LAUTERBACH A

General Commands Reference
Guide D

General Commands Reference Guide D

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIde Dcoococcomimrirsmeresssscerres e s ssssssmms s sssssmmssssssssmmsseeas 1
L 1= (o 8

D - | - 9
Data Memory access 9
Overview Data 9
Memory Access by the TRACE32 Debugger 9
Access Procedures 9
Keywords for <format> 10
Keywords for <width> 11
Functions 12
Data.AllocList Static memory allocation analysis 13
Data.Assemble Built-in assembler 18
Data.ATTACH Attach data sequence 20
Data.ATTACH.CONDition Define attach condition 21
Data.ATTACH.CORE Select core for attach sequence 21
Data.ATTACH.OFF Switch attach sequence off 22
Data.ATTACH.ON Switch attach sequence on 22
Data.ATTACH.RESet Reset attach data sequence 22
Data.ATTACH.SELect Increment the index number to the next sequence 23
Data.ATTACH.SEQuence Define attach data sequence 24
Data.ATTACH.state Attach data state display 24
Data.BDTAB Display buffer descriptor table 25
Data.BENCHMARK Determine cache/memory bandwidth 26
Data.CHAIN Display linked list 30
Data.CHAINFind Search in linked list 33
Data.CLEARVM Clear the TRACE32 virtual memory (VM:) 34
Data.ComPare Compare memory 35
Data.COPY Copy memory 37
Data.CSA Display linked list of CSA entries 39
Data.DRAW Graphical memory display of arrays 40
Data.DRAWFFT Graphical display of fast fourier transformation 44
Data.DRAWXY Graphical display of xy-graphs 47
©1989-2024 Lauterbach General Commands Reference Guide D 2

Data.dump

Format Options

Standard Options

Advanced Options
Data.EPILOG
Data.EPILOG.CONDition
Data.EPILOG.CORE
Data.EPILOG.OFF
Data.EPILOG.ON
Data.EPILOG.RESet
Data.EPILOG.SELect
Data.EPILOG.SEQuence
Data.EPILOG.state
Data.EPILOG.TARGET
Data.Find
Data.FindCODE
Data.GOTO
Data.GREP
Data.IMAGE
Data.In
Data.LOAD

Memory dump

Automatic data modification on program execution halt
Define condition for data epilog

Select core for data epilog

Switch data epilog off

Switch data epilog on

Reset all data epilogs

Increment the index number to the next data epilog
Define epilog sequence

Display data epilogs

Define epilog target call

Search in memory

Execute command on specified code type

Specify reference address for address tracking
Search for string

Display image data

Read port

Load file

Alphabetic List of Generic Load Options

Details on Generic Load Options

Format Specific Data.LOAD Commands and Options

Data.LOAD.AIF
Data.LOAD.AOUT
Data.LOAD.ASAP2
Data.LOAD.Ascii
Data.LOAD.AsciiDump
Data.LOAD.AsciiHex
Data.LOAD.AsciiOct
Data.LOAD.AVocet
Data.LOAD.BDX
Data.LOAD.Binary
Data.LOAD.BounD
Data.LOAD.CCSDAT
Data.LOAD.CDB
Data.LOAD.COFF
Data.LOAD.ColonHex
Data.LOAD.COMFOR
Data.LOAD.CORE
Data.LOAD.COSMIC
Data.LOAD.CrashDump

Load Arm image file

Load a.out file

Load ASAP?2 file

Load ASCII file

Load ASCII file generated from Data.dump window
Load hex file

Load octal file

Load AVOCET file

Load BDX file

Load binary file

Load BOUND file

Load CCSDAT file

Load SDCC CDB file format

Load COFF file

Load colon hex file

Load COMFOR (TEKTRONIX) file
Load Linux core dump file

Load COSMIC file

Load MS Windows Crash Dump file

50
52
53
60
62
63
64
64
65
65
66
67
68
69
70
72
73
75
76
80
81
82
87
95
95
96
96
97
97
98
98
99
99
100
103
103
104
106
107
108
109
109
110

©1989-2024 Lauterbach

General Commands Reference Guide D

Data.LOAD.DAB
Data.LOAD.DBX
Data.LOAD.EIf
Data.LOAD.ESTFB
Data.LOAD.eXe
Data.LOAD.FIASCO
Data.LOAD.HiCross
Data.LOAD.HiTech
Data.LOAD.HP
Data.LOAD.ICoff
Data.LOAD.leee
Data.LOAD.IntelHex
Data.LOAD.LDR
Data.LOAD.MachO
Data.LOAD.MAP
Data.LOAD.MCDS
Data.LOAD.MCoff
Data.LOAD.OAT
Data.LOAD.Omf
Data.LOAD.Omf2

Data.LOAD.OriginHex

Data.LOAD.PureHex
Data.LOAD.REAL
Data.LOAD.ROF
Limitations
Data.LOAD.S1record
Data.LOAD.S2record
Data.LOAD.S3record
Data.LOAD.S4record
Data.LOAD.SAUF
Data.LOAD.SDS
Data.LOAD.SPARSE
Data.LOAD.sYm
Data.LOAD.SysRof
Data.LOAD.TEK
Data.LOAD.TekHex
Data.LOAD.Ubrof

Data.LOAD.VersaDos

Data.LOAD.XCoff
Data.MSYS
Data.Out
Data.PATTERN
Data.Print

Load DAB file

Load a.out file

Load ELF file

Load EST flat binary
Load EXE file

Load FIASCO BB-5 file
Load HICROSS file
Load HITECH file
Load HP-64000 file
Load ICOFF file
Load IEEE-695 file
Load INTEL-HEX file
Load META-LDR file
Load 'Mach-O' file
Load MAP file

Load MCDS file
Load MCOFF file
Load OAT file

Load OMF file

Load OMF-251 files
Load special hex files
Load hex-byte file
Load R.E.A.L. file
Load OS-9 file

Load S1-Record file

Load S2-Record file

Load S3-Record file

Load S4-Record file

Load SAUF file

Load SDSiI file

Load SPARSE file

Load symbol file

Load RENESAS SYSROF file
Load TEKTRONIX file

Load TEKTRONIX HEX file
Load UBROF file

Load VERSADOS file

Load XCOFF file
M-SYSTEMS FLASHDISK support
Write port

Fill memory with pattern
Display multiple areas

111
112
113
125
125
127
127
128
129
130
131
133
133
134
136
137
137
138
139
142
142
143
143
144
144
145
146
146
147
147
148
148
149
150
151
151
152
153
153
154
154
155
158

©1989-2024 Lauterbach

General Commands Reference Guide D

Data.PROfile
Data.PROGRAM
Data.PROLOG
Data.PROLOG.CONDition
Data.PROLOG.CORE
Data.PROLOG.OFF
Data.PROLOG.ON
Data.PROLOG.RESet
Data.PROLOG.SELect
Data.PROLOG.SEQuence
Data.PROLOG.state
Data.PROLOG.TARGET
Data.REF
Data.ReProgram
Data.ReRoute
Data.SAVE.<format>
Data.SAVE.Ascii
Data.SAVE.AsciiHex
Data.SAVE.AsciiOct
Data.SAVE.BDX
Data.SAVE.Binary
Data.SAVE.CCSDAT
Data.SAVE.DAB
Data.SAVE.EIf
Data.SAVE.ESTFB
Data.SAVE.IntelHex
Data.SAVE.Omf
Data.SAVE.PureHex
Data.SAVE.S1record
Data.SAVE.S2record
Data.SAVE.S3record
Data.SAVE.S4record
Data.Set
Data.SOFTEPILOG

Data.SOFTEPILOG.CONDition

Data.SOFTEPILOG.CORE
Data.SOFTEPILOG.OFF
Data.SOFTEPILOG.ON
Data.SOFTEPILOG.RESet
Data.SOFTEPILOG.SELect

Data.SOFTEPILOG.SEQuence

Data.SOFTEPILOG.state
Data.SOFTPROLOG

Graphical display of data value

Editor for writing assembler program
Automatic data modification on program execution start
Define PROLOG condition

Select core for data prolog

Switch data prolog off

Switch data prolog on

Reset all data prologs

Increment the index number to the next data prolog
Define prolog sequence

Display data prologs

Define PROLOG target call

Display current values

Assemble instructions into memory

Reroute function call

Save data in file with specified format

Save ASCII file

Save hex file

Save octal file

Save BDX file

Save binary file

Save CCSDAT file

Save DAB file

Save ELF file

Save EST flat binary file

Save INTEL-HEX file

Save OMF file

Save pure HEX file

Save S1-record file

Save S2-record file

Save S3-record file

Save S4-record file

Modify memory

Automated sequence after setting software breakp.
Define condition for data softepilog

Select core for data softepilog

Switch data softepilog off

Switch data softepilog on

Reset all data softepilogs

Increment the index number to the next epilog
Define softepilog sequence

Display data softepilogs

Automated sequence before setting software breakp.

161
163
164
165
166
166
167
167
168
169
170
171
172
173
173
174
176
176
178
179
179
180
180
181
181
182
182
183
184
186
186
187
188
191
192
192
193
193
193
193
194
194
195

©1989-2024 Lauterbach

General Commands Reference Guide D

Data.SOFTPROLOG.CONDition

Data.SOFTPROLOG.CORE
Data.SOFTPROLOG.OFF
Data.SOFTPROLOG.ON
Data.SOFTPROLOG.RESet
Data.SOFTPROLOG.SELect

Data.SOFTPROLOG.SEQuence

Data.SOFTPROLOG.state
Data.STANDBY
Data.STANDBY.CONDition
Data.STANDBY.CORE
Data.STANDBY.OFF
Data.STANDBY.ON
Data.STANDBY.RESet
Data.STANDBY.SELect
Data.STANDBY.SEQuence
Data.STANDBY .state
Data.STARTUP
Data.STARTUP.CONDition
Data.STARTUP.CORE
Data.STARTUP.OFF
Data.STARTUP.ON
Data.STARTUP.RESet
Data.STARTUP.SELect
Data.STARTUP.SEQuence
Data.STARTUP.state
Data.STRING

Data.SUM

Data.TABle

Data.TAG

Data.TAGFunc

Data.Test

Data.TestList

Data.TIMER

Data. TIMER.CONDition
Data. TIMER.CORE

Data. TIMER.ERRORSTOP
Data. TIMER.OFF
Data.TIMER.ON

Data. TIMER.RESet

Data. TIMER.SELect

Data. TIMER.SEQuence
Data.TIMER.state

Define condition for data softprolog
Select core for data softprolog
Switch data softprolog off

Switch data softprolog on

Reset all data softprolog

Increment the index number to the next prolog
Define softprolog sequence
Display data softprologs

Standby data-sequences

Define condition

Assign sequence to core

Switch all sequences off

Switch all sequences on

Clear all settings

Increment index number for next sequence
Define sequence

Open configuration window
Startup data sequence

Define startup condition

Select core for startup sequence
Switch startup sequence off
Switch startup data sequence on
Reset startup data sequence
Increment the index number to the next sequence
Define startup data sequence
Startup data state display

ASCII display

Memory checksum

Display arrays

Tag code for analysis

Tag code for analysis

Memory integrity test

Test for memory type

Periodical data sequence

Define timer condition

Select core for timer sequence
Stop data timer on errors

Switch timer off

Switch timer on

Reset timer

Increment the index number to the next sequence
Define timer sequence

Timer state display

196
197
197
197
198
198
198
199
200
202
203
203
204
204
205
206
207
208
209
210
211
211
211
212
213
214
215
215
218
221
221
223
226
227
228
229
230
230
230
231
231
232
233

©1989-2024 Lauterbach

General Commands Reference Guide D

Data. TIMER.TARGET Define timer target call 234

Data.TIMER.Time Define period for timer 234
Data.UNTAGFunc Remove code tags 235
Data.UPDATE Target memory cache update 235
Data.USRACCESS Prepare USR access 236
Data.VECTOR Display memory as vectors 237
Data.View Display memory 239
Data.WRITESTRING Write string to PRACTICE file 241
5 O 242
DCI Direct Connect Interface (DCI) 242
00 T - 243
0 244
DTM DTM trace sources (Data Trace Module) 244
DTM.CLOCK Set core clock frequency for timing measurements 244
DTM.CycleAccurate Cycle accurate tracing 244
DTM.Mode Define DTM mode 244
DTM.OFF Disable DTM 245
DTM.ON Enable DTM 245
DTM.Register Display DTM registers 245
DTM.RESet Reset DTM settings 245
DTM.TracelD Change the default ID for a DTM trace source 246
DTM.TracePriority Define priority of DTM 246
DTM<trace> - Trace Data ANalYSiSccccccccmimiiiimmmnnissenrnnmss s s s samms s 247
DTM<trace> Command groups for DTM<trace> 247
Overview DTM<trace> 247
DTMAnalyzer Analyze DTM information recorded by TRACE32 PowerTrace 248
DTMCAnalyzer Analyze DTM information recorded by CombiProbe 248
DTMHAnalyzer Analyze DTM information captured by the host analyzer 249
DTMLA Analyze DTM information from binary source 249
DTMOnchip Analyze DTM information captured in target onchip memory 250
DTMTrace Method-independent analysis of DTM trace data 250

©1989-2024 Lauterbach General Commands Reference GuideD | 7

General Commands Reference Guide D

History

Version 06-Jun-2024

21-Feb-2023

21-Feb-2023

21-Nov-2022

21-Nov-2022

01-Nov-2022

22-Aug-2022

05-Jul-2022

Removed /TURBOPACK option for Data.LOAD.ROF.

Removed /FASTPACK option for Data.LOAD.AIF, Data.LOAD.COFF, Data.LOAD.DBX,
Data.LOAD.EIf, Data.LOAD.Icoff, Data.LOAD.leee and Data.LOAD.SDS.

New options for Data.LOAD.EIf:
/PREFIX, /RELOCSTRIPPED, /NOLINKAGENAME, /FILTERBYCORE.

Removed /PACK option for Data.LOAD.COFF, Data.LOAD.DBX and Data.LOAD.leee.

New options for Data.LOAD.EIf:
/CODEPROG, /DWOFILES, /DWPFILE, /NOARGCOERCE, /NODEBUG,
/NODEBUGFRAME, /NOEHFRAME, /NODOUBLE and /IgnoreModuleRange.

New option /IgnoreFUNCLines for Data.LOAD.EIf command.

New option /Append for Data.SAVE.IntelHex command.

©1989-2024 Lauterbach General Commands Reference Guide D

8

Data

Data Memory access

Overview Data

Memory Access by the TRACE32 Debugger

TRACE32 debuggers operate on the memory of the target system.

Access Procedures

The following examples show typical memory access commands:

Data.dump 0x1000 ; display a hex dump starting at
; address 0x1000

Data.Set 0x1000 %Byte 0x55 ; write 0x55 as a byte to the
; address 0x1000

Data.LOAD.El1f demo.elf ; load program from file to
; the target memory

An access class can be used to specify memory access details.

Examples:
Data.dump A:0x1000 ; display a hex dump starting at
; address 0x1000, physical access
Data.dump NC:0x1234 ; display a hex dump starting at
; address 0x1234, non-cached access
Data.dump L2:0x1234 ; display a hex dump starting at

; address 0x1234, L2 cache access

©1989-2024 Lauterbach General Commands Reference GuideD | 9

Keywords for <format>

You can display memory in TRACE32 using the following formats. Please note that not all format are
supported by all Data.<sub_cmd> commands. Please refer to the documentation of the single commands

for more information.

[<format>]:

Decimal
DecimalU
Hex

HexS
OCTal
Ascii
Binary
Float

sYmbol

Var

Decimal [.<width> [.<endianness> [.<bitorder>]]]
DecimalU [.<width> [.<endianness> [.<bitorder>]]]
Hex [.<width> [.<endianness> [.<bitorder>]]]
HexS [.<width> [.<endianness> [.<bitorder>]]]
OCTal [.<width> [.<endianness> [.<bitorder>]]]
Ascii [.<width> [.<endianness> [.<bitorder>]]]
Binary [.<width> [.<endianness> [.<bitorder>]]]
Float. [leee | leeeDbl | leeeeXt | leeeMFFP | ...]
sYmbol [.<width> [.<endianness> [.<bitorder>]]]
Var

DUMP [.<width> [.<endianness> [.<bitorder>]]]
Byte [.<endianness> [.<bitorder>]]

Word [.<endianness> [.<bitorder>]]

Long [.<endianness> [.<bitorder>]]

Quad [.<endianness> [.<bitorder>]]

TByte [.<endianness> [.<bitorder>]]

PByte [.<endianness> [.<bitorder>]]

HByte [.<endianness> [.<bitorder>]]

SByte [.<endianness> [.<bitorder>]]

Display the data as decimal number.

Display the data as unsigned decimal number.

Display the data as hexadecimal number.

Display the data as signed hexadecimal number.

Display the data as octal number.

Display the data in an ASCII representation.

Display the data as binary number.

Display the data in a floating point representation.

Display the data as hexadecimal number. The column "symbol" in the
window will show the symbol corresponding to the address to which the
data points (while without sYmbol the column symbol shows the symbol

corresponding to the address containing the data).

Display HLL variables at their memory location (similar to Var.Watch).

©1989-2024 Lauterbach

General Commands Reference GuideD | 10

DUMP

Byte, Word, Long,...

Keywords for <width>

Hexadecimal dump.

See “Keywords for <width>", page 11

In TRACE32, you can access and display memory and register contents by using the following keywords for

<width>:

[<width>]:

Byte
Word
TByte
Long
PByte
HByte
SByte

Quad

Byte
Word
TByte
Long
PByte
HByte
SByte
Quad

8-bit

16-bit

24-bit (tribyte)
32-bit (long word)
40-bit (pentabyte)
48-bit (hexabyte)
56-bit (septuabyte)

64-bit (quad word)

©1989-2024 Lauterbach

General Commands Reference Guide D

11

Functions

The following table lists frequently-used Data.*() functions. For a complete list, see “Data Functions” in
General Function Reference, page 140 (general_func.pdf).

Data.Byte(<address>) Returns memory content of a byte.

Data.Word(<address>) Returns memory content of a word (16-bit).

Reads memory at specified address. Address must be used with
access class.

Data.Long(<address>)

Data.String(<address>) Reads zero-terminated string from memory, the result is a string.

Data.SUM() Gets the checksum of the last executed Data.SUM command.
Examples:

Register.Set PC Data.Long (SD:4) ; set PC to start value

PRINT Data.Byte(SD:flag+4) ; display single byte

&memstring=Data.String(stringl) ; copy and print string

PRINT "&memstring"
Data.Set string2 "&memstring"

Data.SUM 0x0--0x0fffe /Byte
Data.Set 0x0ffff Data.SUM()

fill last byte to build zero
checksum in 64K block

©1989-2024 Lauterbach

General Commands Reference Guide D

12

Data.AllocList Static memory allocation analysis

Format: Data.AllocList [<address>] [/<option> ...]

<option>: Time
Address
Caller
Size
SumCaller
SumSize
Track
Guard <size>

The basic idea of the static memory allocation analysis is the following:

. The user program manages a double linked list that contains all information about the allocated
memory blocks.

J The TRACES2 software offers the command Data.AllocList to analyze this information.

Each element of the double linked list has the following structure:

T32 allocHeader

guard area head

allocated memory block

guard area tail

Each allocated memory block is surrounded by 2 so-called guard areas. The default size of each guard area
is 16 bytes. The option /Guard <size> allows to use a different size for the guard areas.

Each guard area has to be filled with a fixed pattern when the memory block is allocated.

static void SetGuard(unsigned char * guard)
{
int 1i;
for (i = 0; 1 < T32_GUARD_SIZE; i++)
guard[i] = (unsigned char) (i + 1);

©1989-2024 Lauterbach General Commands Reference GuideD | 13

J The user program can check if there were write accesses beyond the upper or lower bound of the
allocated memory block when the memory block is freed and stop the program execution in such
a case.

. The TRACERS2 software can check all blocks for writes beyond the upper or lower bound when
the Data.AllocList window is displayed.

The T32_allocHeader contains information to maintain the double linked list, information about the caller
who requested the memory block and information about the originally requested memory size.

typedef struct T32_allocHeader
{
struct T32_allocHeader * prev;
struct T32_allocHeader * next;
void * caller;
size_t size;
#i1if T32_GUARD_SIZE
unsigned char guard[T32_GUARD_SIZE];
#endif
}
T32_allocHeader;

In order to maintain the double linked list that is required by the TRACES32 software to analyze the static
memory allocation all malloc(size), realloc(ptr,size), free(ptr) calls in the user program have to be
replaced by an extended version.

This can be done in two ways:

1. Within the source files.

#ifdef PATCHING_REQUIRED

#define malloc (size)T32_malloc (size)

#define realloc (ptr,size)T32_realloc (ptr,size)
#define free(ptr)T32_free(ptr)

extern void * T32 _malloc();

extern void * T32_ realloc();

extern void T32 free();

#endif

2. By using the Data.ReRoute command for a binary patch.

Data.ReRoute sYmbol.SECRANGE (.text) malloc T32 malloc \t32mem
Data.ReRoute sYmbol.SECRANGE (.text) realloc T332 _realloc \t32mem
Data.ReRoute sYmbol.SECRANGE (.text) free T32_ free \t32mem

©1989-2024 Lauterbach General Commands Reference GuideD | 14

What does T32_malloc(size) do?

1.

A memory block is allocated. This memory block has the following size:

size of the requested memory block + sizeof(T32_allocHeader) + T32_GUARD_SIZE
The caller of the T32_malloc function is stored in the structure of the type T32_allocHeader.

The size of the requested memory is stored in the structure of the type T32_allocHeader.

Both guard areas are initialized with fixed values, so that the TRACES32 software can later check

if there are any write accesses beyond the block bounds (ERROR HEAD, ERROR TAIL).

The information about the allocated memory block is entered into the double linked list.

' v

previous node

0 / previous node
next node

next node

0

caller

size

guard

T32_FirstNode

Data.AllocList is used.

T32_LastNode

The TRACE32 software assumes that T32_FirstNode is the default symbol for the first element of
the list. If another symbol is used this information has to be provided when the command

Data.AllocList List_ M2 ; List_M2 1is the start of the linked
; list for the command Data.AllocList

©1989-2024 Lauterbach

General Commands Reference Guide D

15

What does T32_free(ptr) do?

1. Both guard areas are checked to detect any write access beyond the block bounds. If such a write
access happened a error handling function is called.

2. The information about the allocated memory block is removed from the double linked list.

A complete example for the implementation of the linked list and for the use of the command Data.AllocList
can be found in ~~/demo/powerpc/etc/malloc. The example can be used with the simulator for the PowerPC

family.
. B:Data.AllocList = =R
1 Goto... | FiFind... Time v OTrack ALLOC ERRORS
address size min max blocks caller |
D:00106338--00106398 100. [ERROR HEAD D:0010004C
D:001063D8--0010649F 200. ERROR TAIL D:0010005C
D:00106640--0010663F 0. D:0010007C
D:001064D8--0010653B 100. D:00100094
D:00106578--001065A9 50. D:00100084
D:00106678--00106683 60. D:00100084
D:001066F0--00106735 70. D:00100084
D:00106770--001067BF 80. D:00100084
D:001067F8--00106851 90. D:00100084
D:00106890--001068F3 100. D:00100084
< >

Description of the Data.AllocList Options

Track The allocated memory blocks are displayed in the order of their entry.

Address The allocated memory blocks are sorted by address.

Caller The allocated memory blocks are sorted by the caller.

Size The allocated memory blocks are sorted by their size.

SumCaller The allocated memory blocks are sorted by the caller and for each caller
the sum of all allocated blocks is displayed.

SumSize The allocated memory blocks are sorted by the caller. The caller who
allocated most memory blocks is on top of the list.

Time (default) Tracks the window to the reference position of other windows.

Guard Defines the size of the guard areas. Default is 16.

©1989-2024 Lauterbach

General Commands Reference Guide D

16

Examples

Data.AllocList /Size ; display a static memory allocation
; sorted by size

Data.AllocList /Guard 20. ; the user program uses a guard area
; of 20 bytes

Data.AllocList List_M2 ; List_M2 is the start of the linked
; list for the command Data.AllocList

See also
0 Data.AL.ERRORS()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 17

Data.Assemble Built-in assembler

Format: Data.Assemble [<address>] <mnemonic> [{<mnemonic>}]

Writes an opcode specified by an assembler instruction <mnemonic>to the memory at <address>.

Entering a specific opcode is facilitated by softkeys indicating the available options (e.g. offsets, registers, ...)
according to the current CPU architecture.

Multiple mnemonics can be specified with a single Data.Assemble command. For improving readability in
scripts you may use a line continuation character

Data.Assemble T:0x20 push lr pop pc ; two commands in one line

Data.Assemble R:0x0 blx 0x21 \
add r6 , r6 , #1\
b 0x0

To quickly modify a code line, use the commands Modify here or Assemble here from the popup menu in
the List window. The commands Data.PROGRAM and Data.ReProgram can be used to enter multiple
instructions or small programs.

; £fill memory-range from 0x0 up to Oxffff with NOP:
Data.Assemble 0x0--0x0ffff nop

insert and assemble am move- command at address 0 next command to next

7

; address:

Data.Assemble 0 move.b d0,dl
Data.Assemble , move.b d3,d4

NOTE: Note the syntax for expressing
. absolute addresses using the plain constant and
J PC-relative offsets using the format $ {+ | -}offset).

(Always one of the +/- sign specifiers must be present!)

Examples:
J 0xFC000000 ; Jump to absolute address 0xFC000000
JLA $-0x10 ; Jump And Link to PC-0x10
JLA $+100 ; Jump And Link to PC+0x100

©1989-2024 Lauterbach General Commands Reference GuideD | 18

NOTE: If there are multiple ISAs for a CPU family (e.g. ArmV4, Arm4T, ARMv7, for the
family of ARM cores), the Data.Assemble command might not check whether
the <mnemonic> is supported by the CPU currently chosen by SYStem.CPU
and the opcode is written regardless.

See also
W Data.dump B Data.PROGRAM

©1989-2024 Lauterbach

General Commands Reference Guide D |

19

Data.ATTACH Attach data sequence

The Data.ATTACH command group allows to define a sequence of Data.Set commands that are executed
when the debugger is activated with SYStem.Mode Attach.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
Data.ATTACH.state window:

¥ B::Data ATTACH state =

attach E CONDition
O OFF | (Data.Byte(D:0x3FAF60)80x80)! =0x80 |

®on SEQuence

SETI 0x3FAF4B 10 1

count

0.
CORE SEL

4y 4D

A For descriptions of the commands in the Data.ATTACH.state window, please refer to the
Data.ATTACH.* commands in this chapter.
Example: For information about ON, see Data.ATTACH.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or
Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set commands> SET,
SETI, GETS, and SETS.

See also
B Data.EPILOG M Data.PROLOG B Data.STARTUP B Data.TIMER

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 20

Data.ATTACH.CONDition Define attach condition

Format: Data.ATTACH.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with Data.ATTACH.SEQuence will be
executed periodically.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

Examples:

; reads the long at address D:0x3faf30, proceeds a binary AND with

; a constant (here Oxffffffff). If the result is equal to 0x80000000 the
; condition is true and the defined sequence is executed.
Data.ATTACH.CONDition (Data.Long (D:0x3faf30)&0xfffff£f£f£f)==0x80000000

; read the word at address D:0x3xfaf30
Data.ATTACH.CONDition (Data.Word(D:0x3faf30)&0xf£00)!=0x8000

; reads the byte at address D:0x3xfaf30
Data.ATTACH.CONDition (Data.Byte(D:0x3faf30)&0xf0) !=0x80

Data.ATTACH.CORE Select core for attach sequence

Format: Data.ATTACH.CORE <core_number>

Selects the core for which you want to define one or more data attach sequences.

Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

©1989-2024 Lauterbach General Commands Reference Guide D | 21

Example: This script shows how to define a data attach sequence that is executed on core 3 of a multicore

chip.

;Select the

Data.ATTACH.

;Define the

Data.ATTACH.
Data.ATTACH.

core for which you want to define a data attach sequence
CORE 3.

data attach sequence for core 3
CONDition <your_code>
SEQuence <your_code>

For information on how to configure two different attach sequences, see Data.ATTACH.SELect.

Data.ATTACH.OFF Switch attach sequence off

Format:

Data.ATTACH.OFF

Switches the Data.ATTACH feature off.

Data.ATTACH.ON

Switch attach sequence on

Format:

Data.ATTACH.ON

Switches the Data.ATTACH feature on.

Data.ATTACH.RESet Reset attach data sequence

Format:

Data.ATTACH.RESet

Switches the Data.ATTACH feature off and clears all settings.

©1989-2024 Lauterbach

General Commands Reference GuideD | 22

Data.ATTACH.SELect Increment the index number to the next sequence

Format: Data.ATTACH.SELect <serial number>

Increments the index number for each new data attach sequence. This is useful, for example, if you need
two separate attach sequences with each sequence having its own Data.ATTACH.CONDition.

TRACE32 automatically assigns the index number 1. to the first Data.ATTACH.SEQuence. If you require a
second, separate attach sequence, then increment the <index_number> to 2. Otherwise the second attach
sequence will overwrite the first one. You can define a maximum of 10 attach sequences.

Example 1: Two attach sequences with the same Data.ATTACH.CONDition may have the same index
number. The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

;Set the index number to 1.
Data.ATTACH.SELect 1.

;Attach sequences shall be executed only if this condition is true:
Data.ATTACH.CONDition (Data.Word(D:0x4faf34)&0xf£f00)==0x4000

;Define the two attach sequences:
Data.ATTACH.SEQuence SET 0x4faf54 %$Word 0xCOCO \
SET 0x4faf64 %Word 0xDODO

Example 2: Two attach sequences with different Data.ATTACH.CONDition settings require two different
index numbers.

;1st attach sequence - TRACE32 automatically sets the index number to 1.
Data.ATTACH.SELect 1.

;If this data attach condition is true,
Data.ATTACH.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x2000

;... then the 1st attach sequence will be executed
Data.ATTACH.SEQuence SET 0x4faf58 %$Word OxEOEO

; Increment the index number to define the 2nd attach sequence
Data.ATTACH.SELect 2.

;If this data attach condition is true,
Data.ATTACH.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x3000

;... then the 2nd attach sequence will be executed
Data.ATTACH.SEQuence SET 0x4faf58 %$Word OxFOFO

©1989-2024 Lauterbach General Commands Reference GuideD | 23

Data.ATTACH.SEQuence Define attach data sequence

Format: Data.ATTACH.SEQuence <command> ...

<command>: SET <address> %<format> <data>
SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are executed when the emulation system in activated.

SET Write <data> to <address>.

SETI Write <data> to <address>.
Then <data> is incremented by <increment>.

GETS Save the data at <address>.
SETS Write the data that was saved with a previous GETS back to <address>.
Examples:

Data.ATTACH.SEQuence SET 0x3faf50 %$Word 0xalal
Data.ATTACH.SEQuence SETI 0x3faf50 %$Word 0xalal 2
Data.ATTACH.SEQuence SETS 0x3faf60

Data.ATTACH.SEQuence GETS 0x3faf60

Data.ATTACH.state Attach data state display

Format: Data.ATTACH.state

Displays the Data.ATTACH state window.

©1989-2024 Lauterbach General Commands Reference GuideD | 24

Data.BDTAB Display buffer descriptor table

Format: Data.BDTAB <address> <size>

The command Data.BDTAB is implemented for most PowerPC processors.

<address> Defines the start address of the buffer descriptor.
<size> Defines the size of each entry in the buffer descriptor table. Possible is a size
of 8 or 16 byte.
Example:

Data.BDTAB iobase()+Data.Word(D:iobase()+0x8400) 8

It is recommended to use a mouse click in the peripheral window to display the buffer descriptor table.

See also
B Data.CHAIN

©1989-2024 Lauterbach General Commands Reference GuideD | 25

Data.BENCHMARK Determine cache/memory bandwidth

[Examples]
Format: Data.BENCHMARK <range> [<range> [<range>]] [<size> ...]
<range>: <program_range>
<data_stack_range>
<data_test_range>
<size>: <ic_size>
<dc_size>
<I2_size>
<I3_size>
Basic Concept
The basic idea of the Data.BENCHMARK command is the following:
. Load a benchmark program that performs various memory read, memory write and memory

copy operations to the target.
J Enable all caches.

. The command Data.BENCHMARK starts the benchmark program and measures the bandwidth
of all caches and memories with the help of the RunTime counters.

The Benchmark Program

Precompiled benchmark program can be found in ~~/demo/<cpu>/etc/benchmark, e.g.
~~/demo/arm/etc/benchmark

In the same directory you can also find the C source for the benchmark program. It is recommended to
compile the benchmark program with your compiler if you want to test the functions (block write, copy etc.)
provided by your compiler. Before you compile the benchmark program with your compiler please read the
comments in the C source.

©1989-2024 Lauterbach General Commands Reference GuideD | 26

The Result

The following window displays the result of the Data.BENCHMARK command:

Ir(-‘- BzData.BENCHMARK 0x10000--0x1FFfF 0x30000000--0%3000fffF 0x20000--0x-4FFff =10 ll
max size: Ox=400000 ak MIPS: 1492 rystone MIPS: 94 rystonesssec: 174006 tolerance: 3.570% |
|cache size |block read k write [1ibh write |block cop [1ibh cop |random read |random write |random copy [latency near [latency far ['
IC | 0x00008000 5.8270B/s - - - - - - - - - =
DC [000008000 3.478CBfs 95.68MB/s 95.74MB/s 95.32MB/s 95.73MBfs | B65.3MHz 18.44MHz 24.0MHz n.d. f.d.
L2 | 0%00040000 | 767.9MB/s 95.43ME /s 95.72MB/ = 88.75ME/s 90.51MB/ = G4.98MHz 18.42MHz 18.63MHz 33.518ns 12.143ns
L3
MEN 236.1MB/ = 243.9MB/ 5 232.3MB/ = 113.3MB/ 5 83.17MB/ s 17 .B8MHZ 18.42MHz 14.13MHz 1353.325ns 66.317ns

1 H
Column / Header Description

block copy

Bandwidth for block copy algorithm of the benchmark program

block read

Bandwidth for block read

block write

Bandwidth for block write

cache size

Cache size of the different caches
If off-chip caches are used, their sizes has to be defined as parameter
when using the Data.BENCHMARK command.

latency far

laTency until data is available for far addresses

latency near

lateNcy until data is available for near addresses

lib copy Bandwidth for block copy function provided by the compiler library
lib write Bandwidth for block write function provided by the compiler library
max size Maximum block size used during the test

random copy

Frequency of random copy operations

random read

Frequency of random read operations

random write

Frequency of random write operations

tolerance

Tolerance of the RunTime counters.
Depending of the implementation the RunTime counters the result of the
time measurement deviates slightly.

©1989-2024 Lauterbach

General Commands Reference Guide D |

27

Examples

Example for the PowerQuicc lIl:

7

select the CPU

SYStem.CPU MPC85xx

SYStem.Option.FREEZE OFF

I

7

initialize your target hardware

load the benchmark program to address 0x1000

Data.LOAD.El1lf benchmark.x 0x1000

7

enable L1 cache

Data.Set SPR:0x3F2 %Long 3
Data.Set SPR:0x3F3 %Long 3

I

enable L2 cache

Data.Set A:0xFDF20000 %Long 0XD4000000

7

execute the Data.BENCHMARK program
the <program_range> is 0x10000--0x1ffff

the <data_stack_range> is 0x30000000--0x3000ffff
the test data and the stack for the benchmark program are located from
0x30000000--0x3000£f£f£ff

the <data_test_range> is 0x20000--Ox4fffff
the memory range that is tested by the benchmark program is
0x20000--0x4fffff

Data.BENCHMARK <program_range> <data_stack_range> <data_test_range>
<ic_size> <dc_size> <12 _size> <13_size>

Data BENCHMARK 0x10000--0x1ffff 0x30000000--0x3000ffff 0x20000--0x4fffff

Further examples:

7

load the benchmark program to address 0x20000

Data.LOAD.El1lf benchmark.x 0x20000

the address range 0x20000--0x4fffff is used for the program,
data/stack and is also the test address range

Data.BENCHMARK <program_range> <data_stack range> <data_test_range>
<ic_size> <dc_size> <12 size> <13 _size>

Data.BENCHMARK 0x20000--O0x4fffff

©1989-2024 Lauterbach General Commands Reference GuideD | 28

; load the benchmark program to address 0x20000
Data.LOAD.El1f benchmark.x 0x20000

; the address range 0x20000--0x4fffff is used for the program
; data/stack and is also the test address range

; the size of the L2 cache is 128K
; parameters that are skipped are represented by a comma

; Data.BENCHMARK <program_range> <data_stack_range> <data_test_range>
; <lc_size> <dc_size> <12 _size> <13_size>

Data.BENCHMARK 0x20000--Ox4fffff ,,,, 0x1000

©1989-2024 Lauterbach General Commands Reference GuideD | 29

Data.CHAIN

Display linked list

Format:

<elements>:

<format>:

<width>:

<float_rep>:

<endianness>.

<bitorder>:

<option>:

Data.CHAIN <base> <link_offset> <elements> [/<option> ...]

[[%<format>] [<address> | <range>] ...]

Decimal [.<width> [.<endianness> [.<bitorder>]]]
DecimalU [.<width> [.<endianness> [.<bitorder>]]]
Hex [.<width> [.<endianness> [.<bitorder>]]]
HexS [.<width> [.<endianness> [.<bitorder>]]]
OCTal [.<width> [.<endianness> [.<bitorder>]]]
Ascii [.<width> [.<endianness> [.<bitorder>]]]
Binary [.<width> [.<endianness> [.<bitorder>]]]
Float[.<float_rep>[.<endianness>]]

sYmbol [.<width> [.<endianness> [.<bitorder>]]]
Var

DUMP [.<width> [.<endianness> [.<bitorder>]]]
Byte [.<endianness> [.<bitorder>]]

Word [.<endianness> [.<bitorder>]]

Long [.<endianness> [.<bitorder>]]

Quad [.<endianness> [.<bitorder>]]

TByte [.<endianness> [.<bitorder>]]

PByte [.<endianness> [.<bitorder>]]

HByte [.<endianness> [.<bitorder>]]

SByte [.<endianness> [.<bitorder>]]

DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

leee | leeeRev | leeeS | leeeDbl | ...

DEFault | LE | BE

DEFault | BitSwap

CORE <core_number>
COVerage

CTS

Track

FLAG <flag>

CFlag <cflag>

Mark <break>

©1989-2024 Lauterbach

General Commands Reference Guide D

30

<flag>:

<cflag>:

<break>:

Read | Write | NoRead | NoWrite

OK | NoOK | NOTEXEC | EXEC

Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

Displays a linked list without high-level information. The link to the next element is taken from the current
element address plus link offset. The size of the pointer is one, two or four bytes, depending on the CPU type

and address space.

Decimal,
DecimalU,...

Byte, Word, ...

DEFault, BE, LE

DEFault, BitSwap

CORE <number>

COVerage
Track
Mark <break>

CTS

Refer to “Keywords for <format>”", page 10

Refer to “Keywords for <width>", page 11

Define byte-order display direction: default target endianness, Big Endian
or Litte Endian

BitSwap allows to display data in reverse bit-order in each byte. If

BitSwap is used together with BE or LE, the byte order will not change,
otherwise BitSwap will also reverse the byte-order.

Display memory from the perspective of the specified core /SMP
debugging only).

Highlight data memory locations that have never been read/written.
Track the window to the reference address of other windows.
Highlight memory locations for which the specified breakpoint is set.

Display CTS access information when CTS mode is active.

©1989-2024 Lauterbach

General Commands Reference Guide D | 31

Example:

; Display a linked list,

; address.

the first element is the symbol ast.
; pointer to the next element is found at offset 8.

The element consists of a pointer,
; and a byte

Data.CHAIN ast 8.
12. %$Hex.Byte 16.

$Hex.Long 0.

%$Decimal.Long 4.

The
from the base

a counter, 2 pointers

$Hex.Long 8.

& B::Data.CHAIN ast 8. %Hex.Long 0. %6Decimal.Long 4. %:Hex.Long 8. %Hex.Long 12. %Hex.Byte 16.

