LAUTERBACH A

General Commands Reference
Guide M

General Commands Reference Guide M

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUide M ... s s sssesnas 1
L 1= (o 8
1Y 0 1L 9
MACHINE.select Display context of specified virtual machine 9

T 7 PP 10
MAP Mapping memory attributes 10
Overview MAP 10
Mapping the EPROM Simulator for BDM/ROM 10
MAP.ADelay Set analyzer delay 12
MAP.BE Define big endian area 12
MAP.BOnchip Use on-chip breakpoints 13
MAP.BUS<x> Read/write data in specified access width 14
MAP.BUSS8 Bus width mapping 15
MAP.BUS16 Bus width mapping 15
MAP.BUS24 Bus width mapping 15
MAP.BUS32 Bus width mapping 16
MAP.BUS3264 Bus width mapping 16
MAP.BUS64 Bus width mapping 16
MAP.BYTE Set EPROM width 17
MAP.Cachelnhibit CTS cache simulation 17
MAP.COMSTART Offset for ROM monitor 17
MAP.CONST Mapped address range contains constants 18
MAP.DenyAccess Deny memory access by TRACE32 19
MAP.DenyBurst Deny burst access to memory by TRACE32 20
MAP.DMUX Define DRAM area 20
MAP.FRAG Form fragment 20
MAP.GAP Definegap 21
MAP.InitVar CTS initial variable mapping 21
MAP.LE Define little endian area 22
MAP List List allocation 22
MAP.MONITOR MONITOR address range 23
MAP.NoBE Switch off big endian 24
©1989-2024 Lauterbach General Commands Reference Guide M 2

MAP.NoBOnchip Use on-chip breakpoints 24
MAP.NoCachelnhibit CTS cache simulation 24
MAP.NoCONST Undo MAP.CONST settings 25
MAP.NoDenyAccess Switch off deny access for TRACE32 25
MAP.NoDenyBurst Undo MAP.DENYBURST settings 25
MAP.NoDMUX Undo MAP.DMUX settings 26
MAP.NOFRAG Switch off fragmentation 26
MAP.NOGAP Switch offgap 26
MAP.NolnitVar CTS initial variable mapping 27
MAP.NoLE Switch off little endian 27
MAP.NoOPFetch Switch off opfetch area mapping 27
MAP.NOPAGE Undefine pages 28
MAP.NOROM Unmap ESI 28
MAP.NOSWAP Keep byte order 28
MAP.NoUpdateOnce Undo MAP.UpdateOnce settings 29
MAP.NoVMREAD Undo MAP.VMREAD settings 29
MAP.NoVOLATILE Undo MAP.VOLATILE settings 29
MAP.OPFetch Opfetch area mapping 30
MAP.PAGE Define pages 30
MAP.RESet Reset 31
MAP.ROM Map ESI 31
MAP .state State 32
MAP.SWAP Change byte order 32
MAP.UpdateOnce Read memory only once each time CPU stops 33
MAP.VMREAD Redirect memory reads to TRACES32 virtual memory 34
MAP.VOLATILE Mapped address range is volatile 34
MAP.WORD Set EPROM width 34
05 35
MCDS Multicore debug solution 35
Overview 35
Classic vs Modern Commands 35
Further Documentation 36
MCDS.BusTrace.Agents Set bus trace agents 37
MCDS.BusTrace.Mode Set bus trace mode 37
MCDS.CLEAR Clear programming and initialize MCDS registers 38
MCDS.CLOCK Configure MCDS clock system 39
MCDS.CLOCK.DEPRECATED Deprecated MCDS clock programming 39
MCDS.CLOCK.EXTern Set the external clock frequency 40
MCDS.CLOCK.Frequency Specify MCDS-related frequencies by commands 41
MCDS.CLOCK.Frequency.McdsClock Specify the MCDS clock 41
MCDS.CLOCK.Frequency.ReferenceClock Specify the reference clock 41
MCDS.CLOCK.MCDSDIV Set divider for generating the MCDS clock 42
MCDS.CLOCK.REFDIV Set divider for generating the reference clock 42
©1989-2024 Lauterbach General Commands Reference Guide M 3

MCDS.CLOCK.REFerence Select the reference clock source 43
MCDS.CLOCK.SYStem Set the system clock frequency 43
MCDS.CLOCK.TIMER Setup timer for periodic trigger event 44
MCDS.CLOCK.TimeStamp Force decoding of timestamp messages 45
MCDS.DataTrace.Agents Set data trace agents 46
MCDS.DataTrace.Mode Set data trace mode 47
MCDS.INFO Information on MCDS and usage 47
MCDS.Init Initialize MCDS registers 48
MCDS.OFF Disable MCDS programming 48
MCDS.ON Enable MCDS programming 48
MCDS.Option Control MCDS feature behavior 49
MCDS.Option.CoreBreak Break when BREANK_OUT becomes active 49
MCDS.Option.DataAssign Data assignment in trace listing 49
MCDS.Option.eXception Exception identification in trace decoder 50
MCDS.Option.FlowControl Configure AGBT fifo overflow control 51
MCDS.Option.QuickOFF Disable trace recording by hardware 52
MCDS.Option.RESetBehavior Configure Onchip behavior after chip reset 52
MCDS.PERipheralTrace Control peripheral trace 53
MCDS.PortSIZE Set number of used Aurora lanes 53
MCDS.PortSPEED Set Aurora lane speed 54
MCDS.ProgramTrace.Agents Set program trace agents 55
MCDS.ProgramTrace.Mode Set program trace mode 56
MCDS.Register Open window with MCDS registers 57
MCDS.RESet Reset the MCDS unit in the debug tool 57
MCDS.RM MCDS resource management commands 58
MCDS.RM.ReSTore Restore MCDS registers 58
MCDS.RM.WriteTarget Flush MCDS register cache 58
MCDS.SessionKEY Provide MCDS session key 59
MCDS.Set Program MCDS on hardware level 59
MCDS.SOURCE Set MCDS trace sources 61
MCDS.SOURCE.ALL Enable all MCDS trace sources 61
MCDS.SOURCE.DEFault Set default MCDS trace sources 61
MCDS.SOURCE.NONE Disable all MCDS trace sources 62
MCDS.SOURCE.Set Set individual MCDS trace sources 63
MCDS.state Display MCDS configuration window 69
Modern 69
Classic 70
MCDS.TImeMode Configure MCDS timestamp creation and processing 71
MCDS.TraceAgents.CLEAR Clear all trace agents 72
MCDS.TraceBuffer Configure MCDS trace buffer 73
MCDS.TraceBuffer ARRAY Select MCDS trace buffer array 73
MCDS.TraceBuffer.DETECT Auto-detect MCDS trace buffer configuration 74
MCDS.TraceBuffer.LowerGAP Set MCDS trace buffer lower gap 75
©1989-2024 Lauterbach General Commands Reference Guide M 4

MCDS.TraceBuffer.NoStealing Prevent conflicts with third-party tools 76
MCDS.TraceBuffer.SIZE Set MCDS trace buffer size 76
MCDS.TraceBuffer.state Show trace buffer state window 77
MCDS.TraceBuffer.UpperGAP Set MCDS trace buffer upper gap 77
MCDSBase<trace> Non-optimized MCDS trace processing 78
MCDSDCA<trace> MCDS trace processing with data cycle assignment 78
MCDSDDTU<trace> MCDS trace processing with DDTU reordering 79
1] 2 80
MIPS Number of instructions per second 80
Overview MIPS 80
MIPS.List List the MIPS trace data 83
MIPS.ListNesting Show program nesting 85
MIPS.PROfileChart Profile charts for MIPS 86
MIPS.PROfileChart.AddressGROUP MIPS profile chart for address groups 86
MIPS.PROfileChart.ALL MIPS profile chart for program run 87
MIPS.PROfileChart.DatasYmbol MIPS profile chart for pointer 87
MIPS.PROfileChart.DistriB MIPS profile chart for distributions 88
MIPS.PROfileChart. GROUP MIPS profile chart for groups 89
MIPS.PROfileChart.Line MIPS per high-level language line graphically 90
MIPS.PROfileChart. MODULE MIPS profile chart for modules 91
MIPS.PROfileChart. PROGRAM MIPS profile chart for programs 92
MIPS.PROfileChart. RWINST MIPS per cycle type graphically 92
MIPS.PROfileChart.sYmbol MIPS for all program symbols graphically 93
MIPS.PROfileChart. TASK MIPS per task graphically 94
MIPS.PROfileChart. TASKINFO MIPS for data trace via context ID 94
MIPS.PROfileChart. TASKINTR MIPS profile chart for ISR2 (ORTI) 95
MIPS.PROfileChart. TASKKernel MIPS profile chart with kernel marker 95
MIPS.PROfileChart. TASKORINTERRUPT MIPS graph per task/interrupt 96
MIPS.PROfileChart. TASKSRV MIPS profile chart for OS service routines 96
MIPS.PROfileChart. TASKVSINTR MIPS chart for task-related interrupts 97
MIPS.PROfileSTATistic Profile statistics for MIPS 98
MIPS.PROfileSTATistic.Address MIPS per address as profile statistic 98
MIPS.PROfileSTATistic.AddressGROUP MIPS per address group 929
MIPS.PROfileSTATistic.ALL MIPS profile statistic for program run 99
MIPS.PROfileSTATistic.DatasYmbol MIPS profile statistic for pointer 100
MIPS.PROfileSTATistic.DistriB Distribution statistical analysis 100
MIPS.PROfileSTATistic. GROUP MIPS per GROUP as profile statistic 101
MIPS.PROfileSTATistic.INTERRUPT MIPS per interrupt as table 101
MIPS.PROfileSTATistic.Line MIPS per high-level language line as table 102
MIPS.PROfileSTATistic. MODULE MIPS per module as profile statistic 102
MIPS.PROfileSTATistic. PROGRAM MIPS per program as profile statistic 103
MIPS.PROfileSTATistic. RUNNABLE MIPS per runnable as table 103
MIPS.PROfileSTATistic. RWINST MIPS per cycle type as table 104
©1989-2024 Lauterbach General Commands Reference Guide M | 5

MIPS.PROfileSTATistic.sYmbol MIPS for all program symbols as table 104
MIPS.PROfileSTATistic. TASK MIPS per task as table 105
MIPS.PROfileSTATistic. TASKINFO MIPS for data trace via context ID 105
MIPS.PROfileSTATistic. TASKINTR MIPS per ISR2 (ORTI) as table 106
MIPS.PROfileSTATistic. TASKKernel MIPS per task as table 106
MIPS.PROfileSTATistic. TASKORINTERRUPT MIPS per task as table 107
MIPS.PROfileSTATistic. TASKSRV MIPS per OS service routine as table 107
MIPS.STATistic Statistical analysis for MIPS 108
MIPS.STATistic.ALL MIPS for the program run 108
MIPS.STATistic.ChildTREE MIPS for the callee context of a function 108
MIPS.STATistic.DistriB MIPS distribution analysis 109
MIPS.STATistic.Func MIPS for functions numerically 109
MIPS.STATistic. GROUP MIPS statistic for groups 109
MIPS.STATistic.LINKage Per caller MIPS statistic of function 110
MIPS.STATistic. MODULE MIPS for modules numerically 110
MIPS.STATistic.ParentTREE MIPS statistic for call context of a function 111
MIPS.STATistic. PROGRAM MIPS for programs numerically 111
MIPS.STATistic. RWINST MIPS per cycle type numerically 112
MIPS.STATistic.sYmbol MIPS for all program symbols numerically 112
MIPS.STATistic. TASK MIPS per task numerically 112
MIPS.STATistic. TASKINFO MIPS for data trace via context ID 113
MIPS.STATistic. TASKINTR MIPS per ISR2 numerically 113
MIPS.STATistic. TASKKernel MIPS task analysis with kernel markers 113
MIPS.STATistic. TASKSRV MIPS per OS service routine numerically 114
MIPS.STATistic. TREE Tree display of nesting functions with MIPS 114
IIIVIU et s e E e E e R R R R EEE AR R R R ER R RRREEE AR aRRRERRRRERmRRRRR R mnRRnnan 115
MMU Memory management unit 115
Overview MMU 115
MMU.DUMP Dump MMU tables 116
MMU.FORMAT Define MMU table structure 118
MMU.INFO Translation information related to an address 121
MMU.INFO.TaskPageTable Translation information related to an address 122
MMU.List Compact display of MMU translation table 123
MMU.MemAnalysis Analyze page tables 124
MMU.SCAN Scan MMU tables (static snapshot) 128
MMU.Set Set MMU registers or tables 129
MMU.TDUMP Dump task page table 130
MMU.TSCAN Scan task page table 130
MMU.view View MMU registers 130
1] 131
MMX MMX registers (MultiMedia eXtension) 131
MMX.Init Initialize MMX registers 131
MMX.Set Modify MMX registers 131
©1989-2024 Lauterbach General Commands Reference Guide M | 6

MMX.view Open MMX register window 132

1] o o = 133
Mode Set up the debug mode 133
Appendix - <format> Options of MMU.FORMATccoomiiiiiiimmmnnmnnr e sssssennns 134

©1989-2024 Lauterbach General Commands Reference GuideM | 7

General Commands Reference Guide M

History

Version 06-Jun-2024

25-Mar-2024

27-Nov-2023

27-Nov-2023
27-Nov-2023
23-Aug-2023
09-Aug-2022

05-Aug-2022

11-Apr-2022

11-Apr-2022

21-Feb-2022

21-Feb-2022

New command MAP.BUS3264.

Command MCDS.TimeStamp has been marked as deprecated and replaced by the new
command MCDS.TImeMode.

New command MCDS.Option.RESetBehavior.
Command MCDS.Option. TTRESet has been removed.
New command MCDS.TargetAgents.CLEAR.

New command MAP.BUS64.

For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

Commands MCDS.BusTrace.Agent, MCDS.BusTrace.Mode, MCDS.DataTrace.Agent,
MCDS.DataTrace.Mode, MCDS.PERipheralTrace, MCDS.ProgramTrace.Agent, and
MCDS.ProgramTrace.Mode marked as Modern.

Command MCDS.Source.Set marked as Classic.

New commands: MCDS.BusTrace.Agent, MCDS.BusTrace.Mode, MCDS.DataTrace.Agent,
MCDS.DataTrace.Mode, MCDS.PERipheralTrace, MCDS.ProgramTrace.Agent, and
MCDS.ProgramTrace.Mode.

Marked the old description of MCDS.state as deprecated and added new description for
MCDS.state.

©1989-2024 Lauterbach General Commands Reference Guide M |

8

MACHINE

MACHINE.select Display context of specified virtual machine

Format: MACHINE.select <machine_number> | "<machine_name>" [<vcpu_number>]

If the specified virtual machine is active, the currently selected core is changed to the core running the
specified machine. As a result, the debugger view is changed to this core and all TRACE32 commands

without the /CORE <number> option apply to it.

If the specified machine is inactive, TRACES32 reads the context of the first VCPU assigned to the machine.
If a <vepu_numbers is specified, the context of this VCPU is read.

The TRACER32 state line changes to a reddish look-and-feel (see screenshot below) to indicate that the
context of an inactive virtual machine is displayed. TRACE32 window commands such as List.auto,
Register.view, Frame.view or Var.Local apply to this machine. Whereas all other commands switch back
to the currently running machine before they are executed.

ﬁmcm PowerView for ARMBA =T

File Edit View War Break Run CPU Misc Trace Perf Cov Cortex-A53 Xen Dom0 Linux FreeRTOS Window Help
L VI A O S T -2 A RS = = R

=) BuList.Asm [=] =]
[Mstep || over |[ADiverge| « Return| ¢ up || ko |[mnBresk || M Mode]@]m[ﬂ Find:
addr/Tine |code Tabel mnemonic comment |
B TFFFFFFC000096624 3 w1 &
: : ret
B = :FFFFFFC00009662C nop
NsX:1:::0000:FFFFFFC000096630 cpu_do_s..:mrs x2,#0x3,#0x3,cl3,c
NSX:1:::0000:FFFFFFC000096634 mr s x3,#0x3,#0x3,c13, ¢
NSX:1:::0000:FFFFFFC000096638 3 mrs x4, #0x3,#0x0,c13, =
4 n L3
(i B:Register (= | @ | 5| | & BuFrame =8[BSR 5
N _ X0 0 %6 FFFFFFCOODIBCGB4 . T o - ‘
U & B s ES e E Do Down [Vargs [Clocals [[caller Task:
cc x2 1 x18 0000007FED393570 |z | [-000 Jlcpu_do_idTe(asm) . -
v _ X3 FFFFFFCO00CBCO00 X19 FFFFFFCO00CB7000 archJoca]Jr?fenabWe(ﬂﬂﬂne)
x4 1 %20 FFFFFFC000954000 -001 |farch_cpu_idle() L.
x5 004EA4AD X271 0 test_ti_thread_flag(inline) |
%6 OOOBEBCIFBCBF340 X22 FFFFFFCO00CAA440 current_clr_polling_and_test(inline)
X7 FFFFFFCO2A0DSBFO %23 0 cpuidle_idle_call(inline) |
X8 FFFFFFCO00CC8180 x24 FFFFFFCODOCA4B40 cpu_idle_loop(inTine) L
X9 FFFFFFCO00CB3E40 X25 FFFFFFCOOOCB3FO0 -002 |lcpu_startup_entry(?)
X10 %26 FFFFFFCO00CA9620 -003 |frest_init() =
X11 5 27 FFFFFFCO00CAA440 efi_enabled(inline)
X1Z FFFFFFCO0095524C x28 FFFFFFCO00CE0000 -004 start_kernel()
T I x13 GSFEFEDE544657665 x29 FFFFFFCOO0CB3EFO -005 [NSX:1:::0x0:0%400826C0(asm)
F F x4 ODAOD70BF6FEC2032 x30 FFFFFFCO00086B30 - || — |end of frame Z
<[z (T - 3 J1
B: 50
[components| [wace |[pawm || wvar [ust |[PerF |[Svstem |[sStep |[Go |[other || previous
[NS¥: 1:::0000: FRFFFRD00096628 \domD\Gobalicpu_do_idle+8 (Quest) task) 0 0 stopped by software breakpoint MIX UP

See also

B Mode

B CORE.select

©1989-2024 Lauterbach

General Commands Reference Guide M

9

MAP

MAP Mapping memory attributes
See also
B MAPADelay H MAPBE B MAPBOnNchip B MAPBUS16
B MAPBUS24 B MAPBUS32 B MAPBUS3264 B MAPBUS64
H MAPBUSS8 B MAPBUS<x> H MAPBYTE B MAP.Cachelnhibit
B MAP.COMSTART B MAPCONST B MAPDenyAccess B MAPDenyBurst
B MAP.DMUX B MAPFRAG B MAPGAP B MAPInitVar
B MAPLE B MAPList B MAPMONITOR H MAPNoBE
B MAP.NoBOnchip B MAPNoCachelnhibit B MAPNoCONST B MAPNoDenyAccess
B MAP.NoDenyBurst B MAP.NoDMUX B MAPNOFRAG B MAPNOGAP
B MAPNolnitVar W MAPNoLE B MAPNoOPFetch B MAPNOPAGE
B MAPNOROM B MAPNOSWAP B MAPNoUpdateOnce B MAPNoVMREAD
B MAP.NoVOLATILE B MAP.OPFetch B MAPPAGE B MAPRESet
B MAPROM B MAPstate B MAPSWAP B MAP.UpdateOnce
B MAPVMREAD W MAPVOLATILE B MAPWORD
A 'MAP Functions’ in 'General Function Reference’

Overview MAP

Mapping the EPROM Simulator for BDM/ROM

The monitor/EPROM-simulator can support two 8-bit or one 16-bit EPROM. The combination of several
modules allows 32- and 64-bit configuration to be supported.

During the simulation the EPROM configuration of the target system is imitated by software. Using this
technique paged and banked EPROM's can be simulated.

The imitation of the EPROM configuration is done as follows:

1. Reset the mapping system (MAP.RESet command).

2. Map the EPROM simulator within the specified range (MAP.ROM command).

3. Set the EPROM bus size (MAP.BUSXX command). The default bus size is 8 bit.

©1989-2024 Lauterbach

General Commands Reference GuideM | 10

4. Set the EPROM width (MAP.BYTE or MAP.WORD command). By default an 8 bit organized
EPROM is assumed.

; maps one 8K x 8 EPROM
; 8 bit adapter low

b:

MAP.RESet

MAP.ROM 0x0--0x01fff

; maps two 8K x 8 EPROMS in parallel
; 8 bit adapter low and high

b:

MAP.RESet

MAP.ROM 0x0--0x03fff

MAP.BUS16 0x0--0x03fff

; maps one 4K x 16 EPROM
; 16 bit adapter

b:

MAP.RESet

MAP.ROM 0x0--0xQ1fff
MAP.BUS16 0x0--0xQ01fff
MAP.WORD 0x0--0xQ01fff

; maps one paged addressed EPROM with 4 pages (4 x 16K x 8)
; 8 bit adapter low

b:

MAP.RESet

MAP.ROM 0x00000--0xO3fff
MAP.ROM 0x04000--0xO07fff
MAP.ROM 0x08000--0xObfff
MAP.ROM 0x0c000--0xOffff

MAP.PAGE 0 0x00000--0x03fff
MAP.PAGE 1 0x04000--0x07fff
MAP.PAGE 2 0x08000--O0x0bfff
MAP.PAGE 3 0x0c000--Ox0ffff

; maps two fragments in one 8 bit EPROM
; 8 bit adapter low

b:

MAP.ROM 0x0--0x7fff

MAP.ROM 0x10000--0x17fff

MAP.FRAG 1 0 0x0--0x7fff

MAP.FRAG 1 8000 0x10000--0x17fff

©1989-2024 Lauterbach General Commands Reference GuideM | 11

; relocates one 128K x 8 EPROM mapped from 0x0--0x1ffff to 0x40000
; while the system is up

b:

MAP.RELOCate 0x40000 O0x0--Ox1ffff

maps four 64K x 8 EPROMs for a bus size of 32 bit
two EPROM simulators

; for each 8 bit adapter high and low

MAP.ROM 0x0--0x3ffff

MAP.BUS32 0x0--0x3ffff

7

7

maps two 64K x 16 EPROMs for a bus size of 32 bit
two EPROM simulators

; for each 16 bit adapter

MAP.ROM O0x0--O0x3ffff

MAP.BUS32 0x0--0x3ffff

MAP.WORD

I

7

MAP.ADelay Set analyzer delay

Format: MAP.ADelay <delay>

The command defines for RISC traces (PPC 500/800) the difference between clock strobe and the
corresponding valid bus trace record moment.

See also
B MAP B MAPstate
MAP.BE Define big endian area
Format: MAP.BE [<range>]

Defines the memory address area where the variable value display is switched to big endian word memory
interpretation.

See also
H MAP B MAPLE B MAPstate

©1989-2024 Lauterbach General Commands Reference GuideM | 12

MAP.BOnchip Use on-chip breakpoints

Format: MAP.BOnchip <addressrange>

This definition will be used for setting breakpoints. Any breakpoints that touch the defined area will be
implemented using on-chip resources. This allows program breakpoints in read only memories or data

breakpoints that also consider CPU internal operations. The capabilities of the on-chip breakpoints are CPU
dependent.

See also
H MAP B MAPSstate

©1989-2024 Lauterbach General Commands Reference GuideM | 13

MAP.BUS<x> Read/write data in specified access width

The command MAP.BUSX constrains the debugger to read/write data in the specified access width.

