
MANUAL

General Commands Reference
Guide C

General Commands Reference Guide C

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 General Commands .. 

 General Commands Reference Guide C .. 1

 History .. 12

 CACHE .. 13

 CACHE View and modify CPU cache contents 13

 CACHE.CLEAN Clean CACHE 13

 CACHE.ComPare Compare CACHE with memory 14

 CACHE.DUMP Dump CACHE 15

 CACHE.FLUSH Clean and invalidate CACHE 16

 CACHE.GET Get CACHE contents 17

 CACHE.INFO View all information related to an address 17

 CACHE.INVALIDATE Invalidate CACHE 18

 CACHE.List List CACHE contents 18

 CACHE.ListFunc List cached functions 19

 CACHE.ListLine List cached source code lines 20

 CACHE.ListModule List cached modules 20

 CACHE.ListVar List cached variables 21

 CACHE.LOAD Load previously stored cache contents 22

 CACHE.RELOAD Reload previously loaded cache contents 22

 CACHE.SAVE Save cache contents for postprocessing 22

 CACHE.SNAPSHOT Take cache snapshot for comparison 23

 CACHE.UNLOAD Unload previously loaded cache contents 24

 CACHE.view Display cache control register 25

 CAnalyzer ... 26

 CAnalyzer Trace features of Compact Analyzer 26

 CAnalyzer - Compact Analyzer specific Trace Commands ... 28

 CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands 28

 CAnalyzer.CLOCKDelay Set clock delay 28

 CAnalyzer.CLOSE Close named pipes 28

 CAnalyzer.DecodeMode Define how to decode the received trace data 29

 CAnalyzer.I2C I2C control 30

 CAnalyzer.PipeLOAD Load a previously saved file 30

 CAnalyzer.PipeRePlay Replay a previously recorded stream 30
General Commands Reference Guide C | 2©1989-2024 Lauterbach

 CAnalyzer.PipeSAVE Define a file that stores received data 31

 CAnalyzer.PipeWRITE Define a named pipe as trace sink 31

 CAnalyzer.SAMPLE Set sample time offset 32

 CAnalyzer.ShowFocus Display data eye 33

 CAnalyzer.ShowFocusClockEye Show clock eye 36

 CAnalyzer.ShowFocusEye Show data eyes 37

 CAnalyzer.TERMination Configure parallel trace termination 39

 CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/µTrace) 39

 CAnalyzer.TraceCLOCK Configure the trace port frequency 40

 CAnalyzer.TracePORT Select which trace port is used 41

 CAnalyzer.WRITE Define a file as trace sink 42

 Generic CAnalyzer Trace Commands ... 43

 CAnalyzer.ACCESS Define access path to program code for trace decoding 43

 CAnalyzer.Arm Arm the trace 43

 CAnalyzer.AutoArm Arm automatically 43

 CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor 43

 CAnalyzer.AutoInit Automatic initialization 43

 CAnalyzer.BookMark Set a bookmark in trace listing 43

 CAnalyzer.BookMarkToggle Toggles a single trace bookmark 44

 CAnalyzer.Chart Display trace contents graphically 44

 CAnalyzer.CLOCK Clock to calculate time out of cycle count information 44

 CAnalyzer.ComPare Compare trace contents 44

 CAnalyzer.ComPareCODE Compare trace with memory 44

 CAnalyzer.CustomTrace Custom trace 44

 CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs 44

 CAnalyzer.DISable Disable the trace 45

 CAnalyzer.DRAW Plot trace data against time 45

 CAnalyzer.EXPORT Export trace data for processing in other applications 45

 CAnalyzer.ExtractCODE Extract code from trace 45

 CAnalyzer.FILE Load a file into the file trace buffer 45

 CAnalyzer.Find Find specified entry in trace 45

 CAnalyzer.FindAll Find all specified entries in trace 45

 CAnalyzer.FindChange Search for changes in trace flow 45

 CAnalyzer.FindProgram Advanced trace search 46

 CAnalyzer.FindReProgram Activate advanced existing trace search program 46

 CAnalyzer.FindViewProgram State of advanced trace search programming 46

 CAnalyzer.FLOWPROCESS Process flowtrace 46

 CAnalyzer.FLOWSTART Restart flowtrace processing 46

 CAnalyzer.Get Display input level 46

 CAnalyzer.GOTO Move cursor to specified trace record 46

 CAnalyzer.Init Initialize trace 47

 CAnalyzer.JOINFILE Concatenate several trace recordings 47

 CAnalyzer.List List trace contents 47
General Commands Reference Guide C | 3©1989-2024 Lauterbach

 CAnalyzer.ListNesting Analyze function nesting 47

 CAnalyzer.ListVar List variable recorded to trace 47

 CAnalyzer.LOAD Load trace file for offline processing 47

 CAnalyzer.MERGEFILE Combine two trace files into one 47

 CAnalyzer.Mode Set the trace operation mode 47

 CAnalyzer.OFF Switch off 48

 CAnalyzer.PortFilter Specify utilization of trace memory 48

 CAnalyzer.PortType Specify trace interface 48

 CAnalyzer.PROfileChart Profile charts 48

 CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time 48

 CAnalyzer.PROTOcol Protocol analysis 48

 CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol 48

 CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol 49

 CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol 49

 CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol 49

 CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol 49

 CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol 49

 CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 49

 CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol 49

 CAnalyzer.REF Set reference point for time measurement 50

 CAnalyzer.RESet Reset command 50

 CAnalyzer.SAVE Save trace for postprocessing in TRACE32 50

 CAnalyzer.SelfArm Automatic restart of trace recording 50

 CAnalyzer.SIZE Define buffer size 50

 CAnalyzer.SnapShot Restart trace capturing once 50

 CAnalyzer.SPY Adaptive stream and analysis 50

 CAnalyzer.state Display trace configuration window 50

 CAnalyzer.STATistic Statistic analysis 51

 CAnalyzer.STREAMCompression Select compression mode for streaming 51

 CAnalyzer.STREAMFILE Specify temporary streaming file path 51

 CAnalyzer.STREAMFileLimit Set size limit for streaming file 51

 CAnalyzer.STREAMLOAD Load streaming file from disk 51

 CAnalyzer.STREAMSAVE Save streaming file to disk 51

 CAnalyzer.TDelay Trigger delay 51

 CAnalyzer.TestFocus Test trace port recording 52

 CAnalyzer.TestFocusClockEye Scan clock eye 52

 CAnalyzer.TestFocusEye Check signal integrity 52

 CAnalyzer.TestUtilization Tests trace port utilization 52

 CAnalyzer.THreshold Optimize threshold for trace lines 52

 CAnalyzer.Timing Waveform of trace buffer 52

 CAnalyzer.TraceCONNECT Select on-chip peripheral sink 52

 CAnalyzer.TRACK Set tracking record 53

 CAnalyzer.TSELect Select trigger source 53
General Commands Reference Guide C | 4©1989-2024 Lauterbach

 CAnalyzer.View Display single record 53

 CAnalyzer.ZERO Align timestamps of trace and timing analyzers 53

 CIProbe ... 54

 CIProbe Trace with Analog Probe and CombiProbe/?Trace (MicroTrace) 54

 CIProbe-specific Trace Commands ... 56

 CIProbe.<specific_cmds> Overview of CIProbe-specific commands 56

 CIProbe.ALOWerLIMit Set lower trigger/filter comparator value 56

 CIProbe.ATrigEN Enable/disable trigger contribution of a channel 56

 CIProbe.ATrigMODE Set trigger/filter condition 58

 CIProbe.AUPPerLIMit Set upper trigger/filter comparator value 59

 CIProbe.Mode Set trace operation mode 59

 CIProbe.state Display CIProbe configuration window 60

 CIProbe.TDelay Define trigger delay 60

 CIProbe.TOut Route CIProbe trigger to PODBUS 61

 CIProbe.TSELect Route PODBUS trigger to CIProbe 62

 CIProbe.TSYNC.SELect Select trigger input pin and edge or state 62

 Generic CIProbe Trace Commands ... 64

 CIProbe.Arm Arm the trace 64

 CIProbe.AutoArm Arm automatically 64

 CIProbe.AutoInit Automatic initialization 64

 CIProbe.BookMark Set a bookmark in trace listing 64

 CIProbe.BookMarkToggle Toggles a single trace bookmark 64

 CIProbe.Chart Display trace contents graphically 64

 CIProbe.ComPare Compare trace contents 65

 CIProbe.DISable Disable the trace 65

 CIProbe.DisConfig Trace disassembler configuration 65

 CIProbe.DRAW Plot trace data against time 65

 CIProbe.EXPORT Export trace data for processing in other applications 65

 CIProbe.FILE Load a file into the file trace buffer 65

 CIProbe.Find Find specified entry in trace 65

 CIProbe.FindAll Find all specified entries in trace 65

 CIProbe.FindChange Search for changes in trace flow 66

 CIProbe.Get Display input level 66

 CIProbe.GOTO Move cursor to specified trace record 66

 CIProbe.Init Initialize trace 66

 CIProbe.List List trace contents 66

 CIProbe.ListNesting Analyze function nesting 66

 CIProbe.ListVar List variable recorded to trace 66

 CIProbe.LOAD Load trace file for offline processing 66

 CIProbe.OFF Switch off 67

 CIProbe.PROfile Rolling live plots of trace data 67

 CIProbe.PROfile.channel Display profile of signal probe channels 67
General Commands Reference Guide C | 5©1989-2024 Lauterbach

 CIProbe.PROfileChart Profile charts 67

 CIProbe.PROfileSTATistic Statistical analysis in a table versus time 67

 CIProbe.PROTOcol Protocol analysis 67

 CIProbe.PROTOcol.Chart Graphic display for user-defined protocol 67

 CIProbe.PROTOcol.Draw Graphic display for user-defined protocol 68

 CIProbe.PROTOcol.EXPORT Export trace buffer for user-defined protocol 68

 CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol 68

 CIProbe.PROTOcol.list Display trace buffer for user-defined protocol 68

 CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol 68

 CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 68

 CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol 68

 CIProbe.REF Set reference point for time measurement 69

 CIProbe.RESet Reset command 69

 CIProbe.SAVE Save trace for postprocessing in TRACE32 69

 CIProbe.SIZE Define buffer size 69

 CIProbe.SnapShot Restart trace capturing once 69

 CIProbe.SPY Adaptive stream and analysis 69

 CIProbe.STATistic Statistic analysis 69

 CIProbe.STREAMCompression Select compression mode for streaming 69

 CIProbe.STREAMFILE Specify temporary streaming file path 70

 CIProbe.STREAMFileLimit Set size limit for streaming file 70

 CIProbe.Timing Waveform of trace buffer 70

 CIProbe.TRACK Set tracking record 70

 CIProbe.View Display single record 70

 CIProbe.ZERO Align timestamps of trace and timing analyzers 70

 ClipStore .. 71

 ClipSTOre Store settings to clipboard 71

 CLOCK .. 72

 CLOCK Display date and time 72

 CLOCK.BACKUP Set backup clock frequency 72

 CLOCK.DATE Alias for DATE command 73

 CLOCK.OFF Disable clock frequency computation 73

 CLOCK.ON Enable clock frequency computation 73

 CLOCK.OSCillator Set board oscillator frequency 74

 CLOCK.Register Display PLL related registers 74

 CLOCK.RESet Reset CLOCK command group settings 74

 CLOCK.state Display clock frequencies 75

 CLOCK.SYSCLocK Set external clock frequency 75

 CLOCK.VCOBase Set 'VCOBase' clock frequency 76

 CLOCK.VCOBaseERAY Set 'FlexRay VCOBase' clock frequency 76

 CMI .. 77

 CMI Clock management interface 77
General Commands Reference Guide C | 6©1989-2024 Lauterbach

 CMN .. 78

 CMN Coherent mesh network 78

 CMN<trace> - Trace Data Analysis .. 79

 CMN<trace> Command groups for CMN<trace> 79

 Overview CMN<trace> 79

 CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace 80

 CMNCAnalyzer Analyze CMN information recorded by CombiProbe 80

 CMNHAnalyzer Analyze CMN information captured by the host analyzer 81

 CMNLA Analyze CMN information from binary source 81

 CMNOnchip Analyze CMN information captured in target onchip memory 81

 CORE .. 83

 CORE Cores in an SMP system 83

 Overview CORE 83

 CORE.ADD Add core/thread to the SMP system 84

 CORE.ASSIGN Assign a set of physical cores/threads to the SMP system 85

 CORE.List List information about cores 91

 CORE.NUMber Assign a number of cores/threads to the SMP system 92

 CORE.ReMove Remove core from the SMP system 93

 CORE.select Change currently selected core 93

 CORE.SHOWACTIVE Show active/inactive cores in an SMP system 94

 CORE.SINGLE Select single core for debugging 95

 Count .. 97

 Count Universal counter 97

 Overview Count 97

 Counter of TRACE32-ICD 97

 Counter Functions 98

 Count.AutoInit Automatic counter reset 99

 Count.Gate Gate time 99

 Count.GO Start measurement 100

 Count.Init Reset counter 100

 Count.Mode Mode selection 101

 Count.OUT Forward counter input signal to trigger system/output 103

 Count.PROfile Graphic counter display 103

 Count.RESet Reset command 105

 Count.Select Select input source 105

 Count.state State display 106

 COVerage ... 107

 COVerage Trace-based code coverage 107

 COVerage.ADD Add trace contents to code coverage system 107

 COVerage.Delete Set code coverage tagging to never 108

 COVerage.EXPORT Export code coverage information 109

 COVerage.EXPORT.CBA Export coverage results in CBA format 110
General Commands Reference Guide C | 7©1989-2024 Lauterbach

 COVerage.EXPORT.CSV Export coverage results in CSV format 111

 COVerage.EXPORT.JSON Export code coverage results in JSON format 111

 COVerage.EXPORT.JSONE Export code coverage in extended JSON format 112

 COVerage.EXPORT.ListCalleEs Export the function callees 113

 COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information 114

 COVerage.EXPORT.ListCalleRs Export the function callers 115

 COVerage.EXPORT.ListCalleRs.<sub_cmd> Export callers information 116

 COVerage.EXPORT.ListFunc Export code coverage results at function level 117

 COVerage.EXPORT.ListFunc.<sub_cmd> Export function 117

 COVerage.EXPORT.ListInlineBlock Export inlined code blocks 122

 COVerage.EXPORT.ListInlineBlock.<sub_cmd> Export cov. inlined 123

 COVerage.EXPORT.ListLine Export HLL lines 124

 COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information 125

 COVerage.EXPORT.ListModule Export modules 126

 COVerage.EXPORT.ListModule.<sub_cmd> Export modules information 126

 COVerage.EXPORT.ListVar Export HLL variables 127

 COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information 127

 COVerage.INFO Information about conditional instructions 128

 COVerage.Init Clear coverage database 129

 COVerage.List Coverage display 129

 COVerage.ListCalleEs Display coverage for callees function 130

 COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function 130

 COVerage.ListCalleRs Display coverage for callers function 133

 COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function 133

 COVerage.ListFunc Display coverage for functions 136

 COVerage.ListFunc.<sub_cmd> Display coverage for HLL function 136

 COVerage.ListInlineBlock Display coverage for inlined block 140

 COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block 140

 COVerage.ListLine Display coverage for HLL lines 143

 COVerage.ListLine.<sub_cmd> Display coverage for HLL lines 143

 COVerage.ListModule Display coverage for modules 145

 COVerage.ListModule.<sub_cmd> Display coverage for modules 145

 COVerage.ListVar Display coverage for variable 148

 COVerage.ListVar.<sub_cmd> Display coverage for variables 148

 COVerage.LOAD Load coverage database from file 151

 COVerage.MAP Map the coverage to a different range 152

 COVerage.METHOD Select code coverage method 153

 COVerage.Mode Activate code coverage for virtual targets 154

 COVerage.OFF Deactivate coverage 154

 COVerage.ON Activate coverage 155

 COVerage.Option Set coverage options 156

 COVerage.Option.BLOCKMode Enable/disable line block mode 156

 COVerage.Option.ITrace Enable instruction trace processing 157
General Commands Reference Guide C | 8©1989-2024 Lauterbach

 COVerage.Option.SourceMetric Select code coverage metric 157

 COVerage.Option.StaticInfo Perform code coverage precalculations 159

 COVerage.RESet Clear coverage database 160

 COVerage.SAVE Save coverage database to file 160

 COVerage.Set Coverage modification 161

 COVerage.state Configure coverage 162

 COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols 163

 COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree 163

 CTS ... 165

 CTS Context tracking system (CTS) 165

 Trace-based Debugging 166

 Full High-Level Language Trace Display 167

 Reconstruction of Trace Gaps (TRACE32-ICD) 167

 CTS Commands 168

 CTS.CACHE CTS cache analysis 168

 CTS.CACHE.Allocation Define the cache allocation technique 170

 CTS.CACHE.CYcles Define counting method for cache analysis 171

 CTS.CACHE.DefineBus Define bus interface 171

 CTS.CACHE.L1Architecture Define architecture for L1 cache 173

 CTS.CACHE.LFSR Linear-feedback shift register for random generator 173

 CTS.CACHE.ListAddress Address based cache analysis 174

 CTS.CACHE.ListFunc Function based cache analysis 175

 CTS.CACHE.ListLine HLL line based cache analysis 176

 CTS.CACHE.ListModules Module based cache analysis 176

 CTS.CACHE.ListRequests Display request for a single cache line 177

 CTS.CACHE.ListSet Cache set based cache analysis 178

 CTS.CACHE.ListVar Variable based cache analysis 178

 CTS.CACHE.MMUArchitecture Define MMU architecture for cache control 179

 CTS.CACHE.Mode Define memory coherency strategy 180

 CTS.CACHE.Replacement Define the replacement strategy 181

 CTS.CACHE.RESet Reset settings of CTS cache window 182

 CTS.CACHE.SETS Define the number of cache sets 182

 CTS.CACHE.Sort Define sorting for all list commands 182

 CTS.CACHE.state Display settings of CTS cache analysis 183

 CTS.CACHE.Tags Define address mode for cache lines 184

 CTS.CACHE.TLBArchitecture Define architecture for the TLB 185

 CTS.CACHE.View Display the results for the cache analysis 186

 CTS.CACHE.ViewBPU Display statistic for branch prediction unit 190

 CTS.CACHE.ViewBus Display statistics for the bus utilization 191

 CTS.CACHE.ViewStalls Display statistics for idles/stalls 192

 CTS.CACHE.WAYS Define number of cache ways 193

 CTS.CACHE.Width Define width of cache line 194

 CTS.CAPTURE Copy real memory to the virtual memory for CTS 194
General Commands Reference Guide C | 9©1989-2024 Lauterbach