0. = e

address | data

#3Find...

value

scan: O Full

OPpartial @ Auto

symbol

Ox0 (0.)
5D:00006850 | 00 00
SD:00006854 | 34 30
SD:00006858 | 64 &8
5D:0000685C | 00 00
SD:00006860 | OB

oxl (1.)
SD:00006864 | D4 &3
5D:00006868 | 00 00
SD:0000686C | 78 &8
SD:00006870 | 50 &8
SD:00006874 | 00

ox2 (2.)
SD:00006878 | DC 63
5D:0000687C | 01 00
SD:00006880 | 8C &8
SD:00006884 | 64 &8
SD:00006888 | 00

0x3 (3.)
SD:0000688C | E4 63
5D:00006830 | 02 00
SD:00006894 | AD &8
SD:00006898 | 78 &8
5D:0000689C | 00

oo
oo
oo
oo

oo
oo
oo
oo

oo
oo
oo
oo

oo
oo
oo
oo

00 Ox0
00 12346
00 Ox6B64
00 Ox0
Ox0B

00 Ox63D4
o

00 Ox6878

00 Ox6850
Ox0

00 Ox63DC
1

00 Ox688C

00 Ox68564
Ox0

00 Ox63E4
2

00 Ox6BA0

00 Ox6B78
Ox0

pLinkedLis

nkedLis
pLinkedLi
inkedLi

inkedLis

nkedLis
pLinkedLis
inkedLis

By double-clicking a data word, a Data.Set command can be executed on the current address.

The Data.CHAIN window supports three different scan modes:

$Hex . Long

Full The linked list is always completely updated.
Partial The linked list is only partially updated. The update starts at the element that was
on top of the window when the Partial button was selected the last time.
Auto The linked list is always completely updated. To balance the effect on the user
(default) interface, the list is updated for a specific time interval, then the update is
stopped for a specific time interval to allow other activities on the user interface
etc. The number of the last updated element is displayed beside the Auto button.
See also
B Data.CHAINFind B Data.CSA B Data.BDTAB W Data.dump
B Data.TABle B Data.View

©1989-2024 Lauterbach

General Commands Reference Guide D |

32

Data.CHAINFind Search in linked list

Format: Data.CHAINFind <address> <value> [[<option>]

<option>: Address <range>

Searches for data in linked lists. Currently only searching for invalid address pointers is implemented. The
search stops when the address of the element is inside the given address range.

The Data.CHAINFind command affects the following functions:

FOUND() Returns TRUE if data was found.
TRACK.ADDRESS() Returns the address of the last found data.
Example:

; A linked list is searched starting with the first element
; at symbol 'xlist'.
The pointer to the next element is found at offset 12. from the

base address of a element.
Look for an address outside the allowed range 0x10000--0x1ffff.

Data.CHAINFind xlist 0x0c /Address !'0x10000--Ox1ffff

IF FOUND ()
Data.dump TRACK.ADDRESS ()

See also
B Data.CHAIN

©1989-2024 Lauterbach General Commands Reference Guide D | 33

Data.CLEARVM Clear the TRACES2 virtual memory (VM:)

Format: Data.CLEARVM [<address> | <addressrange>]

Clears the entire TRACES32 virtual memory (VM:) if <address> or <range> are not specified.

<address> Clears one byte at the specified address.
<addressrange> Clears the specified range.
Example:

;Open the Data.dump window displaying the virtual memory at address 0x0
Data.dump VM:0x0 /Byte

;clear the entire virtual memory (VM:), see [A]
Data.CLEARVM

;write 0x0 to the specified range in the virtual memory (VM:), see [B]
Data.Set VM:0x0++0x3F %$Byte 0x0

;clear one byte at the specified address, see [B]
Data.CLEARVM VM:0x24

141 BuData.dump VM:0 /Byte EI@ 141 BuData.dump VM:0 /Byte EI@

address [0 1 2 3 4 5 & 7 01234567 | addressf 0 1 2 3 4 5 & 7 01234567

VM 00000000 [(#77 77 77 77 Y7 TV YT YT A VM : 00000000
VM 00000008 | 77 YT YT 7T T 7Y _ VM : 00000008
VM 00000010 | 77 7T t = VM 2 00

VM 00000018 | 77 7T W WM 200 E;
VM 00000020 | 77 77 t WM 2 O St
VM 00000028 | 77 YT YT 7T 7T 7Y &

VM 00000030 (77 YT 7T 7T 7T 7Y
VM : 00000038 | 77 7T
VM 00000040 | 77 7T VM : 00000040
VM 00000048 | 77 7T VM : 00000048
VM 00000050 (77 77 77 77 7 TY YT YT VYYYVILY VM : 00000050
VM:00000058 | 77 77 77 7T TY TY VT YT VYYYVIYY A VM : 00000058

VM : 00000028
VM : 00000030
VM : 00000038

A Question marks (?????...) indicate uninitialized address locations.

B A 64-byte <range> was initialized with 0x0. The address VM:0x24 was uninitialized again.

©1989-2024 Lauterbach General Commands Reference GuideD | 34

Data.ComPare Compare memory

Format: Data.ComPare <addressrange> [<address>] [/<option>]

<option>: Back | NoFind | ALL

The contents of a memory area is compared byte-wise against the range starting with the second argument.

Data.ComPare 0x0--0x3fff 0x4000 ; compare two memory regions

; copy contents of specified address range to TRACE32 virtual memory
Data.Copy 0x3fal000++0xfff VM:

; display contents of TRACE32 virtual memory at specified address
Data.dump VM:0x3fa000

Go

Break

compare contents of target memory with contents of TRACE32 virtual
; memory for specified address range
Data.ComPare 0x3fal000++0xfff VM:0x3fa000

7

; search for next difference
Data.ComPare

The Data.ComPare command affects the following functions:

FOUND() Returns TRUE if a difference was found.
TRACK.ADDRESS() Returns the address of the last found difference.

Data.ComPare 0x100--0xfff O0x3f

IF FOUND ()
Data.dump TRACK.ADDRESS ()

©1989-2024 Lauterbach General Commands Reference GuideD | 35

Data.ComPare 0x100--0xfff O0x3f

IF FOUND ()
PRINT "Difference found at address " TRACK.ADDRESS ()

See also
B Data.COPY

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 36

Data.COPY

Copy memory

Format:

<option>:

Data.COPY <addressrange> [<address>] [/<option>]

Verify | ComPare | DIFF

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
wordSWAP | LongSWAP | QuadSWAP | BitSwap
SkipErrors

PlusVM

Data areas are copied. The address ranges may overlap.

Verify

ComPare

DIFF

Byte, Word, ...

wordSWAP
LongSWAP
QuadSWAP
BitSwap

SkipErrors

PlusVM

Verify data by following a read operation.

Data at address ranges is compared. Memory is not changed. The
comparison stops with an error message after the first difference.

Data at address ranges is compared. Memory is not changed. The address
of the compare can be checked using the FOUND() function.

See “Keywords for <width>", page 11.

Swaps high and low bytes of a 16-bit word during copy.
Swaps high and low bytes of a 32-bit word during copy.
Swaps high and low bytes of a 64-bit word during copy.
Swaps the bits of each byte during copy.

Skips memory that cannot be read. Otherwise TRACES32 would abort the
command if a bus error occurs while copying the specified <range>.

The code is loaded into the target memory plus into the virtual memory.

©1989-2024 Lauterbach

General Commands Reference Guide D | 37

Example 1

; copy within memory

Data.COPY 0x1000--0x1fff 0x3000 ; move 4 K block

Example 2

The Data.COPY <addressrange> /DIFF command is used together with the following functions:

FOUND() Returns TRUE if a difference was found in the comparison.
TRACK.ADDRESS() Returns the address of the first difference.

;Copy from VM: to SD:
Data.COPY VM:0x0--0x1F SD:0xBO0

;Check if there are any differences between VM: and SD:
Data.COPY VM:0x0--0x1F SD:0xBO /DIFF

IF FOUND ()
PRINT "Difference found at address " TRACK.ADDRESS ()

Example 3

The Data.COPY <addressrange> /LongSWAP command is used to copy and swap a memory range and
to convert it e.g. from Little- to Big-Endian or vice versa.

; set VM:0x0
Data.Set VM:0x0 %Long %LE 0x11223344 0x55667788

; now copy the buffer to VM:0x20
Data.COPY VM:0x0++0x7 VM:0x20 /LongSWAP

at VM:0x20 the memory content is now 0x44332211 0x88776655

7

See also
B Data.ComPare

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 38

Data.CSA Display linked list of CSA entries

TriCore only

Format: Data.CSA <csa_link>

Displays a linked list of CSA entries. Data.CSA is a specialized variant of the Data.CHAIN command.

TriCore does not store the context information on the stack. Instead it saves them as a linked list in user-
definable memory areas. The Data.CSA command displays the content of these lists in a user-friendly
format. TRACES32 knows about the structure of the CSA lists and detects the end of the list. The user only
has to specify the base link.

<csa_link> Link to the first CSA entry to display. The link needs to be encoded in the
format TriCore uses internally. This allows a to pass the content of the
corresponding register directly. See example below.

Example:

Data.CSA Register (FCX)

&, B:Data.CSA Register(FCX) =n| Wl <

0. [=] (=] [#Fnd..] |Scan: ©Ful ©Partial @ Auto
address | data value symbol |
Tx0 (0. T

D:DOO0O0OF40 | 3C 00 OD 0O 0xDO03C \VidemoyGlobal®_

D:DO000OF44 (85 0B 00 08 0x3000B83 \VidemoyGlobaly _1

D:DOOO0OF48 | 90 25 08 Al OxA1082590 \VidemoyGlobaly _1

D:DOO0OOF4C | D4 01 00 Al 0xA1000104 \VidemoyGlobaly _1

D:DOO0OOFS0 [00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DO000OFS4 | 00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DO00OFSE | 00 00 00 00 0x0 yidemoyGlobaly_]

D:DO00OFSC | 00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DOO00OFG0 | DB 25 08 Al 0xA10825D8 \VidemoyGlobaly _1

D:DO000OFGE4 | CO 25 08 Al OxA10825C0 \VidemoyGlobaly _1

D:DO000OF6S | 00 00 00 00 0x0 yidemoyGlobaly_]

D:DOO0OOFEC | 14 00 08 Al 0xA1080014 \VidemoyGlobaly _1

D:DOO0OF7O0 [00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DO00OF74 | 00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DOO0OOF7E | 00 00 00 00 0x0 yidemoyGlobaly_]

D:DO00OF7C | 04 00 OO0 00 Ox4 yidemoyGlobaly_1 -
oxl (1.) 3

D:DOOOOFOO | 3B OO0 OD 0O 0xD0O03BE \VidemoyGlobaly _1

D:DOO0OOFO4 | 34 OB 00 03 0x3000654 \VidemoyGlobaly _1

D:DOOOOFOS | 883 25 08 Al 0xA1082588 \VidemoyGlobaly _1

D:DOOOOFOC | 9A 02 00 Al OxA1000294 \VidemoyGlobaly _1

D:DO00OOF10 [00 00 OO0 00 0x0 yidemoyGlobaly_]

D:D0O000OF14 [00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DO00OF18 | 00 00 00 00 0x0 yidemoyGlobaly_]

D:DO00OFLC | 00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DOO0O0OF20 (DB 25 08 Al 0xA10825D8 \VidemoyGlobaly _1

D:DO000OF24 | CO 25 08 Al OxA10825C0 \VidemoyGlobaly _1

D:DO000OF28 | 00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DOOO0OF2C | 14 00 08 Al 0xA1080014 \VidemoyGlobaly _1

D:DO00OF30 [00 00 OO0 00 0x0 yidemoyGlobaly_]

D:DO000OF34 | 00 00 OO0 00 0x0 yidemoyGlobaly_] .

D:DOO0OOF3S | 00 00 00 00 Ox0 \VidemoyGlobaly _1 . 01+0xF38

D:D0000F3CJ Ce 01 9C 00 0x9C01CE \VidemoyGlobaly _1 sa. 01+0xF3C &

] 1 ¢

See also
B Data.CHAIN

©1989-2024 Lauterbach General Commands Reference Guide D | 39

Data.DRAW Graphical memory display of arrays

Format: Data.DRAW [%<format>] <range 1> [[Y%<format>] <range2> ...]
[<scale> [<offset>]] [I<options>...]

<format>: Decimal.[<width>[.<endianness>]]
DecimalU.[<width>[.<endianness>]]
Hex.[<width>[.<endianness>]]
HexS.[<width>[.<endianness>]]
OCTal.[<width>[.<endianness>]]
Float[.<float_rep>[.<endianness>]]
Byte [.<endianness>]
Word [.<endianness>]
Long [.<endianness>]
Quad [.<endianness>]
TByte [.<endianness>]
PByte [.<endianness>]
HByte [.<endianness>]
SByte [.<endianness>]

<width>: DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

<float_rep>: leee | leeeRev | leeeS | leeeDbl | ...

<endianness>: DEFault | LE | BE

<options>: LOG | Track
Vector | Points | Steps | Impulses
Alternate <number> | Element <number>

The Data.DRAW command is used to visualize the contents of arrays. The array index is the x-axis, and the
array content is the y-axis.

The command is useful, for example, for sampling signal quality in the mobile communications area or for
sampling fuel injection in the automotive area. The Var.DRAW command has the same functionality, but
takes the <format> information from the debug symbols.

Decimal, Refer to “Keywords for <format>”, page 10

Decimall,...

Byte, Word, ... Refer to “Keywords for <width>", page 11

DEFault, BE, LE Define byte-order display direction: default target endianness, Big Endian

or Litte Endian

©1989-2024 Lauterbach General Commands Reference Guide D | 40

<rangei>
<rangeé6>
<scale>

<offset>

LOG

Track

Vector (default)
Points

Steps
Impulses

Alternate <number>

Element <number>

Array address range. Depending on the <array_options>, one or more lines
are drawn per specified array.
Units per pixel of y-axis (floating point). Default: 1.0

Offset of y-axis (floating point). Default: 0.0

display y-axis in logarithmic scale

Track the window to the reference address of other windows.
draw each data value as a single pulse.
display each data value as a dot.

connect the dots for the data values by steps.
draw each data vales as a single pulse.
Split the array in <number> graphs.
<number>=2

first graph display even elements

second graph displays odd element.
<number>=3

first graph displays element O, n, 2n, ...
second graph displays 1, n+1, 2n+1, ...

third graph display 2, n+2, 2n+2, ...

Specify the structure component to be displayed graphically.

©1989-2024 Lauterbach

General Commands Reference Guide D | 41

Example for ARM Simulator

SYStem.Up

; Load application

Data.LOAD.E1f ~~/demo/arm/compiler/arm/armle.axf

Register.Set PC main
Go

WAIT 2.s

Break

; See result 1.

9 <format> <rangel> <scale> <offset> <option>
Data.DRAW %Float.IeeeDblT Var.RANGE (sinewave) 0.003 -0.2 /Vector

; See result 2.

Data.DRAW %Float.IeeeDblT sinewave++0xfff 0.003 -0.2 /Impulses

; See result 3.

; <format> <rangel> <range2> <disp>

Data.DRAW %Float.IeeeDblT sinewave++0xfff (sinewave+0x60)++0xfff

/Impulses

; See result 4.
i <format>

Result 1:

<rangel>
Data.DRAW %$Float.IeeeDblT sinewave++0xfff /Alternate 12 /Element 1 6 9

<arrayoptions>

* B::Data. DRAW %FloatleeeDblT sinewave+ +0xfff Nector

4 |0 4

R oo Afnd.. [On]rodfmrilon]soldr

©1989-2024 Lauterbach

General Commands Reference Guide D

42

Result 2:

g/ B::Data.DRAW %FloatleeeDbIT si Oxfff /Imp

i
i
i

(A Goto...][#3Find... [« In | [»0¢ 0ut[ER Full [& In |[S 0| B Full

0.8

=
@

=
-

=
[

=
=1

«m] v o«

l‘ll'Ik‘llIl"r‘“I'IL‘l""yAll|Iln-““',.alIll-...,“..,..-\-ll--.-...“,.—---l---....“,..---\----=......-----------...--—-

al

» 4 [m] s

¥

Click the Full

button.

Result 3:
5 B:Data.DRAW %FloatleceDbIT si OxFfF (si 0x60) ++0xcff /Imp =N Eoh(
[rl Goto..][33 Flnd][<|]» In][»D< Cut][IEI Full][S][=] oml [Ful |
.81 e |
0.7 . ' 'Iél
0.6 . -
0.5 . i
0.4
0.3 .. e
0.2 . ‘E‘
IIIII
- ' lI.IIlIl""lIIl.I||||"IIIII..|IIII|"I“I'.Illlllllm'"lllllnv i L
N Il
0.2 >
4 |m| (] '
Result 4:
&5 B:Data.DRAW %FloatleeeDbIT sinewave++0xfff /Vector fAlternate 12 /Element 1 69 =N Eoh(

Click the Full

=" Goto....][3'-.'3 Fir?d....][@» In.][»q< 0@][@ Fgll][.él Ir1 Il é qnl L rull

«m] v o«

button.

See also

B Data. DRAWFFT
B <trace>.DRAW

B Data.DRAWXY
B Var.DRAW

A ’'Release Information’ in ’Legacy Release History’

B Data.IMAGE

B Data.PROfile

©1989-2024 Lauterbach

General Commands Reference Guide D

43

Data.DRAWFFT

Graphical display of fast fourier transformation

[Example]

Format:

<format>:

<width>:

<float_rep>:

<endianness>:

<option>:

Data.DRAWFFT [%<format>] <range> <scale> <fftsize> [I<option>]

Decimal.[<width>[.<endianness>]]
DecimalU.[<width>[.<endianness>]]
Hex.[<width>[.<endianness>]]
HexS.[<width>[.<endianness>]]
OCTal.[<width>[.<endianness>]]
Float[.<float_rep>[.<endianness>]]
Byte [.<endianness>]

Word [.<endianness>]

Long [.<endianness>]

Quad [.<endianness>]

TByte [.<endianness>]

PByte [.<endianness>]

HByte [.<endianness>]

SByte [.<endianness>]

DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

leee | leeeRev | leeeS | leeeDbl | ...

DEFault | LE | BE

BLACKMAN | HAMMING | HANN
REAL | COMPLEX
Vector | Points | Steps | Impulses

Computes a fast Fourier transform (FFT) of the input data located in the specified memory range and
graphically displays the spectrum.

This command can be used to visualize the frequencies in a signal; for example, the frequencies of audio
and video input data. However, to illustrate and explain the command in this manual, a very simple example

data set is used.

Decimal,
Decimall,...

Byte, Word, ...

DEFault, BE, LE

Refer to “Keywords for <format>", page 10

Refer to “Keywords for <width>", page 11

Define byte-order display direction: default target endianness, Big Endian
or Litte Endian

©1989-2024 Lauterbach

General Commands Reference Guide D | 44

<scale> Scale factor (normalization) for the x-axis as floating-point value. The
spectrum will
range from 0 to <scale>/2.
Example: 44100.0

<fftsize> Number of points, must be power of 2, e.g. 128. | 256. | 512.
Real array consists of real numbers only.

COMPLEX array consists of complex number pairs.

Vector (default) draw each data value as a single pulse.

Points display each data value as a dot.

Steps connect the dots for the data values by steps.

Impulses draw each data vales as a single pulse.

BLACKMAN, window options.

HAMMING, HAHN

Example for Data. DRAWFFT

;set a test pattern to the virtual memory of the TRACE32 application
Data.Set VM:0--0x4f %Byte 1 0 0 O

Data.dump VM:0x0 ;open the Data.dump window to view the test pattern

;visualize the contents of the TRACE32 virtual memory as a graph
Data.DRAWFFT %$Decimal.Byte VM:0++0x4f 2.0 512.

Data.DRAWFFT %$Decimal .Word VM:0++0x4f 2.0 512.
Data.DRAWFFT %$Decimal.Long VM:0++0x4f 2.0 512.

Data.DRAWFFT %Decimal.Quad VM:0++0x4f 2.0 512.

©1989-2024 Lauterbach General Commands Reference Guide D | 45

Result:

Resize the window, and then click the two Full buttons.

<scale>=2.0
2.0 divided by 2=1.0

=n| Wl < 5 B:Data. DRAWFFT %Decimal Word VIV:0++0xdf 512, o &[]
(40 In |+ 0wt [E3 Full[£ 1n |[S out|[B Ful
1.2 1.4 -0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
20. AI 20. AI
15. | : 15. | :
10. 71 10. 71
5. 5.
0. 5 k% 0. 5 . . . k%
1+ | v 4 } i<] v 4 b
<format>: Decimal.Byte <format>: Decimal.Word
| B:Data DRAWFFT %Decimallong VM:0++04f 20512, [= || & |[o23a] g/ B:Data DRAWFFT %Decimal.Quad VM:0++04f 20512, [= || = |[o23a]
40> In |[»0+ Out)[E3 Full[& In][o out|[E Ful [«0v In |[»0¢ 0ut][E0 Full][& 1n |[S 0ut[] Ful
-0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -0 0.2 0.4 0.6 0.8 1.0 1.2
20. N —
= 40000000000. { =
15. - -
n 30000000000. | n
10. 71 20000000000. |
5. 10000000000. |
0. - 0. =
1+] v 4 } i<] v 4 b

<format>: Decimal.Long

<format>: Decimal.Quad

See also
B Data.DRAW B Data. DRAWXY B Data.IMAGE B <trace>.DRAW
B Var.DRAW
A ’Release Information’ in’Legacy Release History’
©1989-2024 Lauterbach General Commands Reference Guide D | 46

Data.DRAWXY Graphical display of xy-graphs

[Example]
Format: Data.DRAWXY [%<format>] <range_y> <range_x> [<Scale> [<offset>]]
[/<options>]
<format>: Decimal.[<width>[.<endianness>]]
DecimalU.[<width>[.<endianness>]]
Hex.[<width>[.<endianness>]]
HexS.[<width>[.<endianness>]]
OCTal.[<width>[.<endianness>]]
Float[.<float_rep>[.<endianness>]]
Byte [.<endianness>]
Word [.<endianness>]
Long [.<endianness>]
Quad [.<endianness>]
TByte [.<endianness>]
PByte [.<endianness>]
HByte [.<endianness>]
SByte [.<endianness>]
<width>: DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<float_rep>: leee | leeeRev | leeeS | leeeDbl | ...
<options>: LOGI Track | YX
Vector | Points | Steps | Impulses
Alternate <number> | Element <number>
Draws a graph based on array with x and y coordinates.
Decimal, Refer to “Keywords for <format>”, page 10
Decimall,...
Byte, Word, ... Refer to “Keywords for <width>", page 11
DEFault, BE, LE Define byte-order display direction: default target endianness, Big Endian
or Litte Endian
<scale> Units per pixel of y-axis (floating point). Default: 1.0
<offset> Offset of y-axis (floating point). Default: 0.0

©1989-2024 Lauterbach General Commands Reference Guide D | 47

LOG display y-axis in logarithmic scale

Track Track the window to the reference address of other windows.
YX swap <range_y> and <range_x>.

Vector (default) draw each data value as a single pulse.

Points display each data value as a dot.

Steps connect the dots for the data values by steps.

Impulses draw each data vales as a single pulse.

Alternate <number> Split the array in <number> graphs.

<number>=2

first graph display even elements
second graph displays odd element.
<number>=3

first graph displays element O, n, 2n, ...
second graph displays 1, n+1, 2n+1, ...
third graph display 2, n+2, 2n+2, ...

Element <number> Specify the structure component to be displayed graphically.

Example

In this example, Data.DRAWXY is executed in the TRACES32 Instruction Set Simulator for ARM.

SYStem.Up

; Load application
Data.LOAD.El1f ~~/demo/arm/compiler/arm/armle.axf

Register.Set PC main
Go

WAIT 2.s

Break

; See result 1.
; <format> <range> <range>
Data.DRAWXY %$Float.IeeeDblT sinewave++0xfff (sinewave+0x60)++0xfff

; See result 2.
Data.DRAWXY %Float.IeeeDblT sinewave++0xfff (sinewave+0x60)++0xfff /YX

©1989-2024 Lauterbach General Commands Reference Guide D | 48

Result 1:

#a B:Data.DRAWXY %Float.JeceDbIT sinewave+ +0xff (sinewave-+0x60)++ Oxff [s
Qv In |34 Out| A Full]| O In ||+ Out © Full | © In || 3 Out | [2] Full
.2 0.0 0. .4 0.6 . 8 1.0 1.2 1.4

|

Ll

v

Ll

v

>
Result 2:

g BuData.DRAWXY %Float.|eceDbIT sinewaves+0xfif (sinewaves0x60)+ +Oxfif VX | = |[= |3

Click the Full buttons.

&1 pEot FAFul 0 [pIcof DI Ful| S 1n | S ox Click the Full buttons.
-2 0.0 o 7.4 0.6 0. o 1.0 1.2 1.4
AI
s
"~
W
>
See also
B Data.DRAW B Data. DRAWFFT B Data.IMAGE B <trace>.DRAW
M Var.DRAW

©1989-2024 Lauterbach

General Commands Reference Guide D

49

Data.dump Memory dump
Format: Data.dump [<address> | <range>] [[<option> ...]
<option>: Hex | NoHex
(format) Decimal | DecimalU
Ascii | NoAscii
Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
BE | LE |
Reverse
<option>: DIALOG
(standard) Track
CORE <core_number>
Orient | NoOrient
SpotLight | NoSpotLight
STRING
COLumns [<columns>)
ICache | DCache | L2Cache
Mark <break>
<option>: ICacheHits | DCacheHits | L2CacheHits
(advanced) XICacheHits | XDCacheHits | XL2CacheHits
COVerage
CFlag <cflag>
FLAG <flag>
CTS
<flag>: Read | Write | NoRead | NoWrite
<cflag>: OK | NoOK | NOTEXEC | EXEC
<break>: Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo
NOTE: Please be aware that TRACE32 can perform a memory dump only under the

following conditions:
. The program execution is stopped.
. Or alternatively, run-time memory access is enabled.

©1989-2024 Lauterbach

General Commands Reference Guide D

50

If the parameter is a single address, it specifies the initial position of the memory dump.

Data.dump 0x4A54

Data.dump vdblarray

; symbolic address

144 B:Data.durnp vdblarray

i
i
i

address

5D:00004A50 [000001CC+00000000

5D:00004A60 | 00000000
SD:00004A70 | 00000000
SD:00004A80 | 00000000
SD:00004A90 | 00000000

4

8 C
00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000

== g [
CECTCToT o p)

cECECECECE L)
T T T T
CECTeT T oT] 0|
cECECECECE S
I e 1
e
e 7]
=]
D e Lo
e [
cEcEcEoEcE

4% 4 [»

If the parameter is an address range, the memory dump is only displayed for the specified address range.

Data.dump 0x4A54--0x4A73

Data.dump Var.RANGE (vdblarray)

Var.RANGE(<hll_expression>)

Returns the address range occupied by the specified HLL
expression

i#] B::Data.dump 04 A54--0xdaT3
p

address 0 4 8 C 01234567 89ABCDEF i
SD:00004A50 +00000000 00000000 00000000 A

SD:00004A60 | 00000000 00000000 00000000 00000000 MMM N EENEE

SD:00004A70 | 00000000 bR

4 4 | »

If the Data.dump command is entered without parameter the Data.dump dialog is displayed.

Data .dump

i# B:Data.dump

Address / Expression

Width Access

(® default (® default
OB)t‘te O runtimE
() Word (I ICACHE
OLong () DCACHE

Options

[Track

[Orient

[Ascii
[IspotLight

f |JHLL

Cancel

©1989-2024 Lauterbach

General Commands Reference Guide D | 51

The use of access class information might be helpful if you want to specify the memory access more

precisely:
Data.dump A:0xc3£90004 ; advise TRACE32 to perform an
; access to physical memory by
; bypassing the MMU
Data.dump NC:0x5467 ; advise TRACE32 to perform a
; non-cached access
Data.dump Z:0x5467 ; advise TRACE32 to perform a

; secured access
; (TrustZone ARM cores)

Format Options

[Back to Top]

Byte, Word, ... If a memory dump is displayed, TRACE32 PowerView uses the default
processing width of the core/processor. Another display format can be
specified by format options.

See “Keywords for <width>", page 11.

Data.dump flags /Byte

BE (big endian) If a memory dump is displayed TRACE32 PowerView uses the default
LE (little endian) endianness of the core/processor. Another endianness can be specified
by the format options BE / LE.

Decimal If a memory dump is displayed TRACE32 PowerView displays the
DecimalU (unsigned memory contents in hex.
dec.)

The options Decimal and DecimalU allow a decimal display.

Data.dump flags /Decimal

Data.dump flags /DecimalU /Byte

©1989-2024 Lauterbach General Commands Reference Guide D | 52

Hex (default)
NoHex

If a memory dump is displayed TRACE32 PowerView displays an hex
representation of the memory contents. This can be suppressed by the
option NoHex.

Ascii (default)

If a memory dump is displayed TRACE32 PowerView displays an ASCII

NoAscii representation of the memory contents. This can be suppressed by the
option NoAscii.
Reverse Reverses the order of columns in the Data.dump window.
Standard Options
[Back to Top]
DIALOG Display memory dump window with dialog elements.

Data.dump 0x100 /DIALOG

##f B:Data.dump 0x100 /DIALOG = =R
Z50:0¢100 #3Find... Modify... long v [JruntimE [JTrack [Hex []Ascii
address] 4 8 C 0123456789ABCDEF |
Z50: 00000100 (+00000000 00000000 OOOO0000 OOO00000 &y nnnn oy ~
Z5D:00000110 | 00000000 0C000000 0OOCO000 00000000 HENNSNSNNNNNENSS =
Z5D:00000120 | 00000000 00000000 00000000 00000000 &%% =
Z5D:00000130 | 00000000 00000000 00000000 00000000 %% W
Track Tracks the window to the reference address of other windows.

If this option is combined with a variable argument, like a register value, an
argument tracking is performed. This will hold the argument value in the
middle of the window and follow the value of the argument.

Var.View flags vdblarray

Data.dump /Byte /Track

©1989-2024 Lauterbach

General Commands Reference Guide D | 53

Example for a DATA reference: If the contents of a variable is selected, the corresponding memory location
is shown and highlighted in the memory dump window.

A TRACE32 PowerView

File Edit View Var

Break Run CPU Misc

Trace Perf Cov Window Help

LI REY blll»ﬂfl‘?'kQI@II_H_éﬂll

ﬂ&aﬂazézﬂ

w‘ BiVarView ﬂags w!hlanay

s
vdblarray[2][2] = 219))

wflags=(,1,1,0,1,1,0,1,1,0,1,0,0,1,1,0,0, 1, 0)
Ewvdblarray = (
@ (108

® (
® (
® (
<

18] B:Data.dump /Byte /Track

address

SD:00004A40
SD:00004A50
SD:00004A60
SD:00004A70

00 00 00 Of

4

B::
I\/dbLE array[2][2]

= 219

emulate trigger [devices][

trace

D:00004A62 \\arm\Global\vdblarray+0x0E

Example for a PROGRAM reference: If a source code line is selected the corresponding memory location
is shown and highlighted in the memory dump window.

ATRACBZPM
File Edit View \!‘a

r Break Run

CPU Misc Trace Perf Cov Window Help

|>Ili|$¢f¢

L2 1]

»ﬂl‘?k‘?

@

_Jiéﬂl|4@&i‘

agézﬂ

SR:00001A70
e eR 00000 A4l

SR:00001A78

ES].E].D].L‘

[Mstep || Mover | ¥ Next |[« Retun | ¢ up | Go |[I Break |[¥ Mode | Find:
addr/line |code |1abel mnemonic |comment L
SR:00001A68 [ES0B301E str r3, [ril1,#-0x18] N

600 =1 + primz;
SR:00001A6C [E51BE301C 1dr r3, [ril,#-0x1C]

E50B3014

r3, rlil,#-0x14]

601 while { k <= SIZE }
5R:00001A7C |EADDOOOT b 0x1AA0
603) Tags[k] = FALSE; E
5R:00001A80 |E51B1014 Tdr rl, [r"ll #-0x14]
SR:00001A84 |E59F2054 Tdr r2,0x1AED i
I I] 3
144 B:Data.dump /Track EI@
address 0 4 8 C 01234567 89ABCDEF L
5R:00001A50 | E3530000 0ADOD017 ES1B201C ESIBZUIC RESIAE e -
SR:00001A60 | E0823002 E2833003 ES50B3018 ES51B301C 30%550%5507:505% E
SR:00001A70 | 0N E0833001 E50B3014 EA000007 §R%5%0%%307:1%15%
SR:00001A80 | E51B1014 E59F2054 E3A03000 EVC23001 SP%5T.3EW0L5305% i
< »
|B: |
emulate trigger [devices] [trace] [Data] [Var] [other] [previous]
SR:00001A70 \\arm\arm\sieve+0x84 stopped] MIX P

©1989-2024 Lauterbach

General Commands Reference Guide D

54

Example for register tracking:

Data.dump Register (R13) /Track /NoAscii

I Register(<register_name>) Returns register contents

14 B:Data.dump Register(R13) /Track /MoAscii EI@
address 0 4 8 C i
SD:0003FF60 | 00000000 O003FFB8 00001E4C 00000001
SD:0003FF70 | BFCOEQOSF BESE6GDS8 BCSFSF7F AD000000
SD:0003FF80 | 66666G6BE 71D4ALlDE BFCOD40D 00000001
SD:0003FF90 | 00000274 404F6666 666666BEMINIIIEF
SD:0003FFAD | 00000025 00000036 00000000 ODO3FFF8
SD:0003FFBO | 0003FFEC 00001DEBC 000019FC 00000000

4 3

4 » 4 |0 »

CORE <number> Display memory dump from the perspective of the specified core
(SMP debugging only)

TRACES2 assumes that an SMP system maintains memory coherency, so it should not matter from which
perspective a memory dump is performed.

CORE.select 0. ; select core 0

Data.dump 0x1000 ; display a memory dump from the
; perspective of the selected core

Data.dump 0x1000 /CORE 1. ; display a memory dump from the
; perspective of the specified core
; (here core 1)

©1989-2024 Lauterbach General Commands Reference GuideD | 55

Orient (default)

The address specified in the Data.dump command is marked with a
small arrow.

The start address of the memory dump window matches to bounds of power
of two. It is assumed that this is easier to read.

NoOrient

The dump starts exactly at the address specified in the Data.dump
command.

Data.dump Ox4aca /DIALOG

{41 BuData.dump Ox4ACA /DIALOG

(o8)

Z5D:00004AE0
Z5D:00004AF0
Z5D:00004B00
Z5D:00004B10

00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000

Z5D:0x4ACA #3Find... Modify... long v [JruntimE [JTrack [Hex []Ascii
address o 4 8 C 0123456789ABCDEF |
Z50:00004AC0 [0OOO0000 0O00303A+00004AC0 00000000 %555 1005 U
Z50:00004AD0 | 0OOOO000 00000000 Q0000000 Q0000000

00000000
00000000
00000000
00000000 %%

<» € m >

Data.dump flags /NoOrient /Byte /DIALOG

144 BzData.dump flags /NoOrient /Byte /DIALOG

(o8)

Z50:0x2E001188

address [0 1 2 3 4 5 & 7 8

Z5D:2E001188 [+01 01 01 00 01 01 00 01 01
Z5D:2E001195 | 01 01 00 00 O1 OO0 OO0 OO0 00
Z5D:2E0011AZ | OO0 OO 0O 00 OO OO0 OO0 00 00
Z5D:2EQ011AF | OO0 OO 0O 00 OO OO0 OO 00 00
Z5D:2E0011EC | OO0 OO 0O 00 OO OO0 OO 00 00
Z5D:2E0011CS | OO0 OO 0O 00 OO OO0 OO OO0 00

Byte e runtime [T
9 A B C 0123456789AB
o0 01 u
o0 00
o0 00
o0 00

o0 00
oo 0o

<» € m >

©1989-2024 Lauterbach

General Commands Reference Guide D

56

NoSpotLight
(default)

No highlighting of changed memory locations.

SpotLight

Highlight changed memory locations.

Memory locations changed by the last program run/single step are
marked in dark red. Memory locations changed by the second to last
program run/single step are marked a little bit lighter. This works up to a
level of 4.

Data.dump flags /SpotLight /Byte /DIALOG

used, zero-terminated strings are underlined for improved visibility.

$#f B:Data.dump flags /SpotLight /Byte /DIALOG = =R
ZSD:0x2E001188 #3Find... Modify... Byte w | [JruntimE [JTrack [Hex [Ascii
address |0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF |
Z5D:2E001180 | OO0 OO OO 00 OO OO OO OO+01 O1 O1 OO @@ 01 00 O1 7 Tk ‘é,‘_ i A
Z5SD:2E001190 | 01 @4 01 @ @i 01 01 @i 00 01 00 00 00 00 00 00 % i _
Z5D:2E0011A0 | 00 00 00 OO 0O 00 0O OO 0O 00 00 OO OO 00 00 00 % " =
Z5D:2E0011E0 | 00 00 00 OO 0O 00 0O OO 0O 00 00 OO 0O 00 00 00 % W
Z5D:2E0011CO | 00 00 00 OO OO 00 00 OO OO 00 00 OO OO 00 00 00 % ~
Z5D:2E0011D0 | 00 00 00 OO OO 00 00 OO OO 00 00 OO OO 00 00 OO0 %% o
STRING Display memory dump of zero-terminated string. If the STRING option is

Data.dump 0x60b5

/STRING

144 BuData.dump VM:0x) /String

[E=N Noh/

address

0 1 2 3 4

5 6 7 8 9 A B C D E F 0 1 2 3 4 0123456789ABCDEF01234

VM : 00000000

48 65 6C 6C 6F

20 57 6F

64 21 00 HeTToowWor Id!T ~

:0000000D
100000022

73 38 2D AC 92
54 52 41 43 45

56 5D 68
33 32 20

17 92 DL AQ 17 9A 44 BA 7C 38 1B s6-2v]hgatitsals] os
77 65 72 56 69 65 77 21 00

WM
WM
WM
WM

: 00000035
: 00000044

5A 6C 91 BB 32
9A 40 63 A6 56

]

5C 8E 01
4C 38 48

TRACE32 . PowerView!!
0D FD 76 5D C4 BE 99 D7 04 3C A6 ZI19:2\:aR5GpV E%%%%<5
55 1C 14 88 99 38 96 EB C2 4B F3 %@ciVLBHESUTELLB8%ESK: -

[}

©1989-2024 Lauterbach

General Commands Reference Guide D

57

COLumns Determines how many memory <columns> are displayed in the window.

[<columns>] The column width can be formatted with the <format> options Byte,

Word, Long, etc.

WIDTH (deprecated)

. To use the TRACES32 default setting, omit option and parameter.
When you now resize the window width, the number of columns
adjusts to the window width.

. COLumns without the <columns> parameter: The number of col-
umns remains fixed when you resize the window width.

;display memory dump with 7 columns and format each col. as 8-bit wvalues

7 <number_of_columns> <format>
Data.dump sieve /COLumns 7. /Byte

;display memory dump with 4 columns and format each col. as 32-bit values

Data.dump sieve /COLumns 4. /Long
i# B:Data.dumnp sieve /COLumns 7. fBﬁeEl-@ {41 BuData.dump sieve /COLumns 4. /Long EI@
address |0 1 2 3 4 5 & 0123456 address 1] 4 8 C 0123456789ABCDEF

SP:0000222F | E3 00 20 AD E3 12 00 &% *51“
SP:00002236 | 52 E3 06 00 00 DA 06 RELLLSL

:00002238 | DAOODOO6 EAQD0006 E3A04001 E1A0E002 4%
SP:00002248 | E0822004 E59F0070 E7CO400E EAFFFFFE S.%%pti gc@»iF;FE
4 }

A [mp |
]
bl

SP:00002225J+E92D4010 E3A0L000 E3A02000 E3520012 SE-555% 0 asy R

5P : 0000222%J+10 40 2D E9 00 10 AD T@-511

4 [m»

ICache Highlight memory locations cached to the instruction cache and display
way information in the memory dump

DCache Highlight memory locations cached to the data cache and display way
information in the memory dump

L2Cache Highlight memory locations cached to the level 2 cache and display way
information in the memory dump

Data.dump sieve /ICache /NoAscii

14 B:Data.dump sieve /ICache /NoAscii =ee @
1cache address 0 4 8 C
way 10 SR:00001A20 [E51B201C E2822001 E50B201C E51B301C
way 10 SR:00001A30 | E3530012 DAFFFFF5 E3A01000 E50B101C
way 1C SR:00001A40 | EAQDO0OLF E51B301C E59F2090 E7D23003
way 1C SR:00001A50 [E3530000 0A000017 E51B201C E51B201C
way 23 SR:00001A60 | E0823002 E2833003 E50B3018 E51B301C
way 23 SR:00001A70 | E51B1018 E0833001 E50B3014 EA000007
way 17 SR:00001A80 | E51B1014 E59F2054 E3A03000 E7C23001
way 17 SR:00001A50 | E51B2014 E51B3018 E0822003 E50B2014
way 20 SR:00001AA0 | E51B1014 E3510012 DAFFFFF4 E51B3010
way 20 SR:00001AB0 | E2833001 E50B3010 E51B201C E2822001
way OF SR:00001ACO | E50B201C E51B301C E3530012 DAFFFFDC
way OF SR:00001AD0 | E51B3010 E1A00003 E24BDOOC E89DAS00
way 04 SR:00001AEQ | 000060B5 E1AOCO0OD E92DD800 E24CBO04
way 04 SR:00001AF0 | E24DD004 E3A03000 E50B3010 EAFFFFFF

SR:00001B00 | E51B3010 E2833001 E5S0B3010 ES51B3010
SR:00001B10 | E3530000 1AFFFFF9 EAFFFFFE& E1AOCOOD
SR:00001B20 | E92DD810 EZ24CBO04 E24DD02C ES59F225C -

» 4 [m] »

I

©1989-2024 Lauterbach General Commands Reference Guide D |

58

Mark <break>

Highlight memory locations for which the specified breakpoint is set.