MAP.BUS8 0x0++1FFFFF ; constrain the debugger to 8-bit
; reads/writes

Data.dump 0x1000 /Long ; display a memory dump in 32-bit
; format

; the debugger reads the required
; information 8-bit wise

Data.Set 0x300 %Long OxAAAAAAAA ; write 32-bit data to memory

; the debugger writes the data
; 8-bit wise to the memory

MAP.BUS32 0x060000000++1FFFF ; constrain the debugger to 32-bit
; reads/writes

Data.dump 0x06000003C /Byte ; display a memory dump in 8-bit
; format

; the debugger reads the required
; information 32-bit wise

Data.Set 0x0600007A9 %Byte OxAA ; write 8-bit data to memory

; the debugger reads the relevant
; data 32-bit wise, modifies the
; byte and write the data back to
; memory 32-bit wise

For debuggers of some processor architectures, the command MAP.BUS32 doesn't affect the access width
for patching software breakpoint codes. In these cases, the option SYStem.Option.SOFTLONG is still
required to patch the breakpoint code 32-bit wise.

See also
B MAPBUS16 B MAPBUS24 B MAPBUS32 B MAPBUS3264
B MAPBUS64 B MAPBUSS H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 14

MAP.BUSS8 Bus width mapping

Format: MAP.BUS8 [<addressrange>]

Constrains TRACES32 to 8-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate
A ’'Release Information’ in’Legacy Release History’

MAP.BUS16 Bus width mapping

Format: MAP.BUS16 [<addressrange>]

Constrains TRACE32 to 16-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate
A ’'Release Information’ in’Legacy Release History’

MAP.BUS24 Bus width mapping

Format: MAP.BUS24 [<addressrange>]

Constrains TRACES32 to 24-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference GuideM | 15

MAP.BUS32 Bus width mapping

Format: MAP.BUS32 [<addressrange>]

Constrains TRACES32 to 32-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate
A ’'Release Information’ in’Legacy Release History’

MAP.BUS3264 Bus width mapping

[build 167771 - DVD 09/2024]

Format: MAP.BUS3264 [<addressrange>]

Constrains TRACES32 to 32-bit or 64-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate
MAP.BUS64 Bus width mapping
Format: MAP.BUS64 [<addressrange>]

Constrains TRACE32 to 64-bit reads/writes for the specified target memory block.

See also
B MAPBUS<x> H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference GuideM | 16

MAP.BYTE Set EPROM width

Format: MAP.BYTE [<addressrange>]

The EPROM is organized by 8 bits per word in the specified range.

See also
H MAP W MAPstate H MAPWORD
MAP.Cachelnhibit CTS cache simulation
ARM
Format: MAP.Cachelnhibit [<addressrange>]

Disable CTS cache simulation for selected address range. This setup has only an effect if MMU architecture
NONE has been selected (CTS.CACHE.MMUArchitecture).

Refer to CTS.CACHE for more information.

See also
B MAP B MAPstate
MAP.COMSTART Offset for ROM monitor
Format: MAP.COMSTART <offset>

If the ROM Monitor is not located at the begin of the EPROM, this command defines the communication
area of monitor.

See also
B MAP W MAPstate

©1989-2024 Lauterbach General Commands Reference GuideM | 17

MAP.CONST Mapped address range contains constants

Format: MAP.CONST [<range>]

The defined address range contains constants. The address range for the constants can be declared in two

ways:

J The compiler provides a constant section
MAP.CONST ; map the section \.sdata2 as
sYmbol .SECRANGE (\ .sdata2) ; address range for constants

. The constants are merged into the code
MAP.CONST O0x0--0x3ffff ;map the address range of a FLASH

;as address range for constants

This command is closely related to the command CTS.UseConst.

See also
H MAP B MAPNoCONST B MAPstate

©1989-2024 Lauterbach General Commands Reference GuideM | 18

MAP.DenyAccess Deny memory access by TRACE32

Format: MAP.DenyAccess [<physical_addressrange>]

The TRACER32 software can’t access the specified target address range. This command can be used if
accesses by the development tool to specific target memory address ranges cause problems (e.g. “debug
port fail”).

The address ranges that cannot be accessed by the TRACES32 software can be displayed by the MAP.List
command.

(8] B:MAP.List o -E =]

address type bus denyaccess attributes

A:003F0D00--003FFFFF
A:00400000--FFFFFFFF

denyaccess

A:OOOOOOOO——OO:EFFFiJ
4

MAP.DenyAccess is switched off by the command MAP.NoDenyAccess.

NOTE: Use MAP.DenyAccess to protect physical address ranges from debugger
access.
Use TRANSIation.Protect.ADD to protect logical address ranges from
debugger access.

See also
B MAP B MAPstate B TRANSIation.Protect. ADD

©1989-2024 Lauterbach General Commands Reference GuideM | 19

MAP.DenyBurst Deny burst access to memory by TRACE32

Format: MAP.DenyBurst [<address> | <addressrange>]

MPC7441, MPC7445, MPC7447, MPC7447A, MPC7450, MPC7451, MPC7455 and MPC7457 only,
because for these processors, memory is access is performed through 32-byte burst access per default.

In order to access peripherals which do not support burst accesses (e.g. register and flash address space of
MV64xxx), use this command to prevent burst accesses. Please note that the non-burst memory access on
these processors is very slow.

MAP.DenyBurst is switched off by the command MAP.NoDenyBurst.

See also
H MAP B MAPstate
MAP.DMUX Define DRAM area
Format: MAP.DMUX [<range>]

Defines DRAM area. PowerPC only.

See also
B MAP B MAPNoDMUX B MAPstate
MAP.FRAG Form fragment
Format: MAP.FRAG <frag> <address> [<addressrange>]
<frag>: 1. ... 255.

Combines two ROM areas to a fragment. One fragment can be simulated by one EPROM simulator.

©1989-2024 Lauterbach General Commands Reference GuideM | 20

Example:

MAP.ROM 0x0--0x7fff
MAP.ROM 0x10000--0x17fff

MAP.FRAG 1 0 Ox0--Oxfff
MAP.FRAG 1 0x8000 0x10000--0x17fff

See also
B MAP B MAPNOFRAG B MAPstate
MAP.GAP Define gap
Format: MAP.GAP <frag> <address> [<addressrange>]
<frag>: 1. ... 255.

Defines a gap in the ROM area simulated by an EPROM simulator. This could be useful e.qg. if this area is
used by internal peripherals

Example:

MAP.FRAG 1. 0 0x0--0Ox7aff
MAP.GAP 1. 0x7b00-0Oxfff
MAP.FRAG 1. 0x8000 0x8000--0x8fff

See also
B MAP B MAPNOGAP B MAPstate
MAP.InitVar CTS initial variable mapping
Format: MAP.InitVar [<addressrange>]

Maps the selected data address as “read” for CTS. This can prevent in CTS a "read-before-write" error from
being reported by Go.TillViolation when the variable was initialized by the startup code (outside the trace).

See also
H MAP B MAPstate

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide M | 21

MAP.LE

Define little endian area

Format:

MAP.LE [<range>]
MAP.LittleEndian [<range>] (deprecated)

Defines the memory address area where the variable value display is switched to little endian word memory

interpretation.

See also

B MAP

MAP.List

B MAPBE B MAPstate

List allocation

Format:

<option>:

MAP.List [<address> | <addressrange>] [/<option> ...]

DEFault
ALL
Break
Data
Flag

Ack
BANK
BURST
BUS8
Cache
DMA
Internal
NoCache
Onchip
OPFetch
Protect
Wait

The display of the mapper configuration for the logical workspace. The information can be reduced by the
options. With no option set everything is displayed, except the mapping of the breakpoint memory (option

DEFault).
DEFault All information, except the breakpoint memory, is displayed.
ALL All information is displayed.

Data, Break, Flag

Only the selected memory type is displayed.

©1989-2024 Lauterbach

General Commands Reference Guide M | 22

Ack The areas in which the bus cycles would be acknowledged are displayed.
BANK The mapping of banked and non-banked memory is displayed.
BUSS8, Onchip, These are special mapper flags solely used for special emulation probes.
DMA, OPFetch, ... For further information, refer to your Processor Architecture Manual.
Intern The internal/external mapping is displayed.
Protect The memory-write protection is displayed.
Wait The number of wait states is displayed.
MAP.List Window for BDM/ROM
(£ B:MAP. List = =R
address type bus bonchip |denyaccess attributes |
A:00000000--0000FFFF bonchip
A:00010000--000FFFFF
A:00100000--1FFFFFFF denyaccess
A:20000000--FFFFFFFF
See also
B MAP B MAPstate 0 MAPROMSIZE()
MAP.MONITOR MONITOR address range
Format: MAP.MONITOR [<range>]

The defined monitor address range will be excluded from an analyzer trace.

See also
B MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 23

MAP.NoBE

Switch off big endian

Format: MAP.NoBE [<range>]

Undoes the settings made by using the MAP.BE command.

See also
B MAP B MAPstate
MAP.NoBOnchip Use on-chip breakpoints
Format: MAP.NoBOnchip [<range>]

Undoes the settings made by using the MAP.BOnchip command.

See also

B MAP B MAPstate

MAP.NoCachelnhibit

CTS cache simulation

ARM

Format: MAP.Cachelnhibit [<addressrange>]

Undoes the settings made by using the MAP.Cachelnhibit command.

See also

H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 24

MAP.NoCONST Undo MAP.CONST settings

Format: MAP.NoCONST [<range>]

Undoes the settings made by using the MAP.CONST command.

See also
B MAP B MAPCONST B MAPstate
MAP.NoDenyAccess Switch off deny access for TRACE32
Format: MAP.NoDenyAccess [<addressrange>]

Switches off the deny access for the TRACE32 software that was specified for a specific target memory

range.
See also
B MAP B MAPstate
MAP.NoDenyBurst Undo MAP.DENYBURST settings
Format: MAP.NoDenyBurst [<address> | <addressrange>]

Undoes the settings made by using the MAP.DenyBurst command.

See also
H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 25

MAP.NoDMUX Undo MAP.DMUX settings

Format: MAP.NoDMUX [<range>]

Undoes the settings made by using the MAP.DMUX command.

See also
B MAP B MAPDMUX B MAPstate
MAP.NOFRAG Switch off fragmentation
Format: MAP.NOFRAG [<addressrange>]

By this command the fragmentation in the specified range is switched off.

See also
B MAP B MAPFRAG B MAPstate
MAP.NOGAP Switch off gap
Format: MAP.NOGAP [<addressrange>]

By this command the gap in the specified range is switched off.

See also
H MAP B MARPGAP W MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 26

MAP.NolnitVar CTS initial variable mapping

Format: MAP.InitVar [<addressrange>]

Undoes the settings made by using the MAP.InitVar command.

See also
H MAP B MAPSstate

A ’'Release Information’ in’Legacy Release History’

MAP.NoLE Switch off little endian

Format: MAP.NoLE [<range>]
MAP.NoLittleEndian [<range>] (deprecated)

Undoes the settings made by using the MAP.LittleEndian command.

See also
B MAP B MAPstate
MAP.NoOPFetch Switch off opfetch area mapping
Format: MAP.NoOPFetch [<addressrange>]

Undoes the settings made by using the MAP.OPFetch command.

See also
B MAP W MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 27

MAP.NOPAGE

Undefine pages

Format: MAP.NOPAGE <addressrange>

By this command the page in the specified range is switched off.

See also
B MAP B MAPPAGE B MAPstate
MAP.NOROM Unmap ESI
Format: MAP.NOROM [<addressrange>]
By this command the EPROM simulator is unmapped in the specified range.
See also
B MAP B MAPROM B MAPstate
MAP.NOSWAP Keep byte order
Format: MAP.NOSWAP <addressrange>

No changes are made to the byte order determined by the target CPU.

See also

B MAP B MAPstate B MAPSWAP

©1989-2024 Lauterbach General Commands Reference Guide M | 28

MAP.NoUpdateOnce Undo MAP.UpdateOnce settings

Format: MAP.NoUpdateOnce [<address> | <addressrange>]

Undoes the settings of the MAP.UpdateOnce command.

See also
B MAP B MAPstate
MAP.NoVMREAD Undo MAPVMREAD settings
Format: MAP.NoVMREAD [<addressrange>]

Undoes the setting of the MAP.VMREAD command.

See also
H MAP B MAPstate B MAPVMREAD
MAP.NoVOLATILE Undo MAP.VOLATILE settings
Format: MAP.NoVOLATILE [<range>]

Undoes the settings of the MAP.VOLATILE command.

See also
H MAP B MAPstate B MAPVOLATILE

©1989-2024 Lauterbach General Commands Reference Guide M | 29

MAP.OPFetch Opfetch area mapping
Format: MAP.OPFetch [<addressrange>]
See also
B MAP B MAPstate
MAP.PAGE Define pages
Format: MAP.PAGE <page_number> <addressrange>
<page_ 1. ... 256.
number>:

This command is used for paged EPROMSs. The appropriate page is set by the value in the page register of
the EPROM.

Example:

; maps one paged addressed EPROM with 4 pages (4 x 16K x 8)

; 8 bit adapter low
b:
MAP.RESet
MAP.ROM 0x00000--0x03fff
MAP.ROM 0x04000--0x07fff
MAP.ROM 0x08000--0x0bfff
MAP.ROM 0x0c000--0xOffff
MAP.PAGE 0. 0x00000--0x03fff
MAP.PAGE 1. 0x04000--0x07fff
MAP.PAGE 2. 0x08000--0x0bfff
MAP.PAGE 3. 0x0c000--0xQ0ffff
See also
H MAP B MAPNOPAGE B MAPstate

©1989-2024 Lauterbach

General Commands Reference Guide M

30

MAP.RESet Reset

Format: MAP.RESet

The mapping system is reset to its default state. The EPROM simulator is switched off.

See also
H MAP B MAPSstate
MAP.ROM Map ESI
Format: MAP.ROM <addressrange>

The EPROM Simulator is mapped within the specified range.

See also
B MAP H MAPNOROM B MAPstate a1 MAP.ROMSIZE()

©1989-2024 Lauterbach General Commands Reference Guide M | 31

MAP.state State
Format: MAP.state
General view of the total available and the actually activated memory.
(59 ExMAP =0 =R
KByte static dynamic
25 ns 70 ns
Dataram -
total 2 048 0
used 128 0
free 1 920 0
Flagram
total 2 048 0
used 128 0 E
free 1 920 0
Breakram
total 2 048 0
used 128 0
free 1 920 0
11 4 L 3
See also
B MAP B MAPADelay B MAPBE B MAPBOnNchip
B MAPBUS16 B MAPBUS24 B MAPBUS32 B MAPBUS3264
B MAPBUS64 B MAPBUS8 B MAPBUS<x> B MAPBYTE
Bl MAP.Cachelnhibit B MAP.COMSTART B MAP.CONST B MAPDenyAccess
B MAPDenyBurst B MAP.DMUX B MAPFRAG B MAP.GAP
B MAPInitVar B MAPLE B MAPList B MAPMONITOR
B MAP.NoBE B MAP.NoBOnchip B MAP.NoCachelnhibit B MAPNoCONST
B MAP.NoDenyAccess B MAP.NoDenyBurst B MAP.NoDMUX B MAPNOFRAG
B MAPNOGAP B MAPNolnitVar B MAPNoLE B MAPNoOPFetch
B MAPNOPAGE H MAPNOROM B MAPNOSWAP B MAP.NoUpdateOnce
B MAPNoVMREAD B MAPNoVOLATILE B MAP.OPFetch B MAP.PAGE
B MAPRESet H MAP.ROM B MAPSWAP B MAP.UpdateOnce
B MAPVMREAD B MAPVOLATILE B MAPWORD
MAP.SWAP Change byte order
Format: MAP.SWAP

Changes the byte order from little endian to big endian or vice versa depending on the target CPU.

See also
H MAP H MAPNOSWAP W MAPstate
©1989-2024 Lauterbach General Commands Reference Guide M | 32

MAP.UpdateOnce Read memory only once each time CPU stops

Format: MAP.UpdateOnce [<address> | <addressrange>]

Configures the debugger to limit accesses to the specified memory address range to a single access per
address. The debugger will store the accessed data in an internal buffer and will use the buffered data for all
following accesses.

The data in the internal buffer will be discarded every time the CPU stops for the debugger, e.g. after single
step, hitting a breakpoint or a manual break. Discarding the buffered data can be enforced by calling
Data.UPDATE.

See also
H MAP B MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 33

MAP.VMREAD Redirect memory reads to TRACE32 virtual memory

Format: MAP.VMREAD <addressrange>

Redirects memory reads in the given address range to the TRACES32 virtual memory (VM:).

MAP.VMREAD can be used when target memory cannot be accessed (but is constant) or to avoid
“unnecessary” memory reads to constant memory in order to speed up debugging. Usually used for
program addresses.

If an address within the VMREAD address space is written by the debugger (e.g. Data.Set, Data.LOAD,
Data.Assemble etc., but not using access class VM:), then the debugger will write the data to the target and
update TRACES32 virtual memory accordingly.

See also
H MAP B MAP.NoVMREAD B MAPstate

A ’Release Information’ in’Legacy Release History’

MAP.VOLATILE Mapped address range is volatile

Format: MAP.VOLATILE [<range>]

The defined memory range is not only changed by the processor core, this means that not all changes to
this memory range are sampled to the trace buffer. E.g.: peripherals, dual-ported memory etc. Due to this
attribute this memory range can not be used for CTS.

See also
B MAP B MAPNOVOLATILE B MAPstate B CTS.UseFinalMemory
MAP.WORD Set EPROM width
Format: MAP.WORD <addressrange>

The EPROM is organized by 16 bits per word in the specified range.

See also
H MAP B MAPBYTE W MAPstate

©1989-2024 Lauterbach General Commands Reference Guide M | 34

MCDS

MCDS Multicore debug solution

Overview

The MCDS (MultiCore Debug Solution) is an on-chip trigger and trace solution from Infineon, available for
the Infineon TriCore, PCP, GTM, XC2000 and C166 architectures.

There are two basic MCDS concepts:

J The regular MCDS is part of the Emulation Extension Chip (EEC). It supports a big feature set for
trace and trigger of the CPUs and buses.

J The miniMCDS is part of the Product Chip (PC). It has a reduced feature set only, e.g. only one
core is traceable and no buses. Also the trace buffer size is limited.

Classic vs Modern Commands

With the TRACES32 Release 09/2022 the following commands were introduced to control the generation of
trace data for the AURIX TC2xx and subsequent TriCore core generations:

MCDS.BusTrace.Agents Set bus trace agents.

MCDS.BusTrace.Mode Set bus trace mode.

MCDS.DataTrace.Agents Set data trace agents.

MCDS.DataTrace.Mode Set data trace mode.

MCDS.PERipheralTrace Control peripheral trace.

MCDS.ProgramTrace.Agents Set program trace agents.

MCDS.ProgramTrace.Mode Set program trace mode.

MCDS.TraceAgents.CLEAR Clear all trace (program, data, bus, and peripheral) agents.

These commands tagged as Modern replace the commands of the MCDS.SOURCE command group. The
replaced commands are therefore marked as Classic.

Scripts created for the AURIX TC2xx/TC3xx can continue to be used in the long term. For the AURIX TC4x
and subsequent TriCore core generations the new commands have to be used. A 1:1 conversion of the
classic to the modern syntax is not possible, because the modern syntax abstracts stronger from the
physical MCDS resources.

©1989-2024 Lauterbach General Commands Reference GuideM | 35

Further Documentation

The MCDS commands described in this document are for reference only, so please refer to the:

. “MCDS User’s Guide” (mcds_user.pdf) for understanding the MCDS concept and the TRACE32
MCDS support

J “AURIX Trace Training” (training_aurix_trace.pdf) for examples of how to use the MCDS on
TriCore AURIX (classic MCDS commands only)

J The Infineon documentation for devices specific information

See also

B MCDS.BusTrace.Agents B MCDS.BusTrace.Mode

B MCDS.CLEAR B MCDS.CLOCK

B MCDS.DataTrace.Agents B MCDS.DataTrace.Mode

B MCDS.INFO B MCDS.Init

B MCDS.OFF H MCDS.ON

B MCDS.Option B MCDS.PERIipheralTrace

B MCDS.PortSIZE B MCDS.PortSPEED

B MCDS.ProgramTrace.Agents B MCDS.ProgramTrace.Mode

B MCDS.Register B MCDS.RESet

B MCDS.RM B MCDS.SessionKEY

B MCDS.Set B MCDS.SOURCE

B MCDS.state B MCDS.TImeMode

B MCDS.TraceBuffer 1 MCDS.MODULE.NAME()

0 MCDS.MODULE.TYPE() 0 MCDS.STATE()

A 'MCDS Functions’ in ’General Function Reference’

A ’Introduction’ in'"MCDS User’s Guide’

©1989-2024 Lauterbach General Commands Reference Guide M | 36

MCDS.BusTrace.Agents Set bus trace agents

Modern [build 139589 - DVD 09/2022]

Format: MCDS.BusTrace.Agents [{<agent>}]

<agent>: SPB | LMUO | OLDA | SPUO | DMA | SPU1

Set a list of bus trace agents.

<agent> The available agents depend on the selected CPU.
An empty list will clear all agents.

MCDS.BusTrace.Agents SPUO SPUL

See also
B MCDS.BusTrace.Mode B MCDS
B MCDS.DataTrace.Agents B MCDS.DataTrace.Mode
B MCDS.PERipheralTrace B MCDS.ProgramTrace.Agents
B MCDS.ProgramTrace.Mode B MCDS.state
MCDS.BusTrace.Mode Set bus trace mode
Modern [build 139589 - DVD 09/2022]
Format: MCDS.BusTrace.Mode <mode>
<mode>: Read | Write | ReadWrite

Set possible bus trace modes.

Read Trace address and data value of read accesses.

Write Trace address and data value of write accesses.

ReadWrite Trace address and data value of read and write accesses (default).
See also
B MCDS.BusTrace.Agents H MCDS
B MCDS.DataTrace.Agents B MCDS.DataTrace.Mode

©1989-2024 Lauterbach General Commands Reference Guide M | 37

B MCDS.PERipheralTrace B MCDS.ProgramTrace.Agents

B MCDS.ProgramTrace.Mode B MCDS.state
MCDS.CLEAR Clear programming and initialize MCDS registers
Format: MCDS.CLEAR

The MCDS.CLEAR command performs the following actions:
. Performs MCDS.Init:
- Enables the MCDS (MCDS.ON)
- Initializes all counters e.g., used by the BMC commands.

- Reprograms the entire MCDS breakpoint, trigger and trace configuration. All MCDS registers
are re-written to ensure coherency between the setting assumed by TRACE32 and the target.

. Initializes the MCDS related traces (Trace.Init)

J Clears all settings made by the command MCDS.Set

See also
B MCDS B MCDS.state

©1989-2024 Lauterbach General Commands Reference Guide M | 38

MCDS.CLOCK Configure MCDS clock system

The MCDS.CLOCK command group is used for functionality related to the MCDS clocks and clock system:

J Inform TRACE32 about the MCDS clock configuration. This is required for a correct decoding of
the MCDS timestamps and to calculate the CPU clock cycles. There are two different strategies:

- Use the CLOCK feature for an automatic detection of the on-chip clock programming.

- If the on-chip clock programming can not be used, e.g. for post-mortem analysis, the clock
configuration can be specified manually.

J For C166 and XC2000ED, the programming of the MCDS on-chip clocks can be done by
TRACES32 based on the manual configuration.

. Configuration of a timer to generate a periodic trigger.