 CTS.Chart.ChildTREE Display callee context of a function as chart 195

 CTS.Chart.Func Function activity chart 195

 CTS.Chart.INTERRUPT Display interrupt chart 195

 CTS.Chart.INTERRUPTTREE Display interrupt nesting 196

 CTS.Chart.Nesting Show function nesting at cursor position 196

 CTS.Chart.RUNNABLE Runnable activity chart 196

 CTS.Chart.sYmbol Execution time at different symbols as chart 197

 CTS.Chart.TASK Task activity chart 197

 CTS.Chart.TASKINFO Chart for context ID special messages 198

 CTS.Chart.TASKINTR Display ISR2 time chart (ORTI) 198

 CTS.Chart.TASKKernel Display task time chart with kernel markers (ORTI) 198

 CTS.Chart.TASKORINTERRUPT Task and interrupt activity chart 199

 CTS.Chart.TASKSRV Service routine run-time analysis 199

 CTS.Chart.TASKVSINTERRUPT Time chart of interrupted tasks 199

 CTS.Chart.TASKVSINTR Time chart of task-related interrupts 200

 CTS.Chart.TREE Display function chart as tree view 200

 CTS.EXPORT Export trace data 201

 CTS.FixedControl Execution time at different symbols as chart 201

 CTS.GOTO Select the specified record for CTS (absolute) 201

 CTS.INCremental CTS displays intermediate results while processing 202

 CTS.Init Restart CTS processing 202

 CTS.List List trace contents 203

 CTS.ListNesting Analyze function nesting 205

 CTS.Mode Operation mode 205

 CTS.OFF Switch off trace-based debugging 206

 CTS.ON Switch on trace-based debugging 206

 CTS.PROCESS Process cache analysis 206

 CTS.PROfileChart Profile charts 207

 CTS.PROfileChart.CACHE Display cache analysis results graphically 207

 CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart 208

 CTS.PROfileChart.TASK Task profile chart 209

 CTS.PROfileChart.TASKINFO Profile chart for context ID special messages 209

 CTS.PROfileChart.TASKINTR ISR2 profile chart 209

 CTS.PROfileChart.TASKKernel Task profile chart with kernel markers 210

 CTS.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart 210

 CTS.PROfileChart.TASKSRV OS service routines profile chart 210

 CTS.PROfileChart.TASKVSINTR Task-related interrupts profile chart 211

 CTS.RESet Reset the CTS settings 212

 CTS.SELectiveTrace Trace contains selective trace information 212

 CTS.SKIP Select the specified record for CTS (relative) 212

 CTS.SmartTrace CTS smart trace 213

 CTS.state Display CTS settings 214

 CTS.STATistic Nesting function runtime analysis 216
General Commands Reference Guide C | 10©1989-2024 Lauterbach

 CTS.STATistic.ChildTREE Show callee context of a function 216

 CTS.STATistic.Func Nesting function runtime analysis 216

 CTS.STATistic.GROUP Group run-time analysis 217

 CTS.STATistic.INTERRUPT Interrupt statistic 217

 CTS.STATistic.INTERRUPTTREE Interrupt nesting 217

 CTS.STATistic.LINKage Per caller statistic of function 218

 CTS.STATistic.MODULE Code execution broken down by module 218

 CTS.STATistic.ParentTREE Show the call context of a function 218

 CTS.STATistic.PROGRAM Code execution broken down by program 219

 CTS.STATistic.RUNNABLE Runnable runtime analysis 219

 CTS.STATistic.sYmbol Flat run-time analysis 219

 CTS.STATistic.TASK Task statistic 220

 CTS.STATistic.TASKINFO Statistic for context ID special messages 220

 CTS.STATistic.TASKINTR ISR2 statistic (ORTI) 220

 CTS.STATistic.TASKKernel Task statistic with kernel markers 221

 CTS.STATistic.TASKORINTERRUPT Task and interrupt statistic 221

 CTS.STATistic.TASKSRV OS service routines statistic 221

 CTS.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related 222

 CTS.STATistic.TREE Tree display of nesting function run-time analysis 222

 CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target 223

 CTS.UNDO Revert last CTS command 223

 CTS.UseConst Use constants for the CTS processing 223

 CTS.UseDataTrace Use sampling cycles for CTS 224

 CTS.UseFinalContext Use the CPU registers for CTS 224

 CTS.UseFinalMemory Use memory contents for CTS 225

 CTS.UseSIM Use instruction set simulator for CTS 226

 CTS.UseStartMemory Use virtual memory contents as initial values for CTS 227

General Commands Reference Guide C | 11©1989-2024 Lauterbach

General Commands Reference Guide C

Version 06-Jun-2024

History

04-Jun-2024 Description for command COVerage.INFO added.

25-Jan-2024 Description for command COVerage.EXPORT.JSONE updated.

08-Dec-2023 Removed command CTS.UseCache.

07-Dec-2023 Removed CTS.UseReadCycle and CTS.UseWriteCycle commands and replaced them by
CTS.UseDataTrace.

07-Dec-2023 Removed CTS.UseVM command and replaced by CTS.UseStartMemory.

04-Dec-2023 Renamed CTS.UseMemory to CTS.UseFinalMemory.
Renamed CTS.UseRegister to CTS.UseFinalContext.

10-Oct-2023 Clean-up of CAnalyzer description.

31-Jul-2023 TriCore DAP streaming via AUTO26 V3 debug cable has been added as a configuration for
the CAnalyzer command group.

18-Apr-2023 Updated description of COVerage.TreeWalkSETUP and subcommands.

20-Mar-2023 Added µTrace (MicroTrace) with MIPI34 whisker to the list of setups that support
advanced AutoFocus features to match software since build 156270, DVD 09/2023.

24-Jan-2022 Marked the command COVerage.StaticInfo as deprecated.
General Commands Reference Guide C | 12©1989-2024 Lauterbach

CACHE

CACHE View and modify CPU cache contents

Using the CACHE command group, you can view and modify the CPU cache contents. Note that some
targets support only a subset of the CACHE.* commands.

When you are trying to execute a command that is not supported for your target, TRACE32 displays the
error message “unknown command”.

For targets without accessible CPU cache, the entire CACHE command group is locked.

See also

■ CACHE.CLEAN ■ CACHE.ComPare ■ CACHE.DUMP ■ CACHE.FLUSH
■ CACHE.GET ■ CACHE.INFO ■ CACHE.INVALIDATE ■ CACHE.List
■ CACHE.ListFunc ■ CACHE.ListLine ■ CACHE.ListModule ■ CACHE.ListVar
■ CACHE.LOAD ■ CACHE.RELOAD ■ CACHE.SAVE ■ CACHE.SNAPSHOT
■ CACHE.UNLOAD ■ CACHE.view

▲ ’CACHE Functions’ in ’General Function Reference’

CACHE.CLEAN Clean CACHE

Writes back modified (dirty) lines to the next cache level or memory. Only the specified cache is affected.

In case the operation is not supported by the CPU, the result will be a “function not implemented” error
message.

See also

■ CACHE ■ CACHE.FLUSH ■ CACHE.INVALIDATE ■ CACHE.view

Format: CACHE.CLEAN <cache>

<cache>: IC | DC | L2
General Commands Reference Guide C | 13©1989-2024 Lauterbach

CACHE.ComPare Compare CACHE with memory

Compares CACHE contents with memory contents.

Example:

See also

■ CACHE ■ CACHE.view

▲ ’Release Information’ in ’Legacy Release History’

Format: CACHE.ComPare <cache>

<cache>: IC | DC | L2

CACHE.ComPare DC ; compare contents of the data CACHE with the
; memory
General Commands Reference Guide C | 14©1989-2024 Lauterbach

CACHE.DUMP Dump CACHE

Displays a hex dump of the CACHE contents. This command extracts useful information from the raw data
read from the target and present them in a table in sequential order of the sets and ways. By default, only
valid cache lines are presented.

The CACHE.DUMP window typically involves multiple columns, some of which are used to present
architecture-specific attributes of the cache lines. In the following table, we describe some commonly
presented attributes. Please refer to the design manual of the respective architecture to understand the
detailed meaning of these attributes.

Format: CACHE.DUMP <cache> [/<options>]

<cache>: IC | DC | L2

<options>: ALL | RAW | ValidOnly

RAW Dump also the raw data. If the option RAW is used, all cache lines, no
matter valid or not, will be displayed.

Attribute Description

Valid • Column Name: “v”.

• Value “V” : valid.

• Value “-” : invalid.

Dirty • Column Name: “d”.

• Value “D” : dirty.

• Value “-” : not dirty.

Secure • Column Name: “sec”.

• Value “s” : secure.

• Value “ns” : non-secure.
General Commands Reference Guide C | 15©1989-2024 Lauterbach

See also

■ CACHE ■ CACHE.view

▲ ’Release Information’ in ’Legacy Release History’

CACHE.FLUSH Clean and invalidate CACHE

Writes back modified (dirty) lines to the next cache level or memory and invalidate the entire cache. Only the
specified cache is affected.

In case the operation is not supported by the CPU, the result will be a “function not implemented” error
message.

See also

■ CACHE ■ CACHE.CLEAN ■ CACHE.INVALIDATE ■ CACHE.view

Shared • Column Name: “s”.

• Value “S”: shared.

• value “-”: non-shared.

Coherence • Column Name: “c”

• The possible values of this column depend on the cache
coherence protocol used by the architecture. E.g, for the MOESI
protocol:

- Value “M” : modified.

- Value “O” : owned.

- Value “E” : exclusive.

- Value “S” : shared.

- Value “I” : invalid.

Format: CACHE.FLUSH <cache>

<cache>: IC | DC | L2

Attribute Description
General Commands Reference Guide C | 16©1989-2024 Lauterbach

CACHE.GET Get CACHE contents

Synchronizes the TRACE32 software with the target on the entire cache. TRACE32 loads all cache lines for
which it does not have up-to-date data. For diagnostic purposes only.

Previously loaded data are not explicitly reloaded, unless they are marked for reload by the
CACHE.RELOAD command executed before CACHE.GET.

See also

■ CACHE ■ CACHE.RELOAD ■ CACHE.view

CACHE.INFO View all information related to an address

Displays all information related to a physical address. If the given address is logical, TRACE32 first
translates it into physical. The information contains:

• All cache lines that cache the physical address, including both instruction and data cache.

• All TLB entries that contain translation rules for the physical address.

• All mmu entries that contain translation rules for the physical address (or all pages mapped to the
given physical address), including both the task and kernel MMU entries.

See also

■ CACHE ■ CACHE.view

Format: CACHE.GET

Format: CACHE.INFO.<sub_cmd> <address>

<sub_cmd>: create | scanSTART | scanRESUME | scanSTOP
TaskPageTable <address> <task>

create Views all translation information related to an address.

scanSTART Starts a scan in all MMU page tables for entries that contain translation
rules for the physical address.

scanRESUME Resumes the scan stopped with scanSTOP.

scanSTOP Stops the scan.

TaskPageTable Displays all translation information related to a give address and task page
table. Refer to MMU.INFO.TaskPageTable for more information.
General Commands Reference Guide C | 17©1989-2024 Lauterbach

CACHE.INVALIDATE Invalidate CACHE

Invalidates the entire cache. Only the specified cache is affected. In case the operation is not supported by
the CPU, the result will be a “function not implemented” error message.

See also

■ CACHE ■ CACHE.CLEAN ■ CACHE.FLUSH ■ CACHE.view

CACHE.List List CACHE contents

Displays a list of the CACHE contents.

See also

■ CACHE ■ CACHE.view

Format: CACHE.INVALIDATE <cache>

<cache>: IC | DC | L2

Format: CACHE.List <cache>

<cache>: IC | DC | L2
General Commands Reference Guide C | 18©1989-2024 Lauterbach

CACHE.ListFunc List cached functions

Displays how much of each function is cached.

Detailed information about a function is displayed by double-clicking the function.

See also

■ CACHE ■ CACHE.view

Format: CACHE.ListFunc <cache>

<cache>: IC | DC | L2
General Commands Reference Guide C | 19©1989-2024 Lauterbach

CACHE.ListLine List cached source code lines

Displays how much of each high-level source code line is cached.

Detailed information about a line is displayed by double-clicking the line.

See also

■ CACHE ■ CACHE.view

CACHE.ListModule List cached modules

Displays how much of each module is cached.

See also

■ CACHE ■ CACHE.view

Format: CACHE.ListLine <cache>

<cache>: IC | DC | L2

Format: CACHE.ListModule <cache>

<cache>: IC | DC | L2
General Commands Reference Guide C | 20©1989-2024 Lauterbach

CACHE.ListVar List cached variables

Displays all cached variables.

Detailed information about a variable is displayed by double-clicking the variable.

See also

■ CACHE ■ CACHE.view

Format: CACHE.ListVar <cache> [<range> | <address>]

<cache>: IC | DC | L2
General Commands Reference Guide C | 21©1989-2024 Lauterbach

CACHE.LOAD Load previously stored cache contents

Loads the cache contents previously stored with CACHE.SAVE.

This command is not supported for all target processor architectures.

See also

■ CACHE ■ CACHE.view

CACHE.RELOAD Reload previously loaded cache contents

Deletes all cache data that TRACE32 already loaded. Cache data that is needed afterwards will be reloaded
from the target. For diagnostic purpose only.

This command can be useful when the cache data are loaded during a subsequent operation that needs
them, such as when executing CACHE.List or CACHE.GET command. It means that Cache.RELOAD
does not trigger any immediate cache read operation but simply marks the data for reloading.

See also

■ CACHE ■ CACHE.GET ■ CACHE.view

CACHE.SAVE Save cache contents for postprocessing

The cache contents are stored to a selected file. The file can be loaded for post processing with the
command CACHE.LOAD.

See also

■ CACHE ■ CACHE.view

Format: CACHE.LOAD [IC | DC | L2] <file.cd>

Format: CACHE.RELOAD

Format: CACHE.SAVE [IC | DC | L2] <file.cd>
General Commands Reference Guide C | 22©1989-2024 Lauterbach

CACHE.SNAPSHOT Take cache snapshot for comparison

This command helps to investigate how the cache changes, e.g. before and after a function call. If the
command is executed without option, it takes a snapshot of the specified cache.

If the command is executed with option /ComPare, it compares the previously taken snapshot to the current
cache and prints the differences into the message AREA. Destination area and level of detail can be
configured using the options outlined below. Without detail option, the output contains event and affected
address.

Examples:

Format: CACHE.SNAPSHOT <cache> [/ComPare [/<cmp_opt>]]

<cache>: IC | DC | L2

<cmp_opt>: AREA <area> | VERBOSE | RAW

AREA <area> The message AREA with name <area> will receive the comparison result.

VERBOSE Additionally print cache set and cache way of the affected cache line.

RAW Additionally print cache set and way, all status flags, and old and new data
stored in the affected cache line.

CACHE.SNAPSHOT /ComPare

CACHE.SNAPSHOT /ComPare /VERBOSE
General Commands Reference Guide C | 23©1989-2024 Lauterbach

See also

■ CACHE ■ CACHE.view

CACHE.UNLOAD Unload previously loaded cache contents

Unloads cache contents previously loaded with the command CACHE.LOAD.

See also

■ CACHE ■ CACHE.view

CACHE.SNAPSHOT /RAW

Format: CACHE.UNLOAD [IC | DC | L2]
General Commands Reference Guide C | 24©1989-2024 Lauterbach

CACHE.view Display cache control register

Displays all cache registers (not available for all processor architectures).

See also

■ CACHE ■ CACHE.CLEAN ■ CACHE.ComPare ■ CACHE.DUMP
■ CACHE.FLUSH ■ CACHE.GET ■ CACHE.INFO ■ CACHE.INVALIDATE
■ CACHE.List ■ CACHE.ListFunc ■ CACHE.ListLine ■ CACHE.ListModule
■ CACHE.ListVar ■ CACHE.LOAD ■ CACHE.RELOAD ■ CACHE.SAVE
■ CACHE.SNAPSHOT ■ CACHE.UNLOAD

▲ ’Release Information’ in ’Legacy Release History’

Format: CACHE.view
General Commands Reference Guide C | 25©1989-2024 Lauterbach

CAnalyzer

CAnalyzer Trace features of Compact Analyzer

CAnalyzer (Compact Analyzer) is the command group that controls the trace of the following:

• TRACE32 CombiProbe

The TRACE32 CombiProbe can be used for the following type of trace information:

- Any type of trace information generated by a STM or a comparable trace generation unit.

- All types of trace information generated by the Cortex-M trace infrastructure.

- MCDS data exported from a AURIX™ TriCore™ microcontroller via DAP streaming.

Further information is provided by “CombiProbe for Cortex-M User’s Guide”
(combiprobe_cortexm.pdf), by “Intel® x86/x64 Debugger” (debugger_x86.pdf) or by “MCDS
User’s Guide” (mcds_user.pdf).

• µTrace (MicroTrace)

The µTrace (MicroTrace) can record all types of trace information generated by the Cortex-M
trace infrastructure.

Further information is provided by “MicroTrace for Cortex-M User’s Guide”
(microtrace_cortexm.pdf).

• Serial Wire Viewer (SWV) trace via Debug Cable

With newer PowerDebug Module/Debug Cable configurations, TRACE32 can record ITM-
generated trace information that is exported via the SWO (Serial Wire Output) pin of the debug
connector. The trace memory is provided by the PowerDebug Module.

This is supported by the following debug cables:

- IDC20A DebugCable V5b (formerly ARM DebugCable V5b) and all its successors.

- AUTO26 Debug Cable V2 (formerly Automotive-Pro Debug Cable) and all its successors.

A PowerDebug module with trace memory is additionally required:

- PowerDebug PRO and all its successors.

- PowerDebug X50 and all its successors.