; highlight memory locations for which a Write breakpoint is set
Data.dump flags /Mark Write /Byte /NoAscii

1] B:Data.dump flags /Mark Write /Byte /NoAscii o =]

address

1 2 3 4 5 6 7 8 9 A B C D E F

0
5D:00006080[[00
SD:000060C0]f 00
5SD:000060D0 | 02
SD:000060€E0 | 00
SD:000060F0 | 00
5D:00006100 | 00

4

00 00
00 01
00 00
00 00
00 00
00 00

00+01 01 01 01 01 01 00 01 01 OO0 01
00 00 01 00 00 00 00 00 0O 00 OO0 00
00 00 00 00 00 00 00 00 0O 00 OO0 00
00 00 00 00 00 00 00 00 0O 00 OO0 00
00 00 00 00 00 00 00 00 0O 00 OO0 00
00 00 00 00 00 00 OO0 00 0O 00 OO 0O

4 % 4 |[m»

TRACE32 PowerView uses its default formatting for the Data.dump command. These defaults can be

changed by the command SETUP.DUMP.

©1989-2024 Lauterbach

General Commands Reference Guide D

59

Advanced Options

[Back to Top]

The following options are used to map the results of the trace-based cache analysis (CTS.CACHE) to
memory dumps.

ICacheHits Highlight memory locations for which instruction cache hits were
detected.
DCacheHits Highlight memory locations for which data cache hits were analyzed.
L2CacheHits Highlight memory locations for which level 2 cache hits were analyzed.
XiCacheHits -
XDCacheHits Highlight program memory locations which caused data cache hits.
L2CacheHits Highlight program memory locations which caused level 2 cache hits.
1] B:Data.dump 0x11300 /DCacheHits /Byte /NoAscii o= ==
hits misses victims _ ratio address 0 1 2 3 45 &6 7 8 9 AB CDEF
SD:00011300 (»56 34 12 EF FE FF FF EA 26 00 02 00 23 00 02 00 .
5759. 0. 0. |100.000% 50:00011310 | 00 00 00 00 00 00 00 00 38 06 01 00 AD 75 03 00 |z
SD:00011320 (A0 75 03 00 00 00 00 00 40 09 01 00 68 09 01 00
sD:00011330 | 00 00 00 00 00 00 00 0O OO 00 00 00 FF FF EF 7F ~
SD:00011340 (FF FF FF FF 00 00 00 00 00 00 00 0O 00 00 00 00 =
Sp:00011350 (0O OO OO0 00 00 00 00 00 00 00 00 00 00 00 00 00
50:00011360 | 00 00 00 00 00 00 0O 0O OO OO OO 0O 00 00 00 00 |z
6. 0. 0. 100.000% 50:00011370 | 00 00 00 00 00 0O 00 0O 00 O1 01 OO 0O OO0 00 00
Sp:00011380 (00O OO OO0 OO0 OO 0O 00 00 00 00 00 00 00 00 00 00
SD:00011390 (00O OO OO0 00 OO 00 00 00 00 00 00 00 00 00 00 00
SD:000113A0 (| OO OO 00 0O 0O 0O 0O 00 0O 00 0O OO 00 00 00 00 -
J 4 }

The following option is used to map the result of trace-based code coverage (COVerage) to memory dumps.

COVerage

Highlight program memory location that are never executed respectively
data memory locations that are never read/written.

Data.dump Ox4e7c /COVerage /WIDTH 1. /NoAscii /Byte

i# B:Data.dumnp 0x68C0 /COVerage /WIDTH 1. /MoAscii /Byte EI@
coverage address | 0 |
write SD:000068C0 [+AD A
write SD:000068C1 | 68 _
write SD:000068C2 | OO =
write SD:000068C3 | 00 W
never SD:000068C4 | 00
never SD:000068C5 | 00 &
never SD:000068C6 | 00
never SD:000068C7 | 00
readwrite SD:000068C8 | DO
readwrite SD:000068C9 | 03
readwrite SD:000068CA | D1
readwrite SD:000068CE | 03
wr"[te SD:000068CC | 44

©1989-2024 Lauterbach

General Commands Reference Guide D | 60

The following option is used to map the results of CTS to memory dumps.

CTS

Display CTS access information when CTS mode is active.

See also

B Data.Assemble

M Data.PATTERN

B Data.Test

B SETUPDUMP

B SETUPASCIITEXT
1 ADDRESS.WIDTH()
(1 Data.Quad()

mpupEl N N N |

Data.CHAIN
Data.Print
Data.USRACCESS
SETURTIMEOUT
ADDRESS.OFFSET()
Data.Byte()
Data.STRing()

A ’Release Information’ in’Legacy Release History’

B Data.Find

B Data.STRING

W Data.View

B sYmbol.INFO

1 ADDRESS.SEGMENTY()
(1 Data.Float()

(1 Data.STRingN()

mpupsl N N N |

Data.ln

Data.TABle

List

DUMP
ADDRESS.STRACCESS()
Data.Long()

Data.Word()

©1989-2024 Lauterbach

General Commands Reference Guide D |

61

Data.EPILOG Automatic data modification on program execution halt

The Data.EPILOG command group allows to define a sequence of read/write accesses that are
automatically performed directly after the program execution has halted (manual break, breakpoint or end of
single step). The complementary command Data.PROLOG performs read/write accesses before program
execution is continued. It is also possible to store data read with Data.EPILOG and restore with
Data.PROLOG, and vice versa.

The Data.EPILOG command group can be used e.g. to manually freeze peripherals, if the processor itself
does not provide this feature. Use Data.EPILOG.SEQuence and Data.PROLOG.Sequence to set up the
access sequences.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the Data.EPILOG.state
window.

&2 B:Data EPILOG state =n| Wl <

epilog E CONDition
OFF (Data.Word(D:0x3faf30)&0xff00 }==0x2000

@ oN SEQuence

SET 0x3fafe4 %Word O0xb0b0

count

u

CORE SEL »
_1. B _2 B TARGET
CIRCENCIRD

A For descriptions of the commands in the Data.EPILOG.state window, please refer to the
Data.EPILOG.* commands in this chapter. Example: For information about ON, see
Data.EPILOG.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or
Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set commands> SET,
SETI, GETS, and SETS.

Examples:
J Overview including illustration - see Data.EPILOG.state.

. Epilog conditions - see Data.EPILOG.CONDition.

J Access sequences - see Data.EPILOG.SEQuence.
See also
W Data ATTACH W Data.PROLOG W Data.STARTUP W Data.TIMER

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 62

Data.EPILOG.CONDition Define condition for data epilog

Format: Data.EPILOG.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with Data.EPILOG.SEQuence will be
executed each time after the program execution was stopped.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

Examples:

;reads the long at address D:0x3faf30, proceeds a binary AND with

;a constant (here Oxffffffff). If the result is equal to 0x80000000 the
;condition is true and the defined sequence is executed.
Data.EPILOG.CONDition (Data.Long (D:0x3faf30)&0xfffff£f£f£f)==0x80000000

;read the word at address D:0x3xfaf30
Data.EPILOG.CONDition (Data.Word(D:0x3faf30)&0x£f£f00) !=0x8000

;reads the byte at address D:0x3xfaf30
Data.EPILOG.CONDition (Data.Byte(D:0x3faf30)&0xf0) !=0x80

See also
B Data.EPILOG.state 1 Data.Byte() (1 Data.Long() 1 Data.Word()

©1989-2024 Lauterbach General Commands Reference Guide D | 63

Data.EPILOG.CORE Select core for data epilog

Format: Data.EPILOG.CORE <core_number>

Selects the core for which you want to define one or more data epilogs.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

Example: The following example shows how to define a data epilog that is executed on core 3 of a multicore
chip.

;Select the core for which you want to define a data epilog
Data.EPILOG.CORE 3.

;Define the data epilog for core 3

Data.EPILOG.CONDition <your_code>
Data.EPILOG.SEQuence <your_code>

For information on how to configure two different data epilogs, see Data.EPILOG.SELect.

See also
B Data.EPILOG.state

Data.EPILOG.OFF Switch data epilog off

Format: Data.EPILOG.OFF

Disables the execution of the Data.EPILOG sequence on program execution halt.

See also
B Data.EPILOG.RESet B Data.EPILOG.state

©1989-2024 Lauterbach General Commands Reference Guide D | 64

Data.EPILOG.ON Switch data epilog on

Format: Data.EPILOG.ON

Enables the execution of the Data.EPILOG sequence on program execution halt.

See also
B Data.EPILOG.RESet H Data.EPILOG.state
Data.EPILOG.RESet Reset all data epilogs
Format: Data.EPILOG.RESet

Switches the Data.EPILOG feature off and clears all settings.

See also
M Data.EPILOG.OFF M Data.EPILOG.ON B Data.EPILOG.state

©1989-2024 Lauterbach General Commands Reference GuideD | 65

Data.EPILOG.SELect Increment the index number to the next data epilog

Format: Data.EPILOG.SELect <index_number>

Increments the index number for each new data epilog. This is useful, for example, if you need two separate
data epilogs with each data epilog having its own Data.EPILOG.CONDition.

TRACE32 automatically assigns the index number 1. to the 1st Data.EPILOG.SEQuence. If you require a
2nd, separate data epilog sequence, then increment the <index_number> to 2. Otherwise the 2nd data
epilog will overwrite the 1st data epilog. You can define a maximum of 10 data epilogs.

Example 1: Two data epilogs with the same Data.EPILOG.CONDition may have the same index
number. The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

;Set the index number to 1.
Data.EPILOG.SELect 1.

;Data epilog sequences shall be executed only if this condition is true:
Data.EPILOG.CONDition (Data.Word(D:0x3faf30)&0xf£f00)==0x1000

;Define the two data epilog sequences:
Data.EPILOG.SEQuence SET 0x3faf50 %$Word O0xAO0AO0 \
SET 0x3faf60 %Word 0xBOBO

Example 2: Two data epilogs with different Data.EPILOG.CONDition settings require two different
index numbers.

;1st data epilog - TRACE32 automatically sets the index number to 1.
Data.EPILOG.SELect 1.

;If this epilog condition is true,
Data.EPILOG.CONDition (Data.Word(D:0x3faf30)&0xff00)==0x1000

;... then the 1st epilog sequence will be executed
Data.EPILOG.SEQuence SET 0x3faf50 %$Word O0xAOAO

; Increment the index number to define the 2nd data epilog
Data.EPILOG.SELect 2.

;If this epilog condition is true,
Data.EPILOG.CONDition (Data.Word(D:0x3faf34)&0xff00)==0x2000

;... then the 2nd epilog sequence will be executed
Data.EPILOG.SEQuence SET 0x3faf54 %$Word 0xBOBO

See also
B Data.EPILOG.state

©1989-2024 Lauterbach General Commands Reference GuideD | 66

Data.EPILOG.SEQuence Define epilog sequence

Format

<command>: SET <address> %<format> <data>

: Data.EPILOG.SEQuence <command> ...

SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are automatically executed by the TRACE32 software
directly after the program execution is stopped.

SET

SETI

GETS

SETS

Examples:

; Set
Data.
Data.

; Set
Data.
Data.

; Set
Data.
Data.

;Writ
Data.

See also

Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

Parameters: <address> %<format>

Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command Data.PROLOG.Sequence is called.

Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

peripheral register to 0 when halted, 1 when starting
EPILOG.SEQuence SET 0x3faf50 %$Long 0x00000000
PROLOG.SEQuence SET 0x3faf50 %$Long 0x00000001

register to 0 when halted, restore original value when starting
EPILOG.SEQuence GETS 0x1230 %$Byte SET 0x1230 %Byte 0x00
PROLOG.SEQuence SETS 0x1230 %Byte

(clear) a single bit when starting (stopping)
EPILOG.SEQuence SET 0x3faf50 %Word 0OyXXXXI1xXxXXXXXXXXX
PROLOG.SEQuence SET 0x3faf50 $Word OyXXXXOXXXXXXXXXXX

e 0xala0 when starting, increment by 2 for each successive start
PROLOG.SEQuence SETI 0x3faf50 %$Word 0xalal 2

B Data.EPILOG.state

©1989-2024 Lauterbach General Commands Reference Guide D | 67

Data.EPILOG.state Display data epilogs

Format: Data.EPILOG.state

Opens the Data.EPILOG.state window, where you can configure data epilogs.

&2 B:Data EPILOG state =n| Wl < 131] B:Data.dump 0:3faf30 /SpotLight NeASCT | = || = |[x=534]
- - address 1] 4 8 C
epilog ST NSD:003FAF 30 [#00002000 00000000 00000000 00000000

OFF (Data.Word(D:0x3faf30)&0xfF00)==0x2000 NSD:003FAF404 00000000 00000000 00000000 00000000 -

NSD:003FAF5 410000000 00000000 00000000 00000000 =

@ 0oN SEQuence NSD:003FAF . 1000000 QOGOEOEO 00000000 0000OOOO -
}

SET 0x3fafe4 %Word 0xb0bo
count

CORE

un

TARGET

&~
=]

&)~
® |

A Counts the number of times the Data.EPILOG.SEQuence command has been executed.

B Lets you create and view the data epilogs of a particular core. This example shows the 2nd data
epilog of core 1.
The CORE field is grayed out for single-core targets.

C, The Data.dump window is just intended to visualize that the CONDition [C] was true (==0x2000),
D and thus the SEQuence was executed [D].

Data.EPILOG.state ;open the window
Data.EPILOG.CORE 1. ;for core 1, two data epilogs will be defined:
Data.EPILOG.SELect 1. ;l1lst data epilog with condition and sequence:

;1f condition is true, then execute seqg. below
Data.EPILOG.CONDition (Data.Word(D:0x3faf30)&0xff00)==0x1000
Data.EPILOG.SEQuence SET 0x3faf54 %$Word 0xalal

Data.EPILOG.SELect 2. ;2nd data epilog with condition and sequence:

;1f condition is true, then execute seqg. below
Data.EPILOG.CONDition (Data.Word(D:0x3faf30)&0xff00)==0x2000
Data.EPILOG.SEQuence SET 0x3faf64 %$Word 0xb0bO

Data.EPILOG.ON ;activate all data epilogs
Go ;Start program execution
See also
B Data.EPILOG.CONDition M Data.EPILOG.CORE B Data.EPILOG.OFF M Data.EPILOG.ON
B Data.EPILOG.RESet B Data.EPILOG.SELect B Data.EPILOG.SEQuence B Data.EPILOG.TARGET

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 68

Data.EPILOG.TARGET Define epilog target call

Format: Data.EPILOG.TARGET <code_range> <data_range>

Defines a target program that is automatically started by the TRACE32 software directly after the program
execution was stopped.

<code_range> Defines the address range for the target program.
<data_range> Defines the address range used for the data of the target program.
Example:

Data.EPILOG.TARGET 0x3fa948--0x3faal07 0x1000--0x1500

See also
B Data.EPILOG.state

©1989-2024 Lauterbach General Commands Reference GuideD | 69

Data.Find Search in memory

Format: Data.Find [<address_range> [Y%<format>] <data> | <string> [[<option>]]
<format>: Byte | Word | Long | Quad | TByte | HByte | SBYyte
Float[.<float_rep.>]
BE | LE
<float_rep>: leee | leeeRev | leeeS | leeeDbl | ...
<option>: Back | NoFind | ALL

The data/string is searched within the given address range. If it is found, a corresponding message will be
displayed.

Without parameters, the Data.Find commands will search for the next occurrence of the data/string in the
specified address range.

The command can also be executed when using the Find button in the Data.dump ... /DIALOG window.

Byte, Word, ... See “Keywords for <width>", page 11.

BE, LE Define the endianness: BigEndian or LittleEndian. The target endianness
is used if nothing is specified.

Examples:

; search for byte 0x3f in the specified address range
Data.Find 0x100--Oxfff Ox3f

; search the next byte 0x3f
Data.Find

; search for specified string
Data.Find 0x100--0xfff "Test"

; search for 32 bit value 0x00001234 in big endian mode
Data.Find 0x100++0xeff %Long %BE 0x1234

; search backward for 16 bit value 0x0089
Data.Find 0x100++0xeff %Word 0x89 /Back

; search for the float 1.45678 in IEEE format
Data.Find 0x4e00--0x4eff %Float.Ieece 1.45678

©1989-2024 Lauterbach General Commands Reference GuideD | 70

The Data.Find command affects the following functions:

FOUND() Returns TRUE if data/string was found.
TRACK.ADDRESS() Returns the address of the last found data/string.

Data.Find 0x100--0Oxfff 0x3f

IF FOUND()
Data.dump TRACK.ADDRESS ()

Data.Find 0x100--0Oxfff 0x3f

IF FOUND ()
PRINT "Data found at address " TRACK.ADDRESS ()

The option /NoFind sets up the search, but does not process it. This can be beneficial for scripts.

OPEN #1 result.txt /Create
&i=1
Data.Find 0x100--0xfff O0x3f /NoFind

RePeat

(
Data.Find
WRITE #1 "Address " &i ": " TRACK.ADDRESS ()
&i=&1+1

)

WHILE FOUND ()

CLOSE #1

TYPE result.txt

ENDDO
See also
B Data.dump B Data.GOTO B Data.GREP B sYmbol. MATCH
B FIND B WinFIND 1 ADDRESS.OFFSET() 1 FOUND()

1 TRACK.ADDRESS()
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D

71

Data.FindCODE Execute command on specified code type

Format: Data.FindCODE <address_range> <type>[<command>]
<type>: CALL | IndirectCALL | RETURN | JUMP | <access>
<access>: ReadWrite <address> | Read <address> | Write <address>

Processes the source code in the specified <address_range> in order to find the specified instruction type.
The command Data.FindCODE is mainly used to automatically set the statistic markers.

<command> The specified <command> is executed on all found program addresses. If
you omit <command>, all found addresses area printed to the active

message AREA.

Simple examples:

find all indirect calls in the program address range 0x0++0xffff,
; open a source listing for each found indirect call
Data.FindCODE O0x0++0xffff IndirectCALL "List"

7

find all returns in the function sieve and set an onchip breakpoint to

; all found returns
Data.FindCODE sieve RETURN "Break.Set * /Onchip"

find all write accesses to the address flags+3 in the function sieve,
; open a source listing for each found write access
Data.FindCODE sieve Write flags+3 "List"

7

; find all read accesses to the integer variable mstaticl in the function
; func2, open a source listing for each found read access
Data.FindCODE func2 Read mstaticl "List"

©1989-2024 Lauterbach General Commands Reference GuideD | 72

Statistic marker examples:

; find all returns in the address range OSLongdmp++0x3F and set a
; statistic marker of the type FEXITCLEANUP to all found program
; addresses

Data.FindCODE OSLongJdmp++0x3F RETURN \

"sYmbol .MARKER.Create FEXITCLEANUP *"

; find all write accesses to the address TASK.CONFIG (magic[l]) in the
; function OSTaskInternalDispatch, set a statistic marker of the type
; CORRELATE to all found program addresses

Data.FindCODE OSTaskInternalDispatch Write TASK.CONFIG (magic[1]) \
"sYmbol .MARKER.Create CORRELATE *"

; find all indirect calls in the function OSTaskInternalDispatch and set
; a statistic marker of the type CLEANUP to all found program addresses
Data.FindCODE OSTaskInternalDispatch IndirectCALL \

"sYmbol .MARKER.Create CLEANUP *"

Data.GOTO Specify reference address for address tracking

Format: Data.GOTO [<address>]

The given address is used for tracking the windows (like FIND / ComPare commands).

Example1: Tracks all windows that have the /Track option to program address func10.

List.Mix /Track
sYmbol .INFO /Track
PERF.ListFunc /Track
Data.GOTO funclO

©1989-2024 Lauterbach General Commands Reference GuideD | 73

Example2: Tracks all windows that have the /Track option to the datat address flags+3.

Data.View /Track

sYmbol.INFO /Track

Data.DRAW Var.RANGE (flags) /Track
Data.GOTO flags+3

-

% BusYmbolINFO /Track

[% symbols || ftioump || Sfust][Q view |[$8mmu |

|laddress

D:40004128B

| »

m

ariable
"diabc\GlobaT \fTags

D:40004128--40004134A global static
ity

pe
(unsigned char [19]) array (unsigned char, 19 bytes, indexed by int, 0..18)
4

25 B:Data.DRAW Var.RANGE(flags) /Track

[R Goto... || #iFind... |[0 1n][0« out|[& Full][S 1n |[S out|[& Full]

— [v@

3, B:Data.View /Track

address datalva]ue |symbo1

SD:40004126
SD:40004127
SD:40004128
SD:40004129
SD:4000412A
| SD:40004128 |

SD:4000412C
SD:4000412D
SD:4000412E

SD:4000412F

I < | 1 |

See also

B Data.GREP W Data.Find B FIND
O TRACK.ADDRESS()

B WinFIND

©1989-2024 Lauterbach General Commands Reference Guide D

74

Data.GREP Search for string

Format: Data.GREP <string> [<file> [[<option>]]
<option>: Word
Case

<other_options>

Searches for a specific string in one or all source files; regular expressions are not supported

Word Search for the whole word.
Case Perform a case sensitive search.
<other_options> For descriptions of the other options, see List.
Example:
Data.GREP "func" ; search for "func" in all source files
Data.GREP "func" */sieve.c ; search for "func" only in sieve.c
Data.GREP "if" *.* /Word ; search for the word "if" in all source
; files
i£{ B:Data.GREP "if" ** /Word =n| Wl <
if JIWord [_|Case File: *.*
hits: 11 |source |
— SJErC/sieve.c
169 if (mcount < 5000
479 if Le=07
594 if (A" = ¢ & C <= 'Z'){

642 it (monHook)
E 580 if (§==0)
748 if (Flags[i1) {

. /src/monitor. c

17 [#if defined(ARM7) | |defined(ARM3) /= ARM7, ARM9 =/
290 it (DCC_RACeiveStatus()) {
351 it ((data & 0x01000000) == 0){
364 it (index < 21) {
374 if (Mon [ndex < Monitor_Count && 1DCC_SendStatus()) {
J(n 3

A Search <string> and number of hits.
B Line numbers of hits.

C Double-clicking a function opens a listing for the selected function in a List window.
Right-clicking a function opens the Function popup menu.

See also
B Data.GOTO W Data.Find B APU.GREP B FIND
B WinFIND B WinOverlay

©1989-2024 Lauterbach General Commands Reference GuideD | 75

Data.IMAGE

Display image data

[Examples]

Format:

<format>:

<option>:

Data.IMAGE <address> <horiz> <vert> [<scale>] [I<format> [[<option>]]

MONO | MONOLSB | CGA | GrayScale8 | JPEG

RGB111 | RGB555 | RGB555LE | RGB565 | RGB565LE |
RGB888 | RGB888LE | RGBX888 | RGBX888LE | XXXA888
RGBCUSTOM | RGBCUSTOMLE

YUV420 | YUV420W | YUV420WS

YUV422 | YUV422W | YUV422WS | YUV422P | YUV422PS
Palette256 <red> <green> <blue> ...

Palette256X6 <address>

Palette256X12 <address>

Palette256X24 <address>

BottomUp

FullUpdate

STRIDE <bytes_per_stride>

SignedY | SignedU | SignedV

UVPLANEbase | UPLANEbase | VPLANEbase
RGBBITS "<[RGBXA]>"

Displays graphic bitmap data. Zooming is supported by scrolling the mouse wheel or double-clicking the
image. Right-clicking an image allows advanced data operations.

<address> Base address of the image, e.g.: D:0x10000

<horiz> Horizontal size of the image (decimal value with postfix)

<vert> Vertical size of the image (decimal value with postfix)

<scale> Initial scale of the image (zoom value)

MONO Monochrome bitmap (default format). Each byte represents eight
consecutive pixels. The MSB is the leftmost bit.

MONOLSB Monochrome bitmap. Each byte represents eight consecutive pixels. The
LSB is the leftmost bit.

CGA Colors compatible to the CGA (Color Graphics Adapter).
In this mode each byte represents two pixels, each nibble can encode 16
predefined colors.

GrayScale8 Each byte contains one pixel with 256 shades of gray.

JPEG JPEG compressed image.

©1989-2024 Lauterbach

General Commands Reference GuideD | 76

RGB111 Color display. One byte represents one pixel. Bit 0 is the blue color, bit 1

(RGB) is green, bit 2 is red. All bits clear displays the background color, all three
bits set displays the foreground color (host dependent).

RGB555 Two bytes make up one pixel. First bit ignored, 5 bit red, 5 bit green, 5 bit

RGB555LE blue.

(BGR555) For RGB555LE the order is ignore-blue-green-red.

RGB565 Two bytes make up one pixel. 5 bit red, 6 bit green, 5 bit blue.

RGB565LE For RGB565LE the order is blue-green-red.

(BGR565)

RGB888 (RGB24) Three bytes make up one pixel. The first byte contains 256 shades of red,

RGB88SLE the second byte green and the third byte blue.

(BGR24) For RGB888LE the order is blue-green-red.

RGBX888 Four bytes make up one pixel. The first byte contains 256 shades of blue,

(RGB32) the second byte green and the third byte blue. the fourth byte is ignored.

RGBX888LE For RGBX888LE the order is blue-green-red-ignore.

(BGR32)

XXXA888 Four bytes make up one pixel. The first three bytes are ignored (X), the

(ALPHA) alpha (A) channel is displayed as a grayscale image (256 shades of
gray).

RGBCUSTOM Custom RGB format, needs to be used in conjunction with /RGBBITS
option.

YUV420 YUV encoded, three separate planes (4xY,1xU,1xV).

YUV420W YUV encoded, two planes of 16bit words (4xY,1xUV).

YUV420WS YUV encoded, two planes of 16bit words, byte swapped (4xY,1xVU).

YUV422 YUV encoded, three separate planes (2xY,1xU,1xV).

YUV422w YUV encoded, two planes of 16bit words (2xY,1xUV).

YUV422wWS YUV encoded, two planes of 16bit words, byte swapped (2xY,1xVU).

YUV422P YUV encoded, one plane of 32bit words (Y,U,Y,V).

YUV422PS YUV encoded, one plane of 32bit words, byte swapped (U,Y,V,Y).

Palette256 Full color display. One byte represents one pixel. The byte selects one of
256 different color values in the palette defined by the parameters.

Palette256X6 Full color display. One bytes represents one pixel. The byte selects one
of 256 different color values in the palette read from memory. Each
palette value is a byte containing 2 bits for the intensity of each color.

©1989-2024 Lauterbach

General Commands Reference Guide D | 77

Palette256X12

Full color display. One bytes represents one pixel. The byte selects one
of 256 different color values in the palette read from memory. Each
palette value is a 16 bit word containing 4 bits for the intensity of each
color.

Palette256X24

Full color display. One bytes represents one pixel. The byte selects one
of 256 different color values in the palette read from memory. Each
palette value is a 32 bit long containing 8 bits for the intensity of each
color.

BottomUp

Mirrors the image horizontally.

FullUpdate

Performs a complete redraw each time the window is updated. The
default is to update the window step by step to keep the response time of
the debugger fast.

STRIDE

Number of bytes for one row of pixels in memory (image width in bytes
plus padding bytes).

SignedY

Y values of YUV encoded images are treated as signed values.

SignedU

U values of YUV encoded images are treated as signed values.

SignhedV

V values of YUV encoded images are treated as signed values.

UVPLANEbase

Specify a separate base address for the UV-plane of a YUV image
(instead of assuming to find it consecutive to the Y-plane).
This option is available for YUV formats with two planes, e.g. YUV420W.

UPLANEDbase

Specify a separate base address for the U-Plane of a YUV image
(instead of assuming to find it consecutive to the Y-plane). This option is
available for YUV formats with three planes, e.g. YUV420.

VPLANEbase

Specify a separate base address for the V-Plane of a YUV image
(instead of assuming to find it consecutive to the Y- and U-planes). This
option is available for YUV formats with two planes, e.g. YUV420.

RGBBITS

Define bits for custom RGB format. The format must be passed as string,
containing one or more of the following characters: "RrGgBbXxAa". Each
character represents one bit (Red, Green, Blue, Ignore, Alpha/Gray).
The memory access is aligned to the next byte. See demo scripts for
examples.

Example to show a 50x40 pixel true color bitmap image:

; load the image into virtual memory skipping bmp header
Data.LOAD.Binary image.bmp VM:0x0 /OFFSET 0x36

; stride is (50.*3.+3)&~0x3
Data.IMAGE VM:0x0 50. 40. /RGB888LE /BottomUp /STRIDE 152.

©1989-2024 Lauterbach General Commands Reference GuideD | 78

More examples are available in the ~~/demo directory:

PSTEP ~~/demo/practice/image/*.cmm

See also

B Data.DRAW B Data. DRAWFFT B Data.DRAWXY B <trace>.DRAW
B Var.DRAW

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 79

Data.ln Read port

Format: Data.ln <address> [<count>] [[<options>]
<options>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
BE | LE

Repeat | INCrement | CORE <core_number>

This command reads data from the specified address and prints it to the message line. The read access
occurs either once or the specified number of repetitions. The read address does not increment during the
repetitions, unless option /INCrement is set. If the number of repetitions exceeds a certain amount, the
output in the message line will be truncated.

Byte, Word, ... See “Keywords for <width>", page 11.

BE, LE Endianness: BigEndian or LittleEndian

Repeat Repeats the input endlessly, e.g. for external measurements.
INCrement Address is incremented by <width> with each repeated access.
CORE <number> Read memory from the perspective of the specified core /SMP

debugging only).

Example:

;read a byte from address 0x40
Data.In D:0x40

;read a 32-bit word from address 0x40, repeat 4 times
Data.In D:0x40 4. /Long

;read a 32-bit word from addresses 0x40 and 0x44
Data.In D:0x40 2. /Long /INCrement

See also

B Data.dump B Data.Out B Data.View 1 Data.Byte()
(1 Data.Float() (1 Data.Long() (1 Data.Quad() 1 Data.STRing()
(1 Data.STRingN() 1 Data.Word()

©1989-2024 Lauterbach General Commands Reference Guide D | 80

Data.LOAD Load file

Format: Data.LOAD <file> [<address>] [<range>] [/<load_option>]
Data.LOAD.auto <file> [<address>] [<range>] [/<load_option>]
Data.LOAD. <file_format><file> [<address>] [<range>] [/<load_option>]

<generic_load Verify | PVerify | NoVerify | CHECKLOAD [<address_range>]
_option>: ComPare | DIFF | CHECKONLY [<address_range>]

ZIPLOAD [<code_range> [<data_range>]]

DIFFLOAD [<address_range>]

DualPort (EF)

Byte | Word | TByte | Long | PByte | HByte | SByte | Quad

BSPLIT <width> <offset>

wordSWAP | LongSWAP | QuadSWAP | BitSwap

VM | PlusVM

NoCODE | NosYmbol | NoRegister | NoBreak | NOFRAME

NoClear | More

PATH <dir>

SOURCEPATH <dir>

StripPATH | LowerPATH

StripPART <parts> | <part_name>

StripBeforePART <pattern>

TASK <task>

NAME <name>

MAP | DIAG

Include | Nolnclude

COLumns | MACRO

CYGDRIVE

SingleLine | SingleLineAdjacent

NoTranspose

<architecture LARGE | LDT | SingleLDT | FLAT |
_specific_load ProtectedFLAT [<code_descriptor><data_descr> <stack_descr>] (only 386)
_option>: SPlit (only 80196)

The Data.LOAD command performs the following actions:

J The code/data provided by <file> is loaded to the target memory, unless the /INoCODE option is
used
. The program counter is initialized with the startup value taken from <file> if any, unless the

/NoRegister or NoCODE option is used.

. All symbol and debug information already available in TRACE32 PowerView is removed, unless
the /NoClear option is used

o The symbol and debug information as well as source code file paths provided by <file> are
loaded into TRACE32 PowerView, unless the /NosYmbol option is used

©1989-2024 Lauterbach General Commands Reference Guide D | 81

The debugger tries to detect the data format of the file automatically when the command Data.LOAD.auto
(or Data.LOAD) is used. The automatic detection is not possible for all formats. In this case please use
Data.LOAD.<file_format>.

Only the generic options can be used with Data.LOAD.auto. All options described below are available for
Data.LOAD.auto and ALL formats of Data.LOAD.<file_format>. There are also options which are only
usable for a specific file format. These options are only available if Data.LOAD.<file_format> is used (see
following commands).

The parameter <address> and <range> are file format dependent:

<address> J File format without address information (e.g. binary): base address
J File format with address information: address offset
<addressrange> J If specified, only the data within the address range will be loaded.
Data outside this address range will be ignored.
. If specified for file formats without address information, the start
address of <range> is used as base address and <address> will be
ignored.

Alphabetic List of Generic Load Options

BitSwap Swap the bits of each byte during load.
Byte Data is loaded in the specified width:
Word . Byte (8-bit accesses) Word (16-bit accesses)
TByte . TByte (24-bit accesses) Long (32-bit accesses)
Long . PByte (40-bit accesses) HByte (48-bit accesses)
PByte . SByte (56-bit accesses) Quad (64-bit accesses)
HByte Must be used if the target can only support memory accesses of a fixed
SByte width. The default width is determined automatically by TRACE32 to
Quad achieve the best download speed.
BSPLIT Loads only certain bytes of the memory.
<stride> . <stride> defines a chunk of data which the other two parameters
<offset> relate to.
[<width>] . <offset> defines the offset of the bytes being saved.
] <width> defines the bus width in bytes.
For an illustration of <stride>, <offset>, and <width>, see below.
The option BSPLIT 2 0 loads the lower byte of a 16-bit bus.
CHECKDIFF Checks the target code with the target agent and reports the result in the
FOUND() function.
CHECKLOAD See CHECKLOAD.
CHECKONLY See CHECKONLY.

©1989-2024 Lauterbach

General Commands Reference GuideD | 82

COLumns Loads information for single stepping columns in HLL mode. May not be
available in all file formats.

Compare See Compare.

CutPATH Deprecated.

Cuts name in path to 8 characters.

CYGDRIVE Use this option to make TRACE32 aware of object files compiled within a
Cygwin environment (e.g. the Xilinx MB compiler). This will strip the prefix
c:\cygdrive\c\ from source paths so TRACE32 looks for source files at
the correct location in the file system.

DIAG Enable diagnostic messages, which are shown in the AREA window during
loading.

DIFF See DIFF.

DIFFLOAD See DIFFLOAD.

DualPort (EF)

Data is stored directly to dual-port memory where possible. Data is stored
regular if there is no memory mapped at the target address. This option can
speed up the download of code by a factor between 2 and 10. It should be
used whenever possible, i.e. when the most part of the code is downloaded
into emulation memory.

FIXPATH

Deprecated.
Remove duplicates of // or \\ from path.

FLASHONLY

Loads the file just to the defined FLASH memories. You can view the
defined FLASH memories in the FLASH.List window. The number of
dropped bytes is displayed in the TRACE32 message line.

FRAME

Consider the stack frame information of the symbol information of the loaded
file. (E.g. consider section “.debug_frame” of an ELF file) The stack frame
information in the file is used for the Frame window. Without this option the
TRACE32 tool tries to analyze the function prolog code to get the stack
frame.

This options is enabled by default for the following CPU families:

MMDSP+, Nios Il, ARC, C166, Hexagon, APS, Intel X86, Ubicom32 (You
can disable it with NOFRAME)

GO

Start target CPU after loading the target program.

GTLDMALOAD
<offset>

Forces the Data.LOAD.* command to use the back-door memory access of
the emulation system that is configured by the command
SYStem.GTL.DMANAME.

The Data.LOAD.* command can be executed in SYStem.Mode.Down,
because it does not use the debug capabilities of the CPU. For an
example, see below.

©1989-2024 Lauterbach

General Commands Reference Guide D | 83

HIPERLOAD
<target_ip_addr>

High performance load. Sends the data via UDP packets to the target -
bypassing the JTAG interface.

[\<program-name>]

Include Activates the loading of source lines, which are generated from include
files.

By default this option is enabled. Disable it with option Nolnclude.

LowerPATH See LowerPATH.

LongSWAP Swaps high and low bytes of a 32-bit word during load.

MACRO Loads information from C Macros for HLL debugging. May not be available in
all file formats.

MAP Generates memory load map information and checks for overlapping
memory writes during download. The load map information can be
examine with sYmbol.List. MAP. The option can be useful if the load map
is questionable.

This option is nowadays enabled by default. Disable it with NOMAP.

MERGE Merges debug information from the loaded file with already loaded plain

symbol information of another program.
Useful when debug information was stripped of the work file but is
available in another file.

More This option speeds up the download of large projects consisting of multiple
files. The option suppresses the database generation process after loading.
The option must be set on all load commands, except the last one.

MultiLine Allows to show a single source line at multiple target locations.

The default for most debug formats.

NAME Overwrites the program name with the specified one. This option is useful
when the same copy of one program is loaded more than once (e.g. in
multitask environments).

NoClear Existing symbols are not deleted. This option is necessary if multiple
programs must be loaded (Tasks, Overlays, Banking).

NoCODE Suppress the code download. Only loads symbolic information.

NOFRAME Ignore the stack frame information of the symbol information of the
loaded file. (E.g. ignore section “.debug_frame” of an ELF file) The stack
frame information in the file is used for the Frame window.

Use this option, if your compiler doesn't produce the correct information.
The TRACES32 tool tries then to analyze the function prolog code to get
the stack frame.

Noinclude Deactivates the loading of source lines generated from include files. (By

default, these source lines are included.)

NoINCrement

Loads code to a single address (of a FIFO).

©1989-2024 Lauterbach

General Commands Reference Guide D | 84

NOMAP

During program download the debugger generates usually load map
information and checks for overlapping memory writes. The load map
information can be examine with sYmbol.List.MAP.

The option NOMAP disables the generation and checking of load map
information.

NoRegister Any startup values for registers (e.g. Program Counter) are not taken from
the file.

NosYmbol No symbols will be loaded (even no program symbol). This option should be
used, when pure data files are loaded.

NoTranspose Module and program names are transcoded per default to avoid reserved
characters.
Examples:
my-main is transcoded to my_name
mm\init.cistranscodedtomm__init.c
Path separators are normally transcoded to double underscores, other
special characters are transcoded to underscores.
This can be disabled using the /NoTranspose option.

NoVerify See NoVerify.

PATH See PATH.

PlusVM The code is loaded into target memory plus into the virtual memory.

PVerify See PVerify.

QuadSWAP Swaps high and low bytes of a 64-bit word during load.

Register Initialize some registers (e.g. Program Counter) with startup values taken

from the file. This is usually enabled by default. Disable it with option
NoRegister.

SingleLineAdjacent

See SingleLineAdjacent.

SOURCEPATH See SOURCEPATH.

StripPATH See StripPATH.

StripPART See StripPART.

TASK Defines the magic word for the program of this task. This option is only
supported for specific processors, which have a built-in MMU (e.g.
68040/60). For more information about the usage of this option, refer to the
Processor Architecture Manual.

TYPEMAX Maximum number of types allowed in one single module when type

<number> information is compressed.

©1989-2024 Lauterbach

General Commands Reference Guide D | 85

TypesOnly Loads only type information.

Verify See Verify.