For more information on the concept and usage of the MCDS.CLOCK commands, please refer to “Clock
System” in MCDS User's Guide, page 62 (mcds_user.pdf).

See also

B MCDS.CLOCK.DEPRECATED B MCDS.CLOCK.EXTern

B MCDS.CLOCK.Frequency B MCDS.CLOCK.MCDSDIV
B MCDS.CLOCK.REFDIV B MCDS.CLOCK.REFerence
B MCDS.CLOCK.SYStem B MCDS.CLOCK.TIMER

B MCDS.CLOCK.TimeStamp B MCDS

B MCDS.state

MCDS.CLOCK.DEPRECATED Deprecated MCDS clock programming

Format: MCDS.CLOCK.DEPRECATED [ON | OFF] (not for GTM) (deprecated)

Configures the usage of the deprecated commands for specifying and programming the MCDS clocks.

J The command is available for TriCore AUDO devices only to enable deprecated historic
functionality. In order to avoid programming conflicts between the application and TRACE32
users are strongly recommended not to use the deprecated functionality any more. Migration to
the recommended clock system configuration may require changing the application.

o This command and the commands enabled by it are not supported for TriCore AURIX devices
and newer, including GTM.

o This command is not available for C166 and XC2000ED. For these architectures, the deprecated
commands are the default.

©1989-2024 Lauterbach General Commands Reference Guide M | 39

OFF (default Get MCDS clock configuration by reading target registers or manual
TriCore, PCP) configuration.

Reading the target’s clock configuration requires CLOCK.ON. The
CLOCK feature is not available for all architectures, e.g. not for C166 and
XC2000ED.

ON (default C166, Use the deprecated clock configuration method.
XC2000ED)

For more information on the MCDS clock system and configuration, refer to “Clock System” in MCDS
User’s Guide, page 62 (mcds_user.pdf).

See also
B MCDS.CLOCK

MCDS.CLOCK.EXTern Set the external clock frequency

Format: MCDS.CLOCK.EXTern <frequency> (deprecated)

Default: Device dependent

Specifies the frequency of the external clock fext This is required for decoding absolute timestamps and for
configuring the periodic trigger event MCDS.CLOCK.TIMER.

For TriCore and PCP this command has to be enabled using MCDS.CLOCK.DEPRECATED.

For more information on the MCDS specific clock generation of your device, see “Device Specific Details”
in MCDS User’s Guide, page 64 (mcds_user.pdf).

See also
B MCDS.CLOCK

©1989-2024 Lauterbach General Commands Reference Guide M | 40

MCDS.CLOCK.Frequency Specify MCDS-related frequencies by commands

If the MCDS related frequencies cannot be evaluated reading the target registers, e.g. in case of post-
mortem analysis, the frequencies for timestamp decoding have to be specified manually. Another use case
is configuring the periodic trigger event MCDS.CLOCK.TIMER.

The manually configured frequencies are used if CLOCK.OFF or the CLOCK feature is not available, and
MCDS.CLOCK.DEPRECATED is OFF.

For more information on the MCDS clock system see “Clock System” in MCDS User’s Guide, page 62
(mcds_user.pdf).

See also

B MCDS.CLOCK.Frequency.McdsClock B MCDS.CLOCK.Frequency.ReferenceClock
B MCDS.CLOCK

MCDS.CLOCK.Frequency.McdsClock Specify the MCDS clock
Format: MCDS.CLOCK.Frequency.McdsClock <frequency>
Default: 0.Hz

Specifies the frequency of the MCDS clock fy,cps. This is required for decoding relative timestamps.

See also
B MCDS.CLOCK.Frequency

MCDS.CLOCK.Frequency.ReferenceClock Specify the reference clock
Format: MCDS.CLOCK.Frequency.ReferenceClock <frequency>
Default: 0.Hz

Specifies the frequency of the reference clock fge£ This is required for decoding absolute timestamps and
for configuring the periodic trigger event MCDS.CLOCK.TIMER.

See also
B MCDS.CLOCK.Frequency

©1989-2024 Lauterbach General Commands Reference Guide M | 41

MCDS.CLOCK.MCDSDIV Set divider for generating the MCDS clock

Format: MCDS.CLOCK.MCDSDIV <divider> (deprecated)
MCDS.CLOCK.SYStemDIV <divider> (deprecated)

Default: Device dependent, minimum possible value.

Configures the divider for generating the MCDS clock. The legal divider values are dependent on the device.
TRACE32 knows about the limitations and auto-adjusts the user value in case the specified setting is not
applicable in the current context.

For TriCore and PCP devices this command has to be enabled using MCDS.CLOCK.DEPRECATED.

For more information on the MCDS specific clock generation of your device, see “Device Specific Details”

in MCDS User’s Guide, page 64 (mcds_user.pdf).

See also
B MCDS.CLOCK

MCDS.CLOCK.REFDIV Set divider for generating the reference clock

Format: MCDS.CLOCK.REFDIV <divider> (deprecated)
MCDS.CLOCK.EXTernDIV <divider> (deprecated)

Default: Device dependent, minimum possible value.

Configures the divider for generating the reference clock. The legal divider values are dependent on the
device. TRACES32 knows about the limitations and auto-adjusts the user value in case the specified setting is
not applicable in the current context.

For more information on the MCDS specific clock generation of your device, see “Device Specific Details”

in MCDS User’s Guide, page 64 (mcds_user.pdf).

See also
B MCDS.CLOCK

©1989-2024 Lauterbach General Commands Reference Guide M | 42

MCDS.CLOCK.REFerence Select the reference clock source

Format: MCDS.CLOCK.REFerence [USB | PLL | ERAY | BACKUP]

Default: Device dependent.

Selects which clock is input for the reference clock fger USB and ERAY is the external clock fexy; PLL is the
System Clock fgyg and BACKUP the internal Backup Clock fgack

For more information on the MCDS specific clock generation of your device, see “Device Specific Details”
in MCDS User’s Guide, page 64 (mcds_user.pdf).

See also
H MCDS.CLOCK

MCDS.CLOCK.SYStem Set the system clock frequency

Format: MCDS.CLOCK.SYStem <frequency> (deprecated)

Default: Device dependent.

Specifies the frequency of the system clock fgys. This is required for calculating the MCDS clock fycps-
fucps is used for sampling the trace data generated by the cores and buses. All relative timestamp
messages, including TICK messages are generated depending on fy;cps.

For TriCore and PCP devices this command has to be enabled using MCDS.CLOCK.DEPRECATED.

See also
B MCDS.CLOCK

©1989-2024 Lauterbach General Commands Reference Guide M | 43

MCDS.CLOCK.TIMER Setup timer for periodic trigger event

Format: MCDS.CLOCK.TIMER [<frequency> | <period>]
<frequency>: 1.Hz ... <maximum_frequency>
<period>: 1.0 ... <maximum_period>

Default: 0. (disabled)

MCDS has a timer driven by the reference clock. It can be used to generate a periodic trigger signal. Periods
from micro seconds up to minutes are possible depending on the available clock source.

Not all values can be entered as a frequency or period. The time base for the period is seconds, but the unit
“s” must not be specified on the command line. Not all frequencies are possible, an appropriate one is
chosen. Entering a frequency higher than the reference clock disables the trigger generation.

The trigger signal is not available immediately. It must be connected to an event for becoming effective. For
more information, refer to “Periodic Trigger” in MCDS User's Guide, page 69 (mcds_user.pdf).

See also
B MCDS.CLOCK

©1989-2024 Lauterbach General Commands Reference Guide M | 44

MCDS.CLOCK.TimeStamp

Force decoding of timestamp messages

Format:

MCDS.CLOCK.TimeStamp [AUTO | OFF | Relative | Absolute]

Controls the decoding of timestamps. It only makes sense to change the default setting AUTO in a few

cases only:

. Avoid long processing times by disabling the timestamp decoding. Timestamp decoding can be
re-enabled at any point of time if necessary.

. When timestamps are generated manually, TRACE32 does not know that there are timestamps
to be generated. Use Relative and Absolute for telling TRACE32 which timestamps to decode.

Absolute and relative timestamps can be generated simultaneously, but only one kind of them can be
displayed at a time. Switching between both methods is possible, there is no need to perform a new

recording.

TRACE32 only configures relative timestamps. Absolute timestamps are required for special use cases only
and require manual configuration. Manual configuration requires expert knowledge. See “Guarded MCDS
Programming” in MCDS User’'s Guide, page 92 (mcds_user.pdf) for more information.

AUTO Decode timestamps according to configuration made by TRACE32.

(default) The settings of MCDS.TimeStamp is evaluated for determining whether
timestamps have to be decoded or not.

OFF Do not decode any timestamps, even if generated.
This option is useful to increase the decoding speed in case of big trace
recordings.

Relative Decode relative timestamps based on the MCDS clock.

Absolute Decode absolute timestamps based on the reference clock.

See also

B MCDS.CLOCK

©1989-2024 Lauterbach

General Commands Reference Guide M |

45

MCDS.DataTrace.Agents Set data trace agents

Modern [build 139493 - DVD 09/2022]

Format: MCDS.DataTrace.Agents [{<agent>}]

<agent>: Core0 | Core1 | Core2 | Core3 | Core4 | Core5

Set a list of logical cores the data should be traced for.

<agent> The number of available agents correspond to the number of cores
controlled by the TRACE32 PowerView instance.
An empty list will clear all agents.

MCDS.DataTrace.Agents Core(0 Core3 Cored

To disable the data trace clear all agents.

MCDS.DataTrace.Agents

See also

B MCDS.DataTrace.Mode H MCDS

B MCDS.BusTrace.Agents B MCDS.BusTrace.Mode

B MCDS.PERipheralTrace B MCDS.ProgramTrace.Agents
B MCDS.ProgramTrace.Mode B MCDS.state

©1989-2024 Lauterbach General Commands Reference Guide M | 46

MCDS.DataTrace.Mode Set data trace mode

Modern [build 139493 - DVD 09/2022]

Format: MCDS.DataTrace.Mode <mode>

<mode>: Read | Write | ReadWrite

Set possible program trace modes.

Read Address and data reads are traced.
Write Address and data writes are traced.
ReadWrite Address and data reads and writes are traced

See also

B MCDS.DataTrace.Agents H MCDS

B MCDS.BusTrace.Agents B MCDS.BusTrace.Mode

B MCDS.PERipheralTrace B MCDS.ProgramTrace.Agents

B MCDS.ProgramTrace.Mode B MCDS.state

MCDS.INFO Information on MCDS and usage

Format: MCDS.INFO

Opens a window to provide detailed information about the MCDS of the current device:

. MCDS ID and module version.

. Emulation memory usage.

. Which MCDS features, e.g. actions, watchpoints or cross-triggers, are available and how many of
them are already in use. For example, this supports an advanced or expert user writing trigger
programs.

See also

H MCDS B MCDS .state

©1989-2024 Lauterbach General Commands Reference Guide M | 47

MCDS.Init Initialize MCDS registers

Format: MCDS.Init

The MCDS.Init command performs the following:
J Enable MCDS (perform MCDS.ON).
. Initializes all counters e.g., used by the BMC commands.

. Reprogram the entire MCDS breakpoint, trigger and trace configuration. All MCDS registers are
re-written to ensure coherency between the setting assumed by TRACE32 and the target.

See also
B MCDS B MCDS.state
MCDS.OFF Disable MCDS programming
Format: MCDS.OFF

Default: MCDS enabled.

Disables all MCDS related debugger functionality. TRACES32 will stop programming MCDS registers. When
there are no other GUIs attached to the same Emulation Device that have the MCDS enabled, TRACE32
will disable the MCDS hardware.

See also
H MCDS B MCDS.state 1 MCDS.STATE()
MCDS.ON Enable MCDS programming
Format: MCDS.ON

Default: MCDS enabled.

Enables all MCDS related debugger functionality, such as onchip trace, additional breakpoints, ...

See also
H MCDS B MCDS .state 1 MCDS.STATE()

©1989-2024 Lauterbach General Commands Reference Guide M | 48

MCDS.Option Control MCDS feature behavior

Format: MCDS.Option <option> {<parameter>}

With the MCDS.Option commands, the user can control the behavior of the MCDS programming.

See also
B MCDS.Option.CoreBreak B MCDS.Option.DataAssign
B MCDS.Option.eXception B MCDS.Option.FlowControl
B MCDS.Option.QuickOFF B MCDS.Option.RESetBehavior
H MCDS B MCDS.state
MCDS.Option.CoreBreak Break when BREANK_OUT becomes active
Format: MCDS.Option.CoreBreak [ON | OFF] (TriCore, XC2000 and GTM only)
Default: OFF.

When enabled, the core(s) stop execution as soon as the MCX action BREAK_OUT becomes active.
Depending on the chip, the core break is not cycle accurate.

NOTE: This command is only relevant for the users of the MCDS.Set command.
See also
B MCDS.Option
MCDS.Option.DataAssign Data assignment in trace listing
Format: MCDS.Option.DataAssign [ON | OFF] (XC2000ED only)
Default: ON.

©1989-2024 Lauterbach General Commands Reference Guide M | 49

When enabled, the debugger tries to assign the data cycles to the associated program cycles. The not
assigned data cycles are shown in red in the trace listing. When disabled, no data assignment is used.

See also
B MCDS.Option

MCDS.Option.eXception Exception identification in trace decoder

Format: MCDS.Option.eXception.DCU [ON | OFF] (TriCore only)
MCDS.Option.eXception.TABLE <table_config> (TriCore only)
SYStem.Option.INTSTART <address> (TriCore only) (deprecated)
SYStem.Option.INTUSE <value> (TriCore only) (deprecated)
SYStem.Option.TRAPSTART <address> (TriCore only) (deprecated)

<table_ [OFF | AUTO | Interrupt {<range> [<size>]} | Trap {<range> [<size>]}]
config>:

Default: DCU OFF, TABLE AUTO.

MCDS.Option.eXception is a command group that configures how the MCDS trace decoder identifies the
occurrence of interrupt and trap events. For TriCore it replaces the obsolete SYStem.Option.[INTSTART |
INTUSE | TRAPSTART] commands.

In case of multicore up to six address ranges can be specified, one for each core starting with core 0. Note
that all cores must be specified in ascending order, even if they are not configured for tracing (no gaps
allowed). Only the last cores may be omitted if they are not configured for tracing.

Looking up the exception handler entries in the table can be disabled using OFF. It is not possible to detect
only parts of the configuration automatically.

<size> Size of an exception handler entry, default is 32 B.

See also
B MCDS.Option

©1989-2024 Lauterbach General Commands Reference Guide M | 50

MCDS.Option.FlowControl Configure AGBT fifo overflow control

Format:

MCDS.Option.FlowControl [OFF | GAP | STALL]

Default: GAP.

The MCDS can generate more trace messages than the AGBT is able to transfer via the trace port. When
too much trace data is generated, there is an internal AGBT FIFO overflow. In this case, trace data is lost,
and the MCDS trace decoder looses synchronization. This results in corrupted trace decoding and hard

errors.

The following cases are known to potentially overflow the AGBT FIFO:

. Tight loops in the code that are executed massively, e.g. the idle loop. Here, a huge number of
trace messages is generated in a short period.

o Massive memory accesses to random addresses and wide data. In this case, the MCDS
message encoder is not able to compress address and data efficiently.

J Too many configured trace sources.

TRACE32 provides different options to avoid the loss of trace information and to avoid trace data corruption:

OFF Disable any flow control. It is up to the users to
. Modify their applications.
. Choose a configuration that will not overflow the AGBT FIFO.
. Accept the consequences.
GAP Generation of program flow trace messages is suppressed as long as the
AGBT is likely to overflow. This results in gaps in the program flow and
FIFOFULL messages.
STALL The CPU execution is stalled as long as the AGBT FIFO is likely to
overflow. This impacts the real-time behavior of your application.
NOTE: The AGBT FIFO full situation is due to a chip limitation, not a restriction of the
TRACES2 trace hardware.
See also
B MCDS.Option

©1989-2024 Lauterbach

General Commands Reference Guide M | 51

MCDS.Option.QuickOFF Disable trace recording by hardware

Format: MCDS.Option.QuickOFF [ON | OFF] (TriCore and PCP only) (deprecated)

Default: OFF.

When enabled, the debugger uses a hardware signal to disable the trace recording in case the CPU stops
the application execution. This avoids the generation of additional messages, e.g. timestamp messages, and
improves the trace buffer usage.

NOTE: MCDS.Option.QuickOFF:
. Only has an effect when <trace>.AutoArm is enabled.
. Is disabled when the Break Action WATCH is selected.
] Uses many trigger resources, especially in multicore scenarios. Enabling
this option will reduce the number of available triggers.

See also
B MCDS.Option

MCDS.Option.RESetBehavior Configure Onchip behavior after chip reset

[build 164807 - DVD 02/2024]

Format: MCDS.Option.RESetBehavior [OnchipOFF | OnchipArm]

The MCDS on-chip trace buffer does not allow appending newly generated trace data to a trace recording
that already exists in the on-chip trace buffer. Instead, the MCDS hardware always overwrites any existing
trace data. As a chip reset will always stop any trace recording, it is thus not possible to trace through a reset
event, keeping the trace data before and after the chip reset at the same time.

©1989-2024 Lauterbach General Commands Reference Guide M | 52

In case of Onchip, the command MCDS.Option RESetBehavior allows the user to choose which trace
recording, pre- or post-reset, is more important to him.

OnchipOFF Stop Onchip on chip reset event. TRACES32 will reconstruct any recorded
trace data for inspection after the chip comes out of reset.

OnchipArm If Onchip is in state Arm on a chip reset event, re-arm Onchip after chip
comes out of reset. Trace data before chip reset gets overwritten.

See also
B MCDS.Option

MCDS.PERipheralTrace Control peripheral trace
Modern [build 139589 - DVD 09/2022]
Format: MCDS.PERipheralTrace [<control>]
<control>: ON | OFF

Control OTGB agent for using peripheral trace. See also “Peripheral Trace” in MCDS User's Guide, page
48 (mcds_user.pdf) or ~~/demo/tricore/etc/trace_trigger/peripheraltrace.

See also

B MCDS.ProgramTrace.Agents B MCDS.ProgramTrace.Mode
H MCDS B MCDS.BusTrace.Agents

B MCDS.BusTrace.Mode B MCDS.DataTrace.Agents
B MCDS.DataTrace.Mode B MCDS.state

A 'MCDS Special Features’ in’MCDS User's Guide’

MCDS.PortSIZE Set number of used Aurora lanes
Format: MCDS.PortSIZE [</anes>]
<lanes>: 1Lane

Default: 1Lane.

©1989-2024 Lauterbach General Commands Reference Guide M | 53

The Aurora serial trace protocol supports the use of several serial data streams (lanes) in parallel. This
command allows to select how many lanes are to be used in this setup. Changing the port size will result in
a Trace.Init.

This command is only available for the AGBT (Aurora GigaBit Trace) off-chip trace feature.

See also
H MCDS B MCDS .state
MCDS.PortSPEED Set Aurora lane speed
Format: MCDS.PortSPEED [<speed>]
<speed>: 625Mbps | 1250Mbps | 2500Mbps

Default: 2500Mbps.

This command defines the transfer rate of one Aurora lane. In case more than one lane is used, all lanes will
operate with the same transfer rate. Using more than one lane at the same time may require reducing the
port speed. Changing the port speed will result in a Trace.Init.

This command is only available for the AGBT (Aurora GigaBit Trace) off-chip trace feature.

See also
H MCDS W MCDS.state

©1989-2024 Lauterbach General Commands Reference Guide M | 54

MCDS.ProgramTrace.Agents Set program trace agents
Modern [build 139493 - DVD 09/2022]

Format: MCDS.ProgramTrace.Agents [{<agent>}]

<agent>: Core0 | Core1 | Core2 | Core3 | Core4 | Core5

Set a list of logical cores the program flow should be traced for.

<agent> The number of available agents correspond to the number of cores
controlled by the TRACE32 PowerView instance.
An empty list will clear all agents.

MCDS .DataTrace.Agents COREO CORE3 CORE4

To disable the program flow trace clear all agents.

MCDS.DataTrace.Agents

See also
B MCDS.ProgramTrace.Mode M MCDS.PERipheralTrace H MCDS B MCDS.BusTrace.Agents
B MCDS.BusTrace.Mode B MCDS.DataTrace.Agents B MCDS.DataTrace.Mode B MCDS.state

©1989-2024 Lauterbach General Commands Reference Guide M | 55

MCDS.ProgramTrace.Mode Set program trace mode

Modern

[build 139493 - DVD 09/2022]

Format: MCDS.ProgramTrace.Mode <mode>

<mode>: FlowTrace | SyncTrace | CFT

Set possible program trace modes.

FlowTrace Program Flow Trace.
Trace information is only generated on a discontinuity of the program
flow, e.g. branch or jump instructions. FlowTrace offers the best trace
buffer usage but does not provide timestamp information on every
executed instruction.
SyncTrace SYNC Trace mode.
Trace information is generated on every MCDS clock cycle. Timestamps
are generated for almost all instructions.
CFT Compact Function Trace.
Trace information is only generated for call and return instructions.
Information about function call hierarchy may be lost with advanced
compiler optimation.
See also
B MCDS.ProgramTrace.Agents B MCDS.PERIipheralTrace
H MCDS B MCDS.BusTrace.Agents

B MCDS.BusTrace.Mode
B MCDS.DataTrace.Mode

B MCDS.DataTrace.Agents
B MCDS.state

©1989-2024 Lauterbach

General Commands Reference Guide M | 56

MCDS.Register Open window with MCDS registers

Format: MCDS.Register [<file> [/<options>]]

<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

Opens a peripheral window showing all MCDS related registers. By default, the register file of the currently
selected devices is opened.

<file> Name of the register file or comma for default.
<option> For a description of the options, see PER.view.
See also
H MCDS B MCDS.state
MCDS.RESet Reset the MCDS unit in the debug tool
Format: MCDS.RESet

The MCDS.RESet command performs the following actions:
. Reset all MCDS settings to their defaults

J Clears the MCDS related traces (Trace.Init)

J Clears all settings made by the command MCDS.Set

J Resets all counters e.g., used by the BMC commands.

. All MCDS registers are re-written to ensure coherency between the setting assumed by

TRACES2 and the target.

See also
H MCDS Bl MCDS.state

©1989-2024 Lauterbach General Commands Reference Guide M | 57

MCDS.RM MCDS resource management commands

Commands for controlling the MCDS Resource Management. These commands are mainly for diagnostic
purpose and not necessary for normal operation.

The MCDS Resource Management is a data structure containing the MCDS register configuration for
maintaining coherency between multiple PowerView instances connected to the same Emulation Device
and the register programming of the Emulation Device itself. This avoids conflicting register accesses and
trigger setups.

The MCDS Resource Management also acts as cache to improve performance.

See also
B MCDS.RM.ReSTore B MCDS.RM.WriteTarget H MCDS B MCDS.state
MCDS.RM.ReSTore Restore MCDS registers
Format: MCDS.RM.ReSTore

Re-writes all MCDS registers.

All modified MCDS registers are re-written, overwriting any manual change by the user. If an MCDS register
has an internal reset value, the register will be reset to this value.

See also
B MCDS.RM
MCDS.RM.WriteTarget Flush MCDS register cache
Format: MCDS.RM.WriteTarget

Writes internally cached MCDS register settings to target.

All modified MCDS registers are re-written. If a register was changed by the user but not by TRACE32, the
user’s setting will not be overwritten. MCDS.Set modifications are considered to be TRACES32 related.