• TriCore DAP streaming via Debug Cable

With newer PowerDebug Module/Debug Cable configurations, TRACE32 can record trace data
streamed off-chip via the DAP interface.
General Commands Reference Guide C | 26©1989-2024 Lauterbach

This is supported by the following debug cable:

- AUTO26 Debug Cable V3 and all its successors.

A PowerDebug module with trace memory is additionally required:

- PowerDebug PRO and all its successors.

- PowerDebug X50 and all its successors.

Further information is provided by “MCDS User’s Guide” (mcds_user.pdf).

The amount of trace memory can be extended by using host memory (CAnalyzer STREAM mode, see
CAnalyzer.Mode STREAM).

For selecting and configuring the trace method CAnalyzer, use the TRACE32 command line or a
PRACTICE script (*.cmm) or the CAnalyzer.state window [A].

Alternatively, use the Trace.state window: click the option CAnalyzer or execute the command
Trace.METHOD CAnalyzer in order to select the trace method CAnalyzer [B].

The chapter “CAnalyzer - Compact Analyzer specific Trace Commands”, page 28 describes the
CAnalyzer-specific configuration commands. While the chapter “Generic CAnalyzer Trace Commands”,
page 43 lists the CAnalyzer trace analysis and display commands, which are shared with other TRACE32
trace methods.

See also

■ Trace.METHOD

▲ ’CAnalyzer - Compact Analyzer specific Trace Commands’ in ’General Commands Reference Guide C’
▲ ’Generic CAnalyzer Trace Commands’ in ’General Commands Reference Guide C’
▲ ’Release Information’ in ’Legacy Release History’

A

B

General Commands Reference Guide C | 27©1989-2024 Lauterbach

CAnalyzer - Compact Analyzer specific Trace Commands

CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands

See also

■ CAnalyzer.SAMPLE ■ CAnalyzer.ShowFocus
■ CAnalyzer.ShowFocusClockEye ■ CAnalyzer.ShowFocusEye
■ <trace>.DRAW ■ CAnalyzer.DecodeMode
■ CAnalyzer.PipeWRITE ■ CAnalyzer.TERMination
■ CAnalyzer.TOut ■ CAnalyzer.TraceCLOCK
■ CAnalyzer.WRITE

▲ ’CAnalyzer’ in ’General Commands Reference Guide C’

CAnalyzer.CLOCKDelay Set clock delay

Default: Auto. Sets the clock delay.

This command exists for setups with the CombiProbe and a whisker other than the MIPI20T-HS whisker. In
this case, the command sets the configurable delay between the TRACECLK signal and the registers that
sample the trace data, while the data delays cannot be configured.

If available, use CAnalyzer.SAMPLE for more precise control of the individual sample points.

CAnalyzer.CLOSE Close named pipes

Closes all named pipes defined with CAnalyzer.PipeWRITE.

Format: CAnalyzer.CLOCKDelay <delay>

<delay>: Auto | None | Small | MEDium | Large | MAXimum

Format: CAnalyzer.CLOSE
General Commands Reference Guide C | 28©1989-2024 Lauterbach

CAnalyzer.DecodeMode Define how to decode the received trace data

Default: AUTO.

This command can be used to explicitly define how the recorded trace data should be decoded. In general,
the CombiProbe will try to use the correct setting automatically, dependent on the CPU selection and
enabled debug features (like ITM for example). Nevertheless, it is possible that you explicitly need to specify
the trace decoding in cases where the debugger chooses the wrong defaults; for example if you are
debugging an ARM core, which implements an ITM and at the same time an STP module and you now
need to specify which of the two outputs you are actually recording.

Format: CAnalyzer.DecodeMode <format>

<format>: AUTO
SDTI
STP
STP64
STPV2
STPV2LE
SWV
CSITM
CSETM
CSSTM

AUTO Automatically derive settings.
The chosen mode depends on SYStem.CPU, the SYStem.CONFIG
settings and CAnalyzer.TraceCONNECT.

SDTI System Debug Trace Interface (SDTI) by Texas Instruments.

STP STP protocol (MIPI STPv1, D32 packets).

STP64 STP64 protocol (MIPI STPv1, D64 packets).

STPV2 STPv2 protocol (MIPI STPv2, big endian mode).

STPV2LE STPv2 protocol (MIPI STPv2, little endian mode).

SWV
ITM (deprecated)

ITM data transferred via Serial Wire Output.

CSITM ITM data transferred via a TPIU continuous mode.
The trace ID is taken from the ITM component configuration.
General Commands Reference Guide C | 29©1989-2024 Lauterbach

See also

■ CAnalyzer.<specific_cmds>

CAnalyzer.I2C I2C control

Synonym for the I2C command group. Only makes sense if your debug hardware supports accessing an
I2C bus on your target (e.g. CombiProbe with MIPI60-Cv2).

CAnalyzer.PipeLOAD Load a previously saved file

Loads a file previously saved with CAnalyzer.PipeSAVE. Please note that the decoding will only work if your
trace setup matches the setup you used when you did save the data via CAnalyzer.PipeSAVE (selected
CPU, trace component setup,...).

This command is used in conjunction with CAnalyzer.Mode PIPE.

CAnalyzer.PipeRePlay Replay a previously recorded stream

Replays a previously recorded stream of data, which was stored via CAnalyzer.PipeSAVE.

This command is useful if you want to develop a PIPE mode processing DLL.Additionally you might also
“replay” artificially produced mock-up data to test your DLL.

CSETM ETM + optionally ITM data transferred via TPIU continuous mode.
The trace IDs are taken from the ETM and ITM component configuration.

CSSTM STM data transferred via TPIU continuous mode.
The trace ID is taken from the STM component configuration.

Format: CAnalyzer.I2C.<sub_cmd>

Format: CAnalyzer.PipeLOAD <file>

Format: CAnalyzer.PipeRePlay <file>
General Commands Reference Guide C | 30©1989-2024 Lauterbach

This command is used in conjunction with CAnalyzer.Mode PIPE.

CAnalyzer.PipeSAVE Define a file that stores received data

Defines a file into which all received data is stored in an unprocessed manner.

This command is used in conjunction with CAnalyzer.Mode PIPE. It might be used for developing PIPE
mode processing DLLs (see CAnalyzer.PipeRePlay).

CAnalyzer.Mode STREAM offers a similar functionality.

CAnalyzer.PipeWRITE Define a named pipe as trace sink

This command is used to define a Windows or Unix named pipe as trace sink. Up to 8 named pipes can be
defined as trace sinks simultaneously.

The named pipe has to be created by the receiving application, before you can connect to the named pipe. If
the pipe is not already connected to a receiving application, the debugger software will report an error.

If you use this command without specifying a pipe name, all open pipes currently used as trace sinks are
closed.

The options are the same as for the CAnalyzer.WRITE command.

See also

■ CAnalyzer.<specific_cmds>

Format: CAnalyzer.PipeSAVE <file>

Format: CAnalyzer.PipeWRITE <pipe_name> [/<options>]

<options>: ChannelID <channel_id>
MasterID <master_id>
XtiMaster DSP | CPU | MCU (XTIv2)
XtiMaster DSP | CPU1 | CPU2 (SDTI)
Payload
General Commands Reference Guide C | 31©1989-2024 Lauterbach

CAnalyzer.SAMPLE Set sample time offset

Use this command to manually configure the sample times of the trace channels. It is typically used to
restore values previously stored using the Store... button of the CAnalyzer.ShowFocus window or with the
STOre CAnalyzerFocus command.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

• CombiProbe with MIPI20T-HS whisker

• CombiProbe 2 or µTrace (MicroTrace) with MIPI20T-HS or MIPI34 whisker

• CombiProbe 2 with MIPI60 whisker (parallel only)

• PowerDebug PRO/E50/X50 with ARM Debug Cable v5 (SWV only)

Format: CAnalyzer.SAMPLE [<channel>] <time>

<channel>:
(parallel)

D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7

<channel>:
(SWV)

SWO0 | SWO1 | SWO2 | SWO3 | SWO4 | SWO5 | SWO6 | SWO7

<channel> Trace signal to be configured
If the parameter is omitted, all signals are configured with the <time>
setting.

<time>
(parallel)

Parameter Type: Float. The value is interpreted as time in nanoseconds.
Sample time offset to trace clock:
• Positive value: Data is sampled after the clock edge.
• Negative value: Data is sampled before the clock edge.

<time>
(SWV)

Parameter Type: Float. The value is interpreted as time in nanoseconds.
Sample time offset to nominal sample point derived from
CAnalyzer.TraceCLOCK setting:
• Positive value: Data is sampled after nominal sample point.
• Negative value: Data is sampled before nominal sample point.
General Commands Reference Guide C | 32©1989-2024 Lauterbach

Examples:

See also

■ CAnalyzer.<specific_cmds>

▲ ’Release Information’ in ’Legacy Release History’

CAnalyzer.ShowFocus Display data eye

Use this command to get a quick overview of the data eyes for all signals of your trace port.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

• CombiProbe with MIPI20T-HS whisker

• CombiProbe 2 or µTrace (MicroTrace) with MIPI20T-HS or MIPI34 whisker

• CombiProbe 2 with MIPI60 whisker (parallel only)

• PowerDebug PRO/E50/X50 with ARM Debug Cable v5 (SWV only)

If used without any arguments, the channels are chosen automatically based on the current TPIU settings.

; Set the delay for all channels to 0
CAnalyzer.SAMPLE , 0.0

; Set the delay for the D0 line to 0.4 ns
CAnalyzer.SAMPLE D0 0.4

Format: CAnalyzer.ShowFocus [<channels> …]

<channels>:
(parallel)

D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7
CLK

<channels>:
(SWV)

SWO0 | SWO1 | SWO2 | SWO3 | SWO4 | SWO5 | SWO6 | SWO7
SWOSTOP
General Commands Reference Guide C | 33©1989-2024 Lauterbach

Result for parallel trace:

The horizontal axis is the time difference from the edge of the TRACECLK signal. Each row corresponds to
one data channel D0, D1, etc. The sample point is also displayed numerically at the left of the window (in
nanoseconds). Positive values mean that the data line is sampled after the rising clock edge.

Result for SWV trace:

With SWV trace, there is only a single data line. This line is separated into eight virtual channels, one for
each bit of a transmitted byte. For each channel, the delay 0 refers to the “ideal” sample point that is derived
from the CAnalyzer.TraceCLOCK setting.

Color Legend

• White areas represent periods where the corresponding data line was stable.

• Gray areas indicate that changes of the data line were detected for both rising and falling clock
edges.

• Parallel trace: Red areas show that the data line changed only on rising or falling clock edges, not
both.

• SWV and parallel trace: Red lines indicate the sample points for each data line.
General Commands Reference Guide C | 34©1989-2024 Lauterbach

Description of Buttons in the CAnalyzer.ShowFocus Window

The local buttons of the CAnalyzer.ShowFocus window have the following functions:

See also

■ CAnalyzer.<specific_cmds>

▲ ’Release Information’ in ’Legacy Release History’

Setup… Open CAnalyzer.state window to configure the trace.

Scan Perform a CAnalyzer.TestFocus scan.
This replaces the currently displayed data with a new scan of a test
pattern.

Scan+ Perform a CAnalyzer.TestFocus /Accumulate scan.
This works like Scan, but adds to the existing data.

Clear Clear the currently displayed data.

On Enable continuous capture. No specific test pattern is generated, but the
capture can run in parallel to the recording of normal trace data. The
CAnalyzer.ShowFocus window updates continuously.

Off Disable continuous capture.

AutoFocus Perform a CAnalyzer.AutoFocus scan.

Eye Open a CAnalyzer.ShowFocusEye window.

ClockEye Open a CAnalyzer.ShowFocusClockEye window.

Store… Save the current configuration to a file
(STOre <file> CAnalyzerFocus).

Load… Load a configuration from a file
(DO <file>).

Move all sampling points one step to the left.

Move all sampling points one step to the right.
General Commands Reference Guide C | 35©1989-2024 Lauterbach

CAnalyzer.ShowFocusClockEye Show clock eye

CAnalyzer.ShowFocusClockEye shows the clock eye. The data is captured by the
CAnalyzer.AutoFocus, CAnalyzer.TestFocusClockEye and CAnalyzer.TestFocusEye commands.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

• CombiProbe with MIPI20T-HS whisker

• CombiProbe 2 or µTrace (MicroTrace) with MIPI20T-HS, MIPI34 or MIPI60 whisker

The horizontal axis represents time, measured in nanoseconds. The vertical axis represents the voltage.
The visible voltage range depends on the hardware capabilities of the whisker.

To generate this view, the clock signal is sampled using the clock signal itself as the trigger. For example, a
white area around the coordinate (2.0 V, 7.5 ns) means that there were no recorded clock crossings exactly
7.5 ns apart when using a 2.0 V threshold.

Color Legend

• White areas indicate that there were no pairs of clock crossings.

• Green indicates that the reference clock crossing at t = 0 was rising.

• Red indicates that the reference clock crossing at t = 0 was falling.

• Olive green areas indicate that both occurred.

Description of Buttons in the CAnalyzer.ShowFocusClockEye Window

Please see CAnalyzer.ShowFocusEye.

See also

■ CAnalyzer.<specific_cmds>

▲ ’Release Information’ in ’Legacy Release History’

Format: CAnalyzer.ShowFocusClockEye
General Commands Reference Guide C | 36©1989-2024 Lauterbach

CAnalyzer.ShowFocusEye Show data eyes

CAnalyzer.ShowFocusEye shows the data eyes. The data is captured by the CAnalyzer.AutoFocus,
CAnalyzer.TestFocusClockEye and CAnalyzer.TestFocusEye commands.

The availability of this command depends on the plugged hardware. It is only available in the following
scenarios:

• CombiProbe with MIPI20T-HS whisker

• CombiProbe 2 or µTrace (MicroTrace) with MIPI20T-HS, MIPI34or MIPI60 whisker

This screenshot shows multiple eyes overlaid on each other.

This screenshot shows a single data eye.

Color Legend

• White areas indicate that the data was stable (no changes were observed).

• Green indicates that the data changed in response to a rising clock edge at t = 0.

• Red indicates that the data changed in response to a falling clock edge at t = 0.

• Olive green areas indicate that both occurred.

Format: CAnalyzer.ShowFocusEye [<channels> …]

<channels>: D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7
General Commands Reference Guide C | 37©1989-2024 Lauterbach

Description of Buttons in the CAnalyzer.ShowFocusEye Window

The toolbar buttons of the CAnalyzer.ShowFocusEye window have the following functions:

See also

■ CAnalyzer.<specific_cmds>

Setup… Open CAnalyzer.state window to configure the trace.

Scan Perform a CAnalyzer.TestFocusEye scan.
This replaces the currently displayed data with a new scan of a test
pattern.

Scan+ Perform a CAnalyzer.TestFocusEye /Accumulate scan.
This works like Scan, but adds to the existing data.

AutoFocus Perform a CAnalyzer.AutoFocus scan.

ShowFocus Open a CAnalyzer.ShowFocus window.

Channel up/down Switch between displayed channels. The default view shows all selected
channels overlaid onto each other.

Move the sampling points of all visible channels one step to the left.

Move the sampling points of all visible channels one step to the right.
General Commands Reference Guide C | 38©1989-2024 Lauterbach

CAnalyzer.TERMination Configure parallel trace termination

Configures the termination of the trace data and clock signals (TRACED0 to TRACED3 and TRACECLK) on
the MIPI20T-HS whisker.

This command is only available if a MIPI20T-HS whisker is plugged. This whisker has a switchable 100 Ohm
parallel termination to GND. It has no effect in Serial Wire Viewer (SWV) mode.

See also

■ CAnalyzer.<specific_cmds>

▲ ’Release Information’ in ’Legacy Release History’

CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/µTrace)

When the BusA check box is enabled, the CombiProbe/µTrace (MicroTrace) will send out a trigger on the
PODBUS, as soon as a trigger event is detected in the trace data.

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

■ CAnalyzer.<specific_cmds>

Format: CAnalyzer.TERMination [ON | OFF | ALways]

ON Termination is enabled while the trace is armed.
This is the default and recommended setting. Parallel termination
reduces overshoots of the electrical signals.

OFF Termination is disabled completely.
Use this if your target’s drivers are too weak to drive against the
termination.

ALways Termination is always enabled.

Format: CAnalyzer.TOut BusA ON | OFF

Trace.METHOD.CAnalyzer ; select the trace method Compact Analyzer
Trace.state ; open the Trace.state window
Trace.TOut BusA ON ; enable the BusA check box
General Commands Reference Guide C | 39©1989-2024 Lauterbach

CAnalyzer.TraceCLOCK Configure the trace port frequency

This command is used to manually configure the frequency of the trace port.

The interpretation of this value is different depending on whether a parallel or a SWV trace port is used.

Interpretation when parallel trace is used

With parallel trace, this setting is optional and does not affect the capture of data. However, it is used to
interpolate the timestamps in the recorded trace data where multiple logical records share a physical
timestamp. Set the value to zero (0.0) to disable timestamp interpolation.

The given frequency must be the bit rate of the trace port. Since all parallel trace ports supported by the
CAnalyzer operate in double data rate (DDR) mode, this is twice the frequency of the trace clock pin.

The command CAnalyzer.AutoFocus automatically sets this setting.

Interpretation when SWV trace is used

The bit rate of the Serial Wire Output (SWO) signal is used as frequency.

You might need to select an appropriate SWO clock divider to remain in the allowed range. For an example,
see TPIU.SWVPrescaler.

Examples:

Format: CAnalyzer.TraceCLOCK <frequency>
CAnalyzer.ExportClock <frequency> (deprecated)

<frequency>
(MIPI34 whisker and
ARM Debug Cable v5)

Frequency range:
• Minimum: 60 kHz
• Maximum: 100 MHz

<frequency>
(MIPI20T-HS whisker)

Frequency range:
• Minimum: 60 kHz
• Maximum: 200 MHz

CAnalyzer.TraceCLOCK 32MHz
General Commands Reference Guide C | 40©1989-2024 Lauterbach

To auto-detect the bit rate, click the AutoFocus button in the CAnalyzer window or type at the command
line:

See also

■ CAnalyzer.<specific_cmds>

CAnalyzer.TracePORT Select which trace port is used

Selects which trace port is used for recording trace data. This command only makes sense if you have two
whiskers connected to a CombiProbe.