VM The TRACES32 software provides a virtual memory (VM:) on the host. With
this option the code is loaded into this virtual memory.
The virtual memory is mainly used for program flow traces e.g.
MPC500/800, ARM-ETM ... Since only reduced trace information is
sampled, the TRACE32 software also needs the code from the target
memory in order to provide a full trace listing. If the on-chip debugging
logic of the processor doesn’t support memory read while the program is
executed a full trace display can only be provided if the program
execution is stopped.
If the code is loaded into the virtual memory the TRACE32 software can
use code from the virtual memory in order to provide a full trace listing.

wordSWAP Swaps high and low bytes of a 16-bit word during load.

ZIPLOAD See ZIPLOAD.

©1989-2024 Lauterbach

General Commands Reference GuideD | 86

Details on Generic Load Options

Options which verify that code blocks were written error-free to the target memory

Verify Data memory is verified after the complete code has been downloaded to
the target. The option also slows down the download process by about three
times. See also the ComPare option.

CHECKLOAD Data memory is checked after writing by calculating checksums.
Recommended if large files are loaded to targets with a slow upload speed.

Checksums over the memory blocks are built by a so-called target agent.
The target agent is part of the TRACE32 software and is automatically
loaded at the end of the loaded data. If this is not practicable it is also
possible to define an at least 64K byte <address_range> for the target
agent.

PVerify Partial verify. Same as verify, but only first part of each continuous memory
section will be verified. Faster than verify, but still provides some kind of
memory checking.

NoVerify Minimum verification is also turned off. This verification includes checking for
existing dual-port memory when loading to dual-port memory and checking
for ROM limits when loading to a ROM monitor. With this option all this code
outside limits will be silently thrown away.

Examples:

Data.LOAD.El1f arm.elf /Verify
Data.LOAD.E1f diabp8.x /CHECKLOAD

Data.LOAD.El1f diabp8.x /CHECKLOAD 0xA0000000++0xXFFFF

©1989-2024 Lauterbach General Commands Reference Guide D | 87

is not changed.

Options that allow to check whether the data in memory match the data in the file. Memory

ComPare

Data is compared against the file by reading the data from memory. Memory
is not changed. The comparison stops after the first difference.

CHECKONLY

Data is compared against the file by calculating checksums. Memory is not
changed. The comparison stops when checksum is wrong. Recommended
if large files are loaded to targets with a slow upload speed.

Checksums over the memory blocks are build by a so-called target agent.
The target agent is part of the TRACE32 software and is automatically
loaded at the end of the data. If this is not practicable it is also possible to
define an at least 64K byte <address_range> for the target agent.

DIFF

Data is compared against the file, memory is not changed. The result of the
compare is available in the FOUND() and TRACK.ADDRESS() function.

Examples:

I

check if diabp8.x is already loaded by calculating checksums on data
; in target memory

Data.LOAD.El1f diabp8.x /CHECKONLY

7

Load code from binary and verify specific sections with the El1f file

Data.LOAD.Binary f.bin 0x0
Data.LOAD.E1f f.elf /NoCODE

Data.LOAD.E1f f.elf sYmbol.SECRANGE (".text")

IF FOUND ()
(

PRINT ADDRESS.OFFSET (TRACK.ADDRESS ())

)

/DIFF /NoRegister /NosYmbol

©1989-2024 Lauterbach

General Commands Reference Guide D |

88

Options to improve the download speed for debug ports with slow download

DIFFLOAD Downloads only changed code in a compressed form via a target agent.

The target agent is part of the TRACE32 software and is automatically
loaded at the end of the data. If this is not practicable it is also possible to
define an at least 64K byte <address_range> for the target agent.

Switching the instruction cache ON before loading improves the
download performance.

DIFFLOAD is recommended for fast targets with a slow download speed
(i.e. lower then 100 KBytes/s).

ZIPLOAD Data are zipped before the download and unzipped on the target by a so-
called target agent. Recommended if large files are loaded to targets with a
slow download speed.

The target agent is part of the TRACE32 software and is automatically
loaded at the end of the data. If this is not practicable it is also possible to
define a <code_range> and a <data_range> respectively for the code
and data of the target agent. If no <data_range> is specified, the target
agent data will be stored after its code. The specified ranges should be
within RAM.

Examples:

; first download in standard speed
Data.LOAD.El1f demo.elf /DIFFLOAD

; next download with improved speed
Data.LOAD.El1f demo.elf /DIFFLOAD

7 eee

; load diabp8.x via ZIPLOAD
Data.LOAD.El1f diabp8.x /ZIPLOAD

Data.LOAD.E1lf diabp8.x /DIFFLOAD /ZIPLOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 89

Options to change the mapping between HLL source code line and blocks of assembler

lines

SingleLineAdjacent Adjacent blocks of assembler code generated for an HLL line are
concentrated.

SingleLine All blocks of assembler code generated for an HLL line are concentrated.

The debug information loaded from <file> provides the mapping between HLL source code lines and the
blocks of assembler code generated for these lines. Their are mainly three types of mapping:

1.

A continuous block of assembler code is generated for an HLL line.

2 BusVmbol List.Line main\26 ===
address to module source offset |
P: 20001188——200011CBJ7\\d1abc ext'diabc |..0x40004000,/d7abc. c| 612——612 | 9037 | -
12
Two or more adjacent blocks of assembler code are generated for an HLL line.
£ Bus¥Ymbol List.LINE main\6 (o)==
address to module source Tine ﬁcset i
P:70100CBE0--70100CE3 [.muTtisieve_intmem'\muTltisieve .multisieve_intmem/multisieve.c [4\178--178 2757 »~
P:70100CB4--70100CBS |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\178--178 2757 =
4 13
Two or more detached blocks of assembler code are generated for an HLL line.
2 BusVmbol List.LINE main\3 =n Eoh=
address to module source Tine offset i
P:70100CA6--70100CA7 [.muTtisieve_intmem\muTltisieve .multisieve_intmem/multisieve.c [4175--175 2718 .
P:70100CA8--70100CAR |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\1/6--1/6 2734
P:70100CAC--70100CAF |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\177--177 2745
P:70100CB0--70100CE3 |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\178--178 2757
P:70100CB4--70100CBS |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\178--178 2757
P:70100CB6--70100CBY |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [Z\179--179 2789
P:70100CBA--70100CEBD |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\180--181 2852
P:70100CBE--70100CEF |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\180--181 2852
P:70100CC0--70100CC3 |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\182--182 2888
P:70100CC4--70100CC7 |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\183--184 2951
P:70100CC8--70100CCY .multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\183--184 2951
P:70100CCA--70100CCD |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\185--185 2987
P:70100CCE--70100CCF |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\186--187 3050
P:70100CD0--70100CD3 |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\186--187 3050
P:70100CD4--70100CD5 |.multisieve_intmem'multisieve [.multisieve_intmem/multisieve.c [\175--175 2718 ~
4 }

©1989-2024 Lauterbach

General Commands Reference Guide D |

90

It has the following effects on debugging if more the on block of assembler code is generated for an HLL line:

. The HLL line is marked with a tree button.
=1 [BuList.HIl main] =R EER
[Mstep |[Mover || $next || #Retun | @up || »Go | mEBreak]%Mode | Find: multisi¢
addr/1ine |source i
172 [int main(void) o
174 | volatile unsigned int nCount = 0;
175 while (TRUE) {
176 i
177 Y
178 if (_mfcr(CORE_ID) =
179 § sieveD(); /* only core 0, __privatel is not sufficient
181 if (_mfcr(CORE_ID) ==1) {
182 § sievel(); /* only core 1, _ privatel is not sufficient */ -
184 if (_mfcr(CORE_ID) == 2) { -
J 4| i | +
o If a breakpoint is set to the HLL line, a breakpoint is set to every block of assembler code.
e B::Break.List EI@
[Delete All (O Disable Al @ Enable All|[@ Init | Zmpl... || S store... || Sload... || Bilset... |
address |types imp]l i
C:70100CBO|[Program SOFT mainib
C:?OlOOCBrﬂrﬂProgram SOFT main'6

If the option SingleLineAdjacent is used, adjacent blocks of assembler code generated for an HLL line
are concentrated.

If the option SingleLine is used, all blocks of assembler code generated for an HLL line are
concentrated.

The object file (e.g. ELF file) does not contain the source code. It only contains the paths from which the
source code can be loaded. The source code paths need to be adjusted if the build host environment differs
from the debug host environment.

Option to adjust the debug paths for the source files

PATH If the source files are not found with the paths provided by the object file,
additional direct directories can be given by this option.The option can be
used more than once to include more directories into the search path.

The command sYmbol.SourcePATH can be used to define more and
permanent search directories.

SOURCEPATH Define a new base directory for the source files.
This replaces the current working directory that is taken by default if the
source files are not find under the paths provided by the object file.

StripPATH The file name is extracted from the source paths given in the object file.

©1989-2024 Lauterbach General Commands Reference Guide D | 91

Option to adjust the debug paths for the source files

StripPART Parts of the file paths provided by the object file are removed. The option
takes either a <number> or a <string> as parameter.

<number> defines how many parts of the path are removed.
<string> is searched in the path provided by the object file. Everything
until <string> is removed from the source path.

This allow to specify a new base directory for a complete file tree by
using the command sYmbol.SourcePATH.SetBaseDir.

StripBeforePART Strips the file path up to, but excluding the specified <pattern>. For an
example, see below.

LowerPATH The file name is converted to lower-case characters.

Examples for the options PATH, StripPART, and SOURCEPATH

[Back to PATH] [Back to StripPART] [Back to SOURCEPATH]

Data.LOAD.El1f demo.axf /PATH ~~/demo/quickstartboard/demo_ext

Data.LOAD.El1f demo.axf /StripPART 4. /SOURCEPATH ~~/demo/hardware/imx53

Data.LOAD.El1f demo.axf /StripPART 3.

% BusVmbol.List. SOURCE [s

2 Clear & Touch all 2 Search Path SOUrCES... 2 Errors...
rogram sOurce file size time state |
L wdemo [J:5PEG sTevelarm3idemo. [arm3%demo. c | | | |

Data.LOAD.E1f demo.axf /StripPART "PEG"

2 Bus¥mbol List. SOURCE = =R
2 Clear & Touch all 2 Search Path SOUrCES... 2 Errors...

rogram sOurce file size time state |

L wdemo [J:5PEG sTevelarm3idemo. [sTevelarm3idemo. c | | | |

©1989-2024 Lauterbach General Commands Reference Guide D | 92

Example for the option StripBeforePART

[Back]

;strip the path up to and excluding the string starting with "co"
Data.LOAD.El1f ~~/demo/arm/compiler/arm/thumbm3.axf /StripBeforePART "co"
sYmbol .List.SOURCE

[3% Clear || @ Touch all | £ Search Path || £ Sources % Errors...

module source file =
LwEhumbm3harm [C:hprojects’ demo’ demo’ arm’ compi Teriarm \ar‘m.cl|€: \projectsidemo’demo’arm’ compi Teriarmiyarm. c I'
]

% Bus¥Ymbol.List. SOURCE o -E =]

1 } ‘

% BusYmbol.List SOURCE =n| Wl <
[3% Clear || @ Touch all | £ Search Path || £ Sources % Errors...

module source file 1

A Ehumbm3'arm [C:i\projectsidemo’,demo’armcompiTeriarmiarm. c | [compiTer’armiarm. c I‘
]

1 3 |

A Without StripBeforePART B Path stripped with StripBeforePART "co"

BSPLIT: illustration of <stride>, <offset>, and <width>

[Back]
< Stride 8 > < Stride 8 >
Offset Width Offset Width
2 >< 2 N 2 > < 2 N

Memory: [0 |12 3]|4]|5|6|7]|8]9]|10 11]|12]13|14]15

File:

©1989-2024 Lauterbach General Commands Reference Guide D | 93

Example for the option GTLDMALOAD <offset>

[Back]
;configure the DMA transactor interface
SYStem.GTL.DMANAME "DMAOQ"
;connect to emulation system
SYStem.GTL.CONNECT
;load the elf file by using DMAO starting with offset 0x1000
Data.LOAD.E1f "demo.axf" /GTLDMALOAD 0x1000
See also
M Data.LOAD.AIF M Data.LOAD.AOUT M Data.LOAD.ASAP2 M Data.LOAD.Ascii
B Data.LOAD.AsciiDump B Data.LOAD.AsciiHex B Data.LOAD.AsciiOct B Data.LOAD.AVocet
B Data.LOAD.BDX B Data.LOAD.Binary B Data.LOAD.BounD B Data.LOAD.CCSDAT
B Data.LOAD.CDB B Data.LOAD.COFF B Data.LOAD.ColonHex B Data.LOAD.COMFOR
B Data.LOAD.CORE B Data.LOAD.COSMIC B Data.LOAD.CrashDump B Data.LOAD.DAB
B Data.LOAD.DBX B Data.LOAD.EIf B Data.LOAD.ESTFB B Data.LOAD.eXe
B Data.LOAD.FIASCO B Data.LOAD.HiCross B Data.LOAD.HiTech B Data.LOAD.HP
B Data.LOAD.ICoff B Data.LOAD.leee B Data.LOAD.IntelHex B Data.LOAD.LDR
B Data.LOAD.MachO B Data.LOAD.MAP B Data.LOAD.MCDS B Data.LOAD.MCoff
B Data.LOAD.OAT B Data.LOAD.Omf B Data.LOAD.Omf2 W Data.LOAD.OriginHex
B Data.LOAD.PureHex B Data.LOAD.REAL B Data.LOAD.ROF B Data.LOAD.S1record
B Data.LOAD.S2record B Data.LOAD.S3record B Data.LOAD.S4record B Data.LOAD.SAUF
B Data.LOAD.SDS B Data.LOAD.SPARSE B Data.LOAD.sYm B Data.LOAD.SysRof
B Data.LOAD.TEK B Data.LOAD.TekHex B Data.LOAD.Ubrof B Data.LOAD.VersaDos
B Data.LOAD.XCoff W List (1 ADDRESS.isDATA()
A ’Release Information’ in’Legacy Release History’
A ’Load the Application Program’ in "Training Source Level Debugging’
©1989-2024 Lauterbach General Commands Reference GuideD | 94

Format Specific Data.LOAD Commands and Options

The following Data.LOAD.* commands are format-specific. No automatic detection is performed. All generic
options documented for Data.LOAD.auto are also available for the format-specific commands. The options
documented below are only available for the format-specific commands, not for the generic

Data.LOAD.auto.
Data.LOAD.AIF Load Arm image file
Format: Data.LOAD.AIF <file> [<class>] [[<option>]
<option>: Puzzied
AnySym
PACK
RAMINIT

<generic_load_option>

Loads a file in the AIF format (Arm Image Format). The debugging information must be in ARMSD format.

Puzzled If the compiler rearranges the source lines, i.e. the lines will be no longer
linear growing, this option must be used.

AnySym Loads also special symbols that are otherwise suppressed.

PACK Saves memory space by removing redundant type information. Standard
types (e.g. char/long) are assumed to be equal in all modules. Types with
the same definition can share the same memory space.

RAMINIT Loads the data sections at its final position in RAM and fills the BSS
section with zeros. Otherwise the data section will be loaded immediately

after the code section and the BSS section remains unchanged.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 95

Data.LOAD.AOUT Load a.out file

Format: Data.LOAD.AOUT <file> [<class>] [[<option>]

<option>: <generic_load_option>

Loads a file in BSO/Tasking A.OUT format.

<option> For a description of the generic options, click <generic_load_option>.
NOTE: This is not the a.out format of the GNU compiler (see Data.LOAD.DBX for this
format).
See also
B Data.LOAD
Data.LOAD.ASAP2 Load ASAP2 file

Format: Data.LOAD.ASAP2 <file> [/<option>]
<option>: <generic_load_option>

Loads a file in ASAP2 format.

<option> For a description of the generic options, click <generic_load_option>.
See also
W Data.LOAD B sYmbol.AddInfo.LOADASAP2

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 96

Data.LOAD.Ascii Load ASCII file

Format: Data.LOAD.Ascii <file> <address> | <range> [/<option>]

<option>: SKIP <offset>
<generic_load_option>

Loads a pure data file in word-oriented Ascii file format.

SKIP <offset> If the option /SKIP <offset> is specified, the first <offset> bytes of the file are
omitted.
<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD

Data.LOAD.AsciiDump Load ASCI!I file generated from Data.dump window

Format: Data.LOAD.AsciiDump <file>[<address> | <range>] [[<option>]

<option>: OFFSET <value>
<generic_load_option>

Loads an Ascii file that was generated from the contents of a Data.dump window. To generate the Ascii file,
use the command PRinTer.FILE and the pre-command WinPrint.

OFFSET <value> Offset value in relation to the start <address>.

<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 97

Data.LOAD.AsciiHex Load hex file

Format: Data.LOAD.AsciiHex <file> [/<option>]
Data.LOAD.AsciiHexA <file> [/<option>]
Data.LOAD.AsciiHexB <file> [/<option>]
Data.LOAD.AsciiHexC <file> [/<option>]
Data.LOAD.AsciiHexP <file> [[<option>]
Data.LOAD.AsciiHexS <file> [/<option>]

<option>: OFFSET <offset>

Loads a file in a simple Ascii file format. Refer to Data.SAVE.AsciiHex for a description of the file formats.

See also
B Data.LOAD
Data.LOAD.AsciiOct Load octal file
Format: Data.LOAD.AsciiOct <file> [/<option>]
Data.LOAD.AsciiOctA <file> [[<option>]
Data.LOAD.AsciiOctP <file> [/<option>]
Data.LOAD.AsciiOctS <file> [/<option>]
<option>: OFFSET <offset>

Loads a file in a simple Ascii file format. Refer to Data.SAVE.AsciiOct for a description of the file formats.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 98

Data.LOAD.AVocet Load AVOCET file

Format: Data.LOAD.AVocet <file> [<class>] [[<option>]

<option>: NOHEX
<generic_load_option>

Loads a file in Avocet format. Without option the command will load the hex and sym files.

<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD
Data.LOAD.BDX Load BDX file
Format: Data.LOAD.BDX <file> <address> | <range> [/<option>]
<option>: <generic_load_option>

Loads a file in WindRiver visionICE/visionPROBE Binary Download Format (BDX).

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 99

Data.LOAD.Binary Load binary file
[Examples]
Format: Data.LOAD.Binary <file> <address> | <range> [[<option>]
<option>: SKIP <offset>
UNZIP
<generic_load_option>

Loads a plain binary file.

<address>

<range>

SKIP <offset>

UNZIP

<option>

Example 1 - Patch a File

If <address> is specified, the complete file will be loaded to the target
<address>.

If <range> is specified, the file will be loaded to the range start address until
the end of the range, or the end of the file.

If the option /SKIP <offset> is specified, the first <offset> bytes of the file are
omitted.

Unpacks files compressed with the ZIP option of a TRACE32 command, or
files compressed by an external tool that uses the gzip archive format.

For a description of the generic options, click <generic_load_option>.

If you need to patch binary files, an elegant and fast way is to use the TRACES2 virtual memory (VM:). The
following example shows how the file contents are loaded to and modified in the virtual memory of
TRACE32. The result is then saved back to the original file.

;Load the binary file to the virtual memory starting at address VM:0
Data.LOAD.Binary "myfile.bin" VM: 0

;Display the virtual memory contents starting at address VM:0

Data.dump VM: 0

;Return the virtual memory content for the specified address

PRINT "Ox" %Hex

Data.Byte (VM:0x04)

;Modify the virtual memory

Data.Set VM:0x04

0x42

;Save a range of the virtual memory back to the binary file
Data.SAVE.Binary "myfile.bin" VM:0--0x4F

©1989-2024 Lauterbach

General Commands Reference Guide D | 100

Example 2 - Load Directly into RAM

This script shows how to directly load a file into RAM.

Prerequisite: A target board with a boot loader; this example is based on the U-Boot bootloader. Loading
required files directly into RAM is a time saver because loading from flash is bypassed. This approach is
useful, for example, if you want to quickly test different versions of a kernel.

LOCAL &base_path
&base_path="path/to/kernelsources"

SYStem.Mode.Up
Go

WAIT 2.s ;Wait until the boot loader has initialized the target board

TERM.OUT " " ;Hit any key to stop autoboot and thus
;bypass loading from flash
Break ;Halt the whole system (U-Boot is waiting

; for terminal commands)

;1) Load kernel image to RAM address 0x1020000
Data.LOAD.Binary "&base_path/Linux/ulmage" 0x1020000

;2) Load ramdisk to RAM address 0x2300000
Data.LOAD.Binary "&base_path/Linux/rootfs.ext2.gz.uboot" 0x2300000

;3) Load device tree blob (DTB) to RAM address 0x1800000
Data.LOAD.Binary "&base_path/Linux/p4080ds.dtb" 0x1800000

;Instruct TRACE32 to load ONLY the debug symbols of the kernel
Data.LOAD "&base_path/vmlinux" /NoReg /NoCODE /StripPART 5.
/SOURCEPATH &base_path/Linux/Kernel sources/linux-2.6.34.6

GO ;Resume waiting of U-Boot for terminal commands
;Instruct U-Boot to boot from the RAM addresses to which 1), 2), 3) have

;been loaded. "10." is the ASCII code for LF.
TERM.OUT "bootm 0x1020000 0x2300000 0x1800000" 10.

©1989-2024 Lauterbach General Commands Reference GuideD | 101

Example 3 - Load a Flash Image

In this script, a flash image is loaded into the FLASH of a target board.

//Target-specific code and code for the debugger, e.g. to declare the
//flash layout to the debugger

;Erase the whole flash
FLASH.Erase ALL

;Load image and program it into flash:
;1) Activate all FLASHs for programming
FLASH.Program ALL

;2) Load binary file
Data.LOAD.Binary flash_img.bin D:0xfe000000 /Long

;3) Deactivate FLASH programming
FLASH.Program off

;4) Compare the contents of the FLASH with the file contents
9 The comparison stops after the first difference
Data.LOAD.Binary flash _img.bin D:0xfe000000 /ComPare

See also
B Data.LOAD B Data.SAVE.Binary

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 102

Data.LOAD.BounD Load BOUND file

Format: Data.LOAD.BounD <file> [<access> [[<option>]

<option>: IEEE
MFFP
68881
OLD
Puzzled
<generic_load_option>

The floating-point format is set by means of the IEEE and MFFP options. The compiler options -VDB and -
VPOST=NONE should be used.

IEEE, MFFP, 68881 Selects the floating-point format used by the compiler.

OLD Load a file from an old complier version. Use this option, if source lines at
the start of a function are not set correctly.

Puzzied If the compiler rearranges the source lines, i.e. the lines will be no longer
linear growing, this option must be used.

<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD
Data.LOAD.CCSDAT Load CCSDAT file
Format: Data.LOAD.CCSDAT <file> [/<option>]
<option>: <generic_load_option>

Loads a file in CSSDAT file format.

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 103

Data.LOAD.CDB Load SDCC CDB file format
[Examples]
Format: Data.LOAD.CDB <file> [<class>] [/[<option>]
<option>: IntelHexFile <binary_file>

NolntelHexFile
WarningsAll
WarningsNo
<generic_load_option>

Loads debug information and binary code from SDCC-proprietary (Small Device C Compiler) file format
called CDB. The file format description is available from SDCC / SourceForge / Free Software Foundation.
The debug information and the binary code are saved in two separate files. The load command tries to find
the corresponding file and loads debug information and code automatically together (see options to avoid
this behavior). The binary part is stored in IntelHex-Format and can also be loaded separately.

IntelHexFile

NolntelHexFile

WarningsAll

WarningsNo

<option>

Define a dedicated Intel Hex file, which contains the binary code
information. The option /NolntelHexFile will be ignored. If the file does
not exist, an error message will appear.

The default is to search the binary file automatically and announce an
error message, if no file is found.

No additional file (binary file) will be searched and loaded. Only the
defined file will be processed.

All applicable warnings will be display in the AREA window. By default a
set of warnings will be ignored, which will not lead to a reduced debug
capability.

No warnings will be display. All warnings are internally ignored.

For a description of the generic options, click <generic_load_option>.

©1989-2024 Lauterbach

General Commands Reference GuideD | 104

Examples:

Example for loading binary and symbol information separately

I

Data.LOAD.IH a.ihx /NosYmbol ; Load binary only
Data.LOAD.CDB a.cdb ; Load symbol information only
/NoIntelHexFile

Example for loading symbols and binary implicitly

Data.LOAD.CDB a.cdb ; binary must be named a.ihx

Example for loading symbols (*.cdb) and binary (*.ihx)
with one command (explicit)

7

7

Data.LOAD.CDB a.cdb /IntelHexFile othername.ihx

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 105

Data.LOAD.COFF

Load COFF file

Format:

<option>:

Data.LOAD.COFF <file> [<class>] [/<option>]

FPU

MCS2 | ICC | MOTC11 | GHILLS | GNUCPP
INT16

SHORT8

ALLLINE

Puzzled

AnySym

CFRONT

GlobTypes
LOGLOAD
<generic_load_option>

Loads a file in the UNIX-COFF format (Common Obiject File Format). The file format is described in all UNIX
manuals. For some processors the command also supports debug information in STABS format.

MCS2

MOTC11

ICC

GHILLS

GNUCPP

ICC

CFRONT

FPU

Puzzled

INT16

SHORT8

Should be used when loading a file generated by the MCS2-Modula
compiler.

Should be used when loading a file generated by the Motorola cc11
compiler.

Should be used when loading a file generated by the Intermetrics
compiler.

Should be used when loading a file generated by the Greenhills compiler.
Should be used when loading a file generated by the GNU C++ compiler.

Should be used when loading a file generated by the Intermetrics
compiler.

Should be used when loading a file precompiled by CFRONT.

Indicates the debugger that the code for an FPU was generated by the
compiler.

If the compiler rearranges the source lines, i.e. the lines will be no longer
linear growing, this option must be used.

Specifies the size of integers to 16 bits.

Specifies the size of shorts to 8 bits.

©1989-2024 Lauterbach

General Commands Reference Guide D | 106

ALLLINE Loads HLL source lines in all sections. As a default only lines in the
executable section are loaded.

AnySym Loads also special symbols that are otherwise suppressed.

GlobTypes Must be set when the debug information is shared across different
modules. If the option is required, but not set, the loader will generate an
error message requesting for the option.

LOGLOAD Load using logical addresses contained in the COFF file.

ASMFUNC Creates extra information for assembler functions.
Ceva-X, TeakLite

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD

A ’Release Information’ in’Legacy Release History’

Data.LOAD.ColonHex Load colon hex file
Format: Data.LOAD.ColonHex <file> [/<option>]
<option>: OFFSET | LineWidth
<generic_load_option>

Loads a colon hex file format with ":" as separator.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 107

Data.LOAD.COMFOR Load COMFOR (TEKTRONIX) file

Format: Data.LOAD.COMFOR <file> [/<option>]

<option>: PHANTOM
<generic_load_option>

The PHANTOM option loads also phantom (out-of-sequence) line numbers.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 108

Data.LOAD.CORE Load Linux core dump file

Format: Data.LOAD.CORE <file> [/<option>]

<option>: <generic_load_option>

Loads a Linux core dump file into the TRACES32 Instruction Set Simulator. The object file has to be loaded
before loading the core file.

<option> For a description of the generic options, click <generic_load_option>.
Example:
Data.LOAD.E1f object.elf ;Load the object file
Data.LOAD.CORE corefile /NoClear ;Load the core dump file
See also
B Data.LOAD

A ’'Release Information’ in’Legacy Release History’

Data.LOAD.COSMIC Load COSMIC file
Format: Data.LOAD.COSMIC <file> [<class>] [/<option>]
<option>: INT16

SCHAR | SPREC

MODD | MODP | MODF (only 68HC16)
IEEE

MMU

REV

ADDBANK

LOGLOAD

<generic_load_option>

Default: MultiLine.

©1989-2024 Lauterbach General Commands Reference Guide D | 109

The loader is implemented for 68K, 32K, 68HC11 and 68HC16 families.

INT16 Uses 16 bit integers, instead of 32 bit (only 68K).
IEEE Uses IEEE floating point format instead of processor specific format.
SCHAR Char type is signed, instead of unsigned.
MODD, MODP, Memory models for 68HC16 compiler.
MODF
SPREC Use single precision floating point only.
REV Reverse bit fields. Must be set when the compiler option was set.
ADDBANK Add information about the bank number to the module names. Must be
used if modules with the same name are duplicated in different banks.
LOGLOA Loads to logical addresses instead of physical addresses. Only relevant
for banked systems.
MMU Loads information and translation tables for on-chip MMU.
<option> For a description of the generic options, click <generic_load_option>.
NOTE: If loading a file for the 68HC11K4 processor in banked configuration the MMU
command and banking registers of the CPU must be prepared before loading (see
emulation probe manual for 68HC11).
See also
B Data.LOAD
Data.LOAD.CrashDump Load MS Windows Crash Dump file
Format: Data.LOAD.CrashDump <file> [/<option>]
<option>: <generic_load_option>

Loads a Microsoft Windows Crash Dump or Minidump file into the TRACE32 Instruction Set Simulator. The
command supports the Crash Dump files of types “Kernel memory Dump” and “Complete memory dump”.

©1989-2024 Lauterbach

General Commands Reference GuideD | 110

For a complete analysis of the MS Crash Dump, the Windows awareness needs to be used in addition to
this command. This helps to retrieve and autoload the Windows kernel debug symbols and sets the context
of all the CPUs that are available in the Crash Dump.

For more details about the Windows awareness extension and the MS Crash Dump analysis, please refer to
“OS Awareness Manual Windows Standard” (rtos_windows.pdf).

<option> For a description of the generic options, click <generic_load_option>.
Example:

Data.LOAD.CrashDump memory .dmp ;Load the crash dump file
See also
B Data.LOAD

A ’'Release Information’ in’Legacy Release History’

Data._LOAD.DAB Load DAB file
Format: Data.LOAD.DAB <file> [/<option>]
<option>: <generic_load_option>

Loads a file in DAB file format.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 111

Data.LOAD.DBX Load a.out file

Format: Data.LOAD.DBX <file> <code> <data> [<sym>] [/<option>]

<option>: CPP
AnySym
CFRONT
GHILLS
LIMITED
<generic_load_option>

Loads a file in DBX-format (sometimes called 'a.out' or Berkeley-Unix file format). The format is used by
SUN native compilers and GNU compilers. As the standard format doesn't include any start address the first
addresses for code and optionally data must be defined. The third address argument can be used to
relocate the symbols when a relocatable program is loaded.

CPP Must be set when debugging C++ applications.

AnySym Loads also any special labels (defining file names etc.) which are usually
suppressed by the loader.

CFRONT Load C++ files converted by the AT&T cfront preprocessor.

GHILLS Load file from Greenhills compiler. For C++ files the CFRONT switch is also
required.

LIMITED Doesn't load any type information. Loads the code and the source

information only.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 112

Data.LOAD.EIf

Load ELF file

[Options] [Architecture Specific Load Options] [Examples]

Format:

<option>:

<option>:
(cont.)

Data.LOAD.EIf <file> [<memory_class> | <offset> | <range>] [I<option>]

FPU | NOFPU

AnySym | ZeroSym

NOMERGE | NOEXTERNALS

STRIPPREFIX <prefix>| STRIPADANAMES

PACK

CODESEC | CODEZERO | CODEPROG

LOGLOAD | PHYSLOAD

LOADSEC <section_name> | LOADSEC !<section_name>
GlobTypes | NoGlobTypes

GHS | GNU | IAR | METAWARE | MetroWerks | MRI | WRS | CFRONT
PROTOTYPES

STARTTHUMB

STABS | DWARF | DWARF2

NOLINES | NOCONST | NOMETHODS | NOCALLINFO
CPP | GNUCPP

1A64

DeBuGiInfoFILE <file2>

CHILL | PASCAL

ALTBITFIELDS

ALTRELOC2

ENUMCONSTS

ABSLINES

ABSLIFETIMES

ForceLines

FUNCIlines | IgnoreFUNCLines

RelPATH | RelPATH2

ModulePATH

ChainedStab | ChainedStab4 | ChainedAbbrev | ChainedLines
BUGFIX4

RELOC <section_name> AT <address>

RELOC <section_name> AFTER <section_name_other>
RELOC <section_name> LIKE <section_name_other>
RELOCTYPE <type>

RELOCSTRIPPED

LOCATEAT <address>

RemoveModulelnSection <section _name>
RemoveModuleAfterSection <section name>
OVERLAY

NoFILEHDR | NoPHDRS

NODEBUG

NODEBUGFRAME | NOEHFRAME

NODOUBLE | NOARGCOERCE

NOLINKAGENAME

©1989-2024 Lauterbach

General Commands Reference GuideD | 113

<option>: IgnoreModuleRange
(cont.) DWEFILE | DWOFILES
PREFIX
FILTERBYCORE
<architecture_specific_load_option>
<generic_load_option>
<architecture_ RVCT | ABI <vers> (only Arm)
specific_load_ ALTDOUBLE | NOALTDOUBLE (only Arm)
option>: ALTTHUMBSYMBOLS (only Arm)

REAL | REAL32 | SMALLREAL | SMALLREAL32 (only Intel x86)
ALTRELOC (only M68K and ColdFire)

REV | MMU (only HC11 and HC12)

NMF <address> | DynamicNMF (only MMDSP)

LARGE (only Intel DSP56K)

Load a file in the ELF format. The file format description is available from UNIX International. The debug
information can be if DIWARF1 or DWARF2 format. For some processors STABS debug information is also

supported.

When <file> does not contain debug information (stripped file) the debuglink or build-id may be used to
automatically search for the debug information in a separate file.

The search strategy is in descending order:

. <base>/.build-id/<xx>/<yy...yy>.debug

- <xx> are the first two hex characters of the build-id

- <yy..yy>are the remaining hex characters of the build-id

- <base> is set by sYmbol.SourcePATH.SetBaseDir

J <path of file>/<debuglink>

- debuglink is the name stored in the .gnu_debuglink section of the <file>

J <path of file>/.debug/<debuglink>

- debuglink is the name stored in the .gnu_debuglink section of the <file>

J <base>/<root-path of file>/<debuglink>

- <debuglink> is the name stored in the .gnu_debuglink section of the <file>

- <root-path of file> is automatically detected by removing the leading folders one after each

other

Example:

<file> = /home/user/sysroot/lib/libc.so

<root-path of file> =
[home/user/sysroot/lib,user/sysroot/lib, sysroot/lib, 1ib]

©1989-2024 Lauterbach General Commands Reference GuideD | 114

- <base> is set by sYmbol.SourcePATH.SetBaseDir
. <pwd>/<debuglink>
- <debuglink> is the name stored in the .gnu_debuglink section of the <file>

- <pwd> is the present working directory (e.9. CD /home/user)

Please refer to Examples for split debug information for details.

Options:

<option> For a description of the generic options, click <generic_load_option>.

ABSLIFETIMES Special option - activates workarounds for compiler/linker issues.

ABSLINES Special option - activates workarounds for compiler/linker issues.

ALTBITFIELDS This option might solve problems with regards to the display of bitfields.

ALTRELOC2 Supports special relocation variant.

AnySym Loads all symbols generated by the compiler (defining file names, local
labels etc.) which are usually suppressed by the loader.

BUGFIX4 Option for an alternative interpretation of the DWARF Line Number
Information (section ".debug_line").
With this option the offset to a Line Number Program gets calculated from
unit_length (==total_length) and header_length (==prologue_length) of
the Line Number Program Header (==Statement Program Prologue).
Without this option TRACES32 assumes that a Line Number Program
starts directly after its header.
Try this option only if the Line Number Information in the
sYmbol.List.LINE window seems to be wrong.

CFRONT Enable workarounds for Cfront C++ compiler.

PROTOTYPES Force all functions to include prototype information.

ChainedAbbrev Special option - activates workarounds for compiler/linker issues.

ChainedLines Enables workaround for not relocated line tables.

ChainedStab Special option - activates workarounds for compiler/linker issues.

ChainedStab4 Special option - activates workarounds for compiler/linker issues.

CHILL Set this option if your program was coded in CHILL (CCITT High Level
Language).

CODEPROG Forces loading from program table of the ELF file.

©1989-2024 Lauterbach General Commands Reference GuideD | 115

CODESEC

Normally the code download is done by using the program table of the
ELF file. This option selects the Section table for code download. Some
linkers produce a buggy Program table.

CODEZERO

If a program header of an ELF file indicates that it is indented for more
memory than within the ELF file (p_memsz > p_filesz) than this additional
memory should be set to zero. This is usually done by the start-up code
of the target application. However with option CODEZERO, the debugger
fills this memory with zeroes.

CPP

Must be set when loading an ELF file with symbol information in STABS
format for C++.

DeBuGInfoFILE
<file2>

Loads the debug information from <file2> in case the main file does not
contain any debug information.

Specifying this option disables the automatic search strategy in
TRACE32.

If <file2>is an empty string, the automatic search strategy is disabled
and only the stripped main file is loaded.

DWARF Forces debugger to load only debug information in DWARF format

DWARF2 (ignoring debug information in STABS format). The default is to load all
available debug information independently of the formats.

DWOFILES Loads the debug information from DWARF Object file.

DWPFILE Loads the debug information from Dwarf Package file.

FILTERBYCORE

Just loads the debug information for certain cores (when the ELF file
includes multiple cores).

ForceLines Force loading of source code lines which are not “recommended
breakpoint locations” according to the DWARF line table.
The line table tells the debugger to which target address a line of source
code is associated

FPU, NOFPU Indicates the debugger that the code for FPU or without FPU was
generated by the compiler.

FUNClines Force a source line at first address of function.

[build no. 46143 - DVD 08/2013]

IgnoreFUNCLines

Ignore line number debug information of function declaration.

GHS Enable workarounds for GreenHills compiler.

GlobTypes Must be set when the debug information is shared across different
modules. If the option is required, but not set, the loader will generate an
error message requesting for the option.

GNU Needs to be set for some older GNU compilers.

©1989-2024 Lauterbach

General Commands Reference GuideD | 116

GNUCPP Same as GNU and CPP. Enables GNU specific workarounds for loading
of programs written in C++

1A64 Enable 1A-64 style symbol demangling of programs written in C++ .
This is enabled by default for several modern compiler e.g. GCC vers. 3
and higher, DIAB vers. 5.9 and higher, TASKING VX-toolset, ...

IAR Enable workarounds for IAR compiler.

IgnoreModul- Ignores address range information for modules from the DWARF debug.
eRange

LOADSEC Loads the code of a single ELF section.

<section_name> Example: Data.LOAD.E1f <file> /LOADSEC <section_name>

Suppresses the code of a single ELF section.
Example: Data.LOAD.E1f <file> /LOADSEC !<section_name>

LOGLOAD Takes the logical address (p_vaddr) of the program table to load the code
(instead of the physical address).

METAWARE Enable workarounds for Synopsys' MetaWare® C/C++ Compiler

MetroWerks Enable workarounds for MetroWerks Compiler

ModulePATH Keeps the path name information in the module names. By default the

module names are reduced to the pure source name (without path and
file extension) whenever possible. The option has no effects on the
source file names or directories.

MRI Must be set for the Microtec compiler.

NOARGCOERCE Suppresses the load of argument coercing.

NOCALLINFO Suppresses loaded call debug information (loaded by default).
NOCONST Suppresses the load of "const" variables.

NODEBUG Ignore DWARF and STABS debug information.

NODEBUGFRAME Suppresses the load of debug frame information (“.debug_frame”).
Loads only “.eh_frame” when debug info is in separate ELF/DWARF file.

NODOUBLE Allows using just single precision float.
NOEHFRAME Suppresses the load of “.eh_frame” section.
NOEXTERNALS Ignores declaration of external variables in DWARF debug information.

©1989-2024 Lauterbach General Commands Reference GuideD | 117

NoFILEHDR

Suppresses the loading of the ELF Header to target memory.

Most ELF files do not load the ELF Header to the target memory by
default anyway.

The loading of the ELF Header should also be configurable via the linker
script (scatter file). E.g.: For GCC see 'PHDRS' statement of PHDRS

command in GNU Linker Scripts.
[build no. 46001 - DVD 08/2013]

NoGlobTypes

Can be set when there is no shared debug information in a file format
where the loader expects them (e.g. for Arm).

NOLINES

Suppresses the load of the line table. The line table tells the debugger to
which target address a line of source code is associated.

NOLINKAGENAME

Suppresses using the linkage name from the debug info
(DW_AT_linkage_name).

NOMERGE

Symbol information of the different formats (DWARF/STABS) are not
merged together. The default is to merge the symbol information.

NOMETHODS

Suppresses loading of C++ method debug information.

NoPHDRS

Suppresses the loading of the ELF Program Header Table to target
memory.

