 12/2009]

Returns the value of the expression parameter from the last Eval command. Only for expression types
boolean, binary, hex, integer and ASCII constant. For all other expression types the return value is 0.

Return Value Type: Hex value.

EVAL.ADDRESS() Address of expression evaluated with Eval cmd.
[build 125135 - DVD 02/2021]

Returns the value of the expression parameter from the last Eval command. Only for expression type
address. In all other cases the returned result is empty.

Return Value Type: Address.

EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean
[build 125135 - DVD 02/2021]

Returns TRUE if the type of the expression parameter from the last Eval command is boolean.

Return Value Type: Boolean.

Syntax: EVAL()

Syntax: EVAL.ADDRESS()

Syntax: EVAL.BOOLEAN()
PowerView Function Reference | 49©1989-2024 Lauterbach

EVAL.FLOAT() Float value of expression evaluated with Eval cmd.
[build 125135 - DVD 02/2021]

Returns the value of the expression parameter from the last Eval command. Only for expression type
float. In all other cases the returned result is empty.

Return Value Type: Float.

EVAL.PARAM() Expression evaluated with Eval cmd.
[build 125139 - DVD 02/2021]

Returns the value of the expression parameter from the last Eval command, independently of the
expression type.

Return Value Type: String.

EVAL.STRing() String composed by expression evaluated with Eval cmd.
[build 17384 - DVD 12/2009]

Returns the value of the expression parameter from the last Eval command. Only for expression type
string. In all other cases the returned string is empty.

Return Value Type: String.

EVAL.TIme() Value of time evaluated with Eval command
[build 110621 - DVD 09/2019]

Returns the time value as evaluated by the last Eval command.

Return Value Type: Time value.

Syntax: EVAL.FLOAT()

Syntax: EVAL.PARAM()

Syntax: EVAL.STRing()

Syntax: EVAL.TIme()
PowerView Function Reference | 50©1989-2024 Lauterbach

EVAL.TYPE() Type of expression evaluated with Eval command
[build 17384 - DVD 12/2009]

Returns the type of the expression parameter from the last Eval command.

Return Value Type: Hex value.

Return Values Expression Types
0x0001 Boolean
0x0002 binary value
0x0004 Hex value
0x0008 Decimal value
0x0010 Float
0x0020 ASCII value
0x0040 String
0x0080 Numeric range
0x0100 Address
0x0200 Address range
0x0400 Time value
0x0800 Time range
0x4000 Bit or Hex mask
0x8000 Empty/No expression parameter

 Example:

Syntax: EVAL.TYPE()

ENTRY &delayvalue
Eval &delayvalue ; evaluate user input value

IF EVAL.TYPE()!=0x400 ; time value entered?
 GOSUB err_no_timevalue
PowerView Function Reference | 51©1989-2024 Lauterbach

FALSE Function

FALSE() Boolean expression
[build 36180 - DVD 02/2012]

Returns always the boolean value FALSE. It can be used for increasing the readability of PRACTICE
scripts when initializing PRACTICE macros. The counterpart is TRUE().

Return Value Type: Boolean.

Example:

Syntax: FALSE()

&s_error_occurred=FALSE() ; instead of
&s_error_occurred=(0!=0)
PowerView Function Reference | 52©1989-2024 Lauterbach

FILE Functions

In This Section

See also

❏ FILE.EOF() ❏ FILE.EOFLASTREAD() ❏ FILE.EXIST() ❏ FILE.NEWHANDLE()
❏ FILE.OPEN() ❏ FILE.SUM() ❏ FILE.TYPE() ❏ __FILE__()
❏ __LINE__()

__FILE__() Path and file name of current PRACTICE script
[build 13023, DVD 10/2008]

An alias for OS.PresentPracticeFile().

__LINE__() Number of script line to be executed next
[build 13023, DVD 10/2008]

Returns the line number of the command to be executed next in the currently active PRACTICE script.

FILE.EOF() Check if end of read-in file has been reached
[build 31361 - DVD 06/2011]

Function returns a boolean whether the last READ command from a certain file reached the file end
or not.

Parameter Type: Decimal value.

Return Value Type: Boolean.

Syntax: __FILE__()

Syntax: __LINE__()

Syntax: FILE.EOF(<file_number>)
PowerView Function Reference | 53©1989-2024 Lauterbach

Example:

FILE.EOFLASTREAD() Check if last read from file reached the end of the file
[build 31361 - DVD 06/2011]

Function returns a boolean whether the last READ command reached the file end or not.

Return Value Type: Boolean.

Example:

OPEN #1 myfile.txt /Read
OPEN #2 yourfile.txt /Read
READ #2 %LINE &myline
READ #1 %LINE &myline1
WHILE !FILE.EOF(2) ; EOF of yourfile.txt reached?
(
 PRINT "&myline"
 …
 READ #2 %LINE &myline ; assigns all characters up to the
) ; next EOL to &myline
CLOSE #2

Syntax: FILE.EOFLASTREAD()

EOF() - (deprecated)
[build 12285 - DVD 10/2008]

OPEN #2 myfile.txt /Read
READ #2 %LINE &myline
WHILE !FILE.EOFLASTREAD() ;EOF of myfile.txt reached?
(
 PRINT "&myline"
 …
 READ #2 %LINE &myline ;assigns all characters up to the
) ;next EOL to &myline
CLOSE #2
PowerView Function Reference | 54©1989-2024 Lauterbach

FILE.EXIST() Check if file exists
[build 31361 - DVD 06/2011]

Returns TRUE if the file exists. Alias for OS.FILE.EXIST().

Parameter Type: String.

Return Value Type: Boolean.

FILE.NEWHANDLE() Get next free handle
[build 168178 - DVD 09/2024]

Returns the next free handle for file operations.

Return Value Type: String.

Example 2:

Example 2:

Syntax: FILE.EXIST(<file>)

Syntax: FILE.NEWHANDLE()

PRIVATE &fh

&fh=FILE.NEWHANDLE()
OPEN #&fh “myfile.txt” /Create
WRITE #&fh “Hello World!”
CLOSE #&fh

PRIVATE &fh

&fh=FILE.NEWHANDLE()
OPEN #&fh “myfile.txt” /Read
WHILE !FILE.EOF(&fh)
(
 PRIVATE &line

 READ #&fh %LINE &line
 PRINT “&line”
)
CLOSE #&fh
PowerView Function Reference | 55©1989-2024 Lauterbach

FILE.OPEN() Check if file is open
[build 36378 - DVD 08/2012]

Returns TRUE if a file with <file_number> was opened with the command OPEN (and not yet closed).

Parameter Type: Decimal value.

Return Value Type: Boolean.

FILE.SUM() Get checksum from a file
[build 99438 - DVD 09/2018]

Gets the checksum of the last executed SHA1SUM command.

Return Value Type: String.

Example:

FILE.TYPE() File type of loaded file

Detects the data format of the specified file. The detection algorithm is the same as used for
Data.LOAD.auto. The returned string is the format name as used with Data.LOAD.<file_format>. If the
file format is unknown, the function returns “BINARY”.

Parameter Type: String.

Return Value Type: String.

Syntax: FILE.OPEN(<file_number>)

Syntax: FILE.SUM()

PRIVATE &sha1 &file
&file="myfile.bin"
&sha1="739078942296c3fe61dabca810ed4483d0f79885
&sha1="&sha1 3e99463f765b53348d5e0cf31c8c63d2acf5d81b"
&sha1="&sha1 8450ad62442629453331baf8b4345d1c77b73b2d"
SILENT.SHA1SUM "&file"
IF STRing.SCAN("&sha1",FILE.SUM(),0)==-1
 DIALOG.OK "Cecksum of file ""&file"" not known!"

Syntax: FILE.TYPE(<file>)
PowerView Function Reference | 56©1989-2024 Lauterbach

Examples:

LOCAL &file &format
&file="~~/demo/arm/compiler/arm/thumbbe.axf"
&format=FILE.TYPE("&file")

IF "&format"=="ELF"
 Data.LOAD.Elf "&file" /NoCODE
ELSE
 PRINT %ERROR "Error: Wrong file format, debug symbols not loaded!"
PowerView Function Reference | 57©1989-2024 Lauterbach

FORMAT Functions

In This Section

See also

❏ FORMAT.BINary() ❏ FORMAT.CHAR() ❏ FORMAT.Decimal() ❏ FORMAT.DecimalU()
❏ FORMAT.DecimalUZ() ❏ FORMAT.FLOAT() ❏ FORMAT.HEX() ❏ FORMAT.STRing()
❏ FORMAT.TIME() ❏ FORMAT.UDecimal() ❏ FORMAT.UDECIMALZ() ❏ FORMAT.UnixTime()

FORMAT.BINary() Numeric to binary value (leading spaces)

Formats a numeric expression to a binary number and generates an output string with a fixed length of
<width> with leading zeros.
Values which needs more characters than <width> for their loss-free representation are not cut.

Parameter and Description:

Return Value Type: String.

Examples:

Syntax: FORMAT.BINary(<width>,<number>)

<width> Parameter Type: Hex or decimal value.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

PRINT FORMAT.BINARY(8.,0x10) ; result "00010000"
PRINT FORMAT.BINARY(1.,0x10) ; result "10000" and not "0"
PowerView Function Reference | 58©1989-2024 Lauterbach

FORMAT.CHAR() Numeric to ASCII character (fixed length)
[build 44343 - DVD 02/2013]

Converts an integer value to an ASCII character and generates an output string in a fixed length of
<width>.

Parameter and Description:

Return Value Type: String.

Examples:

A positive value of <width> means left alignment.
A negative value of <width> means right alignment of <value>.

Syntax: FORMAT.CHAR(<value>,<width>,<fill_character>)

<value> Parameter Type: Hex or decimal value. Integer value to be converted.

<width> Parameter Type: Hex or decimal value. Specifies the number of characters.
When the output string length <width> is larger than 1 the output string will
be enlarged by adding a necessary number of <fill_character>.
• 0 : empty string returned
• 1..n : length of output string (left aligned)
• -1..-n: length of output string (right aligned)

<fill_character> Parameter Type: ASCII value. Defines the fill character.

PRINT FORMAT.CHAR(0x61,0.,'-') ; result ""
PRINT FORMAT.CHAR(0x61,1.,'-') ; result "a"
PRINT FORMAT.CHAR('B',1.,'-') ; result "B"
PRINT FORMAT.CHAR(' '+35.,1.,'-') ; result "C"

PRINT FORMAT.CHAR(0x61,10.,'*') ; result "a*********"
PRINT FORMAT.CHAR(0x61,-10.,'*') ; result "*********a"
PRINT FORMAT.CHAR(0x61,-10.,' ') ; result " a"
PowerView Function Reference | 59©1989-2024 Lauterbach

FORMAT.Decimal() Numeric to string (leading spaces)

Formats a numeric expression to a decimal number and generates an output string with a fixed length
of <width> with leading spaces.
Values which needs more characters than <width> for their loss-free representation aren’t cut.

Parameter and Description:

It is recommended to use the string “.” as suffix when the number is printed. This allows the user to
identify the number clearly as a decimal number.

Return Value Type: String.

Examples:

Syntax: FORMAT.Decimal(<width>,<number>)

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

PRINT FORMAT.Decimal(1.,0x12345) ; result "74565" and not "5"
PRINT FORMAT.Decimal(8.,0x12345) ; result " 74565"
PRINT FORMAT.Decimal(8.,0x12)+"." ; result " 18."

&i=0 ; register R0…R31 will be set to
WHILE &i<32. ; values 0x00000000…0x1f1f1f1f
(
 ; the macro ®name will contain the full register name e.g. R14
 ®name="R"+FORMAT.Decimal(1+((&i/10.)%1),&i)

 ; the macro ®no will contain the register number only e.g. 14
 ; ®no=FORMAT.Decimal(1+((&i/10.)%1),&i)
 &value=&i|&i<<8.
 &value=&value|&value<<16.
 Register.Set ®name &value

 ; Register.Set R®no &value
 &i=&i+1
)

PowerView Function Reference | 60©1989-2024 Lauterbach

FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces)

Formats a numeric expression to an unsigned decimal number and generates an output string with a
fixed length of <width> with leading spaces.
Values which needs more characters than <width> for their loss-free representation aren’t cut.

Alias for FORMAT.UDECIMAL().

Parameter and Description:

It is recommended to use the string “.” as suffix when the number is printed. This allows the user to
identify the number clearly as a decimal number.

Return Value Type: String.

Examples:

Syntax: FORMAT.DecimalU(<width>,<number>)

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

PRINT FORMAT.DecimalU(8.,0x12345) ; result " 74565"
PRINT FORMAT.DecimalU(8.,0x12)+"." ; result " 18."
PRINT FORMAT.DecimalU(1.,-1.) ; result "18446744073709551615"
 ; and not "5"
PowerView Function Reference | 61©1989-2024 Lauterbach

FORMAT.DecimalUZ() Numeric to unsigned decimal as string (leading zeros)
[build 65087 - DVD 09/2015]

Formats a numeric expression to a fixed width unsigned decimal number with leading zeros.
Values which need more characters than <width> for their loss-free representation are not cut. Alias for
FORMAT.UDECIMALZ().

Parameter and Description:

Return Value Type: String.

Example 1:

Example 2: This PRACTICE script example counts from 00001 to 00108. The result is displayed in the
default AREA window. To try this script, copy it to a test.cmm file, and then run it in TRACE32 (See
“How to...”).

To increase or decrease the number of lines displayed in an AREA window, use AREA.Create.

Syntax: FORMAT.DecimalUZ(<width>,<number>)

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

PRINT FORMAT.DecimalUZ(8.,0x1235) ; result "00004661"
PRINT FORMAT.DecimalUZ(1.,0x1235) ; result "4661" and not "1"
PRINT FORMAT.DecimalUZ(1.,-1.) ; result "18446744073709551615"
 ; and not "5"

LOCAL &idCounter
&idCounter=0x0

AREA.RESet ;initialize AREA system
AREA.view ;open the default AREA window

RePeat 108.
(;increment counter in steps of 1
 &idCounter=&idCounter+0x1
 PRINT FORMAT.DecimalUZ(5.,&idCounter)
)

PowerView Function Reference | 62©1989-2024 Lauterbach

FORMAT.FLOAT() Floating point value to string

Formats a floating point value to a text string. If not mentioned otherwise, the resulting string is right-
aligned and padded with blank spaces so that the string has at least the number of characters specified
with parameter <width>. The resulting string is not truncated even if the result is longer.

Parameter and Description:

Return Value Type: String.

Examples:

Syntax: FORMAT.FLOAT(<width>,<precision>,<number>)

<width> Parameter Type: Hex or decimal value.
• > 0: Minimum number of characters of the resulting string.
• 0: The resulting string is left-aligned and variable length. It contains

the specified number of <precision> digits.

<precision> Parameter Type: Hex or decimal value.
• > 0: Number of digits after the decimal point.
• 0: Standard notation with variable number of precision digits.
• -1: Scientific notation with variable number of precision digits.

<number> Parameter Type: Float. The value to be formatted and displayed.

PRINT FORMAT.FLOAT(0.,3.,12.34567) ; result "12.346"
PRINT FORMAT.FLOAT(0.,5.,12.34567) ; result "12.34567"
PRINT FORMAT.FLOAT(10.,3.,12.34567) ; result " 12.346"
PRINT FORMAT.FLOAT(10.,5.,12.34567) ; result " 12.34567"

PRINT FORMAT.FLOAT(12.,0.,129345.67) ; result " 129345.67"
PRINT FORMAT.FLOAT(12.,-1.,129345.67) ; result "129.34567e+3"

PRINT FORMAT.FLOAT(13.,-1.,129345.67E+3) ; result " 129.34567e+6"
PowerView Function Reference | 63©1989-2024 Lauterbach

FORMAT.HEX() Numeric to hex (leading zeros)

Formats a numeric expression to a hexadecimal number and generates an output string with a fixed
length of <width> with leading zeros if necessary.
Values which need more characters than <width> for their loss-free representation are not cut.

Parameter and Description:

Return Value Type: String.

Example:

It is recommended to use the string “0x” as a prefix when the number is printed. This allows the user to
clearly identify the number as a hex number.

Syntax: FORMAT.HEX(<width>,<number>)

<width> Parameter Type: Hex or decimal value. Specifies the smallest number of
digits.

<number> Parameter Type: Hex or decimal value. Numeric expression to be
formatted.

PRINT FORMAT.HEX(1.,12345.) ; result "3039" and not "9"
PRINT FORMAT.HEX(8.,12345.) ; result "00003039"
PRINT "0x"+FORMAT.HEX(8.,12345.) ; result "0x00003039"
PowerView Function Reference | 64©1989-2024 Lauterbach

FORMAT.STRing() Output string with fixed length
[build 44315 - DVD 02/2013]

Generates an output string with a fixed length of <width>.

Parameter and Description:

Return Value Type: String.

Examples:

Syntax: FORMAT.STRing(<source_string>,<width>,<fill_character>)

<source_string> Parameter Type: String. Strings that are too long will be cut.
When the source string length is smaller than <width>, the output string
will be enlarged by adding a necessary number of <fill_character>.

<width> Parameter Type: Hex or decimal value. Specifies the number of characters.
A positive value of <width> means left alignment of <source_string>.
A negative value of <width> means right alignment of <source_string>.
• 0 : empty string returned
• 1..n : length of output string (left aligned)
• -1..-n: length of output string (right aligned)

<fill_character> Parameter Type: ASCII value. Defines the fill character.

PRINT FORMAT.STRing("abcdef",0.,'-') ; result ""
PRINT FORMAT.STRing("abcdef",3.,'-') ; result "abc"
PRINT FORMAT.STRing("abcdef",-3.,'-') ; result "def"

PRINT FORMAT.STRing("abcdef",10.,'*') ; result "abcdef****"
PRINT FORMAT.STRing("abcdef",-10.,'*') ; result "****abcdef"
PRINT FORMAT.STRing("abcdef",-10.,' ') ; result " abcdef"
PowerView Function Reference | 65©1989-2024 Lauterbach

FORMAT.TIME() Time to string (leading spaces)
[build 70825 - DVD 9/2016]

Formats a time value to a text string. If not mentioned otherwise, the resulting string is right-aligned and
padded with blank spaces so that the string has at least the number of characters specified with parameter
<width>. The resulting string is not truncated even if the result is longer.

Parameter and Description:

Parameters for <unit>:

Return Value Type: String.

FORMAT.UDECIMAL() Refer to FORMAT.DecimalU()
[build 25777 - DVD 11/2010]

Alias for FORMAT.DecimalU().

Syntax: FORMAT.TIME(<width>,<precision>,"<unit>",<time>)

<width> Parameter Type: Hex or decimal value.
• > 3: Minimum number of characters of the resulting string, including

two characters for the unit.
• <=3: The resulting string is left-aligned and variable length. It con-

tains the specified number of <precision> digits.