CAnalyzer.AutoFocus

Format: CAnalyzer.TracePORT DEFault | TracePortA | TracePortB

DEFault Use same whisker for tracing as is used for debugging. The debug port can
be selected with the command SYStem.CONFIG DEBUGPORT.
TracePortA is selected per default if only one debug port is available.

TracePortA Select whisker A as trace port.

TracePortB Select whisker B as trace port.
General Commands Reference Guide C | 41©1989-2024 Lauterbach

CAnalyzer.WRITE Define a file as trace sink

This command is used to define a file as trace sink. Up to 8 files can be specified as trace sinks
simultaneously.

See also

■ CAnalyzer.<specific_cmds>

Format: CAnalyzer.WRITE <file> [/<options>]

<options>: ChannelID <channel_id>
MasterID <master_id>
XtiMaster DSP | CPU | MCU (XTIv2)
XtiMaster DSP | CPU1 | CPU2 (SDTI)
Payload

<file> If you use this command without specifying a <file> name, all open files
currently used as trace sinks are closed.

ChannelID
MasterID

If you record MIPIs STP trace (System Trace Protocol), then the options
/ChannelID and /MasterID are available. You can use this options to only
store messages into the file, which match the given ChannelID or MasterID.
You can specify a single value, a range of values or a bitmask for the
ChannelID and MasterID.

If you record ARMs ITM trace, the MasterID option is not available, because
ITM does not use master IDs.

Payload The /Payload option specifies, that only the payload of the ITM or STP
messages is stored into the file.
General Commands Reference Guide C | 42©1989-2024 Lauterbach

Generic CAnalyzer Trace Commands

CAnalyzer.ACCESS Define access path to program code for trace decoding

See command <trace>.ACCESS in 'General Commands Reference Guide T' (general_ref_t.pdf, page
131).

CAnalyzer.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

CAnalyzer.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor

See command <trace>.AutoFocus in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CAnalyzer.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

CAnalyzer.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).
General Commands Reference Guide C | 43©1989-2024 Lauterbach

CAnalyzer.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

CAnalyzer.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).

CAnalyzer.CLOCK Clock to calculate time out of cycle count information

See command <trace>.CLOCK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 191).

CAnalyzer.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

CAnalyzer.ComPareCODE Compare trace with memory

See command <trace>.ComPareCODE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 194).

CAnalyzer.CustomTrace Custom trace

See command <trace>.CustomTrace in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 195).

CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs

See command <trace>.CustomTraceLoad in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 196).
General Commands Reference Guide C | 44©1989-2024 Lauterbach

CAnalyzer.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

CAnalyzer.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

CAnalyzer.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

CAnalyzer.ExtractCODE Extract code from trace

See command <trace>.ExtractCODE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 232).

CAnalyzer.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

CAnalyzer.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

CAnalyzer.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

CAnalyzer.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).
General Commands Reference Guide C | 45©1989-2024 Lauterbach

CAnalyzer.FindProgram Advanced trace search

See command <trace>.FindProgram in 'General Commands Reference Guide T' (general_ref_t.pdf, page
239).

CAnalyzer.FindReProgram Activate advanced existing trace search program

See command <trace>.FindReProgram in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 240).

CAnalyzer.FindViewProgram State of advanced trace search programming

See command <trace>.FindViewProgram in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 240).

CAnalyzer.FLOWPROCESS Process flowtrace

See command <trace>.FLOWPROCESS in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 241).

CAnalyzer.FLOWSTART Restart flowtrace processing

See command <trace>.FLOWSTART in 'General Commands Reference Guide T' (general_ref_t.pdf, page
241).

CAnalyzer.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

CAnalyzer.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).
General Commands Reference Guide C | 46©1989-2024 Lauterbach

CAnalyzer.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

CAnalyzer.JOINFILE Concatenate several trace recordings

See command <trace>.JOINFILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page
246).

CAnalyzer.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

CAnalyzer.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

CAnalyzer.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

CAnalyzer.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

CAnalyzer.MERGEFILE Combine two trace files into one

See command <trace>.MERGEFILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page
272).

CAnalyzer.Mode Set the trace operation mode

See command <trace>.Mode in 'General Commands Reference Guide T' (general_ref_t.pdf, page 276).
General Commands Reference Guide C | 47©1989-2024 Lauterbach

CAnalyzer.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

CAnalyzer.PortFilter Specify utilization of trace memory

See command <trace>.PortFilter in 'General Commands Reference Guide T' (general_ref_t.pdf, page
279).

CAnalyzer.PortType Specify trace interface

See command <trace>.PortType in 'General Commands Reference Guide T' (general_ref_t.pdf, page
280).

CAnalyzer.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

CAnalyzer.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).
General Commands Reference Guide C | 48©1989-2024 Lauterbach

CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined
protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).
General Commands Reference Guide C | 49©1989-2024 Lauterbach

CAnalyzer.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CAnalyzer.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CAnalyzer.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

CAnalyzer.SelfArm Automatic restart of trace recording

See command <trace>.SelfArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
362).

CAnalyzer.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

CAnalyzer.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

CAnalyzer.SPY Adaptive stream and analysis

See command <trace>.SPY in 'General Commands Reference Guide T' (general_ref_t.pdf, page 374).

CAnalyzer.state Display trace configuration window

See command <trace>.state in 'General Commands Reference Guide T' (general_ref_t.pdf, page 376).
General Commands Reference Guide C | 50©1989-2024 Lauterbach

CAnalyzer.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

CAnalyzer.STREAMCompression Select compression mode for streaming

See command <trace>.STREAMCompression in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 485).

CAnalyzer.STREAMFILE Specify temporary streaming file path

See command <trace>.STREAMFILE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 486).

CAnalyzer.STREAMFileLimit Set size limit for streaming file

See command <trace>.STREAMFileLimit in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 487).

CAnalyzer.STREAMLOAD Load streaming file from disk

See command <trace>.STREAMLOAD in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 488).

CAnalyzer.STREAMSAVE Save streaming file to disk

See command <trace>.STREAMSAVE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 490).

CAnalyzer.TDelay Trigger delay

See command <trace>.TDelay in 'General Commands Reference Guide T' (general_ref_t.pdf, page 491).
General Commands Reference Guide C | 51©1989-2024 Lauterbach

CAnalyzer.TestFocus Test trace port recording

See command <trace>.TestFocus in 'General Commands Reference Guide T' (general_ref_t.pdf, page
494).

CAnalyzer.TestFocusClockEye Scan clock eye

See command <trace>.TestFocusClockEye in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 496).

CAnalyzer.TestFocusEye Check signal integrity

See command <trace>.TestFocusEye in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 497).

CAnalyzer.TestUtilization Tests trace port utilization

See command <trace>.TestUtilization in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 497).

CAnalyzer.THreshold Optimize threshold for trace lines

See command <trace>.THreshold in 'General Commands Reference Guide T' (general_ref_t.pdf, page
498).

CAnalyzer.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

CAnalyzer.TraceCONNECT Select on-chip peripheral sink

See command <trace>.TraceCONNECT in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 501).
General Commands Reference Guide C | 52©1989-2024 Lauterbach

CAnalyzer.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

CAnalyzer.TSELect Select trigger source

See command <trace>.TSELect in 'General Commands Reference Guide T' (general_ref_t.pdf, page
503).

CAnalyzer.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

CAnalyzer.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide C | 53©1989-2024 Lauterbach

CIProbe

CIProbe Trace with Analog Probe and CombiProbe/µTrace (MicroTrace)

CIProbe is the command group that is used to configure, display, and evaluate signal trace information
recorded with one of the following setups:

• Analog Probe connected to port B of a CombiProbe or µTrace (MicroTrace)

Using the converter LA-4508, a PowerIntegrator Analog probe can be used to capture analog
trace data, which can be correlated with flow trace, e. g. for Energy Trace Analysis (ETA).

• Mixed-Signal Probe connected to port B of a CombiProbe 2 or µTrace (MicroTrace)

A Mixed-Signal probe can be connected directly to port B of a CombiProbe 2 or µTrace
(MicroTrace). Like the analog probe, it can be used for ETA, but it is also possible to capture
digital signals for protocol analysis or for measuring interrupt latency for external events.

• Built-in logic analyzer for debug signals

With a PowerDebug PRO/E40/X50 and a regular Debug Cable, it is possible to trace the signals
that form the debug port (e. g. JTAG). This can be useful when analyzing problems with the
debug connection.
For the IDC20A and AUTO26 Debug Cables, a script to set up signal names and JTAG protocol
analysis can be found at ~~/demo/etc/diagnosis/debug_cable_probe_setup.cmm.

The CIProbe feature set and usage is very similar to the IProbe, which refers to the analog or logic
analyzer port of a PowerTrace module. Notable differences include:

• The CIProbe only supports the TRACE32 Analog Probe and Mixed-Signal Probe.

• The CIProbe uses the main trace memory of the CombiProbe/µTrace (MicroTrace). The
maximum depth is 16/32/64 million records when used with a CombiProbe/µTrace
(MicroTrace)/CombiProbe 2, respectively. The built-in logic analyzer for debug signals can store
16 million records.

• The CIProbe supports TRACE32 streaming to the host to provide virtually unlimited recording
time, limited only by hard drive or SSD capacity of the host PC. Simultaneous CIProbe and
CAnalyzer streaming is also supported.

The Analog Probe must be connected to the port B of the CombiProbe/µTrace
(MicroTrace) using a special adapter (LA-4508). Please do not connect the
Analog Probe directly to the CombiProbe/µTrace (MicroTrace).
General Commands Reference Guide C | 54©1989-2024 Lauterbach

Due to the similarities, there is no dedicated CIProbe user’s guide. For general instructions on how to use
the CIProbe or to learn about its analog capabilities, please refer to “IProbe User’s Guide”
(iprobe_user.pdf). When commands starting with IProbe are mentioned, remember to use their CIProbe
equivalents instead.

The chapter “CIProbe-specific Trace Commands”, page 56 describes the CIProbe-specific configuration
commands. While the chapter “Generic CIProbe Trace Commands”, page 64 lists the CIProbe trace
analysis and display commands, which are shared with other TRACE32 trace methods.
General Commands Reference Guide C | 55©1989-2024 Lauterbach

CIProbe-specific Trace Commands

CIProbe.<specific_cmds> Overview of CIProbe-specific commands

See also

■ CIProbe.ALOWerLIMit ■ CIProbe.ATrigEN ■ CIProbe.ATrigMODE ■ CIProbe.AUPPerLIMit
■ CIProbe.Mode ■ CIProbe.state ■ CIProbe.TDelay ■ CIProbe.TOut
■ CIProbe.TSELect

CIProbe.ALOWerLIMit Set lower trigger/filter comparator value

Sets the lower limit for the trigger and filter logic of a physical ADC channel. The <value> must be given in
Volts for voltage channels or Amperes for current channels.

The actual comparison performed depends on the CIProbe.ATrigMODE setting.

See also

■ CIProbe.<specific_cmds>

CIProbe.ATrigEN Enable/disable trigger contribution of a channel

Enables or disables the contribution of a physical channel’s comparator logic to the CIProbe trigger. If this
setting is enabled for multiple channels, a trigger condition is generated when the trigger condition of any
channels is satisfied.

Format: CIProbe.ALOWerLIMit <channel> <value>

<channel>: V0 | V1 | V2 | V3 |
I0 | I1 | I2

Format: CIProbe.ATrigEN <channel> [ON | OFF]

<channel>: V0 | V1 | V2 | V3 |
I0 | I1 | I2
General Commands Reference Guide C | 56©1989-2024 Lauterbach

If no [ON | OFF] argument is given, the current state of the setting is toggled.

See also

■ CIProbe.<specific_cmds>

NOTE: Even if this setting is OFF for a given channel, the comparator may still be used for
filtering. Refer to the POD.ADC command for details.
General Commands Reference Guide C | 57©1989-2024 Lauterbach

CIProbe.ATrigMODE Set trigger/filter condition

Sets the condition for a physical channel’s comparator logic.

See also

■ CIProbe.<specific_cmds>

Format: CIProbe.ATrigMODE <channel> <mode>

<channel>: V0 | V1 | V2 | V3 |
I0 | I1 | I2

<mode>: DISabled |
GreaterUPPer | SmallerUPPer |
GreaterLOWer | SmallerLOWer |
INBound | BEYONDbound

DISabled No value matches.

GreaterUPPer Value must be greater than upper limit.
See CIProbe.AUPPerLIMit.

SmallerUPPer Value must be less than upper limit.
See CIProbe.AUPPerLIMit.

GreaterLOWer Value must be greater than lower limit.
See CIProbe.ALOWerLIMit.

SmallerLOWer Value must be less than lower limit.
See CIProbe.ALOWerLIMit.

INBound Value must be greater than lower limit and less than upper limit.
See CIProbe.ALOWerLIMit and CIProbe.AUPPerLIMit.

BEYONDBound Value must be less than lower limit or greater than upper limit.
See CIProbe.ALOWerLIMit and CIProbe.AUPPerLIMit.
General Commands Reference Guide C | 58©1989-2024 Lauterbach

CIProbe.AUPPerLIMit Set upper trigger/filter comparator value

Sets the upper limit for the trigger and filter logic of a physical ADC channel. The <value> is in Volts for
voltage channels and Amperes for current channels.

The actual comparison performed depends on the CIProbe.ATrigMODE setting.

See also

■ CIProbe.<specific_cmds>

CIProbe.Mode Set trace operation mode

See also

■ CIProbe.<specific_cmds> ■ <trace>.Mode

Format: CIProbe.AUPPerLIMit <channel> <value>

<channel>: V0 | V1 | V2 | V3 |
I0 | I1 | I2

Format: CIProbe.Mode Fifo | Stack

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.
General Commands Reference Guide C | 59©1989-2024 Lauterbach

CIProbe.state Display CIProbe configuration window

Displays the main CIProbe configuration window. Use the advanced button to get access to analog trigger
settings.

Use the Analog Settings button or the command POD.state CIP to enable and configure channels. Note
that by default, all channels are disabled, so no data will be recorded.

See also

■ CIProbe.<specific_cmds>

CIProbe.TDelay Define trigger delay

Selects the delay between the trigger point and the time where the trace stops recording. This delay is
always defined as a number of records. For convenience, you can also specify a the delay as a percentage
of the current CIProbe.SIZE setting.

When the trigger point occurs (either from the trigger comparator or from the BusA source), the CIProbe will
enter the trigger state and keep recording. After the number of records specified in this setting, the CIProbe
will then enter the break state and no longer record new samples.

Format: CIProbe.state

Format: CIProbe.TDelay <records> | <percent>%
General Commands Reference Guide C | 60©1989-2024 Lauterbach

Examples:

See also

■ CIProbe.<specific_cmds>

CIProbe.TOut Route CIProbe trigger to PODBUS

When this setting is enabled, the CIProbe will send out a trigger on the PODBUS as soon as a trigger event
is detected in the trace data.

Regardless of this setting, a trigger condition will cause the CIProbe to enter the trigger and eventually the
break state.

If no [ON | OFF] argument is given, the current state of the setting is toggled.

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

■ CIProbe.<specific_cmds>

; Stop immediately after the trigger condition. All recorded samples
; will have been sampled before or at the trigger point.
CIProbe.TDelay 0.

; After the trigger condition occurs, fill the entire trace buffer with
; new samples. All recorded samples will have been sampled after the
; trigger point.
CIProbe.TDelay 100%

; Stop such that the sample point is exactly in the middle of the
; recorded data.
CIProbe.TDelay 50%

Format: CIProbe.TOut BusA [ON | OFF]
General Commands Reference Guide C | 61©1989-2024 Lauterbach

CIProbe.TSELect Route PODBUS trigger to CIProbe

When this setting is enabled, a trigger condition on the PODBUS will trigger the CIProbe, This will cause the
CIProbe to enter the trigger and eventually the break state.

If other trigger conditions are configured with CIProbe.ATrigEN, these conditions can independently trigger
the CIProbe.

If no [ON | OFF] argument is given, the current state of the setting is toggled.

For information about PODBUS devices, see "Interaction between independent PODBUS devices".

See also

■ CIProbe.<specific_cmds>

CIProbe.TSYNC.SELect Select trigger input pin and edge or state

Set the trigger condition for digital trace. Only available for the Mixed-Signal Probe.

The <channel> can be one of the digital CIProbe channels (e. g. CIProbe.00 or an alias set with the
command NAME.Set) or a Word or Group channel (created with NAME.Word or NAME.Group). The
<mode> can be either a level (Low, High), an edge (Falling, Rising) or a numeric value or mask, which
will assign Low, High or don’t care to each of the bits in <channel>.

It is possible to specify multiple pairs of [<channel> <mode>] with this command. The trigger condition will
be the logical AND of the given conditions. If no condition is given at all, no digital trigger will be generated.

While it is possible to specify edge triggers for multiple channels, these edges would have to occur within the
same digital sample period. Since the CIProbe’s sample clock is asynchronous to the target, this makes it
impossible to guarantee that two edges will be sampled at the same time. Therefore, a sensible trigger
condition will have at most one edge channel in addition to any number of level channels.

Format: CIProbe.TSELect BusA [ON | OFF]

Format: CIProbe.TSYNC.SELect [<channel> <mode>]

<mode>: Low | High | Falling | Rising
<value>
<mask>
General Commands Reference Guide C | 62©1989-2024 Lauterbach

Example:

; set up a named word and two named signals
NAME.Word data CIProbe.00 CIProbe.01 CIProbe.02 CIProbe.03
NAME.Set CIProbe.04 clk
NAME.Set CIProbe.05 valid

; set up a trigger condition:
; - CLK (channel 04) must have a rising edge
; - VALID (channel 05) must be a logic 1
; - DATA (channels 00 to 03) must have the value 0x8 or 0xA
CIProbe.TSYNC.SELect CIProbe.clk Rising \
 CIProbe.valid High \
 CIProbe.data 0b10x0
General Commands Reference Guide C | 63©1989-2024 Lauterbach

Generic CIProbe Trace Commands

CIProbe.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

CIProbe.AutoArm Arm automatically

See command <trace>.AutoArm in 'General Commands Reference Guide T' (general_ref_t.pdf, page
135).

CIProbe.AutoInit Automatic initialization

See command <trace>.AutoInit in 'General Commands Reference Guide T' (general_ref_t.pdf, page 140).