Most ELF files do not load the ELF Program Header Table to the target
memory by default anyway.

The loading of the ELF Program Header Table should also be
configurable via the linker script (scatter file). E.g.: For GCC see 'PHDRS'

statement of PHDRS command in GNU Linker Scripts.
[build no. 46001 - DVD 08/2013]

OVERLAY

Set when loading

. an ELF file containing overlay code sections (declared as such
be the debug information in the file) or

. an ELF file containing plain code sections (not marked in any
special way in the debug information) that overlay code
sections of other ELF files (that were loaded or will be loaded).

The option makes the ELF-Loaded consider existing relocation sections and
the details from the table of declared overlay sections
(sYmbol.OVERLAY.List) to load the symbols of each overlaying section
to a separate virtual memory segment (Each address is virtually
extended by an “overlay 1D”).

If your ELF file does not contain relocation information you have to
declare the overlaying sections and source files using
sYmbol.OVERLAY.Create before loading the ELF file (“File-based Code
Overlay Support”). In this case the load options INOFRAME and /NoClear
are also recommended.

©1989-2024 Lauterbach

General Commands Reference GuideD | 118

PACK Saves memory space by removing redundant type information. Standard
types (e.g. char/long) are assumed to be equal in all modules. Types with
the same definition can share the same memory space.

PASCAL Manually set programming language to Pascal.

PHYSLOAD Use the physical address (p_paddr) of the program table to load the
program.

PREFIX Defines the prefix character. Same as sYmbol.PREFIX command.

RELOC <secname>
AT <address>

RELOC <secname>
AFTER
<secname_other>

RELOC <secname>
LIKE
<sechame_other>

Relocates code/symbols of the specified section to the specified logical
address or after the specified section.

RELOCSTRIPPED

For stripped ELF files only (separate debug info file).
Relocates the information in debug file according to the information from
the stripped ELF file.

RELOCTYPE <type> Relocates sections based on the OS Awareness.

RelPATH Source files can be compiled with a full or a relative path. Example:
/home/irohloff/my_project/obj > gcc -c¢ -g ../my_file.c
/home/irohloff/my_project/obj > gcc -c
-g /home/irohloff/my project/my_file.c
If the source file was compiled with a relative path, the compilation path is
also stored in the *.elf file. TRACES32 combines the compilation path with
the relative path to the source file path by default.

The option /RelPATH advises TRACE32 use only the relative path as
source file path.

The option can be combined with other source search path commands to
adjust the search path for the debugger in case the source files have
been moved.

RelPATH2 The option /RelPATH2 strips away the path information from the

DWARF2 line number information. This is usually the directory path to
the source file given in the compiler command line.

RemoveModuleAf-
terSection
<sename>

Removes dummy modules after section.

©1989-2024 Lauterbach

General Commands Reference GuideD | 119

RemoveModuleln-
Section <secname>

Removes dummy modules in section.

REV Reverse bit fields. Must be set when the compiler option was set. (only
HC11/HC12)

STABS Forces debugger to load only debug information in STABS format
(ignoring debug information in DWARF format). The default is to load all
available debug information independently of the formats.

STARTTHUMB Forces the start PC to thumb mode (as workaround for buggy ELF files).

STRIPADANAMES

Strips off parents from nested function names.

STRIPPREFIX Strip given string from the beginning of every ELF symbol.

<prefix> E.g. The symbol “F_main” becomes “main” with /STRIPPREFIX "F_"
WRS Enable workarounds for WindRiver Diab compiler.

ZeroSym By default modules linked to address 0x00 are not loaded.

The option /ZeroSym advises the loader to also load all modules linked
to address 0x00.

Architecture Specific Load Options:

Arm architecture:

ABI <vers>

Force Arm ABI version.

RVCT

Force 1A-64 style symbol demangling of programs written in C++ .

Intel® x86 architecture:

REAL Memory model (only used for x86 REAL-mode debug info in stabs
format).

REAL32 Memory model (only used for x86 REAL-mode debug info in stabs
format).

SMALLREAL Memory model (only used for x86 REAL-mode debug info in stabs
format).

SMALLREAL32 Memory model (only used for x86 REAL-mode debug info in stabs

format).

©1989-2024 Lauterbach

General Commands Reference GuideD | 120

M68K and Coldfire architecture:

ALTRELOC Supports special relocation variant.

HC11 and HC12 architecture:

MMU Loads information and translation tables for onchip MMUs

REV Reverse bit fields. Must be set when the compiler option was set.
MMDSP architecture:

NMF <address> NMF framework support.

DynamicNMF Special option (not active architecture).
DSP56K architecture:

LARGE Large memory model.

©1989-2024 Lauterbach General Commands Reference GuideD | 121

Examples

Example for <memory _class>:

If loading the code to the target memory is not working, you can
inspect the code by loading it to the virtual memory

I

Data.LOAD.El1lf demo.elf VM:

Data.List VM: ; Display a source listing based on
the code in the virtual memory

sYmbol .List .MAP ; Display the addresses to which
; the code/data was written

Example for <offset> for the TriCore:

The program was linked for address 0x83000000, which is cached external
; memory, but FLASH programming is not working on cached memory.

To solve this situation the program has to be programmed to 0xA3000000
which is in not cached external memory

FLASH.Program ALL

Data.LOAD.E1f demo.elf 0x20000000 ; Add offset for loading

FLASH.Program off

Examples for the option /RELOC:

; relocate the code section of the file mymodul.o
; to the address 0x40000000
Data.LOAD.El1f mymodul.o /NoCODE /NoClear /RELOC .text AT 0x4000000

; relocate the const. section of the file mymodul.o

; after the code section

Data.LOAD.El1f mymodul.o /NoCODE /NoClear /RELOC .text AT 0x4000000 \
/RELOC .const AFTER .text

; relocate the const. section of the file mymodul.o

; the same delta like the code section

Data.LOAD.El1f mymodul.o /NoCODE /NoClear /RELOC .text AT 0x4000000 \
/RELOC .const LIKE .text

©1989-2024 Lauterbach General Commands Reference GuideD | 122

Example for <range>:

; The elf files contains program for the FLASH and data loaded to RAM,
; the data loaded to RAM might disturb the target-controlled FLASH

; programming.

; To solve this situation the code is loaded only to the specified

; address range.

FLASH.Program ALL
Data.Load.Elf demo.elf 0xa3000000++0x3fffff

FLASH.Program off

Example for <offset> <range>:

Data.LOAD.E1f demo.elf 0x1000000 0x13£f9900++0xff

; Please be aware that the code is first moved by <offset> so the <range>

; has to be specified by using its new addresses

Example for loading the program to a virtual machine.

Data.LOAD.El1f ../FreeRTOS/FreeRTOS.elf N:3:::0 /NoClear /NoCODE

Examples for split debug information

Example 1: gnu-debuglink in same folder:

gcc -g -o foo foo.c

objcopy --only-keep-debug foo foo.debug ;

g strip -g foo

; S objcopy --add-gnu-debuglink=foo.debug foo
Data.LOAD.E1f foo ; loads './foo' and './foo.debug'

I

I

r Ur

Example 2: gnu-debuglink in .debug subfolder:

gcc -g -o foo foo.c

mkdir .debug

objcopy --only-keep-debug foo .debug/foo.debug
strip -g foo

; S objcopy --add-gnu-debuglink=foo.debug foo
Data.LOAD.El1f foo ; loads ./foo and ./.debug/foo.debug

Ur U Ur

©1989-2024 Lauterbach General Commands Reference Guide D |

123

Example 3: gnu-debuglink in /ust/lib/debug subfolder:

; $ gcec -g -o /usr/local/bin/foo foo.c

; S objcopy --only-keep-debug /usr/local/bin/foo \

g /usr/lib/debug/usr/local/bin/foo.debug
; S strip -g /usr/local/bin/foo

; S objcopy --add-gnu-debuglink=foo.debug /usr/local/bin/foo

sYmbol .SourcePATH.SetBaseDir /usr/lib/debug

Data.LOAD.E1f /usr/local/bin/foo

; loads /usr/local/bin/foo and /usr/lib/debug/usr/local/bin/foo.debug

Example 4: build-id in /usr/lib/debug:

; S gcec -g -Wl,--build-id -o foo foo.c

; S objcopy --only-keep-debug foo \

5 /usr/lib/debug/.buildid/<xx>/<yy..yy>.debug
; # where <xx> are the first two hex characters of the build-id

; # where <yy...yy> are the remaining hex characters of the build-id

; S strip -g foo

sYmbol .SourcePATH.SetBaseDir /usr/lib/debug

Data.LOAD.El1f foo

; loads ./foo and /usr/lib/debug/.build-id/<xx>/<yy..yy>.debug

Example 5: explicitly set debug information file e.g. no gnu-debuglink, no build-id available:

; $ gcc -g -o foo foo.c

; S objcopy --only-keep-debug foo foo.bar

; S strip -g foo

Data.LOAD.E1f foo /DeBuGInfoFILE foo.bar ; loads ./foo and ./foo.bar

See also
B Data.LOAD

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 124

Data.LOAD.ESTFB Load EST flat binary

Format: Data.LOAD.ESTFB <file> [<offset> | <range>] [[<option>]

<option>: <generic_load_option>

Loads an EST flat binary file. An EST flat binary is a binary file with a 32 byte header which defines start and
end address of the included binary data.

<offset> If <offset> is specified, the load address is increased by <offset> bytes.
Positive and negative offsets are possible.

<range> If <range> is specified, only the parts within <range> are loaded.
<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD
Data.LOAD.eXe Load EXE file
Format: Data.LOAD.eXe <file> [<access> | <address>] [[<option>]
<option>: AnySym
CPP
ENUMCONSTS

RELOC <section_name> AT <address>

RELOC <section_name> AFTER <section_name>
FPU

LOCATEAT <address>

NoMMU (default, except for 8086, 80186 and 80286)
<generic_load_option>

Default: ENUMCONSTS.

©1989-2024 Lauterbach General Commands Reference GuideD | 125

Loads files in EXE-format. The command accepts different formats for symbolic information. Plain MS-DOS
EXE formats require a base address for the starting segment. Files from Paradigm Locate or PE-Files from
Pharlap require no load address.

<option>

<generic_load._

option>

For a description of the options, see Data.LOAD.EI.

For a description, click <generic_load_option>.

The following formats are accepted:

Real Mode Debug-Format = Compiler
DOS-EXE CodeView 4 MSVC 16-bit edition, DOS File
WIN-EXE CodeView 4 MSVC 16-bit, Windows Executable (only symbols)
DOS-EXE CodeView 3 MS-C, Logitech Modula
DOS-EXE Borland Borland-C/C++ 2.x-3.x
PARADIGM-AXE Borland Borland-C/C++ 2.x-3.x and Paradigm Locater
Protected Mode
PHARLAP-P3 CodeView 4 MSVC 32-bit edition and Pharlap Locater
Windows(CE) CodeView 4/5 MSVC 32-bit edition
Windows(CE) PECOFF MSVC 32-bit edition
Windows(CE) PDB MSVC (x86,Arm,SH,PowerPC)
SymbianOS STABS GCC
Windows PDB MSVC (x64)
See also
B Data.LOAD

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide D | 126

Data.LOAD.FIASCO Load FIASCO BBS5 file

Format: Data.LOAD.FIASCO <file> [<address> | <range>] [[<option>]
<option>: NoCRCcheck
CRCcheck

<generic_load_option>

Default: NoCRCcheck.

Loads a data file of the FIASCO BBS file format (*.fpsx).

<option> For a description of the generic options, click <generic_load_option>.
NoCRCcheck The check sums in the file are ignored.
CRCcheck The check sums in the file are taken into account. If one or more errors

are encountered in the check sums, a warning message is displayed in
the TRACES32 message line. Detailed warning messages are printed to
the AREA window.

See also
B Data.LOAD
Data.LOAD.HiCross Load HICROSS file
Format: Data.LOAD.HiCross <file> [<class>] [/<option>]
<option>: M2
DBGTOASM
<generic_load_option>

Loads a file from Hiware Modula2 or C Cross Development System. The file name is the name of the
absolute file, all other files are searched automatically.

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 127

Data.LOAD.HiTech Load HITECH file

Format: Data.LOAD.HiTech <file> [<class>] [/<option>]
<option>: NOHEX

NOSDB

Puzzled

<generic_load_option>

Load a file in HI-TECH object format. The code is loaded in S-Record format. When the code is not in S-
Record (Motorola) format, it must be loaded separate with the appropriate command and the symbol file can
be loaded with the /INOHEX option.

NOHEX Don’t load code, load only symbol files.
NOSDB Don’t load the HLL-debugging information.
Puzzled This option should be used, when the global optimizer of the compiler is
activated.
<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 128

Data.LOAD.HP

Load HP-64000 file

Format:

<option>:

Data.LOAD.HP <file> [<class> | <offset>] [/<option>]

NoMMU

PACK

WARN

MODULES
<generic_load_option>

Loads a file in HP-64000 format. All three file types (.X/.L/.A) are loaded if existing. The command
sYmbol.LSTLOAD.HPASM allows source debugging in assembler files. The optional address value defines
an offset for the code of the program. This offset can be used to load a file into a different bank on banked 8-

bit systems.
NOX Doesn’t load the absolute code file. The file name must be the name of
the symbol file (.L).
NOL Doesn’t load any symbols.
NOA Doesn’t load local symbols from ".A' files.
NoMMU Doesn’t set up the MMU table. The MMU table is usually loaded with
information from the sections of the file (64180, 80186,etc.).
PACK Compress symbol information by saving the same labels in different
modules only once.
MODULES Takes the object file from a different location. Try this option if local
symbols from modules are missing.
WARN Issues a warning message when ".A' files are not found. The default is to
silently ignore these files.
<option> For a description of the generic options, click <generic_load_option>.
See also
W Data.LOAD

©1989-2024 Lauterbach

General Commands Reference Guide D | 129

Data.LOAD.ICoff Load ICOFF file

Format: Data.LOAD.ICoff <file> [<class>] [[<option>]
<option>: FPU

MOD

Puzzled

<generic_load_option>

Loads files in Introl ICOFF format.

<option> For a description of the generic options, click <generic_load_option>.
FPU Tells the debugger that code for the FPU was generated by the compiler.
MOD Adjusts the loader for INTROL MODULAZ2 files.

Puzzied If the compiler rearranges the source lines, i.e. the lines are no longer

linear growing, this option has to be used.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 130

Data.LOAD.leee Load IEEE-695 file
Format: Data.LOAD.leee <file> [<address> | <access>] [I<option>]
<option>: FPU | NOCLR | STandarD

InLine | NolnLine
INT16

NoMATCH

MSECtion

NOFRAME

LIMITED

CFRONT

PREFIX <char>

ZP2 | MCC3 | C | ALSYS | XDADA | A5 (only 68K)
NoMMU (only x86)
LARGE (only C166)
<generic_load_option>

The access class can be used to select a different access class for the saving of code or for the symbols,
e.g. the code can be saved directly in emulation memory (E:). The address parameter is used as an offset to
the addresses in the IEEE file. It is only useful for loading different memory banks on a banked system.

<option>

ALSYS

C

CFRONT

FPU

INT16

LIMITED

MCC3

MSECtion

For a description of the generic options, click <generic_load_option>.
Must be used when loading ALSYS IEEE files.

Forces the language to 'C'. This option must be used, when the compiler
generates a wrong ‘compiler-id', i.e. the displayed language is PL/M or

ADA.

Load C++ files converted by a CFront preprocessor. NOTE: This option
should not be used for Microtec C++ files.

Tells the debugger that code for an FPU (Floating Point Unit) was
generated by the compiler.

Specifies the size of integers to 16 bits.

Doesn't load any type information. Loads the code and the source
information only.

Must be used when loading MCC68K 3.0 files.
Assembler module sections are included in the section table. As a default

the IEEE sections are included in the table. If the compiler generates the
assembler module information, this information will be more exact.

©1989-2024 Lauterbach

General Commands Reference Guide D | 131

NOCLR If the 'NOCLR' option was selected in the Microtec C compiler, this option
has to be set in order to display enumeration types properly.

NOFRAME Ignore the stack frame information in the IEEE file. The stack frame
information in the file is used for the Frame.view window only. Use this
option, if your compiler doesn't produce the correct information. The
TRACERS2 tool try's then to analyze the function prolog code to get the
stack frame.

NolnLine Suppresses the lines generated by the compiler when inline optimizing in
activated (-Oi). The code generated by a call to an inlined function is then
executed as one line.

NoMATCH If the loader detects externals with type information it tries to combine
them with globals of the same name without type information. This
matching process can be turned off with this option.

NoMMU Suppress the generation of the address translation table for the MMU
command. This table is used to recreate logical addresses from physical
addresses seen on the address bus (80x86).

STandarD If the 'STANDARD' option was selected in Microtec PAS68K, then the
associated underscores can be removed at the time of loading by setting
this option.

ZP2 Must be set, when the ZP2 option was used to compile the file.

See also
W Data.LOAD

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 132

Data.LOAD.IntelHex Load INTEL-HEX file

Format: Data.LOAD.IntelHex <file> [<addressrange>] [[<option>]

<option>: OFFSET <offset>
<generic_load_option>

The file is shifted (by the factor of the Offset) and loaded.

<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD B Data.SAVE.IntelHex

A ’Release Information’ in’Legacy Release History’

Data.LOAD.LDR Load META-LDR file
Meta

Format: Data.LOAD.LDR <file> [<addressrange>] [[<option>]

<option>: <generic_load_option>

Load LDR file for Meta architecture. Please refer to “Meta Debugger” (debugger_meta.pdf) for more
information.

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 133

Data.LOAD.MachO Load "Mach-O" file

[Examples]

Format: Data.LOAD.MachO <file> [<class>] [/<option>]

<option>: DebugFile <binary._file>
NoDebugFile
DWARF | STABS
NOCONST
NOMERGE
uuID
IgnoreARCH
ARCHNumber <value>
IgnoreModuleRange
<generic_load_option>

Load a file in the Mach-O file format. The file format description is available from Apple Inc. The debug
information can be in DWARF2 or STABS format. For some compiler (e.g. GCC) both formats are combined
in one file. Binary and symbol information could be found separated in two files with an identical UUID. The
load command tries to find silently a corresponding debug file and load its symbol information.

<option> For a description of the generic options, click <generic_load_option>.

ARCHNumber Loads the entry with the specified number of an universal binary (FAT).
Counting starts from zero.
Default is to load the first matching architecture (target <-> Mach-O-file) of
the universal binary.

DebugFile Define a dedicated file, which contains the symbol information. The
option /NoDebugFile will be ignored. If the file does not exist, an error
message will appear.

The default is to search the debug file automatically and does not
announce anything, if no file is found. The UUIDs instead will always be
checked between the two files.

DWARF, STABS Forces debugger to load only debug information in DWARF respectively
STABS format. The default is to load all available debug information
independently of the formats.

IgnoreARCH The architecture field of the Mach-O-file will be ignored and no warning
will be emitted, if does not match.
If the Mach-O-file is an universal binary (FAT), the first entry (number=0)
will be loaded regardless of its and the others architecture-codes.

IgnoreModul- Ignores address range information for modules from the DWARF debug.
eRange
NOCONST Suppresses the load of "const" variables.

©1989-2024 Lauterbach General Commands Reference GuideD | 134

NoDebugFile No additional file (debug file) will be searched. Only the defined file will
be processed. No UUIDs will be compared. This allows to load even non-
correspondent files.

The NoDebugFile option will be set implicitly by the generic load options
NoCODE and NosYmbol (see example).

NOMERGE Symbol information of the different formats (DWARF/STABS) are not
merged together. The default is to merge the symbol information.

uuID Only the universally unique identifier (UUID) of a Mach-O file is read,
shown and saved. Target code, registers or symbols will not be changed.
The function MACHO.LASTUUID() dispenses this UUID. After every
Mach-O load command the UUID is saved and could be read via the
function MACHO.LASTUUID().
If no UUID is found in a Mach-O file, MACHO.LASTUUID() will dispense
"no UUID read" independently rather UUID option is set or not. But only
with the UUID option set, a failure will be returned by the load command.
This option should be used exclusively, because if used all other options
are ignored.

Examples:

Example for loading binary and symbol information separately:

Data.LOAD.MachO a.out /NosYmbol ; Load binary only
Data.LOAD.MachO sym.out /NoCODE ; Load symbol information only
; Example for loading binary and symbols with one command

Data.LOAD.MachO a.out /DebugFile sym.out

©1989-2024 Lauterbach General Commands Reference GuideD | 135

Example for usage of UUID option:

PRINT MACHO.LASTUUID () ; “no UUID read” will be displayed,
; because no Mach-0 file was loaded

Data.LOAD.MachO a.out /NosYmbol ; Load binary only

PRINT MACHO.LASTUUID() ; UUID of a.out will be displayed
; in area window, like: “bad47l18af-
; 884c-6b81-b7e8-5d771938ac83”

Data.LOAD.MachO sym.out /UUID ; UUID of sym.out will be displayed
; in area window and could be
; compared with those of a.out.
; Nothing will be loaded.

Data.LOAD.MachO sym.out /NoCODE ; If both are equal, load symbols
See also
W Data.LOAD a1 MACHO.LASTUUID()
Data.LOAD.MAP Load MAP file
Format: Data.LOAD.MAP <file> [<class>] [I<option>]
<option>: <generic_load_option>

Loads a .MAP file from the Logitech Modula2 Cross Development System.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 136

Data.LOAD.MCDS Load MCDS file

Format: Data.LOAD.MCDS <file> [<class>] [/<option>]

<option>: <generic_load_option>

Loads a file from Hiware Modula2 Cross Development System. The file name is the name of the absolute
file, all other files are searched automatically. The source line numbers will be loaded only if the source files

are found.
<option> For a description of the generic options, click <generic_load_option>.

See also

B Data.LOAD

Data.LOAD.MCoff Load MCOFF file
Format: Data.LOAD.MCoff <file> [<range> | <class>] [[<option>]
<option>: ALLLINE
<generic_load_option>

Loads a file in the MCOFF format (Motorola Common Object File Format). The format is generated by the
GNU-56K DSP compiler.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 137

Data.LOAD.OAT Load OAT file

Format: Data.LOAD.OAT <file> [<address>] [[<option>]

<option>: LOCATEAT <address>

Loads *.0at files generated by the Android RunTime (ART).

LOCATEAT Relocates the symbols to the specified start <address>.

See also
W Data.LOAD

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 138

Data.LOAD.Omf Load OMF file

Format: Data.LOAD.OMF <file> [<class>] [I<option>]

<option>: PLM | PAS|CI|CPP|ADA
MIX (only 8086, 8051)
LST (only 8051, 8086)
SRC
MIXASM | MIXPLM | MIXPAS (only 8086)
REAL (only 8086)
NoMMU (only 8086)
MRI | 1C86 | IC860LD | ParaDigm | CADUL (only 8086)
RevArgs (only 8086)
PLAIN (only 8086, 8096)
EXT | SPJ (only 8051)
MMU | MMU1 (only 8051)
SMALL | LARGE (only 8051)
ASMVAR (only 8051)
UBIT (only 8051)
NoGilobal (only 8086)
DOWNLINE
PACK
<generic_load_option>

The implementation of this command is processor specific.

PLM With this option the file extension can be set to .pIm'. The source lines in
the object file must relate directly to the source file (no list file).

PAScal Same as above, but for PASCAL files.

C Same as above for 'C' files (only for 80186).
NOTE: For Microtec MCC886, Intel IC86 and Paradigm
compilers/converters are extra options available.

MIX Assumes a mixed object file, generated from PLM/86 and another
compiler. The switch must be used in combination with another
‘language’ switch. The PL/M source is loaded from the listing file.

LST Loads line number information from the listfile of PL/M compilers. This
option must be set when loading file generated by Intel 8051 or 8086
PL/M compilers.

MIXASM Assumes a mixed object file, generated by a standard compiler and an
assembler. The switch must be used in combination with another
'language' switch. If set, the source search path is extended to search
first the high level source file (e.g. '.c') and then the assembler source file
(.asm’).

©1989-2024 Lauterbach General Commands Reference GuideD | 139

MIXPLM

MIXPAS

REAL

MRI

IC86

ParaDigm

PLAIN

EXT

MMU

MMU1

SMALL,
LARGE

ASMVAR

uBIT

Assumes a mixed object file, generated by a standard compiler and a
PL/M compiler. The switch must be used in combination with another
'language' or compiler switch. If set, the source search path is extended
to search first the high level source file (e.g. '.c') and then the PL/M
source file ('.pIm'). When using Intel PL/M, the object files must be
converted by the ‘cline' utility.

Assumes a mixed object file, generated by a standard compiler and an
pascal compiler. The switch must be used in combination with another
'language' switch. If set, the source search path is extended to search
first the high level source file (e.g. '.c') and then the pascal source file

(".pas').

Assumes that all selectors outside the GDT range are REAL or
VIRTUAL-86 mode addresses.

Loads extended OMF files, as generated by the Microtec MCC86
compiler. This extensions include register variables, bitfields in structures
and the name of the source files. The stack traceback is adapted to the
MCC86 stack format.

Load OMF files from Intel IC86. The stack traceback is adapted to the
Intel 1C86 stack format.

Loads extended OMF files from PARADIGM LOCATE. The extensions
include source file names, register variables and enumeration values.

This option must be used, if the 'BLKDEF' and 'BLKEND' records in the
OMF file are not correctly nested.

Must be set, when loading an extended OMF-51 file (KEIL), i.e. if the
nesting of the blocks and the code section in the file reflect the original
nesting of the source.

Generates MMU translation information for KEIL-51 banked linker. Bank
0 is placed to logical address 0x10000, Bank 1 to 0x20000 a.s.o. The first
64K (0x0--0xffff) are transparently translated or used for the common
area.

Same as above, but different translation. Bank 1 is placed to logical
address 0x10000, Bank 2 to 0x20000 a.s.o. The first 64K (0x0--0xffff) are
transparently translated or used for the common area. Bank 0 is not
allowed in this configuration.

Define the memory access class for EQU symbols to be either X: or I..

Generates HLL variable information for assembler variables.

Unsigned bit fields.

©1989-2024 Lauterbach

General Commands Reference Guide D | 140

NoGilobal

<option>

The following compilers are accepted:

Suppresses the global symbols of the file. This can speed up download
and save memory when the globals are redundant.

For a description of the generic options, click <generic_load_option>.

Format Compiler Remarks
OMF-51 Intel-PL/M Use LST or PLM option
Intel-C51 Use C option
Keil-C51 Use EXT and Puzzled option, includes extended information.
Use the 'OBJECTEXTEND' option to compile the files. Use
MMU or MMU1 option when loading files from BL51.
Use SPJ option.
SPJ-C Use PAS option.
KSC/System51

OMF-96 Intel-C96 Use SPLIT option when code and data are two separate mem-
ory spaces.

OMF-86 Intel-PL/M Use LST or PLM or MIX or MIXPLM option.

Intel-iC86 Use IC86 or IC860LD option, RevArgs option when PASCAL
calling conventions are used.

Microtec Use MRI option, includes extended type and source file infor-
mation.

Paradigm Use ParaDigm option, includes extended type and source file
information.

OMF-386 Pharlap No option required, includes extended register variables infor-
mation. Use the '-regvars' option to produce register variable
information.

SSl/Intel No option required. The Codeview debugging format provides
more information than the intel format info.
No option required.

SSI/CodeView

SSI/Metaware SPF Format from SPLINK. CPP switch required for C++.

OMF-166 Keil-C166 Use Puzzled option, includes extended
type information.

See also
B Data.LOAD B Data.SAVE.Omf

©1989-2024 Lauterbach

General Commands Reference Guide D | 141

Data.LOAD.Omf2 Load OMF-251 files

Format: Data.LOAD.Omf2 <file> [[<option>]

<option>: <generic_load_option>

Loads OMF-251 files.

<option> For a description of the generic options, click <generic_load_option>.
See also
W Data.LOAD
Data.LOAD.OriginHex Load special hex files
Format: Data.LOAD.OriginHex <file> <addressrange> [/<option>]
<option>: OFFSET <value>
<generic_load_option>

Loads a file in special hex file format.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 142

Data.LOAD.PureHex Load hex-byte file

Format: Data.LOAD.PureHex <file> <address> | <range> [[<option>]

<option>: SKIP <offset>
<generic_load_option>

Loads a file in hex-byte format. The file format contains no address information. The input file should contain
ASCII hexadecimal data in one or multiple lines.

SKIP <offset> If the option /SKIP <offset> is specified, the first <offset> bytes of the file are
omitted.
<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD

A ’'Release Information’ in’Legacy Release History’

Data.LOAD.REAL Load R.E.A.L. file
Format: Data.LOAD.REAL <file> [/<option>]
<option>: <generic_load_option>

Loads a file in R.E.A.L. object file format.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 143

Data.LOAD.ROF Load OS-9 file

Format: Data.LOAD.ROF <file> [<code>] [<data>] [[<option>]

<option>: NoSTB
NoDBG
NoMOD
MAP
FPU
CPP
CFRONT
<generic_load_option>

Code and data defines the addresses of the code and data regions. With the command sYmbol.RELOCate
these addresses can be moved after loading the file. The loader loads the three files produced by the
compiler (code, symbols, HLL). The symbol files will be searched first on the actual path and then in the
subdirectory 'STB'. The option PATH should be used to define the path to the source files if the files are
compiled on an OS-9 host.

FPU If code for the FPU has been generated this option should be used.

NoMOD Is used for loading the symbols only. The file name has to be the name of
the symbol file (.stb).

NoSTB The loading of symbols is suppressed.

NoDBG The loading of HLL information is suppressed.

MAP The '.map' file (produced by the linker on request) is used to get the

symbols instead of the '.stb' file. The ".map' file includes the absolute
symbols, which are not inside the '.stb’ file.

<option> For a description of the generic options, click <generic_load_option>.

Limitations

The data symbols are loaded to absolute addresses, i.e. only one copy of the data will contain the symbols.
Within the disassembler the base register's relative address offset will only display the correct symbol, when
the current base register value has the correct value for this module.

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference GuideD | 144

Data.LOAD.S1record Load S1-Record file

Format: Data.LOAD.S1record <file> [<addressrange>] [[<option>]

<option>: FLAT
OFFSET <offset>
RECORDLEN <value>
<generic_load_option>

Load an SREC file containing S19-style 16-bit address records.

If a single address is selected this address will define an address offset like the option OFFSET. A given
address range will suppress the loading of data and symbols outside of this defined destination address
area.

Options available for SREC formats:

FLAT Loads S-Record files to linear address spaces for those CPUs not
supporting linear logical address spaces.

OFFSET Changes the address value to value plus offset. The Srecord will be
loaded to the address plus offset value.

RECORDLEN Defines the number of data bytes per line in the Srecord file.
Decimal values have to be given with decimal point behind.

<option> For a description of the generic options, click <generic_load_option>.

The file may contain also symbolic information, which needs the following format:

$S

$$_MODULNAME1
__SYMBOLNAME1l $00000000_
__SYMBOLNAME2 $12345678_
$$_MODULNAME?2
__SYMBOLNAME3 S$ABO0O0OCF_

The character '_' stands for BLANK (0x20). The address has to be entered in 8 digits.

See also

B Data.LOAD B Data.SAVE.S1record B Data.SAVE.S2record B Data.SAVE.S3record

©1989-2024 Lauterbach General Commands Reference Guide D |

Data.LOAD.S2record Load S2-Record file

Format: Data.LOAD.S2record <file> [<addressrange>] [[<option>]

<option>: FLAT
OFFSET <offset>
RECORDLEN <value>
<generic_load_option>

Load an SREC file containing S28-style 24-bit address records. The description of options, further
information and examples are here.

See also
W Data.LOAD M Data.SAVE.S1record M Data.SAVE.S2record M Data.SAVE.S3record
Data.LOAD.S3record Load S3-Record file
Format: Data.LOAD.S3record <file> [<addressrange>] [[<option>]
<option>: FLAT

OFFSET <offset>
RECORDLEN <value>
<generic_load_option>

Load an SREC file containing S37-style / 32-bit address records. The description of options, further
information and examples are here.

See also
W Data.LOAD M Data.SAVE.S1record B Data.SAVE.S2record M Data.SAVE.S3record

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 146

Data.LOAD.S4record Load S4-Record file

Format: Data.LOAD.S4record <file> [<addressrange>] [[<option>]

<option>: FLAT
OFFSET <offset>
RECORDLEN <value>
<generic_load_option>

Load an SREC file containing S47-style / 64-bit address records. The description of options, further
information and examples are here.

See also
W Data.LOAD M Data.SAVE.S1record B Data.SAVE.S2record M Data.SAVE.S3record
Data.LOAD.SAUF Load SAUF file
Format: Data.LOAD.SAUF <file> [/<option>]
<option>: CFRONT
<generic_load_option>

Loads SAUF file format.

See also
W Data.LOAD M Data.SAVE.S1record B Data.SAVE.S2record M Data.SAVE.S3record

©1989-2024 Lauterbach General Commands Reference Guide D | 147

Data.LOAD.SDS Load SDSI file

Format: Data.LOAD.SDS <file> [<address>] [/<option>]
<option>: FPU

NOCONST

PACK

<generic_load_option>

Loads files in Software Development Systems (SDSI) or Uniware format. The address parameter can be
used to load via dual port access or to define a different load address for banked applications.

FPU Tells the debugger that code for the FPU was generated by the compiler.

PACK Saves memory space by removing redundant type information. Standard
types (e.g. char/long) are assumed to be equal in all modules. Types with
the same definition can share the same memory space. This option may
save approx 40% of the memory space required without packing.

NOCONST Suppresses the load of "const" variables. These are often removed from
the optimizer anyway.

<option> For a description of the generic options, click <generic_load_option>.
See also
W Data.LOAD B Data.SAVE.S1record M Data.SAVE.S2record B Data.SAVE.S3record
Data.LOAD.SPARSE Load SPARSE file
Format: Data.LOAD.SPARSE <file> [/<option>]
<option>: <generic_load_option>

Loads SPARSE image.

See also

W Data.LOAD B Data.SAVE.S1record B Data.SAVE.S2record M Data.SAVE.S3record

©1989-2024 Lauterbach General Commands Reference Guide D | 148

Data.LOAD.sYm Load symbol file

Format: Data.LOAD.sYm <file> [<address>] [/<option>]
<option>: LOC

NOLOC

<generic_load_option>

Loads simple symbol files.

The debug information is contained in different types of files. The SYM files (*.sym) contain the global
symbols, the optional LOC files (*.loc) contain the local symbols for each module.

<option> For a description of the generic options, click <generic_load_option>.
<file> Specify the global SYM file as <file>. Depending on its content, the LOC files

are loaded automatically. If not, the option LOC activates the loader for local
symbol information and line numbers.

The command accepts the following formats as main symbol files:
PLAIN SYMBOLS

1234_SYMBOLNAME1l <TAB> 5678_SYMBOLNAME?2
FO000_SYMBOLNAME3

The hex number (one to 8 digits) is followed by a blank and the symbol name. Multiple symbol names in one
line are separated by TAB's (0x9).

ZAX

S progname
symbol 1234H
$$ module
symbol 5678H
symbol $5678

LOC

The local symbol file is compatible to the TRACE80 emulators.

©1989-2024 Lauterbach General Commands Reference Guide D | 149

The following example show a LOC file (*.LOC) for a “C” file defining source line #183 at program relative
address 0xO0AD and one data label at data address 0x0242.The source code must always precede the line

definition
2
; viloat = -1.0;
00AD"' 183

0242" mstaticl

The module base addresses (code start and end and data start) must be in the global symbol file (*.SYM):

1000 [main
1fff Imain
2000 [“main

See also
B Data.LOAD
Data.LOAD.SysRof Load RENESAS SYSROF file
Format: Data.LOAD.SysRof <file> [<access>] [/<option>]
<option>: <generic_load_option>

Loads a file in Renesas SYSROF object file format.

<option> For a description of the generic options, click <generic_load_option>.
See also
W Data.LOAD M Data.SAVE.S1record B Data.SAVE.S2record M Data.SAVE.S3record

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 150

Data.LOAD.TEK Load TEKTRONIX file

Format: Data.LOAD.TEK <file> [<address>] [[<option>]

<option>: NoMMU
<generic_load_option>

The optional address parameter can be used to load to a different memory class (like E:) or to supply an
offset for loading banked applications.

<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD
Data.LOAD.TekHex Load TEKTRONIX HEX file
Format: Data.LOAD.TekHex <file> [<address>] [/<option>]
<option>: OFFSET
<generic_load_option>

The optional address parameter can be used to load to a different memory class (like E:) or to supply an
offset for loading banked applications.

<option> For a description of the generic options, click <generic_load_option>.

See also
W Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 151

Data.LOAD.Ubrof Load UBROF file

Format: Data.LOAD.Ubrof <file> [<address>] [[<option>]
<option>: ICC3S | ICC3L

XSP

NoMMU

LARGE

EXTPATH <.extension>

<generic_load_option>

Default: MultiLine.

If the option '-r' is used as a compiler option, the source text will be loaded directly from the object file,
whereby the option '-rn' the source text will be loaded as usual. The optional address parameter can be used
to load to a different memory class (like E:) or to supply an offset for loading banked applications.

COLumns With this option the column debugging is activated.

ICC3S, ICC3L Loads files from ICC8051 3.0.

XSP Generates virtual stack pointer information for optimized stack frames
(68HC12, H8). This is a workaround for not sufficient information in the
debug file.

NoMMU Doesn't load the MMU tables from the file contents. This table is used to

translate physical addresses to their logical counterparts (only 64180).

LARGE This option must be set when a large memory model is used.
EXTPATH Defines an alternate file extension for the source files, if the .c file is not
found.
<option> For a description of the generic options, click <generic_load_option>.
See also
B Data.LOAD

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 152

Data.LOAD.VersaDos Load VERSADOQOS file

Format: Data.LOAD.VersaDos <file> [<access_class>] [/<option>]
<option>: NoLO

NoDB

<generic_load_option>

Loads the *.lo file first, which contains the code, and then the *.db symbol file (if existent). The file name of
the *.lo file must be given.

<option> For a description of the generic options, click <generic_load_option>.
NoDB With the option NoDB the loading of the symbols is suppressed.
NoLO The option NoLO suppresses the loading of the data file. The symbol file

name has to be given as an argument in this case.

See also
B Data.LOAD
Data.LOAD.XCoff Load XCOFF file
Format: Data.LOAD.XCoff <file> [<class>] [[<option>]
<option>: <generic_load_option>

Loads a file in the IBM-RS6000/XCOFF format (PowerPC).

<option> For a description of the generic options, click <generic_load_option>.

See also
B Data.LOAD

©1989-2024 Lauterbach General Commands Reference Guide D | 153

Data.MSYS M-SYSTEMS FLASHDISK support

Format: Data.MSYS <dll_file> <cmdline>

Starts a flashdisk support utility to program, view or format M-Systems flashdisks. The ultility is supplied by
M-Systems in form of a DLL module. The syntax of the command depends on the DLL module.

Data.Out Write port
Format: Data.Out <address> [%[<accessformat>.]<dataformat>] <data> [/<option>]
<access Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
format>:

<dataformat>: Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
BE | LE

<option>: Repeat | CORE <core_number>

As opposed to the Data.Set command, the address is not increased during write-to. If the CPU structure
decides between 10 and DATA area, the 10 area is selected on default (Z80, 186 ...).

Byte, Word, ... See “Keywords for <width>", page 11.
Repeat Repeats the input endlessly, e.g. for external measurements.

Examples:
Data.Out I0:0x10 0x33 ; write one byte to I/0O space
Data.Out D:0x10 0x33 ; write one byte to memory-mapped I/O
Data.Out IO:0x10 "ABC" 0x33 ; writes 4 characters to io port
Data.Out I0:0x10 "ABCD" /Repeat ; continuously writes data to the port

; write 32-bit bytewise
Data.Out I0:0x10 %$Byte.Long 0x12345678

See also
B Data.In B Data.Set B Data.Test 1 ADDRESS.OFFSET()
1 ADDRESS.SEGMENT() O ADDRESS.STRACCESS() 1 ADDRESS.WIDTH()

©1989-2024 Lauterbach General Commands Reference Guide D | 154

A ’'Release Information’ in’Legacy Release History’

Data.PATTERN Fill memory with pattern
[Examples]
Format: Data.PATTERN <addressrange> [/<option>]
<option>: Verify | ComPare | DIFF

ByteCount | WordCount | LongCount

ByteShift | WordShift | LongShift

RANDOM | PRANDOM

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
PlusVM

SEED <value>

LFSR32 <taps>

Fills the memory with a predefined pattern for the specified address range.