See also
B MCDS.RM

©1989-2024 Lauterbach General Commands Reference Guide M | 58

MCDS.SessionKEY Provide MCDS session key

Format: MCDS.SessionKEY <64 _bit value>

Default: 0x0000000000000000.

Provides a 64-bit MCDS session key for unlocking the MCDS in case it is locked by the application. This is
normally only required in very late stages of the development phase.

See also
B MCDS B MCDS.state
MCDS.Set Program MCDS on hardware level
[Example]
Format: MCDS.Set <unit>.<feature> [<setting>] {<setting>} [[<option>]
<unit>: MCX | CpuMux0 | CpuMux1 | CpuMux2 | TriCore | PCP | C166 | SPB | RPB |
LMB | SRI
<option>: Default | Cached | WriteThru

The MCDS.Set commands provide an interface to program an MCDS feature from a logical point of view.
Although the commands are quite comfortable and more or less self-explaining a detailed understanding of
the MCDS implementation is mandatory. See the Infineon MCDS documentation for details.

<unit> <unit> is a core, bus or the MCX

<feature> Source and device dependent.

<setting> Source, feature and device dependent.

MCX Program a feature of the Multi-core Cross-connect.

CpuMux0 Program a feature of the processor connected to CPU multiplexer 0.

CpuMux1 Program a feature of the processor or the OTGM connected to CPU
multiplexer 1.

CpuMux2 Program a feature of the processor or the OTGM connected to CPU
multiplexer 2.

©1989-2024 Lauterbach General Commands Reference Guide M | 59

TriCore Program a feature of the TriCore processor.

PCP Program a feature of the PCP processor.

C166 Program a feature of the C166 processor.

SPB Program a feature of the System Peripheral Bus.

RPB Program a feature of the Remote Peripheral Bus.

LMB Program a feature of the Local Memory Bus.

SRI Program a feature of the Shared Resource Interconnect.

An MCDS.Set command programs all registers belonging to the selected feature, e.g. an IP pretrigger
programs the bound and the ranges value at the same time. Implicit information is added automatically.

Example: This script enables the Program Flow Trace of a TriCore AUDO as long as the CPU executes
code from the function sieve (). This example is equivalent to the Break Action TraceEnable.

MCDS.Set TriCore IPO ; Pretrigger IPO is active as long
Var .RANGE (sieve) ; as TriCore executes code within
; the function sieve()

MCDS.Set TriCore EVTO IPO ; enable event EVTO0 as long as
; pretrigger IP is active

MCDS.Set TriCore ACT.PTU_EN 0. EVTO ; enable TriCore Program Flow Trace
/Normal /High ; as long as event EVTO0 is active

All common MCDS use cases are available as Trace Triggers and Filters via the Break.Set command.
The MCDS.Set commands allow setting up filters and triggers for special use cases. They can be used
stand alone, in parallel or as an extension to the Trace Triggers and Filters. The last one of course requires
a detailed knowledge of how the debugger programs the MCDS. This knowledge is not documented and
may change without prior notice.

For performance reason all MCDS register accesses are cached by the TRACES32 software and written to
the hardware when necessary, e.g. when resuming program execution, see the MCDS.RM command. As
this can impact a currently active trigger configuration, the user can specify whether the MCDS.Set
command is to be executed immediately (option WriteThru) or delayed (option Cached) until the next
automatic write back. Default is the standard behavior (Cached for TriCore and C166/ XC2000).

For more information, see “Guarded MCDS Programming” in MCDS User’s Guide, page 92
(mcds_user.pdf).

See also
H MCDS Bl MCDS.state

A ’Introduction’ in ’Application Note for Complex Trigger Language’

©1989-2024 Lauterbach General Commands Reference Guide M | 60

MCDS.SOURCE Set MCDS trace sources

Classic

The MCDS.SOURCE command group controls which on-chip modules (sources) generate which kind of
trace data. In general, there are three basic kind of trace sources:

J Core trace: Trace data generated by an execution unit, e.g. program flow but also memory
accesses

. Bus trace: Trace data generated by a bus unit, e.g. destination address, data and meta
information.

J Peripheral trace: Trace date generated by peripherals, e.g. DMA or Interrupt Router, or special

execution units, e.g. GTM.

See also
B MCDS.SOURCE.ALL B MCDS.SOURCE.DEFault ® MCDS.SOURCE.NONE B MCDS.SOURCE.Set
H MCDS B MCDS.state
MCDS.SOURCE.ALL Enable all MCDS trace sources
Classic
Format: MCDS.SOURCE.ALL

The virtual trace sources ALL enables all available trace sources and types in one step.

See also
B MCDS.SOURCE

MCDS.SOURCE.DEFault Set default MCDS trace sources

Classic

Format: MCDS.SOURCE.DEFault
MCDS.SOURCE.RESet (deprecated)

Sets all MCDS.SOURCE configurations to their default values.

See also
B MCDS.SOURCE

©1989-2024 Lauterbach General Commands Reference Guide M | 61

MCDS.SOURCE.NONE Disable all MCDS trace sources

Classic

Format: MCDS.SOURCE.NONE

The virtual trace sources NONE disable all available trace sources and types in one step.

See also
B MCDS.SOURCE

©1989-2024 Lauterbach General Commands Reference Guide M | 62

MCDS.SOURCE.Set

Set individual MCDS trace sources

Classic

Format 1: MCDS.SOURCE.Set <cpu>.<parameter>
core trace MCDS.SOURCE.Set <cpu>.<parameter> (deprecated for TC3x)
<cpu>: CpuMux0 | CpuMux1 | CpuMux2 | TriCore | PCP | C166
CPU source
<parameter>: Core NONE
MUX source Core TriCore0
Core TriCore1
Core TriCore2
Core OTGM
<parameter>: Program [ON | OFF]
CPU trace ReadAddr [ON | OFF]
messages ReadData [ON | OFF]
WriteAddr [ON | OFF]
WriteData [ON | OFF]
OwnerShip [ON | OFF]
Debug [ON | OFF]
<parameter>: PTMode FlowTrace
program PTMode SyncTrace
trace mode PTMode CFT
<parameter>: LeafFctLength.<function length>
cft trace
mode filter
Format 2: MCDS.SOURCE.Set <bus>.<parameter>
bus trace
<bus>: SPB | RPB | LMB

bus sources

<parameter>: ReadAddr [ON | OFF]
bus trace ReadData [ON | OFF]
messages WriteAddr [ON | OFF]
WriteData [ON | OFF]
Debug [ON | OFF]
Format 3: MCDS.SOURCE.Set SRI.(1 | 2).<parameters>
SRl trace MCDS.SOURCE.Set SRI.Debug [ON | OFF]

©1989-2024 Lauterbach

General Commands Reference Guide M

63

<parameter>:
SRl slave

SRI

<parameter>:

messages

SLAVE CPUO | CPU1 | CPU2

SLAVE CPU1_PMI | CPU1_DMI | CPU2_PMI | CPU2_DMI
SLAVE PMI | DMI

SLAVE PMUO | PMU1

SLAVE PMUO_PFLASHO | PMUO_PFLASH1

SLAVE PMUO_PFLASH2 | PMUO_PFLASH3 | PMUO_DFLASH
SLAVE EBU | LMU | SFI | XBAR

ReadAddr [ON | OFF]
ReadData [ON | OFF]
WriteAddr [ON | OFF]
WriteData [ON | OFF]

The MCDS.Source.Set commands are used till Aurix1G inclusively Aurix2G Astep. Since Aurix2G more

abstracted User Interface, similar to that of other Architectures are introduced. See also
MCDS.ProgramTrace, MCDS.DataTrace, MCDS.BusTrace and MCDS.PERipheralTrace

&2 B:MCDS state
MCDS
OFF
@ oN

RESet
& CLEAR
A INFO

" Register

4 CLOCK
© BMC
E Trace

TimeStamp
@ OFF
ON

[E=H =R 553
SOURCE
CpuMux0 CpuMux1 SFB SRI
| Program Program ReadAddr 1 2
ReadAddr ReadAddr ReadData ReadAddr ReadAddr
WriteAddr WriteAddr WriteAddr ReadData ReadData
WriteData WriteData WriteData WriteAddr WriteAddr
PTMode PTMode WriteData WriteData
FowTrace - FowTrace SEAVE SEAVE
Core Core cur | [cpuo ~
[Tricoren ~| | | [noNE ~
TraceBuffer PortSIZE
ARRAY UpperGAP 1lane A
@ TCM 0.8 PortSPEED
XTM SIZE 2500Mbps =
1.0MB
DETECT LowerGAP
0.8

©1989-2024 Lauterbach

General Commands Reference Guide M

64

Trace Source Configuration for Cores

<cpu> defines the core for which type of trace <message> is to be generated. For single-core systems and
TriCore AUDO, <cpu> directly addresses the core. For TriCore AURIX <cpu> addresses a multiplexer which
allows to choose a core or the OTGM. For TriCore AURIX only up to two cores or up to one core and the
OTGM can be traced.

Available <cpu> sources:

CpuMux0 Generate trace data for the core selected by CPU multiplexer O.
Required for TriCore AURIX and later.

CpuMux1 Generate trace data for the core or the OTGM selected by CPU
multiplexer 1.
Required for TriCore AURIX and later.

CpuMux2 Generate trace data for the core or the OTGM selected by CPU
multiplexer 2.
Required for TriCore AURIX and later.

TriCore Generate trace data for the TriCore core.
Required for TriCore AUDO only.

PCP Generate trace data for the PCP core.
Required for TriCore AUDO only.

C166 Generate trace data for the C166 core.
Required for C166 and XC2000ED only.

Available multiplexer sources for MCDS.SOURCE.<cpu>.Core command:

NONE Disable trace data generation for this multiplexer.
This will also disable the trigger generation (Break.Set) for this
multiplexer.

TriCoreO | Select core as input for CpuMux0, CpuMux1 or CpuMux2.
TriCore1 | TriCore2 Not all cores are valid inputs for all multiplexers.

OTGM Select the peripheral trace as input for CpuMux1.

Only write data trace is available for this <source>. OTGM is not only
used for tracing dedicated peripherals, e.g. DMA or Interrupt Router, but
also the core trace of GTM.

For more information on GTM and peripheral trace, refer to:
. “Special Trace Sources via OTGM” in MCDS User’s Guide, page 46 (mcds_user.pdf)
J “GTM Debugger and Trace” (debugger_gtm.pdf)

©1989-2024 Lauterbach General Commands Reference Guide M | 65

Available CPU trace message types:

Program Configure generation of program trace messages.
Different modes of generating the program trace are available, see the
description of the PTrace option below.

ReadAddr Configure generation of trace messages (data address) on read
accesses. Not on all architectures and chips.

ReadData Configure generation of trace messages (data value) on read accesses.
Not on all architectures and chips.

WriteAddr Configure generation of trace messages (data address) on write
accesses.
WriteData Configure generation of trace messages (data value) on write accesses.
OwnerShip Configure generation of ownership trace messages.
Depending on the core, different type of information is generated:
. PCP: current channel ID.
. TriCore: active memory protection set.
The availability of this trace type depends on the architecture and the
chip.
Debug Configure generation of debug and status related trace messages.

Generated trace messages provide additional information, e.g. halted or
whether the exception handler is active. If not explicitly supported by
TRACE32, e.g. for exceptions, this information can only be displayed as a
value.

The default core trace source is program flow trace for the first core of the chip.

Any trace filters programmed using the Break.Set command only have an effect on the enabled trace
sources.

Example: The following configuration will only generate write trace messages if TriCore core 0 writes to
the variable magic, but not if TriCore core 1 accesses it:

Break.Set magic /Write /TraceEnable

MCDS.SOURCE. Set CpuMux0.Core TriCore0
MCDS.SOURCE. Set CpuMux0.WriteAddr ON
MCDS.SOURCE. Set CpuMux0.WriteData ON

MCDS.SOURCE. Set CpuMuxl.Core TriCorel
MCDS.SOURCE. Set CpuMuxl.WriteAddr OFF
MCDS.SOURCE. Set CpuMuxl.WriteData OFF

©1989-2024 Lauterbach General Commands Reference Guide M | 66

Available program trace modes for PTMode:

FlowTrace Program Flow Trace.
Trace information is only generated on a discontinuity of the program
flow, e.g. branch or jump instructions. FlowTrace offers the best trace
buffer usage but does not provide timestamp information on every
executed instruction.

SyncTrace SYNC Trace mode.
Trace information is generated on every MCDS clock cycle. Timestamps
are generated for almost all instructions.

CFT Compact Function Trace.
Trace information is only generated for call and return instructions.
Information about function call hierarchy may be lost with advanced
compiler optimation.

Filter for CFT program trace modes:

LeafFctLength.
<function length>

The minimum length of leaf functions which will be traced in CFT
program trace mode.

Trace Source Configuration for Buses

<bus> defines the bus system for which generation of trace data of <type> is to be configured. Bus trace is
not available for C166 and XC2000ED.

Available <bus> sources:

SPB Configure trace data generation for the System Peripheral Bus.
RPB Configure trace data generation for the Remote Peripheral Bus.
Only available for TC1796ED devices.

LMB Configure trace data generation for the Local Memory Bus.
LMB bus trace is not available for AUDO-NG devices.

Available bus trace message types:

ReadAddr Configure generation of trace messages (data address and meta
information) on read accesses.

ReadData Configure generation of trace messages (data value) on read accesses.

WriteAddr Configure generation of trace messages (data address and meta
information) on write accesses.

©1989-2024 Lauterbach

General Commands Reference Guide M | 67

WriteData Configure generation of trace messages (data value) on write accesses.

Debug Configure generation of debug and status related trace messages.
Generated trace messages provide additional information on the bus,
e.g. sleeping, reset, error. If not explicitly supported by TRACE32, e.g. for
reset, this information can only be displayed as a value.

Meta information provides information, e.g. on the bus master, DMA channel or on the access mode.

Trace Source Configuration for SRI

The SRl is a fabric that connects the cores and on-chip memories on recent TriCore devices (TriCore core
architecture v1.6 and later). SRI can handle multiple transactions in parallel. The SRI trace can only observe
the transactions to up to two bus slaves (the destination of the data transfer). The availability of these slaves
is device dependent.

The debug trace messages for SRI are generated for the entire SRI and not independently for each slave.

Available <sri> sources:

SRI Configure trace data generation for the Shared Resource Interconnect.

Observable SRl slaves:
The availability of the SRI slaves which can be observed is device and slave dependent.

Available SRI trace message types:

ReadAddr Configure generation of trace messages (data address and meta
information) on read accesses.

ReadData Configure generation of trace messages (data value) on read accesses.

WriteAddr Configure generation of trace messages (data address and meta
information) on write accesses.

WriteData Configure generation of trace messages (data value) on write accesses.

Debug Configure generation of debug and status related trace messages.
Generated trace messages provide additional information on the bus,
e.g. sleeping, reset, error. If not explicitly supported by TRACE32, e.g. for
reset, this information can only be displayed as a value. Debug message
generation is independent of the slaves.

Meta information provides information, e.g. on the bus master, DMA channel or on the access mode.

See also
B MCDS.SOURCE

©1989-2024 Lauterbach General Commands Reference Guide M | 68

MCDS.state Display MCDS configuration window

Modern

[build 139493 - DVD 09/2022]

Format: MCDS.state

Opens the MCDS configuration window. The MCDS.State window below shows the actual view since
Aurix2G. For older generations inclusive Aurix2G Astep see MCDS.State (classic). ™

&2 BuMCDS = =R ==
mcds ProgramTrace DataTrace BusTrace
) OFF Mode Mode Mode
-} ® oN FlowTrace - ReadWrite - ReadWrite -
Agent Agent Agent
RES&t ." 1 Cored [Cored [(Jsea
CLEAR [l caore1 [ICorel Moo
@ Init [core2 [core2 [loLpba
sim INFO [core3 [Core3 []spuo
A" Register (] Core4 [cores Cloma
TraceBuffer (] caores [Cores CJspu1
commands TImeMode PERipheralTrace
9 CLOCK OFF v « advanced ® OFF
1 BMC) on
& Trace

A For a description of the commands in the MCDS.state window, refer to the MCDS.* commands in
this chapter.
Example 1: For information about ON, see MCDS.ON.

B Example 2: For setting program trace agents see MCDS.ProgramTrace.Agent.

©1989-2024 Lauterbach General Commands Reference Guide M | 69

Classic

Format:

MCDS.state

Opens the MCDS configuration window. The MCDS.State window below shows the deprecated view which
is still shown till Aurix1G and Aurix2G AStep. For newer generations see MCDS.State.

2 B:MCDS
mcds SOURCE.Set
O OFF CpuMux0
®on Program
[CJReadaddr
RESet ReadData
CLEAR [writeAddr
@ Init [writeData
v INFO PTMode
#® Register FlowTrace
TraceBuffer EolE
TriCoreQ ~
commands
i CLOCK
) BMC TimeStamp
&Trace O oFF
®on

CpuMuxl
Program
[CJReadaddr

ReadData
Cwriteaddr
[writeData

PTMode
FlowTrace

Core
TriCorel ~

SPB
[JReadAddr
[JReadData
CwriteAddr
[CwriteData

[E=N EER
SRI
1 2
[JReadAddr [JReadAddr
[JReadData [JReadData
CwriteAddr CwriteAddr
[CwriteData [CwriteData
SLAVE SLAVE
CPUL v CPUD v

A For a description of the commands in the MCDS.state window, refer to the MCDS.* commands in

this chapter.

Example 1: For information about ON, see MCDS.ON.

See also

H MCDS B MCDS.BusTrace.Agents
B MCDS.BusTrace.Mode B MCDS.CLEAR

B MCDS.CLOCK B MCDS.DataTrace.Agents
B MCDS.DataTrace.Mode B MCDS.INFO

B MCDS.Init B MCDS.OFF

H MCDS.ON B MCDS.Option

B MCDS.PERipheralTrace B MCDS.PortSIZE

B MCDS.PortSPEED B MCDS.ProgramTrace.Agents
B MCDS.ProgramTrace.Mode B MCDS.Register

B MCDS.RESet H MCDS.RM

B MCDS.SessionKEY Bl MCDS.Set

B MCDS.SOURCE B MCDS.TImeMode

B MCDS.TraceBuffer

A 'TRACES32 Support for Emulation Devices’ in 'MCDS User's Guide’

©1989-2024 Lauterbach

General Commands Reference Guide M

70

MCDS.TImeMode Configure MCDS timestamp creation and processing

Format: MCDS.TImeMode [<mode>]
MCDS.TimeStamp (deprecated)

<mode>: OFF | External | MCDS | MCDS+External | MCDS+ExternalTrack

Timestamps are used to analyze the temporal behavior of a program or signal. They can be generated on-
chip (Onchip: MCDS), or off-chip by the tool (Analyzer, CAnalyzer, ...).

MCDS timestamps are generated in the instance of the event that creates the related trace message. Thus,
they are the most accurate timing information. However, they consume onchip buffer, trace bandwidth, and
have an impact on the decoding performance. They can not be correlated with any other trace recording.

Tool timestamps are generated in the instance when a trace packet arrives in the tool. Due to long signal
paths and chip-internal buffers, there is a non-deterministic, varying delay. Multiple trace messages will get
an identical tool timestamp. Thus, tool timestamps are inaccurate.

TRACE32 allows correlating the MCDS timestamps with the tool timestamps. This improves the decoder
performance and allows compensation of chip-internal delays and buffers. It also allows correlation with
other trace sources sharing a common timestamp base.

OFF Do not generate any MCDS-based timestamps. If tool timestamps exist,
they are used for decoding.

External Do not generate any MCDS-based timestamps. Use the tool timestamps
for decoding.
External is only available, if a TRACE32 trace tool is connected.

MCDS Generate MCDS-based timestamps and use them for decoding. If a
TRACE32 trace tool is connected, ignore the tool timestamps.

MCDS+External Generate MCDS-based timestamps, and correlate them with the tool
timestamps to provide very exact time information. This allows correlating
the trace recording with any other TRACES2 tool recordings, e.g., the
Mixed-Signal Probe, the Power Integrator or any other TRACES2 trace
tool connected to the same PodBus device chain.

MCDS+External is only available, if a TRACES32 trace tool is connected.

MCDS+External- Similar to CycleAccurate+External but smaller trace sections are used
Track for the interpolation. Therefore the time informations are not so precise
but target core clock changes could be tracked even better.

See also
B MCDS B MCDS.state

©1989-2024 Lauterbach General Commands Reference GuideM | 71

MCDS.TraceAgents.CLEAR Clear all trace agents

Modern [build 162094 - DVD 09/2023]

Format: MCDS.TraceAgents.CLEAR

Clear the list of all trace agents (logical cores, bus agents and OTGB agent) previously set via the
commands MCDS.ProgramTrace.Agents, MCDS.DataTrace.Agents, MCDS.BusTrace.Agents, and
MCDS.PERipheralTrace.

©1989-2024 Lauterbach General Commands Reference Guide M | 72

MCDS.TraceBuffer Configure MCDS trace buffer

The MCDS.TraceBuffer commands allow to configure the EMEM for being used as on-chip trace buffer or
AGBT FIFO. A correct setup is not only required for the operation of the trace modes but also for cooperation
with third-party applications such as calibration tools, or when using parts of the EMEM for application.

TriCore miniMCDS, C166 and XC2000ED do not allow to configure the trace buffer.

NOTE: . All MCDS.TraceBuffer commands influence each other. Especially pay
attention to the MCDS.TraceBuffer.NoStealing setting.
. When switching the trace method, the current trace buffer configuration

(array, size, lower and upper gap) will be remembered when switching
back to this method.

. When switching the memory arrays within the same trace method, the
trace buffer configuration (size and gap) will be reset to the default values
according to the newly selected trace method.

. Always check the results of your configuration to avoid unwanted effects.

For an overview and details, see chapter “Emulation Memory” in MCDS User’s Guide, page 73
(mcds_user.pdf).

See also

B MCDS.TraceBuffer, ARRAY B MCDS.TraceBuffer DETECT
B MCDS.TraceBuffer.LowerGAP B MCDS.TraceBuffer.NoStealing
B MCDS.TraceBuffer.SIZE B MCDS.TraceBuffer.state

B MCDS.TraceBuffer.UpperGAP H MCDS

B MCDS.state

MCDS.TraceBuffer. ARRAY Select MCDS trace buffer array

Format: MCDS.TraceBuffer. ARRAY [TCM | XTM]

Selects which memory array is to be used as on-chip trace buffer or memory array. Not all memory arrays
are available for all devices. Memory arrays that cannot be used as trace buffer, e.g. XCM (calibration only),
cannot be configured.

TCM Use TCM (Trace- and Calibration Memory) as trace buffer.
Huge trace tiles. Default for all onchip traces.

XTM Use XTM (Extended Trace Memory) as trace buffer.
Small trace tiles for use as FIFO. Default for all off-chip traces, if available.

See also
B MCDS.TraceBuffer

©1989-2024 Lauterbach General Commands Reference GuideM | 73

MCDS.TraceBuffer.DETECT Auto-detect MCDS trace buffer configuration

Format: MCDS.TraceBuffer.DETECT

Reads the EMEM configuration from the device and tries to detect which memory array and which tiles can
be used as trace buffer. This feature is useful if a third-party tool or the application also uses the emulation
memory to allow a concurrent use.

NOTE: Ensure that the third-party tool or application already configured the EMEM for
its purpose when using this command. Strange effects will occur when the
EMEM configuration is changed by application while tracing. TRACES32 will not
be able to access the EMEM, also the trace recording is stopped and the trace
data stored in the on-chip trace buffer will be destroyed.