CIProbe.BookMark Set a bookmark in trace listing

See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

CIProbe.BookMarkToggle Toggles a single trace bookmark

See command <trace>.BookMarkToggle in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 143).

CIProbe.Chart Display trace contents graphically

See command <trace>.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf, page 144).
General Commands Reference Guide C | 64©1989-2024 Lauterbach

CIProbe.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

CIProbe.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

CIProbe.DisConfig Trace disassembler configuration

See command <trace>.DisConfig in 'General Commands Reference Guide T' (general_ref_t.pdf, page
198).

CIProbe.DRAW Plot trace data against time

See command <trace>.DRAW in 'General Commands Reference Guide T' (general_ref_t.pdf, page 201).

CIProbe.EXPORT Export trace data for processing in other applications

See command <trace>.EXPORT in 'General Commands Reference Guide T' (general_ref_t.pdf, page
212).

CIProbe.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

CIProbe.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

CIProbe.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).
General Commands Reference Guide C | 65©1989-2024 Lauterbach

CIProbe.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

CIProbe.Get Display input level

See command <trace>.Get in 'General Commands Reference Guide T' (general_ref_t.pdf, page 242).

CIProbe.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

CIProbe.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

CIProbe.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

CIProbe.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

CIProbe.ListVar List variable recorded to trace

See command <trace>.ListVar in 'General Commands Reference Guide T' (general_ref_t.pdf, page 266).

CIProbe.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).
General Commands Reference Guide C | 66©1989-2024 Lauterbach

CIProbe.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

CIProbe.PROfile Rolling live plots of trace data

See command <trace>.PROfile in 'General Commands Reference Guide T' (general_ref_t.pdf, page 282).

CIProbe.PROfile.channel Display profile of signal probe channels

See command <trace>.PROfile.channel in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 282).

CIProbe.PROfileChart Profile charts

See command <trace>.PROfileChart in 'General Commands Reference Guide T' (general_ref_t.pdf, page
283).

CIProbe.PROfileSTATistic Statistical analysis in a table versus time

See command <trace>.PROfileSTATistic in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 322).

CIProbe.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

CIProbe.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 339).
General Commands Reference Guide C | 67©1989-2024 Lauterbach

CIProbe.PROTOcol.Draw Graphic display for user-defined protocol

See command <trace>.PROTOcol.Draw in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

CIProbe.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

CIProbe.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 347).

CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 350).
General Commands Reference Guide C | 68©1989-2024 Lauterbach

CIProbe.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CIProbe.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

CIProbe.SAVE Save trace for postprocessing in TRACE32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

CIProbe.SIZE Define buffer size

See command <trace>.SIZE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 373).

CIProbe.SnapShot Restart trace capturing once

See command <trace>.SnapShot in 'General Commands Reference Guide T' (general_ref_t.pdf, page
373).

CIProbe.SPY Adaptive stream and analysis

See command <trace>.SPY in 'General Commands Reference Guide T' (general_ref_t.pdf, page 374).

CIProbe.STATistic Statistic analysis

See command <trace>.STATistic in 'General Commands Reference Guide T' (general_ref_t.pdf, page
378).

CIProbe.STREAMCompression Select compression mode for streaming

See command <trace>.STREAMCompression in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 485).
General Commands Reference Guide C | 69©1989-2024 Lauterbach

CIProbe.STREAMFILE Specify temporary streaming file path

See command <trace>.STREAMFILE in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 486).

CIProbe.STREAMFileLimit Set size limit for streaming file

See command <trace>.STREAMFileLimit in 'General Commands Reference Guide T' (general_ref_t.pdf,
page 487).

CIProbe.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

CIProbe.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

CIProbe.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

CIProbe.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).
General Commands Reference Guide C | 70©1989-2024 Lauterbach

ClipStore

ClipSTOre Store settings to clipboard

Stores settings in the format of PRACTICE commands to the clipboard.

Example:

Result (example):

See also

■ AutoSTOre ■ STOre ■ SETUP.STOre

Format: ClipSTOre [%<format>] [<item> …]

<format>: sYmbol | NosYmbol

<item>: default | ALL | Win | WinPAGE | Symbolic | HEX | SYStem …

<item>, <format> For a detailed descriptions, refer to the STOre command.

ClipSTOre SYStem ; store the settings of the SYStem.state window
; to the clipboard

B::

SYStem.RESet
SYStem.CPU CortexA9
SYStem.CONFIG CORE 1.
SYStem.MemAccess Enable
SYStem.CpuBreak Enable
SYStem.CpuSpot Enable
SYStem.Option.IMASKASM ON
SYStem.Mode Up

ENDDO
General Commands Reference Guide C | 71©1989-2024 Lauterbach

CLOCK

CLOCK Display date and time

The command group CLOCK is used to display and calculate the system clock configuration. The results
are also used to decode the on-chip trace timestamp information in complex scenarios.

Currently this feature is only implemented for TriCore, PCP, and GTM.

For architectures that do not have the CLOCK command group, CLOCK is an alias for DATE.

See also

■ CLOCK.BACKUP ■ CLOCK.DATE ■ CLOCK.OFF ■ CLOCK.ON
■ CLOCK.OSCillator ■ CLOCK.Register ■ CLOCK.RESet ■ CLOCK.state
■ CLOCK.SYSCLocK ■ CLOCK.VCOBase ■ CLOCK.VCOBaseERAY ■ DATE

▲ ’Release Information’ in ’Legacy Release History’

CLOCK.BACKUP Set backup clock frequency
TriCore only, device dependent

Default: 100.0MHz (TriCore, device dependent)

Configure the backup clock frequency. Required to compute the clock frequencies when TriCore switches to
the backup clock. Check CPU data sheet for details.

See also

■ CLOCK ■ CLOCK.state

Format: CLOCK.BACKUP <frequency>
General Commands Reference Guide C | 72©1989-2024 Lauterbach

CLOCK.DATE Alias for DATE command

Alias for the DATE command.

See also

■ CLOCK ■ CLOCK.state

CLOCK.OFF Disable clock frequency computation

Default: OFF

Disables the computation of clock frequencies.

See also

■ CLOCK ■ CLOCK.state

CLOCK.ON Enable clock frequency computation

Enables the computation of clock frequencies.

Prior to enabling the computation of clock frequencies, it is recommended to configure the clock sources
(oscillator, backup, VCOBase). The resulting clock frequencies are also used for decoding on-chip trace
timestamps, if supported by device and TRACE32.

See also

■ CLOCK ■ CLOCK.state

Format: CLOCK.DATE

Format: CLOCK.OFF

Format: CLOCK.ON
General Commands Reference Guide C | 73©1989-2024 Lauterbach

CLOCK.OSCillator Set board oscillator frequency

Default: 20.0MHz (TriCore)

Configures the board oscillator clock frequency. Check board oscillator and/or schematics.

See also

■ CLOCK ■ CLOCK.state

CLOCK.Register Display PLL related registers

Opens the PLL or system clock register section within the device’s peripheral file.

See also

■ CLOCK ■ CLOCK.state

CLOCK.RESet Reset CLOCK command group settings

Resets all CLOCK command group related settings to defaults.

See also

■ CLOCK ■ CLOCK.state

Format: CLOCK.OSCillator <frequency>

Format: CLOCK.Register

Format: CLOCK.RESet
General Commands Reference Guide C | 74©1989-2024 Lauterbach

CLOCK.state Display clock frequencies

Opens a dialog with all computed clock frequencies and related settings.

See also

■ CLOCK ■ CLOCK.BACKUP ■ CLOCK.DATE ■ CLOCK.OFF
■ CLOCK.ON ■ CLOCK.OSCillator ■ CLOCK.Register ■ CLOCK.RESet
■ CLOCK.SYSCLocK ■ CLOCK.VCOBase ■ CLOCK.VCOBaseERAY

CLOCK.SYSCLocK Set external clock frequency
TriCore only, device dependent

Configure the external clock frequency when the SYSCLOCK pin is used as clock source. Check CPU data
sheet for details.

See also

■ CLOCK ■ CLOCK.state

Format: CLOCK.state

A For descriptions of the commands in the CLOCK.state window, please refer to the CLOCK.*
commands in this chapter.
Example: For information about ON, see CLOCK.ON.

Format: CLOCK.SYSCLocK <frequency>

A

General Commands Reference Guide C | 75©1989-2024 Lauterbach

CLOCK.VCOBase Set "VCOBase" clock frequency
TriCore only, device dependent

Default: device dependent

Configures the VCO base clock frequency. Required when TriCore PLL operates in free-running mode.
Check CPU data sheet for details.

See also

■ CLOCK ■ CLOCK.state

CLOCK.VCOBaseERAY Set "FlexRay VCOBase" clock frequency
TriCore only, device dependent

Default: device dependent

Configures the FlexRay VCO base clock frequency. Required when TriCore FlexRay PLL operates in free-
running mode. Check CPU data sheet for details.

See also

■ CLOCK ■ CLOCK.state

Format: CLOCK.VCOBase <frequency>

Format: CLOCK.VCOBaseERAY <frequency>
General Commands Reference Guide C | 76©1989-2024 Lauterbach

CMI

CMI Clock management interface

For a description of the CMI commands and CMITrace commands, see “System Trace User’s Guide”
(trace_stm.pdf).
General Commands Reference Guide C | 77©1989-2024 Lauterbach

CMN

CMN Coherent mesh network

The Coherent Mesh Network (CMN) is a scalable and configurable coherent interconnect which enables the
developer to output the messages of the coherence protocol without affecting the run-time behavior of the
system.

For a description of the CMN commands, see “System Trace User’s Guide” (trace_stm.pdf).
General Commands Reference Guide C | 78©1989-2024 Lauterbach

CMN<trace> - Trace Data Analysis

CMN<trace> Command groups for CMN<trace>

Overview CMN<trace>

Using the CMN<trace> command group, you can configure the trace recording as well as analyze and
display the recorded CMN trace data. The command groups consist of the name of the trace source, here
CMN, plus the TRACE32 trace method you have chosen for recording the CMN trace data.

For more information about the TRACE32 convention of combining <trace_source> and <trace_method> to
a <trace> command group that is aimed at a specific trace source, see “Replacing <trace> with Trace
Source and Trace Method - Examples” (general_ref_t.pdf).

Not any arbitrary combination of <trace_source> and <trace_method> is possible. For an overview of the
available command groups “Related Trace Command Groups” (general_ref_t.pdf).

Example:

CMNTrace.state ;optional step: open the window in which the
 ;trace recording is configured.
CMNTrace.METHOD Analyzer ;select the trace method Analyzer for
;<configuration> ;recording trace data.

CMN.state ;optional step: open the window in which
 ;the trace source CMN is configured.
CMN.ON ;switch the trace source CMN on.
;<configuration>

;trace data is recorded using the commands Go, WAIT, Break

CMNAnalyzer.List ;display the CMN trace data recorded with the
 ;trace method Analyzer as a trace listing.

CMNTrace.List ;this is the generic replacement for the above
 ;CMNAnalyzer.List command.
General Commands Reference Guide C | 79©1989-2024 Lauterbach

CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace
[Example]

The CMNAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

The CMN information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32
PowerTrace.

CMNCAnalyzer Analyze CMN information recorded by CombiProbe

The CMNCAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

The CMN information emitted off-chip via the Trace Port Interface Unit (TPIU) is recorded by the TRACE32
CombiProbe.

Format: CMNAnalyzer.<sub_cmd>

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNAnalyzer.List refer to <trace>.List

Format: CMNCAnalyzer.<sub_cmd>

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNCAnalyzer.List refer to <trace>.List
General Commands Reference Guide C | 80©1989-2024 Lauterbach

CMNHAnalyzer Analyze CMN information captured by the host analyzer

The CMNHAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component. Trace data is transferred off-chip via the USB port and is recorded in the
trace memory of the TRACE32 host analyzer.

CMNLA Analyze CMN information from binary source

The CMNLAnalyzer command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component. Trace data is collected form Lauterbach’s Logic Analyzer or from a binary
file.

CMNOnchip Analyze CMN information captured in target onchip memory

The CMNOnchip command group allows to display and analyze the information emitted by the Coherent
Mesh Network (CMN) component.

Format: CMNHAnalyzer.<sub_cmd>

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNHAnalyzer.List refer to <trace>.List

Format: CMNLA.<sub_cmd>

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNLAnalyzer.List refer to <trace>.List

Format: CMNOnchip.<sub_cmd>
General Commands Reference Guide C | 81©1989-2024 Lauterbach

The CMN trace is sent to the device-specific onchip trace memory and is read by TRACE32 via debug cable
(JTAG).

<sub_cmd> For descriptions of the subcommands, please refer to the general
<trace> command descriptions in “General Commands Reference
Guide T” (general_ref_t.pdf).

Example: For a description of CMNOnchip.List refer to <trace>.List
General Commands Reference Guide C | 82©1989-2024 Lauterbach

CORE

CORE Cores in an SMP system

See also

■ CORE.ADD ■ CORE.ASSIGN ■ CORE.List ■ CORE.NUMber
■ CORE.ReMove ■ CORE.select ■ CORE.SHOWACTIVE ■ CORE.SINGLE

▲ ’CORE Functions’ in ’General Function Reference’

Overview CORE

With the CORE command group, TRACE32 supports debugging of SMP systems (symmetric
multiprocessing).

For various architectures like ARM, MIPS, PowerPC, and SH4 there are chips containing two or more
identical cores.

When debugging SMP systems with TRACE32, the context (Register window, List window, etc.) of a single
core is displayed at a time, but it is possible to switch to another core within the same TRACE32 instance. In
contrast to this, all debug actions as Go or Break are effected on all cores to maintain synchronicity
between the cores.

To set up an SMP System the commands SYStem.CONFIG.CoreNumber and CORE.ASSIGN or
CORE.NUMber are necessary. The SYStem.CONFIG window and commands define how the access to a
certain hardware thread can be achieved and how many hardware threads are available. The CORE
commands assign the hardware threads to the SMP system that is handled by this TRACE32 instance. In
case there are multiple SMP systems configured on the chip, the command SYStem.CONFIG.CORE is
necessary to define different SMP System indices (Y) that are used as start value for the command
CORE.NUMber and the information whether the SMP System is located at a different or the same chip by
the chip index (X).
General Commands Reference Guide C | 83©1989-2024 Lauterbach

CORE.ADD Add core/thread to the SMP system

Adds a physical core/thread to the SMP System. This synchronizes it with other cores/threads when debug
features are applied to the SMP System.

See also

■ CORE ■ CORE.select

Format: CORE.ADD <core> | <thread>
THREAD.ADD (deprecated)

Core 1 Core 2 Core 3 Core 4 ... Core M

SYStem.CONFIG window SYStem.CONFIG.CoreNumber M

CORE.ASSIGN A B C

or CORE.NUMber N

A B C or Y..Y+N-1

SYStem.CONFIG.CORE Y X

Assignment of Cores

Core 0 Core 1 Core N-1

SMP System Y

Chip X

SMP System Y+1

0 1 2
or 0 .. N-1

Setup of SMP Systems

Chip X+1

Target System

...
General Commands Reference Guide C | 84©1989-2024 Lauterbach

CORE.ASSIGN Assign a set of physical cores/threads to the SMP system
[Examples]

The command configures an instance of the TRACE32 PowerView GUI so that this particular instance
knows for which physical cores or physical threads of the target system it is “responsible”. Typically this
configuration is required in multicore systems:

• In AMP (asynchronous multiprocessing) systems, each TRACE32 PowerView instance is
responsible for a single physical core/thread.

• In SMP (symmetric multiprocessing) systems, an instance of TRACE32 PowerView may be
responsible for multiple physical cores/threads.

• Mixed AMP SMP systems may have several TRACE32 PowerView instances, where one or more
TRACE32 PowerView instances are responsible for more than one physical core/thread.

Each core/thread assignment is also referred to as TRACE32 configuration. A TRACE32 configuration
contains information about how to access a specific physical core/thread in a multicore chip, e.g.:

• TAP coordinates (IRPRE, IRPOST, DRPRE, DRPOST)

• CoreSight addresses for ARM chips

• Other physical access parameters for the core/thread

The setup of the individual cores/threads is done in the SYStem.CONFIG window.

Format 1: CORE.ASSIGN <core1> [<core2> …]

Format 2: CORE.ASSIGN <thread1> [<thread2> …]
 MIPS64, XLR, XLS, XLP, QorIQ64 only

<core> The physical <core> number refers to the respective physical core in the chip. This
applies to CPUs that have only physical cores (i.e. no physical threads at all, or just
one thread).

<thread> The physical <thread> number refers to the respective physical thread in the chip.
This applies to CPUs with physical cores that have more than one thread per core.

The physical threads are numbered sequentially throughout all cores. Thus, the
cores themselves can be ignored in the multicore setup of TRACE32.

NOTE: For each assigned physical core/thread, TRACE32 uses a logical core number,
which serves as an alias for the physical core/thread.
General Commands Reference Guide C | 85©1989-2024 Lauterbach

Examples

To illustrate the CORE.ASSIGN command, the following examples are provided:

• Example 1 - Assignment of Physical Cores

• Example 2 - Assignment of Physical Threads (MIPS specific)

• Example 3 - Core Assignment for an SMP-4 / AMP-3 Setup (MIPS specific)

• Example 4 - Core Assignment for an AMP-2 Setup (MIPS specific)

Example 1 - Assignment of Physical Cores

In this example, the physical cores 1, 2, 4, and 5 of a multicore chip are assigned to TRACE32; core 3
is not used in this example setup. The resulting logical cores can be seen from the Cores pull-down list
in TRACE32.

CORE.ASSIGN 1. 2. 4. 5. ;assign the physical cores 1, 2, 4, and 5

Right-click to open the Cores pull-down list.
In the status line, this box shows the currently selected core, here core 0.

Resulting logical coresAssigned physical cores
General Commands Reference Guide C | 86©1989-2024 Lauterbach

Example 2 - Assignment of Physical Threads

In this example, a CPU has 3 physical cores, each core has 2 physical threads. That means for TRACE32,
this CPU has 6 physical threads in total. Use CORE.ASSIGN as shown below to assign the 6 physical
threads. The resulting logical threads can be seen from the Cores pull-down list in TRACE32.