Verify

ComPare
DIFF
ByteCount, Word-

Count, LongCount

ByteShift, Word-
Shift, LongShift

RANDOM
PRANDOM

Byte, Word, ...

PlusVM

Verify the data by a following read operation.

Pattern is compared against memory. Memory is not changed. The
comparison stops after the first difference

Pattern is compared against memory. Memory is not changed. The result of
the compare is available in the FOUND() function.

Pattern is an incrementing count of 8, 16, or 32 bit.

Pattern is an left rotating bit of 8, 16, or 32 bit.

Pattern is a random sequence.

Pattern is a pseudo random sequence.

Specify memory access size. See “Keywords for <width>", page 11.

If no access size is specified, the debugger uses the optimum size for the

processor architecture.

The data patter is written into the target memory plus into the virtual
memory.

©1989-2024 Lauterbach

General Commands Reference Guide D | 155

LFSR32 <taps>

Pattern is generated by a 32-bit Linear-Feedback-Shift-Register.
<taps> is a 32-bit number.

The pseudo code used to generate the sequence is

if (Ifsr & 0x80000000)

Ifsr = (Ifsr<<1)MtapslOx1);

else
Ifsr = (Ifsr<<1);

SEED <value> This option is used together with the PRANDOM or LFSR32 option in
order to initialize the pseudo random generator or the initial LFSR value
with a different seed.

Example 1

This example shows how to test memory address translations (MMU) with a pattern:

Data.PATTERN A:0x0--0x7ffff

Data.dump 0x0

Data.dump 0x4000

Data.PATTERN 0x0--0x7fff /ComPare
Example 2

7
7

7

7

fill memory with pattern
(A: enforces physical address)
display logical view of memory

compare memory against pattern

The Data.PATTERN <addressrange> /DIFF command is used together the following functions:

FOUND()
TRACK.ADDRESS()

;£i1]1 memory with a predefined pattern
Data.PATTERN O0x0++0xffff

;any write access or code manipulation

Returns TRUE if a difference was found in the comparison.

Returns the address of the first difference.

;compare predefined pattern against memory to check if the previous
;write access or code manipulation has had an impact on the pattern
Data.PATTERN 0x0++0xffff /DIFF

IF FOUND ()

PRINT "Error found at address

" TRACK.ADDRESS ()

©1989-2024 Lauterbach

General Commands Reference Guide D | 156

Example 3

;Same as /LongShift
Data.PATTERN VM:0x0000--0xffff /LFSR32 0Oxl /SEED 0x1l

;LFSR as pseudo random sequence, starting with 0x12345678

;Note: There are many other <taps> values, which result in long number
; sequences.

Data.PATTERN VM:0x0000--0xffff /LFSR32 0x10904081 /SEED 0x12345678

See also
B Data.dump B Data.Set B Data.Test

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 157

Data.Print

Display multiple areas

Format:

<format>:

<width>:

<endianness>:

<bitorder>:

<option>:

<flag>:

<cflag>:

<break>:

Data.Print [[%<format>][<address> | <range>] ...] [[<option> ...]

Decimal [.<width> [.<endianness> [.<bitorder>]]]
DecimalU [.<width> [.<endianness> [.<bitorder>]]]
Hex [.<width> [.<endianness> [.<bitorder>]]]
HexS [.<width> [.<endianness> [.<bitorder>]]]
OCTal [.<width> [.<endianness> [.<bitorder>]]]
Ascii [.<width> [.<endianness> [.<bitorder>]]]
Binary [.<width> [.<endianness> [.<bitorder>]]]
Float[.<float_rep>[.<endianness>]]

sYmbol [.<width> [.<endianness> [.<bitorder>]]]
Var

DUMP [.<width> [.<endianness> [.<bitorder>]]]
Byte [.<endianness> [.<bitorder>]]

Word [.<endianness> [.<bitorder>]]

Long [.<endianness> [.<bitorder>]]

Quad [.<endianness> [.<bitorder>]]

TByte [.<endianness> [.<bitorder>]]

PByte [.<endianness> [.<bitorder>]]

HByte [.<endianness> [.<bitorder>]]

SByte [.<endianness> [.<bitorder>]]

DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | LE | BE

DEFault | BitSwap

CORE <core_number>
COVerage

CTS

Track

FLAG <flag>

CFlag <cflag>

Mark <break>

Read | Write | NoRead | NoWrite

OK | NoOK | NOTEXEC | EXEC

Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

©1989-2024 Lauterbach

General Commands Reference Guide D |

158

Displays the bare memory content on multiple address ranges as a list. If the single address format is
selected, only one word at this address will be displayed. When selecting an address range the defined data

range can be dumped.

Decimal, Refer to “Keywords for <format>", page 10

DecimalUl,...

Byte, Word, ... Refer to “Keywords for <width>", page 11

DEFault, BE, LE Define byte-order display direction: default target endianness, Big Endian

or Litte Endian

DEFault, BitSwap BitSwap allows to display data in reverse bit-order in each byte. If
BitSwap is used together with BE or LE, the byte order will not change,
otherwise BitSwap will also reverse the byte-order.

CORE <core> Display memory from the perspective of the specified core /SMP
debugging only).

COVerage Highlight data memory locations that have never been read/written.
Track Track the window to the reference address of other windows.
Mark <break> Highlight memory locations for which the specified breakpoint is set.
CTS Display CTS access information when CTS mode is active.
Examples:
Data.Print 0x1000--0x10ff ; display fixed range
Data.Print Var.RANGE (flags) ; display range defined by object
; name
Data.Print $%Binary Register (ix) ; display data byte referenced by IX
Data.Print %Var ; display indexed by HLL pointer

Var .VALUE (dataptr)

©1989-2024 Lauterbach General Commands Reference GuideD | 159

), B:Data.Print %Decimal flags--(flags+2) %Var flags--(flags+3) %:Hex.Word fstatic =N Eoh(
address | data value symbol |
T00005218 | 01 1 \sieve\Global Flags L
100005219 | 01 1 obal'flags+0x1
100005214 | 01 1 obal'flags+0x2
100005218 | 01 flags[0] =1 obal'flags
100005219 | 01 flags[1] =1 obal'flags
100005214 | 01 flags[2] =1 obalf1
:0000521E | 00 flags[3] = 0 obal'flags+0x3
:00003B3C | 83 DO 0xD083 rehfunc2fstatic =
] 1 ¢

Ir : 1

), B:Data.Print %Decimal 0x23cc %HexByteflags %Varflags %Varflags+4 %Decimal.Word fstatic =N Eoh(
breakpoint address | data value symbol |
SD:000023CC [01 1 \ Globaly__kernel_rem_pioZ+0x6A4 A
WR SD:00005218(01 Ox1 obal'flags
WR SD:00005218(01 E flags[0] =1 obal'flags
WR SD:0000521C | 01 flags[4] =1 obal'flags+0x4
WR SD:00003B3C| 14 7C 31764 et func2\fstatic -

o]

A Read/Write breakpoint (created with Break.Set).
B Hex data.
C Symbolic address.

D Scale area.

The scale area contains Flag and Breakpoint information, memory classes and addresses. The state line
displays the currently selected address, both in hexadecimal and symbolic format. By double-clicking a data
word, a Data.Set command can be executed on the current address.

By holding down the right mouse button, the most important memory functions can be executed via the Data
Address pull-down menu. If the Mark option is on, the relevant bytes will be highlighted. For more

information, see Data.dump.

See also

B Data.TABle
J ADDRESS.STRACCESS()
1 Data.Long()
1 Data.Word()

B Data.dump

0 ADDRESS.SEGMENT()
(1 Data.Float()

1 Data.STRingN()

H Data.View
d ADDRESS.WIDTH()
1 Data.Quad()

1 ADDRESS.OFFSET()
1 Data.Byte()
1 Data.STRing()

©1989-2024 Lauterbach

General Commands Reference Guide D |

160

Data.PROfile Graphical display of data value

Format: Data.PROfile [%<format>][<address> ...] [<gate>] [<scale>] [[<option>]

<format>: Decimal.[<width>[.<endianness>]]
DecimalU.[<width>[.<endianness>]]
Hex.[<width>[.<endianness>]]
HexS.[<width>[.<endianness>]]
OCTal.[<width>[.<endianness>]]
Float[.<float_rep>[.<endianness>]]
Byte [.<endianness>]
Word [.<endianness>]
Long [.<endianness>]
Quad [.<endianness>]
TByte [.<endianness>]
PByte [.<endianness>]
HByte [.<endianness>]
SByte [.<endianness>]

<width>: DEFault | Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
<gate>: 0.1s11.0s | 10.0s

<scale>: 1. ... 32768.

<option>: Autolnit | AutoArm | AutoScale

The value at the specified memory location(s) is displayed graphically. The display requires run-time
memory access if the data value should be displayed while the program execution is running. The display is
updated and shifted every 100 ms. The <gate> parameter allows to change this shift rate.

Autolnit The results are re-initialized each time the program execution is started.
AutoArm Update is started and stopped with the program execution.
AutoScale The graph is automatically scaled according to the sampled data values.

©1989-2024 Lauterbach General Commands Reference GuideD | 161

Example 1:

Data.PROfile %DecimalU.Long E:0x67C0 /AutoScale

Il B:Data.PROfile %DecimalU.Long E:0x67C0 /AutoScale = =R
@Init | OHold | pIn | »10ut| D In || 2 Out||[E] Auto used: HOLD autosca
-15.0s =12.5E -10.0s -7.5s -5.0s -2.5s 0.
1 1 1 1 1 1 1 I
4000000000.
3500000000, J'-|'
3000000000.
2500000000.
2000000000.
1500000000.
1000000000. J
500000000. J
0.
11 £ >
Buttons
Init Restart display
Hold Stop update/re-start update
In, Out Zoom in/out horizontally and vertically
Auto Enable auto scale

Example 2: Up to three data values can be displayed. The following color assignment is used: first data

value red, second data value green, third data value blue.

Data.PROfile %$DecimalU.Word E:0x672C E:0x67C0 %DecimalU.Long E:0x67C8

/AutoScale

i B::Data.PROfile %Decimall.Word E:0x672C E:0x67C0 %Decimall.Lang E:0x67C8 /AutaScale = =R

@Init | OHold | «OrIn | »0¢Out

2 In

oot [E] o used: HOLD autosca

-5.0s

SZ05E 0.0

60000.

40000.

20000.

See also

B Data.DRAW

B Var.PROfile

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide D

162

Data.PROGRAM Editor for writing assembler program

Format: Data.PROGRAM [<address> | <addressrange> [<file> [<line>]]]

This command creates a window for editing and assembling a short assembler program. Without a specified
file name, the file t32.asm is generated.

If the Compile button is used, syntax errors and undefined labels will be detected. The resulting program will
be assembled for the specified address and saved to memory. The labels entered will be added to the

symbol list.
[# [B::Data.PROGRAM P:0x 7010600 test.asm] = =R
B Setup... & Save ¥ Save As.. B quit | F#iFind... < O 9 i Compile
1| send_spi: ~
2 (| st.w 0xF0001c64,d0
3 movh. a al,#0xF000
4 lea al, [al](0x1c40)
5 mov dl,#0x200
6 [_wait_qgspi_txf:
7 1dl6.w dO,[al]
8 andl6 do,d1
9 jeq d0,#0,_wait_qgspi_txf
10 st.w 0xF0001c54,d1
11 movh. a al,#0xF000
12 Tea al,[al](0x1c40)
13 shl6 dl ,#0x1
14 | wait_qgspi_rxf:
15 1dl6.w dO,[al]
16 andl6 do,d1
17 jeq d0,#0,_wait_qspi_rxf
18 st.w 0xF0001c54,d1
19 3j _send_spi_ret v
- addr % offset previous
See also
B Data.Assemble B Data.ReProgram B Data.Set B SETUPEDITOR

A ’Text Editors’ in ’PowerView User’s Guide’
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 163

Data.PROLOG Automatic data modification on program execution start

The Data.PROLOG command group allows to define a sequence of read/write accesses that are
automatically performed directly before the program execution is continued with Go or Step.

The Data.PROLOG command group can also be used, for example, to manually freeze peripherals, if the
processor itself does not provide this feature.

The complementary command Data.EPILOG performs read/write accesses after program execution halted.
It is also possible to store data read with Data.EPILOG and restore with Data.PROLOG, and vice versa.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the

Data.PROLOG.state window:
£ B:Data.PROLOGstate =n| Wl <
prolog E COMDition
OFF (Data.Word(AHB:0x4faf38)80xff00)==0x4000

@ ON SEQuence

SET AHB:0x4fafec %Word 0xd0do

count

u

CORE SEL »
_1. B _2 B TARGET
CIRCENCIRD

A For descriptions of the commands in the Data.PROLOG.state window, please refer to the
Data.PROLOG.* commands in this chapter. Example: For information about ON, see
Data.PROLOG.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or
Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set commands> SET,
SETI, GETS, and SETS.

Examples:
. Overview including illustration - see Data.PROLOG.state.

J Prolog conditions - see Data.PROLOG.CONDition.

. Access sequences - see Data.PROLOG.SEQuence.
See also
B Data. ATTACH B Data.EPILOG B Data.STARTUP W Data.TIMER

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 164

Data.PROLOG.CONDition Define PROLOG condition

Format: Data.PROLOG.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with Data.PROLOG.SEQuence will be
executed each time before the program execution is started by Go / Step.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

Examples:

;reads the long at address D:0x3faf30, performs a binary AND with

;a mask (here Oxffffffff). If the result is equal to 0x80000000, then the
;condition is true and the defined sequence is executed.
Data.PROLOG.CONDition (Data.Long(D:0x3faf30)&0xfffff£f£f£f)==0x80000000

;reads the word at address D:0x3xfaf30
Data.PROLOG.CONDition (Data.Word(D:0x3faf30)&0x£f£f00) !=0x8000

;reads the byte at address D:0x3xfaf30
Data.PROLOG.CONDition (Data.Byte(D:0x3faf30)&0xf0) !=0x80

See also
B Data.PROLOG:.state 1 Data.Byte() (1 Data.Long() 1 Data.Word()

©1989-2024 Lauterbach General Commands Reference GuideD | 165

Data.PROLOG.CORE Select core for data prolog

Format: Data.PROLOG.CORE <core_number>

Selects the core for which you want to define one or more data prologs.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.
Example: This script shows how to define a data prolog that is executed on core 3 of a multicore chip.

;Select the core for which you want to define a data prolog
Data.PROLOG.CORE 3.

;Define the data prolog for core 3

Data.PROLOG.CONDition <your_code>
Data.PROLOG.SEQuence <your_code>

For information on how to configure two different data epilogs, see Data.PROLOG.SELect.

See also
B Data.PROLOG.state

Data.PROLOG.OFF Switch data prolog off

Format: Data.PROLOG.OFF

Disables the execution of the Data.PROLOG sequence on program execution start.

See also
B Data.PROLOG:.state

©1989-2024 Lauterbach General Commands Reference GuideD | 166

Data.PROLOG.ON Switch data prolog on

Format: Data.PROLOG.ON

Enables the execution of the Data.PROLOG sequence on program execution start.

See also
B Data.PROLOG:.state

Data.PROLOG.RESet Reset all data prologs

Format: Data.PROLOG.RESet

Switches the Data.PROLOG feature off and clears all settings.

See also
B Data.PROLOG:.state

©1989-2024 Lauterbach General Commands Reference GuideD | 167

Data.PROLOG.SELect Increment the index number to the next data prolog

Format: Data.PROLOG.SELect <serial number>

Increments the index number for each new data prolog. This is useful, for example, if you need two separate
data prologs with each data prolog having its own Data.PROLOG.CONDition.

TRACE32 automatically assigns the index number 1. to the 1st Data.PROLOG.SEQuence. If you require a
2nd, separate data prolog sequence, then increment the <index_number> to 2. Otherwise the 2nd data
prolog will overwrite the 1st data prolog. You can define a maximum of 10 data prologs.

Example 1: Two data prologs with the same Data.PROLOG.CONDition may have the same index
number. The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

;Set the index number to 1.
Data.PROLOG.SELect 1.

;Data PROLOG sequences shall be executed only if this condition is true:
Data.PROLOG.CONDition (Data.Word(D:0x4faf34)&0xf£f00)==0x4000

;Define the two data PROLOG sequences:
Data.PROLOG.SEQuence SET 0x4faf54 %$Word 0xCOCO \
SET 0x4faf64 %Word 0xDODO

Example 2: Two data prologs with different Data.PROLOG.CONDition settings require two different
index numbers.

;1st data prolog - TRACE32 automatically sets the index number to 1.
Data.PROLOG.SELect 1.

;If this prolog condition is true,
Data.PROLOG.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x2000

;... then the 1st prolog sequence will be executed
Data.PROLOG.SEQuence SET 0x4faf58 %$Word OxEOEO

; Increment the index number to define the 2nd data prolog
Data.PROLOG.SELect 2.

;If this prolog condition is true,
Data.PROLOG.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x3000

;... then the 2nd prolog sequence will be executed
Data.PROLOG.SEQuence SET 0x4faf58 %$Word OxFOFO0

See also
B Data.PROLOG:.state

©1989-2024 Lauterbach General Commands Reference GuideD | 168

Data.PROLOG.SEQuence Define prolog sequence

Format: Data.PROLOG.SEQuence <data_set command> ...
<data_set_ SET <address> %<format> <data>
command>: SETI <address> %<format> <data> <increment>

SETS <address>
GETS <address>

Defines a sequence of <dala_set_commands> that are automatically executed by the TRACE32 software
directly before the program execution is started by Go / Step.

SET Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

SETI Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

GETS Parameters: <address> %<format>
Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command Data.PROLOG.SEQuence is called.

SETS Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

Examples:

;Write Oxal0al when starting, increment by 2 for each successive start
Data.PROLOG.SEQuence SETI 0x3faf50 %$Word 0Oxalal 2

;Set peripheral register to 0 when halted, 1 when starting
Data.EPILOG.SEQuence SET 0x3faf50 %$Long 0x00000000
Data.PROLOG.SEQuence SET 0x3faf50 %$Long 0x00000001

;Set register to 0 when halted, restore original value when starting
Data.EPILOG.SEQuence GETS 0x1230 %$Byte SET 0x1230 %Byte 0x00
Data.PROLOG.SEQuence SETS 0x1230 $%$Byte

;Set (clear) a single bit when starting (stopping)
Data.EPILOG.SEQuence SET 0x3faf50 $Word OyXXXX1XXXXXXXXXXX
Data.PROLOG.SEQuence SET 0x3faf50 %$Word OyXXXX0OXXXXXXXXXXX

See also
B Data.PROLOG:.state

©1989-2024 Lauterbach General Commands Reference GuideD | 169

Data.PROLOG.state Display data prologs

Format: Data.PROLOG.state

Opens the Data.PROLOG.state window, where you can configure data prologs.

Y B:Data PROLOG state ==
prolog CONDition
OFF Data.Word(AHB:0x4faf38)80xf00)==0x4000
(()) 144} B:Data.dump EAHB:0x4faf30 /SpotLight /NoASCT | = |[& |
@ O SELIETEE address 0 4 8 C
SET AHB:0x4fafec %Word Oxdodo * ENAHE : 004FAF30 [+00000000 00000000 00004000 00000000 -
A ENAHE : 004FAF40 | 00000000 00000074 00000000 00000000 =
ENAHE : 004FAF50 | 00000000 00000COR 0O000000 00000000 =
count ENAHE : 004FAFG0 | 00000000 0000(0000000 QOOODODO -
5. .
CORE — SEL - E
1 2. TARGET
WD «WDH

A Counts the number of times the Data.PROLOG.SEQuence command has been executed.

B Lets you create and view the data prologs of a particular core. This example shows the 2nd data
prolog of core 1. The CORE field is grayed out for single-core targets.

C The Data.dump window is just intended to visualize what happens behind the scenes:
. The access class E: in the Data.dump window is required if you want the window to display
E memory while the program is running; refer to [C].
. The CONDition [D] is true (==0x4000), and thus the SEQuence is executed [E] before the
program execution is started with the Go command.

Data.PROLOG.state ;open the window
Data.PROLOG.CORE 1. ;for core 1, two data prologs will be defined:
Data.PROLOG.SELect 1. ;lst data prolog with condition and sequence:

;1f condition i1s true, then execute seqg. below
Data.PROLOG.CONDition (Data.Word (AHB:0x4faf38)&0xff00)==0x3000
Data.PROLOG.SEQuence SET AHB:0x4faf5c %Word 0OxcO0cO

Data.PROLOG.SELect 2. ;2nd data prolog with condition and sequence:
;1f condition i1s true, then execute seqg. below

Data.PROLOG.CONDition (Data.Word (AHB:0x4faf38)&0xff00)==0x4000

Data.PROLOG.SEQuence SET AHB:0x4faf6c %Word 0xd0dO

Data.PROLOG.ON ;activate all data prologs
Go ;Start program execution
See also
B Data.PROLOG.CONDition M Data.PROLOG.CORE B Data.PROLOG.OFF B Data.PROLOG.ON
B Data.PROLOG.RESet B Data.PROLOG.SELect B Data.PROLOG.SEQuence M Data.PROLOG.TARGET

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 170

Data.PROLOG.TARGET Define PROLOG target call

Format: Data.PROLOG.TARGET <code_range> <data_range>

Defines a target program that is automatically started by the TRACE32 software directly before the program
execution is started by Go / Step.

<code_range> Defines the address range for the target program.
<data_range> Defines the address range used for the data of the target program.
Example:

Data.PROLOG.TARGET 0x3fa948--0x3faal07 0x1000--0x1500

See also
B Data.PROLOG.state

©1989-2024 Lauterbach General Commands Reference GuideD | 171

Data.REF Display current values
Format: Data.REF [<address>] [/<option>]
<option>: CORE <core_number>
COVerage
CTS
Track
FLAG <flag>
CFlag <cflag>
Mark <break>
<flag>: Read | Write | NoRead | NoWrite
<cflag>: OK | NoOK | NOTEXEC | EXEC
<break>: Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

Displays all values (registers or memory locations) that are referenced by the current assembler instruction.
This command is not implemented for all processors.

C}, BuData.REF

address | data

value

symbol I

R15 | 14 12 00 00
5D:000011590 | 80 &3 00 OO
Rl | 07 1z 00 00
R13| 98 7F 00 0O
RZ [A3 7F 00 00
RO [&C 00 00 00
R4 | A3 7F 00 00

<

Ox1214
Ox6380
Ox1207
Ox7F398
Ox7FA3
(o

Ox7FA3

CORE <core>

COVerage
Track
Mark <break>

CTS

Display memory from the perspective of the specified core /SMP
debugging only).

Highlight data memory locations that have never been read/written.
Track the window to the reference address of other windows.
Highlight memory locations for which the specified breakpoint is set.

Display CTS access information when CTS mode is active.

©1989-2024 Lauterbach

General Commands Reference Guide D |

172

Data.ReProgram Assemble instructions into memory

Format: Data.ReProgram [<address> | <addressrange> [<file>]]

Assembles instructions from a file into memory. It is similar to the Data.PROGRAM command.

The Data.Assemble command can be used to patch single instructions.

See also
B Data.PROGRAM

Data.ReRoute Reroute function call

Format: Data.ReRoute <address_range> <old_destination> <new_destination>
[<exclude_range>]

Replaces, within the specified address range, all function calls to <old_destination> by function calls to
<new_destination>. Function calls within <exclude_range> are not replaced.

Examples:

replace all function calls to 0x3fa96c by 0x3fa9ed
; within the address range 0x3f9900--0x3faelf
Data.ReRoute 0x3f9900--0x3faelf 0x3fa96c 0x3fad%es

7

; replace all function calls to func5 by func7 within the module diabc
Data.ReRoute diabc func5 func7?

replace all function calls to malloc by T32 _malloc within the code
segment of the currently loaded program

; don’t replace the calls to malloc in the module t32mem
Data.ReRoute sYmbol.SECRANGE (.text) malloc T32_malloc \t32mem

7

7

©1989-2024 Lauterbach General Commands Reference GuideD | 173

Data.SAVE.<format> Save data in file with specified format

[Examples]
Format: Data.SAVE.<format> <file> [<addressrange>] [/<option>]
<option>: <format_specific_save_options>
<generic_save_options>
Saves the data from the specified address range in a file with the specified file format.
<file> File name and (optional) path
<addressrange> Address range to be saved. It is possible to use access classes, e.g. A:
<option> d For descriptions of the format-specific save options, refer to the
respective Data.SAVE.<format> command.
. For descriptions of the generic save options, see table below.
List of Generic Save Options
BSPLIT Saves only certain bytes of the memory.
<stride><offset> J <stride> defines a chunk of data to which the other two parameters
[<width>] refer to.
J <width> defines the bus width in bytes.
J <offset> defines the offset of the bytes being saved.
o For an illustration of <stride>,<offset>, and <width>, see below.
The option BSPLIT 2 0 saves the lower byte of a 16-bit bus.
Byte Data is saved in the specified width:
Word J Byte (8-bitaccesses) @ Word (16-bit accesses)
TByte J TByte (24-bit accesses) Long (32-bit accesses)
Long . PByte (40-bit accesses) HByte (48-bit accesses)
PByte J SByte (56-bit accesses) Quad (64-bit accesses)
HByte Must be used if the target can only support memory accesses of a fixed width.
SByte The default width is determined automatically by TRACES32 to achieve the
Quad best upload speed.
LongSWAP Swaps high and low bytes of a 32-bit word during save.
QuadSWAP Swaps high and low bytes of a 64-bit word during save.
SkipErrors Skips memory that cannot be read. Otherwise TRACE32 would abort the
command if a bus error occurs while saving the specified <range>.
No data is saved for addresses that cause bus errors, provided the format
allows this.

©1989-2024 Lauterbach General Commands Reference GuideD | 174

wordSWAP

Swaps high and low bytes of a 16-bit word during save.

BITSWAP

Swaps the bits of each byte during save.

NoINCrement

Saves code to a single address (of a FIFO).

BSPLIT: illustration of <stride>, <offset>, and <width>

[Back]
< Stride 8 > < Stride 8 >
Offset Width Offset Width
2 >< 2 N 2 >< 2 N
Memory: ([O|1]|2 3|4|5]6]|7]|8]9]10 11[12|13|14]|15
File:

Examples

; Save data from uncached and physical address 0x00000000--0x0001ffff

; to s3record file.

Data.SAVE.S3record flashdump.s3 ANC:0x00000000--0x0001ffff

; Save data from supervisor data memory 0xc0000000--Oxcfffffff

; to binary file and compress.

Data.SAVE.Binary memorydump.bin.zip SD:0xc0000000--Oxcfffffff /ZIP
See also
B Data.SAVE.Ascii M Data.SAVE.AsciiHex B Data.SAVE.AsciiOct H Data.SAVE.BDX
B Data.SAVE.Binary M Data.SAVE.CCSDAT B Data.SAVE.DAB M Data.SAVE.EIf
B Data.SAVE.ESTFB B Data.SAVE.IntelHex B Data.SAVE.Omf B Data.SAVE.PureHex
B Data.SAVE.S1record B Data.SAVE.S2record B Data.SAVE.S3record B Data.SAVE.S4record
A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 175

Data.SAVE.Ascii Save ASCII file
Format: Data.SAVE.Ascii <file> [<addressrange>] [/<option>]
<option>: Hex | Decimal | DecimalU | BINary |
Float. [leee | leeeDbl | leeeeXt | <others>] |
Append

Saves an <addressrange> as a pure data file in word-oriented ASCII file format. The output file includes one

byte in each line.

Append Appends data to an existing file.
<option> Saves the file in one of the following formats:
DecimalU . Unsigned Decimal
Decimal . Signed Decimal
Hex . Hexadecimal value
Binary . Binary value
Float . Floating point value
See also
B Data.SAVE.<format>
Data.SAVE.AsciiHex Save hex file
Format: Data.SAVE.AsciiHex <file> [<addressrange>] [[<option>]
Data.SAVE.AsciiHexP <file> [<addressrange>] [/<option>]
Data.SAVE.AsciiHexA <file> [<addressrange>] [[<option>]
Data.SAVE.AsciiHexS <file> [<addressrange>] [/<option>]
Data.SAVE.AsciiHexC <file> [<addressrange>] [[<option>]
Data.SAVE.AsciiHexB <file> [<addressrange>] [[<option>]
<option>: OFFSET <offset>
<generic_save_options>
Saves a file in a simple ASCII file format.
<option> For a description of the generic options, see <generic_save_options>.

©1989-2024 Lauterbach

General Commands Reference GuideD | 176

Examples:

TRACE32 Content of file "x.txt’

Command Line

D.SAVE.AH x.txt <STX>$20000,

d:0++1f DA F2 DA 33 69 8C 83 B4 F7 6E 59 E8 48 7D 90 64
85 29 75 66 84 F1 A4 05 52 34 51 CA 36 BO 04 73
<ETX>$51009

D.SAVE.AHP x.txt <STX>520000,

d:0++1f DASF2%DA%33%69%8C%83%B4%F7%6E%59%E8%48%7D%90%64%
85%29%75%66%84%F1%A4%05%52%34%51%CA%36%B0%04%73%
<ETX>$51009

D.SAVE.AHA x.txt <STX>$20000,

d:0++1f DA'F2'DA'33'69'8C'83'B4'F7'6E'59'E8'48'7D'90'64"
85'29'75'66'84'F1'A4'05'52'34'51'CA'36'B0'04'73"
<ETX>$51009

D.SAVE.AHS x.txt <DC2>520000),

d:0++1f DA'F2'DA'33'69'8C'83'B4'F7'6E'59'E8'48'7D'90'64"'
85'29'75'66'84'F1'A4'05'52'34'51'CA'36'B0'04'73"
<DC4>$31009

D.SAVE.AHC x.txt <STX>$20000.

d:0++1f DA,F2,DA,33,69,8C,83,B4,F7,6E,59,E8,48,7D,90, 64,
85,29,75,66,84,F1,A4,05,52,34,51,CA,36,B0,04,73,
<ETX>$51009

D.SAVE.AHB x.txt DA F2 DA 33 69 8C 83 B4 F7 6E 59 E8 48 7D 90 64

d:0++1f 85 29 75 66 84 F1 A4 05 52 34 51 CA 36 BO 04 73

Key: <STX>=(char)0x02, <ETX>=(char)0x03, <DC2>=(char)0x12, <DC4>=(char)0x14
Lines end with <CR><LF>=(char)0x0D(char)Ox0A, added after the byte if (addr & OxOF == OxOF).
Address prefix is $A, Checksum $S (where available) is 16bit sum of bytes.

See also
B Data.SAVE.<format>

©1989-2024 Lauterbach General Commands Reference GuideD | 177

Data.SAVE.AsciiOct

Save octal file

Format:

<option>:

Data.SAVE.AsciiOct <file> [<addressrange>] [[<option>]
Data.SAVE.AsciiOctP <file> [<addressrange>] [[<option>]
Data.SAVE.AsciiOctA <file> [<addressrange>] [/<option>]
Data.SAVE.AsciiOctS <file> [<addressrange>] [[<option>]

OFFSET <offset>
<generic_save_options>

Saves a file in a simple ASCII file format.

<option>

Examples:

For a description of the generic options, see <generic_save_options>.

; Command

Data.SAVE.AsciOct out.txt 0x0--0x1f

; out.txt:

<STX>$SA000000,

356 335 314 273 252 002 003 004 005 006 007 010 011 012 013
015 016 017 020 021 022 023 024 025 026 027 030 031 032 033
<ETX>$5100261

; Command

Data.SAVE.AsciOctP out.txt 0x0--0x1f

; out.txt:

<STX>$SA000000,
356%335%314%273%252%002%003%004%005%006%007%010%011%012%013
015%016%017%020%021%022%023%024%025%026%027%030%031%032%033
<ETX>$S100262

; Command

Data.SAVE.AsciOctA out.txt 0x0--0x1f

; out.txt:

<STX>$SA000000,
356'335'314'273'252'002'003'004'005'006'007'010'011'012'013
015'016'017'020'021'022'023'024'025'026'027"'030'031'032"'033
<ETX>$S100262

; Command

Data.SAVE.AsciOctA out.txt 0x0--0x1f

; out.txt:

<DC2>$A000000,
356'335'314'273'252'002'003'004'005'006'007'010'011'012'013
015'016'017'020'021'022'023'024'025'026'027'030'031'032'033
<DC4>$S100262

014
034

%014%
%034%

014"
034"

014"
034"

©1989-2024 Lauterbach

General Commands Reference Guide D |

178

Key: <STX>=(char)0x02, <ETX>=(char)0x03, <DC2>=(char)0x12, <DC4>=(char)0x14Lines end with
<CR><LF>=(char)0x0D(char)0x0A, added after the byte if (addr & OXOF == OxOF).
Address prefix is $A, Checksum $S (where available) is 16bit sum of bytes.

See also
B Data.SAVE.<format>
A ’Data Access’ in’EPROM/FLASH Simulator’

Data.SAVE.BDX Save BDX file
Format: Data.SAVE.BDX <file> <addressrange> [[<option>]
<option>: <generic_save_options>

Saves a file in BDX format (binary format).

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

Data.SAVE.Binary Save binary file
Format: Data.SAVE.Binary <file> [<addressrange>] [/<option>]
<option>: ZIP | Append
<generic_save_options>

The contents of the entire address range are saved if no address parameter has been defined! The save
procedure may be interrupted at any time (Control-C).

<option> For a description of the generic options, see <generic_save_options>.
See also
B Data.SAVE.<format> B Data.LOAD.Binary

©1989-2024 Lauterbach General Commands Reference GuideD | 179

Data.SAVE.CCSDAT Save CCSDAT file

Format: Data.SAVE.CCSDAT <file> <addressrange> [/<option>]

<option>: OFFSET <offset>
<generic_save_options>

Saves memory in CCSDAT file format.

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

A ’Release Information’ in’Legacy Release History’

Data.SAVE.DAB Save DAB file
Format: Data.SAVE.DAB <file> <addressrange> [[<option>]
<option>: <generic_save_options>

Saves memory in DAB file format.

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 180

Data.SAVE.EIf Save ELF file

Format: Data.SAVE.EIf <file> <addressrange> [[<option>]

<option>: ELF32 | ELF64
<generic_save_options>

Saves binary data in ELF format.

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

Data.SAVE.ESTFB Save EST flat binary file
Format: Data.SAVE.ESTFB <file> <addressrange> [/<option>]
<option>: <generic_save_options>

Saves memory in EST flat binary file format.

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

©1989-2024 Lauterbach General Commands Reference Guide D | 181

Data.SAVE.IntelHex Save INTEL-HEX file

Format: Data.SAVE.IntelHex <file> <addressrange> [[<option>]

<option>: ADDR <address_size>
Append
TYPE2
TYPE4
OFFSET <offset>
<generic_save_options>

Saves a file in an IntelHex format.

ADDR Defines the <address_size> of the INTEL-HEX file.
Append Appends data to an existing file.
TYPE2 Defines 20 bits for the address field.
TYPE4 Defines 32 bits for the address field.
OFFSET Gives the offset to the address range to store.
<option> For a description of the generic options, see <generic_save_options>.
See also
B Data.SAVE.<format> B Data.LOAD.IntelHex
Data.SAVE.Omf Save OMF file
Format: Data.SAVE.Omf <file> <addressrange> [/<option>]
<option>: <generic_save_options>

Saves memory in OMF file format. The command is implemented for the OMF-96 format.

<option> For a description of the generic options, see <generic_save_options>.
See also
B Data.SAVE.<format> B Data.LOAD.Omf

©1989-2024 Lauterbach General Commands Reference GuideD | 182

Data.SAVE.PureHex Save pure HEX file

Format: Data.SAVE.PureHEX <file> <addressrange> [/<option>]

<option>: <generic_save_options>

Saves memory in pure HEX file format. The output file includes the saved memory contents as ASCII
hexadecimal data. After each 18 characters a CR (0x0D) and a LF (0x0A) characters are added.

<option> For a description of the generic options, see <generic_save_options>.

See also
B Data.SAVE.<format>

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 183

Data.SAVE.S1record Save S1-record file

[Examples]

Format: Data.SAVE.S1record <file> <range>[ll<ranges> ...] [/<option>]

<option>: OFFSET | RECORDLEN | Append | SkipErrors
<generic_save_options>

Saves memory content as SREC S19 style / 16-bit address record. The following options are available:

Append Appends data to an existing file.

OFFSET Changes the address value to value plus offset. The Srecord will be
loaded to the address plus offset value.

RECORDLEN Defines the number of data bytes per line in the Srecord file.
Decimal values have to be given with decimal point behind.

<option> For a description of the generic options, see <generic_save_options>.

©1989-2024 Lauterbach General Commands Reference GuideD | 184

Example 1

Data.SAVE.S3record mydata.s3 0x1000++0fff

Example 2

TRACE32 allows to specify more than one address <range>. The ranges are separated by two pipe

symbols ll, no space allowed. The example below is for demo purposes only.

Data.dump VM:0x1000

;initialize a TRACE32 virtual memory (VM:) area with a test pattern
Data.PATTERN VM:0x1000++3ff /WordCount

;save three non-contiguous ranges to one S3 file
Data.SAVE.S3record ~~~\s3multirange.s3 VM:0x1000++0£f]| |\
VM:0x1040++1f| |VM:0x1110++0f

Data.CLEARVM VM:0x1000++0xXxFFFF ;clear the 1lst 64 kB block of the virtual

memory

;load the S3 file back to the virtual memory

Data.LOAD.S3record ~~~\s3multirange.s3 /VM /OFFSET 0x200
See also
B Data.SAVE.S2record B Data.SAVE.S3record B Data.SAVE.S4record B Data.SAVE.<format>
B Data.LOAD.S1record W Data.LOAD.S2record B Data.LOAD.S3record M Data.LOAD.S4record
M Data.LOAD.SAUF M Data.LOAD.SDS B Data.LOAD.SPARSE B Data.LOAD.SysRof

©1989-2024 Lauterbach General Commands Reference Guide D

185

Data.SAVE.S2record Save S2-record file

[Examples]

Format: Data.SAVE.S2record <file> <range>[ll<ranges> ...] [/<option>]

<option>: OFFSET | RECORDLEN | Append | SkipErrors
<generic_save_options>

Saves memory content as SREC S28 style / 24-bit address record. The description of options, further
information and examples are here.

See also
M Data.SAVE.S1record M Data.SAVE.S3record M Data.SAVE.S4record M Data.SAVE.<format>
B Data.LOAD.S1record M Data.LOAD.S2record B Data.LOAD.S3record M Data.LOAD.S4record
MW Data.LOAD.SAUF MW Data.LOAD.SDS W Data.LOAD.SPARSE W Data.LOAD.SysRof
Data.SAVE.S3record Save S3-record file
[Examples]
Format: Data.SAVE.S3record <file> <range>[ll<ranges> ...] [/<option>]
<option>: OFFSET | RECORDLEN | Append | SkipErrors
<generic_save_options>

Saves memory content as SREC S37 style / 32-bit address record. The description of options, further
information and examples are here.

See also

B Data.SAVE.S1record B Data.SAVE.S2record B Data.SAVE.S4record B Data.SAVE.<format>
B Data.LOAD.S1record M Data.LOAD.S2record B Data.LOAD.S3record M Data.LOAD.S4record
B Data.LOAD.SAUF W Data.LOAD.SDS B Data.LOAD.SPARSE B Data.LOAD.SysRof

©1989-2024 Lauterbach General Commands Reference GuideD | 186

Data.SAVE.S4record Save S4-record file

[Examples]

Format: Data.SAVE.S4record <file> <range>[ll<ranges> ...] [/<option>]

<option>: OFFSET | RECORDLEN | Append | SkipErrors
<generic_save_options>

Saves memory content as SREC S47 style / 64-bit address record. The description of options, further
information and examples are here.

See also
B Data.SAVE.S1record B Data.SAVE.S2record B Data.SAVE.S3record B Data.SAVE.<format>

©1989-2024 Lauterbach General Commands Reference GuideD | 187

Data.Set Modify memory

[Examples]

Format: Data.Set [<address> | <range>] {[Y%<format>] <value>} [{/<option>}]
<format>: [<access_format>.]<data_format>

Float. [leee | leeeDbl | leeeeXt | <others>]

BE | LE

BitSwap
<access_ Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
format>:
<data_ Byte | Word | Long | Quad | TByte | PByte | HByte | SByte
format>:
<value>: <data> | "<string>" [0]
<option>: Verify | ComPare | DIFF | PlusVM | CORE <core_number>

Write data to memory. If no byte access is possible for an address location, the write is performed in the
smallest possible width.