<precision> Parameter Type: Hex or decimal value. Specifies the number of digits after
the decimal point. If the value is zero, an integer value is displayed.

<unit> Parameter Type: String. The time unit used for the resulting string. For a list
of the available parameters, click here.

<time> Parameter Type: Time value. The value to be formatted and displayed.

ns The unit of the resulting string is unit nanoseconds.

us The unit of the resulting string is unit microseconds.

ms The unit of the resulting string is unit milliseconds.

s The unit of the resulting string is unit seconds. The output string is padded
with one blank space at the right side for proper formatting/alignment with
other units.

ks The unit of the resulting string is unit kiloseconds.

auto The unit is chosen automatically so that the value is 1000 > value >= 1.

Syntax: FORMAT.UDecimal(<width>,<number>)
PowerView Function Reference | 66©1989-2024 Lauterbach

FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ()
[build 25777 - DVD 11/2010]

Alias for FORMAT.DecimalUZ().

FORMAT.UnixTime() Format Unix timestamps
[build 64298 - DVD 09/2015] [Examples]

Formats a Unix timestamp the same way PHP’s data function formats timestamps.
See also http://php.net/manual/en/function.date.php

Parameter and Description:

Parameters for <formatstr>:

Syntax: FORMAT.UDECIMALZ(<width>,<number>)

Syntax: FORMAT.UnixTime(<formatstr>,<timestamp>,<utc_offset>)

<formatstr> Parameter Type: String. Describes how to format the timestamp in
<timestamp>.
For a list of the available parameters, click here.

<timestamp> Parameter Type: Decimal value.
• The minimum year is -67768100567971200.

The maximum year is 67767976233532799.
• Arguments for <timestamp> can also be other functions, e.g.

DATE.UnixTime() or OS.FILE.UnixTime().
• As on 64-bit Linux systems, the year zero is taken into account

(which is the astronomical year numbering).

<utc_offset> Parameter Type: Decimal value.
Is optional and describes the offset of a local time-zone to UTC.
Set <utc_offset> to zero if you want a result in UTC or set it to an
appropriate value if you prefer local times.

a Return value: am or pm in lower case.

A Return value: AM or PM in upper case.

b Seconds since midnight with leading zeros (Return values: 00000 …
86399).
[build 69588 - DVD 02/2016] (TRACE32 specific parameter, not supported by PHP)

B Unlike the PHP date function, B (swatch Internet time) is not supported.

c ISO 8601 date (Return value example: "2015-07-20T11:46:51+00:00").

C ISO 8601 date with trailing Z if <utc_offset> == 0
(Return value example: "2015-07-15T11:53:22Z").
PowerView Function Reference | 67©1989-2024 Lauterbach

d Day of the month with leading zeros (Return values: 01 … 31).

D Three-letter representation of the day of the week (Return values: Mon …
Sun).

F Long representation of a month (Return values: January … December).

g 12-hour format of an hour (Return values: 1 … 12).

G 24-hour format of an hour (Return values: 0 … 23).

h 12-hour format of an hour with leading zeros (Return values: 01 … 12).

H 24-hour format of an hour with leading zeros (Return values: 00 … 23).

i Minutes with leading zeros (Return values: 00 … 59).

I Unlike the PHP date function, I (daylight saving time flag) is not supported.

j Day of the month (Return values: 1 … 31).

J Day of the month with leading space (1 to 31).

l Long representation of the day of the week (Return values: Monday …
Sunday).

L Returns 1 if it is a leap year, 0 otherwise.

m Numeric representation of a month with leading zeros (Return values: 01
… 12).

M Three-letter representation of a month (Return values: Jan … Dec).

n Numeric representation of a month (Return values: 1 … 12).

N ISO 8601 numeric representation of the day of the week
(Return values: 1 for Monday, …, 7 for Sunday).

o ISO 8601 year number. This has the same value as Y, except that if the
ISO week number (W) belongs to the previous or next year, that year is
used instead.

O Greenwich mean time difference (GMT) in hours (Return value example:
+0200).

P Greenwich mean time difference (GMT) with colon between hours and
minute
(Return value example: +02:00).

r RFC 2822 formatted date (Return value example: "Mon, 20 Jul 2015
17:02:08 +0200").

s Seconds with leading zeros (Return values: 00 … 59).

S English ordinal suffix for the day of the month, two characters (Return
values: st, nd, rd or th). Can be combined with j.

t Number of days in the given month (Return values: 28 … 31).

T or e Timezone identifier (Return value examples: CET, PST, UTC).
PowerView Function Reference | 68©1989-2024 Lauterbach

Return Value Type: String.

Unlike the PHP date function, all other letter characters are replaced by a question mark.

To get a letter character in the output string you have to prefix it with a backslash. (e.g. "\Y\e\a\r: Y")

All non-letter characters (like punctuation marks or digits) do not require a backslash. However, if you like to
have a backslash in the output, you have to prefix the backslash with a backslash.

Examples

Example 1:

u Unlike the PHP date function, u (microseconds) is not supported.

U Seconds elapsed since 1970-January-1,00:00:00 GMT.

w Numeric representation of the day of the week (Return values: 0 for
Sunday, …, 6 for Saturday).

W ISO 8601 week number of year, weeks starting on Monday (Return
values: 0 … 52)

y Two-digit representation of a year (Return value examples: 00 or 04).

Y Four-digit representation of a year (Return value examples: 2000 or 2004).

z Day of the year (Return values: 0 … 365).

Z Time zone offset in seconds. The offset for time zones west of UTC is
negative, and for those east of UTC positive (Return values: -43200 …
50400).

;current time of UTC
PRINT FORMAT.UnixTime("H:i:s",DATE.UnixTime(),0)

;current local date
PRINT FORMAT.UnixTime("d.m.Y",DATE.UnixTime(),DATE.utcOffset())

;current date of UTC in ISO 8601
PRINT FORMAT.UnixTime("c",DATE.UnixTime(),0)

;current date of Pacific Standard Time in RFC1123
PRINT FORMAT.UnixTime("D, d M Y H:i:s O",DATE.UnixTime(),-8*3600.)
PowerView Function Reference | 69©1989-2024 Lauterbach

Example 2: The following PRACTICE script shows how to precede a file name with a date-timestamp:

LOCAL &file
&file="_my"

;let's include seconds after midnight in the file name string as a
;simple precaution against duplicate log file names,
;see parameter b in the FORMAT.UnixTime() function below

;concatenate date-timestamp and file name
&file=FORMAT.UnixTime("Y-m-d_b", DATE.UnixTime(), 0.)+"&file"

;open the system log file for writing
SYStem.LOG.state
SYStem.LOG.OPEN ~~\&file

A System log file with date-timestamp. The file extension .log is added by default.

A

PowerView Function Reference | 70©1989-2024 Lauterbach

FOUND Functions

In This Section

See also

■ FIND ■ WinFIND ❏ FOUND() ❏ FOUND.COUNT()

FOUND() TRUE() if search item was found

Boolean function set by Data.Find, Trace.Find, FIND, ComPare or memory-test commands.

Return Value Type: Boolean.

Example:

Syntax: FOUND()

; Check if function sieve is found in trace recording

Trace.Find ADDRess sieve
IF FOUND()==TRUE()
(
 PRINT "Function sieve found at trace record no. " TRACK.RECORD()
)

PowerView Function Reference | 71©1989-2024 Lauterbach

FOUND.COUNT() Number of occurrences found
[build 68157 - DVD 02/2016]

Returns the number of occurrences found by the commands Trace.Find ... /ALL, Data.Find ... /ALL, and
Data.FindCODE.

Return Value Type: Decimal value.

Example:

Syntax: FOUND.COUNT()

;list trace contents
Trace.List /Track

;find all occurrences of the specified data value in the record range
;(-2000.)--(-1.)
Trace.Find (-2000.)--(-1.) Data 0xE1A0E002 /All

;print the number of occurrences
PRINT FOUND.COUNT()

;display all occurrences
Trace.FindAll (-2000.)--(-1.) Data 0xE1A0E002 /Track

A This line is automatically printed by the Trace.Find ... /ALL command, unless the line is suppressed
with the SILENT pre-command.

B Equals the return value of FOUND.COUNT().

A

B

FOUND.COUNT()
PowerView Function Reference | 72©1989-2024 Lauterbach

GDB Function (TRACE32 as GDB Back-End)

GDB.PORT() Port number for communication via GDB interface
[build 59804 - DVD 02/2015]

Returns the port number used by the currently selected TRACE32 PowerView instance for communication
via the GDB interface. Returns 0 if the port number is undefined.

Return Value Type: Decimal value.

Example: The port number is defined in the TRACE32 configuration file (default c:\t32\config.t32).

Syntax: GDB.PORT()

PRINT GDB.PORT() ;returns 60001 because the InterCom setting in
 ;the above configuration file reads:
 GDB=NETASSIST
 PORT=60001

GDB.PORT()
PowerView Function Reference | 73©1989-2024 Lauterbach

HELP Function

HELP.MESSAGE() Help search item

Returns the search item string of the last error message for the online help (only applicable in
PRACTICE scripts (*.cmm) in conjunction with the ON ERROR construct). Stepping through the script
will cause an empty function return value.

Return Value Type: String.

Example:

Syntax: HELP.MESSAGE()

 ON ERROR GOSUB ; install error handler in current PRACTICE stack frame
 (
 &help_message=HELP.MESSAGE()
 &error_occurred=1
 PRINT "search item of error message in online help:"
 PRINT %CONTinue " &help_message"
 RETURN
)

 LOCAL &help_message
 LOCAL &error_occurred

l_system_up:
 &help_message=""
 &error_occurred=0
; a fail of SYStem.Up will call the ON ERROR routine above
 SYStem.Up
 IF &error_occurred==1
 (
; check for target power fail
 IF "&help_message"=="#emu_errpwrf"
 (
; PRINT "Please power up the target board!"
 DIALOG.OK "Please power up the target board!"
 GOTO l_system_up
)
 ELSE IF "&help_message"!=""
 (
 PRINT "other error occurred: &help_message"
 ON ERROR ; remove current error handler from PRACTICE stack
 ENDDO
)
)

ON ERROR ;remove current error handler from PRACTICE stack
PowerView Function Reference | 74©1989-2024 Lauterbach

HOST Functions

HOSTID() Host ID

Returns the host ID.

Return Value Type: Decimal value.

Example:

HOSTIP() Host IP address

Returns the host IP address.

Return Value Type: Hex value. 32-bit.

Example: For the IPv4 address 10.2.10.26 (= 0x0A.0x02.0x0A.0x1A) you get 0x0A020A1A.

Syntax: HOSTID()

PRINT %Hex HOSTID() ;print ethernet address of your host as hex

Syntax: HOSTIP()

HOSTIP()
PowerView Function Reference | 75©1989-2024 Lauterbach

IFCONFIG and IFTEST Functions

This figure provides an overview of the return values of some of the functions. For explanations of the
illustrated functions and the functions not shown here, see below.

In This Section

See also

■ IFCONFIG ❏ IFCONFIG.COLLISIONS()
❏ IFCONFIG.CONFIGURATION() ❏ IFCONFIG.DEVICENAME()
❏ IFCONFIG.ERRORS() ❏ IFCONFIG.ETHernetADDRESS()
❏ IFCONFIG.IPADDRESS() ❏ IFCONFIG.RESYNCS()
❏ IFCONFIG.RETRIES() ❏ IFTEST.DOWNLOAD()
❏ IFTEST.LATENCY() ❏ IFTEST.UPLOAD()

IFCONFIG.COLLISIONS() Collisions since start-up
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the number of collisions since start-up.

Return Value Type: Decimal value.

Syntax: IFCONFIG.COLLISIONS()

IFCONFIG
COLLISIO
NS()
IFCONFIG
RETRIES
IFCONFIG

IFTEST.DOWNLOAD()
IFTEST.UPLOAD()
IFTEST.LATENCY()

IFCONFIG.DEVICENAME()

IFCONFIG.IPADDRESS()

IFCONFIG.ETHADDRESS()
PowerView Function Reference | 76©1989-2024 Lauterbach

IFCONFIG.CONFIGURATION() Connection type
[Go to figure.]

Returns the connection type, e.g. USB2 or 1000BT.

Return Value Type: String. An empty string is returned if no TRACE32 devices are attached. To detect if
TRACE32 is running on the instruction set simulator, use SIMULATOR().

IFCONFIG.DEVICENAME() Name of TRACE32 device
[Go to figure.]

The TRACE32 software can connect to TRACE32 devices through Ethernet or USB. This function returns
the device name shown in the IFCONFIG.state window - regardless of whether the connection is an
Ethernet or USB connection.

Entering a new device name and clicking Save to device in the IFCONFIG.state window changes the
device name in the internal memory of the TRACE32 device.

Return Value Type: String.

See also: NODENAME().

IFCONFIG.ERRORS() Errors since start-up
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the number of errors since start-up.

Return Value Type: Decimal value.

IFCONFIG.ETHernetADDRESS() MAC address of TRACE32 device
[build 62516 - DVD 09/2015] [Go to figure.]

Returns the MAC address of the TRACE32 device as a single 48-bit number if it is connected via Ethernet.

Return Value Type: Hex value. Returns zero if the TRACE32 device is not connected via Ethernet.

Syntax: IFCONFIG.CONFIGURATION()

Syntax: IFCONFIG.DEVICENAME()

Syntax: IFCONFIG.ERRORS()

Syntax: IFCONFIG.ETHernetADDRESS()
PowerView Function Reference | 77©1989-2024 Lauterbach

IFCONFIG.IPADDRESS() IP address of TRACE32 device
[Go to figure.]

Returns the IP address of the TRACE32 device if it is connected via Ethernet.

Return Value Type: String. Returns an empty string if the TRACE32 device is not connected via Ethernet.

See also: IFCONFIG.DEVICENAME().

IFCONFIG.RESYNCS() Resyncs since start-up
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the number of resyncs since start-up.

Return Value Type: Decimal value.

IFCONFIG.RETRIES() Retries since start-up
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the number of retries since startup. The same value and other data are displayed in the
IFCONFIG.state (interface statistic) window.

Return Value Type: Decimal value.

Example:

Syntax: IFCONFIG.IPADDRESS()

Syntax: IFCONFIG.RESYNCS()

Syntax: IFCONFIG.RETRIES()

IF IFCONFIG.RESYNCS()>1000.
 PRINT "poor network quality"
PowerView Function Reference | 78©1989-2024 Lauterbach

IFTEST.DOWNLOAD() Download in KByte/sec
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the download result of the last executed IFCONFIG.TEST command in KByte/sec.

Return Value Type: Decimal value.

IFTEST.LATENCY() Latency in microseconds
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the latency result of the last executed IFCONFIG.TEST command in microseconds.

Return Value Type: Time value.

IFTEST.UPLOAD() Upload in KByte/sec
[build 6086 - DVD 11/2006] [Go to figure.]

Returns the upload result of the last executed IFCONFIG.TEST command in KByte/sec.

Return Value Type: Decimal value.

Syntax: IFTEST.DOWNLOAD()

Syntax: IFTEST.LATENCY()

Syntax: IFTEST.UPLOAD()
PowerView Function Reference | 79©1989-2024 Lauterbach

InterCom Functions

In This Section

See also

■ InterCom ❏ InterCom.GetGlobalMacro()
❏ InterCom.GetPracticeState() ❏ InterCom.NAME()
❏ InterCom.PING() ❏ InterCom.PODPORT()
❏ InterCom.PODPORTNAME() ❏ InterCom.PODPORTNUMBER()
❏ InterCom.PORT()

InterCom.GetGlobalMacro() Exchange strings between PowerView
instances

[build 119109 - DVD 09/2020]

This function is intended to transfer strings from one PowerView instance to another via InterCom.

Return Value Type: String.

Example:

• You have two PowerView instances running.

• The first instance uses InterCom Port 10000.

• The second instance uses InterCom Port 10001.

• In the SECOND instance you run this PRACTICE script.

In the FIRST instance you now can get access to the content of the global macro named &myMacro of the
SECOND instance with the function InterCom.GetGlobalMacro().

For example, execute this command in the FIRST instance:

Syntax: InterCom.GetGlobalMacro(<name> | <host:port>,"<macro name>")

GLOBAL &myMacro
&myMacro="Hello World"

PRINT "&"+"myMacro ==
>"+InterCom.GetGlobalMacro(localhost:10001,"myMacro")+"<"
PowerView Function Reference | 80©1989-2024 Lauterbach

This command should print "&myMacro == >Hello World<" in the AREA message window.

InterCom.GetPracticeState() PRACTICE run-state on other instance
[build 120851 - DVD 09/2020]

Return Value Type: String.

Return Value and Description:

InterCom.NAME() InterCom name of this TRACE32 instance
[build 94280 - DVD 09/2018]

Returns the InterCom name of the currently selected TRACE32 PowerView instance. The InterCom name is
used for communication with remote TRACE32 PowerView instances via the InterCom interface.

An InterCom name can be created in the config file (by default config.t32). See example 1. Alternatively, an
InterCom name can be created with the commands InterCom.NAME or InterCom.ENable. See example 2.

Return Value Type: String.

NOTE: When specifying the name of the global macro with "<macro name>", you MUST
NOT prefix the macro name with a '&'.

Syntax: InterCom.GetPracticeState(<intercom_name> | [<host>:]<port_number>)

none No script running.

running Script is running (STOP button can be pressed).

stopped There is a PRACTICE script, but it is currently stopped.

dialog There is a PRACTICE script, but it executed something like
DIALOG.YESNO and is now waiting for user input.

err_* PRACTICE script is currently stopped, because an error was
encountered.

 err_exec Execution of a command resulted in an error.

 err_syntax There is was a syntax error (nothing was executed).

 err_unknown Script was stopped because of a currently unkown error (should not
happen...).

Syntax: InterCom.NAME()
PowerView Function Reference | 81©1989-2024 Lauterbach

Example 1:

Example 2:

See also: InterCom.PODPORTNAME().

InterCom.PING() Check if ping is successful

Returns TRUE if the ping was successful and FALSE if it failed. A runtime error occurs if the InterCom name
or InterCom UDP port number could not be found and resolved, e.g. wrong port number used.

Parameter Type: String.

Return Value Type: Boolean.

Example:

PRINT InterCom.NAME() ;returns:
 ;Your_InterComName_for_this_TRACE32_Instance
 ;because this InterCom name is used in the
 ;above config file

InterCom.NAME firstInst ;assigns the InterCom name ‘firstInst’ to the
 ;current TRACE32 PowerView instance

PRINT InterCom.NAME() ;returns: firstInst

Syntax: InterCom.PING(<intercom_name> | [<host>:]<port_number>)

; second debugger already started?
IF InterCom.PING(secondInst)==TRUE()
 PRINT "2. TRACE32 PowerView GUI alive"

InterCom.NAME()
PowerView Function Reference | 82©1989-2024 Lauterbach

InterCom.PODPORT() Port number of any TRACE32 instance

Returns the InterCom UDP port number of any TRACE32 PowerView instance that is connected to the
same PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config file).