CORE 1

Thread 2

Thread 1

CORE 2

Thread 2

Thread 1

CORE 3

Thread 2

Thread 1

TRACE32

3

4

2

3

5

6

4

5

CPU

1

2

0

1

Physical
Thread Index

Logical
Thread Index

CORE.ASSIGN 1. 2. 3. 4. 5. 6. ;assign the physical threads 1 to 6
General Commands Reference Guide C | 87©1989-2024 Lauterbach

Example 3: Core Assignment for an SMP-4 / AMP-3 Setup (MIPS specific)

The figure shows an SMP-4 / AMP-3 setup. For this kind of setup, the six cores need to be assigned to three
TRACE32 PowerView GUIs. The target is a MIPS64 with six cores (CPU CN6335).

Code required for assigning the cores 1 to 4 to the first TRACE32 PowerView GUI:

Code required for assigning core 5 to the second TRACE32 PowerView GUI:

SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 1. 1.

; Assign the cores 1 to 4 to the first TRACE32 PowerView GUI.
CORE.ASSIGN 1. 2. 3. 4.

; This step needs to be repeated for the second TRACE32 PowerView GUI:
SYStem.CPU CN63XX ;Select the target CPU (MIPS CN6335).

; This step needs to be repeated for the second TRACE32 PowerView GUI:
; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 5. 1.

; Assign the core 5 to the second TRACE32 PowerView GUI.
CORE.ASSIGN 5.

AMP-3

AMP1 AMP2 AMP3

1st TRACE32 GUI 2nd TRACE32 GUI 3rd TRACE32 GUI
General Commands Reference Guide C | 88©1989-2024 Lauterbach

Code required for assigning core 6 to the third TRACE32 PowerView GUI:

Example 4: AMP-2 Setup (MIPS specific)

The figure shows an AMP-2 setup, which in turn consists of an SMP-2 and SMP-4 setup. For this kind of
setup, the six cores need to be assigned to two TRACE32 PowerView GUIs. The target is a MIPS64 with six
cores (CPU CN6335).

Code required for assigning the cores 1 and 2 to the first TRACE32 PowerView GUI:

; This step needs to be repeated for the third TRACE32 PowerView GUI:
SYStem.CPU CN63XX ;Select the target CPU (MIPS CN6335).

; This step needs to be repeated for the third TRACE32 PowerView GUI:
; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 6. 1.

; Assign the core 6 to the third TRACE32 PowerView GUI.
CORE.ASSIGN 6.

SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 1. 1.

; Assign the cores 1 and 2 to the first TRACE32 PowerView GUI.
CORE.ASSIGN 1. 2.

AMP-2

AMP1 AMP2

1st TRACE32 PowerView GUI 2nd TRACE32 PowerView GUI
General Commands Reference Guide C | 89©1989-2024 Lauterbach

Code required for assigning the cores 3 to 6 to the second TRACE32 PowerView GUI:

See also

■ CORE ■ CORE.select ■ SYStem.CONFIG.CORE ❏ CORE.ISASSIGNED()

; This step needs to be repeated for the second TRACE32 PowerView GUI:
SYStem.CPU CN63XX ; Select the target CPU (MIPS CN6335).

; This step needs to be repeated for the second TRACE32 PowerView GUI:
; Inform TRACE32 about the total number of cores of this multicore chip.
SYStem.CONFIG.CoreNumber 6.

; Start core assignment at this <core> of this <chip>.
SYStem.CONFIG.CORE 3. 1.
; Assign the cores 3 to 6 to the first TRACE32 PowerView GUI.
CORE.ASSIGN 3. 4. 5. 6.

NOTE: The numbering of physical and logical cores is as follows:

• “Physical cores” may have numbers starting with 1.

• “Logical cores” have numbers starting with 0.
General Commands Reference Guide C | 90©1989-2024 Lauterbach

CORE.List List information about cores

Lists for each core the location of the PC (program counter) and the current task. The list is empty while the
cores are running and updated as soon as the program execution is stopped.

Description of Columns in the CORE.List Window

See also

■ CORE ■ CORE.select ■ TASK.List.tasks ❏ CORE()

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

Format: CORE.List

sel Currently selected core.

core Logical core number.

stop Stopped cores.

state Architecture-specific states, e.g. power down.

pc Location of the PC.

symbol Symbol information about the PC

task Active task on core.
General Commands Reference Guide C | 91©1989-2024 Lauterbach

CORE.NUMber Assign a number of cores/threads to the SMP system

Assigns multiple physical cores/threads to the SMP system. The cores/threads are assigned in a linear
sequence and without gaps.

The setup of the cores/threads is done in the SYStem.CONFIG window. The assignment starts with the
<core> parameter of the SYStem.CONFIG.CORE command and iterates through the number of
cores/threads passed to the CORE.NUMber command.

Example 1 shows how to assign the first 4 cores of a chip. In our example, chip 1 has 7 cores.

Example 2 shows how to assign the cores 3 to 6 of a chip. In our example, chip 1 has 7 cores.

See also

■ CORE ■ CORE.select

Format: CORE.NUMber <number_of_cores> | <number_of_threads>

; <core> <chip> i.e. start at core 1 of chip 1
SYStem.CONFIG.CORE 1. 1.

CORE.NUMber 4. ;assign the first 4 cores.
 ;this assignment corresponds to: CORE.ASSIGN 1. 2. 3. 4.

1 2 3 4 5 6 7

; <core> <chip> i.e. start at core 3 of chip 1
SYStem.CONFIG.CORE 3. 1.

CORE.NUMber 4. ;assign cores 3 to 6, i.e. 4 cores.
 ;this assignment corresponds to: CORE.ASSIGN 3. 4. 5. 6.

3 42 751 6
General Commands Reference Guide C | 92©1989-2024 Lauterbach

CORE.ReMove Remove core from the SMP system

Removes a physical core from the SMP system.

See also

■ CORE ■ CORE.select

CORE.select Change currently selected core

Changes the currently selected core to the specified <logical_core>. As a result the debugger view is
changed to <logical_core> and all commands without /CORE <number> option apply to <logical_core>.

The number of the selected core is displayed in the state line at the bottom of the TRACE32 main window.

See also

■ CORE ■ CORE.ADD ■ CORE.ASSIGN ■ CORE.List
■ CORE.NUMber ■ CORE.ReMove ■ CORE.SHOWACTIVE ■ CORE.SINGLE
■ MACHINE.select ■ TASK.select ❏ CORE()

Format: CORE.ReMove <core>
THREAD.ReMove (deprecated)

Format: CORE.select <logical_core>
THREAD.select (deprecated)

NOTE: CORE.List shows the states of all cores and allows to switch between cores
with a simple mouse-click.
General Commands Reference Guide C | 93©1989-2024 Lauterbach

CORE.SHOWACTIVE Show active/inactive cores in an SMP system

Opens a window with a color legend, displaying individual colors and numbers for the cores assigned to
TRACE32:

• Gray indicates that a core is inactive.

An inactive core is not executing any code. The debugger can neither control nor talk to this core.
A core is inactive if it is not clocked or not powered or held in reset.

• Colors other than gray (e.g. orange, green, yellow) indicate that a core is active.

An active core is executing code and the debugger has full control. A core is active if it is clocked,
powered and not in reset.

Clicking a number switches the debugger view to the selected core. The window background is highlighted
in the same color as the selected core.

For example, when you click 1 in the CORE.SHOWACTIVE window, the Register.view window updates
accordingly. The green background color tells you that this register information refers to core 1 (see
screenshots below):

Example: Let’s assume a multicore chip has 6 cores, and just 4 cores of them are assigned to the
TRACE32 PowerView GUI. The CORE.SHOWACTIVE window lets you switch between the assigned 4
cores. If you want to pin a window to a particular core, append /CORE <number> to the window command
(see source example below):

Format: CORE.SHOWACTIVE

Core 1 = green Register.view window = green = Core 1
General Commands Reference Guide C | 94©1989-2024 Lauterbach

See also

■ CORE ■ CORE.select ■ CmdPOS ■ FramePOS
■ SETUP.COLOR ❏ CORE.ISACTIVE()

▲ ’PowerView - Screen Display’ in ’PowerView User’s Guide’

CORE.SINGLE Select single core for debugging
[build 137288 - DVD 09/2021]

Selects single core for debugging on SMP systems. As a result the debugger view is changed to
<logical_core> and all commands, as Go and Step, are only valid for this core. The core number field in the
TRACE32 state line will display the number of the selected core with a turquoise background color.

;- The cores 1, 2, 4, 5 (= four cores) are assigned to the TRACE32
; PowerView GUI
;- The cores 3 and 6 are skipped (= two cores)
CORE.ASSIGN 1. 2. 4. 5.
SYStem.Up

;Open the CORE.SHOWACTIVE window. It has four entries because
;four cores were assigned to the TRACE32 PowerView GUI via CORE.ASSIGN
CORE.SHOWACTIVE ;To select a core, click the core number you want

;alternatively, use this command to select the core you want:
CORE.select 1 ;e.g. select core 1

Register.view ;displays register information and source listing
Data.List func1 ;from the core currently selected in the
 ;CORE.SHOWACTIVE window, i.e. core 1

Register.view /CORE 3. ;displays register information from core 3
Data.List func1 /CORE 3. ;and source listing from core 3,
 ;independently of the core currently selected
 ;in the CORE.SHOWACTIVE window

Format: CORE.SINGLE <logical_core>
General Commands Reference Guide C | 95©1989-2024 Lauterbach

The command CORE.select can be used to revert this selection when the CPU is stopped.

See also

■ CORE ■ CORE.select
General Commands Reference Guide C | 96©1989-2024 Lauterbach

Count

Count Universal counter

See also

■ Count.AutoInit ■ Count.Gate ■ Count.GO ■ Count.Init
■ Count.Mode ■ Count.OUT ■ Count.PROfile ■ Count.RESet
■ Count.Select ■ Count.state ❏ Count.Frequency()

▲ ’Count’ in ’EPROM/FLASH Simulator’
▲ ’Count Functions’ in ’General Function Reference’
▲ ’Release Information’ in ’Legacy Release History’

Overview Count

Counter of TRACE32-ICD

The universal counter system TRACE32-ICD can measure the frequency of the target clock (if the target
clock is connected to the debug cable) or the signal on the count line of the Stimuli Generator (see “Stimuli
Generator User’s Guide” (stg_user.pdf)).

The input multiplexer enables the target clock line if a debug module is used and Count.Select is entered
while the device B: (TRACE32-ICD) is selected.

The input multiplexer enables the count line of the Stimuli Generator if a Stimuli Generator is connected and
Count.Select is entered while the device ESI: (EPROM Simulator) is selected.

If only the debug module or only the Stimuli Generator is connected, the input multiplexer enables the
present input signal independent of the device selection.

Using the Count.OUT command the input signal is issued to the trigger connector on the PODBUS
interface. By that the trigger output is disabled.
General Commands Reference Guide C | 97©1989-2024 Lauterbach

Counter Functions

To use the result of the measurement in automatic test programs, some functions are defined to get the
counter state. The functions are valid only if the Count.Go command is executed.

Count.Frequency()

The result of a frequency measurement

Count.LEVEL()

The actual level of the counter signal (Low = 0, High = 1)

Count.Time()

The result of a period or pulse duration measurement

Count.VALUE()

The result of a event count measurement

Trigger
MUX Trigger

in/out

BDM
target CLK Input Universal

Multiplexer Counter
STG
count line

of PODBU
interfac
General Commands Reference Guide C | 98©1989-2024 Lauterbach

Count.AutoInit Automatic counter reset

If AutoInit is selected, the counter is initialized when emulation is started (Go or Step).

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.Gate Gate time

The gate time has two functions. On measuring frequencies it defines the sample time (gate time). The
precision of the measurement increases with the gate time. If pulse measurement is selected, the gate time
is the max. time for the pulse width. To measure very long pulses the gate time must be set to infinite.

See also

■ Count ■ Count.state

Format: Count.AutoInit [ON | OFF]

Format: Count.Gate [<time>]

<time>: 0.01s … 10.0s
0. (= infinite gate time)

Count.Gate 0.1s ; set gate time to 0.1 s

Count.Gate 0. ; infinite gate time
General Commands Reference Guide C | 99©1989-2024 Lauterbach

Count.GO Start measurement

Start single measurement of the frequency counter. This command is usually used only in PRACTICE
scripts.

See also

■ Count ■ Count.state ❏ Count.Frequency() ❏ Count.Time()
❏ Count.VALUE()

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.Init Reset counter

The counter is reset (counter value to zero), running measurement cycles are stopped. The counter modes
and the channel selection are not changed.

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Format: Count.GO

Count.Select Cycle
Count.Mode Frequency
Count.Gate 0.1s
Count.GO
PRINT COUNT.VALUE()

; start measurement
; print value

Format: Count.Init
General Commands Reference Guide C | 100©1989-2024 Lauterbach

Count.Mode Mode selection

Select mode of the counter.

Frequency

Frequency measurement. The range is up to 20 MHz on external signals and up to 80 MHz for CLOCK and
VCO measurement. Depending on the gate time the resolution is from 0.2 Hz to 800 Hz, which is displayed
behind the result in the display window.

Period

Period time. The resolution is 100 ns, the maximum range up to 300 days

PulsHigh

Measurement of time between the rising and the falling edge

PulsLow

Measurement of time between the falling and the rising edge

Format: Count.Mode [<mode>]

<mode>: Frequency
Period
PulsLow
PulsHigh
EventLow
EventHigh
EventHOld

Period

Puls High

PulsLow
General Commands Reference Guide C | 101©1989-2024 Lauterbach

EventHigh

Event count on rising edges

EventLow

Event count on falling edges

EventHOld

The event count is stopped. On starting the previous event count mode, the counter is not cleared.

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.Mode PulsHigh ; pulse time high

Count.Mode Period ; period duration

Count.Mode EventHigh
Count.Mode EventHOld
Count.Mode EventHigh

; event count rising edge
; stop event count
; continue event count

1003 1004 1005

1003 1004 1005

1003 1004 hold 1005 1006
EventHigh Hold EventHigh
General Commands Reference Guide C | 102©1989-2024 Lauterbach

Count.OUT Forward counter input signal to trigger system/output

Default: OFF.

When enabled, the input signal of the counter module is forwarded to the Podbus Trigger system. From there
it can be used with other devices connected to the Podbus chain. It is also possible to forward the signal to
the trigger connector on the debug interface. This is done with TrBus.Connect Out.

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.PROfile Graphic counter display

The count rate is displayed in graphic mode. The counter mode must be EventHigh or EventLow. The
display is updated and shift every 100 ms or slower. The profiler system is a very effective subsystem to
show transfer or interrupt rates in a running system (see also Analyzer.PROfile). An opened window may
be zoomed by the function keys. An auto zooming feature displays the results always with the best vertical
scaling. The auto zoom is switched off by supplying a scale factor, manual zoom or vertical scrolling. The
scale factor must be a power of 2.

Format: Count.OUT [ON | OFF]

Format: Count.PROfile [<gate>] [<scale>]

<gate>: 0.1s | 1.0s | 10.0s

<scale>: 1 … 32768.

NOTE: Open windows that make dualport memory access may influence the profiling
window!
General Commands Reference Guide C | 103©1989-2024 Lauterbach

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

;---- profile interrupt rate ----------------------------------

Break.Set INT_routine /Alpha

TrEvent.Select Alpha

; set address mark on beginning of
; interrupt routine
; set event selector to breakpoint
; alpha

Count.Mode EventLow
Count.Select Event
Go
Count.PROfile

; event measurement

; start emulation
; display window

;---- profile data transfer rate -------------------------

Break.Set V.RANGE(buffer1) /Alpha
TrEvent.Select Alpha

; mark buffer area
; set event selector to breakpoint
; alpha

Count.Mode EventLow
Count.Select Event
Go
Count.PROfile

; event measurement

; start emulation
; display window
General Commands Reference Guide C | 104©1989-2024 Lauterbach

Count.RESet Reset command

The counter system is initialized to the reset state after power up.

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.Select Select input source

Count.Select controls the input multiplexer of the universal counter. The selected signal (named SIG) may
be used as trigger source too. To see this signal on the EVENT output on the rear of the ECU box, use the
TriggerEvent.Select command.

Format: Count.RESet

Format: Count.Select [<signal>]

<signal>: VCO
Clock
CYcle
ExtComp
EXT
Event
PODBUS
Port
AlphaBreak
BetaBreak
CharlyBreak
OUTD
RESet
Halt
BusReq
BusErr
Vpa
VCC
BusGrant
BusGrantAck
E0 | E1 | E2 | E3 | E4 | E5 | E6 | E7
T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7
T8 | T9 | T10 | T11 | T12 | T13 | T14 | T15
B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7
General Commands Reference Guide C | 105©1989-2024 Lauterbach

See also

■ Count ■ Count.state

▲ ’Count’ in ’EPROM/FLASH Simulator’

Count.state State display

Displays the measurement value and setup of the frequency counter. The number of channels and the
configuration depends on the development tool and the CPU used.

See also

■ Count ■ Count.AutoInit ■ Count.Gate ■ Count.GO
■ Count.Init ■ Count.Mode ■ Count.OUT ■ Count.PROfile
■ Count.RESet ■ Count.Select ❏ Count.Frequency() ❏ Count.LEVEL()
❏ Count.Time() ❏ Count.VALUE()

▲ ’Count’ in ’EPROM/FLASH Simulator’

Clock Clock frequency of the emulation CPU (external or internal)

CYcle OUT.D Signal of the trigger unit (additional event counter or profiler).

RESet, Halt, Bus-
Req, BusGrant, …

Cycle signal of emulation CPU. Normally generated by the data strobe.

PODBUS Signal selected by the external PODBUS probes.

Port This signal is the channel selected by the port analyzer.

B0, B1, B2, B3, B4,
B5, B6, B7

Inputs lines on BANK probe

T0, T1, T2, T3, T4,
T5, T6, T7

Input lines on TRIGGER probe

Format: Count.state
General Commands Reference Guide C | 106©1989-2024 Lauterbach

COVerage

COVerage Trace-based code coverage

The COVerage command group uses the program flow information from the trace for a detailed code
coverage analysis. The manual “Application Note for Trace-Based Code Coverage”
(app_code_coverage.pdf) gives a detailed introduction to the topic.