If you run Data.Set without command line arguments, then the Modify Memory dialog opens.

£3t] Modify Memory =0 ESH =
Address / Expression Operation
+~ [Z]EHL | | @ set — Data.Set
Target PATTERN
il [h et Data.PATTERN
COPY |77 Data.Test
Data ComPare
- SUM etc.
([ok) [Execute | [cancel |

The data set function may be called by mouse-click (left button) to a data field. By choosing an address
range, memory can be filled with a constant.

0 Writes the "<string>" as a zero-terminated string to memory.

BE, LE Defines byte-order display direction: Big Endian or Little Endian.
BitSwap Reverses the bit-order within a byte. This will not affect the byte-order.
Byte (default), Word, Data size for integer or string constants. See “Keywords for <width>",
TByte, Long, PByte, page 11.

HByte, SByte, Quad

©1989-2024 Lauterbach General Commands Reference GuideD | 188

ComPare

Compares the data against memory, don’t write to memory.

CORE <number>

Performs write operation on the specified hardware thread.

DIFF Data is compared against memory. Memory is not changed. The result of
the compare is available in the FOUND() function.
Float Data format for floating point constants.
Verify Sets and verifies complete block of data by a following read operation.
Example 1

Various Data.Set operations with and without the use of PRACTICE functions:

Data.Set 0x100

Data.Set 0x100

"hello world" 0x0

sLong 0x12345678

Data.Set 0x0--0x0ffff 0xO0

Data.Set Var.RANGE (flags) 0x0

Data.Set 0x100--0x3ff %$Long 0x20000000

Data.Set 0x100--0x3ff

Data.Set 0x100

$Float.IeeeDbl 1.25

PRINT Data.Short (D:0x200)
PRINT Data.Short (D:0x200)

Data.Set 0x4128 %BE %Byte.Long

0x12345678

Data.Set 0x4128 0x12 0x34 0x56 0x78

Data.Set 0x4128

$BE %$Byte.Long Oxab

Data.Set 0x4128 0x00 0x00 0x00 Oxab

7

gWord 0x2000 /ComPare

set string to memory
write long word

init memory with 0

fill field with constant

fill with long word

verify that memory contains
this data

set floating point in
IEEE-Double format

prints short at address
D:0x200

write the 32-bit <data>
bytewise to memory

equivalent command

write the 32-bit <data>
bytewise to memory

equivalent command

©1989-2024 Lauterbach

General Commands Reference Guide D | 189

Example 2

Shows how to write a zero-terminated string to memory. In this case, a zero-terminated string is written to
the TRACES32 virtual memory.

Data.Set VM:0x0 "Hello World!"™ 0 ;set two zero-terminated strings

Data.Set VM:0x30 "Hello Universe!" 0 ;to the TRACE32 virtual memory
{1 B:Data.dump VM:0x0 /Byte /Spotlight EI@

address [0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF |
VIM: 00000000 [*48 65 BC BC 6F 20 57 Bh F2 6C 62 2L 00 73 38 2D HellouWorld!is8- .
VM:00000010 | AC 92 56 5D 68 71 61 17 92 D1 A0 17 9A 44 BA 7C %3v]hgat33%%iDi] =
VM:00000020 | 38 1B D9 86 B> BF 55 74 F2 94 Bl 3B E2 89 CF D4 833L3%uUthi%;555%%
VM:00000030 | 48 B5 6C€ 6C 6F 20 55 GE 69 Z6 65 72 F3 65 23 0O Hello.Universe!d
VM:00000040 | FD 76 5D C4 BE 99 D7 04 3C Ab 9A 40 63 A6 SA4C Tv]i335<tisivL -
4 I3
A | BI

A In the byte-formatted output, 00 indicates a zero-terminated string.

B In the ASCII-formatted output, NU indicates a zero-terminated string.

Example 3

The Data.Set <addressrange> /DIFF command is used together with the following functions:

FOUND() Returns TRUE if a difference was found in the comparison.
TRACK.ADDRESS() Returns the address of the first difference.

Data.Set 0x0++0xffff 123
Data.Set 0x0++0xffff 123 /DIFF

IF FOUND ()
PRINT "Error found at address " TRACK.ADDRESS ()

See also
H Data.Out H Data.PATTERN H Data.PROGRAM M Data.Test

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 190

Data.SOFTEPILOG Automated sequence after setting software breakp.

The Data.SOFTEPILOG command group allows to define a sequence of read/write accesses that are
automatically performed directly after a software breakpoint is written to the memory by the debugger. The

complementary command Data.SOFTPROLOG performs read/write accesses before a software breakpoint
is written to the memory.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
Data.SOFTEPILOG.state window.

% B:Data SOFTEPILOG state [s

softepilog COMNDition
| (Data.Word(D:0x3faf30)&0xff00) ==0x2000 |

OoFF
’ ®on SEQuence

SET 0x3faf4 %Word O0xb0b0

count

A For descriptions of the commands in the Data.SOFTEPILOG.state window, please refer to the
Data.SOFTEPILOG.* commands in this chapter. Example: For information about ON, see
Data.SOFTEPILOG.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or
Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set_commands> SET,
SETI, GETS, and SETS.

©1989-2024 Lauterbach General Commands Reference GuideD | 191

Data.SOFTEPILOG.CONDition Define condition for data softepilog

Format: Data.SOFTEPILOG.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with Data.SOFTEPILOG.SEQuence will be
executed directly after a software breakpoint is written to the memory.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

Data.SOFTEPILOG.CORE Select core for data softepilog

Format: Data.SOFTEPILOG.CORE <core_number>

Selects the core for which you want to define one or more data softepilogs.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

Example: The following example shows how to define a data softepilog that is executed on core 3 of a
multicore chip.

;Select the core for which you want to define a data softepilog
Data.SOFTEPILOG.CORE 3.

;Define the data softepilog for core 3

Data.SOFTEPILOG.CONDition <your_code>
Data.SOFTEPILOG.SEQuence <your_code>

For information on how to configure two different data softepilogs, see Data.SOFTEPILOG.SELect.

©1989-2024 Lauterbach General Commands Reference GuideD | 192

Data.SOFTEPILOG.OFF Switch data softepilog off

Format: Data.SOFTEPILOG.OFF

Disables the execution of the Data.SOFTEPILOG sequence.

Data.SOFTEPILOG.ON Switch data softepilog on

Format: Data.SOFTEPILOG.ON

Enables the execution of the Data.SOFTEPILOG sequence.

Data.SOFTEPILOG.RESet Reset all data softepilogs

Format: Data.SOFTEPILOG.RESet

Switches the Data.SOFTEPILOG feature off and clears all settings.

Data.SOFTEPILOG.SELect Increment the index number to the next epilog

Format: Data.SOFTEPILOG.SELect <index_number>

Increments the index number for each new data softepilog. This is useful, for example, if you need two
separate data softepilogs with each data softepilog having its own Data.SOFTEPILOG.CONDition.

TRACES32 automatically assigns the index number 1. to the 1st Data.SOFTEPILOG.SEQuence. If you
require a 2nd, separate data softepilog sequence, then increment the <index_number> to 2. Otherwise the
2nd data softepilog will overwrite the 1st data softepilog. You can define a maximum of 10 data softepilogs.

©1989-2024 Lauterbach General Commands Reference Guide D | 193

Data.SOFTEPILOG.SEQuence Define softepilog sequence

Format: Data.SOFTEPILOG.SEQuence <commanad> ...

<command>: SET <address> %<format> <data>
SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are automatically executed by the TRACE32 software
directly after writing the software breakpoint into the memory.

SET Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

SETI Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

GETS Parameters: <address> %<format>
Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command Data.SOFTEPILOG.Sequence is called.

SETS Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

Data.SOFTEPILOG.state Display data softepilogs

Format: Data.SOFTEPILOG.state

Opens the Data.SOFTEPILOG.state window, where you can configure data softepilogs.

©1989-2024 Lauterbach General Commands Reference GuideD | 194

Data.SOFTPROLOG Automated sequence before setting software breakp.

The Data.SOFTPROLOG command group allows to define a sequence of read/write accesses that are
automatically performed before a software breakpoint is written to the memory by the debugger. The

complementary command Data.SOFTEPILOG performs read/write accesses directly after a software
breakpoint is written to the memory.

©1989-2024 Lauterbach General Commands Reference GuideD | 195

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
Data.SOFTPROLOG.state window.

% B:Data. SOFTPROLOG state [s

CONDition

softprolog B
OoFF E

(Data.Word(D:0x3faf30)80xff00)==0x2000 |

©0N

SEQuence

SET 0x3faf4 %Word O0xb0b0

A For descriptions of

the commands in the Data.SOFTPROLOG.state window, please refer to the

Data.SOFTPROLOG.* commands in this chapter. Example: For information about ON, see
Data.SOFTPROLOG.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or

Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set commands> SET,
SETI, GETS, and SETS.

Data.SOFTPROLOG.CONDition Define condition for data softprolog

Format:

<condition>:

<memory._
access>:

Data.SOFTPROLOG.CONDition <condition>

<memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)

Defines a condition on which the command sequence defined with Data.SOFTPROLOG.SEQuence will be
executed before a software breakpoint is written to the memory.

<memory_access>

Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

©1989-2024 Lauterbach

General Commands Reference Guide D | 196

Data.SOFTPROLOG.CORE Select core for data softprolog

Format: Data.SOFTPROLOG.CORE <core_number>

Selects the core for which you want to define one or more data softprologs.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

Example: The following example shows how to define a data softprolog that is executed on core 3 of a
multicore chip.

;Select the core for which you want to define a data softprolog
Data.SOFTPROLOG.CORE 3.

;Define the data softprolog for core 3
Data.SOFTPROLOG.CONDition <your_code>
Data.SOFTPROLOG. SEQuence <your_code>

For information on how to configure two different data softprologs, see Data.SOFTPROLOG.SELect.

Data.SOFTPROLOG.OFF Switch data softprolog off

Format: Data.SOFTPROLOG.OFF

Disables the execution of the Data.SOFTPROLOG sequence.

Data.SOFTPROLOG.ON Switch data softprolog on

Format: Data.SOFTPROLOG.ON

Enables the execution of the Data.SOFTPROLOG sequence.

©1989-2024 Lauterbach General Commands Reference GuideD | 197

Data.SOFTPROLOG.RESet Reset all data softprolog

Format: Data.SOFTPROLOG.RESet

Switches the Data.SOFTPROLOG feature off and clears all settings.

Data.SOFTPROLOG.SELect Increment the index number to the next prolog

Format: Data.SOFTPROLOG.SELect <index_number>

Increments the index number for each new data softprolog. This is useful, for example, if you need two
separate data softprolog with each data softprolog having its own Data.SOFTPROLOG.CONDition.

TRACE32 automatically assigns the index number 1. to the 1st Data.SOFTPROLOG.SEQuence. If you
require a 2nd, separate data softprolog sequence, then increment the <index_number> to 2. Otherwise the
2nd data softprolog will overwrite the 1st data softprolog. You can define a maximum of 10 data softprolog.

Data.SOFTPROLOG.SEQuence Define softprolog sequence
Format: Data.SOFTPROLOG.SEQuence <command> ...
<command>: SET <address> %<format> <data>

SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are automatically executed by the TRACE32 software
before writing the software breakpoint into the memory.

SET Parameters: <address> %<format> <value>
Write <value> with data type <format> to <address>

©1989-2024 Lauterbach General Commands Reference Guide D | 198

SETI Parameters: <address> %<format> <start> <increment>
At the first time performed, write <start>to <address>.
<start> is incremented by <increment> on each successive call.

GETS Parameters: <address> %<format>
Reads the value at <address> and stores it into an internal data buffer.
The internal data buffer can contain multiple records and is reset when the
command Data.SOFTPROLOG.Sequence is called.

SETS Parameters: <address> %<format>
If the internal data buffer contains a record for <address>, the stored value
is written to the processor.

Data.SOFTPROLOG:.state Display data softprologs

Format: Data.EPILOG.state

Opens the Data.SOFTPROLOG.state window, where you can configure data softprologs.

©1989-2024 Lauterbach General Commands Reference GuideD | 199

Data.STANDBY Standby data-sequences

Only for PowerPC MPC5xxx, TriCore

Using the Data.STANDBY command group, you can define one or more sequences that perform write
operations to registers or memory. For example, you can use the Data.STANDBY command group to
deactivate a watchdog.

These standby data-sequences are executed automatically as soon as target power is switched on while the
debugger is in StandBy mode (SYStem.Mode StandBy):

& Bu:SYStem.state & Bu:SYStem.state
Maode Maode
©) Down ©) Down
() Attach / () Attach
@ StandBy () StandBy
Lp (SandBy] @ Lp (SandBy]
T Up T Up

Target power is switched ON and the standby data-sequences are executed:

condition 1 | condition 2 | - | condition n
Target power is OFF seq. 1 seq. 2] | seq. n

time

—

Each sequence can optionally depend on a condition, see also [B] in the figure below.

For configuration of standby data-sequences, use the TRACE32 command line, a PRACTICE script
(*.cmm), or the Data.STANDBY.state window:

(2 B:Data STANDBY state [f=lfE ==

standby E CONDition
© OFF (Data.LONG(D:0xFO03C124)&0x800)! =0x800

@ ON SEQuence

SET D:0x70000004 %Long OxAAAAAAAA -
count
0.
CORE SEL
0. 2.

A For descriptions of the commands in the Data.STANDBY.state window, please refer to the
Data.STANDBY.* commands in this chapter.
Example: For information about ON, see Data.STANDBY.ON.

B Simple conditions can be set up in the CONDition field using the functions Data.Byte(),
Data.Long(), or Data.Word().

C Standby data-sequences can be set up in the SEQuence field using the memory modification
commands SET, SETI, GETS, and SETS.

A good way to familiarize yourself with the Data.STANDBY command group is to start with the following
example.

©1989-2024 Lauterbach General Commands Reference Guide D | 200

Example

This demo script illustrates how to define standby data-sequences for two cores.

Data.STANDBY.state ;optional step: open the window
Data.STANDBY .CORE 0 ;let's define two sequences for core 0
Data.STANDBY.SELect 1 ;sequence 1 on core 0

;no condition is specified for sequence 1 on core O0:
Data.STANDBY.SEQuence SET D:0x70000000 %Long 0x55555555

;set the index number to 2, else the first sequence would be
;overwritten by the 2nd sequence
Data.STANDBY.SELect 2

;the 2nd sequence consisting of two SET sequences shall be executed
;only if this condition is true:
Data.STANDBY.CONDition (Data.LONG (D:0xF003C124)&0x800)!=0x800
;define the two SET sequences for the condition above:
Data.STANDBY.SEQuence SET D:0x70000004 %Long OxAAAAAAAA \

SET D:0x70000014 %Long OxBBBBBBBB

Data.STANDBY .CORE 1 ;let's define a sequence for core 1
Data.STANDBY.SELect 1 ;sequence 1 on core 1

;no condition is specified for sequence 1 on core 1:
Data.STANDBY.SEQuence SET D:0x70000010 %Long 0x11111111

Data.STANDBY .ON ;we are now ready to activate the
; standby data-sequences

SYStem.Mode StandBy ;switch to StandBy mode

As soon as target power is switched ON, the standby data-sequences are executed.

See also
B Data.STANDBY.CONDition M Data.STANDBY.CORE B Data. STANDBY.OFF M Data.STANDBY.ON
B Data. STANDBY.RESet B Data.STANDBY.SELect B Data.STANDBY.SEQuence M Data.STANDBY.state

B Data.STARTUP

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 201

Data.STANDBY.CONDition Define condition

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which a standby data-sequence will be executed automatically. To define the standby
data-sequence, use the command Data.STANDBY.SEQuence.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()
. Data.Word() and its short form D.W()

Example:

;reads the long at address 0xF003Cl24. If the result is not equal to

; 0x800, ...
Data.STANDBY.CONDition (Data.LONG(D:0xF003C124)&0x800) !=0x800

;... then the standby data-sequence is executed.
Data.STANDBY.SEQuence SET D:0x70000004 %Long OxAAAAAAAA

See also
B Data.STANDBY M Data.STANDBY.state

©1989-2024 Lauterbach General Commands Reference Guide D | 202

Data.STANDBY.CORE Assign sequence to core

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.CORE <core_number>

Selects the core for which you want to define one or more standby data-sequences.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

Example: The following example shows how to define a standby data-sequences that is executed on core 3
of a multicore chip.

;select the core for which you want to define a standby data-sequence
Data.STANDBY.CORE 3.

;define the standby data-sequence for core 3
Data.STANDBY.CONDition <your_code>
Data.STANDBY.SEQuence <your_code>

For information on how to configure two separate standby data-sequences, see Data.STANDBY.SELect.

See also
B Data.STANDBY B Data.STANDBY.state

Data.STANDBY.OFF Switch all sequences off

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.OFF

Switches the Data.STANDBY feature off.

See also
H Data.STANDBY M Data.STANDBY.state

©1989-2024 Lauterbach General Commands Reference Guide D | 203

Data.STANDBY.ON

Switch all sequences on

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.ON

Switches the Data.STANDBY feature on.

See also
B Data.STANDBY B Data.STANDBY.state
Data.STANDBY.RESet Clear all settings

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.RESet

Switches the Data.STANDBY feature off and clears all settings.

See also

B Data.STANDBY B Data.STANDBY.state

©1989-2024 Lauterbach General Commands Reference Guide D |

204

Data.STANDBY.SELect Increment index number for next sequence
Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.SELect <index_number>

Selects the sequence that is configured by the subsequent Data.STANDBY.* commands. This is useful, for
example, when you are working with multiple sequences and conditions.

Sequence 1. is automatically selected after start-up. You can define up to 10 sequences.

Example: This script defines two separate sequences with the index numbers 1. and 2.. Sequence 2, in
turn, consists of two SET sequences that depend on the same condition. The backslash \ is used as a line
continuation character. No white space permitted after the backslash.

;optional step for you: set the index number to 1.
Data.STANDBY.SELect 1.

;no condition is specified for this sequence:
Data.STANDBY.SEQuence SET D:0x70000000 %Long 0x55555555

;set the index number to 2, else the first sequence would be
;overwritten by the 2nd sequence
Data.STANDBY.SELect 2.

;the 2nd sequence consisting of two SET sequences shall be executed
;only if this condition is true:
Data.STANDBY.CONDition (Data.LONG(D:0xF003C124)&0x800) !=0x800

;define the two SET sequences for the condition above:
Data.STANDBY.SEQuence SET D:0x70000004 %Long OxAAAAAAAA \
SET D:0x70000014 %Long O0xBBBBBBBB

&% B::Data STANDBY.state =n| Wl < &% B::Data STANDBY.state =n| Wl <
standby CONDition standby CONDition
OFF OFF (Data.LONG(D:0xFO03C124)&0%800)1 =0x800
@ 0N SEQuence @ 0N SEQuence
SET D:0x70000000 %Long 0x55555555 . SET D:0x70000004 %Long OXAAAAAAAA
SET D:0x70000014 %Long OxBBBEBBBER
count count
1. 1.
CORE -|- SEL CORE - |- SEL
0 1. 0 2
EIRCY IR0 s EIRC IERE s
See also
B Data.STANDBY B Data.STANDBY.state

©1989-2024 Lauterbach General Commands Reference Guide D | 205

Data.STANDBY.SEQuence Define sequence

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.SEQuence <command> ...

<command>: SET <address> %<format> <data>
SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a standby data-sequence consisting of memory modification commands that are automatically
executed when TRACES2 leaves the StandBy mode and switches to SYStem.Mode Up (StandBy).
SET Write <data> to <address>.

SETI Write <data> to <address>.
Then <data> is incremented by <increment>.

GETS Save the data at <address>.

SETS Write the data that was saved with a previous GETS back to <address>.

Example: This script defines a standby data-sequence consisting of two SET sequences. The backslash \is
used as a line continuation character. No white space permitted after the backslash.

Data.STANDBY.SEQuence SET D:0x70000004 %Long OxAAAAAAAA \

SET D:0x70000014 %Long 0xBBBBBBBB

See also
B Data.STANDBY M Data.STANDBY.state

©1989-2024 Lauterbach General Commands Reference Guide D | 206

Data.STANDBY.state Open configuration window

Only for PowerPC MPC5xxx, TriCore

Format: Data.STANDBY.state

Opens the Data.STANDBY.state window, where you can configure standby data-sequences.

(2 B:Data STANDBY state [f=lfE ==

standby CONDition

7 OFF (Data.LONG(D:0xFO03C124)&0x800)!=0x800
@ 0N SEQuence

SET D:0x70000004 %Long OxAAAAAAAA

count

=1

CORE

Ell:
=]
[a]w|e
® |

A For descriptions of the commands in the Data.STANDBY.state window, please refer to the
Data.STANDBY.* commands in this chapter.
Example: For information about ON, see Data.STANDBY.ON.

See also
B Data.STANDBY M Data.STANDBY.CONDition M Data.STANDBY.CORE M Data.STANDBY.OFF
B Data.STANDBY.ON B Data.STANDBY.RESet B Data. STANDBY.SELect B Data. STANDBY.SEQuence

©1989-2024 Lauterbach General Commands Reference Guide D | 207

Data.STARTUP Startup data sequence

The Data.STARTUP command group allows to define a sequence of Data.Set commands that are executed
when the debugger is activated with SYStem.Mode Up.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the
Data.STARTUP.state window:

2 B:Data STARTUP state [f=lfE ==

startup E COMDition
OFF (Data.Byte(D:0x3FAFG0)&B80)1=80

@ ON SEQuence

SETI 0x3FAF4B 10 1

count

0.
CORE SEL

1.
« D -

A For descriptions of the commands in the Data.STARTUP.state window, please refer to the
Data.STARTUP.* commands in this chapter.
Example: For information about ON, see Data.STARTUP.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or
Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set commands> SET,
SETI, GETS, and SETS.

See also

B Data.STARTUP.CONDition M Data.STARTUP.CORE B Data.STARTUP.OFF M Data.STARTUPON
B Data.STARTUP.RESet B Data.STARTUPRSELect B Data. STARTUP.SEQuence M Data.STARTUPstate
W Data.STANDBY W Data. ATTACH W Data.EPILOG M Data.PROLOG

©1989-2024 Lauterbach General Commands Reference Guide D | 208

Data.STARTUP.CONDition Define startup condition

Format:

<condition>:

<memory._
access>:

Data.STARTUP.CONDition <condition>

<memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)

Defines a condition on which the command sequence defined with Data.STARTUP.SEQuence will be

executed periodically.

<memory_access>

Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()
. Data.Word() and its short form D.W()

Examples:

; reads the long at address D:0x3faf30, proceeds a binary AND with
; a constant (here Oxffffffff). If the result is equal to 0x80000000 the

I

condition is true and the defined sequence is executed.

Data.STARTUP.CONDition (Data.Long(D:0x3faf30)&0xfffff£f£f£f)==0x80000000

; read the word at address D:0x3xfaf30
Data.STARTUP.CONDition (Data.Word(D:0x3faf30)&0x££f00) !=0x8000

; reads the byte at address D:0x3xfaf30
Data.STARTUP.CONDition (Data.Byte(D:0x3faf30)&0xf0) !=0x80

See also

M Data.STARTUP

M Data.STARTUPstate

©1989-2024 Lauterbach

General Commands Reference Guide D | 209

Data.STARTUP.CORE Select core for startup sequence

Format: Data.STARTUP.CORE <core_number>

Selects the core for which you want to define one or more data startup sequences.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.
Example: This script shows how to define a startup sequence that is executed on core 3 of a multicore chip.

;Select the core for which you want to define a startup sequence
Data.STARTUP.CORE 3.

;Define the startup sequence for core 3

Data.STARTUP.CONDition <your_code>
Data.STARTUP.SEQuence <your_code>

For information on how to configure two different startup sequences, see Data.STARTUP.SELect.

See also
B Data.STARTUP M Data.STARTUPRSstate

©1989-2024 Lauterbach General Commands Reference GuideD | 210

Data.STARTUP.OFF

Switch startup sequence off

Format: Data.STARTUP.OFF

Switches the Data.STARTUP feature off.

See also
B Data.STARTUP B Data.STARTUPstate
Data.STARTUP.ON Switch startup data sequence on
Format: Data.STARTUP.ON

Switches the Data.STARTUP feature on.

See also
B Data.STARTUP B Data. STARTUPstate
Data.STARTUP.RESet Reset startup data sequence
Format: Data.STARTUP.RESet

Switches the Data.STARTUP feature off and clears all settings.

See also

B Data.STARTUP M Data.STARTUPRSstate

©1989-2024 Lauterbach

General Commands Reference GuideD | 211

Data.STARTUP.SELect Increment the index number to the next sequence

Format: Data.STARTUP.SELect <serial_number>

Increments the index number for each new startup sequence. This is useful, for example, if you need two
separate startup sequences with each sequence having its own Data.STARTUP.CONDition.

TRACES32 automatically assigns the index number 1. to the first Data.STARTUP.SEQuence. If you require a
second, separate startup sequence, then increment the <index_number> to 2. Otherwise the second
startup sequence will overwrite the first one. You can define a maximum of 10 startup sequences.

Example 1: Two startup sequences with the same Data.STARTUP.CONDition may have the same
index number. The backslash \ is used as a line continuation character. No white space permitted after the
backslash.

;Set the index number to 1.
Data.STARTUP.SELect 1.

;Startup sequences shall be executed only if this condition is true:
Data.STARTUP.CONDition (Data.Word(D:0x4faf34)&0xf£f00)==0x4000

;Define the two startup sequences:
Data.STARTUP.SEQuence SET 0x4faf54 %Word O0xCOCO \
SET 0x4faf64 %Word 0xDODO

Example 2: Two startup sequences with different Data.STARTUP.CONDition settings require two
different index numbers.

;1lst startup sequence - TRACE32 automatically sets the index number to 1.
Data.STARTUP.SELect 1.

;If this startup condition is true,
Data.STARTUP.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x2000

;... then the 1lst startup sequence will be executed
Data.STARTUP.SEQuence SET 0x4faf58 %Word OxEOEOQ

; Increment the index number to define the 2nd startup sequence
Data.STARTUP.SELect 2.

;If this data startup condition is true,
Data.STARTUP.CONDition (Data.Word(D:0x4faf38)&0xff00)==0x3000

;... then the 2nd startup sequence will be executed
Data.STARTUP.SEQuence SET 0x4faf58 %Word OxFOFO

See also
B Data.STARTUP M Data.STARTUPstate

©1989-2024 Lauterbach General Commands Reference GuideD | 212

Data.STARTUP.SEQuence Define startup data sequence

Format: Data.STARTUP.SEQuence <command> ...

<command>: SET <address> %<format> <data>
SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are executed when the emulation system in activated.

SET Write <data> to <address>.

SETI Write <data> to <address>.
Then <data> is incremented by <increment>.

GETS Save the data at <address>.
SETS Write the data that was saved with a previous GETS back to <address>.
Examples:

Data.STARTUP.SEQuence SET 0x3faf50 %Word 0xalal
Data.STARTUP.SEQuence SETI 0x3faf50 %Word 0xalal 2
Data.STARTUP.SEQuence SETS 0x3faf60

Data.STARTUP.SEQuence GETS 0x3faf60

See also
B Data.STARTUP M Data.STARTUPstate

©1989-2024 Lauterbach General Commands Reference GuideD | 213

Data.STARTUP.state Startup data state display

Format: Data.STARTUP.state
&% B:Data STARTUP.state =n| Wl <
startup COMDition
*) OFF (Data.Byte(D:0x3FAF60)8&B0)1=80
@ ON SEQuence
SETI OX3FAF4B 10 1 -
count
0.
CORE — SEL
1.
[« D .
See also
M Data.STARTUP B Data.STARTUP.CONDiton M Data.STARTUP.CORE M Data. STARTUPOFF
B Data.STARTUP.ON B Data. STARTUP.RESet B Data. STARTUP.SELect B Data.STARTUP.SEQuence

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideD | 214

Data.STRING

ASCII display

Format:

Data.STRING [%CONTinue] <addressrange>

Displays a string in the selected AREA window. The character set is host specific.

CONTinue

Example:

Adds the string to the current output line in the selected AREA window
without inserting a newline character.

AREA.Create TERMINAL
AREA.Select TERMINAL

AREA TERMINAL

Data.STRING SD:0x1000--0Ox1fff

See also

create an area
select it for output and input
show the area in a window

; display data in the window

B Data.dump

B Data. WRITESTRING 1 Data.STRing()
A ’'Release Information’ in’Legacy Release History’

Data.SUM Memory checksum
[Examples]
Format: Data.SUM <range> [/<format>]
<format>: Byte | Word | Long

RotByte | RotWord | RotLong
XorWord9 | RotWord9
CRC16 | CRC32 | CRC

Even | Odd

InvByte | InvWord | InvLong
ByteSWAP

The format option allows to select an algorithm to determine the check sum. The default setting is
XorWord9. The resulting checksum is available for PRACTICE by the Data.SUM() function.

©1989-2024 Lauterbach

General Commands Reference Guide D | 215

Checksum

Algorithms

Byte Sum bytes (returns a 32-bit checksum)

Word Sum words (returns a 32-bit checksum)

Long Sum longs (returns a 32-bit checksum)

RotByte Sum byte and rotate byte left circular (returns a 8-bit checksum)
RotWord Sum word and rotate word left circular (returns a 16-bit checksum)
RotLong Sum long and rotate long left circular (returns a 32-bit checksum)
CRC16 16-bit CRC algorithm (ZMODEM variant)

CRC32 32-bit CRC algorithm (PKZIP variant)

CRC <params>

Usage:

/CRC <checksum_width> <polynom>
<input reflection 0/1> <output reflection 0/1>
<CRC init> <output XOR value>

<polynom_width> : Size of CRC Checksum in bits
<polynom> : Polynom (without MSB which has to be 1).
<input_reflection> : if not zero, input will be reflected

(LSB of a byte will be processed first)
<output_reflection>: if not zero, output will be reflected

(bit ordering will be reversed)
<cre_init> : Initial value, which is XORed to input
<output_xor> : Value which will be XORed to output

/CRC16 is a synonym for
/CRC 16. 0x1021 0 0 0x0 0x0

The official CRC16 CCITT algorithm should be the same as
/CRC 16. 0x1021 1 1 0x0 0x0

/CRCB32 is a synonym for
/CRC 32. 0x04C11DB7 1 1 OXFFFFFFFF OxFFFFFFFF
This is the CRC used in the various “ZIP” utilities.

The Unix “cksum” utility uses the same as

/CRC 32. 0x04C11DB7 0 0 0x0 OxFFFFFFFF

NOTE: The cksum utility adds the length of the text in little endian before
calculating the CRC. If you want to get the same result you need to
emulate this behavior by also adding the length of the text to the end of
the text.

Even

Sum even bytes (returns a 32-bit checksum)

©1989-2024 Lauterbach

General Commands Reference Guide D | 216

Odd Sum odd bytes (returns a 32-bit checksum)

RotWord9 Rotate words special (OS-9 compatible) (returns a 16-bit checksum)

XorWord9 exor of all words, start-value = Oxffff (OS-9 compatible) (returns a 16-bit
checksum)

InvByte Sum bitwise inverted bytes (returns a 32-bit checksum)

InvWord Sum bitwise inverted words (returns a 32-bit checksum)

InvLong Sum bitwise inverted longs (returns a 32-bit checksum)

ByteSWAP Swap the endianness before adding the bytes. This allow to calculate a
little-endian checksum on a big-endian system and vice versa.

Examples:

; checksum over EPROM

Data.SUM 0x0--0x0ffff
IF Data.SUM() !=3426
STOP "Error Eprom"

; checksum across memory, 0S-9 compatible
Data.SUM 0x1002--0x1bff /XorWord9

; calculate a 32-bit check sum, byte summarizing the memory contents
; bytewise
Data.SUM 0x0--0x1fffb /Byte

; place resulting checksum in memory
Data.Set 0Ox1fffc %Long Data.SUM()

See also
B Data.Test 1 Data.SUM()

©1989-2024 Lauterbach General Commands Reference GuideD | 217

Data.TABle

Display arrays

Format:

<element>:

<format>:

<width>:

<endianness>:

<bitorder>:

<option>:

Data.TABle <base>l<range> <size> <element> [<element>...] [/<option> ...]

[Y%<format>] [<offset>|<offrange>]

Decimal [.<width> [.<endianness> [.<bitorder>]]]
DecimalU [.<width> [.<endianness> [.<bitorder>]]]
Hex [.<width> [.<endianness> [.<bitorder>]]]
HexS [.<width> [.<endianness> [.<bitorder>]]]
OCTal [.<width> [.<endianness> [.<bitorder>]]]
Ascii [.<width> [.<endianness> [.<bitorder>]]]
Binary [.<width> [.<endianness> [.<bitorder>]]]
Float[.<float_rep>[.<endianness>]]

sYmbol [.<width> [.<endianness> [.<bitorder>]]]
Var

DUMP [.<width> [.<endianness> [.<bitorder>]]]
Byte [.<endianness> [.<bitorder>]]

Word [.<endianness> [.<bitorder>]]

Long [.<endianness> [.<bitorder>]]

Quad [.<endianness> [.<bitorder>]]

TByte [.<endianness> [.<bitorder>]]

PByte [.<endianness> [.<bitorder>]]

HByte [.<endianness> [.<bitorder>]]

SByte [.<endianness> [.<bitorder>]]

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | LE | BE

DEFault | BitSwap

CORE <core_number>
COVerage

CTS

Track

FLAG <flag>

CFlag <cflag>

Mark <break>

©1989-2024 Lauterbach

General Commands Reference Guide D |

218

<flag>: Read | Write | NoRead | NoWrite

<cflag>: OK | NoOK | NOTEXEC | EXEC

<break>: Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

Displays an array without high-level information. If an address is given, it will specify the base address of an
array of unlimited size. A range specifies an array of limited size.

<base>, <range> Base address or address range of data structure

<size> Size in bytes of a single element of the data structure

<offset> relative byte offset of the element

<offrange>

Decimal, Refer to “Keywords for <format>", page 10

Decimall,...

Byte, Word, ... Refer to “Keywords for <width>", page 11

DEFault, BE, LE Define byte-order display direction: default target endianness, Big Endian

or Litte Endian

DEFault, BitSwap BitSwap allows to display data in reverse bit-order in each byte. If
BitSwap is used together with BE or LE, the byte order will not change,
otherwise BitSwap will also reverse the byte-order.

CORE <core> Display memory from the perspective of the specified core /SMP
debugging only).

COVerage Highlight data memory locations that have never been read/written.
Track Track the window to the reference address of other windows.

Mark <break> Highlight memory locations for which the specified breakpoint is set.
CTS Display CTS access information when CTS mode is active.

©1989-2024 Lauterbach General Commands Reference GuideD | 219

; Displays an array starting at symbol 'xarray' with the size of 14 bytes
; for each element.

; The first two long-words are display in hexadecimal.

; The next two bytes as word in decimal and the last four bytes are

; assumed to be an IEEE floating point number.

Data.TABle xarray 14. %$Hex.Long 0x0--0x7 %$Decimal.Word 0x8 %Float.Ieee
0x0a

Sample window for displaying an array.

€8 B:Data.TABIe flags 10. %BINary.Byte 0 %:Decimal Byte 1 %Floatleee 2 =n| Wl <
0. (=] (=] [#And.] | OTrack
breakpoint address | data value |
Ox0 (0.) i
SD:00005CAS | 01 Oy 00000001 1
5D:00005CA9 | 01 E 1 £1
SD:00005CAA | 45 00 O 23.693751e-39 1
l! oxl (1.)
5D:00005CE2 | 01 Oy 00000001 1
5D:00005CE3 | OO 1 =
S5D:00005CE4 | 44 23 01 01 23.71886e-39 1 1
0x2 (2.)
WR SD:00005CBC| 00 Oy 00000000 vul
5D:00005CED | OO vul
5D:00005CEBE | 02 10 01 01 23.705043e-39 vul
0x3 (3.)
5D: 00005((6J oo Oy 00000000 &
I lf I 2

[o]

A Read/Write breakpoint (created with Break.Set).
B Hex data.
C Symbolic address.

D Scale area.

The scale area contains Flag and Breakpoint information, memory classes and addresses. The state line
displays the currently selected address, both in hexadecimal and symbolic format. By double-clicking a data
word, a Data.Set command can be executed on the current address.

By holding down the right mouse button, the most important memory functions can be executed via the Data
Address pull-down menu. If the Mark option is on, the relevant bytes will be highlighted. For more
information, see Data.dump.

See also
B Data.CHAIN B Data.dump B Data.Print B Data.View

©1989-2024 Lauterbach General Commands Reference Guide D | 220

Data.TAG Tag code for analysis

Format: Data.TAG <address> <patcharea> <tagarea> [[INTR]

The command patches binary code to generate one tag for statistical analysis. Similar to Data.TAGFunc
command, but generates no symbols and no breakpoints.

See also
B Data.TAGFunc

Data.TAGFunc Tag code for analysis
Format: Data.TAGFunc [<group> | <range>] <patch> [<tags>] [[<options>]
<tags>: <tags_entry> [<tags_exit> [<tags_parameter>]]
<options>: INTR
Parameter

The command patches binary code to generate the tags required for statistical performance analysis (e.g.
Analyzer.STATistic.Func) or function parameter trace and trigger. The optional group argument defines
which modules or programs should be modified. The extra code generated is placed within the range
defined by patch area. The tags parameter define the placement of the tag variables. Without this argument
the tags will be placed at the end of the patch area. On processors with data cache the tag variables must be
placed in a not cached area. When a second tag range is defined, the exit point tags are placed in an extra
memory area. The third tag range is used for the parameter tags (if used). The command generates also the
required breakpoints and symbols for the analysis. Functions are only patched if there is enough space for
the modification. Depending on the processor different strategies are used to jump from the program to the
patch area. Placing the patch area at a location that can be reached by short branches or jumps can result in
more possible patches. Functions which can't be patched are listed in the AREA window. The INTR option
marks the functions as interrupt functions for the statistic analysis. The Parameter option generates tags to
trace or trigger on function parameters and return values. The patches and symbols generated by this
command can be removed by the Data.UNTAGFunc command.

©1989-2024 Lauterbach General Commands Reference Guide D | 221

This command can be used for the following features:
. Detailed performance analysis with pipelined CPUs. This avoids the prefetching problem.

. Performance analysis with instruction caches enabled. The tags must be placed into a non-
cached area in this case.

. Function parameter trace and trigger. Traces all function parameters and return values. The tags
can also be used to trigger on specific parameter values or return values. This also adds a
system call parameter trace to procedure based operating systems (when the kernel routines are
tagged).

J Function call and parameter history. The last parameters and return values for each function can
be viewed. This feature is also possible with the low cost BDM/Monitor debuggers.

Data.LOAD.Ieee mccp.x /Puzzled

; load the application

Data.TAGFunc , 0x08000--0xO0bfff /Parameter
; modify the whole program

Analyzer .ReProgram perf

; program the analyzer

Go

; start measurement

Break

; stop measurement
Analyzer.STATistic.TREE

; display results (call tree form)
Analyzer.List FUNCVar TIme.REF

; display parameters (nesting)

Data.TAGFunc int0O--intl0 0x8000--0x8fff 0x10000--0x100ff /INTR
; tag interrupts

Data.TAGFunc main--last 0x9000--0xffff 0x10100--Ox1ffff

; tag regular funcs

See also
W Data.TAG W Data.UNTAGFunc

©1989-2024 Lauterbach General Commands Reference Guide D | 222

Data.Test Memory integrity test

[Examples]

Format: Data.Test <address_range> [[<option>]
<option>: Toggle

Prime

RANDOM | PRANDOM

AddrBus

Repeat [<count>]

WriteOnly | ReadOnly

NoBreak

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

Performs an integrity test of the memory in the specified <address_range> and prints a message indicating
success or failure of the test.

Depending on the options, the test detects problems with:

J Read and/or write accesses
J Address line failures
J Aliases addresses (mapping addresses beyond the capacity of a memory to low addresses)

The memory test can be aborted at any time by pressing the STOP button on the TRACE32 main toolbar.

NOTE: The Data.Test command is not meant to detect where the target system has
implemented memory. Only use it as a pure integrity check.

Toggle (default) Memory contents are read in one block at a time, and inverted twice,
thereby not altering memory contents.

NOTE: problems with aliases addresses are not detected by this test.

Prime The defined range is completely filled with a test pattern and is
subsequently verified.