The first suitable trace buffer configuration found will be used for tracing. For on-chip trace, TCM is the
preferred memory array, for off-chip trace XTM is preferred. If the preferred memory array does not contain a
suitable trace buffer configuration, another array is selected. If no array contains a suitable configuration, the
trace buffer size is set to zero.

NOTE: Always check the results of the detection to avoid any unwanted setup.

The first suitable trace buffer configuration is not necessarily the largest possible configuration. The search
for the trace buffer array starts at tile 0 and stops, when after the first range of suitable tiles a non-suitable tile
is found.

See also
B MCDS.TraceBuffer

©1989-2024 Lauterbach General Commands Reference Guide M | 74

MCDS.TraceBuffer.LowerGAP Set MCDS trace buffer lower gap

Format: MCDS.TraceBuffer.LowerGAP <size>

Default: 0 bytes.

Configures which EMEM tiles at the lower boundary of the currently selected memory array are not used as
trace buffer, starting with tile 0. Some devices, e.g. TriCore AUDO-NG and XC2000, do not support
configuration of a lower gap.

<size> The <size> of the trace buffer lower gap can be entered in Bytes, KB or
MB and will be rounded up by the software to match a multiple of the tile
size.

The configuration of the upper gap will be adjusted accordingly. The
trace buffer size is only adjusted in case a further reduction of the
upper gap is not possible or the device does not support an upper

gap.

See also
B MCDS.TraceBuffer 1 MCDS.TraceBuffer.LowerGAP()

©1989-2024 Lauterbach General Commands Reference GuideM | 75

MCDS.TraceBuffer.NoStealing Prevent conflicts with third-party tools

Format: MCDS.TraceBuffer.NoStealing [ON | OFF]
Default: ON.
ON Do not destroy the EMEM configuration of another tool or application.

Instead, TRACERS2 tries to find another suitable configuration. If this is not
possible, the size of the trace buffer is either set to zero (on-chip trace) or the
trace method is disabled at all (off-chip trace).

OFF Force using EMEM tiles for tracing even if already assigned to a third-
party tool or application.

This allows TRACE32 to destroy a configuration of another tool or an
application in order to use the assigned memory tiles (all or some) for
tracing. A warning message is printed in this case.

Always check the result of your trace buffer configuration to avoid any unwanted setup.

NOTE: Devices that do not support the unused mode for trace tiles should be handled
with care. For these devices unused mode is identical with calibration mode, so
NoStealing should only be enabled in case a third-party tool or the application
always maps tiles not used for their purpose to trace mode.

See also
B MCDS.TraceBuffer

MCDS.TraceBuffer.SIZE Set MCDS trace buffer size

Format: MCDS.TraceBuffer.SIZE <size>
MCDS.SIZE <size> (deprecated)

Default: maximum possible trace buffer size.

Configures how many EMEM tiles of the currently selected memory array are used as trace buffer. The
value of the trace buffer size can be entered in Bytes, KB or MB, the debugger automatically adjusts to a
possible value. Depending on the device, not all Emulation Memory can be used as trace buffer.

Some devices, e.g. XC2000, do not support configuration of the trace buffer size. When using off-chip trace,
the trace buffer is used as AGBT FIFO. In this case the trace buffer size cannot be changed.

©1989-2024 Lauterbach General Commands Reference GuideM | 76

The values of the lower and upper gap are adjusted accordingly. Use MCDS.TraceBuffer.LowerGAP and
MCDS.TraceBuffer.UpperGAP to align the trace buffer within the EMEM. Always check the result of your
trace buffer configuration to avoid any unwanted setup.

See also
B MCDS.TraceBuffer 1 MCDS.TraceBuffer.SIZE()
A ’Trace Configuration within TRACES32’ in "Training AURIX Tracing’

MCDS.TraceBuffer.state Show trace buffer state window

Format: MCDS.TraceBuffer.state

Opens the MCDS.TraceBuffer.state window for configuring the trace buffer settings.

See also
B MCDS.TraceBuffer

MCDS.TraceBuffer.UpperGAP Set MCDS trace buffer upper gap

Format: MCDS.TraceBuffer.UpperGAP <size>
MCDS.GAP <size> (deprecated)

Default: 0 bytes.

Configures which EMEM tiles at the upper boundary of the currently selected memory array are not used as
trace buffer, starting with the highest tile. Some devices, e.g. XC2000, do not support configuration of an

upper gap.

<size> The <size> of the trace buffer upper gap can be entered in Bytes, KB or MB
and will be rounded up by the software to match a multiple of the tile size.

The configuration of the lower gap will be adjusted accordingly. The trace
buffer size is only adjusted in case a further reduction of the lower gap is
not possible or the device does not support a lower gap.

See also
B MCDS.TraceBuffer 1 MCDS.TraceBuffer.UpperGAP()

©1989-2024 Lauterbach General Commands Reference Guide M | 77

MCDSBase<trace> Non-optimized MCDS trace processing

Format: MCDSBase<trace> (diagnostic use only)

<trace>: Analyzer | Onchip

MCDSBaseAnalyzer and MCDSBaseOnchip process the MCDS trace data recorded by the Analyzer or
Onchip trace without any optimization or fine tuning. The purpose of this command is to find issues related
to trace decoder optimizations.

MCDSBaseAnalyzer and MCDSBaseOnchip are used as <trace> aliases.
Example:

MCDSBaseAnalyzer.List ; display non-optimized trace content

NOTE: TRACE32 automatically detects which optimizations are necessary.
MCDSDCA«<trace> MCDS trace processing with data cycle assignment

Format: MCDSDCA <trace> (diagnostic use only)

<trace>: Analyzer | Onchip

MCDSDCAAnalyzer and MCDSDCAOnNchip process the MCDS trace data recorded by the Analyzer or
Onchip trace after DDTU reordering and data cycle assignment optimizations. The purpose of this
command is to find issues related to trace decoder optimizations.

Data cycle assignment is an optimization where TRACES32 assigns recorded core data cycles (read, write)
to the corresponding recorded program cycles. A requirement is the correct order of the core’s data cycles.

MCDSDCAAnalyzer and MCDSDCAONchip are used as <trace> aliases.
Example:

MCDSDCAAnalyzer.List ; display trace content after data cycle assignment

NOTE: TRACE32 automatically detects which optimizations are necessary.

©1989-2024 Lauterbach General Commands Reference GuideM | 78

MCDSDDTU<trace> MCDS trace processing with DDTU reordering

Format: MCDSDDTU<trace> (diagnostic use only)

<trace>: Analyzer | Onchip

MCDSDDTUAnNalyzer and MCDSDDTUONchip process the MCDS trace data recorded by the Analyzer or
Onchip trace after DDTU reordering. The purpose of this command is to find issues related to trace decoder
optimizations.

DDTU (Duplex Data Trace Unit) reordering is an optimization where TRACES32 reorders core- and bus data
cycles into their correct temporal order. Timestamps is a requirement for DDTU reordering.

MCDSDDTUAnNalyzer and MCDSDDTUONchip are used as <trace> aliases.
Example:

MCDSDDTUAnalyzer .List ; display trace content after DDTU reordering

NOTE: TRACE32 automatically detects which optimizations are necessary.

©1989-2024 Lauterbach General Commands Reference GuideM | 79

MIPS

MIPS Number of instructions per second
See also
B MIPS.List B MIPS.ListNesting B MIPS.PROfileChart B MIPS.PROfileSTATistic

B MIPS.STATistic

A ’Release Information’ in’Legacy Release History’

Overview MIPS

The MIPS command group can be used to analyze the workload (MIPS) of your systems. The source for this
analysis is the trace information recorded into the selected trace sink (Trace.METHOD command).

The system can be analyzed under different aspects: workload per task, workload per high-level language
line, workload per specified functional group etc.

The following results are provided (workload per task as example):

; the trace information recorded to the PowerTrace is analyzed by the
; MIPS commands
Trace.METHOD Analyzer

MIPS.STATistic.TASK /InterVal 10.ms
MIPS.PROfileChart.TASK /InterVal 10.ms

MIPS.PROfileSTATistic.TASK /InterVal 10.ms

Numeric statistical analysis of the MIPS per task for the recording time.

= | B:MIPS.STATistic. TASK E=n Eoh =
(& setup... || 1ii Groups... |38 Config...|[E] Detailed|[] Nesting || Task Chart] [l TaskProfie | @ Init |
tasks: 10. total: 3038936.
range [total min max avr count ratio¥% 1% 2% 5% 10% 20% 50% 100
Cunknown) 14437, 14437. 14437. 14437, 0. 0.475% [+ -
Thread 0 20775. 20775, 20775, 20775. 1. 0.683% +
main| 2861703. 2321. 2845120. 357712. 8. 94.167%
Thread 1 19655. 19655. 19655. 19655. 1. 0.646% +
Thread 2 19365. 19365. 19365. 19365. 1. 0.637% |«
Thread 3 21388. 21388. 21388. 21388. 1. 0.703% |«
Thread 4 19937. 19937. 19937. 19937. 1. 0.656% +
Thread 5 19954. 19954, 19954, 19954. 1. 0.656% +
Thread & 21272, 21272. 21272, 21272, 1. 0.699% |«
Thread 7 20450. 20450. 20450. 20450. 1. 0.672% +
4 T 3

©1989-2024 Lauterbach General Commands Reference Guide M | 80

Graphical analysis of the MIPS per task for the recording time.

] B:MIPS.PROfileChart. TASK /InterVal 10.ms =
[ﬁ Setup...]@Groups...][== Conﬂg...][I} Goto...][F1Find...][4 In][N Dut][KN FuH][& I[b4 Dut][S FuH][Fine][Coarse]

Cunknown) Thread 0 [l main I Thread 1 |l Thread 2 |l Thread 3 Thread 4 [l Thread 5
Thread 6 Thread 7
|, 000us 100 000ms 200 000ms 300 000ms 400 000ms 500. UDOMS

instr/sec |

v
=}
(=]
(=]
=}
O
o

10 1||u|>

4\m|r 4\

154 B:MIPS.PROFleSTATistic. TASK /InterVal 10.ms o e
[ﬁ Setup..][L;Gmups][Config..][I} Goto...][3 Fmd][J Detalled][iyl Chart][_ M Profile][& Init]
items: 10. total: 3038936. samples:

class 0.000us 10. 000ms 20. 000ms 30.000ms 40. 000ms 50. 000ms 60.000ms 70.000ms 80. 000ms 90.000ms | 100. 000ms'

Cunknown) 5595. 5803. 3039. 0. 0. 0. 0. 0. 0. 0. 0. .
Thread 0 0. 0. 2517. 5616. 5774. 5673. 1195. 0. 0. U. 0.
main 0. 0. 0. 0. 0. 0. 2321. 0. 0. . 2337.
Thread 1 0 0. 0 0. 0 0. 2008. 5514, 5677. 5538. 818,
Thread 2 0 0. 0 0. 0 0. 0. 0. 0. 0. 2426.
Thread 3 0. 0. 0 0. 0 0. 0 0. 0 0. 0.
Thread 4 0. 0. 0 0. 0 0. 0 0. 0 0. 0.
Thread 5 0 0. 0 0. 0 0. 0 0. 0 0. 0.
Thread 6 0 0. 0 0. 0 0. 0 0. 0 0. 0.
Thread 7 0 0. 0 0. 0 0. 0 0. 0 0. 0.
B < [m] 3

The observation time is cut into segments in order to provide the graphical analysis. The default segment
size is 10.us. The /InterVal <time> option allows to specify a different segment time.

For each segment the MIPS per task are calculated. Based on this calculation the workload for the different
tasks is displayed in a graphic.

The command subgroup MIPS.PROfileSTATistic.<item> is provided to enable the export of the results as
CSV file (Comma-Separated Value).

; specify the file name and select Comma-Separated Values
; as output format
PRinTer .FILE Mips CSV

; send the result to the file
WinPrint .MIPS.PROfileSTATistic.TASK /InterVal 10.ms

©1989-2024 Lauterbach General Commands Reference Guide M | 81

B B:MIPS.PROfileChart. TASK /InterVal 10.ms [r]E]

& setup... | i Groups... |38 Config...|[¥ Goto... || #3Find... || 4» In |[»4 out|[MM Full][% |[X out|[F Full]| Fine |[coarse]
Il (unknown) [l Thread 0 [l main Il Thread 1 |l Thread 2 | Thread 3
/ 00us 200 000ms 400.000ms 600. 000ms 800. 000ms

instr/sec 1 1 1

600000.0

><El

C]

400000.0
200000.0
4I'I'[P4

! B::MIPS.PROfileChart. TASK /InterVal 10.ms == -

(& setup...| iii Groups... | % Config...|[¥ Goto... || &3 Find... || 4» In |[»4 out|[MM Full[% In |[X out|[F Full][Fine |[coarse]

B (unknown) Thread 0 main Thread 1 |l Thread 2 |l Thread 3
Thread 4 Thread 5 Thread 6 Thread 7
00us 200.000ms 400.000ms 600. 000ms 800. 000ms

instr/sec

400000.0

200000.0

In order to see the color assignment for all tasks drag the slider.

] B:MIPS.PROfileChart. TASK /InterVal 10.ms o 2=
& setup.... || fil Groups... |38 Config...|| I Goto... || #} Fmd_][@ In |[p40ut [|0| Full][& Xou)ZF
[] (unknown) . Thread 0 main Il Thread 1 ‘
460 458%5 -15.600s
instr/sec I I |
500000.0 g?
[c-T: -15.9045 I
C-Z: 32.208s
0.0 scale: 100.000ms -
item: Thread 4

The color assignment is also displayed in the tool tip.

Slider

©1989-2024 Lauterbach General Commands Reference Guide M |

82

Fine

Decrease segment size by factor 10.

Coarse

Increase segment size by factor 10.

Hi B:MIPS.PROfileChart. TASK o[-E]
& setup... || i Groups.. [Config..] I} Goto...][1 Flnd_][0 In] b4 Out [KN Full][¥In] Out [! Full][Fine][Coarse]
(unknown) I Thread 0 mai Il Thread 1 |l Thread 2
0 200.000ms 400 OOOMS 600 000ms 800.00
instr/sec | | | | i
600000.0
|
400000.0 C-T: 321.879ms
C-Z: 23.999s
scale: 100.000ms
200000.0 interval: 100.000ms
itemn: Thread &
0.0 b
Jf] v« [

The current interval is displayed in the tool tip.

MIPS.List List the MIPS trace data
[build 135171 - DVD 09/2021]
Format: MIPS.List [<record> | <record_range> | <time> | <time_range> | <bookmark>]
[<items>...] | [/<options>]
<items>: %<formats>
DEFault | ALL | CPU | LINE | PORT
Run
CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress IsYmbol | sYmbolN | PAddress | PsYmbol
| Var
Time[.<subitem>] | CLOCKSJ.<subitem>]
FUNC | FUNCR | FUNCVar | IGNORE
LeVel | MARK[.<marker>
SPARE
<formats>; DEFault | LEN | Timing | HighLow | 01 | Hex | Decimal | BINary | Ascii
Signed | Unsigned | TimeAuto | TimeFixed
<options>: FILE | FlowTrace | BusTrace | MACHINE | NorthWestGravity | Mark | Track

Opens a window showing the recorded trace data starting at the specified <record> or for a range of trace
records <record_range> (e.g. (-10000.)--(-2000.)).

©1989-2024 Lauterbach

General Commands Reference Guide M | 83

The columns of the window can be defined using the <list_items>. The order of the columns in the window is
according to the order of the <list_item> parameters given.

<options>

For a detailed description of all other parameters and options, refer to the

<trace>.List command.

fEi B:MIPS.List

(o8)

s, || ZcTs... |4 Goto...| #3Find... | =|TREE || M chart | % Chart | % More | X Less
record t1.back time |
-0000000057 |= Funcl leve.c 159 s or— 4. A
?tat'ic void funcl(int *intptr) * static function * =
162 ("intptrl++; v
-0000000057 | = a ~
163 1
-0000000057 | = - - 0.320us
-0000000054 Funcl+0x hoa s — 4.
-0000000048 LFunca+0x3C hoa s — 57.
-0000000048 |= —funclo eve.cC 352 r -—
funclo()
354 {
-0000000048 | - a - 1.027us
register i, Jj;
register vl, v2, v3, w4, v5, v6, v7, v8;
register v, v10, v1l, v12, v13, v14, v15, vl6, v17;
359 vi7 = 0;
-0000000048 | - a - 0.307us
for (1 =0; 14 <3 ; i++
-0000000048 | - a - 0.153us
for (1 =0; 14 <3 ; i++
-0000000048 |« - - 0.307us hd

See also

H MIPS

©1989-2024 Lauterbach

General Commands Reference Guide M

84

MIPS.ListNesting

Show program nesting

[build 135171 - DVD 09/2021]

Format:

<items>:

<formats>:

<options>:

MIPS.ListNesting [<record> | <record_range> | <time> | <time_range> |
<bookmark>] [<items> ...] [/<options>]

% <formats>

DEFault | ALL | CPU | LINE | PORT

Run

CYcle | Data[.<subitem> | BDATA | List[.<subitem>]

Address | BAddress | FAddress IsYmbol | sYmbolIN | PAddress | PsYmbol
| Var

TIme[.<subitem>] | CLOCKSJ.<subitem>]

FUNC | FUNCR | FUNCVar | IGNORE

LeVel | MARK].<marker>

SPARE

DEFault | LEN | Timing | HighLow | 01 | Hex | Decimal | BINary | Ascii
Signed | Unsigned | TimeAuto | TimeFixed

FILE | FlowTrace | BusTrace | MACHINE | NorthWestGravity | Mark | Track

Shows program nesting with instruction.

<options> For a detailed description of all other parameters and options, refer to the
<trace>.List command.
See also
B MIPS

©1989-2024 Lauterbach

General Commands Reference Guide M | 85

MIPS.PROfileChart Profile charts for MIPS

See also

B <trace>.PROfileChart. TASKVSINTERRUPT B MIPS.PROfileChart.AddressGROUP
B MIPS.PROfileChart.ALL B MIPS.PROfileChart.DatasYmbol

B MIPS.PROfileChart.DistriB B MIPS.PROfileChart. GROUP

B MIPS.PROfileChart.Line B MIPS.PROfileChart. MODULE

B MIPS.PROfileChart. PROGRAM B MIPS.PROfileChart. RWINST

B MIPS.PROfileChart.sYmbol B MIPS.PROfileChart. TASK

B MIPS.PROfileChart. TASKINFO B MIPS.PROfileChart. TASKINTR

B MIPS.PROfileChart. TASKKernel B MIPS.PROfileChart. TASKORINTERRUPT
B MIPS.PROfileChart. TASKSRV B MIPS.PROfileChart. TASKVSINTR
B MIPS.PROfileSTATistic H MIPS

B MIPS.STATistic

MIPS.PROfileChart.AddressGROUP MIPS profile chart for address groups

Format: MIPS.PROfileChart.AddressGROUP [<frace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

The time for of the items pooled by the GROUP.Create command is displayed as MIPS chart. The results
include groups for both program and data.

<trace_area> Refer to Trace.PROfileChart.AddressGROUP.
<option>

See also

B MIPS.PROfileChart B MIPS.PROfileChart. GROUP

©1989-2024 Lauterbach General Commands Reference Guide M | 86

MIPS.PROfileChart.ALL

MIPS profile chart for program run

Format:

<trace_area>:

MIPS.PROfileChart.ALL [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

The time for the program execution is displayed as MIPS chart.

B B:MIPS.PROfileChart. ALL

(o8)

instr
. 00.000ms
instr/sec L

10.000us

2 senp... || §if Goups... | 38 Gorfig... | (3 Goto...|| #4Find... || 0 In |0« out | @ Full| S 1n || © out|| Bl Full| Fine || Coarse

-700.000ms -600.000ms -500.000ms

-400.000ms -300.000ms -200.000ms -100.000ms 0.0
1 1 1 1 1 1 1 1

20.0e+6

10.0=+6

0.0

> Lm >

<

See also

B MIPS.PROfileChart

MIPS.PROfileChart.DatasYmbol

MIPS profile chart for pointer

Format:

<trace_area>:

MIPS.PROfileChart.DatasYmbol [<trace_area>] [/<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays a MIPS chart for debug symbols with addresses corresponding to the data accessed in the trace.

See also

B MIPS.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide M | 87

MIPS.PROfileChart.DistriB MIPS profile chart for distributions

Format: MIPS.PROfileChart.DistriB [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Shows a graphical representation of the specified trace item as a percentage of a time slice.

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 88

MIPS.PROfileChart. GROUP MIPS profile chart for groups

Format: MIPS.PROfileChart.GROUP [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws MIPS profile charts for groups. The results only include groups within the program range. Groups for
data addresses are not included.

<trace_area> Refer to Trace.PROfileChart. GROUP.
<option>

; create group "INPUT", add the modules \jquant2 \jdinput \jidctred and
; assign the color AQUA to this group
GROUP.CreateModules "INPUT" \jquant2 \jdinput \jidctred /AQUA

; create another group
GROUP.CreateModules "JPEG"

; start and stop the program execution

; display the result
MIPS.PROfileChart.GROUP

M B:MIPS.PROfileChart.GROUP = | B =
| setup...| |1 Goups...|| 32 @rfig...| |12 Goto...|| #3Find...| 4»In|[»4 |MMFulll % In || X out|Z Full| Fine ||Coarse|
10.000us [l (other) ["JPEG" "INPUT"
2.000ms -531.800ms -531.600ms -531.400ms
instr/sec | ! I |
e : . : . : .

18.0e+6

» 4 [m|»

16.0e+6

10.0e+6

m

8000000.0

6000000.0

4000000.0

2000000.0

0.0

©1989-2024 Lauterbach General Commands Reference Guide M | 89

See also

B MIPS.PROfileChart B MIPS.PROfileChart. AddressGROUP
MIPS.PROfileChart.Line MIPS per high-level language line graphically
Format: MIPS.PROfileChart.Line [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

Draws a MIPS graph for all executed high-level code lines.

<trace_area> Refer to Trace.PROfileChart.Line.
<option>

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference GuideM | 90

MIPS.PROfileChart. MODULE

MIPS profile chart for modules

Format:

<trace_area>:

MIPS.PROfileChart. MODULE [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws MIPS profile charts for symbol modules. The list of loaded modules can be displayed with

sYmbol.List.Module.

H B:MIPS.PROfileChart. MODULE = =R
B Setup...|| iif Groups... | 2% Config...| (1 Goto... | #3Find... | «»In | W0«Out M Full| ©1In | S out| E Full| Fine |Coarse
(other) code
ee_s32klxx_intvect ee_cortex_m_irqstub
ee_oo_kernel ee_oo_sched_partitioned
10.000us ee_std_change_context Il ec_cortex_m_asm
-1.500s -1.000s -500.000ms 0.0
instr/sec I ! l | |
30.0e+6 ~
W
20.0e+6 N
10.0e+6
0.0 v

<trace_area>
<option>

See also

Refer to Trace.PROfileChart.MODULE.

B MIPS.PROfileChart

©1989-2024 Lauterbach

General Commands Reference Guide M

91

MIPS.PROfileChart. PROGRAM MIPS profile chart for programs

Format: MIPS.PROfileChart. MODULE [<trace_area>] [[<option>]

<trace_bookmark> | <record> | <record_range> | <time> |

<trace_area>:
<time_range> [<time_scale>]

Draws MIPS profile charts for loaded object file programs. The loaded programs can be displayed with the
command sYmbol.Browse *.