A demo script is included in your TRACE32 installation. To access the script, run this command:

See also

■ COVerage.ADD ■ COVerage.Delete ■ COVerage.EXPORT ■ COVerage.INFO
■ COVerage.Init ■ COVerage.List ■ COVerage.ListCalleEs ■ COVerage.ListCalleRs
■ COVerage.ListFunc ■ COVerage.ListInlineBlock ■ COVerage.ListLine ■ COVerage.ListModule
■ COVerage.ListVar ■ COVerage.LOAD ■ COVerage.MAP ■ COVerage.METHOD
■ COVerage.Mode ■ COVerage.OFF ■ COVerage.ON ■ COVerage.Option
■ COVerage.RESet ■ COVerage.SAVE ■ COVerage.Set ■ COVerage.state
■ COVerage.TreeWalkSETUP ■ BookMark ■ RTS ❏ COVerage.BDONE()
❏ COVerage.IDLE() ❏ COVerage.Percentage() ❏ COVerage.SCOPE() ❏ COVerage.SourceMetric()
❏ COVerage.TreeWalk()

▲ ’Introduction’ in ’Application Note for t32cast’
▲ ’COVerage Functions’ in ’General Function Reference’

COVerage.ADD Add trace contents to code coverage system

ChDir.PSTEP ~~/demo/coverage/mcdc/measure_mcdc.cmm

Format: COVerage.ADD [/<option>]
<trace>.COVerage.add (deprecated)

<option>: FILE
FlowTrace | BusTrace
General Commands Reference Guide C | 107©1989-2024 Lauterbach

The trace contents is processed and added to the TRACE32 internal code coverage system

Example:

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.Delete Set code coverage tagging to never

Tag the defined range as 'never' executed.

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

FILE Takes trace memory contents loaded by Trace.FILE.

FlowTrace The trace works as a program flow trace. This option is usually not
required.

BusTrace Trace works as a bus trace. This option is usually not required.

Trace.Mode Leash
Go sieve
…
COVerage.ADD

; clear trace buffer and use leash mode
; run a part of the application

; measures code coverage across all source
; code metrics using recorded trace data,
; storing the outcomes within TRACE32´s
; internal code coverage system

Format: COVerage.Delete [<address> | <range>]

;
COVerage.Delete

; set code coverage tagging for the function SetFalse to never
COVerage.Delete sYmbol.Range(SetFalse)
General Commands Reference Guide C | 108©1989-2024 Lauterbach

COVerage.EXPORT Export code coverage information

Using the COVerage.EXPORT commands, you can export code coverage information for all HLL functions,
lines, modules, or variables to an XML file.

In addition, TRACE32 provides an XSL transformation template for formatting the XML file. The formatting is
automatically applied to the XML file when it is opened in an external browser window. Prerequisite: The
XSL file is placed in the same folder as the XML file.

For an export example and demo scripts, see COVerage.EXPORT.ListFunc.

TRACE32 provides the option to export code coverage measurement results for further processing or for
display in HTML format. The following table provides an overview:

See also

■ COVerage.EXPORT.CBA ■ COVerage.EXPORT.CSV
■ COVerage.EXPORT.JSON ■ COVerage.EXPORT.JSONE

Command Supported Metric

COVerage.EXPORT.CBA Statement Export code coverage results
in the proprietary CBA format
for importing into
VectorCAST/CBA.

COVerage.EXPORT.CSV Object code The export enables additional
processing with third-party
tools.

COVerage.EXPORT.JSON Statement Export code coverage results
in JSON format for importing
into Gcov.

COVerage.EXPORT.JSONE Statement, decision,
condition, MC/DC,
call, function

Export code coverage results
to a file in extended JSON
format, a proprietary
Lauterbach format. These files
can be processed further using
t32covtool, the Lauterbach
merging and reporting tool.
Additionally, the format is open
to third-party tools.

COVerage.EXPORT.ListCalleEs
COVerage.EXPORT.ListCalleRs
COVerage.EXPORT.ListFunc
COVerage.EXPORT.ListInlineBlock
COVerage.EXPORT.ListLine
COVerage.EXPORT.ListModule
COVerage.EXPORT.ListVar

All Export the code coverage
results in XML format.
Lauterbach provides an
appropriate XSL file for
generating an HTML report.
General Commands Reference Guide C | 109©1989-2024 Lauterbach

■ COVerage.EXPORT.ListCalleEs ■ COVerage.EXPORT.ListCalleEs.<sub_cmd>
■ COVerage.EXPORT.ListCalleRs ■ COVerage.EXPORT.ListCalleRs.<sub_cmd>
■ COVerage.EXPORT.ListFunc ■ COVerage.EXPORT.ListFunc.<sub_cmd>
■ COVerage.EXPORT.ListInlineBlock ■ COVerage.EXPORT.ListInlineBlock.<sub_cmd>
■ COVerage.EXPORT.ListLine ■ COVerage.EXPORT.ListLine.<sub_cmd>
■ COVerage.EXPORT.ListModule ■ COVerage.EXPORT.ListModule.<sub_cmd>
■ COVerage.EXPORT.ListVar ■ COVerage.EXPORT.ListVar.<sub_cmd>
■ COVerage ■ COVerage.state
■ ISTATistic.EXPORT ■ List.EXPORT
■ SETUP.XSLTSTYLESHEET

▲ ’Release Information’ in ’Legacy Release History’

COVerage.EXPORT.CBA Export coverage results in CBA format

Export statement coverage results to a file in CBA format for importing into VectorCAST/CBA.

Example:

See also

■ COVerage.EXPORT ■ COVerage.Option.BLOCKMode

Format: COVerage.EXPORT.CBA <file> [/Append]

<file> The default extension of the file name is *.cba. If you omit the extension,
it is added automatically on file creation.

COVerage.Option.SourceMetric Statement
COVerage.Option.BLOCKMode ON
; for a comparison of ON and OFF, see below
COVerage.EXPORT.CBA ~~\measurement1.cba

A With COVerage.Option.BLOCKMode ON, the
line number range for each entry is printed.

B With COVerage.Option.BLOCKMode OFF,
only the number of the last line is printed.

A B
General Commands Reference Guide C | 110©1989-2024 Lauterbach

COVerage.EXPORT.CSV Export coverage results in CSV format

Export statement coverage results to a file in CSV format for additional processing with third-party tools.

See also

■ COVerage.EXPORT

▲ ’Release Information’ in ’Legacy Release History’

COVerage.EXPORT.JSON Export code coverage results in JSON format

Exports statement coverage results to a file in JSON format for importing into Gcov.

Format: COVerage.EXPORT.CSV <file> [<string> | <range>] [/<option>]

<option>: Append

<file> The default extension of the file name is *.csv. If you omit the extension, it
is added automatically on file creation.

Append Appends the coverage information to an existing CSV file - without
overwriting the current file contents.

Format: COVerage.EXPORT.JSON <file>

<file> The default extension of the file name is *.json. If you omit the extension,
it is added automatically on file creation.
General Commands Reference Guide C | 111©1989-2024 Lauterbach

Example:

See also

■ COVerage.EXPORT ■ ISTATistic ■ ISTATistic.ADD

▲ ’Release Information’ in ’Legacy Release History’

COVerage.EXPORT.JSONE Export code coverage in extended JSON format

Exports coverage results for statement, decision, condition, call and function coverage as well as
MC/DC to a file in an extended JSON format. Export is restricted to functions with loaded symbols.

Unlike JSON files exported with the COVerage.EXPORT.JSON command, JSONE files are not Gcov
compatible.

Files in extended JSON format are used as input for t32covertool. This format can also be used by third-
party tools to generate a code coverage report from code coverage data measured with TRACE32.

Example:

See also

■ COVerage.EXPORT

▲ ’TRACE32 Merge and Report Tool’ in ’Application Note for Trace-Based Code Coverage’

; Process trace data for code coverage
COVerage.Add
; Process trace data for ISTATistic
; (needed for export of execution count)
ISTATistic.Add
; Export to JSON
COVerage.EXPORT.JSON ~~/result.json

Format: COVerage.EXPORT.JSONE <file>

<file> The default extension of the file name is *.json. If you omit the extension,
it is added automatically on file creation.

; Process trace data for coverage
COVerage.Add
; Export to JSON
COVerage.EXPORT.JSONE ~~/result.json
General Commands Reference Guide C | 112©1989-2024 Lauterbach

COVerage.EXPORT.ListCalleEs Export the function callees

See also

■ COVerage.EXPORT.ListCalleEs.<sub_cmd> ■ COVerage.EXPORT

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide C | 113©1989-2024 Lauterbach

COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information

Exports coverage information for function callees to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListCalleEs ■ COVerage.EXPORT
■ COVerage.ListCalleEs

Format: COVerage.EXPORT.ListCalleEs.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for function
callees to export.

preset If the command contains no parameters, then all function callees are
exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
function callees to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE
window.

sYmbol Defines a filter for the symbols of the HLL function callees to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 114©1989-2024 Lauterbach

COVerage.EXPORT.ListCalleRs Export the function callers

See also

■ COVerage.EXPORT.ListCalleRs.<sub_cmd> ■ COVerage.EXPORT

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide C | 115©1989-2024 Lauterbach

COVerage.EXPORT.ListCalleRs.<sub_cmd> Export callers information

Exports coverage information for function callers to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListCalleRs ■ COVerage.EXPORT
■ COVerage.ListCalleRs

Format: COVerage.EXPORT.ListCalleRs.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for function callers
to export.

preset If the command contains no parameters, then all function callers are
exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
function callers to export. The syntax of the pathname is oriented towards
the symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL function callers to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 116©1989-2024 Lauterbach

COVerage.EXPORT.ListFunc Export code coverage results at function level
[Examples]

See also

■ COVerage.EXPORT.ListFunc.<sub_cmd> ■ COVerage.EXPORT
■ COVerage.ListFunc

COVerage.EXPORT.ListFunc.<sub_cmd> Export function

Exports code coverage results for functions to an XML file.

The following <sub_cmd> are possible:

Format: COVerage.EXPORT.ListFunc.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Exports code coverage information for functions filtered by source file.

preset If the command contains no parameters, then all the HLL function are
exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Exports code coverage information for source code lines filtered by
source file. The syntax of the pathname is oriented towards the symbol
and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL function to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 117©1989-2024 Lauterbach

Examples:

Example of an XML export file opened in an external browser window:

<file>

Name of the XML file that stores the code coverage information. The file extension *.xml can be omitted.

<string>

Defines a filter for the source files that you want to export. The filter consists of the file path and refers only to
source files that are listed in the tree column of a COVerage.ListFunc, COVerage.ListModule, etc.
window.

COVerage.EXPORT.ListFunc.ADDRESS output.xml P:0x0000000--0x9000000

COVerage.EXPORT.ListFunc.SOURCE output.xml “*sieve.c”

;In this script line, only the symbol main as well as symbols matching
;the patterns func? and *eve* are exported
COVerage.EXPORT.ListFunc.sYmbol ~~\coverage.xml main func? *eve*

Table of Contents: Click to jump to the table you want.

Press these keys to jump to the table you want.Click to toggle the display of the listing.
General Commands Reference Guide C | 118©1989-2024 Lauterbach

Example for <string>:

<range>

Filter for exporting the specified address range or symbol range.

The address range can be specified as follows:

• Start and end address.

• Only start address. Exports items from the start address up to the maximum address of the
current address space.

The symbol range can be specified as program, module, or function.

Example: This script line exports code coverage information for three symbol ranges.

APPEND

Appends the coverage information to an existing XML file - without overwriting the current file contents.

SOrder, TOrder

;export the code coverage information for all HLL functions with
;a source path that matches the pattern "*/gnu/sub/*"
COVerage.EXPORT.ListFunc C:\t32\coverage.xml "*/gnu/sub/*"

;export the code coverage information for all modules with a file path
;that matches the pattern "*crt0.s"
COVerage.EXPORT.ListModule C:\t32\coverage.xml "*crt0.s" /Append

;export the code coverage information for three symbol ranges
COVerage.EXPORT.ListFunc C:\t32\coverage.xml \\myprog\func13 func10 \
 \\prog2

NOTE: The backslash \ can be used as a line continuation character in PRACTICE
script files (*.cmm). No white space permitted after the backslash.

SOrder Sort in source line order.

TOrder Sort by address.
General Commands Reference Guide C | 119©1989-2024 Lauterbach

Example 1:

Prerequisite: The debug symbols have been loaded and trace data has been recorded.

This script shows how to export code coverage information for all modules, HLL functions, lines, and
variables to the same XML file. The formatted file is then opened in an external browser window.

The tildes ~~ expand to your TRACE32 system directory, (e.g. C:\T32).

COVerage.ADD ;update the coverage database
COVerage.ListModule ;display coverage of all modules
COVerage.ListFunc ;display coverage of all functions
COVerage.ListLine ;display coverage of all source lines
COVerage.ListVar ;display coverage of all variables

;export the code coverage information for all modules of
;program “armle”
COVerage.EXPORT.ListModule "~~/coverage.xml" \\armle

;export the code coverage information for all HLL functions of the
;module “arm” and append to an existing file
COVerage.EXPORT.ListFunc "~~/coverage.xml" \arm /Append

;export the code coverage information for all HLL lines of the
;function “sieve” and append to an existing file
COVerage.EXPORT.ListLine "~~/coverage.xml" sieve /Append

;export the code coverage information for HLL variables
;and append to an existing file
COVerage.EXPORT.ListVar "~~/coverage.xml" , /Append

;for demo purposes: let's open the unformatted result in TRACE32
EDIT "~~/coverage.xml"

;place the transformation template in the same folder as the XML file
COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \
 "~~/t32transform.xsl"

;you can now open the formatted result in an external browser window
OS.Command start iexplore.exe "file:///C:/t32/coverage.xml"
General Commands Reference Guide C | 120©1989-2024 Lauterbach

Example 2:

A more complex demo script is included in your TRACE32 installation. To access the script, run this
command:

This demo script also tells you how to include a listing in the XML export file.

See also

■ COVerage.EXPORT.ListFunc ■ COVerage.EXPORT
■ COVerage.ListFunc

CD.PSTEP ~~/demo/coverage/example.cmm
General Commands Reference Guide C | 121©1989-2024 Lauterbach

COVerage.EXPORT.ListInlineBlock Export inlined code blocks

See also

■ COVerage.EXPORT.ListInlineBlock.<sub_cmd> ■ COVerage.EXPORT
General Commands Reference Guide C | 122©1989-2024 Lauterbach

COVerage.EXPORT.ListInlineBlock.<sub_cmd> Export cov. inlined

Exports coverage information about inlined code blocks to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListInlineBlock ■ COVerage.EXPORT
■ COVerage.ListInlineBlock

Format: COVerage.EXPORT.ListInlineBlock.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for inlined code
blocks to export.

preset If the command contains no parameters, then all inlined code blocks are
exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
inlined code blocks to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE
window.

sYmbol Defines a filter for the symbols of the inlined code blocks to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 123©1989-2024 Lauterbach

COVerage.EXPORT.ListLine Export HLL lines

See also

■ COVerage.EXPORT.ListLine.<sub_cmd> ■ COVerage.EXPORT
■ COVerage.ListLine
General Commands Reference Guide C | 124©1989-2024 Lauterbach

COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information

Exports coverage information about HLL lines to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListLine ■ COVerage.EXPORT ■ COVerage.ListLine

Format: COVerage.EXPORT.ListLine.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for source code
lines to export.

preset If the command contains no parameters, then all HLL lines are exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
source code lines to export. The syntax of the pathname is oriented
towards the symbol and path columns in the sYmbol.Browse.SOURCE
window.

sYmbol Defines a filter for the symbols of the HLL lines to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 125©1989-2024 Lauterbach

COVerage.EXPORT.ListModule Export modules

See also

■ COVerage.EXPORT.ListModule.<sub_cmd> ■ COVerage.EXPORT
■ COVerage.ListModule

COVerage.EXPORT.ListModule.<sub_cmd> Export modules information

Exports coverage information bout modules to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListModule ■ COVerage.EXPORT
■ COVerage.ListModule

Format: COVerage.EXPORT.ListModule.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for modules to
export.

preset If the command contains no parameters, then all modules are exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
modules to export. The syntax of the pathname is oriented towards the
symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the modules to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 126©1989-2024 Lauterbach

COVerage.EXPORT.ListVar Export HLL variables

See also

■ COVerage.EXPORT.ListVar.<sub_cmd> ■ COVerage.EXPORT
■ COVerage.ListVar

COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information

Exports coverage information for HLL variables to an XML file.

The following <sub_cmd> are possible:

See also

■ COVerage.EXPORT.ListVar ■ COVerage.EXPORT ■ COVerage.ListVar

Format: COVerage.EXPORT.ListVar.<sub_cmd>

<sub_cmd>: ADDRESS [<file>] [<source_file>...] [/<option>]
preset [<file>] [%<format>] [<filter>] [/<option>]
SOURCE [<file>] [<source_file>...] [/<option>]
sYmbol [<file>] [<symbol>…] [/<option>]

<option>: Append

ADDRESS Uses addresses to control which coverage information for variables to
export.

preset If the command contains no parameters, then all HLL variables are
exported.
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis.

SOURCE Uses the names of source files to control which coverage information for
variables to export. The syntax of the pathname is oriented towards the
symbol and path columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL variables to export.

<file>, <option> For descriptions, see COVerage.EXPORT.ListFunc.

<source_file>,
<symbol>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 127©1989-2024 Lauterbach

COVerage.INFO Information about conditional instructions
[build 166747 - Release 2024/02]

The COVerage.INFO command opens a window that allows the user to verify if the instruction set of the
core-under-debug includes conditional instructions (isa: non-branch check mark) and if its trace protocol
generates information about their execution (trace: non-branch check mark).

This command is not supported by all architectures. If the command is unsupported, no check marks are
set.

You can use the CPU.Feature(CONDISA) function in a script to check whether the instruction set of the
core-under-debug contains conditional instructions.

You can use the CPU.Feature(CONDTRACE) function in a script to determine whether the trace protocol of
the core-under-debug indicates if the condition code check passed or failed.

See also

■ COVerage ■ COVerage.state

Format: COVerage.INFO
General Commands Reference Guide C | 128©1989-2024 Lauterbach

COVerage.Init Clear coverage database

Deletes all code coverage information for HLL source code statements, assembly instructions and data
values.

See also

■ COVerage ■ COVerage.state

COVerage.List Coverage display

Displays the results of the coverage analysis.

Double-clicking a line opens a List window, showing the context of and more details about the covered code.