The port number is used for communication with remote TRACE32 PowerView instances via the InterCom
interface.

Return Value Type: Decimal value. In case an instance does not have InterCom configured, the function
returns 0.

Example: See InterCom.PODPORTNUMBER().

See also: InterCom.PORT().

Syntax: InterCom.PODPORT(<index>)

<instance> Parameter Type: Decimal value. The valid range for <index> is:
• 0 <= index < InterCom.PODPORTNUMBER().
PowerView Function Reference | 83©1989-2024 Lauterbach

InterCom.PODPORTNAME() InterCom name of any TRACE32 instance
[build 94280 - DVD 09/2018]

Returns the InterCom name of any TRACE32 PowerView instance that is connected to the same
PowerDebug hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

The InterCom name is used for communication with remote TRACE32 PowerView instances via the
InterCom interface.

Parameter Type: Decimal value.

Return Value Type: String. In case an instance does not have InterCom configured, the function returns
an empty string.

Example: See InterCom.PODPORTNUMBER().

See also: InterCom.NAME().

Syntax: InterCom.PODPORTNAME(<index>)

<index> Parameter Type: Decimal value. The valid range for <index> is:
• 0 <= index < InterCom.PODPORTNUMBER().
PowerView Function Reference | 84©1989-2024 Lauterbach

InterCom.PODPORTNUMBER() Number of TRACE32 instances

Returns the number of TRACE32 PowerView instances that are connected to the same PowerDebug
hardware module or the same MCI Server (PBI=MCISERVER in the config.t32 file).

Return Value Type: Decimal value.

Example: This script iterates through the TRACE32 instances and prints their InterCom names and
UDP port numbers to an AREA.view window. To format the output, the PRINTF command is used
instead of the simple PRINT command.

Syntax: InterCom.PODPORTNUMBER()

&i=0.

AREA.view
PRINTF %COLOR.TEAL "%-14s: %s" "InterCom Name" "UDP Port Number"

RePeaT InterCom.PODPORTNUMBER()
(
 PRINTF "%-14s: %i" InterCom.PODPORTNAME(&i) InterCom.PODPORT(&i)
 &i=&i+1.
)

PowerView Function Reference | 85©1989-2024 Lauterbach

InterCom.PORT() Port number of this TRACE32 instance

Returns the InterCom UDP port number of the currently selected TRACE32 PowerView instance. The port
number is used for communication with remote TRACE32 PowerView instances via the InterCom interface.

A port number can be created in the config file (by default config.t32). See example 1. Alternatively, a port
number can be created with the commands InterCom.PORT or InterCom.ENable. See example 2.

Return Value Type: Decimal value. Returns 0 if the port number is undefined.

Example 1: The port number is defined in the TRACE32 configuration file (by default config.t32).

Example 2: The InterCom.PORT command overrides the port number (PORT= in the config file) in favor of
a new UDP port number.

See also: InterCom.PODPORT().

Syntax: InterCom.PORT()

PRINT InterCom.PORT() ;returns 10000 because the InterCom setting in
 ;the above configuration file reads:
 ; IC=NETASSIST
 ; PORT=10000

InterCom.PORT 50000. ;assigns the port number 50000 to the currently
 ;selected TRACE32 PowerView instance

PRINT InterCom.PORT() ;returns: 50000

InterCom.PORT()
PowerView Function Reference | 86©1989-2024 Lauterbach

LICENSE Functions

See also: “VERSION Functions” (general_func.pdf).

In This Section

See also

■ LICENSE ❏ LICENSE.DATE() ❏ LICENSE.FAMILY() ❏ LICENSE.FEATURES()
❏ LICENSE.getINDEX() ❏ LICENSE.GRANTED() ❏ LICENSE.HAVEFEATURE() ❏ LICENSE.MSERIAL()
❏ LICENSE.MULTICORE() ❏ LICENSE.RequiredForCPU() ❏ LICENSE.SERIAL()

LICENSE.DATE() Expiration date of maintenance contract
[build 32168 - DVD 02/2012]

Returns the expiration date of the maintenance contract specified by index in the form YYYY/MM.

The persons responsible for license management can use this function in their scripts to check if the
debugger licences are still valid and when licenses need to be renewed. Compare the value with
VERSION.DATE() to check if the maintenance contract is still valid.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.FAMILY() Name of the CPU family license
[build 32168 - DVD 02/2012]

Returns the name of the CPU family license via the serial number specified by index.
See also LICENSE.getINDEX().

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

Syntax: LICENSE.DATE(<index>)

Syntax: LICENSE.FAMILY(<index>)
PowerView Function Reference | 87©1989-2024 Lauterbach

LICENSE.FEATURES() List of features licensed
[build 32168 - DVD 02/2012]

Returns a comma-separated list of features licensed by the serial number specified by index (as shown in
the LICENSE.List window).

The list of features refers to the features that are programmed into the debug cable, Nexus adapter,
CombiProbe, and preprocessor. You can use the STRing.SCAN() function to analyze the comma-separated
list of features.

The return values of LICENSE.FEATURES() and STRing.SCAN() can be used in scripts to check whether
or not a debugger supports the desired CPU family, e.g. ARM 9. If not, the script could display a dialog box to
notify the user, e.g. DIALOG.OK, and then exit.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.getINDEX() Index of maintenance contract
[build 32168 - DVD 02/2012]

Returns the index of the currently used maintenance contract. The index can be used in these functions:

• LICENSE.DATE()

• LICENSE.MSERIAL()

• LICENSE.SERIAL()

• LICENSE.FAMILY()

• LICENSE.FEATURES()

Return Value Type: Decimal value.

Syntax: LICENSE.FEATURES(<index>)

Syntax: LICENSE.getINDEX()
PowerView Function Reference | 88©1989-2024 Lauterbach

LICENSE.GRANTED() License state

Returns an integer value that reflects the current license state of a product-version combination.

Parameter and Description:

Return Value Type: Decimal value.

Return Value and Description:

Example:

See also: LICENSE.REQuest command.

LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware
[build 45728 - DVD 08/2013]

Returns TRUE if a specified feature license is available in the used Lauterbach debugger hardware.

Parameter Type: String.

Return Value Type: Boolean.

Syntax: LICENSE.GRANTED(<product>,<version>)

<product> Parameter Type: String. License product name, e.g. as given in a
lauterbach-*.lic file.
For example: “t32.trace.x86”

<version> Parameter Type: String. License version, e.g. as given in a lauterbach-*.lic
file.
For example: “2013.05”
If the version string is empty, e.g. “”, then TRACE32 will try to auto-fill in
the version string, based on the product type.

0 License found.

1 License not found.

2 License temporarily not available.

3 License permanently not available.

16 <product> name was an empty string.

PRINT LICENSE.GRANTED("t32.trace.x86","2013.05")

Syntax: LICENSE.HAVEFEATURE("<name>")
PowerView Function Reference | 89©1989-2024 Lauterbach

Example:

LICENSE.MSERIAL() Serial number of the maintenance contract
[build 32168 - DVD 02/2012]

Returns the serial number of the maintenance contract specified by <index>. The function can be used to
check if a user has a temporary or regular maintenance contract.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

LICENSE.MULTICORE() Check if multicore debugging is licensed
[build 68535, DVD 2016/02]

Returns TRUE if multicore debugging is licensed.

Return Value Type: Boolean.

LICENSE.RequiredForCPU() License required for selected CPU
[build 128901 - DVD 02/2021]

Returns the licenses required for the CPU seleted in SYStem.CPU as a name.
The result is empty for SYStem.CPU NONE
The result is also empty if you are not using a PowerDebug or HostMCI or ESI

Return Value Type: String.

PRINT LICENSE.HAVEFEATURE("arm9")

Syntax: LICENSE.MSERIAL(<index>)

Syntax: LICENSE.MULTICORE()

Syntax: LICENSE.RequiredForCPU()
PowerView Function Reference | 90©1989-2024 Lauterbach

LICENSE.SERIAL() Serial number of debug cable
[build 32168 - DVD 02/2012]

Returns the serial number of the debug cable specified by <index>.

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different licenses stored
inside a debug cable.

Return Value Type: String.

See also: LICENSE.getINDEX().

Syntax: LICENSE.SERIAL(<index>)
VERSION.LICENSE() (deprecated)
PowerView Function Reference | 91©1989-2024 Lauterbach

LOG Function

LOG.DO.FILE() Get log file used by LOG.DO
[build 99855 - DVD 09/2018]

Returns the name of the log file which is currently in use by the command LOG.DO. If no log is open, the
function returns an empty string.

Return Value Type: String.

Syntax: LOG.DO.FILE()
PowerView Function Reference | 92©1989-2024 Lauterbach

Mathematical Functions

In This Section

See also

❏ math.ABS() ❏ math.FABS() ❏ math.FCOS() ❏ math.FEXP()
❏ math.FEXP10() ❏ math.FINF() ❏ math.FLOG() ❏ math.FLOG10()
❏ math.FMAX() ❏ math.FMIN() ❏ math.FNAN() ❏ math.FPOW()
❏ math.FSIN() ❏ math.FSQRT() ❏ math.MAX() ❏ math.MIN()
❏ math.SIGN() ❏ math.SIGNUM() ❏ math.TimeMAX() ❏ math.TimeMIN()

math.ABS() Absolute value of decimal value
[build 64326 - DVD 2015/09]

Calculates the absolute value of an integer. Negative values are inverted.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

math.FABS() Absolute value of floating point number
[build 69272 - DVD 2016/02]

Calculates the absolute value of a floating point number. Negative values are inverted.

Parameter Type: Float.

Return Value Type: Float.

Syntax: math.ABS(<integer>)

Syntax: math.FABS(<float>)
PowerView Function Reference | 93©1989-2024 Lauterbach

math.FCOS() Cosine of an angle given in radian

Returns cosine of an angle given in radian.

Parameter Type: Float.

Return Value Type: Float.

math.FEXP() Exponentiation with base e (Euler's number)

Returns the exponentiation of base e (Euler’s number) by given exponent.

Parameter Type: Float.

Return Value Type: Float.

math.FEXP10() Exponentiation with base 10

Returns the exponentiation of base 10 by given exponent.

Parameter Type: Float.

Return Value Type: Float.

math.FINF() Positive infinity

Returns inf() IEEE representation for positive infinity.

Return Value Type: Float.

Syntax: math.FCOS(<float>)
FCOS() (deprecated)

Syntax: math.FEXP(<float>)
FEXP() (deprecated)

Syntax: math.FEXP10(<float>)
FEXP10() (deprecated)

Syntax: math.FINF()
FINF() (deprecated)
PowerView Function Reference | 94©1989-2024 Lauterbach

Example:

math.FLOG() Natural logarithm of given value

Returns natural logarithm (to base of Euler’s number) of given value.

Parameter Type: Float.

Return Value Type: Float.

math.FLOG10() Logarithm to base 10 of given value

Returns logarithm to base 10 of given value.

Parameter Type: Float.

Return Value Type: Float.

math.FMAX() Return the larger one of two floating point values
[build 66893 - DVD 02/2016]

Compares two floating point parameters and returns the larger one of the two values.

Parameter Type: Float.

Return Value Type: Float.

Examples:

PRINT 1000000./math.FINF() ;result 0.0

Syntax: math.FLOG(<float>)
FLOG() (deprecated)

Syntax: math.FLOG10(<float>)
FLOG10() (deprecated)

Syntax: math.FMAX(<float1>,<float2>)

PRINT math.FMAX(3.9,4.1) ; result 4.1

PRINT math.FMAX(-3.9,-4.1) ; result -3.9
PowerView Function Reference | 95©1989-2024 Lauterbach

math.FMIN() Return the smaller one of two floating point values
[build 66893 - DVD 02/2016]

Compares two floating point parameters and returns the smaller one of the two values.

Parameter Type: Float.

Return Value Type: Float.

Examples:

math.FMOD() Floating-Point Modulus
[build 133635 - DVD 09/2021]

Compute the floating-point modulus, i. e. the remainder of the division x / y. The returned value z has the
same sign as x. It holds that z = x - k * y for some integer value k.

Parameter and Description:

Return Value Type: Float.

Examples:

Syntax: math.FMIN(<float1>,<float2>)

PRINT math.FMIN(3.9,4.1) ; result 3.9

PRINT math.FMIN(-3.9,-4.1) ; result -4.1

Syntax: math.FMOD(<x>,<y>)

<x> Parameter Type: Float.

<y> Parameter Type: Float.

ECHO math.FMOD(7.0,2.5) ; prints 2.0 because 2.0 = 7.0 - 2 * 2.5
ECHO math.FMOD(1.0,0.0) ; prints NAN
ECHO math.FMOD(1.0,0.1) ; prints 54.2101086242752217e-21 because 0.1
 ; cannot be represented exactly as a Float
PowerView Function Reference | 96©1989-2024 Lauterbach

math.FNAN() Not a number value

Returns nan() - Not A Number value.

Return Value Type: Float.

math.FPOW() Y-th power of base x
[build 64326 - DVD 2015/09]

Calculates the y-th power of base x.

Parameter Type: Float.

Return Value Type: Float.

math.FSIN() Sine of an angle given in radian

Returns sine of an angle given in radian.

Parameter Type: Float.

Return Value Type: Float.

math.FSQRT() Square-root of given value

Returns square-root of given value.

Parameter Type: Float.

Return Value Type: Float.

Syntax: math.FNAN()
FNAN() (deprecated)

Syntax: math.FPOW(<float_x>,<float_y>)

Syntax: math.FSIN(<value>)
FSIN() (deprecated)

Syntax: math.FSQRT(<value>)
FSQRT() (deprecated)
PowerView Function Reference | 97©1989-2024 Lauterbach

math.MAX() Return the larger one of two decimal values
[build 66893 - DVD 02/2016]

Compares two integer parameters and returns the larger one of both values.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Examples:

math.MIN() Return the smaller one of two decimal values
[build 66893 - DVD 02/2016]

Compares two integer parameters and returns the smaller one of both values.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Examples:

math.SIGN() Return -1 or +1 depending on argument
[build 64326 - DVD 2015/09]

Returns -1 for negative values and +1 for positive values.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

Syntax: math.MAX(<integer1>,<integer2>)

PRINT math.MAX(5.,2.) ; result 5

PRINT math.MAX(-5.,-2.) ; result -2

Syntax: math.MIN(<integer1>,<integer2>)

PRINT math.MIN(5.,2.) ; result 2

PRINT math.MIN(-5.,-2.) ; result -5

Syntax: math.SIGN(<integer>)
PowerView Function Reference | 98©1989-2024 Lauterbach

Examples:

math.SIGNUM() Return -1 or 0 or +1 depending on argument
[build 64326 - DVD 2015/09]

Returns -1 for negative values, 0 for a zero value and +1 for positive values.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

math.TimeMAX() Return the larger one of two time values
[build 66893 - DVD 02/2016]

Compares two time parameters and returns the larger one of the two values.

Parameter Type: Time value.

Return Value Type: Time value. It is measured in seconds.

Examples:

math.TimeMIN() Return the smaller one of two time values
[build 66893 - DVD 02/2016]

Compares both time parameters and returns the smaller one of both values.

Parameter Type: Time value.

PRINT math.SIGN(-300.) ; result -1
PRINT math.SIGN(500.) ; result 1
PRINT math.SIGN(+700.) ; result 1

Syntax: math.SIGNUM(<integer>)

Syntax: math.TimeMAX(<time1>,<time2>)

PRINT math.TimeMAX(120ms,1.5s) ; result 1.500000000s

PRINT math.TimeMAX(-120ms,-1.5s) ; result -0.120000000s

Syntax: math.TimeMIN(<time1>,<time2>)
PowerView Function Reference | 99©1989-2024 Lauterbach

Return Value Type: Time value. It is measured in seconds.

Examples:

PRINT math.TimeMIN(120ms,1.5s) ; result 0.120000000s

PRINT math.TimeMIN(-120ms,-1.5s) ; result -1.500000000s
PowerView Function Reference | 100©1989-2024 Lauterbach

MENU Function

MENU.EXIST() Check if menu name exists

Returns TRUE if a menu with a specified name exists.

Parameter Type: String. Menu names are case-insensitive.

Return Value Type: Boolean.

Syntax: MENU.EXIST(<name>)
PowerView Function Reference | 101©1989-2024 Lauterbach

NODENAME Function

NODENAME() Node name of connected TRACE32 device

TRACE32 software can connect to TRACE32 devices through Ethernet or USB. The NODENAME()
function returns the node name of the connected TRACE32 device.

Return Value Type: String.

• For Ethernet connections, the node name of the connected TRACE32 device is returned. The
node name itself is a setting in the config.t32 file, as shown below.

• For USB connections, just an empty string is returned.

See also: IFCONFIG.DEVICENAME()

Syntax: NODENAME()

NODENAME()
PowerView Function Reference | 102©1989-2024 Lauterbach

OS Functions

This figure provides an overview of the return values of some of the OS functions. For explanations of the
illustrated functions and the functions not shown here, see below.

The VERSION.ENVironment command opens the above window, displaying the TRACE32 environment
settings.

In This Section

See also

❏ OS.ACCESS() ❏ OS.DIR()
❏ OS.DIR.ACCESS() ❏ OS.ENV()
❏ OS.FILE.ABSPATH() ❏ OS.FILE.ACCESS()
❏ OS.FILE.BASENAME() ❏ OS.FILE.DATE()
❏ OS.FILE.DATE2() ❏ OS.FILE.EXIST()
❏ OS.FILE.EXTENSION() ❏ OS.FILE.JOINPATH()
❏ OS.FILE.LINK() ❏ OS.FILE.NAME()
❏ OS.FILE.PATH() ❏ OS.FILE.readable()
❏ OS.FILE.REALPATH() ❏ OS.FILE.SIZE()
❏ OS.FILE.TIME() ❏ OS.FILE.UnixTime()
❏ OS.FIRSTFILE() ❏ OS.ID()
❏ OS.NAME() ❏ OS.NEXTFILE()
❏ OS.PORTAVAILABLE.TCP() ❏ OS.PORTAVAILABLE.UDP()
❏ OS.PresentConfigurationFile() ❏ OS.PresentDemoDirectory()
❏ OS.PresentExecutableDirectory() ❏ OS.PresentExecutableFile()
❏ OS.PresentHELPDirectory() ❏ OS.PresentHomeDirectory()
❏ OS.PresentLicenseFile() ❏ OS.PresentPracticeDirectory()
❏ OS.PresentPracticeFile() ❏ OS.PresentSystemDirectory()
❏ OS.PresentTemporaryDirectory() ❏ OS.PresentWorkingDirectory()
❏ OS.RETURN() ❏ OS.TIMER()
❏ OS.TMPFILE() ❏ OS.VERSION()
❏ OS.Window.LINE()

A OS.ID() B OS.PresentSystemDirectory()

C OS.PresentTemporaryDirectory() D OS.PresentHELPDirectory()

E OS.PresentConfigurationFile() F OS.PresentExecutableFile()

Alternatively use: VERSION.ENVironment()

A

A

B
C

D

F

E

PowerView Function Reference | 103©1989-2024 Lauterbach

OS.DIR() Check if directory exists

Returns TRUE if the directory exists.