<trace_area> Refer to Trace.PROfileChart. PROGRAM.

<option>

See also
B MIPS.PROfileChart

MIPS.PROfileChart.RWINST MIPS per cycle type graphically

Format: MIPS.PROfileChart.RWINST

Draws a MIPS graph for read, write, modify instruction and all others (none) instructions.
M B:MIPS.PROfileChart RWINST ==& =

(& Setup..-][iliGroups.;][ll Conﬁg..JLn Goto...]uj Find... || 4» In |[»4 out|[M Full|| & 1n |[X out|[F Full]| Fine |[Coarse|
l none M Toad M store [modify
000us 500. 000ms 1.000s 1.500s 2.000s 2.500s
instr/sec | | I I
600000, 0

» 4 [m »

400000.0

200000.0

«mlr o«

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 92

MIPS.PROfileChart.sYmbol MIPS for all program symbols graphically

Format: MIPS.PROfileChart.sYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws a MIPS graph for all program symbols.

<trace_area> Refer to Trace.PROfileChart.sYmbol.
<option>

] B:MIPS.PROfileChart.sYmbal /InterVal 100.us o5
[ﬁ Setup.--][ifl.iGruups...][== Conﬂg..-][I} Goto...][FiFind...][4k In][N Dut][KH FuH][=][b4 Dut][= FUH][Fine][Coarse]
(other) IRQ hal_IrRQ_handler
Cy_cl]_RE.ﬂT‘i meClock: :isr hal_clock_reset Cyg_Interrupt::acknowledge_inter
hal_interrupt_acknowledge spurious_IRQ interrupt_en
Cyg_Interrupt::post_dsr Cyg_Scheduler: :unlock Cyg_Scheduler_Base: :get_sched_lo
. 1.000ms 2.000ms 3. 000ms 4. 000ms 5. 000ms 6. 000ms 7. 000ms 8.000ms 9. 000ms
instr/sec I 1 I 1 I 1 I 1 1 |
600000.0 V Y =
400000. 0 E
200000.0
; i
0.0 / | } | ‘ .
o<l r

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 93

MIPS.PROfileChart.TASK MIPS per task graphically

Format: MIPS.PROfileChart.TASK [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws a MIPS graph for all tasks. This feature is only available if TRACE32 has been set for OS-aware
debugging.

<trace_area> Refer to Trace.PROfileChart.TASK.
<option>

See also
B MIPS.PROfileChart

MIPS.PROfileChart. TASKINFO MIPS for data trace via context ID
Format: MIPS.PROfileChart.TASKINFO [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws a MIPS graph for special messages written to the Context ID register for ETM trace. Please refer to
Trace.PROfileChart. TASKINFO for more information.

<trace_area> Refer to Trace.PROfileChart. TASKINFO.
<option>

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 94

MIPS.PROfileChart. TASKINTR MIPS profile chart for ISR2 (ORTI)

Format: MIPS.PROfileChart.TASKINTR [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays a MIPS profile chart for ORTI based ISR2. This feature can only be used if ISR2 can be traced
based on the information provided by the ORTI file. Please refer to “OS Awareness Manual OSEK/ORTI”

(rtos_orti.pdf) for more information.

<trace_area> Refer to Trace.PROfileChart.TASKINTR.
<option>

See also
B MIPS.PROfileChart

MIPS.PROfileChart. TASKKernel MIPS profile chart with kernel marker
Format: MIPS.PROfileChart.TASKKernel [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Refines the command MIPS.PROfileChart.TASK for RTOS systems that don’t assign a task ID to the
kernel. Refer to Trace.STATistic. TASKKernel for more information.

This feature is only available if TRACES32 has been set for OS-aware debugging.

<trace_area> Refer to Trace.PROfileChart. TASKKernel.
<option>

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 95

MIPS.PROfileChart. TASKORINTERRUPT MIPS graph per task/interrupt

Format: MIPS.PROfileChart. TASKORINTERRUPT [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Draws a MIPS graph for all tasks and interrupts. This feature is only available if TRACES32 has been set for
OS-aware debugging.

<trace_area> Refer to Trace.PROfileChart. TASKORINTERRUPT.
<option>

See also
B MIPS.PROfileChart

MIPS.PROfileChart. TASKSRV MIPS profile chart for OS service routines
Format: MIPS.PROfileChart.TASKSRYV [<frace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

The time spent in OS service routines and different tasks is displayed as MIPS profile chart. This feature is
only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI

command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> Refer to Trace.PROfileChart. TASKSRV.
<option>

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 96

MIPS.PROfileChart. TASKVSINTR MIPS chart for task-related interrupts

Format: MIPS.PROfileChart.TASKVSINTR [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays a MIPS profile chart for task-related interrupt service routines. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please

refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> Refer to Trace.PROfileChart.TASKINTR.
<option>

See also
B MIPS.PROfileChart

©1989-2024 Lauterbach General Commands Reference Guide M | 97

MIPS.PROfileSTATistic

Profile statistics for MIPS

See also

B <trace>.PROfileSTATistic. TASKVSINTERRUPT H MIPS

B MIPS.PROfileChart B MIPS.PROfileSTATistic.Address

W MIPS.PROfileSTATistic. AddressGROUP B MIPS.PROfileSTATistic.ALL

B MIPS.PROfileSTATistic.DatasYmbol B MIPS.PROfileSTATistic.DistriB

B MIPS.PROfileSTATistic. GROUP B MIPS.PROfileSTATistic.INTERRUPT
B MIPS.PROfileSTATistic.Line B MIPS.PROfileSTATistic. MODULE
B MIPS.PROfileSTATistic. PROGRAM B MIPS.PROfileSTATistic. RUNNABLE
B MIPS.PROfileSTATistic. RWINST B MIPS.PROfileSTATistic.sYmbol

B MIPS.PROfileSTATistic. TASK B MIPS.PROfileSTATistic. TASKINFO
B MIPS.PROfileSTATistic. TASKINTR B MIPS.PROfileSTATistic. TASKKernel
B MIPS.PROfileSTATistic. TASKORINTERRUPT B MIPS.PROfileSTATistic. TASKSRV
B MIPS.STATistic

MIPS.PROfileSTATistic.Address

MIPS per address as profile statistic

Format:

<trace_area>:

MIPS.PROfileSTATistic.Address [<trace_area>] <address1>

<trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

[<address2> ...] [I<option>]

Displays MIPS as profile statistic for addresses.

<trace_area>
<option>

See also

Refer to Trace.PROfileSTATistic.Address.

B MIPS.PROfileSTATistic

©1989-2024 Lauterbach

General Commands Reference Guide M | 98

MIPS.PROfileSTATistic.AddressGROUP MIPS per address group

Format: MIPS.PROfileSTATistic.AddressGROUP [<frace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic for the items pooled by the GROUP.Create command. The results include
groups for both program and data.

<trace_area> Refer to Trace.PROfileSTATistic.AddressGROUP.
<option>
See also
B MIPS.PROfileSTATistic B ETA.PROfileSTATistic. GROUP
MIPS.PROfileSTATistic.ALL MIPS profile statistic for program run
Format: MIPS.PROfileSTATistic.ALL [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic for the program run.

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference Guide M | 99

MIPS.PROfileSTATistic.DatasYmbol MIPS profile statistic for pointer

Format: MIPS.PROfileSTATistic.DatasYmbol [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays a MIPS profile statistic for debug symbols with addresses corresponding to the data accessed in
the trace.

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic.DistriB Distribution statistical analysis
Format: MIPS.PROfileSTATistic.DistriB [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic for or the statistical distribution of a selected item or based on the symbolic
addresses if no item is specified.

<trace_area> Refer to Trace.PROfileSTATistic.DistriB.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference Guide M | 100

MIPS.PROfileSTATistic. GROUP MIPS per GROUP as profile statistic

Format: MIPS.PROfileSTATistic. GROUP [<frace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic for groups. The results only include groups within the program range.
Groups for data addresses are not included.

<trace_area> Refer to Trace.PROfileSTATistic. GROUP.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic.INTERRUPT MIPS per interrupt as table
Format: MIPS.PROfileSTATistic.INTERRUPT [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |

<time_range> [<time_scale>]

Displays MIPS as profile statistic table for interrupts. This feature is only available if TRACE32 has been set
for OS-aware debugging.

<trace_area> Refer to Trace.PROfileSTATistic.INTERRUPT.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 101

MIPS.PROfileSTATistic.Line MIPS per high-level language line as table

Format: MIPS.PROfileSTATistic.Line [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for high-level language lines.

<trace_area> Refer to Trace.PROfileSTATistic.Line.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic.MODULE MIPS per module as profile statistic
Format: MIPS.PROfileSTATistic. MODULE [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for symbol modules. The list of loaded modules can be displayed with
sYmbol.List.Module.

<trace_area> Refer to Trace.PROfileSTATistic. MODULE.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 102

MIPS.PROfileSTATistic. PROGRAM MIPS per program as profile statistic

Format: MIPS.PROfileSTATistic.PROGRAM [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for loaded object file programs. The loaded programs can be
displayed with the command sYmbol.Browse *.

<trace_area> Refer to Trace.PROfileSTATistic.PROGRAM.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic. RUNNABLE MIPS per runnable as table
Format: MIPS.PROfileSTATistic. RUNNABLE [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for AUTOSAR runnables. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please

refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> Refer to Trace.PROfileSTATistic. RUNNABLE.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 103

MIPS.PROfileSTATistic. RWINST MIPS per cycle type as table

Format: MIPS.PROfileSTATistic.RWINST

MIPS for read, write, modify instruction and all others (none) instructions as table.

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic.sYmbol MIPS for all program symbols as table
Format: MIPS.PROfileSTATistic.sYmbol [<trace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for all program symbols.

<trace_area> Refer to Trace.PROfileSTATistic.sYmbol.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 104

MIPS.PROfileSTATistic. TASK MIPS per task as table

Format: MIPS.PROfileSTATistic.TASK [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for tasks. This feature is only available if TRACE32 has been set for
OS-aware debugging.

<trace_area> Refer to Trace.PROfileSTATistic.TASK.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic. TASKINFO MIPS for data trace via context ID
Format: MIPS.PROfileSTATistic.TASK [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for special messages written to the Context ID register for ETM trace.
Refer to Trace.PROfileSTATistic.TASKINFO fore more information.

<trace_area> Refer to Trace.PROfileSTATistic.TASKINFO.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 105

MIPS.PROfileSTATistic. TASKINTR MIPS per ISR2 (ORT]I) as table

Format: MIPS.PROfileSTATistic. TASKINTR [<trace_area>] [[<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for ORTI based ISR2. This feature is only available if an OSEK/ORTI
system is used and if the OS Awareness is configured with the TASK.ORTI command. Please refer to “OS

Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

<trace_area> Refer to Trace.PROfileSTATistic.TASKINTR.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic. TASKKernel MIPS per task as table
Format: MIPS.PROfileSTATistic. TASKKernel [<trace_area>] [[<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Refines the command MIPS.PROfileSTATistic.TASK for RTOS systems that don’t assign a task ID to the
kernel. Refer to Trace.STATistic. TASKKernel for more information. This feature is only available if

TRACE32 has been set for OS-aware debugging.

<trace_area> Refer to Trace.PROfileSTATistic. TASKKernel.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference Guide M | 106

MIPS.PROfileSTATistic. TASKORINTERRUPT MIPS per task as table

Format: MIPS.PROfileSTATistic. TASKORINTERRUPT [<trace_area>] [/<option>]

<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

Displays MIPS as profile statistic table for tasks and interrupts. This feature is only available if TRACE32 has
been set for OS-aware debugging.

<trace_area> Refer to Trace.PROfileSTATistic. TASKORINTERRUPT.
<option>

See also
B MIPS.PROfileSTATistic

MIPS.PROfileSTATistic. TASKSRV MIPS per OS service routine as table
Format: MIPS.PROfileSTATistic. TASKSRYV [<trace_area>] [/<option>]
<trace_area>: <trace_bookmark> | <record> | <record_range> | <time> |
<time_range> [<time_scale>]

The time spent in OS service routines and different tasks is displayed as MIPS profile statistic table. This
feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the
TASK.ORTI command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more

information.

<trace_area> Refer to Trace.PROfileSTATistic. TASKSRV.
<option>

See also
B MIPS.PROfileSTATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 107

MIPS.STATistic Statistical analysis for MIPS

See also

M <trace>.STATistic. TASKVSINTERRUPT H MIPS

B MIPS.PROfileChart B MIPS.PROfileSTATistic

B MIPS.STATistic.ALL B MIPS.STATistic.ChildTREE
B MIPS.STATistic.DistriB B MIPS.STATistic.Func

B MIPS.STATistic. GROUP B MIPS.STATistic.LINKage
B MIPS.STATistic. MODULE B MIPS.STATistic.ParentTREE
B MIPS.STATistic. PROGRAM B MIPS.STATistic. RBWINST
B MIPS.STATistic.sYmbol B MIPS.STATistic. TASK

B MIPS.STATistic. TASKINFO B MIPS.STATistic. TASKINTR
B MIPS.STATistic. TASKKernel B MIPS.STATistic. TASKSRV
B MIPS.STATistic. TREE

MIPS.STATistic.ALL MIPS for the program run

Format: MIPS.STATistic.ALL [%<format>] [<list_items> ...] [[<option>]

Displays MIPS for the program run numerically.

See also
B MIPS.STATistic

MIPS.STATistic.ChildTREE MIPS for the callee context of a function

Format: MIPS.STATistic.ChildTREE <address> [<list_items>] [[<option>]

Displays MIPS for all functions called by the specified function numerically as call tree.

Refer to <trace>.STATistic.ChildTREE for a description of the parameters and options.

See also
B MIPS.STATistic

©1989-2024 Lauterbach General Commands Reference Guide M | 108

MIPS.STATistic.DistriB MIPS distribution analysis

Format: MIPS.STATistic.DistriB [Y%<format>] [<items> ...] [[<option>]

Displays MIPS for the statistic distribution of any data is displayed if <item> is specified. Displayed are the
without <item> the statistic is based on the symbolic addresses.

Refer to <trace>.STATistic.DistriB for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic.Func MIPS for functions numerically

Format: MIPS.STATistic.Func [%<format>] [<list_items> ...] [/<option>]

Displays MIPS for functions numerically.

Refer to <trace>.STATistic.Func for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic. GROUP MIPS statistic for groups

Format: MIPS.STATistic. GROUP [%<format>] [<list_items> ...] [/<option>]

MIPS statistic for groups.

©1989-2024 Lauterbach General Commands Reference Guide M | 109

Refer to <trace>.STATistic. GROUP for a description of the parameters and options.

£ | B:MIPS.STATistic. GROUP =N E=h

(& setup... || jiiGroups... || 52 Config...| Y Goto... || =[Detailed|| =[Tree || Adchart |[EHProfile |
items: 3. total: 9674303. samples: 9674303

address |[total min max avr count ratio¥% [1% 2% '
(other) 9654014. 1. 218875. 14114, 684, (0/1) | 99.790% |ee——
"IPEG" 17989. 2 80. 30. 595. (1/0) 0.185%
"INPUT" 2300. 254, 24, 95. 0.023%

5.

See also
B MIPS.STATistic

MIPS.STATistic.LINKage Per caller MIPS statistic of function

Format: MIPS.STATistic.LINKage [%<format>] [<items> ...] [/<option>]

Performs a function MIPS statistic for a single function itemized by its callers.

Refer to <trace>.STATistic.LINKage for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic. MODULE MIPS for modules numerically

Format: MIPS.STATistic. MODULE [%<format>] [<list_items> ...] [[<option>]

Displays MIPS for symbol modules numerically. The list of loaded modules can be displayed with
sYmbol.List.Module.

Refer to <trace>.STATistic.MODULE for a description of the parameters and options.

See also
B MIPS.STATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 110

MIPS.STATistic.ParentTREE MIPS statistic for call context of a function

Format: MIPS.STATistic.ParentTREE <address>

Show call tree and MIPS of all callers of the specified function. The function is specified by its start
<address>.

Refer to <trace>.STATistic.ParentTREE for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic. PROGRAM MIPS for programs numerically

Format: MIPS.STATistic.PROGRAM [%<format>] [<list_items> ...] [[<option>]

Displays MIPS for loaded object file programs numerically. The loaded programs can be displayed with the
command sYmbol.Browse *.

Refer to <trace>.STATistic.PROGRAM for a description of the parameters and options.

See also
B MIPS.STATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 111

MIPS.STATistic. RWINST MIPS per cycle type numerically

Format: MIPS.STATistic.RWINST [%<format>] [<list_items> ...] [[<option>]

MIPS per read, write, modify instruction and all others (none) instructions in a numerical statistic.

E B:MIPS.STAT.RWINST EI@
|42 setup... |58 Config...][R Goto... |[E] Detailed]| M chart || B Profile | @ mit |
items: 4. total: 9153966. samples: 9153966.
address [total min max avr ratio¥ [1% 2% 5% 10% 20% 50%
none [4634184, 1. 1. 1. 4634184.(0;1) 50.624% =
Toad 3016952. ‘ 1. 1. 1. 3016952. 32.957%
store 1502830. 1 1 1. 1502830. 16.417%
mod'iny 0. - - 0. 0 0.000% -
See also
B MIPS.STATistic
MIPS.STATistic.sYmbol MIPS for all program symbols numerically
Format: MIPS.STATistic.sYmbol [%<format>] [<list_items> ...] [/<option>]

MIPS for all program symbols numerically.

Refer to <trace>.STATistic.sYmbol for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic. TASK MIPS per task numerically

Format: MIPS.STATistic.TASK [%<format>] [<list_items> ...] [[<option>]

MIPS per task numerically. This feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.STATistic.TASK for a description of the parameters and options.

See also
B MIPS.STATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 112

MIPS.STATistic. TASKINFO MIPS for data trace via context ID

Format: MIPS.STATistic. TASKINFO [%<format>] [<list_items> ...] [/<option>]

Displays a MIPS statistic for special messages written to the Context ID register for ETM trace. Please refer
to Trace.STATistic.TASKINFO for more information.

See also
B MIPS.STATistic

MIPS.STATistic. TASKINTR MIPS per ISR2 numerically

Format: MIPS.STATistic.TASKINTR [%<format>] [<list_items> ...] [[<option>]

MIPS per ORTI based ISR2 numerically. This feature is only available, if an OSEK/ORTI system is used, and
if the OS Awareness is configured with the TASK.ORTI command.

Refer to <trace>.STATistic. TASKINTR for a description of the parameters and options.

See also
B MIPS.STATistic

MIPS.STATistic. TASKKernel MIPS task analysis with kernel markers

Format: MIPS.STATistic.TASKernel [%<format>] [<list_items> ...] [/<option>]

Refines the command MIPS.STATistic.TASK for RTOS systems that don’t assign a task ID to the kernel.
This feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.STATistic. TASKKernel for a description of the parameters and options.

See also
B MIPS.STATistic

©1989-2024 Lauterbach General Commands Reference GuideM | 113

MIPS.STATistic. TASKSRV

MIPS per OS service routine numerically

Format:

MIPS.STATistic. TASKSRYV [%<format>] [<list_items> ...] [/<option>]

MIPS per OS service routine numerically. This feature is only available, if an OSEK/ORTI system is used,
and if the OS Awareness is configured with the TASK.ORTI command.

Refer to <trace>.STATistic. TASKSRYV for a description of the parameters and options.

See also

B MIPS.STATistic

MIPS.STATistic.TREE

Tree display of nesting functions with MIPS

Format:

MIPS.STATistic.TREE [%<format>] [<list_items> ...] [/<option>]

Displays a graphical tree of the function nesting with MIPS per function results.

= | B:MIPS.STATistic. TREE = =R
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 156. total: 29822973. 128105. 1 workarounds
range |tree total min max avr count intern® |
end_all_interrupts L — osEE_suspend_all_7. B B. 1001. 0.026% | 4
emoHAL_SerialWrite DemoHAL_Serialwrite . 1 1. 1 1001. 0.003%
esumedllInterrupts ResumeAllInterrupts 22023. 21 23. 22. 1001. 0.073%
TerminateTask = TerminateTask 174886. 154 207 174, 1001. (0/1) 0.391%
osEE_task_end osEE_task_end 10000. 10 10. 10 1000. 0.033%
text_from_task_end =) 0sEE_change_context_fr.. 23402. 39 40. 39 600. 0.050%
sk_wrapper_restore L— osEE_scheduler_task_.. 14 14. 14 600. 0.028%
text_from_task_end = 0sEE_cortex_m_change_c.. 24810. 62 63. 62 400. 0.071%
sk_wrapper_restore L— osEE_scheduler_task_.. 9 9. 9 400. 0.012%
(root) = (root) 23521686. - 23521686. - - 23.163%
idle_hook = idle_hook 16596506, 23 135. 24, 688547.(1/0) | 53.237%
osEE_task_end osEE_task_end . 10 10. 10. 644, 0.021%
ntext_from_task_end = 0sEE_change_context_from.. 23822. 32 35. 36. 644, 0.049%
ask_wrapper_restore L— osEE_scheduler_task_wr.. 9 14. 13. 644, 0.030%
SVC_Handler —+5VC_Handler 1 1. 1. 644, 0.002%
emoHAL_MainFunction DemoHAL_MainFunction 688405 o 1. 0. 688547 2.308%
DemoHAL_LedToggle =) DemoHAL_LedToggle 10 10. 10. [<0.001%
PINS_DRV_TogglePins L— PINS_DRV_TogglePins 2 2. 2. [<0.001%
DemoHAL_SerialWrite DemoHAL_SerialWrite 1 1. 1.] <0.001%
osEE_task_end osEE_task_end 10 10. 10 357 0.011%
ntext_from_task_end =l osEE_change_context_from_t.. 13212 37 35. 37 357 0.027%
ask_wrapper_restore L— osEE_scheduler_task_wrap.. 14 14. 14 357 0.016% | ¥
11 £ >
Refer to <trace>.STATistic.TREE for a description of the parameters and options.
See also
W MIPS.STATistic
©1989-2024 Lauterbach General Commands Reference GuideM | 114

MMU

MMU Memory management unit

See also

MMU.DUMP B MMU.FORMAT B MMU.INFO B MMU List
MMU.MemAnalysis B MMU.SCAN B MMU.Set B MMU.TDUMP
MMU.TSCAN B MMU.view B TASK.CONFIG B TRANSIation

|
|
|
A 'CPU specific MMU Commands’ in 'CPU32/ColdFire Debugger and Trace’
A 'CPU specific MMU Commands’ in ’Arm Debugger’
A
A
A
A

'CPU specific MMU Commands’ in ’Armv8 and Armv9 Debugger’

"CPU specific MMU Commands’ in ’Intel® x86/x64 Debugger’

'MMU Functions (Memory Management Unit)’ in 'General Function Reference’
‘Release Information’ in’Legacy Release History’

Overview MMU

Using the MMU command group, you can access and view the configuration of the memory management
unit of the current core.

If supported by the CPU, you can view the logical-to-physical address translations denoted in the MMU
TLBs (translation look-aside buffers) and page tables.

If you have loaded an OS Awareness to TRACE32 with the TASK.CONFIG command, you can also view
the task page table associated with each running process of the OS.

What is the difference between the command groups...?

MMU TRANSIation
Lets you access and view the real hardware Configures and controls the TRACE32 internal
MMU. debugger address translation.

This feature is used to mimic the translations
within the real hardware MMU so that the
debugger can access code and data of any OS
process at any time.