NOTE: The length of the test pattern is a prime, but not the data itself.
Original memory contents are lost. This test detects address line failures

or mirrored partitions within a memory. Can be combined with WriteOnly
or ReadOnly.

RANDOM Pattern is a random sequence.

©1989-2024 Lauterbach General Commands Reference Guide D | 223

PRANDOM

Pattern is a pseudo random sequence. Can be combined with WriteOnly
or ReadOnly.

AddrBus

Test the address bus for shorts to other address bus signals. This test is
intended to be used with non-volatile, already programmed memory. The
memory contents must be sufficiently random to allow correlation tests.
The output of the test is printed to the AREA window. Possible test results
per address bus signal are “ok” (no error), “XX” (address bus signals
shorted) and “na” (could not test signal).

Repeat

Memory test is repeated several times. If no parameter is used, the test
continues to repeat until stopped manually.

WriteOnly

Memory write only.

ReadOnly

Memory read only.

NoBreak

Even in the case of memory error, the memory test does not abort.

Byte, Word, ...

Specify memory access size. See “Keywords for <width>", page 11.
If no access size is specified, the debugger uses the optimum size for the
processor architecture.

The options WriteOnly and ReadOnly are useful if there are additional operations to be performed between
writing and reading (verification), e.g.

. Changing the configuration of a memory controller, e.g. for a different access timing
. Enabling the read access
J Programming the FLASH memory (see example below)

To ensure that the read data is verified with the corresponding write data, WriteOnly and ReadOnly can
only be combined with options that generate predictable data, e.g. Prime and PRANDOM.

©1989-2024 Lauterbach

General Commands Reference Guide D | 224

Examples:

Data.Test 0x0--0xOffff /Prime

Data.Test 0x0--0x0ffff /Repeat

Data.Test 0x0--0xO0ffff /Prime /Repeat 3.

Test for FLASH memory (write and read-back identical pattern).

FLASH.ReProgram ALL
Data.Test 0x0--0xO0ffff /WriteOnly /Prime
FLASH.ReProgram off

Data.Test 0x0--0x0ffff /ReadOnly /Prime

The Data.Test command affects the following functions:

Memory test where the

length of the test pattern

is a prime.

Memory test until memory
error occurs or abort by

means of keyboard.

Memory test where the

length of the test pattern

is a prime.
The memory test is
repeated 3 times.

FLASH declaration

make only write cycles

make only read cycles

FOUND() Returns TRUE if a memory error was found.
TRACK.ADDRESS() Returns the address of the first error.

Data.Test 0x0++0xffff /Prime

IF Found()

PRINT "Error found at address " TRACK.ADDRESS ()

See also
B Data.dump B Data.Out W Data.PATTERN B Data.Set
B Data.SUM B FLASHFILE.TEST B SETUPTIMEOUT 1 FOUND()

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D |

225

Data.TestList Test for memory type

Format: Data.TestList [<address_range>] [[<option> ...]

<option>: 64K | 1M

Data.TestList is non-destructive test to find out which memory type is at which address in your target. By
default, the smallest resolution is 4K. By choosing an <option>, the specified overall <address_range> is
divided into 64K or 1M sized ranges of which only the first 16K are tested.

The Data.TestList window displays one line per result for the specified <address_range>.
244, BuData TestList OxD--OxFff = =R

i dump || M} Goto...
address memory |
C: 00000000——uuuuur—|—|—J ok ~

C:00001000--00001FFF | read fail
C:00002000--0000FFFF ok

v

The following results are possible:

ok RAM

read only ROM/FLASH
read fail no memory
write fail

The command Data.TestList may cause a “debug port fail” error if the
peripherals are accessed.

©1989-2024 Lauterbach General Commands Reference Guide D | 226

Data.TIMER

Periodical data sequence

The Data.TIMER command group allows to define a sequence of Data.Set commands that are executed
periodically. This command group can be used e.g. to trigger a watchdog while the program execution is

stopped.

The command is only active when the core is halted in debug mode.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the Data.TIMER.state

window:

& B::Data. TIMER.state
timer
OFF E
Time
10.000ms
count

0.
CORE SEL

1.
W 0

CONDition
(Data.Byte(D:0x3FAFG0)&B80)1=80
SEQuence

SETI 0x3FafF4B 10 1

TARGET

A For descriptions of the commands in the Data.TIMER.state window, please refer to the
Data.TIMER.* commands in this chapter. Example: For information about ON, see Data.TIMER.ON.

B Conditions can be set up in the CONDition field using the functions Data.Byte(), Data.Long(), or

Data.Word().

C Access sequences can be set up in the SEQuence field using the <data_set_commands> SET,
SETI, GETS, and SETS.

See also

B Data. TIMER.CONDition
H Data.TIMER.ON

B Data.TIMER.state

B Data.EPILOG

W Data.TIMER.CORE
B Data. TIMER.RESet
B Data. TIMER.TARGET

M Data.PROLOG

B Data. TIMER.ERRORSTOP M Data.TIMER.OFF
B Data. TIMER.SELect
B Data.TIMER.Time

M Data.TIMER.SEQuence
W Data. ATTACH

©1989-2024 Lauterbach

General Commands Reference Guide D | 227

Data.TIMER.CONDition Define timer condition

Format: Data.TIMER.CONDition <condition>

<condition>: <memory_access> & <mask> == <value>
<memory_access> & <mask> = <value>

<memory._ Data.Byte(<address>) | Data.Word(<address>) | Data.Long(<address>)
access>:

Defines a condition on which the command sequence defined with Data. TIMER.SEQuence will be
executed periodically.

<memory_access> Supported Data.*() functions are:

. Data.Byte() and its short form D.B()

. Data.Long() and its short form D.L()

. Data.Word() and its short form D.W()

Examples:

Data.TIMER is only active if most significant bit of
; 32-bit word at address 0x3fa30 is set.
Data.TIMER.CONDition (Data.Long (D:0x3fa30)&0x80000000) !=0

I

Data.TIMER is only active if most significant bit of
; 16-bit word at address 0x3fa30 is set to value 0x3344.
Data.TIMER.CONDition Data.Word(D:0x3fa30)==0x3344

I

Data.TIMER is only active if most significant bit of
; byte at address 0x3fa30 has most significant bits set to b’10.
Data.TIMER.CONDition Data.Byte(D:0x3fa30)==0y10xxXXXX

I

See also
B Data.TIMER B Data.TIMER.state

©1989-2024 Lauterbach General Commands Reference Guide D | 228

Data.TIMER.CORE Select core for timer sequence

Format: Data.TIMER.CORE <core_number>

Selects the core for which you want to define one or more data timer sequences.
Prerequisite: You have successfully configured an SMP system with the CORE.ASSIGN command.

Example: This script shows how to define a data timer sequence that is executed on core 3 of a multicore
chip.

;Select the core for which you want to define a sequence
Data.TIMER.CORE 3.

;Define the sequence for core 3

Data.TIMER.CONDition <your_code>
Data.TIMER.SEQuence <your_code>

For information on how to configure two different sequences, see Data.TIMER.SELect.

See also
M Data.TIMER M Data.TIMER.state

©1989-2024 Lauterbach General Commands Reference Guide D | 229

Data.TIMER.ERRORSTOP Stop data timer on errors
Format: Data.TIMER.ERRORSTOP [ON | OFF]
Default: ON.

If this command is set to OFF, the Data.TIMER sequence is not stopped on memory access errors.

See also
W Data. TIMER B Data. TIMER.state
Data.TIMER.OFF Switch timer off
Format: Data.TIMER.OFF

Switches the Data.TIMER feature off.

See also
B Data.TIMER B Data. TIMER.state
Data.TIMER.ON Switch timer on
Format: Data.TIMER.ON

Switches the Data.TIMER feature on.

See also

B Data.TIMER M Data. TIMER.state

©1989-2024 Lauterbach

General Commands Reference Guide D

230

Data.TIMER.RESet Reset timer

Format: Data.TIMER.RESet

Switches the Data.TIMER feature off and clears all settings.

See also
H Data.TIMER M Data.TIMER.state
Data.TIMER.SELect Increment the index number to the next sequence
Format: Data.TIMER.SELect <serial_number>

Increments the index number for each new sequence. This is useful, for example, if you need two separate
sequences with each sequence having its own Data. TIMER.CONDition.

TRACE32 automatically assigns the index number 1. to the first Data.TIMER.SEQuence. If you require a
second, separate sequence, then increment the <index_number> to 2. Otherwise the second sequence will
overwrite the first one. You can define a maximum of 10 sequences.

Example 1: Two sequences with the same Data.TIMER.CONDition may have the same index number.
The backslash \ is used as a line continuation character. No white space permitted after the backslash.

;Set the index number to 1.
Data.TIMER.SELect 1.

; Sequences shall be executed only if this condition is true:
Data.TIMER.CONDition (Data.Word(D:0x4faf34)&0xff00)==0x4000

;Define the two sequences:
Data.TIMER.SEQuence SET Ox4faf54 %Word 0xCOCO \
SET Ox4faf64 $Word 0xDODO

©1989-2024 Lauterbach General Commands Reference Guide D | 231

Example 2: Two sequences with different Data.TIMER.CONDition settings require two different index
numbers.

;1st sequence - TRACE32 automatically sets the index number to 1.
Data.TIMER.SELect 1.

;If this condition is true,
Data.TIMER.CONDition (Data.Word(D:0x4faf38)&0x£f£f00)==0x2000

;... then the lst sequence will be executed
Data.TIMER.SEQuence SET 0x4faf58 %Word O0xEOEOQ

; Increment the index number to define the 2nd sequence
Data.TIMER.SELect 2.

;If this condition is true,
Data.TIMER.CONDition (Data.Word(D:0x4faf38)&0xf£f00)==0x3000

;... then the 2nd sequence will be executed
Data.TIMER.SEQuence SET 0x4faf58 %Word OxFOFO

See also
H Data.TIMER M Data.TIMER.state
Data.TIMER.SEQuence Define timer sequence
Format: Data.TIMER.SEQuence <command> ...
<command>. SET <address> %<format> <data>

SETI <address> %<format> <data> <increment>
SETS <address>
GETS <address>

Defines a sequence of Data.Set commands that are periodically executed by the TRACE32 software when
the program execution is stopped. The period is defined by Data.TIMER.Time.

SET Write <data> periodically to <address> while the program execution is
stopped.
SETI Write <data> to <address> the first time after the program execution is

stopped after Data.TIMER.ON.

Then <data> is incremented by <increment> periodically while the program
execution is stopped.

©1989-2024 Lauterbach General Commands Reference Guide D | 232

SETS Write the data that was saved with a previous GETS back to <address>.

GETS Save the data at <address> periodically while the program execution is
stopped.

Examples:

Data.TIMER.SEQuence SET 0x3fa50 %Long 0x11223344
Data.TIMER.SEQuence SETI 0x3fa50 %Word 0xalal 2
Data.TIMER.SEQuence SETS 0x3fa60

Data.TIMER.SEQuence GETS 0x3fa60

See also
B Data.TIMER B Data.TIMER.state
Data.TIMER.state Timer state display
Format: Data.TIMER.state
& B::Data. TIMER. state EI@
timer CONDition
OFF (Data.Byte(D:0x3FAF60)&B0)1=80
@ 0N SEQuence
Time SETI 0x3FaF4B 10 1
10.000ms
count
0.
CORE — SEL -
1 TARGET
e
See also
W Data.TIMER M Data. TIMER.CONDition M Data.TIMER.CORE M Data. TIMER.ERRORSTOP
B Data.TIMER.OFF B Data. TIMER.ON B Data.TIMER.RESet B Data.TIMER.SELect
B Data.TIMER.SEQuence B Data. TIMER.TARGET B Data.TIMER.Time

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 233

Data.TIMER.TARGET Define timer target call

Format: Data.TIMER.TARGET <code_range> <data_range>

Defines a target program that is periodically executed while the program execution is stopped.

<code_range> Defines the address range for the target program.
<data_range> Defines the address range used for the data of the target program.
Example:

Data.TIMER.TARGET 0x3fa948--0x3faal7 0x1000--0x11ff

See also
M Data.TIMER M Data.TIMER.state
Data.TIMER.Time Define period for timer
Format: Data.TIMER.Time <time>

Defines the period for the Data.TIMER feature.

Example:

Data.TIMER.Time 10.ms

See also
B Data.TIMER M Data. TIMER.state

©1989-2024 Lauterbach General Commands Reference Guide D | 234

Data.UNTAGFunc Remove code tags

Format: Data.UNTAGFunc

Removes the tags generated by the Data.TAGFunc command.

See also
B Data.TAGFunc

Data.UPDATE Target memory cache update

Format: Data.UPDATE

Triggers and update of memory buffered by the debugger. Memory is only buffered when the address range
is declared by MAP.UpdateOnce command.

©1989-2024 Lauterbach General Commands Reference Guide D | 235

Data.USRACCESS Prepare USR access

Format 1: Data.USRACCESS <code_range> <data_range> [<bin_file> [[<option>]]

Format 2: Data.USRACCESS <code address> <data_address> <buffer_size>
[<bin_file> [/<option>]]

<option>: STACKSIZE <size> | KEEP

Targets may include memory that is not in the address space accessible by the debugger. An external
access algorithm can be linked to TRACES32 to realize an access to this memory.

After the external access algorithm is linked to TRACES32 by the command Data.USRACCESS this memory
can be displayed and modified like any other memory by using the access class USR and a command from
the Data command group.

The external access algorithm is unlinked on every execution of SYStem.Mode (e.g. SYStem.Mode.Up)
and when a error occurs. If no external access algorithm is linked, the access class USR is inaccessible.

STACKSIZE <data_range> includes 256 bytes for the stack. If your access algorithm
requires a smaller/larger stack the default stack size can be changed by
the option STACKSIZE <size>.

KEEP TRACERS2 loads <bin_file> to the target RAM before the memory is
accessed and restores the saved <code_range> and <data_range> when
the memory access is done.

The option KEEP advises TRACE32 not to restore the saved
<code_range> and <data_range>. This is useful for tests and for
performance improvements.

Example:

g <code_range> <data_range> <bin_file>
Data.USRACCESS 0x10000000++0x3ff 0x10000400++0xbff usraccess.bin

Data.dump USR:0x9000

Data.Set USR:0x9005 %Long Oxaa774

Further examples: Scripts that demonstrate the usage of the command Data.USRACCESS can be found
in ~~/demo/<architecture>/etc/usraccess, e.g. ~~/demo/arm/etc/usraccess

See also

B Data.dump

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 236

Data.VECTOR

Display memory as vectors

Format:

<format>:

<width>:

<endianness>:

<bitorder>:

<option>:

Data.VECTOR [%<format>] [<address> | <range>] [[<option> ...]

Decimal.[<width>[.<endianness>]]
DecimalU.[<width>[.<endianness>]]
Hex.[<width>[.<endianness>]]
HexS.[<width>[.<endianness>]]
OCTal.[<width>[.<endianness>]]
Float[.<float_rep>[.<endianness>]]
Byte [.<endianness>]

Word [.<endianness>]

Long [.<endianness>]

Quad [.<endianness>]

TByte [.<endianness>]

PByte [.<endianness>]

HByte [.<endianness>]

SByte [.<endianness>]

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | LE | BE

DEFault | BitSwap

CORE <core_number>

Displays memory contents from up to 10 addresses/address ranges as vectors side by side. If a single
address is selected then this address defines the windows' initial position. Scrolling makes all memory
contents visible. When selecting an address range only the defined data range is shown.

Decimal, Refer to “Keywords for <format>”, page 10

DecimalU,...

Byte, Word, ... See “Keywords for <width>", page 11.

BE, LE Define byte-order display direction: Big Endian or Little Endian.
BitSwap Display data with reverse bit-order in each byte.

If BitSwap is used with BE or LE, the byte order will not changed,
otherwise BitSwap will also reverse the byte-order.

CORE <number>

Displays memory from the perspective of the specified core (SMP
debugging only).

©1989-2024 Lauterbach

General Commands Reference Guide D |

237

Example:

Data.VECTOR %Long 0x1000 0x2000 0x3000

2 B:Data.VECTOR %Long 0x1000 0x2000 0x3000 = =R
Long ~ | | Hex ~
index | vecl vec? vecl =
0| Ox1Cc03F809 0xE20220FF OxEAFFFF39 ~
1| 0x49181c0C 0xE5C32000 0x46C04778
2 | 0x188A00EA OXEAFFFFFF OXEAFFFDAS8
3| 0x60546013 0xE1A00000 0x46C04778
4| Ox68F968B8 0xE59F 3080 OXEAFFFFO06
5 | Ox4B0D4A0C 0xE5932000 0x46C04778
6J OxFFFCF0O01 0OxE59F30AC OxEAFFFCAOQ v
£ >

©1989-2024 Lauterbach

General Commands Reference Guide D

238

Data.View

Display memory

Format:

<format>:

<width>:

<endianness>:

<bitorder>:

<option>:

<flag>:

<cflag>:

<break>:

Data.View [%<format>] [<address> | <range>] [/<option> ...]

Decimal [.<width> [.<endianness> [.<bitorder>]]]
DecimalU [.<width> [.<endianness> [.<bitorder>]]]
Hex [.<width> [.<endianness> [.<bitorder>]]]
HexS [.<width> [.<endianness> [.<bitorder>]]]
OCTal [.<width> [.<endianness> [.<bitorder>]]]
Ascii [.<width> [.<endianness> [.<bitorder>]]]
Binary [.<width> [.<endianness> [.<bitorder>]]]
Float[.<float_rep>[.<endianness>]]

sYmbol [.<width> [.<endianness> [.<bitorder>]]]
Var

DUMP [.<width> [.<endianness> [.<bitorder>]]]
Byte [.<endianness> [.<bitorder>]]

Word [.<endianness> [.<bitorder>]]

Long [.<endianness> [.<bitorder>]]

Quad [.<endianness> [.<bitorder>]]

TByte [.<endianness> [.<bitorder>]]

PByte [.<endianness> [.<bitorder>]]

HByte [.<endianness> [.<bitorder>]]

SByte [.<endianness> [.<bitorder>]]

Byte | Word | Long | Quad | TByte | PByte | HByte | SByte

DEFault | LE | BE

DEFault | BitSwap

CORE <core_number>
COVerage

CTS

Track

FLAG <flag>

CFlag <cflag>

Mark <break>

Read | Write | NoRead | NoWrite

OK | NoOK | NOTEXEC | EXEC

Program | HIl | Spot | Read | Write | Alpha | Beta | Charly | Delta | Echo

©1989-2024 Lauterbach

General Commands Reference Guide D |

239

Displays bare memory content as a list.

If a single address is selected then this address defines the windows' initial position. Scrolling makes all
memory contents visible.

When selecting an address range only the defined data range is shown. A range definition is useful
whenever addresses following the address range are read protected (e.g., in the case of I/O).

Decimal, Refer to “Keywords for <format>”, page 10

DecimalU,...

Byte, Word, ... See “Keywords for <width>", page 11.

BE, LE Define byte-order display direction: Big Endian or Little Endian.
BitSwap Display data with reverse bit-order in each byte.

If BitSwap is used with BE or LE, the byte order will not changed,
otherwise BitSwap will also reverse the byte-order.

CORE <core> Display memory from the perspective of the specified core /SMP
debugging only).

COVerage Highlight data memory locations that have never been read/written.
Track Track the window to the reference address of other windows.
Mark <break> Highlight memory locations for which the specified breakpoint is set.
CTS Display CTS access information when CTS mode is active.
3, B:Data.View 0x6850 = =R
address | data [value symbo | |
SD:00006850 | OO R 51 e

SD:00006851 | 00 "%’
SD:00006852 | 00 '’
SD:00006853 | 00 "%’
SD:00006854 | 3A
SD:00006855 | 30
SD:00006856 | 00
SD:00006857 | 00
SD:00006858 | 64
SD:00006859 | 68
5D:00006854 | 00

IR

The scale area contains addresses and memory classes. The state line displays all current addresses, both
in hexadecimal and symbolic format. By clicking on a data word, or by means of “Set”, a Data.Set command
can be executed on the current address. By holding down the left mouse button the most important memory
functions can be executed via softkeys. If the Mark option is on, the relevant bytes will be highlighted. For
more information see Data.dump window.

See also

B Data.CHAIN B Data.dump M Data.In B Data.Print
B Data.TABle 1 Data.Byte() (1 Data.Float() 1 Data.Long()
(1 Data.Quad() 1 Data.STRing() (1 Data.STRingN() 1 Data.SUM()

©1989-2024 Lauterbach General Commands Reference Guide D | 240

1 Data.Word()

A ’Release Information’ in’Legacy Release History’

Data.WRITESTRING Write string to PRACTICE file

Format: Data.WRITESTRING #<file_number>

Writes a string from the target memory to a PRACTICE script file (*.cmm).

Example:

OPEN #1 testfile /Create
Data.WRITESTRING #1 100--1ff

CLOSE #1
See also
B Data.STRING B CLOSE H OPEN 1 ADDRESS.OFFSET()
1 ADDRESS.SEGMENT() 1 ADDRESS.STRACCESS() 1 ADDRESS.WIDTH() 1 Data.Byte()
(1 Data.Float() (1 Data.Long() (1 Data.Quad() 1 Data.STRing()
(1 Data.STRingN() 1 Data.Word() 1 Data.WSTRING()

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide D | 241

DCI

DCI Direct Connect Interface (DCI)

Intel® x86

The Intel® Direct Connect Interface (DCI) allows debugging and tracing of Intel® targets using the USB3 port
of the target system. The Intel® DCI trace handler is a hardware module of the implementation on the target
system. This module is responsible for forwarding trace data coming from the Intel® Trace Hub to DCI.

The DCI command group allows expert control of this hardware module. If the Intel® Trace Hub commands
are used, then this configuration is done automatically (see ITH commands in .

For more information about the direct connect interface (DCI), see “Debugging via Intel® DCI User’s
Guide” (dci_intel_user.pdf).

©1989-2024 Lauterbach General Commands Reference Guide D | 242

DQMTrace

The DQMTrace command group allows to display and analyze trace information exported by Data
Acquisition Messaging of Nexus PowerArchitecture.

£ B:DQMTrace List =N Eoh(
[& setup... |[1 Goto....|| F3Find... | f|chart |[ElProfie || BMPS | % More |[X Less |

record run |address cycle |data symbol ti.back i
+148007 |1 D: 00000001 ddam-wr 00AB1DE3 3.183us -~
+148010 |0 D: 00000001 ddam-wr 00AB85148 3.102us =
+148013 |1 D: 00000001 ddam-wr 00AB81D84 3. 006us ™
+148016 |0 D: 00000001 ddam-wr 00A85149 3.003us
+148019 |0 D: 00000001 ddam-wr 00A8514A 0.368us -
+148022 |0 D: 00000001 ddam-wr 00A8514B 0.307us
+148025 |1 D: 00000001 ddam-wr 00AB1DES 3.145us -

4 I3
DQMTrace.List

column layout

address Identification tag taken from DEVENTpqTag register field
cycle Write access to DDAM (Debug Data Acquisition Message Register)
data Exported data taken from DDAM register

©1989-2024 Lauterbach

General Commands Reference Guide D

243

DTM

DTM DTM trace sources (Data Trace Module)

DTM trace sources can show the contents of simple CoreSight trace sources in different formats. Trace
sources are typically either internal signals, busses or instrumentation traces.

DTM.CLOCK Set core clock frequency for timing measurements

Format: DTM.CLOCK <frequency>

Tells the debugger the core clock frequency of the traced Arm core.

DTM.CycleAccurate Cycle accurate tracing

Format: DTM.CycleAccurate [ON | OFF]

Enables cycle accurate tracing if ON. Default is OFF. Refer for more information about cycle accurate tracing
to ETM.CycleAccurate.

DTM.Mode Define DTM mode
Format: DTM.Mode [<mode>]
<mode>] Byte | NibbleLE | WordLE | LongLE | QuadLE

Defines DTM mode.

©1989-2024 Lauterbach General Commands Reference Guide D | 244

DTM.OFF Disable DTM

Format: DTM.OFF

Disables DTM functionality.

DTM.ON Enable DTM

Format: DTM.ON

Enables DTM functionality.

DTM.Register Display DTM registers
Format: DTM.Register [<file> /<option>]
<option>: SpotLight | DualPort | Track | AlternatingBackGround
CORE <core_number>

Display the DTM registers.

<option> For a description of the options, see PER.view.
DTM.RESet Reset DTM settings
Format: DTM.RESet

Resets the DTM settings to default.

©1989-2024 Lauterbach General Commands Reference Guide D | 245

DTM.TracelD Change the default ID for a DTM trace source

Format: DTM.TracelD <id>

By default TRACE32 automatically assigns a trace source ID to all cores with a CoreSight ETM, the first
ITM, and the first HTM. The command DTM.TracelD allows to assign an ID to a trace source overriding the
defaults.

DTM.TracePriority Define priority of DTM

Format: DTM.TracePriority <priority>

The CoreSight Trace Funnel combines 2 to 8 ATB input ports to a single ATB output. An arbiter determines
the priority of the ATB input port. Port O has the highest priority (0) and port 7 the lowest priority (7) by
default.

The command DTM.TracePriority allows to change the default priority of an ATB input port.

©1989-2024 Lauterbach General Commands Reference Guide D | 246

DTM<trace> - Trace Data Analysis

DTM<trace> Command groups for DTM<trace>
See also
B DTMAnalyzer B DTMCAnalyzer B DTMHAnalyzer B DTMLA
B DTMOnchip B DTMTrace

Overview DTM<trace>

Using the DTM<trace> command groups, you can configure the trace recording as well as analyze and
display the recorded DTM trace data. The command groups consist of the name of the trace source, here
DTM, plus the TRACE32 trace method you have chosen for recording the DTM trace data.

For more information about the TRACES32 convention of combining <trace_source> and <trace_method> to
a <trace> command group that is aimed at a specific trace source, see “Replacing <trace> with Trace
Source and Trace Method - Examples” (general_ref_t.pdf).

Not any arbitrary combination of <trace _source> and <trace_method> is possible. For an overview of the
available command groups “Related Trace Command Groups” (general_ref_t.pdf).

Example:

DTMTrace.state ;optional step: open the window in which the
;trace recording is configured.
DTMTrace.METHOD Analyzer ;select the trace method Analyzer for

;<configuration> ;recording trace data.

DTM.state ;optional step: open the window in which
;the trace source DTM is configured.

DTM . ON ;switch the trace source DTM on.

;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

DTMAnalyzer.List ;display the DTM trace data recorded with the
;trace method Analyzer as a trace listing.

DTMTrace.List ;this is the generic replacement for the above
;DTMAnalyzer.List command.

©1989-2024 Lauterbach General Commands Reference Guide D | 247

DTMAnalyzer Analyze DTM information recorded by TRACES32 PowerTrace

Format: DTMAnNalyzer.<sub_cmd>

The DTMAnNalyzer command group allows to display and analyze the information emitted by the DTM.

The DTM information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32

PowerTrace.
<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).
Example: For a description of DTMAnalyzer.List refer to <trace>.List
See also

B DTM<trace>

A ’'Release Information’ in’Legacy Release History’

DTMCAnalyzer Analyze DTM information recorded by CombiProbe

Format: DTMCAnalyzer.<sub_cmd>

The DTMCAnalyzer command group allows to display and analyze the information emitted by the DTM.

The DTM information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32

CombiProbe.
<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).
Example: For a description of DTMCAnalyzer.List refer to <trace>.List
See also

B DTM<trace>

©1989-2024 Lauterbach General Commands Reference Guide D | 248

DTMHAnNalyzer Analyze DTM information captured by the host analyzer

Format: DTMHAnalyzer.<sub_cmd>

The DTMHAnNalyzer command group allows to display and analyze the information emitted by the DTM.
Trace data is transferred off-chip using fast protocols as USB or Ethernet and is recorded in the trace
memory of the TRACES32 host analyzer. Please refer to the description of the HAnalyzer command group

for more information.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of DTMHAnalyzer.List refer to <trace>.List

See also
B DTM<trace>

DTMLA Analyze DTM information from binary source
[build 135684 - DVD 09/2021]

Format: DTMLA.<sub_cmd>

The DTMLAnNalyzer command group allows to display and analyze the information emitted by the DTM.
Trace data is collected form Lauterbach’s Logic Analyzer or from a binary file.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of DTMLAnRalyzer.List refer to <trace>.List

See also
B DTM<trace>

©1989-2024 Lauterbach General Commands Reference Guide D | 249

DTMOnchip Analyze DTM information captured in target onchip memory
[build 135684 - DVD 09/2021]

Format: DTMOnchip.<sub_cmad>

The DTMOnchip command group allows to display and analyze the information emitted by the DTM.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of DTMOnchip.List refer to <trace>.List

See also
B DTM<trace>
DTMTrace Method-independent analysis of DTM trace data
[build 135684 - DVD 09/2021]
Format: DTMTrace.<sub_cmd>

The DTMTrace command group can be used as a generic replacement for the above DTM<trace>
command groups.

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of DTMTrace.List refer to <trace>.List

See also
B DTM<trace>

©1989-2024 Lauterbach General Commands Reference Guide D | 250

	General Commands Reference Guide D
	History
	Data
	Data Memory access
	Overview Data
	Memory Access by the TRACE32 Debugger
	Access Procedures

	Keywords for <format>
	Keywords for <width>
	Functions

	Data.AllocList Static memory allocation analysis
	Data.Assemble Built-in assembler
	Data.ATTACH Attach data sequence
	Data.ATTACH.CONDition Define attach condition
	Data.ATTACH.CORE Select core for attach sequence
	Data.ATTACH.OFF Switch attach sequence off
	Data.ATTACH.ON Switch attach sequence on
	Data.ATTACH.RESet Reset attach data sequence
	Data.ATTACH.SELect Increment the index number to the next sequence
	Data.ATTACH.SEQuence Define attach data sequence
	Data.ATTACH.state Attach data state display
	Data.BDTAB Display buffer descriptor table
	Data.BENCHMARK Determine cache/memory bandwidth
	Data.CHAIN Display linked list
	Data.CHAINFind Search in linked list
	Data.CLEARVM Clear the TRACE32 virtual memory (VM:)
	Data.ComPare Compare memory
	Data.COPY Copy memory
	Data.CSA Display linked list of CSA entries
	Data.DRAW Graphical memory display of arrays
	Data.DRAWFFT Graphical display of fast fourier transformation
	Data.DRAWXY Graphical display of xy-graphs
	Data.dump Memory dump
	Format Options
	Standard Options
	Advanced Options

	Data.EPILOG Automatic data modification on program execution halt
	Data.EPILOG.CONDition Define condition for data epilog
	Data.EPILOG.CORE Select core for data epilog
	Data.EPILOG.OFF Switch data epilog off
	Data.EPILOG.ON Switch data epilog on
	Data.EPILOG.RESet Reset all data epilogs
	Data.EPILOG.SELect Increment the index number to the next data epilog
	Data.EPILOG.SEQuence Define epilog sequence
	Data.EPILOG.state Display data epilogs
	Data.EPILOG.TARGET Define epilog target call
	Data.Find Search in memory
	Data.FindCODE Execute command on specified code type
	Data.GOTO Specify reference address for address tracking
	Data.GREP Search for string
	Data.IMAGE Display image data
	Data.In Read port
	Data.LOAD Load file
	Alphabetic List of Generic Load Options
	Details on Generic Load Options

	Format Specific Data.LOAD Commands and Options
	Data.LOAD.AIF Load Arm image file
	Data.LOAD.AOUT Load a.out file
	Data.LOAD.ASAP2 Load ASAP2 file
	Data.LOAD.Ascii Load ASCII file
	Data.LOAD.AsciiDump Load ASCII file generated from Data.dump window
	Data.LOAD.AsciiHex Load hex file
	Data.LOAD.AsciiOct Load octal file
	Data.LOAD.AVocet Load AVOCET file
	Data.LOAD.BDX Load BDX file
	Data.LOAD.Binary Load binary file
	Data.LOAD.BounD Load BOUND file
	Data.LOAD.CCSDAT Load CCSDAT file
	Data.LOAD.CDB Load SDCC CDB file format
	Data.LOAD.COFF Load COFF file
	Data.LOAD.ColonHex Load colon hex file
	Data.LOAD.COMFOR Load COMFOR (TEKTRONIX) file
	Data.LOAD.CORE Load Linux core dump file
	Data.LOAD.COSMIC Load COSMIC file
	Data.LOAD.CrashDump Load MS Windows Crash Dump file
	Data.LOAD.DAB Load DAB file
	Data.LOAD.DBX Load a.out file
	Data.LOAD.Elf Load ELF file
	Data.LOAD.ESTFB Load EST flat binary
	Data.LOAD.eXe Load EXE file
	Data.LOAD.FIASCO Load FIASCO BB5 file
	Data.LOAD.HiCross Load HICROSS file
	Data.LOAD.HiTech Load HITECH file
	Data.LOAD.HP Load HP-64000 file
	Data.LOAD.ICoff Load ICOFF file
	Data.LOAD.Ieee Load IEEE-695 file
	Data.LOAD.IntelHex Load INTEL-HEX file
	Data.LOAD.LDR Load META-LDR file
	Data.LOAD.MachO Load "Mach-O" file
	Data.LOAD.MAP Load MAP file
	Data.LOAD.MCDS Load MCDS file
	Data.LOAD.MCoff Load MCOFF file
	Data.LOAD.OAT Load OAT file
	Data.LOAD.Omf Load OMF file
	Data.LOAD.Omf2 Load OMF-251 files
	Data.LOAD.OriginHex Load special hex files
	Data.LOAD.PureHex Load hex-byte file
	Data.LOAD.REAL Load R.E.A.L. file
	Data.LOAD.ROF Load OS-9 file
	Limitations

	Data.LOAD.S1record Load S1-Record file
	Data.LOAD.S2record Load S2-Record file
	Data.LOAD.S3record Load S3-Record file
	Data.LOAD.S4record Load S4-Record file
	Data.LOAD.SAUF Load SAUF file
	Data.LOAD.SDS Load SDSI file
	Data.LOAD.SPARSE Load SPARSE file
	Data.LOAD.sYm Load symbol file
	Data.LOAD.SysRof Load RENESAS SYSROF file
	Data.LOAD.TEK Load TEKTRONIX file
	Data.LOAD.TekHex Load TEKTRONIX HEX file
	Data.LOAD.Ubrof Load UBROF file
	Data.LOAD.VersaDos Load VERSADOS file
	Data.LOAD.XCoff Load XCOFF file
	Data.MSYS M-SYSTEMS FLASHDISK support
	Data.Out Write port
	Data.PATTERN Fill memory with pattern
	Data.Print Display multiple areas
	Data.PROfile Graphical display of data value
	Data.PROGRAM Editor for writing assembler program
	Data.PROLOG Automatic data modification on program execution start
	Data.PROLOG.CONDition Define PROLOG condition
	Data.PROLOG.CORE Select core for data prolog
	Data.PROLOG.OFF Switch data prolog off
	Data.PROLOG.ON Switch data prolog on
	Data.PROLOG.RESet Reset all data prologs
	Data.PROLOG.SELect Increment the index number to the next data prolog
	Data.PROLOG.SEQuence Define prolog sequence
	Data.PROLOG.state Display data prologs
	Data.PROLOG.TARGET Define PROLOG target call
	Data.REF Display current values
	Data.ReProgram Assemble instructions into memory
	Data.ReRoute Reroute function call
	Data.SAVE.<format> Save data in file with specified format
	Data.SAVE.Ascii Save ASCII file
	Data.SAVE.AsciiHex Save hex file
	Data.SAVE.AsciiOct Save octal file
	Data.SAVE.BDX Save BDX file
	Data.SAVE.Binary Save binary file
	Data.SAVE.CCSDAT Save CCSDAT file
	Data.SAVE.DAB Save DAB file
	Data.SAVE.Elf Save ELF file
	Data.SAVE.ESTFB Save EST flat binary file
	Data.SAVE.IntelHex Save INTEL-HEX file
	Data.SAVE.Omf Save OMF file
	Data.SAVE.PureHex Save pure HEX file
	Data.SAVE.S1record Save S1-record file
	Data.SAVE.S2record Save S2-record file
	Data.SAVE.S3record Save S3-record file
	Data.SAVE.S4record Save S4-record file
	Data.Set Modify memory
	Data.SOFTEPILOG Automated sequence after setting software breakp.
	Data.SOFTEPILOG.CONDition Define condition for data softepilog
	Data.SOFTEPILOG.CORE Select core for data softepilog
	Data.SOFTEPILOG.OFF Switch data softepilog off
	Data.SOFTEPILOG.ON Switch data softepilog on
	Data.SOFTEPILOG.RESet Reset all data softepilogs
	Data.SOFTEPILOG.SELect Increment the index number to the next epilog
	Data.SOFTEPILOG.SEQuence Define softepilog sequence
	Data.SOFTEPILOG.state Display data softepilogs
	Data.SOFTPROLOG Automated sequence before setting software breakp.
	Data.SOFTPROLOG.CONDition Define condition for data softprolog
	Data.SOFTPROLOG.CORE Select core for data softprolog
	Data.SOFTPROLOG.OFF Switch data softprolog off
	Data.SOFTPROLOG.ON Switch data softprolog on
	Data.SOFTPROLOG.RESet Reset all data softprolog
	Data.SOFTPROLOG.SELect Increment the index number to the next prolog
	Data.SOFTPROLOG.SEQuence Define softprolog sequence
	Data.SOFTPROLOG.state Display data softprologs
	Data.STANDBY Standby data-sequences
	Data.STANDBY.CONDition Define condition
	Data.STANDBY.CORE Assign sequence to core
	Data.STANDBY.OFF Switch all sequences off
	Data.STANDBY.ON Switch all sequences on
	Data.STANDBY.RESet Clear all settings
	Data.STANDBY.SELect Increment index number for next sequence
	Data.STANDBY.SEQuence Define sequence
	Data.STANDBY.state Open configuration window
	Data.STARTUP Startup data sequence
	Data.STARTUP.CONDition Define startup condition
	Data.STARTUP.CORE Select core for startup sequence
	Data.STARTUP.OFF Switch startup sequence off
	Data.STARTUP.ON Switch startup data sequence on
	Data.STARTUP.RESet Reset startup data sequence
	Data.STARTUP.SELect Increment the index number to the next sequence
	Data.STARTUP.SEQuence Define startup data sequence
	Data.STARTUP.state Startup data state display
	Data.STRING ASCII display
	Data.SUM Memory checksum
	Data.TABle Display arrays
	Data.TAG Tag code for analysis
	Data.TAGFunc Tag code for analysis
	Data.Test Memory integrity test
	Data.TestList Test for memory type
	Data.TIMER Periodical data sequence
	Data.TIMER.CONDition Define timer condition
	Data.TIMER.CORE Select core for timer sequence
	Data.TIMER.ERRORSTOP Stop data timer on errors
	Data.TIMER.OFF Switch timer off
	Data.TIMER.ON Switch timer on
	Data.TIMER.RESet Reset timer
	Data.TIMER.SELect Increment the index number to the next sequence
	Data.TIMER.SEQuence Define timer sequence
	Data.TIMER.state Timer state display
	Data.TIMER.TARGET Define timer target call
	Data.TIMER.Time Define period for timer
	Data.UNTAGFunc Remove code tags
	Data.UPDATE Target memory cache update
	Data.USRACCESS Prepare USR access
	Data.VECTOR Display memory as vectors
	Data.View Display memory
	Data.WRITESTRING Write string to PRACTICE file

	DCI
	DCI Direct Connect Interface (DCI)

	DQMTrace
	DTM
	DTM DTM trace sources (Data Trace Module)
	DTM.CLOCK Set core clock frequency for timing measurements
	DTM.CycleAccurate Cycle accurate tracing
	DTM.Mode Define DTM mode
	DTM.OFF Disable DTM
	DTM.ON Enable DTM
	DTM.Register Display DTM registers
	DTM.RESet Reset DTM settings
	DTM.TraceID Change the default ID for a DTM trace source
	DTM.TracePriority Define priority of DTM

	DTM<trace> - Trace Data Analysis
	DTM<trace> Command groups for DTM<trace>
	Overview DTM<trace>
	DTMAnalyzer Analyze DTM information recorded by TRACE32 PowerTrace
	DTMCAnalyzer Analyze DTM information recorded by CombiProbe
	DTMHAnalyzer Analyze DTM information captured by the host analyzer
	DTMLA Analyze DTM information from binary source
	DTMOnchip Analyze DTM information captured in target onchip memory
	DTMTrace Method-independent analysis of DTM trace data