Parameter Type: String.

Return Value Type: Boolean.

OS.DIR.ACCESS() Access rights to directory
[build 30295 - DVD 06/2011]

Returns TRUE when the <directory_name> fulfills all of the requested access rights.

Parameter and Description:

Return Value Type: Boolean.

Example:

Syntax: OS.DIR(<directory_name>)

Syntax: OS.DIR.ACCESS(<directory_name>,"{<access_right>}")
OS.ACCESS(<directory_name> |<file>,"{<access_right>}") (deprecated)

<directory_name> Parameter Type: String.

<access_right> Parameter Type: String.
• R : Permissions to list directory
• W: Permissions to change entries of directory
• X : Permissions to traverse/open directory
• D : Permissions to delete any file or subdirectory in directory
• K : Permissions to delete directory itself
• C : Permissions to create files in directory
• A or S : Permissions to create subfolders in directory

NOTE: OS.DIR.ACCESS() will only check the permissions to read/write/delete/open a
directory. The function does not guarantee that you will be really able to access
the directory because it might be inaccessible for other reasons.
E.g. You can’t usually delete a directory if a file within this directory is has been
opened exclusively at the same time (although you might have the proper
access rights).

// returns TRUE if you are allowed to create or modify files
// inside directory "C:\Program Files"
PRINT OS.DIR.ACCESS("C:\Program Files","wc")
PowerView Function Reference | 104©1989-2024 Lauterbach

OS.ENV() Value of OS environment variable

Returns the contents of an OS environment variable.

Parameter Type: String.

Return Value Type: String. If the environment variable is not defined, OS.ENV() returns an empty string.

Example: An extra button is added to the TRACE32 toolbar for a particular user on a particular computer if
OS.ENV() returns the values Paul and PaulPC1 for the environment variables USER and
COMPUTERNAME.

Syntax: OS.ENV(<env_var>)

LOCAL ¶m1 ¶m2

¶m1="USERNAME"
¶m2="COMPUTERNAME"

IF OS.ENV(¶m1)=="Paul"&&OS.ENV(¶m2)=="PaulPC1"
(;Return the values of the env. variables in the TRACE32 message bar
 PRINT OS.ENV(¶m1)+" "+OS.ENV(¶m2)

 ;Add button to toolbar: <tooltip text> <tool image> <command>
 MENU.AddTool "Special Test" "ST,G" "DO ~~~~/special-test.cmm"
)

PowerView Function Reference | 105©1989-2024 Lauterbach

OS.FILE.readable() Check if file can be opened for reading

Returns TRUE if the file can be opened for reading. This is useful on operation systems, where an existing
file can maybe not opened because some other process is locking the file.

Parameter Type: String.

Return Value Type: Boolean.

Example: A file is opened for writing if it already exists, If not, the file is created. Then a timestamp is written
to the file.

OS.FILE.ABSPATH() Absolute path to file or directory
[build 70945 - DVD 09/2016]

Returns the absolute path to a file or directory. The absolute path does not contain any . or .. or any
leading tildes (~), nor any repeated path separators. In contrast to OS.FILE.REALPATH(), it does not
check if the file or directory actually exists. The return value may contain symbolic links (or junction
points).

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FILE.readable(<file>)

 MKTEMP &file ; Creates an empty file with unique name
 ECHO OS.FILE.readable("&file") ; Returns here TRUE()
 ECHO OS.FILE("&file") ; Short for OS.FILE.readable(), Returns TRUE()
 OPEN #1 "&file" /Write /Read ; Opens file exclusively on MS Windows
 ECHO OS.FILE.readable("&file") ; Returns here FALSE()
 ECHO OS.FILE("&file") ; Returns here FALSE()
 ECHO OS.FILE.EXIST("&file") ; Returns TRUE()
 ECHO FILE.EXIST("&file") ; Returns TRUE()
 CLOSE #1 ; Closes the file for writing

Syntax: OS.FILE.ABSPATH(<file>)
PowerView Function Reference | 106©1989-2024 Lauterbach

OS.FILE.ACCESS() Access rights to file
[build 30295 - DVD 06/2011]

Returns TRUE when the <file> fulfills all of the requested access rights.

Parameter and Description:

Return Value Type: Boolean.

Example:

Syntax: OS.FILE.ACCESS(<file>,"{<access_type>}")
OS.ACCESS(<file> |<directory>,"{<access_type>}") (deprecated)

<file> Parameter Type: String.

<access_type> Parameter Type: String.
• R : Read file
• W: Write file
• X : Execute file
• D or K: Delete file
• C : Change data of file
• A or S : Append data to file

NOTE: OS.FILE.ACCESS() will only check the permissions to read/write/delete/execute
a file. The function does not guarantee that you will be really able to access the
file because it might be inaccessible for other reasons.
E.g. If a file is exclusively opened by another application (file-lock) you can’t
write to the file even you might have the permission to write the file.

//returns TRUE if you are allowed to READ and WRITE to/from file test.cmm
PRINT OS.FILE.ACCESS("C:\t32\test.cmm","rw")
PowerView Function Reference | 107©1989-2024 Lauterbach

OS.FILE.BASENAME() Strip directory and suffix from filenames

Returns the pure name part of a file name, like the POSIX command "basename".
The second parameter specifies a string which is removed from the end of the result if it matches. This
intended to remove a file extensions.

Parameter and Description:

Return Value Type: String.

Example:

Function nesting, i.e. OS.FILE.NAME(OS.PresentExecutableFile(),".exe"), is not supported.

OS.FILE.DATE() Modification date and timestamp of file

Returns the modification date and timestamp <day>.<month>.<year> <hour>:<minutes>:<second>

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FILE.BASENAME(<path>[,"<suffix>"])

<path> Parameter Type: String.

<suffix> Parameter Type: String.
Remove trailing suffix from <path>.
Special suffixes are
 .* - remove last file extension
 .** - remove all file extensions
.

ECHO OS.FILE.BASENAME("/usr/bin/sort","") ; -> "sort"
ECHO OS.FILE.BASENAME("include/stdio.h","") ; -> "stdio.h"
ECHO OS.FILE.BASENAME("include/stdio.h",".h") ; -> "stdio"
ECHO OS.FILE.BASENAME("include/stdio/.h",".h") ; -> ".h"
ECHO OS.FILE.BASENAME(".h",".h") ; -> ".h"
ECHO OS.FILE.BASENAME("x.h",".h") ; -> "x"
ECHO OS.FILE.BASENAME("any/str1","") ; -> "str1"
ECHO OS.FILE.BASENAME("any/str1\","") ; -> "str1"
ECHO OS.FILE.BASENAME("~~/","") ; -> "T32"
; use wildcards
ECHO OS.FILE.BASENAME("test.tar.gz",".*") ; -> "test.tar"
ECHO OS.FILE.BASENAME("test.tar.gz",".**") ; -> "test”

Syntax: OS.FILE.DATE(<file>)
PowerView Function Reference | 108©1989-2024 Lauterbach

OS.FILE.DATE2() Modification date of file

Returns the modification date <year>/<month>/<day>

Parameter Type: String.

Return Value Type: String.

OS.FILE.EXIST() Check if file exists
[build 115311 - DVD 02/2020]

Returns TRUE if the file exists. Alias for FILE.EXIST(). Use the function OS.FILE.readable() instead, if you
want to be sure that the file can be actually opened for reading.

Parameter Type: String.

Return Value Type: Boolean.

Example: A file is opened for writing if it already exists, If not, the file is created. Then a timestamp is written
to the file.

OS.FILE.EXTENSION() File name extension

Returns the extension part of the file name.

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FILE.DATE2(<file>)

Syntax: OS.FILE.EXIST(<file>)

;If the file exists in the temporary directory of TRACE32
IF OS.FILE(~~~/myfile.txt)==TRUE()
 OPEN #1 ~~~/myfile.txt /Append ;Open the file for writing
ELSE
 OPEN #1 ~~~/myfile.txt /Create ;Create the file and open it

WRITE #1 "Session start: "+CLOCK.TIME()
CLOSE #1 ;Close the file for writing

Syntax: OS.FILE.EXTENSION(<file>)
PowerView Function Reference | 109©1989-2024 Lauterbach

Example:

OS.FILE.JOINPATH() Join multiple paths
[build 124461 - DVD 02/2021]

The function OS.FILE.JOINPATH joins folder paths using the os-dependent separator. Duplicate separators
are removed from the resulting path. The resulting path ends with a separator in case of the directory/drive
root, otherwise it is removed.

It's recommended to use slash ('/') as input separator for os-independent usage.

Return Value Type: String.

Example 1:

PRINT OS.FILE.EXTENSION("~~/t32.men") ; result: .men

Syntax: OS.FILE.JOINPATH(<path1>{,<pathN>})

PRIVATE &sPwd
&sPwd=OS.PresentWorkingDirectory()
PRINT OS.FILE.JOINPATH("&sPwd","../","logs","trace32_current.log")

;Example:
 ; Windows: OS.PresentWorkingDirectory() = C:\T32
 ; Output: "C:\T32\..\logs\trace32_current.log"

 ; Linux/MacOS: OS.PresentWorkingDirectory() = /home/user/t32
 ; Output: /home/user/t32/../logs/trace32_current.log"

PRINT OS.FILE.JOINPATH("dir1/","\dir2","dir3","/dir4\","file.txt")

; Output (Windows): dir1\dir2\dir3\dir4\file.txt
; Output (Linux): The output for Linux does not give a valid path
; since the backslash ('\') is not a valid character, refer
; to next example

PRINT OS.FILE.JOINPATH("dir1/","/dir2","dir3","/dir4/","file.txt")
; Output (Windows): dir1\dir2\dir3\dir4\file.txt
; Output (Linux/MacOS): dir1/dir2/dir3/dir4/file.txt
PowerView Function Reference | 110©1989-2024 Lauterbach

Example 2:

OS.FILE.LINK() Real file name of file link

Returns the real file name of a file link.

Parameter Type: String.

Return Value Type: String.

Example:

; Recursive search of all *.elf files in the TRACE32 system directory
; OS.FIRSTFILE/NEXTFILE returns the relative path
; OS.FILE.JOINPATH is used to prefix the base path again

PRIVATE &sBase &sPath
&sBase=OS.PresentSystemDirectory() ; TRACE32 system directory
&sPath=OS.FILE.JOINPATH("&sBase","/**/","*.elf")
&sPath=OS.FIRSTFILE("&sPath")
WHILE "&sPath"!=""
(
 PRINT OS.FILE.JOINPATH("&sBase","&sPath")
 &sPath=OS.NEXTFILE()
)

Syntax: OS.FILE.LINK(<file>)

;return path and file name of this MS Windows shortcut
PRINT OS.FILE.LINK("~~/bin/t32marm.exe.lnk")

;result: C:\T32\bin\windows\t32marm.exe

ls -l /home/t32/a.h ; a.h -> ../sources/include/b.h

PRINT OS.FILE.LINK(/home/t32/a.h) ; result "../sources/include/b.h"
PowerView Function Reference | 111©1989-2024 Lauterbach

OS.FILE.NAME() Extract file name from path

Returns the pure name part of a file name (including file extension if there is one).

Parameter Type: String.

Return Value Type: String.

Example: The function returns the file name of a TRACE32 executable from the string that consists of path
and file name.

Function nesting, i.e. OS.FILE.NAME(OS.PresentExecutableFile()), is not supported.

Syntax: OS.FILE.NAME(<path>)

;Declare a PRACTICE macro (variable)
LOCAL &fname

;Returns path and file name of the active TRACE32 executable
&fname=OS.PresentExecutableFile()
PRINT "&fname"
 ;Windows: e.g. C:\T32\bin\windows64\t32marm.exe
 ;Linux: e.g. /home/user/t32/t32marm

;Returns just the file name from the string assigned to &fname
PRINT OS.FILE.NAME(&fname)
 ;Windows: t32marm.exe
 ;Linux: t32marm
PowerView Function Reference | 112©1989-2024 Lauterbach

OS.FILE.PATH() Return path of file

Returns the path name part of the file name or when the name does not contain a path the actual
working directory. The resulting path does not include a trailing slash or backslash, unless the file is
located in a root directory.

Parameter Type: String.

Return Value Type: String.

Examples:

Path contains slash or backslash if file is located in root directory:

OS.FILE.REALPATH() Canonical absolute path to file or directory
[build 70945 - DVD 09/2016]

Returns the canonical absolute path to a file or directory. The canonical absolute path does not contain
any symbolic link (or junction point), nor any . or .. or leading tildes (~), nor any repeated path
separators.

In contrast to OS.FILE.ABSPATH() the given path of a directory or file must exist. Otherwise an empty string
will be returned.

While OS.FILE.REALPATH() resolves symbolic links and junction points, it does not resolve any file
shortcuts (*.lnk files) of a Windows operating system. To resolve file shortcuts on Windows use
OS.FILE.LINK().

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FILE.PATH(<file>)

PRINT OS.FILE.PATH("C:/temp/test.cmm") ;returns "C:\temp"

CD C:/t32 ;change directory
PRINT OS.FILE.PATH("test.cmm") ;returns "C:\t32"

PRINT OS.FILE.PATH("C:\t32\test.cmm") ;returns "C:\temp"
PRINT OS.FILE.PATH("C:\test.cmm") ;returns "C:\"

Syntax: OS.FILE.REALPATH(<file>)
PowerView Function Reference | 113©1989-2024 Lauterbach

OS.FILE.SIZE() File size in bytes

Returns the size of the file in bytes.

Parameter Type: String.

Return Value Type: Decimal value.

OS.FILE.TIME() Modification timestamp of file

Returns the modification timestamp.

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FILE.SIZE(<file>)

Syntax: OS.FILE.TIME(<file>)
PowerView Function Reference | 114©1989-2024 Lauterbach

OS.FILE.UnixTime() Unix timestamp of file
[build 64300 - DVD 09/2015]

Returns the Unix timestamp of the last modification of the specified file. The Unix timestamp can be
formatted to a human readable form with DATE.MakeUnixTime().

Parameter Type: String.

Return Value Type: Decimal value.

Example: The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

Syntax: OS.FILE.UnixTime(<file>)

;last modification date and time of file t32.men in ISO 8601 (UTC)
PRINT FORMAT.UnixTime("c",OS.FILE.UnixTime("~~/t32.men"),0)

;same result as PRINT OS.FILE.DATE("~~/t32.men")
PRINT FORMAT.UnixTime("d.m.Y H:i:s",\
 OS.FILE.UnixTime("~~/t32.men"),DATE.utcOffset())
PowerView Function Reference | 115©1989-2024 Lauterbach

OS.FIRSTFILE() First file name matching a pattern

OS.FIRSTFILE() in conjunction with OS.NEXTFILE() can be used to iterate over all files matching a specific
<pattern>.

The <pattern> supports '*' and '?' wildcards to match a specific name (e.g. 't32m*') or files of a specific type
(e.g. '*.cmm'). Per default the search is perfomed in the present working directory.

Optionally the <pattern> can be prefixed with a directory (e.g. 'C:\t32', '/home/user') which can be used for a
recursive search using the '**' syntax.

Example patterns:

• Match all files with extension '.cmm' in the present working directory

• Match all files '<date>runtest.log' with date <year><month><day> in c:\logs

• Match all files with extension '.cmm' recursively in the TRACE32 system directory (~~/)

The function OS.NEXTFILE() returns the next file name matching the pattern. To return all file names
matching the pattern, use a WHILE loop as shown in the example below.

Parameter Type: String.

Return Value Type: String.

Syntax: OS.FIRSTFILE(<pattern>)

* matches any character 0 or more times.

? matches any character 1 time.

** matches directories recursively.

PRINT OS.FIRSTFILE("*.cmm")
; -> OS.NEXTFILE() ...

PRINT OF.FIRSTFILE("c:\logs\????????runtest.log")
; -> OS.NEXTFILE()

PRINT OS.FIRSTFILE("~~/**/*.cmm")
; -> OS.NEXTFILE()
PowerView Function Reference | 116©1989-2024 Lauterbach

Example: This script lists all TRACE32 executable file names that meet the following criteria:

• They reside in the windows64 subfolder of the TRACE32 system directory (~~/)

• They start with the prefix t32m

• They have the suffix .exe

To try this script, copy it to a test.cmm file, and then run it in TRACE32 (See “How to...”).

OS.ID() User ID of TRACE32 instance
[Go to figure.]

Returns the user ID. Each user has a different user ID for each TRACE32 instance. The user ID is the same
as in the VERSION.ENVironment window.

Return Value Type: String.

LOCAL &pattern &file

&pattern="~~\bin\windows64\t32m*.exe" ;define a pattern with folder path
 ;and file name

&file=OS.FIRSTFILE("&pattern") ;get the first file name matching
 ;the pattern

OPEN #1 ~~~\list.dat /Create ;create an output file in the
 ;temporary directory of TRACE32
WHILE "&file"!=""
(
 WRITE #1 "&file" ;write file name to output file

 &file=OS.NEXTFILE() ;get next file name matching
) ;the pattern

CLOSE #1 ;close the output file and
TYPE ~~~\list.dat ;view the output file in TRACE32

Syntax: OS.ID()
PowerView Function Reference | 117©1989-2024 Lauterbach

Example: The OS.ID() function is used to open the TRACE32 command history file referring to the active
TRACE32 instance. The history file contains, among other things, the list of recently opened files and
recently executed commands.

Commands that save a subset of the history file to a PRACTICE script file (*.cmm) are HISTory.SAVE and
STOre. The HISTory.type command opens the history of the active TRACE32 instance right away. But note
that double-clicking a line executes the selected command.

OS.NAME() Basic name of operating system
[build 64672 - DVD 09/2015]

Returns the basic name of the operating system. A more detailed string can be obtained with the
VERSION.ENVironment(OS) function.

Return Value Type: String.