©1989-2024 Lauterbach General Commands Reference GuideM | 115

MMU.DUMP Dump MMU tables

[Examples]

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<cpu_specific ITLB | DTLB | TLB (e.g. for ARM, MIPS)
_tables>: PTE | BAT (e.g. for MPC8260, MPC750)
TLBO | TLB1 (e.g. for MPC54xx, MPC85xx)

Displays the contents of the MMU translation table or a CPU specific TLB table.

J If the command is called without parameters, the complete current page table will be displayed;
i.e., in this case MMU.DUMP is equivalent to MMU.DUMP PageTable.

J If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<table> For descriptions of PageTable, KernelPageTable, etc, see MMU.List.
<cpu_specific_ Many command arguments are target processor specific. For details, refer to
tables> the Processor Architecture Manuals [4] listed in the See also block below.

Description of Columns in the MMU.DUMP.PageTable Window

These columns are available for all architectures.

Column name Description

logical Logical page address range

physical Physical page address range

size Size of mapped page in bytes

tablewalk Details of table walk for logical page address (one sub-column for each
table level, showing the table base address, entry index, entry width in
bytes and value of table entry).

All other columns in the MMU.DUMP PageTable window are architecture specific.

©1989-2024 Lauterbach General Commands Reference GuideM | 116

Examples:

;dump entries of current page table in specified range
g <table> <range>
MMU . DUMP PageTable 0xC0000000--0xDFFFFFFF

;display PT with physical base address A:0x00402100

;dump entries with logical address >= 0xC0000000

g <table> <start_address> <root>
MMU . DUMP PageTable 0xC0000000 A:0x00402100

;open the TASK.List.tasks window to display task name, task magic number,

;and space ID
TASK.List.tasks

;The format of the MMU.DUMP.TaskPageTable argument governs how it is

;interpreted:

MMU .DUMP TaskPageTable "ash" ; task name

MMU.DUMP TaskPageTable 0xC707AE20 ; task magic number in hex
MMU.DUMP TaskPageTable 673. ;space ID in decimal

;the same space ID in hex, specified as an extended address.
;Only the space ID part of the address is relevant for this command.
MMU.DUMP TaskPageTable 0x2Al:0x0

See also
H MMU B MMU.view B TRANSIation.TIbAutoScan

A 'CPU specific MMU commands’ in ’MPC5xx/8xx Debugger and Trace’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideM | 117

MMU.FORMAT Define MMU table structure

[Example]

Format: MMU.FORMAT <format> [<base_address> [<logical_kernel_address_range>
<physical_kernel_address>]] [[<option>]

<option>: MACHINE <machine_id> (Arm, i386 and PowerPC64 only)
Intermediate (Arm, i386 and PowerPC64 only)
SPACEID [TTBO | TTB1] (Arm only)

Default <format>: STD.

Defines the information needed for the page table walks, which are performed by TRACES32 for debugger
address translation, page table dumps, or page table scans.

<format>

<format> is to be replaced with a CPU architecture specific keyword which defines the structure of the MMU
page tables used by the kernel. By default, TRACES32 assumes that the MMU format is STD, unless you
specify the MMU.FORMAT <format> explicitly.

J In addition to STD, some CPU architectures have further <format> keywords. For an overview of
these keywords, please refer to “Appendix - <format> Options of MMU.FORMAT”, page 134.

J For more information about the declaration of the debugger address translation, refer to the “OS
Awareness Manuals”. These manuals also list the OS specific <format> keywords broken down
by CPU architecture.

<base_address>

<base_address> defines the start address of the default page table which is usually the kernel page table.
The kernel page table contains translations for mapped address ranges owned by the kernel.

The debugger address translation uses the default page table if no process specific page table (task
page table) is available to translate an address.

<base_address> can be left empty by typing a comma or set to zero if there is no default page table
available in the system.

NOTE: Additional MMU.FORMAT input parameters may be required for some
architecture specific <format> keywords. This is described in “Appendix -
<format> Options of MMU.FORMAT”, page 134.

©1989-2024 Lauterbach General Commands Reference GuideM | 118

<logical_kernel_address_range> and <physical_kernel_address> for the Default Translation

The arguments <logical_kernel_address_range> and <physical_kernel_address> define a linear logical-to-
physical address translation for the kernel addresses, called kernel translation or default translation. This
translation should cover all statically mapped logical address ranges of kernel code or kernel data.

For the <physical_kernel_address> you just need to specify the start address.

NOTE: If no kernel translation is specified for a given memory access, TRACE32 tries to
use static address translations defined by the command TRANSIation.Create. The
kernel translation is shown in the TRANSIation.List window.

Example

To enable the debugger address translation with page table walk, please use TRANSIation.ON and
TRANSIation.TableWalk ON after specifying MMU.FORMAT. This example shows a typical
MMU.FORMAT declaration for Linux:

; enable space ID usage, needed for Linux
SYStem.Option.MMUSPACES ON

; these are the arguments used for the MMU.FORMAT example:

; 1. use MMU page table format LINUX for page table walks

; 2. use symbol swapper_pg dir to define the base address of the

9 kernel page table

; 3. define the kernel translation:

translate the logical kernel address range 0xc0000000--Oxdfffffff
to the physical address range 0x0--Ox1fffffff

MMU.FORMAT LINUX swapper_pgd_dir 0xc0000000--Oxdfffffff 0xO0

; define the common kernel address range
TRANSlation.COMMON 0xc0000000--Oxfffffff

; enable the table walk and the debugger address translation
TRANSlation.TableWalk ON
TRANSlation.ON

The known page tables can be viewed with commands TRANSIation.List.<page_table> or
TRANSIation.DUMP.<page_table>where <page_table> specifies the page table to be viewed - please see
the architecture specific documentation of these two commands in the “Processor Architecture Manuals”.

©1989-2024 Lauterbach General Commands Reference GuideM | 119

MACHINE

Intermediate

SPACEID

Available if SYStem.Option.MACHINESPACES is set to ON.

Specifies translation information for the translation of intermediate
physical (IPA) to physical addresses (PA).

If this option is set, <base_address> is the page table base address used
for the translation of IPA to PA.

<logical_kernel_address_range> and <physical_kernel_address>
specify a simple default translation from IPA to PA.

Configures whether task page tables are held by MMU register TTBRO or
TTBRA1.

TTBO: TTBRO holds the task page table, TTBR1 holds the fixed kernel
page table (DEFAULT).

TTB1: TTBR1 holds the task page table, TTBRO holds the fixed kernel
page table

With SYStem.Option.MMUSPACES ON, TRACE32 uses the space ID of
an address to select the task page table associated with the space ID.

If you specify "MMU.FORMAT ... /SPACEID TTBR1", TRACE32 will treat
register TTBR1 as space ID dependent task page table and TTBRO as
fixed kernel page table.

Also, with /SPACEID TTBRH1, the default page table <base_address> will
be used in place of TTBRO instead of TTBR1.

As MMU.FORMAT is a zone specific and/or machine specific command,
option /SPACEID can be configured per-zone/per-machine.

NOTE:

The error message "INVALID COMBINATION" will be shown if a Linux-related
MMU format such as LINUX, LINUXBIG, ... is specified without a previous
SYStem.Option.MMUSPACES ON command. Linux page table handling
requires space IDs to be enabled in TRACES32.

See also

H MMU
Bl TRANSIation.Create
1 MMU.DEFAULTPT/()

B MMU.view Bl TRANSIation B TRANSIation. COMMON
B TRANSIation.List B TRANSIation.TableWalk B TRANSIation.TIbAutoScan
a MMU.FORMAT()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide M | 120

MMU.INFO Translation information related to an address

Format: MMU.INFO.<sub_cmd> <address>

<sub_cmd>: create | scanSTART | scanRESUME | scanSTOP

Displays all translation information related to a physical address. If the address is a logical address,
TRACE32 first translates it into a physical address. The information contains:

. All cache lines that cache the physical address, including both instruction and data cache.
J All TLB entries that contain translation rules for the physical address.
J All mmu entries that contain translation rules for the physical address (or all pages mapped to the
given physical address), including both the task and kernel MMU entries.
135 BsMMU.INFO P:0x0:0x80017150 =N (=R <"
| P Scan Start” M Resume” M Scan Smp” £ Symboal || 15t Icache || 13" DCache ||§§§jDum|J Lug”:}j}jDump Phy|
Address Togical [physical
P:0000: 80017150 | AP:80017150
ICache set way | v d 1 00 04 08 0C 10 14 18 1C
008a | 00 | Vv - E12FFF1E E3BOC001 E4903004 14813004 12522004 1AFFFFFE E1B00002 11A0000C
ITLB | logical |physical lasid | glb |[idx | pagesize | v 1 | attributes
[C:0000:80017000--80017FFF | A:80017000--GO017FFF | ["gTh | 07 | 00001000 | V - | I:write-through
TLBEO | logical |physical |lasid | glb |[idx | pagesize | v 1 | attributes
[C:0000:80017000--80017FFF | A:B80017000--80017FFF | ["gTh | 2E | 00001000 | V - | I:write-through
MU found: 0 (completed)
index | mmu__ | logical | physical | d | size | permissions
4 m 13
Description of Toolbar Buttons in the MMU.INFO.<sub_cmd> Window
create Views all translation information related to an address.
scanSTART Starts a scan in all MMU page tables for entries that contain translation
rules for the physical address.
scanRESUME Resumes the scan stopped with scanSTOP.
scanSTOP Stops the scan.
See also
B MMU B MMU.view B sYmbol.INFO

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideM | 121

MMU.INFO.TaskPageTable

Translation information related to an address

Format: MMU.INFO.TaskPageTable <address> <task>

<task>: <task_magic> | <task_id> | <task_name>

displays all translation information related to a give address and task page table.

T B:MMULINFO. TaskPageTable "sieve" (x 10000

(o] 8)

2 symbol| 5 1cache | Dcachel| 2 bump Loa|| 4 Dump Phy| o* Scan start| & Scan Resume || &* Scan Stop

Target Address Togical | physical
| C:00EB: 00010000 | A:B0042000

MU found: 6 (completed)
index |page table | logical addr | mmu_page Tlogical hysical
(W] efault N:0000:CO042000 N: 0000 :COo000000--CO0FFFFF AN :B0000000--800FF
000l Non-Secure N:0000: 00010000 N:0000:00010000--00010FFF AN:B0042000--80042
0002 Non-Secure N:0000:CO042000 N: 0000 :CO000000--CO0FFFFF AN:B0000000--800FF
0003 kernel C:0000:CO042000 C:0000:CO000000--CO0OFFFFF A:80000000--800FF
0004 task Ox00EB C:00EB : 00010000 C :00EB : 00010000--00010FFF A:B0042000--80042
0005 task Ox0O0EB C:00EB :CO042000 C :00EB : CO000000--CO0FFFFF A:B0000000--800FF
< >

<task_magic>, etc.
(general_ref_t.pdf).

See also “What to know about the Task Parameters”

©1989-2024 Lauterbach

General Commands Reference Guide M

122

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
[/<option>]
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>
<option>: <cpu_specific_options>

Lists the address translation of the CPU-specific MMU table.

. If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<cpu_specific>
tables and options

Many command arguments are target processor specific. For details, see
Processor Architecture Manuals [A] listed in the See also block below.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

<root> The <root> argument can be used to specify a page table base address

deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

©1989-2024 Lauterbach

General Commands Reference Guide M | 123

<task_name> |
<space_id>:0x0

PageTable Lists the entries of an MMU translation table.
. if <range> or <address> have a space ID and/or machine ID: list
the translation table of the specified process and/or machine
. else, this command lists the table the CPU currently uses for MMU
translation.
TaskPageTable Lists the MMU translation of given process. Specify one of the
<task_magic> | TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU

translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.
See also
m MMU B MMU.view

A ’Release Information’ in’Legacy Release History’

MMU.MemAnalysis

Analyze page tables

Format:

<sub_cmd>:

MMU.MemAnalysis <sub_cmd>

START

SAVE <export_file_name> <import_file_name>
SET MaxBlocksize <value>

SET mergeLevel <value>

AddMask <address_range>

ClearMasks

The MMU.MemAnalysis feature helps in the process of saving an image of a target’s physical memory
content to binary files so that it can later be restored in a TRACE32 simulator.

Saving the complete physical memory can take a very long time, so MMU.MemAnalysis helps by analyzing
MMU page table data, finally creating a custom PRACTICE export script containing Data.SAVE.Binary
commands which save only the physical address ranges that are referred to by page table entries. Unused
memory will not be saved. Further, a PRACTICE import script will be written too which can be used to
quickly import the saved binary data files in a TRACE32 simulator.

©1989-2024 Lauterbach

General Commands Reference Guide M | 124

START

SAVE
<export_script>
<import_script>

SET MaxBlocksize
<max>

SET mergeLevel
<level>

Clear internal MemAnalysis database and start a new collection of page
table entries for analysis. After MMU.MemAnalysis.START Enable option
/ANALYZE in

commands MMU.SCAN and MMU.SCAN.ALL (the latter is only available
for ARM and PowerPC debuggers).

Analyze all saved page table entries, apply the filters, merge neighboring
physical address ranges and write the resulting PRACTICE
<export_script> and <import_script>.

1. the <export_script> script can be used to save the physical memory
used by the target to binary files using Data.SAVE.Binary commands.
Execute this script on your target debugger. This script also contains
comments about the page tables containing references to the address
ranges saved.

2. the <import_script> will, when executed on a TRACES32 simulator, load
all binary files saved in step 1. to the simulator memory and recreate the
physical memory content of the original target.

Both scripts can be executed with the DO command. For the export script
is it possible specify a destination path where the binary files shall be
saved to. This path must be enclosed in quotes, see the example below.

Control the analysis of scanned page table entries: ignore page table
entries with a size larger than <max>.

This setting is useful to remove individual page table entries which cover
a large part or all of the total available physical memory. Kernels typically
add such large “memory windows” to the kernel page table so that they

can easily access arbitrary addresses, but such large entries render the
analysis of all other small page table entries useless.

Balance the number of Data.SAVE.Binary commands created in the
export script versus the total amount of data saved.

<level> is a decimal number ranging between 0. and 52. (don't forget the
period after the decimal number).

If the merge level is set to 0., the least possible amount of data is saved.
However, if data is very fractioned among the physical memory, this may
end up in a large number of Data.SAVE.Binary commands in the export
script.

A larger merge level means that neighboring address ranges will be
merged together, reducing the number of Data.SAVE.Binary commands
will needed. The unused data in between them will be saved too,
increasing the total time needed to save the data.

©1989-2024 Lauterbach

General Commands Reference GuideM | 125

AddMask Mask out one or multiple physical address ranges so that they are not
<address_range> saved in the export script.

This is useful if page tables contain mappings of physical addresses
which belong to memory mapped peripheral devices. Debugger access
to such device addresses may cause the target to stall or crash. It is
better to add a mask for the complete physical address range of all
peripherals, so the export script will not save them with
Data.SAVE.Binary commands.

ClearMasks Remove all masks set with AddMask.

The analysis begins with an MMU.MemAnalysis.START command which clears the internal analyis
database and enables the option /ANALYZE for the MMU.SCAN and MMU.SCAN.ALL commands. The
database is filled by executing any combination of MMU.SCAN <page_table>/ANALYZE commands until
all page tables have been scanned. On ARM and PowerPC targets, MMU.SCAN.ALL /ANALYZE can be
used to automatically scan all page tables known to TRACES32. This includes all task page tables of a
running operation system. In case a hypervisor with one or multiple guest operation systems is running on
the target, all page tables of all tasks on all machines will be scanned. Note that an OS Awareness and, for
hypervisors, a Hypervisor Awareness must be loaded to TRACES32.

After the page tables have been scanned into the internal database, address ranges can be excluded from
the analysis using MMU.MemAnalysis.AddMask. Some kernels create single large page table entries in
the kernel page table for easy access to the full physical memory content. To prevent that such very large
address “windows” render the analysis useless, they can be exempt from the analysis using
MMU.MemAnalysis.SET MaxBlocksize.

During the MMU.MemAnalysis.SAVE process, all physical address ranges found in the internal database
are sorted and merged, preserving the information which page tables have contributed to a physical address
range. The export PRACTICE script will contain a list of Data.SAVE.Binary commands along with
informative comments. When executing this script, the target’s physical memory will be saved to files. It is
possible to specify a destination path name, enclosed in quotes, to which the binary files will be saved.

If the used physical address ranges are very fragmented, a large number of binary files may have to be
saved. Using MMU.MemAnalysis.SET mergeLevel <level>, the total amount of data saved can be
balanced versus the number of binary files saved.

NOTE: . To restore a target state in a TRACES32 simulator, at least all used mem-
ory and the register content must be saved on the target and later
restored in the simulator. See STOre <file> Register for more informa-
tion about storing and restoring registers.

. If the kernel uses a single, locked TLB entry instead of a kernel page
table for access to kernel data, MMU.MemAnalysis will not include the
kernel data in the saved address space. In this case, you must add a
Data.SAVE.Binary command for the kernel address manually to the
export script.

©1989-2024 Lauterbach General Commands Reference GuideM | 126

Example:

; Initially, boot your target wait until the kernel has filled the page
tables.

; If necessary, do the TRACE32 MMU configuration with MMU.FORMAT,
TRANSlation.Create and TRANSlation.COMMON

; 1. start the MemAnalysis with MMU.Memanalysis.START

; Now, the /ANALYZE option in the MMU.SCAN.<page table> and MMU.SCANALL
commands are enabled

MMU .MemAnalysis START

; 2. £fi1l1ll the analysis database: scan all page tables you want to include
in the resulting (physical) memory analysis.

9 Either use

MMU.SCAN ALL /ANALYZE

; 1f supported on your target or use a combination of multiple MMU.SCAN
commands such as

; MMU.SCAN EL1PT /ANALYZE

; MMU.SCAN EL2PT /ANALYZE

; MMU.SCAN TaskPageTable 3:::0x123

; 3. 1f necessary, mask out one or multiple (peripheral) physical address
ranges so that they are not saved in the export script

MMU.MemAnalysis AddMask 0x6C000000--0x6CFFFFFFF

MMU.MemAnalysis AddMask 0x6E000000--0x6FFFFFFFF

; 4. 1if necessary, specify a maximum block size for page table entries.
MMU .MemAnalysis SET MaxBlocksize 0x40000000

; 5. control the number of Data.SAVE.BINary commands which are created in
the export script.
MMU.MemAnalysis SET mergeLevel 13.

; 6. export the list of physical address ranges from scanned page tables
to two PRACTICE scripts:
MMU.MemAnalysis SAVE C:\temp\export_memory.cmm C:\temp\import_image.cmm

; 7. 1f you are not satisfied with the resulting export scripts, modify
your settings from steps 3,4 or 5 and finally write new export and import
scripts with step 6.

; 8. finally run your export script on your target debugger.

DO C:\temp\export_memory.cmm

; Optionally you can specify the destination path where the binary files
shall be saved to. This path must be enclosed in quotes.

DO C:\temp\export_memory.cmm "C:\ARM Linux\sim_image"

See also
H MMU B MMU.view

©1989-2024 Lauterbach General Commands Reference GuideM | 127

MMU.SCAN Scan MMU tables (static snapshot)
Format: MMU.SCAN <table>
MMU.SCAN <table> <range> | <address>
MMU.SCAN <table> <range> | <address> <root>
<table>: PageTable [<range> | <address> <address> ...]

<cpu_specific
_tables>:

KernelPageTable

TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]

<cpu_specific_tables>

ITLB | DTLB | TLB (e.g. for MPC860, MIPS, Hexagon)
PTE | BAT (e.g. for MPC8260, MPC750)

TLBO | TLB1 (e.g. for MPC54xx, MPC85xx)
OEMAddressTable

Scans the entries of the specified MMU translation table on the target or scans the translation look-aside
buffer entries (such as ITLB) into the TRACE32-internal static translation list. The result is a snapshot of the
scanned table and does not reflect the fact that the table may be dynamically modified by the target’s OS.

During the scan process of the specified MMU translation table, its translation entries are parsed and added
as static translation entries to the TRACES32-internal static translation list. The TRACES32-internal static
translation list can be displayed with TRANSIation.List.

The MMU.SCAN command obviates the need to manually create the logical to physical address translations
used by the currently running target OS with the TRANSIation.Create command.

As counterpart to MMU.SCAN, the MMU.DUMP command can be used to view the entries of a target MMU
translation table in a window.

<table>

For descriptions of PageTable, KernelPageTable, etc, see MMU.List.

ALL [Clear]

Includes only page tables and not CPU-specific tables like TLB and
others.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

<cpu_specific_
tables>

Many command arguments are target processor specific. For details, refer to
the Processor Architecture Manuals [4] listed in the See also block below.

©1989-2024 Lauterbach

General Commands Reference Guide M | 128

NOTE:

MMU translation tables (page tables) are dynamic structures and are frequently
modified by the OS.

Instead of MMU.SCAN, use TRANSIation.TableWalk ON to enable the
debugger table walk.

This method dynamically parses the page tables on demand for every debugger
address translation. The debugger table walk is faster than repetitive
MMU.SCAN calls and ensures that the debugger address translations
correspond to the current OS address translations.

Examples:
MMU.SCAN TaskPageTable "hello" ; scan the MMU table for the
; process "hello"
MMU.SCAN TaskPageTable 0x12:0x0 ; the process is specified by the
; space ID
See also
H MMU B MMU.view B TRANSIation.Create B TRANSIation.List

B TRANSIation.SCANall

B TRANSIation.TIbAutoScan

A ’Arm Specific Implementations’ in ’Arm Debugger’

A ’Arm Specific Implementations’ in’Armv8 and Armv9 Debugger’

A 'CPU specific MMU commands’ in "MPC5xx/8xx Debugger and Trace’
A ’'Release Information’ in’Legacy Release History’

MMU.Set Set MMU registers or tables
Format 1: MMU.Set [<register_name> [<value>]]
Format 2: MMU.Set <table>
<table>: TLB (e.g. MIPS)
TLBO | TLB1 (e.g. for MPC54xx, MPC85xx)

Sets a physical MMU register or table. Note that this command is not available on all probes.

See also

m MMU

B MMU.view a MMU()

©1989-2024 Lauterbach

General Commands Reference GuideM | 129

MMU.TDUMP Dump task page table
Format: MMU.TDUMP
(is an alias for MMU.DUMP TaskPageTable)
See also
m MMU B MMU.view
MMU.TSCAN Scan task page table
Format: MMU.TSCAN
(is an alias for MMU.SCAN TaskPageTable)
See also
B VMU B MMU.view
MMU.view View MMU registers
Format: MMU.view

Displays all MMU registers (Not available for all probes).

See also

H MMU H MMU.DUMP B MMU.FORMAT H MMU.INFO

B MMU.List B MMU.MemAnalysis B MMU.SCAN B MMU.Set

H MMU.TDUMP B MMU.TSCAN 1 MMU.DEFAULTPT() 1 MMU.FORMAT()
d MMU.INTERMEDIATE() 3 MMU.INTERMEDIATEEX() Q MMU.LINEAR() d MMU.LINEAREX()
1 MMU.LOGICALY() a1 MMU.PHYSICAL() 1 MMU.PHYSICALEX()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference GuideM | 130

MMX

MMX MMX registers (MultiMedia eXtension)

The MMX command group is used to display and modify the MMX (MultiMedia eXtension) registers.