Return Values: Windows, Linux, MacOSX, HP-UX, PowerPC

LOCAL &filename

;Concatenates the components of the history file name
&filename=OS.ID()+"store.cmm"

;The path prefix ~~~ expands to the temporary directory of TRACE32
EDIT ~~~/&filename ;Opens the history file

Syntax: OS.NAME()
PowerView Function Reference | 118©1989-2024 Lauterbach

OS.NEXTFILE() Next file name matching a pattern

The function OS.FIRSTFILE(<pattern>) returns the name of the first file within a specified folder. The
function OS.NEXTFILE() returns the next file name matching the pattern.

Return Value Type: String.

Example: For an example of how to use both functions, see OS.FIRSTFILE().

OS.PORTAVAILABLE.TCP() Check if TCP port is used
[build 76440 - DVD 09/2016]

Returns TRUE if the TCP port having the specified <port_number> is available at the host, i.e. the TCP port
is not used.

Parameter Type: Decimal value. Range: 1. to 65535.

Return Value Type: Boolean.

Syntax: OS.NEXTFILE()

Syntax: OS.PORTAVAILABLE.TCP(<port_number>)
PowerView Function Reference | 119©1989-2024 Lauterbach

OS.PORTAVAILABLE.UDP() Check if UDP port is used
[build 76440 - DVD 09/2016]

Returns TRUE if the UDP port having the specified <port_number> is available at the host, i.e. the UDP port
number is not used.

Parameter Type: Decimal value. Range: 1. to 65535.

Return Value Type: Boolean.

Example: In this script, the function is used to find the next available UDP port number in the range
10000. to 10010.

OS.PresentConfigurationFile() Name of used TRACE32 configuration file
[Go to figure.]

Returns the name of the currently used TRACE32 configuration file (default config.t32). You can access
the configuration file by choosing Help menu > About TRACE32. Then click the edit button.

Return Value Type: String.

Syntax: OS.PORTAVAILABLE.UDP(<port_number>)

GOSUB FindAvailableUDPPort 10000. 10010.
LOCAL &port
ENTRY &port
IF &port!=0.
 PRINT "Found available UDP Port at &port"
ELSE
 PRINT "no available UDP Port found"
ENDDO

FindAvailableUDPPort:
LOCAL &start &end &port
ENTRY &start &end
&port=&start

WHILE &port<=&end
(
 IF OS.PORTAVAILABLE.UDP(&port)==TRUE()
 RETURN &port
 &port=&port+1.
)
RETURN 0.

Syntax: OS.PresentConfigurationFile()
[build 89127 - DVD 02/2018]
OS.PCF()
[build 12210 - DVD 10/2008]
PowerView Function Reference | 120©1989-2024 Lauterbach

OS.PresentDemoDirectory() Demo directory for the current architecture

Returns path to the demo directory of the architecture, e.g.: C:\T32\demo\arm
In some cases the path can change depending on the currently selected CPU.

Return Value Type: String.

OS.PresentExecutableDirectory() Directory of current TRACE32 exe.
[Go to figure.]

Returns the directory name of the currently started TRACE32 executable, e.g.: C:\T32\bin\windows64

Return Value Type: String.

OS.PresentExecutableFile() Path and file name of current TRACE32 exe.
[Go to figure.]

Returns the path and the file name of the currently started TRACE32 executable, e.g.:
C:\T32\bin\windows64\t32marm.exe

Return Value Type: String.

Remarks:

• The OS.FILE.NAME() function can be used to return just the file name.

• The SOFTWARE.64BIT() function can be used to find out if the TRACE32 software is a 64-bit
executable.

Syntax: OS.PresentDemoDirectory()
[build 89127 - DVD 02/2018]
OS.PDD()
[build 63341 - DVD 09/2015]

Syntax: OS.PresentExecutableDirectory()
[build 89127 - DVD 02/2018]
OS.PED()
[build 32382 - DVD 06/2011]

Syntax: OS.PresentExecutableFile()
[build 89127 - DVD 02/2018]
OS.PEF()
[build 17601 - DVD 12/2009]
PowerView Function Reference | 121©1989-2024 Lauterbach

OS.PresentHomeDirectory() Path of the home directory
[Go to figure.]

Returns the path of the home directory.

Return Value Type: String.

OS.PresentHELPDirectory() Path of the TRACE32 online help directory
[Go to figure.]

Returns the path of the TRACE32 online help directory.

Return Value Type: String.

OS.PresentLicenseFile() Current TRACE32 license file

Returns the name of the currently used TRACE32 license file (default: license.t32).

Return Value Type: String.

Syntax: OS.PresentHomeDirectory()
[build 89127 - DVD 02/2018]
OS.PHD()
[build 2280 - CD 07/2005]

Syntax: OS.PresentHELPDirectory()
[build 89127 - DVD 02/2018]
OS.PHELPD()
[build 12210 - DVD 10/2008]

Syntax: OS.PresentLicenseFile()
[build 89127 - DVD 02/2018]
OS.PLF()
[build 12210 - DVD 10/2008]
PowerView Function Reference | 122©1989-2024 Lauterbach

OS.PresentPracticeDirectory() Directory of currently executed script

Returns the name of the directory of the currently executed PRACTICE script at the top of the
PRACTICE stack. If no PRACTICE script is loaded, then this function returns an empty string. Use
PMACRO.list to view the current PRACTICE stack.

Return Value Type: String.

OS.PresentPracticeFile() Path and file name of currently executed script

Returns the path and file name of the currently executed PRACTICE script file at the top of the
PRACTICE stack. If no PRACTICE script is loaded, then this function returns an empty string. Use
PMACRO.list to view the current PRACTICE stack.

Return Value Type: String.

OS.PresentSystemDirectory() TRACE32 system directory
[Go to figure.]

Returns the name of the TRACE32 system directory.

Return Value Type: String.

Syntax: OS.PresentPracticeDirectory()
[build 89127 - DVD 02/2018]
OS.PPD()
[build 13751]

Syntax: OS.PresentPracticeFile()
[build 89127 - DVD 02/2018]
OS.PPF()
[build 12007 - DVD 10/2008]

Syntax: OS.PresentSystemDirectory()
[build 89127 - DVD 02/2018]
OS.PSD()
PowerView Function Reference | 123©1989-2024 Lauterbach

OS.PresentTemporaryDirectory() TRACE32 temporary directory
[Go to figure.]

Returns the name of the TRACE32 temporary directory.

Return Value Type: String.

OS.PresentWorkingDirectory() Current working directory
[Go to figure.]

Returns the name of the current working directory of TRACE32.

Return Value Type: String.

Syntax: OS.PresentTemporaryDirectory()
[build 89127 - DVD 02/2018]
OS.PTD()

Syntax: OS.PresentWorkingDirectory()
[build 89127 - DVD 02/2018]
OS.PWD()
PowerView Function Reference | 124©1989-2024 Lauterbach

OS.RETURN() Return code of the last executed operating system command

Returns the return code of the last executed operating system commands from OS.screen,
OS.Window, OS.Hidden, and OS.Area.

Return Value Type: Hex value.

Example:

OS.TIMER() OS timer in milliseconds
[build 06753 - DVD 01/2007]

Returns the OS timer in milliseconds. The resolution of this timer depends on the host operating
system. For higher precision measurements, use DATE.UnixTimeUS().

Return Value Type: Decimal value.

OS.TMPFILE() Name for a temporary file
[Examples]

Suggests the name for a temporary file. The function generates a unique file name each time the function is
called.

To create the physical file with the suggested file name, you can use, for example, the Data.SAVE.Binary or
the OPEN command. The newly-created file is stored in the temporary directory of TRACE32, see
OS.PresentTemporaryDirectory().

Return Value Type: String.

Syntax: OS.RETURN()

OS.Area myscript.bat ; PRACTICE script under
IF OS.RETURN()!=0 ; TRACE32 PowerView GUI
 GOTO l_scripterror1

;--
 // content of myscript.bat
perl myperlscript.pl // under Windows
exit %ERRORLEVEL% // forward the return value of
 // Perl call to TRACE32 PowerView GUI

Syntax: OS.TIMER()

Syntax: OS.TMPFILE()
PowerView Function Reference | 125©1989-2024 Lauterbach

Examples

In the examples below, data is exchanged between the TRACE32 virtual memory (VM:) and a temporary
file.

Example 1: The function OS.TMPFILE() and the command Data.SAVE.Binary are used to create a
temporary backup file for virtual memory contents. The virtual memory contents are restored later on by
loading them from the temporary backup file.

Example 2: The function OS.TMPFILE() and the command OPEN are used to create a temporary file.
The data written to the temporary file is then loaded to the TRACE32 virtual memory (VM:).

LOCAL &tfile1

; Get the file name for a temporary file
&tfile1=OS.TMPFILE()

Data.Set VM:0 %Byte 0 1 2 3 4 5 6 7 8 ; Write data to memory

Data.SAVE.Binary "&tfile1" VM:0--8 ; Back up memory contents

Data.Set VM:0 %Byte 0 0 0 0 0 0 0 0 0 ; Overwrite memory contents

Data.LOAD.Binary "&tfile1" VM:0--8 ; Restore memory contents

RM "&tfile1" ; Delete the temporary file

LOCAL &tfile2

; Get the file name for a temporary file
&tfile2=OS.TMPFILE()

OPEN #1 "&tfile2" /Create ; Create and open the file
WRITE #1 %String "Hello TRACE32" ; Write a string to the file
CLOSE #1

; Optional - lets you see the result on screen
Data.dump VM:0 /DIALOG

Data.LOAD.auto "&tfile2" VM:0 ; Load string to virtual memory

RM "&tfile2" ; Delete the temporary file
PowerView Function Reference | 126©1989-2024 Lauterbach

OS.VERSION() Type of the host operating system
[build 05629 - DVD 01/2007] [Examples] [Go to figure.]

Returns the type of the host operating system. The corresponding string is shown in the
VERSION.ENVironment window.

Parameter and Description:

Return Value Type: Hex value.

For detailed information about the returned hex values, see table Operating System.

Syntax: OS.VERSION(<version_data_type>)

<version_data_type> Parameter Type: Hex value.
0 returns the platform ID of the host operating system.
1 returns the major version.
2 returns the minor version.
3 returns the service pack number.
6 returns the product type (1:Workstation, 2:Domain-Ctrl.,3:Server)
8 returns the build number

NOTE: If you only need to determine the OS name, see OS.NAME().

Operating
System

OS.VERSION(0) OS.VERSION(1) OS.VERSION(2) OS.VERSION(6)

LINUX x86/x64
(x86 executable)

0x10 0 0 0

LINUX x64
(x64 executable)

0x11 0 0 0

LINUX on other
architectures

>0x11
<0x20

0 0 0

HP-UX 0x30 0 0 0

MAC OS X
(x86 executable)

0x40 0 0 0

MAC OS X
(x64 executable)

0x41 0 0 0

other / unknown
(should not
happen)

0x00 0 0 0

Microsoft
Windows

PlatformId MajorVersion MinorVersion ProductType
PowerView Function Reference | 127©1989-2024 Lauterbach

Windows 95 / 98 0x01 4 0 / 10 0

Windows ME 0x01 4 90 0

Windows NT 3.51 0x02 3 51 1

Windows NT 4.0 0x02 4 0 1

Windows 2000 0x02 5 0 1

Windows XP 0x02 5 1 1

Windows Server
2003

0x02 5 2 3

Windows Vista 0x02 6 0 1

Windows Server
2008 R1

0x02 6 0 3

Windows Server
2008 R2

0x02 6 1 3

Windows 7 0x02 6 1 1

Windows 8 0x02 6 2 1

Windows 8.1 0x02 6 3 1

Windows Server
2012 R1

0x02 6 2 3

Windows Server
2012 R2

0x02 6 3 3

Windows 10 0x02 10 1 1

Operating
System

OS.VERSION(0) OS.VERSION(1) OS.VERSION(2) OS.VERSION(6)
PowerView Function Reference | 128©1989-2024 Lauterbach

Examples:

Example 1: PRACTICE script to detect the host operating system

Example 2: The different <version_data_types> 0 to 3

; The logical OR operator in PRACTICE scripts is ||
IF (OS.VERSION(0)>=0x50)||(OS.VERSION(0)==0x00)
 PRINT "Unkown OS"
ELSE IF OS.VERSION(0)>=0x40
 PRINT "Mac OS X"
ELSE IF OS.VERSION(0)>=0x30
 PRINT "HP-UX"
ELSE IF OS.VERSION(0)>=0x10
 PRINT "Linux"
ELSE
 PRINT "MS Windows"
ENDDO

IF (OS.VERSION(0)==0x1X)
(
 PRINT "TRACE32 started on"
 PRINT "LINUX computer"
)

; For return values, see table
; Operating System above, column 2.

PRINT OS.VERSION(1) ; For return values, see table above, column 3.

PRINT OS.VERSION(2) ; For return values, see table above, column 4.

PRINT OS.VERSION(3) ; For return values, see table above, column 5.
PowerView Function Reference | 129©1989-2024 Lauterbach

OS.Window.LINE() Get line from an OS.Window window
[build 113646 - DVD 02/2020]

Returns one line from a window opened with command OS.Window.

This is useful to get the result of shell command executed in the host operating system, for further usage in a
PRACTCIE script.

Parameter and Description:

Return Value Type: String.

Example:

Syntax: OS.Window.LINE(WinTOP | <window_name>,<line>)

A Positive numbers for <line> starting with 1 identify lines from the top of the OS.Window window.

B 0 and negative numbers for <line> identify lines from the bottom of the OS.Window window.

<window_name> Parameter Type: String.

<line> Parameter Type: Decimal value.

WinPOS ,,,,,,WINVER
OS.Window ver
ECHO OS.Window.LINE(WINVER,2)

B::OS.Window
...
...
...

...

...

...

1
2
3

-2
-1
0

A

B

PowerView Function Reference | 130©1989-2024 Lauterbach

PATH Functions

In This Section

See also

■ PATH ❏ PATH.NUMBER() ❏ PATH.PATH()

PATH.NUMBER() Number of path entries
[build 99683 - DVD 09/2018]

Returns the number of defined directories in the search path.
The actual defined directories from the search path are shown with the command PATH.List.

Return Value Type: Decimal value.

PATH.PATH() Search path entry
[build 99683 - DVD 09/2018]

Returns a certain defined directory from the search path (see command PATH.List).

Parameter Type: Decimal value. The <index> (starting at 0) is related to the different directory names from
the search path variable.

Return Value Type: String.

Syntax: PATH.NUMBER()

Syntax: PATH.PATH(<index>)
PowerView Function Reference | 131©1989-2024 Lauterbach

Example:

PATH.Set W:\cmm ; define three search directories
PATH.Set W:\t32\exam\cmm W:\use\mycmm ; search directory order below

PRINT PATH.PATH(1.) ; output: W:\t32\exam\cmm
PowerView Function Reference | 132©1989-2024 Lauterbach

ProcessID Function

ProcessID() Process identifier of a TRACE32 PowerView instance
[build 16069 - DVD 12/2009]

Returns the PID (process identifier) of the TRACE32 PowerView instance from the Windows Task Manager.

Return Value Type: Decimal value.

To display the PID column in Windows Task Manager:

1. Start the Windows Task Manager.

2. Click the Processes tab.

3. Choose View menu > Select Columns.

4. Select the PID check box.

Syntax: ProcessID()
PowerView Function Reference | 133©1989-2024 Lauterbach

PRACTICE Functions

In This Section

See also

❏ PRACTICE.ARG() ❏ PRACTICE.ARG.SIZE()
❏ PRACTICE.CALLER.FILE() ❏ PRACTICE.CALLER.LINE()
❏ PRACTICE.CoMmanD.AVAILable() ❏ PRACTICE.FUNCtion.AVAILable()

PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO
[build 65450 - DVD 02/2016]

Returns the value of the specified <argument_index>: a) passed by the commands GOSUB or DO or
b) returned by the commands RETURN or ENDDO.

Parameter Type: Decimal or hex or binary value. The index number of the first argument is 0.

Return Value Type: String.

Example: A file name string is passed to a subroutine. The subroutine fetches the string using
PRACTICE.ARG(). The illegal characters are removed and the cleaned string is returned to the caller.
The caller fetches the cleaned string using PRACTICE.ARG().

Syntax: PRACTICE.ARG(<argument_index>)

GOSUB fix_filename "/test/in*t.system"
PRINT "cleaned file name: " PRACTICE.ARG(0.)
ENDDO

fix_filename:

 PRIVATE &name
 &name=PRACTICE.ARG(0.) ;get the file name string passed by GOSUB

 ;create an array with 'illegal' characters
 Var.NEWLOCAL char[16] \remove_these = "[]|=/*./:;,\"\\"
 Var.NEWLOCAL int \i = 0;

 Var.WHILE \remove_these[\i]!=0
 (;replace all 'illegal' characters with an underscore '_'
 PRIVATE &search_str
 &search_str=""+CONVert.CHAR(Var.VALUE(\remove_these[\i++]))
 &name=STRing.Replace("&name", "&search_str", "_", 0.)
)
 RETURN "&name" ;return the cleaned file name to the caller
PowerView Function Reference | 134©1989-2024 Lauterbach

PRACTICE.ARG.SIZE() Number of passed or returned arguments
[build 65450 - DVD 02/2016]

Returns the number of arguments: a) passed by the commands GOSUB or DO or b) returned by the
commands RETURN or ENDDO.

Return Value Type: Decimal value.

Example: A subroutine returns a number of values to the caller. PRACTICE.ARG.SIZE() counts the
number of values, and each value is then printed to an AREA window using a WHILE loop and
PRACTICE.ARG().

Syntax: PRACTICE.ARG.SIZE()

PMACRO.EXPLICIT ;enforce explicit macro declaration
PRIVATE &range &boolean &i
&i=0.

GOSUB AnySubroutine ;call the subroutine

AREA.view ;open an AREA.view window
PRINT %COLOR.MAROON "No. of return values: " PRACTICE.ARG.SIZE()

WHILE &i<PRACTICE.ARG.SIZE() ;print each return value to the
(;AREA.view window
 PRINT %COLOR.GREEN PRACTICE.ARG(&i)
 &i=&i+1.
)

ENDDO

AnySubroutine:

 PRIVATE &my_rng &my_bool
 ;assign two values to PRACTICE macros:
 &my_rng="0x40000000++0xffff" ;- any range
 &my_bool=FOUND() ;- any boolean expression

RETURN "&my_rng" "&my_bool" ;return the values to the caller
PowerView Function Reference | 135©1989-2024 Lauterbach

PRACTICE.CALLER.FILE() File name of the script/subscript caller
[build 65582 - DVD 09/2015]

Returns the file name of the script/subroutine caller.

Parameter and Description:

Return Value Type: String. The function returns an empty string if no further caller exists.

Example: See PRACTICE.CALLER.LINE().

PRACTICE.CALLER.LINE() Line number in caller script
[build 65582 - DVD 09/2015]

Returns the line number of a script/subroutine call in the caller script.

Parameter and Description:

Return Value Type: Decimal value. The function returns 0. if no further caller exists.

Example:

Syntax: PRACTICE.CALLER.FILE(<index>)

<index> Parameter Type: Decimal value. Is used to walk through the call hierarchy.

Syntax: PRACTICE.CALLER.LINE(<index>)

<index> Parameter Type: Decimal value. Is used to walk through the call hierarchy.

// caller.cmm
PRINT "This is "+PRACTICE.CALLER.FILE(0.)
PRINT "line: "+FORMAT.Decimal(0.,PRACTICE.CALLER.LINE(0.))
DO callee.cmm // this call is in line 4
ENDDO

// callee.cmm
PRINT " This is "+PRACTICE.CALLER.FILE(0.)
PRINT " line "+FORMAT.Decimal(0.,PRACTICE.CALLER.LINE(0.))
PRINT " Called from "+PRACTICE.CALLER.FILE(1.)
PRINT " line "+FORMAT.Decimal(0.,PRACTICE.CALLER.LINE(1.))
ENDDO
PowerView Function Reference | 136©1989-2024 Lauterbach

Output:

PRACTICE.CoMmanD.AVAILable() Check if command is available
[build 64113 - DVD 09/2015]

Returns TRUE if a specified TRACE32/PRACTICE command is available. Returns FALSE if the passed
TRACE32/PRACTICE command does not exist or is locked.

Parameter Type: String.

Return Value Type: Boolean.

Examples:

PRACTICE.CoMmanD.AVAILable() does not check parameters or arguments of the passed command:

Syntax: PRACTICE.CoMmanD.AVAILable(<command>)

;returns TRUE()
PRINT PRACTICE.CoMmanD.AVAILable(sys.mode.down)

;returns FALSE(), since there is no such command "sys.mode.lunchbreak"
PRINT PRACTICE.CoMmanD.AVAILable(sys.mode.lunchbreak)

;returns TRUE() - reason: without the period between mode and lunchbreak,
;lunchbreak is interpreted as a command argument
PRINT PRACTICE.CoMmanD.AVAILable(sys.mode lunchbreak)
PowerView Function Reference | 137©1989-2024 Lauterbach

PRACTICE.FUNCtion.AVAILable() Check if function is available
[build 64113 - DVD 09/2015]

Returns TRUE if a specified PRACTICE function is available. Returns FALSE if the passed function does not
exist or is locked.

Parameter Type: String.

Return Value Type: Boolean.

Examples:

PRACTICE.FUNCtion.AVAILable() does not check parameters or arguments of the passed function.

Syntax: PRACTICE.FUNCtion.AVAILable(<function>)

;returns TRUE()
PRINT PRACTICE.FUNCtion.AVAILable(Data.Long)

;returns FALSE()
PRINT PRACTICE.FUNCtion.AVAILable(imaginary.function)

;returns TRUE(), even the argument is rubbish
PRINT PRACTICE.FUNCtion.AVAILable(Data.Long("rubbish"))
PowerView Function Reference | 138©1989-2024 Lauterbach

PRINTER Function

PRINTER.FILENAME() Path and file name of next print operation
[build 72057 - DVD 08/2016]

Returns the path and the initial file name set with the PRinTer.FILE command, e.g. c:\temp\file01.txt. In
addition, the function returns the incremented file name for each subsequent print operation, e.g.
c:\temp\file02.txt, c:\temp\file03.txt, etc.

Return Value Type: String.

Example: Two List.Mix windows are printed to file, and each file name is returned with the
PRINTER.FILENAME() function.

Syntax: PRINTER.FILENAME()

PRinTer.FILE ~~~\file01.txt ; start with this file name

PRINT %COLOR.BLUE "Start file name: " %COLOR.RED PRINTER.FILENAME()

WinPrint.List.Mix func7--func17 ; print window to file01.txt

PRINT %COLOR.BLUE "Next file name: " %COLOR.RED PRINTER.FILENAME()

WinPrint.List.Mix func18--func25 ; increment file name and print
 ; window to file02.txt

PRINTER.FILENAME()
PowerView Function Reference | 139©1989-2024 Lauterbach

RADIX Function

RADIX() Current radix setting

Returns the current radix setting. See command SETUP.RADIX.

Return Value Type: Hex value.

Return Value and Description:

Syntax: RADIX()

0x0a Decimal mode.

0x10 Hex mode.
PowerView Function Reference | 140©1989-2024 Lauterbach

RANDOM Functions

RANDOM() Pseudo random number

Returns a pseudo random number (64-bit). See also SETUP.RANDOM command.

Return Value Type: Hex value.

Example:

RANDOM.RANGE() Pseudo random number from specified range

Returns a pseudo random integer number in the range <min> … <max>. See also SETUP.RANDOM
command.

Parameter and Description:

Return Value Type: Decimal value.

Syntax: RANDOM()

LOCAL &randomHex

&randomHex=RANDOM()

PRINT %COLOR.NAVY "Hex: " &randomHex
PRINT %CONTinue " = "
PRINT %CONTinue %COLOR.RED "Decimal: " CONVERT.HEXTOINT(&randomHex)

Syntax: RANDOM.RANGE(<min>, <max>)

<min> Parameter Type: Decimal value. Is a signed 64-bit integer.

<max> Parameter Type: Decimal value. Is a signed 64-bit integer.
PowerView Function Reference | 141©1989-2024 Lauterbach

RANDOM.RANGE.HEX() Pseudo hex random number from specified range

Returns a pseudo random hexadecimal number in the range <min> … <max>. This function is useful to
fill registers with random values or generate random addresses. See also SETUP.RANDOM command.

Parameter and Description:

Return Value Type: Hex value.

Syntax: RANDOM.RANGE.HEX(<min>, <max>)

<min> Parameter Type: Decimal value. Is an unsigned 64-bit integer.

<max> Parameter Type: Decimal value. Is an unsigned 64-bit integer.
PowerView Function Reference | 142©1989-2024 Lauterbach

RCL Function

RCL.PORT() UDP Port number of remote API interface
[build 59804 - DVD 02/2015]

Returns the UDP port number used by the currently selected TRACE32 PowerView instance for
communicating with <index> via the remote API interface. Returns 0 if the port number is undefined.

Parameter and Description:

Return Value Type: Decimal value.

Example:

RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP
[build 148343 - DVD 09/2022]

Returns the number of remote API clients currently connected via TCP.

Return Value Type: Decimal value.

Syntax: RCL.PORT(<index>)

<index> Parameter Type: Decimal value. Stands for the client that connects to
TRACE32 via the remote API. More than one client can connect to TRACE32.
The port number is defined in the TRACE32 configuration file (default
c:\t32\config.t32).

PRINT RCL.PORT(0.) ;returns 40000 and
PRINT RCL.PORT(1.) ;returns 40001 because the API setting in
 ;the above configuration file reads:
 RCL=NETASSIST
 PORT=40000 / PORT=40001

Syntax: RCL.TCP.NrUsedCons()

RCL.PORT()
PowerView Function Reference | 143©1989-2024 Lauterbach

RCL.TCP.PORT() TCP Port number of remote API interface
[build 1222215 - DVD 09/2020]

Returns the TCP port number used by the currently selected TRACE32 PowerView instance for
communicating via the remote API interface. Returns 0 if the configuration file does not contain
RCL=NETTCP.

Syntax: RCL.TCP.PORT()
PowerView Function Reference | 144©1989-2024 Lauterbach

SOFTWARE Functions

In This Section

See also

❏ SOFTWARE.64BIT() ❏ SOFTWARE.BUILD() ❏ SOFTWARE.BUILD.BASE() ❏ SOFTWARE.VERSION()

SOFTWARE.64BIT() Check if TRACE32 executable is 64-bit
[build 26300 - DVD 11/2010]

Returns TRUE if the TRACE32 software is a 64-bit executable.

Return Value Type: Boolean.

SOFTWARE.BUILD() Upper build number
[build 13875 - DVD 10/2008]

Returns the upper build number of TRACE32. Alias for VERSION.BUILD().

Return Value Type: Decimal value.

SOFTWARE.BUILD.BASE() Lower build number
[build 15283 - DVD 10/2008]

Returns the lower build number of TRACE32. Alias for VERSION.BUILD.BASE().

Return Value Type: Decimal value.

Syntax: SOFTWARE.64BIT()

Syntax: SOFTWARE.BUILD()

Syntax: SOFTWARE.BUILD.BASE()
PowerView Function Reference | 145©1989-2024 Lauterbach

SOFTWARE.VERSION() Release build or nightly build, etc.
[build 24375 - DVD 11/2010]

Returns the version of the main software. For more information about the function, please refer to its alias
VERSION.SOFTWARE().

Return Value Type: String.

Syntax: SOFTWARE.VERSION()
PowerView Function Reference | 146©1989-2024 Lauterbach

STRing Functions

In This Section

See also

❏ STRing.CHAR() ❏ STRing.ComPare() ❏ STRing.COUNT() ❏ STRing.CUT()
❏ STRing.ESCapeQuotes() ❏ STRing.FIND() ❏ STRing.LENgth() ❏ STRing.LoWeR()
❏ STRing.MID() ❏ STRing.Replace() ❏ STRing.SCAN() ❏ STRing.SCANAndExtract()
❏ STRing.SCANBack() ❏ STRing.SPLIT() ❏ STRing.TOKEN() ❏ STRing.TRIM()
❏ STRing.UPpeR()

STRing.CHAR() Extract a character

Extracts a character at the given index position of the string.

Return Value Type: Hex value. The function returns -1 if the index exceeds the string length.

Examples:

Syntax: STRing.CHAR("<string>",<index>)

PRINT STRing.CHAR("abcdef",2) ; result: 0x63 (=='c')

PRINT STRing.CHAR("abcdef",10.) ; result: -1

IF STRing.CHAR("abcdef",10.)==-1
 DIALOG.OK "<index> exceeds the string length."
PowerView Function Reference | 147©1989-2024 Lauterbach

STRing.ComPare() Check if string matches pattern
[build 53898 - DVD 09/2014]

Returns TRUE if the string matches the wildcard pattern containing '*' and '?'.

Parameter and Description:

Return Value Type: Boolean.

Example:

STRing.COUNT() Substring occurrences
[build 66950 - DVD 02/2016]

Counts the number of occurrences of <substring> in <string>.

Parameter and Description:

Return Value Type: Decimal value.

Example:

Syntax: STRing.ComPare("<string>","<pattern>")

<string> Parameter Type: String.

<pattern> Parameter Type: String.

;returns TRUE
PRINT STRing.ComPare(STRing.LoWeR("JohnPaulGeorgeRingo"),"*paul*")

Syntax: STRing.COUNT("<string>","<substring>")

<string> Parameter Type: String. The original string.

<substring> Parameter Type: String. The string we search for in <string>.

PRINT STRing.COUNT("Hello World","l") ; returns 3
PRINT STRing.COUNT("Hello World","ll") ; returns 1
PowerView Function Reference | 148©1989-2024 Lauterbach

STRing.CUT() Cut string from left or right

Cuts off the start or end of a string. Positive values cut off the start, negative values cut off the end of
the string.

Parameter and Description:

Return Value Type: String.

Examples:

STRing.ESCapeQuotes() Double quote character inside string
[build 94943- DVD 09/2018]

This function takes a string as parameter and doubles all " characters inside it.

Parameter Type: String.

Return Value Type: String.

As a use case for this function, here is an example PRACTICE script:

This script will produce the following output in the AREA window:

mystr:> starts with space, has " double quotes ", ends with space <

Syntax: STRing.CUT("<string>",<length>)

<string> Parameter Type: String. String to be modified.

<length> Parameter Type: Hex or decimal value.

PRINT STRing.CUT("abcdef",1) ; result "bcdef"
PRINT STRing.CUT("abcdef",-1) ; result "abcde"

&abc="test"
&def=STRing.CUT("&abc",2) ; result &def="st"
PRINT "&def"

Syntax: STRing.ESCapeQuotes("<string>")

LOCAL &mycmd &mystr
&mystr=" starts with space, has "" double quotes "", ends with space "
&mycmd="PRINT ""mystr:>"+STRing.ESCapeQuotes("&mystr")+"<"""
&mycmd
PowerView Function Reference | 149©1989-2024 Lauterbach

STRing.FIND() Check if search characters are found within string

Checks if <string1> and <string2> share at least 1 character.

Parameter Type: String.

Return Value Type: Boolean.

Example 1:

Example 2: In this script, the STRing.FIND() function is used to check if a file name contains characters
from the blacklist.

See also: STRing.SCAN().

STRing.LENgth() Length of string
[build 27143 - DVD 06/2011]

Returns the length of the string.

Return Value Type: Decimal value.

Syntax: STRing.FIND("<string1>","<string2>")

PRINT STRing.FIND("auto","sample") ; result TRUE
PRINT STRing.FIND("abc","xyz") ; result FALSE

IF STRing.FIND("auto","sample")==TRUE()
(
 DIALOG.OK "The two string share at least one character."
)

LOCAL &blackList
&blackList="\/:*?""<>| -"

IF STRing.FIND("hello world.dat","&blackList")==TRUE()
(
 PRINT %ERROR "File name contains illegal characters!"
 ENDDO
)

Syntax: STRing.LENgth("<string>")
PowerView Function Reference | 150©1989-2024 Lauterbach

Example:

STRing.LoWeR() String to lowercase
[build 27143 - DVD 06/2011]

Returns the string converted into lowercase.

Parameter Type: String.

Return Value Type: String.

Example:

STRing.MID() Extract part of string

Extracts a part of a string. The string starting at position <start_at> with the <length> is extracted. The
first element has the offset 0.

Parameter and Description:

Return Value Type: String.

Examples:

STRing.LENgth("abcDEF") ; result 6

Syntax: STRing.LoWeR("<string>")

STRing.LoWeR("abcDEF") ; result "abcdef"

Syntax: STRing.MID("<string>",<start_at>,<length>)

<string> Parameter Type: String. String to be modified.

<start_at> Parameter Type: Hex or decimal value.

<length> Parameter Type: Hex or decimal value.

STRing.MID("abcdef",2.,2.) ; result "cd"
STRing.MID("abcdef",2.,100.) ; result "cdef"
STRing.MID("abcdef",10.,100.) ; result ""
PowerView Function Reference | 151©1989-2024 Lauterbach

STRing.Replace() Modified string after search operation
[build 39759 - DVD 08/2012] [Examples]

Scans the <source_string> for the occurrence of <search_string> and replaces these string parts by
<replace_string>. An empty <replace_string> will result in a string cutting. The function returns a
modified string.

Parameter and Description:

Return Value Type: String.

Examples:

Syntax: STRing.Replace("<source_string>","<search_string>","<replace_string>",
<no_replaces>)

<*string*> Parameter Type: String.

<no_replaces> Parameter Type: Hex or decimal value. Defines the number of replacements:

0 Replace all occurrences of <search_string>.

1..n Number of replacements from string begin.

-1..-n Number of replacements from string end.

 &unix_path=STRing.Replace(OS.PWD(),"\","/",0.)

 &my_path="~~\testdir"
 &unix_path=STRing.Replace(&my_path,"\","/",0.)
; no expansion of "~~" will be done

 PRINT STRing.Replace("abcdefgabcdefgabcdefgabcdefg","cd","123",0.)
; result: ab123efgab123efgab123efgab123efg

 PRINT STRing.Replace("abcdefgabcdefgabcdefgabcdefg","cd","",0.)
; result: abefgabefgabefgabefgabefg

 PRINT STRing.Replace("abcdefgabcdefgabcdefgabcdefg","acd","12",0.)
; result: abcdefgabcdefgabcdefgabcdefg

 PRINT STRing.Replace("abcdefgabcdefgabcdefgabcdefg","cd","123",2.)
; result: ab123efgab123efgabcdefgabcdefg

 PRINT STRing.Replace("abcdefgabcdefgabcdefgabcdefg","cd","123",-2.)
; result: abcdefgabcdefgab123efgab123efg

 PRINT STRing.Replace("aaaaaaaaaa","aaa","123",2.)
; result: 123123aaaa

 PRINT STRing.Replace("aaaaaaaaaa","aaa","123",-1.)
; result: aaaaaaa123
PowerView Function Reference | 152©1989-2024 Lauterbach

STRing.SCAN() Offset of the found string

Scans the <source_string> for the first occurrence of <search_string>.
The search begins at the offset <start_at>. The first string element has index 0.
The function returns the offset of the found string or -1 if the string was not found.

Parameter and Description:

Return Value Type: Hex value.

Examples:

Syntax: STRing.SCAN("<source_string>","<search_string>",<start_at>)

<source_string>,
<search_string>

Parameter Type: String.

<start_at> Parameter Type: Hex or decimal value.

PRINT STRing.SCAN("abcdefabcde","cd",0) ;result 2
PRINT STRing.SCAN("abcdefabcde","cd",3) ;result 8
PRINT STRing.SCAN("abcdefabcde","xy",0) ;result -1
PowerView Function Reference | 153©1989-2024 Lauterbach

STRing.SCANAndExtract() Extract remaining string after search string
[build 29755 - DVD 06/2011]

Scans the <string> for the first occurrence of <key> and extracts a subsequent value. Use to parse key-
value pairs of a configuration string in the form of “<key><value>”.

This function is space sensitive. <key> must be preceded by a space character, unless it is at the start
of the string. <value> ends at the first space character found or at the end of <string>. <value> can
include whitespace characters if put in quotes.

The function returns the value found after the <key>. If <key> was not found <default_value> is
returned.

Parameter and Description:

Return Value Type: String.

Examples:

Syntax: STRing.SCANAndExtract("<string>","<key>","<default_value>")

<string>, <key>,
<default_value>

Parameter Type: String.

LOCAL ¶meters &device_id &node &name

ENTRY %LINE ¶meters
; e.g. ¶meters = DEVICEID=7 NODE= NAME="ETH 1"

&device_id=STRing.SCANAndExtract("¶meters","DEVICEID=","0")
; &device_id = 7

&id=STRing.SCANAndExtract("¶meters","ID=","-1")
; &id = -1, as there is no key "ID=" in ¶meters

&node=STRing.SCANAndExtract("¶meters","NODE=","DEFAULT")
; &node is empty

&name=STRing.SCANAndExtract("¶meters","NAME=","anonymous")
; &name = "ETH 1"
PowerView Function Reference | 154©1989-2024 Lauterbach

STRing.SCANBack() Offset of the found string
[build 100200 - DVD 09/2018]

Scans the <source_string> for the first occurrence of <search_string>.
The search begins backwards at the offset <start_at>. The first string element has index 0.
The function returns the offset of the found string or -1 if the string was not found.

Parameter and Description:

Return Value Type: Hex value.

Examples:

Syntax: STRing.SCANBack("<source_string>","<search_string>",<start_at>)

<source_string>,
<search_string>

Parameter Type: String.