See also

B MMX.Init H MMX.Set B MMX.view J MMX()

A 'Command Groups for Special Registers’ in ’Intel® x86/x64 Debugger’
A 'MMX Function (MultiMedia eXtension)’ in ’‘General Function Reference’
A ’Release Information’ in’Legacy Release History’

MMX.Init Initialize MMX registers

Format: MMX.Init
MMX.RESet (deprecated)

Sets all MMX registers to zero.

See also
B MMX B MMX.view
MMX.Set Modify MMX registers
Format: MMX.Set <register> <value> [/<option>]

Modifies the MMX registers.

<option> For a description of the options, see Register.view.
See also
B MMX B MMX.view

©1989-2024 Lauterbach General Commands Reference GuideM | 131

MMX.view Open MMX register window

Format: MMX.view [/<option>]

Opens an MMX register window.

B:MMX.view [E=0EGH =)

wRO 000000D300000000 o W] o B

wR1 10 o

wR2 o o

wR3 o 0987

wR4 o

wRS 00675432 o

wRE o

wWR7 o C o

wRE o

wRS 10 wCSSF 10

wR10 o

wR11 o CASF o

wR12 o

wR13 o

wR14 10

WR15 0000001000000000 2

<option> For a description of the options, see Register.view.

See also
B MMX B MMX.Init B MMX.Set

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideM | 132

Mode

Mode

Set up the debug mode

Format:

<mode>:

Mode[.<mode>]

switch | Asm | HIl | Mix

The debug mode configures:

. How the source listing is displayed in the List.* windows, e.g. commands List.Mix, List.HII.

J How the debugging commands, mainly Go and Step, behave.

The current debug mode is displayed in the TRACE32 state line, here: debug mode MIX.

=} BuList

=)

[Mstep |[% over |[\AbDiverge| ¢ Return| @up | PGo || 1lBreak || HMode]@ Find:

SF:4000071C
SF:40000720 (2

addr /Tine |code label mnemonic comment
static int #* func9() /* nested local variables #/
327|¢ i _
9 func9: stwu rl,-0x18(r1)
mf1r r0

stw r30,0x10(r1)
stw r3l,0x14)
stw r0,0x1C(r1)

[

B::

[components| [trace ||

Data

H Var || List || PERF H SYStem || other H previous |

SF:40000714 \\diabc\diabc\funco+0x4

I&I

stopped

Asm In assembler mode, the source listing displays the disassembled memory
contents without the source code information. Debugging is done on
assembler level.

Hil In HLL (High-Level Language) mode, the source listing displays only the
source code. Debugging is done whenever possible at source code level.

Mix In mixed mode, the source listing displays both, the disassembled memory
contents and the source code. Debugging is done on assembler level.

switch Toggles between Mix and HIl mode.

See also
B MACHINE.select W List.Asm W List.HIl W List.Mix
0 DEBUGMODE()
©1989-2024 Lauterbach General Commands Reference Guide M | 133

Appendix - <format> Options of MMU.FORMAT

<format> Options for Andes:

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers

STD Standard format defined by the CPU
<format> Options for ARC:

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers

STD Standard format defined by the CPU

©1989-2024 Lauterbach General Commands Reference GuideM | 134

<format> Options for ARM:

<format>

Description

EXTENSION.ALL

Table walk performed exclusively by a TRACE32 extension that

a) was developed by the customer and

b) defines table walk callback functions. MMU.FORMAT EXTENSION can
be used as an alias.

EXTENSION.MMUS-
PACES

Similar to EXTENSION.ALL, but requires SYStem.Option.MMUSPACES
ON. With this format, only the table walk for non-current processes is
performed by the user's TRACES32 extension. All other translation
requests are handled by the built-in table walk function.

LINUX Standard format used by Linux

LINUXSWAP Linux <= 2.6.37 with configured swap space

LINUXSWAP3 Linux >= 2.6.38 with configured swap space

QNX.PLAIN QNX format using the ARM FCSE translation. Use this format only if the
kernel address range starts at a lower addresses than OxFC000000. Other
than format QNX.fcse, page table entries in the range 0x02000000 <= VA
< 0xFC000000 are not hidden, but MMU.List.PageTable shows valid
translations between 0x02000000 and the begin of the kernel address
space which are actually not used by the OS. */

QNX.fcse Standard QNX format using the ARM FCSE translation, assuming a
kernel address range of 0xXFC000000--OxFFFFFFFF. Page table entries
for 0x02000000 <= VA < 0xFC000000 are hidden because these are
neither process nor kernel specific addresses. */

STD Standard format defined by the CPU

SYMBIAN Format used by Symbian

TINY MMU format using a tiny page size of only 1024 bytes

WINCE5 Format used by Windows CE5

WINCE6 Format used by Windows CE6 / EC7 / EC2013

<format> Options for BEYOND:

<format> Description

LINUX Standard format used by Linux
LINUX26 Linux format with physical table pointers
STD Standard format defined by the CPU

©1989-2024 Lauterbach

General Commands Reference GuideM | 135

<format> Options for Hexagon QDSP6:

<format> Description

BLAST QURT Page Table format

EXTENSION Table walk performed by a TRACES32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

L4 L4 Page Table format

QURTV2 QuRT Page Table version 2

TLB Reads TLB entries to translate logical addresses.

VTLB QuRT VTLB. This is a virtual TLB in memory.
If SYStem.Option.MMUSPACES is set to ON, the TRACE32 space ID of
an address represents the ASID. During debugger address translation,
TRACE32 matches the address and the ASID of VTLB entries. VTLB
entries with ASID 0 or the global bit set will match any space ID.
With SYStem.Option.MMUSPACES set to OFF (default), ASIDs will be
ignored completely during the translation.

<format> Options for MicroBlaze:

<format> Description

LINUX Standard format used by Linux
LINUX26 Linux format with physical table pointers
STD Standard format defined by the CPU

©1989-2024 Lauterbach

General Commands Reference GuideM | 136

<format> Options for MIPS:

<format> Description

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX32 Linux 32-bit, page size 4kB

LINUX32P16 Linux 32-bit, page size 16kB

LINUX32P16R2

Linux 32-bit, page size 16kB, used on MIPS32 R2 or R6 (internally
identical to format LINUX32P16R41)

LINUX32P16R2

Deprecated: internally identical to format LINUX32P16R41

LINUX32R4K Linux 32-bit, page size 4kB, like LINUX32 but different page flags
LINUX32RIXI Linux 32-bit with RI/XI bits
LINUX64 Linux 64-bit with 64-bit PTEs, page size 4kB. Separate page table for high

address range can be specified with optional extra parameter
<base_address_highrange> (For details, see MMU.FORMAT in
debugger_mips.pdf).

LINUX64HTLB

Linux 64-bit with 64-bit PTEs, page size 4kB for huge TLB. Uses separate
sub table for addresses > OxFFFFFFFFC0000000.

LINUX64HTLBP16

Linux 64-bit like LINUX64HTLB but pag esize 16kB.

LINUX64P16

Linux 64-bit with 64-bit PTEs, page size 16kB. Depth 3 levels.

LINUX64P64

Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 3 levels.

LINUX64P64LT

Linux 64-bit with 64-bit PTEs, page size 64kB. Depth 2 levels with large
level 1 table (used for BROADCOM(R) XLP SDK 3.7.10 and alike)

LINUX64RIXI Linux 64-bit with 64-bit PTEs with RI/XI bits, page size 4kB. Separate
page table for high address range can be specified with optional extra
parameter <base_address_highrange> (For details, see MMU.FORMAT in
debugger_mips.pdf).

LINUXBIG Linux 32-bit with 64-bit PTEs on MIPS32

LINUXBIG64 Linux 32-bit with 64-bit PTEs on MIPS64

STD Standard format defined by the CPU

WINCE6 Format used by Windows CE6

©1989-2024 Lauterbach

General Commands Reference Guide M | 137

<format> Options for Motorola 68000:

<format> Description
LINUX Standard format used by Linux
STD Standard format defined by the CPU

<format> Options for NIOS:

<format> Description

LINUX Standard format used by Linux
LINUX26 Linux format with physical table pointers
STD Standard format defined by the CPU

©1989-2024 Lauterbach General Commands Reference GuideM | 138

<format> Options for PowerPC:

<format> Description
DEOS DEOS OS (32 bit) specific MMU format
DEOS64 DEOS OS (64 bit) specific MMU format
EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.
LINUX Standard format used by Linux
LINUX26 Linux format with physical table pointers
LINUX64_EG6 Use LINUX64_E6 for e6500 core devices
LINUXES Linux with 64-bit PTEs, e500 core
LINUXEXT Linux with 64-bit PTEs, no €500 core
LYNXOS LynxOS format, virtual table pointers
LYNXOSPHYS LynxOS format, physical table pointers
OSE OSE format for load modules
PIKEOS.E500 PIKEOS specific format for PowerPC €500 core (formerly named

PIKEOSES).Works for PikeOS 4.1 and older. For €500 cores with PikeOS

4.2 and newer use E500MC format.*/

PIKEOS.E500MC

PIKEOS specific format for PowerPC e500mc core (PPC64 only).Can also

be used with PikeOS 4.2 and newer on PPC32 e500 cores.*/

PIKEOS.E500MC4G

PIKEOS specific format for PowerPC e500mc core addressing 4GB of
memory.Has no common address range.*/

PIKEOS.E5500

PIKEOS specific format for PowerPC €5500 core

PIKEOS.OEA PIKEOS specific format for PowerPC core (formerly named PIKEOS) */
QNX QNX standard format

QNXBIG QNX format with 64-bit table entries

STD Standard format defined by the CPU

VX653 MMU format for VXWORKS 653

VXWORKS.E500

VxWorks specific format for PowerPC €500 core

VXWORKS.E500MC

VxWorks specific format for PowerPC e500mc core with 36 bit physical
addresses (PPC64 only)

VXWORKS.E500_64

VxWorks specific format for PowerPC €500 core (PPC64 only)

VXWORKS.E6500

VxWorks specific format for PowerPC e6500 core

©1989-2024 Lauterbach

General Commands Reference Guide M |

139

<format> Options for RISC-V:

<format> Description
EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.
STD Automatic detection of the page table format from the SATP register.
SV32 32-bit page table format (for SV32 targets only)
SV32X4 Stage 2 (G-stage) 32-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
SV39 39-bit page table format (for SV64 targets only)
SV39X4 Stage 2 (G-stage) 39-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
Sv48 48-bit page table format (for SV64 targets only)
sSv4s8Xx4 Stage 2 (G-stage) 48-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.
SV57 57-bit page table format (for SV64 targets only)
SV57X4 Stage 2 (G-stage) 57-bit page table format for page tables translating
intermediate physical addresses. Not applicable to other page tables.

<format> Options for SH4:

<format> Description

LINUX Standard format used by Linux

LINUX26 Linux format with physical table pointers

LINUXEXTP64 Linux with extended TLBs (3 page table levels, 64-bit PTESs)
QNX QNX standard format

STD Standard format defined by the CPU

WINCE6 Format used by Windows CE6

©1989-2024 Lauterbach

General Commands Reference Guide M |

140

<format> Options for x86:

<format> Description

EPT Extended page table format (type autodetected)

EPT4L Extended page table format (4-level page table)

EPT5L Extended page table format (5-level page table)

EXTENSION Table walk performed by a TRACE32 extension that
a) was developed by the customer and
b) defines table walk callback functions.

LINUX64 PAEG4 derivative with different level 1 translation table entries for
addresses >0xFFFF800000000000

P32 32-bit format with 2 page table levels

PAE Format with 3 page table levels

PAE64 64-bit format with 4 page table levels

PAE64L5 64-bit format with 5 page table levels

STD Automatic detection of the page table format used by the CPU

<format> Options for XTENSA:

<format> Description

LINUX Standard format used by Linux
LINUX26 Linux format with physical table pointers
STD Standard format defined by the CPU

©1989-2024 Lauterbach

General Commands Reference Guide M

141

	General Commands Reference Guide M
	History
	MACHINE
	MACHINE.select Display context of specified virtual machine

	MAP
	MAP Mapping memory attributes
	Overview MAP
	Mapping the EPROM Simulator for BDM/ROM

	MAP.ADelay Set analyzer delay
	MAP.BE Define big endian area
	MAP.BOnchip Use on-chip breakpoints
	MAP.BUS<x> Read/write data in specified access width
	MAP.BUS8 Bus width mapping
	MAP.BUS16 Bus width mapping
	MAP.BUS24 Bus width mapping
	MAP.BUS32 Bus width mapping
	MAP.BUS3264 Bus width mapping
	MAP.BUS64 Bus width mapping
	MAP.BYTE Set EPROM width
	MAP.CacheInhibit CTS cache simulation
	MAP.COMSTART Offset for ROM monitor
	MAP.CONST Mapped address range contains constants
	MAP.DenyAccess Deny memory access by TRACE32
	MAP.DenyBurst Deny burst access to memory by TRACE32
	MAP.DMUX Define DRAM area
	MAP.FRAG Form fragment
	MAP.GAP Define gap
	MAP.InitVar CTS initial variable mapping
	MAP.LE Define little endian area
	MAP.List List allocation
	MAP.MONITOR MONITOR address range
	MAP.NoBE Switch off big endian
	MAP.NoBOnchip Use on-chip breakpoints
	MAP.NoCacheInhibit CTS cache simulation
	MAP.NoCONST Undo MAP.CONST settings
	MAP.NoDenyAccess Switch off deny access for TRACE32
	MAP.NoDenyBurst Undo MAP.DENYBURST settings
	MAP.NoDMUX Undo MAP.DMUX settings
	MAP.NOFRAG Switch off fragmentation
	MAP.NOGAP Switch off gap
	MAP.NoInitVar CTS initial variable mapping
	MAP.NoLE Switch off little endian
	MAP.NoOPFetch Switch off opfetch area mapping
	MAP.NOPAGE Undefine pages
	MAP.NOROM Unmap ESI
	MAP.NOSWAP Keep byte order
	MAP.NoUpdateOnce Undo MAP.UpdateOnce settings
	MAP.NoVMREAD Undo MAP.VMREAD settings
	MAP.NoVOLATILE Undo MAP.VOLATILE settings
	MAP.OPFetch Opfetch area mapping
	MAP.PAGE Define pages
	MAP.RESet Reset
	MAP.ROM Map ESI
	MAP.state State
	MAP.SWAP Change byte order
	MAP.UpdateOnce Read memory only once each time CPU stops
	MAP.VMREAD Redirect memory reads to TRACE32 virtual memory
	MAP.VOLATILE Mapped address range is volatile
	MAP.WORD Set EPROM width

	MCDS
	MCDS Multicore debug solution
	Overview
	Classic vs Modern Commands
	Further Documentation

	MCDS.BusTrace.Agents Set bus trace agents
	MCDS.BusTrace.Mode Set bus trace mode
	MCDS.CLEAR Clear programming and initialize MCDS registers
	MCDS.CLOCK Configure MCDS clock system
	MCDS.CLOCK.DEPRECATED Deprecated MCDS clock programming
	MCDS.CLOCK.EXTern Set the external clock frequency
	MCDS.CLOCK.Frequency Specify MCDS-related frequencies by commands
	MCDS.CLOCK.Frequency.McdsClock Specify the MCDS clock
	MCDS.CLOCK.Frequency.ReferenceClock Specify the reference clock
	MCDS.CLOCK.MCDSDIV Set divider for generating the MCDS clock
	MCDS.CLOCK.REFDIV Set divider for generating the reference clock
	MCDS.CLOCK.REFerence Select the reference clock source
	MCDS.CLOCK.SYStem Set the system clock frequency
	MCDS.CLOCK.TIMER Setup timer for periodic trigger event
	MCDS.CLOCK.TimeStamp Force decoding of timestamp messages
	MCDS.DataTrace.Agents Set data trace agents
	MCDS.DataTrace.Mode Set data trace mode
	MCDS.INFO Information on MCDS and usage
	MCDS.Init Initialize MCDS registers
	MCDS.OFF Disable MCDS programming
	MCDS.ON Enable MCDS programming
	MCDS.Option Control MCDS feature behavior
	MCDS.Option.CoreBreak Break when BREANK_OUT becomes active
	MCDS.Option.DataAssign Data assignment in trace listing
	MCDS.Option.eXception Exception identification in trace decoder
	MCDS.Option.FlowControl Configure AGBT fifo overflow control
	MCDS.Option.QuickOFF Disable trace recording by hardware
	MCDS.Option.RESetBehavior Configure Onchip behavior after chip reset
	MCDS.PERipheralTrace Control peripheral trace
	MCDS.PortSIZE Set number of used Aurora lanes
	MCDS.PortSPEED Set Aurora lane speed
	MCDS.ProgramTrace.Agents Set program trace agents
	MCDS.ProgramTrace.Mode Set program trace mode
	MCDS.Register Open window with MCDS registers
	MCDS.RESet Reset the MCDS unit in the debug tool
	MCDS.RM MCDS resource management commands
	MCDS.RM.ReSTore Restore MCDS registers
	MCDS.RM.WriteTarget Flush MCDS register cache
	MCDS.SessionKEY Provide MCDS session key
	MCDS.Set Program MCDS on hardware level
	MCDS.SOURCE Set MCDS trace sources
	MCDS.SOURCE.ALL Enable all MCDS trace sources
	MCDS.SOURCE.DEFault Set default MCDS trace sources
	MCDS.SOURCE.NONE Disable all MCDS trace sources
	MCDS.SOURCE.Set Set individual MCDS trace sources
	MCDS.state Display MCDS configuration window
	Modern
	Classic

	MCDS.TImeMode Configure MCDS timestamp creation and processing
	MCDS.TraceAgents.CLEAR Clear all trace agents
	MCDS.TraceBuffer Configure MCDS trace buffer
	MCDS.TraceBuffer.ARRAY Select MCDS trace buffer array
	MCDS.TraceBuffer.DETECT Auto-detect MCDS trace buffer configuration
	MCDS.TraceBuffer.LowerGAP Set MCDS trace buffer lower gap
	MCDS.TraceBuffer.NoStealing Prevent conflicts with third-party tools
	MCDS.TraceBuffer.SIZE Set MCDS trace buffer size
	MCDS.TraceBuffer.state Show trace buffer state window
	MCDS.TraceBuffer.UpperGAP Set MCDS trace buffer upper gap
	MCDSBase<trace> Non-optimized MCDS trace processing
	MCDSDCA<trace> MCDS trace processing with data cycle assignment
	MCDSDDTU<trace> MCDS trace processing with DDTU reordering

	MIPS
	MIPS Number of instructions per second
	Overview MIPS
	MIPS.List List the MIPS trace data
	MIPS.ListNesting Show program nesting
	MIPS.PROfileChart Profile charts for MIPS
	MIPS.PROfileChart.AddressGROUP MIPS profile chart for address groups
	MIPS.PROfileChart.ALL MIPS profile chart for program run
	MIPS.PROfileChart.DatasYmbol MIPS profile chart for pointer
	MIPS.PROfileChart.DistriB MIPS profile chart for distributions
	MIPS.PROfileChart.GROUP MIPS profile chart for groups
	MIPS.PROfileChart.Line MIPS per high-level language line graphically
	MIPS.PROfileChart.MODULE MIPS profile chart for modules
	MIPS.PROfileChart.PROGRAM MIPS profile chart for programs
	MIPS.PROfileChart.RWINST MIPS per cycle type graphically
	MIPS.PROfileChart.sYmbol MIPS for all program symbols graphically
	MIPS.PROfileChart.TASK MIPS per task graphically
	MIPS.PROfileChart.TASKINFO MIPS for data trace via context ID
	MIPS.PROfileChart.TASKINTR MIPS profile chart for ISR2 (ORTI)
	MIPS.PROfileChart.TASKKernel MIPS profile chart with kernel marker
	MIPS.PROfileChart.TASKORINTERRUPT MIPS graph per task/interrupt
	MIPS.PROfileChart.TASKSRV MIPS profile chart for OS service routines
	MIPS.PROfileChart.TASKVSINTR MIPS chart for task-related interrupts
	MIPS.PROfileSTATistic Profile statistics for MIPS
	MIPS.PROfileSTATistic.Address MIPS per address as profile statistic
	MIPS.PROfileSTATistic.AddressGROUP MIPS per address group
	MIPS.PROfileSTATistic.ALL MIPS profile statistic for program run
	MIPS.PROfileSTATistic.DatasYmbol MIPS profile statistic for pointer
	MIPS.PROfileSTATistic.DistriB Distribution statistical analysis
	MIPS.PROfileSTATistic.GROUP MIPS per GROUP as profile statistic
	MIPS.PROfileSTATistic.INTERRUPT MIPS per interrupt as table
	MIPS.PROfileSTATistic.Line MIPS per high-level language line as table
	MIPS.PROfileSTATistic.MODULE MIPS per module as profile statistic
	MIPS.PROfileSTATistic.PROGRAM MIPS per program as profile statistic
	MIPS.PROfileSTATistic.RUNNABLE MIPS per runnable as table
	MIPS.PROfileSTATistic.RWINST MIPS per cycle type as table
	MIPS.PROfileSTATistic.sYmbol MIPS for all program symbols as table
	MIPS.PROfileSTATistic.TASK MIPS per task as table
	MIPS.PROfileSTATistic.TASKINFO MIPS for data trace via context ID
	MIPS.PROfileSTATistic.TASKINTR MIPS per ISR2 (ORTI) as table
	MIPS.PROfileSTATistic.TASKKernel MIPS per task as table
	MIPS.PROfileSTATistic.TASKORINTERRUPT MIPS per task as table
	MIPS.PROfileSTATistic.TASKSRV MIPS per OS service routine as table
	MIPS.STATistic Statistical analysis for MIPS
	MIPS.STATistic.ALL MIPS for the program run
	MIPS.STATistic.ChildTREE MIPS for the callee context of a function
	MIPS.STATistic.DistriB MIPS distribution analysis
	MIPS.STATistic.Func MIPS for functions numerically
	MIPS.STATistic.GROUP MIPS statistic for groups
	MIPS.STATistic.LINKage Per caller MIPS statistic of function
	MIPS.STATistic.MODULE MIPS for modules numerically
	MIPS.STATistic.ParentTREE MIPS statistic for call context of a function
	MIPS.STATistic.PROGRAM MIPS for programs numerically
	MIPS.STATistic.RWINST MIPS per cycle type numerically
	MIPS.STATistic.sYmbol MIPS for all program symbols numerically
	MIPS.STATistic.TASK MIPS per task numerically
	MIPS.STATistic.TASKINFO MIPS for data trace via context ID
	MIPS.STATistic.TASKINTR MIPS per ISR2 numerically
	MIPS.STATistic.TASKKernel MIPS task analysis with kernel markers
	MIPS.STATistic.TASKSRV MIPS per OS service routine numerically
	MIPS.STATistic.TREE Tree display of nesting functions with MIPS

	MMU
	MMU Memory management unit
	Overview MMU
	MMU.DUMP Dump MMU tables
	MMU.FORMAT Define MMU table structure
	MMU.INFO Translation information related to an address
	MMU.INFO.TaskPageTable Translation information related to an address
	MMU.List Compact display of MMU translation table
	MMU.MemAnalysis Analyze page tables
	MMU.SCAN Scan MMU tables (static snapshot)
	MMU.Set Set MMU registers or tables
	MMU.TDUMP Dump task page table
	MMU.TSCAN Scan task page table
	MMU.view View MMU registers

	MMX
	MMX MMX registers (MultiMedia eXtension)
	MMX.Init Initialize MMX registers
	MMX.Set Modify MMX registers
	MMX.view Open MMX register window

	Mode
	Mode Set up the debug mode

	Appendix - <format> Options of MMU.FORMAT