<start_at> Parameter Type: Hex or decimal value.

PRINT STRing.SCANBack("abcdefabcdcde","cd",0) ;result -1
PRINT STRing.SCANBack("abcdefabcde","cd",3) ;result 2
PRINT STRing.SCANBack("abcdefabcde","xy",10.) ;result -1

PRINT STRing.SCANBack("aaaaa","aaa",4) ;result 2
PRINT STRing.SCANBack("aaaaa","aaa",3) ;result 1
PRINT STRing.SCANBack("aaaaa","aaa",1) ;result -1

PRINT STRing.SCANBack("aaaaa","aaa",STRing.LENgth("aaaaa")-1) ;result 2
PowerView Function Reference | 155©1989-2024 Lauterbach

STRing.SPLIT() Return element from string list
[build 60314 - DVD 02/2015]

Splits a string in parts at the given separator and returns the resulting element at the specified index. If
a negative index is used, the elements are counted backwards (e.g -1: last element, -2: second last...).

As separator the parameter <separator> is interpreted as a list of characters (DELIMITER=char) or as
a string (default: DELIMITER=STRING). Per default there is no special handling for quotes. With option
QUOTEDSTRINGS=ON tokenization is disabled between matching quotes. Using an escape character
(ESCAPECHAR='<c>') quotes as well as a separator can be escaped.

Parameter and Description:

Options and Description:

Return Value Type: String.

Syntax: STRing.SPLIT("<string>","<separator>",<index>[,<options>])

<string> String to split.
Parameter Type: String.

<separator> Separator string / Sequence of character separators respectively
depending on DELIMITER= option.
Parameter Type: String.

<index> Index of item.
Parameter Type: Hex or decimal value.

<options> Available from build 143582 - DVD 02/2022
Optional: Key-Value string
QUOTEDSTRINGS=off|ON
DELIMITER=string|CHAR
ESCAPECHAR='<c>'
Parameter Type: String.

QUOTEDSTRINGS=ON A token is not generated between matching quotes. E.g. key="value
with spaces" with separator <space> generates one token.

DELIMITER=string String <separator> is used as separator.

DELIMITER=CHAR A separator is any character part of <separator>.

ESCAPECHAR='<c>' Escape separator’s and quotes using <c>. With QUOTEDSTRINGS=ON
<c> is not removed from the final token within a quoted string. The
escape char itself can be escaped using <c><c>.
PowerView Function Reference | 156©1989-2024 Lauterbach

Examples:

PRINT STRing.SPLIT("Hello TRACE32!"," ",0) ; result "Hello"
PRINT STRing.SPLIT("C:\T32\demo\arm","\",2) ; result "demo"
PRINT STRing.SPLIT("C:\T32\demo\arm","\",-1) ; result "arm"
PRINT STRing.SPLIT("C:\T32\demo\arm","demo",0) ; result "C:\T32\"

; negative indexes
PRINT STRing.SPLIT("a||b","|",0.) ; result "a"
PRINT STRing.SPLIT("a||b","|",1.) ; result ""
PRINT STRing.SPLIT("a||b","|",2.) ; result "b"
PRINT STRing.SPLIT("a||b","|",-1.) ; result "b"
PRINT STRing.SPLIT("a||b","|",-2.) ; result ""
PRINT STRing.SPLIT("a||b","|",-3.) ; result "a"
; negative indexes with no match
PRINT STRing.SPLIT("abcd","|",0.) ; result "abcd"
PRINT STRing.SPLIT("abcd","|",1.) ; result ""
PRINT STRing.SPLIT("abcd","|",-1.) ; result "abcd"
; leading/trailing separator
PRINT STRing.SPLIT("|b||","|",0.) ; result ""
PRINT STRing.SPLIT("|b||","|",1.) ; result "b"
PRINT STRing.SPLIT("|b||","|",-3.) ; result "b"

; Demonstrate QUOTEDSTRINGS=ON
PRIVATE &i &str
&i=0.
&str="DRINK=""Lemonade,Apple juice,Tonic Water"" TIP=5$ PAID=TRUE"
RePeaT 3.
(
 PRIVATE &sToken
 &sToken=STRing.SPLIT("&str"," ",&i,QUOTEDSTRINGS=ON)
 PRINTF "; Index %2u - %s" &i “&sToken”
 &i=&i+1.
)
; Result:
; Token 0 - DRINK="Lemonade,Apple juice,Tonic Water"
; Token 1 - TIP=5$
; Token 2 - PAID=TRUE
PowerView Function Reference | 157©1989-2024 Lauterbach

See also STRing.TOKEN().

; Demonstrate ESCAPECHAR='<c>'
PRIVATE &i &str
&i=0.
&str="COMMAND=""awk -f \""/scripts 2022/test.awk\"" output.txt"" "
&str="&(str) KEY\ WITH\ SPACES=VALUE\ WITH\ SPACES "
&str="&(str) BACKSLASH=\\ "
RePeaT 5.
(
 PRIVATE &sToken
 &sToken=STRing.SPLIT("&str"," ",&i,QUOTEDSTRINGS=ON ESCAPECHAR='\')
 PRINTF "; Index %2u - %s" &i "&sToken"
 &i=&i+1.
)
; Result:
; Index 0 - COMMAND="awk -f \"/scripts 2022/test.awk\" output.txt"
; Index 1 -
; Index 2 - KEY WITH SPACES=VALUE WITH SPACES
; Index 3 -
; Index 4 - BACKSLASH=\
; Empty indexes 1&3 are caused by multiple <space>’s in &str

; Demonstrate DELIMITER=CHAR
SUBROUTINE splitPath
(
 PRIVATE &i &sPath
 PARAMETERS &sPath
 &i=0.
 RePeaT 4.
 (
 PRIVATE &sToken
 &sToken=STRing.SPLIT("&sPath","/\",&i,DELIMITER=CHAR)
 PRINTF "; Index %2u - %s" &i "&sToken"
 &i=&i+1.
)
)
GOSUB splitPath "..\..\demo\arm"
; Result:
; Index 0 - ..
; Index 1 - ..
; Index 2 - demo
; Index 3 - arm
GOSUB splitPath "../../demo/arm"
; Result:
; Index 0 - ..
; Index 1 - ..
; Index 2 - demo
; Index 3 - arm
PowerView Function Reference | 158©1989-2024 Lauterbach

STRing.TOKEN() Extract token from string
[build 143582 - DVD 02/2022]

STRing.TOKEN is aligned to C/C++ strtok(). The functions extracts tokens from <string> which are
sequences of contiguous characters separated by separator’s. To extract a token the function scans
<string> till the first location not a separator. Sequences of consecutive separator’s between/after a
token are ignored.

As separator the parameter <delimiter> is interpreted as a list of characters (default:
DELIMITER=char) or as a string (DELIMITER=STRING). Per default there is no special handling for
quotes. With option QUOTEDSTRINGS=ON tokenization is disabled between matching quotes. Using an
escape character (ESCAPECHAR='<c>') quotes as well as a separator can be escaped.

If a negative index is used, the tokens are counted backwards (e.g -1: last element, -2: second last...).

Parameter and Description:

Options and Description:

Return Value Type: String.

Syntax: STRing.TOKEN("<string>","<delimiter>",<index>[,<options>])

<string> String to tokeninze.
Parameter Type: String.

<delimiter> Sequence of delimiters / Delimiter string respectively depending on
DELIMITER= option.
Parameter Type: String.

<index> Index of token.
Parameter Type: Hex or decimal value.

<options> Optional: Key-Value string
QUOTEDSTRINGS=off|ON
DELIMITER=char|STRING
ESCAPECHAR='<c>'
Parameter Type: String.

QUOTEDSTRINGS=ON A token is not generated between matching quotes. E.g. key="value
with spaces" with separator <space> generates one token.

DELIMITER=char A separator is any character part of <delimiter>, like
C/C++ strtok().

DELIMITER=STRING String <delimiter> is used as separator.

ESCAPECHAR='<c>' Escape separator’s and quotes using <c>. With QUOTEDSTRINGS=ON
<c> is not removed from the final token within a quoted string. The
escape char itself can be escaped using <c><c>.
PowerView Function Reference | 159©1989-2024 Lauterbach

Examples:

PRIVATE &i &str
&i=0.
&str="String separated with one or multiple spaces, colons or \
 semicolons ;."
RePeaT 11.
(
 PRINTF "; Token %2u - %s" &i STRing.TOKEN("&str"," ,;",&i)
 &i=&i+1.
)
; Result:
; Token 0 - String
; Token 1 - separated
; Token 2 - with
; Token 3 - one
; Token 4 - or
; Token 5 - multiple
; Token 6 - spaces
; Token 7 - colons
; Token 8 - or
; Token 9 - semicolons
; Token 10 - .

; negative indexes
PRINT STRing.TOKEN("a||b","|",0.) ; result "a"
PRINT STRing.TOKEN("a||b","|",1.) ; result "b"
PRINT STRing.TOKEN("a||b","|",2.) ; result ""
PRINT STRing.TOKEN("a||b","|",-1.) ; result "b"
PRINT STRing.TOKEN("a||b","|",-2.) ; result "a"
PRINT STRing.TOKEN("a||b","|",-3.) ; result ""
; negative indexes with one token
PRINT STRing.TOKEN("abcd","|",0.) ; result "abcd"
PRINT STRing.TOKEN("abcd","|",1.) ; result ""
PRINT STRing.TOKEN("abcd","|",-1.) ; result ""
; leading/trailing separator’s
PRINT STRing.TOKEN("|b||","|",0.) ; result "b"
PRINT STRing.TOKEN("|b||","|",1.) ; result ""
PRINT STRing.TOKEN("|b||","|",-1.) ; result ""
PowerView Function Reference | 160©1989-2024 Lauterbach

STRing.TRIM() String without leading and trailing whitespaces
[build 34324 - DVD 02/2012]

Returns a string without leading and trailing whitespaces.

Parameter Type: String.

Return Value Type: String.

; Demonstrate QUOTEDSTRINGS=ON
PRIVATE &i &str
&i=0.
&str="DRINK=""Lemonade,Apple juice,Tonic Water"" TIP=5$ PAID=TRUE"
RePeaT 3.
(
 PRIVATE &sToken
 &sToken=STRing.TOKEN("&str"," ",&i,QUOTEDSTRINGS=ON)
 PRINTF "; Token %2u - %s" &i "&sToken"
 &i=&i+1.
)
; Result:
; Token 0 - DRINK="Lemonade,Apple juice,Tonic Water"
; Token 1 - TIP=5$
; Token 2 - PAID=TRUE

; Demonstrate ESCAPECHAR='<c>'
PRIVATE &i &str
&i=0.
&str="COMMAND=""awk -f \""/scripts 2022/test.awk\"" output.txt"" "
&str="&(str) KEY\ WITH\ SPACES=VALUE\ WITH\ SPACES "
&str="&(str) BACKSLASH=\\ "
RePeaT 3.
(
 PRIVATE &sToken
 &sToken=STRing.TOKEN("&str"," ",&i,QUOTEDSTRINGS=ON ESCAPECHAR='\')
 PRINTF "; Token %2u - %s" &i "&sToken"
 &i=&i+1.
)
; Result:
; Token 0 - COMMAND="awk -f \"/scripts 2022/test.awk\" output.txt"
; Token 1 - KEY WITH SPACES=VALUE WITH SPACES
; Token 2 - BACKSLASH=\

Syntax: STRing.TRIM("<string>")
PowerView Function Reference | 161©1989-2024 Lauterbach

Examples:

STRing.UPpeR() String to uppercase
[build 27143 - DVD 06/2011]

Returns the string converted to uppercase.

Parameter Type: String.

Return Value Type: String.

Example:

; Remove whitespaces.
PRINT STRing.TRIM(" abcDEF ") ; result "abcDEF"

; Remove whitespaces and convert to upper case.
PRINT STRing.TRIM(STRing.UPpeR(" abcDEF ")) ; result "ABCDEF"

Syntax: STRing.UPpeR("<string>")

PRINT STRing.UPpeR("abcDEF") ;result ABCDEF
PowerView Function Reference | 162©1989-2024 Lauterbach

TCF Functions (TRACE32 as TCF Agent)

For information about how to configure and use TRACE32 as TCF agent, refer to “TRACE32 as TCF
Agent” (app_tcf_setup.pdf).

In This Section

See also

❏ TCF.DISCOVERY() ❏ TCF.PORT()

TCF.PORT() Port number of TCF interface
[build 71558 - DVD 02/2016]

Returns the port number used by the currently selected TRACE32 PowerView instance for communication
via the TCF interface. Returns 0 if the port number is undefined.

Return Value Type: Decimal value.

TCF.DISCOVERY() Check if TCF discovery is enabled
[build 71558 - DVD 02/2016]

Returns TRUE if the TCF discovery is enabled in TRACE32.

Return Value Type: Boolean.

Syntax: TCF.PORT()

Syntax: TCF.DISCOVERY()
PowerView Function Reference | 163©1989-2024 Lauterbach

TEST Function

TEST.TIMEISVALID() Check if time value is valid
[build 78580 - DVD 02/2017]

Returns TRUE if the given time value is correct. Returns FALSE otherwise.

This function is not intended for syntax checking of strings containing time values.

Parameter Type: Time value.

Return Value Type: Boolean.

Example:

Syntax: TEST.TIMEISVALID(<time>)

IF TEST.TIMEISVALID(Trace.RECORD.TIME(-12.))==FALSE()
(
 PRINT %WARNING "timestamp of record -12. isn’t valid"
)

PowerView Function Reference | 164©1989-2024 Lauterbach

TIMEOUT Function

TIMEOUT() Check if command was fully executed
[build 45047 - DVD 08/2013]

Returns TRUE if a previous command terminated due to a timeout. The commands which can be
terminated by a timeout are:

Return Value Type: Boolean.

Example 1:

Example 2:

Syntax: TIMEOUT()

WAIT [<condition>] [<period>]
[build 94995 - DVD 09/2015]

Waits until a condition is true or a period has
elapsed.
The screen is not updated while waiting.

TIMEOUT <period> <command>
[build 45047 - DVD 08/2013]

Specifies a timeout for a TRACE32 command.

SCREEN.WAIT [<condition> | <period>]
[build 94995 - DVD 09/2015]

Updates the screen while waiting.

Go.direct main ;set temporary breakpoint on main()
 ;function and start CPU

WAIT !STATE.RUN() 5.s ;wait 5.s for CPU to stop

IF TIMEOUT()==TRUE()
 ECHO %ERROR "CPU does not stop."

;your start-up script

TIMEOUT 500.ms Data.Copy D:0--0x3ffffff VM:0 /Byte /Verify

IF TIMEOUT()==TRUE()
(
 PRINT %WARNING "'Data.Copy D:0--0x3ffffff VM:0' canceled after 50.ms"
)

PowerView Function Reference | 165©1989-2024 Lauterbach

 Example 3:

TERM.TRIGGER #1 "[U-BOOT]"
SCREEN.WAIT TERM.TRIGGERED(#1) 15.s
IF TIMEOUT()
 STOP %ERROR "Failed to reach prompt"
PowerView Function Reference | 166©1989-2024 Lauterbach

TITLE Function

TITLE() Caption of the TRACE32 main window
[build 24341 - DVD 11/2010]

Returns the caption of the TRACE32 main window. The caption can be modified with the TITLE
command.

Return Value Type: String.

Example:

Syntax: TITLE()

TITLE "TRACE32 for CPU0" ; Define the caption of the
 ; TRACE32 main window
 …
IF TITLE()=="TRACE32 for CPU0" ; Check if the actual caption
 ; matches a certain debugger
 ; scenario
PowerView Function Reference | 167©1989-2024 Lauterbach

TRUE Function

TRUE() Boolean expression
[build 36180 - DVD 02/2012]

Always returns the boolean value TRUE. It can be used for increasing the readability of PRACTICE
scripts when initializing PRACTICE macros. The counterpart is FALSE().

Return Value Type: Boolean.

Example:

WARNINGS Function

WARNINGS() Check if warning occurred during command execution

Returns TRUE if a warning occurred during command execution (only applicable in PRACTICE script
files *.cmm).

Return Value Type: Boolean.

Syntax: TRUE()

&s_error_occurred=TRUE() ; instead of
&s_error_occurred=(0==0)

Syntax: WARNINGS()
PowerView Function Reference | 168©1989-2024 Lauterbach

WINdow Functions

In This Section

See also

■ Win ❏ WINdow.COMMAND() ❏ WINdow.EXIST() ❏ WINdow.LIST()
❏ WINdow.POSition() ❏ WINPAGE.CURRENT() ❏ WINPAGE.EXIST() ❏ WINPAGE.LIST()

WINdow.COMMAND() Command string displayed in window
[build 69465 - DVD 02/2016]

Returns the TRACE32 command which was used to open a window. The device prompt, e.g. B::, is
included in the return value.

Parameter and Description:

Return Value Type: String. The string is empty if the specified window name does not exist.

Example:

NOTE: • Window names are case-sensitive.
• Page names are case-sensitive.

Syntax: WINdow.COMMAND(WinTOP | <window_name>)

WinTOP
(or TOP as an alias)

Returns the TRACE32 command of the active window.

<window_name> Parameter Type: String. Window names are case-sensitive. They are
created with the WinPOS command.

WinPOS ,,,,,, abc ;assign the name 'abc' to the next window
List.auto ;open the window

PRINT WINdow.COMMAND(abc) ;prints "B::List.auto" to the message AREA
PowerView Function Reference | 169©1989-2024 Lauterbach

WINdow.EXIST() Check if window name exists

Returns TRUE if a window with the specified name exists.

Parameter Type: String. Window names are case-sensitive. They are created with the WinPOS
command or the DIALOG NAME element.

Return Value Type: Boolean.

Example:

WINdow.LIST() Generate a comma-separated list of window names
[build 146569 - DVD 08/2022]

Returns a comma-separated list of window names of all open windows either on all window pages, on a
specific window page or the currently selected window page. If no open window exist the returned string is
empty.

Parameter and Description:

Syntax: WINdow.EXIST(<window_name>)
WINDOW.NAME() (deprecated)

WinPOS ,,,,,,abc ;create a window with a user-defined name
Register.view
 …
IF WINdow.EXIST(abc)==TRUE() ;check if this window still exists

Syntax: WINdow.LIST([<page_name>])

no parameter Parameter Type: none. If no parameter is given the function returns a list
of all window names of all opened windows on all window pages.

<page_name> Parameter Type: String. Name of a window page created with the
WinPAGE.Create command. Page names are case-sensitive.
The returned comma-separated list contains all window names of all
opened windows for the given window page
PowerView Function Reference | 170©1989-2024 Lauterbach

Return Value Type: String.

Examples:

WINdow.POSition() Information on window position and dimension
[build 64413 - DVD 09/2015]

Returns the current value of the specified position type if a window with the specified name exists.

Parameter and Description:

Return Value Type: Float.

NOTE: The list may contain duplicate window names because the window name could
be a user-defined value that is not a unique identifier for a window. See
command WinPOS how to set the name of a window.
The order of the window names in the list can vary between calls to the function
and depends on the overlapping order (Z-order) of the windows on the screen.

PRINT WINdow.LIST() ; no parameter will print a list of all window
 ; names on all window pages
PRINT WINdow.LIST(“P000”) ; print a list of all window names on page P000

Syntax: WINdow.POSition(WinTOP | <window_name>,<position_item_name>)

<position_
item_name>:

LEFT | UP | HSIZE | VSIZE | HSCALE | VSCALE

WinTOP
(or TOP as an alias)

Returns the values of the active window.

<window_name> Parameter Type: String. Window names are case-sensitive. They are
created with the WinPOS command.

<position_item_
name>

For a description of LEFT to VSCALE, refer to the parameters of the
WinPOS command.
PowerView Function Reference | 171©1989-2024 Lauterbach

Examples:

WINPAGE.CURRENT() Get name of currently selected window page
[build 146627 - DVD 08/2022]

Returns the name of the currently selected window page. Use the command WinPAGE.select to change
the currently selected window page or the command WinPAGE.Create to create a new named window
page.

Return Value Type: String.

Example:

WINPAGE.EXIST() Check if window page exists

Returns TRUE if a window page with the specified name exists.

Parameter Type: String. Name of a window page created with the WinPAGE.Create command. Page
names are case-sensitive.

Return Value Type: Boolean.

WinPOS 10.25 20.50 80. 25. 15. 2. abc ; create a window with defined
List.auto ; name, position and size

PRINT WINdow.POSition(abc,left) ; ==> 10.25
PRINT WINdow.POSition(abc,up) ; ==> 20.50
PRINT WINdow.POSition(abc,hsize) ; ==> 80.0
PRINT WINdow.POSition(abc,vsize) ; ==> 25.0
PRINT WINdow.POSition(abc,hscale) ; ==> 15.0
PRINT WINdow.POSition(abc,vscale) ; ==> 2.0

Syntax: WINPAGE.CURRENT()

LOCAL &page &list
&page=WINPAGE.CURRENT()
&list=WINdow.LIST(&page)
PRINT “Windows on current page &page: &list”

Syntax: WINPAGE.EXIST(<page_name>)
PowerView Function Reference | 172©1989-2024 Lauterbach

Example:

WINPAGE.LIST() Generate comma-separated list of page names
[build 146654 - DVD 08/2022]

Returns a comma-separated list containing the names of all existing window pages.

Return Value Type: String.

A new named window page is created with the command WinPAGE.Create. An interactive window
displaying all window pages and their included windows is shown with the command WinPAGE.List.

Example:

WinPAGE.Create Analyzer ; create separate window page
Trace.List ; with defined name
 …
IF WINPAGE.EXIST(Analyzer)==TRUE() ; check if this window page still
 ; exists

Syntax: WINPAGE.LIST()

LOCAL &pagelist ; define macro
WinPAGE.Create “MYPAGE” /NoSELect ; create window page named MYPAGE
&pagelist=WINPAGE.LIST() ; get list of all page names
PRINT “list:&pagelist” ; shows “list:P000,MYPAGE”
PowerView Function Reference | 173©1989-2024 Lauterbach

	PowerView Function Reference
	History
	In This Document
	AREA Functions
	In This Section
	AREA.COUNT() Number of existing message areas
	AREA.EXIST() Check if message area exists
	AREA.LINE() Extract line from message area
	AREA.MAXCOUNT() Maximum number of message areas
	AREA.NAME() Names of existing message areas
	AREA.SELECTed() Name of active message area
	AREA.SIZE.COLUMNS() Columns of a message area
	AREA.SIZE.LINES() Lines of a message area

	CLOCK Functions
	CONFIG Function
	CONFIG.SCREEN() Check if screen output is switched on

	CONNECTION Functions
	CONNECTION.DEVice.IndexByName() Get device index
	CONNECTION.DEVice.IndexBySerialNumber() Get device index
	CONNECTION.DEVice.InUse() Debug module currently in use
	CONNECTION.DEVice.NAME() Get device name of debug module
	CONNECTION.DEVice.Number() Number of detected debug modules
	CONNECTION.DEVice.PORT() Get host connection port of debug module
	CONNECTION.DEVice.SerialNumber() Get device serial number
	CONNECTION.GetDriverError() Get driver error of last connection attempt
	CONNECTION.HOSTMCI.TestMciServer() Get MCI server state information
	CONNECTION.INTerface.Available() Check connection interface availability
	CONNECTION.STATE.ERROR() Failed to establish connection
	CONNECTION.STATE.Interactive() Interactive connection state

	CONVert Functions
	In This Section
	CONVert.ADDRESSTODUALPORT() Dualport access class
	CONVert.ADDRESSTONONSECURE() Non-secure access class
	CONVert.ADDRESSTOSECURE() Secure access class
	CONvert.BOOLTOINT() Boolean to integer
	CONVert.CHAR() Integer to ASCII character
	CONVert.FLOATTOINT() Float to integer
	CONVert.HEXTOINT() Hex to integer
	CONVert.INTTOBOOL() Integer to boolean
	CONVert.INTTOFLOAT() Integer to floating point value
	CONVert.INTTOHEX() Integer to hex
	CONVert.INTTOMASK() Compose bit-mask from integer value and mask
	CONVert.LINEAR11TOFLOAT() LINEAR11 to float
	CONVert.LINEAR16TOFLOAT() LINEAR16 to float
	CONVert.MASKMTOINT() Bits set to don't-care in given bit-mask
	CONVert.MASKTOINT() Bits set to 1 in given bit-mask
	CONVert.OCTaltoint() Octal to decimal
	CONVert.SignedByte() 1 byte to 8 bytes
	CONVert.SignedLong() 4 bytes to 8 bytes
	CONVert.SignedWord() 2 bytes to 8 bytes
	CONVert.TIMEMSTOINT() Time to milliseconds
	CONVert.TIMENSTOINT() Time to nanoseconds
	CONVert.TIMERAWTOINT() Time to TRACE32 timer ticks
	CONVert.TIMESTOINT() Time to seconds
	CONVert.TIMEUSTOINT() Time to microseconds
	CONVert.TOLOWER() String to lower case
	CONVert.TOUPPER() String to upper case

	DATE Functions
	In This Section
	DATE.DATE() Current date
	DATE.DAY() Today’s date
	DATE.MakeUnixTime() Date to Unix timestamp
	DATE.MONTH() Number of current month
	DATE.SECONDS() Seconds since midnight
	DATE.TIME() Current time
	DATE.TimeZone() Time zone identifier and hh:mm:ss
	DATE.UnixTime() Seconds since Jan 1970
	DATE.UnixTimeUS() Microseconds since Jan 1970
	DATE.utcOffset() Offset of current local time to UTC
	DATE.YEAR() Current year

	DIALOG Functions
	In This Section
	DIALOG.BOOLEAN() Current boolean value of checkbox
	DIALOG.EXIST() Existence of dialog element
	DIALOG.STRing() Current string value of dialog element, e.g. EDIT box
	DIALOG.STRing2() Comma-separated list of values, e.g. from LISTBOX

	ERROR Functions
	In This Section
	ERROR.CMDLINE() Erroneous command
	ERROR.FIRSTID() ID of first error
	ERROR.ID() ID of last error message
	ERROR.MESSAGE() Error text
	ERROR.OCCURRED() Error status
	ERROR.POSITION() Error position

	EVAL Functions
	In This Section
	EVAL() Value of expression evaluated with Eval command
	EVAL.ADDRESS() Address of expression evaluated with Eval cmd.
	EVAL.BOOLEAN() Boolean expression evaluated with Eval cmd. boolean
	EVAL.FLOAT() Float value of expression evaluated with Eval cmd.
	EVAL.PARAM() Expression evaluated with Eval cmd.
	EVAL.STRing() String composed by expression evaluated with Eval cmd.
	EVAL.TIme() Value of time evaluated with Eval command
	EVAL.TYPE() Type of expression evaluated with Eval command

	FALSE Function
	FALSE() Boolean expression

	FILE Functions
	In This Section
	__FILE__() Path and file name of current PRACTICE script
	__LINE__() Number of script line to be executed next
	FILE.EOF() Check if end of read-in file has been reached
	FILE.EOFLASTREAD() Check if last read from file reached the end of the file
	FILE.EXIST() Check if file exists
	FILE.NEWHANDLE() Get next free handle
	FILE.OPEN() Check if file is open
	FILE.SUM() Get checksum from a file
	FILE.TYPE() File type of loaded file

	FORMAT Functions
	In This Section
	FORMAT.BINary() Numeric to binary value (leading spaces)
	FORMAT.CHAR() Numeric to ASCII character (fixed length)
	FORMAT.Decimal() Numeric to string (leading spaces)
	FORMAT.DecimalU() Numeric to unsigned decimal as string (leading spaces)
	FORMAT.DecimalUZ() Numeric to unsigned decimal as string (leading zeros)
	FORMAT.FLOAT() Floating point value to string
	FORMAT.HEX() Numeric to hex (leading zeros)
	FORMAT.STRing() Output string with fixed length
	FORMAT.TIME() Time to string (leading spaces)
	FORMAT.UDECIMAL() Refer to FORMAT.DecimalU()
	FORMAT.UDECIMALZ() Refer to FORMAT.DecimalUZ()
	FORMAT.UnixTime() Format Unix timestamps

	FOUND Functions
	In This Section
	FOUND() TRUE() if search item was found
	FOUND.COUNT() Number of occurrences found

	GDB Function (TRACE32 as GDB Back-End)
	GDB.PORT() Port number for communication via GDB interface

	HELP Function
	HELP.MESSAGE() Help search item

	HOST Functions
	HOSTID() Host ID
	HOSTIP() Host IP address

	IFCONFIG and IFTEST Functions
	In This Section
	IFCONFIG.COLLISIONS() Collisions since start-up
	IFCONFIG.CONFIGURATION() Connection type
	IFCONFIG.DEVICENAME() Name of TRACE32 device
	IFCONFIG.ERRORS() Errors since start-up
	IFCONFIG.ETHernetADDRESS() MAC address of TRACE32 device
	IFCONFIG.IPADDRESS() IP address of TRACE32 device
	IFCONFIG.RESYNCS() Resyncs since start-up
	IFCONFIG.RETRIES() Retries since start-up
	IFTEST.DOWNLOAD() Download in KByte/sec
	IFTEST.LATENCY() Latency in microseconds
	IFTEST.UPLOAD() Upload in KByte/sec

	InterCom Functions
	In This Section
	InterCom.GetGlobalMacro() Exchange strings between PowerView instances
	InterCom.GetPracticeState() PRACTICE run-state on other instance
	InterCom.NAME() InterCom name of this TRACE32 instance
	InterCom.PING() Check if ping is successful
	InterCom.PODPORT() Port number of any TRACE32 instance
	InterCom.PODPORTNAME() InterCom name of any TRACE32 instance
	InterCom.PODPORTNUMBER() Number of TRACE32 instances
	InterCom.PORT() Port number of this TRACE32 instance

	LICENSE Functions
	In This Section
	LICENSE.DATE() Expiration date of maintenance contract
	LICENSE.FAMILY() Name of the CPU family license
	LICENSE.FEATURES() List of features licensed
	LICENSE.getINDEX() Index of maintenance contract
	LICENSE.GRANTED() License state
	LICENSE.HAVEFEATURE() Checks if license is stored in debugger hardware
	LICENSE.MSERIAL() Serial number of the maintenance contract
	LICENSE.MULTICORE() Check if multicore debugging is licensed
	LICENSE.RequiredForCPU() License required for selected CPU
	LICENSE.SERIAL() Serial number of debug cable

	LOG Function
	LOG.DO.FILE() Get log file used by LOG.DO

	Mathematical Functions
	In This Section
	math.ABS() Absolute value of decimal value
	math.FABS() Absolute value of floating point number
	math.FCOS() Cosine of an angle given in radian
	math.FEXP() Exponentiation with base e (Euler's number)
	math.FEXP10() Exponentiation with base 10
	math.FINF() Positive infinity
	math.FLOG() Natural logarithm of given value
	math.FLOG10() Logarithm to base 10 of given value
	math.FMAX() Return the larger one of two floating point values
	math.FMIN() Return the smaller one of two floating point values
	math.FMOD() Floating-Point Modulus
	math.FNAN() Not a number value
	math.FPOW() Y-th power of base x
	math.FSIN() Sine of an angle given in radian
	math.FSQRT() Square-root of given value
	math.MAX() Return the larger one of two decimal values
	math.MIN() Return the smaller one of two decimal values
	math.SIGN() Return -1 or +1 depending on argument
	math.SIGNUM() Return -1 or 0 or +1 depending on argument
	math.TimeMAX() Return the larger one of two time values
	math.TimeMIN() Return the smaller one of two time values

	MENU Function
	MENU.EXIST() Check if menu name exists

	NODENAME Function
	NODENAME() Node name of connected TRACE32 device

	OS Functions
	In This Section
	OS.DIR() Check if directory exists
	OS.DIR.ACCESS() Access rights to directory
	OS.ENV() Value of OS environment variable
	OS.FILE.readable() Check if file can be opened for reading
	OS.FILE.ABSPATH() Absolute path to file or directory
	OS.FILE.ACCESS() Access rights to file
	OS.FILE.BASENAME() Strip directory and suffix from filenames
	OS.FILE.DATE() Modification date and timestamp of file
	OS.FILE.DATE2() Modification date of file
	OS.FILE.EXIST() Check if file exists
	OS.FILE.EXTENSION() File name extension
	OS.FILE.JOINPATH() Join multiple paths
	OS.FILE.LINK() Real file name of file link
	OS.FILE.NAME() Extract file name from path
	OS.FILE.PATH() Return path of file
	OS.FILE.REALPATH() Canonical absolute path to file or directory
	OS.FILE.SIZE() File size in bytes
	OS.FILE.TIME() Modification timestamp of file
	OS.FILE.UnixTime() Unix timestamp of file
	OS.FIRSTFILE() First file name matching a pattern
	OS.ID() User ID of TRACE32 instance
	OS.NAME() Basic name of operating system
	OS.NEXTFILE() Next file name matching a pattern
	OS.PORTAVAILABLE.TCP() Check if TCP port is used
	OS.PORTAVAILABLE.UDP() Check if UDP port is used
	OS.PresentConfigurationFile() Name of used TRACE32 configuration file
	OS.PresentDemoDirectory() Demo directory for the current architecture
	OS.PresentExecutableDirectory() Directory of current TRACE32 exe.
	OS.PresentExecutableFile() Path and file name of current TRACE32 exe.
	OS.PresentHomeDirectory() Path of the home directory
	OS.PresentHELPDirectory() Path of the TRACE32 online help directory
	OS.PresentLicenseFile() Current TRACE32 license file
	OS.PresentPracticeDirectory() Directory of currently executed script
	OS.PresentPracticeFile() Path and file name of currently executed script
	OS.PresentSystemDirectory() TRACE32 system directory
	OS.PresentTemporaryDirectory() TRACE32 temporary directory
	OS.PresentWorkingDirectory() Current working directory
	OS.RETURN() Return code of the last executed operating system command
	OS.TIMER() OS timer in milliseconds
	OS.TMPFILE() Name for a temporary file
	OS.VERSION() Type of the host operating system
	OS.Window.LINE() Get line from an OS.Window window

	PATH Functions
	In This Section
	PATH.NUMBER() Number of path entries
	PATH.PATH() Search path entry

	ProcessID Function
	ProcessID() Process identifier of a TRACE32 PowerView instance

	PRACTICE Functions
	In This Section
	PRACTICE.ARG() Return value of GOSUB, DO, RETURN, and ENDDO
	PRACTICE.ARG.SIZE() Number of passed or returned arguments
	PRACTICE.CALLER.FILE() File name of the script/subscript caller
	PRACTICE.CALLER.LINE() Line number in caller script
	PRACTICE.CoMmanD.AVAILable() Check if command is available
	PRACTICE.FUNCtion.AVAILable() Check if function is available

	PRINTER Function
	PRINTER.FILENAME() Path and file name of next print operation

	RADIX Function
	RADIX() Current radix setting

	RANDOM Functions
	RANDOM() Pseudo random number
	RANDOM.RANGE() Pseudo random number from specified range
	RANDOM.RANGE.HEX() Pseudo hex random number from specified range

	RCL Function
	RCL.PORT() UDP Port number of remote API interface
	RCL.TCP.NrUsedCons() Number of remote API clients connected via TCP
	RCL.TCP.PORT() TCP Port number of remote API interface

	SOFTWARE Functions
	In This Section
	SOFTWARE.64BIT() Check if TRACE32 executable is 64-bit
	SOFTWARE.BUILD() Upper build number
	SOFTWARE.BUILD.BASE() Lower build number
	SOFTWARE.VERSION() Release build or nightly build, etc.

	STRing Functions
	In This Section
	STRing.CHAR() Extract a character
	STRing.ComPare() Check if string matches pattern
	STRing.COUNT() Substring occurrences
	STRing.CUT() Cut string from left or right
	STRing.ESCapeQuotes() Double quote character inside string
	STRing.FIND() Check if search characters are found within string
	STRing.LENgth() Length of string
	STRing.LoWeR() String to lowercase
	STRing.MID() Extract part of string
	STRing.Replace() Modified string after search operation
	STRing.SCAN() Offset of the found string
	STRing.SCANAndExtract() Extract remaining string after search string
	STRing.SCANBack() Offset of the found string
	STRing.SPLIT() Return element from string list
	STRing.TOKEN() Extract token from string
	STRing.TRIM() String without leading and trailing whitespaces
	STRing.UPpeR() String to uppercase

	TCF Functions (TRACE32 as TCF Agent)
	In This Section
	TCF.PORT() Port number of TCF interface
	TCF.DISCOVERY() Check if TCF discovery is enabled

	TEST Function
	TEST.TIMEISVALID() Check if time value is valid

	TIMEOUT Function
	TIMEOUT() Check if command was fully executed

	TITLE Function
	TITLE() Caption of the TRACE32 main window

	TRUE Function
	TRUE() Boolean expression

	WARNINGS Function
	WARNINGS() Check if warning occurred during command execution

	WINdow Functions
	In This Section
	WINdow.COMMAND() Command string displayed in window
	WINdow.EXIST() Check if window name exists
	WINdow.LIST() Generate a comma-separated list of window names
	WINdow.POSition() Information on window position and dimension
	WINPAGE.CURRENT() Get name of currently selected window page
	WINPAGE.EXIST() Check if window page exists
	WINPAGE.LIST() Generate comma-separated list of page names