See also

■ COVerage.ListCalleEs ■ COVerage.ListFunc ■ COVerage.ListLine ■ COVerage.ListModule
■ COVerage.ListVar ■ COVerage ■ COVerage.state

Format: COVerage.Init
<trace>.COVerage.Init (deprecated)

Format: COVerage.List [<address> | <range>]
<trace>.COVerage.List (deprecated)
General Commands Reference Guide C | 129©1989-2024 Lauterbach

COVerage.ListCalleEs Display coverage for callees function

See also

■ COVerage.ListCalleRs ■ COVerage.List
■ COVerage.ListFunc ■ COVerage.ListInlineBlock
■ COVerage.ListLine ■ COVerage.ListModule
■ COVerage.ListVar ■ COVerage.LOAD
■ COVerage ■ COVerage.EXPORT.ListCalleEs.<sub_cmd>
■ COVerage.state

▲ ’Release Information’ in ’Legacy Release History’

COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function

Displays the results of the code coverage analysis related to function callees. If the metric Call is set
(see COVerage.Option SourceMetric Call) callee details are part of the report generated with the help
of the TRACE32 Coverage Report Utility.

The following <sub_cmd> are possible:

Format: COVerage.ListCalleEs.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178

<option>: SOrder | TOrder

ADDRESS Allows to restrict the displayed function callees to a specified address
range.

preset If the command contains no parameters, then all function callees are
displayed (see example 1).
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE Allows to restrict the displayed function callees to the specified source
files. The syntax of the pathname is oriented towards the symbol and
path columns in the sYmbol.Browse.SOURCE window (see example 3).
General Commands Reference Guide C | 130©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178

Option SOrder, TOrder

Example 1:

sYmbol Allows to restrict the displayed callees to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.Option SourceMetric Call

…

COVerage.ListCalleEs
General Commands Reference Guide C | 131©1989-2024 Lauterbach

Double-clicking a line displays the function or call and detailed information about the code coverage in a List
window.

 Example 2:

Example 3:

Example 4:

COVerage.Option SourceMetric Call

…

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListCalleEs.preset jd_modules

sYmbol.Browse.SOURCE

COVerage.ListCalleEs.SOURCE \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListCalleEs.SOURCE \"*jdc*.c"

sYmbol.Browse.Module

COVerage.ListCalleEs.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListCalleEs.sYmbol \jda*
General Commands Reference Guide C | 132©1989-2024 Lauterbach

COVerage.ListCalleRs Display coverage for callers function

See also

■ COVerage.ListCalleEs ■ COVerage
■ COVerage.EXPORT.ListCalleRs.<sub_cmd> ■ COVerage.state

▲ ’Release Information’ in ’Legacy Release History’

COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function

Displays the results of the code coverage analysis related to function callees. If the metric Call is set
(see COVerage.Option SourceMetric Call) callee details are part of the report generated with the help
of the TRACE32 Coverage Report Utility.

The following <sub_cmd> are possible:

Format: COVerage.ListCalleRs.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178

<option>: SOrder | TOrder

ADDRESS Allows to restrict the displayed function callers to a specified address
range.

preset If the command contains no parameters, then all function callers are
displayed (see example 1).
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE Allows to restrict the displayed function callers to the specified source
files. The syntax of the pathname is oriented towards the symbol and
path columns in the sYmbol.Browse.SOURCE window (see example 3).
General Commands Reference Guide C | 133©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178

Option SOrder, TOrder

Example 1:

sYmbol Allows to restrict the displayed callers to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.Option SourceMetric Call

…

COVerage.ListCalleRs
General Commands Reference Guide C | 134©1989-2024 Lauterbach

Double-clicking a line displays the function or call and detailed information about the code coverage in a List
window.

 Example 2:

Example 3:

Example 4:

COVerage.Option SourceMetric Call

…

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListCalleRs.preset jd_modules

sYmbol.Browse.SOURCE

COVerage.ListCalleRs.SOURCE \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListCalleRs.SOURCE \"*jdc*.c"

sYmbol.Browse.Module

COVerage.ListCalleRs.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListCalleRs.sYmbol \jda*
General Commands Reference Guide C | 135©1989-2024 Lauterbach

COVerage.ListFunc Display coverage for functions

See also

■ COVerage.ListFunc.<sub_cmd> ■ COVerage.List
■ COVerage.ListCalleEs ■ COVerage.ListLine
■ COVerage.ListModule ■ COVerage
■ COVerage.EXPORT.ListFunc ■ COVerage.EXPORT.ListFunc.<sub_cmd>
■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’
▲ ’Release Information’ in ’Legacy Release History’

COVerage.ListFunc.<sub_cmd> Display coverage for HLL function

Displays the results of the code coverage analysis related to HLL functions based on the selected
metric (see COVerage.Option SourceMetric).

The following <sub_cmd> are possible:

Format: COVerage.ListFunc.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178 | OBC

<option>: SOrder | TOrder

ADDRESS
COVerage.ListFunc
(deprecated)

Allows to restrict the displayed functions to a specified address range.

preset
COVerage.ListFunc
(deprecated)

If the command contains no parameters, then all HLL functions are
displayed (see example 1).
The <filter> parameter allows to reduce the number of functions to that
which is in the focus of the code coverage analysis (see example 2).

SOURCE Allows to restrict the displayed functions to the specified source files. The
syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window (see example 3).
General Commands Reference Guide C | 136©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178, OBC

Option SOrder, TOrder

Example 1:

sYmbol Allows to restrict the displayed functions to the specified symbol ranges.
The symbol names are oriented towards the symbol column in the
sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

OBC Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.Option SourceMetric Statement

…

COVerage.ListFunc
General Commands Reference Guide C | 137©1989-2024 Lauterbach

Double-clicking a line displays the function or call and detailed information about the code coverage in a List
window.

 Example 2:

Example 3:

COVerage.Option SourceMetric Statement

…

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListFunc.preset jd_modules

sYmbol.Browse.SOURCE

COVerage.ListFunc.SOURCE \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"
General Commands Reference Guide C | 138©1989-2024 Lauterbach

Example 4:

See also

■ COVerage.ListFunc

COVerage.ListFunc.SOURCE \"*jdc*.c"

sYmbol.Browse.Module

COVerage.ListFunc.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListFunc.sYmbol \jda*
General Commands Reference Guide C | 139©1989-2024 Lauterbach

COVerage.ListInlineBlock Display coverage for inlined block

See also

■ COVerage.ListCalleEs ■ COVerage
■ COVerage.EXPORT.ListInlineBlock.<sub_cmd> ■ COVerage.state

COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block

Displays the result of the code coverage analysis related to inlined code blocks based on the selected metric
(seeCOVerage.Option SourceMetric). The command sYmbol.List.InlineBlock provides a list of all inlined
code blocks.

The following <sub_cmd> are possible:

Format: COVerage.ListInlineBlock.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [%<format>] [<source>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178

<option>: SOrder | TOrder

ADDRESS Allows to restrict the displayed blocks to a specified address range.

preset When compiling with optimization the compiler may insert functions or
parts of a function directly instead of adding a call to the function. This
command lists all parts of the code where function parts have been
inlined by the compiler and displays the code coverage result for the
individual blocks.
If the command contains no parameters, then all inline blocks are
displayed (see example1).
The commands sYmbol.FILTER.ADD.SOURCE and
sYmbol.FILTER.ADD.sYmbol allow to combine source files/symbols of
interest under a <filter>. The <filter> parameter allows to reduce the number
of inlined blocks to that which is in the focus of the code coverage analysis.
This is especially useful for very large projects (see example 2).

SOURCE Allows to restrict the displayed inlined blocks to the specified source files.
The syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window (see example 3).
General Commands Reference Guide C | 140©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178

Option SOrder, TOrder

Example 1:

sYmbol Allows to restrict the displayed inlined blocks to the specified symbol
ranges. The symbol names are oriented towards the symbol column in
the sYmbol.Browse.Function or sYmbol.Browse.Module window (see
example 4).

<symbol>, <source> Instead of listing the sources individually, they can also be combined
under a filter name. See commands sYmbol.FILTER.ADD.sYmbol and
sYmbol.FILTER.ADD.SOURCE.
The wildcards ‘*’ and ‘?’ are supported.

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.Option SourceMetric Statement

…

COVerage.ListInlineBlock
General Commands Reference Guide C | 141©1989-2024 Lauterbach

Double-clicking a line displays the block and detailed information about the code coverage in a List window.

 Example 2:

Example 3:

Example 4:

COVerage.Option SourceMetric Statement

…

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \jdcolor \jdmarker \jdtrans

COVerage.ListInlineBlock.preset jd_modules

sYmbol.Browse.SOURCE

COVerage.ListInlineBlock.SOURCE \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdapistd.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdinput.c" \
\"D:/work/demo/mpc5xxx/mpc5646c_jpeg/jdpostct.c"

COVerage.ListInlineBlock.SOURCE \"*jdc*.c"

sYmbol.Browse.Module

COVerage.ListInlineBlock.sYmbol \jdapistd \jdmaster \jidctred

COVerage.ListInlineBlock.sYmbol \jda*
General Commands Reference Guide C | 142©1989-2024 Lauterbach

COVerage.ListLine Display coverage for HLL lines

See also

■ COVerage.ListLine.<sub_cmd> ■ COVerage.List
■ COVerage.ListCalleEs ■ COVerage.ListFunc
■ COVerage.ListModule ■ COVerage
■ COVerage.EXPORT.ListLine ■ COVerage.EXPORT.ListLine.<sub_cmd>
■ COVerage.state

▲ ’Release Information’ in ’Legacy Release History’

COVerage.ListLine.<sub_cmd> Display coverage for HLL lines

Displays the result of the code coverage analysis related to HLL lines based on the selected metric
(seeCOVerage.Option SourceMetric).

The following <sub_cmd> are possible:

Format: COVerage.ListLine.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [<source_file>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178 | OBC

<option>: SOrder | TOrder

ADDRESS
COVerage.ListLine
(deprecated)

Allows to restrict the displayed lines to a specified address range.

preset If the command contains no arguments, then all HLL lines are displayed. If
the <filter> argument is passed, then only items matching the filter criteria
are displayed (see example 1).

SOURCE Lists lines using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols of the HLL lines to view.

<symbol>,
<source_file>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 143©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178, OBC

Option SOrder, TOrder

Example 1:

Example 2:

See also

■ COVerage.ListLine

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

OBC Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.ADD ;Update the coverage database

COVerage.ListLine "*chario.c" ;Display all items which contain the
 ;file chario.c
COVerage.ListLine main ;Display coverage for function main

COVerage.ListLine.SOURCE “*sieve.c”
General Commands Reference Guide C | 144©1989-2024 Lauterbach

COVerage.ListModule Display coverage for modules

See also

■ COVerage.ListModule.<sub_cmd> ■ COVerage.List
■ COVerage.ListCalleEs ■ COVerage.ListFunc
■ COVerage.ListLine ■ COVerage
■ COVerage.EXPORT.ListModule ■ COVerage.EXPORT.ListModule.<sub_cmd>
■ COVerage.state

▲ ’Release Information’ in ’Legacy Release History’

COVerage.ListModule.<sub_cmd> Display coverage for modules

Displays the result of the code coverage analysis related to modules based on the selected metric
(seeCOVerage.Option SourceMetric).

The following <sub_cmd> are possible:

Format: COVerage.ListModule.<sub_cmd>

<sub_cmd>: ADDRESS [%<format>] [<address> | <address_range>] [/<option>]
preset [%<format>] [<filter>] [/<option>]
SOURCE [<source_file>...] [/<option>]
sYmbol [%<format>] [<symbol>…] [/<option>]

<format>: SINGLE | MULTI | DO178 | OBC

<option>: SOrder | TOrder

ADDRESS
COVerage.ListMod-
ule (deprecated)

Allows to restrict the displayed modules to a specified address range.

preset Displays the results of the coverage analysis related to modules. Double-
clicking a line displays the function and detailed information about the
coverage.
If the command contains no arguments, then all modules are displayed. If
<filter> argument is passed, then only items matching the filter criteria
are displayed (see example 1).

SOURCE Lists modules using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.
General Commands Reference Guide C | 145©1989-2024 Lauterbach

Format Parameters SINGLE, MULTI, DO178, OBC

Option SOrder, TOrder

Example 1:

sYmbol Defines a filter for the symbols of the modules to view.

<symbol>,
<source_file>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

SINGLE The code coverage results are displayed only for the selected metric.

MULTI The code coverage results are displayed for the selected metric and all
included metrics. E.g. the MCDC metric includes also CONDition,
Decision and Statement coverage.

DO178 The code coverage results are displayed for the selected metric and all
included metrics that are relevant for DO178. E.g. the MCDC metric
includes also Decision and Statement coverage.

OBC Includes object code branch coverage results if
COVerage.Option.SourceMetric Statement is set.

SOrder Display the source code lines belonging to a function in source order.

TOrder Display the source code lines belonging to a function in target order
(default).

COVerage.Option SourceMetric Statement

…

COVerage.ListModule
General Commands Reference Guide C | 146©1989-2024 Lauterbach

Double-clicking a line displays the module and detailed information about the code coverage in a List
window.

 Example 2:

Example 3:

See also

■ COVerage.ListModule

COVerage.Option SourceMetric Statement

…

sYmbol.Browse.Module

sYmbol.FILTER.ADD.sYmbol jd_modules \crt0 \freertos \midi

COVerage.ListModule.preset jd_modules

COVerage.ListModule.sYmbol \main
General Commands Reference Guide C | 147©1989-2024 Lauterbach

COVerage.ListVar Display coverage for variable
[Example]

See also

■ COVerage.ListVar.<sub_cmd> ■ COVerage.List
■ COVerage.ListCalleEs ■ COVerage
■ COVerage.EXPORT.ListVar ■ COVerage.EXPORT.ListVar.<sub_cmd>
■ COVerage.state

▲ ’Appendix D: Data Coverage’ in ’Application Note for Trace-Based Code Coverage’

COVerage.ListVar.<sub_cmd> Display coverage for variables

Displays the result of the data coverage analysis for source code variables if the source metric ObjectCode
is set (COVerage.Option SourceMetric ObjectCode).

Since off-chip trace ports usually do not have enough bandwidth to make all read/write accesses (and the
program flow) visible, they are rather unsuitable for data coverage. For test phases in which testing in the
target environment is not yet required, a TRACE32 Instruction Set Simulator can be used well for data
coverage.

Format: COVerage.ListVar.<sub_cmd>

<sub_cmd>: ADDRESS [<address> | <address_range>]
preset [<filter>]
SOURCE [<source_file>...]
sYmbol [<symbol>…]

If the program and data flow is broadcast via an offchip trace port (e.g.
ARM-ETM or NEXUS), COVerage.ListVar displays an accurate result
only if the trace does not contain FIFOFULLs.
General Commands Reference Guide C | 148©1989-2024 Lauterbach

 The following <sub_cmd> are possible:

Examples:

ADDRESS
COVerage.ListVar
(deprecated)

Allows to restrict the displayed variables to a specified address range.

preset If the command contains no arguments, then all variables are displayed.
If <filter> argument is passed, then only items matching the filter criteria
are displayed (see examples).

SOURCE Lists variables using <source_file> as filter criterion. The syntax of the
pathname is oriented towards the symbol and path columns in the
sYmbol.Browse.SOURCE window.

sYmbol List variable by using a module or program name as filter criterion.

<symbol>,
<source_file>

You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.

Trace.FLOWPROCESS ; Process the whole trace

Trace.Find FIFOFULL /ALL
PRINT %Decimal FOUND.COUNT()

; Display the number of FIFOFULLs

COVerage.ADD ; Add the trace contents to the
; coverage system

COVerage.ListVar
General Commands Reference Guide C | 149©1989-2024 Lauterbach

A filter allows to limit the result to the variables of interest.

See also

■ COVerage.ListVar

sYmbol.Filter.ADD.sYmbol vardiabc \diabc ; create a filter that
; represents the module
; \diabc

COVerage.ADD ; Add the trace contents
; to the coverage system

COVerage.ListVar vardiabc ; display data coverage
; only for the variables
; of the module \diabc
General Commands Reference Guide C | 150©1989-2024 Lauterbach

COVerage.LOAD Load coverage database from file

Loads the code coverage information from a file. The currently available code coverage information is
discarded.

See also

■ COVerage.ListCalleEs ■ COVerage ■ COVerage.state

▲ ’Appendix B: Assemble Multiple Test Runs at Address Level’ in ’Application Note for Trace-Based Code Coverage’

Format: COVerage.LOAD <file> [/<option>]
<trace>.COVerage.LOAD (deprecated)

<option>: Replace
ADD
SUBtract

<file> Name of the file with a previously saved code coverage data set. The
default extension of the file name is *.acd. The file extension *.acd can be
omitted.

Replace
(default)

Removes the current coverage information of TRACE32 and replaces it
with the stored coverage data set of the file.

ADD Keeps the current coverage information of TRACE32 and updates it with
the stored coverage data set of the file.

SUBtract Removes all coverage information of TRACE32 that is also present in the
stored coverage data set of the file.
General Commands Reference Guide C | 151©1989-2024 Lauterbach

COVerage.MAP Map the coverage to a different range

Allows to summarize the coverage of a code section that is available several times in a program, e.g. a
shared library that is used more the once.

Maps the code coverage of a source range to a destination range. Both ranges have to have the same
length.

See also

■ COVerage ■ COVerage.state

Format: COVerage.MAP <source> <destination> [/<option>]

<option>: Replace
ADD
SUBtract

<source> The address range whose code coverage is mapped to another one.

<destination> The address range whose code coverage is updated.

Replace Removes the current coverage information of the destination range and
replaces it with the coverage data of the source range.

ADD Keeps the current coverage information of the destination range, but
updates it with the coverage data of the source range.

SUBtract Removes all coverage information of the destination range that is also
present in the coverage data set of the source range.
General Commands Reference Guide C | 152©1989-2024 Lauterbach

COVerage.METHOD Select code coverage method

TRACE32 supports various code coverage methods. The code coverage method INCremental is supported
for all processor architectures, as long as information about the executed instructions is recorded by a
TRACE32 trace tool or by an onchip trace buffer. All other methods are subject to restrictions.

Format: COVerage.METHOD INCremental | SPY | RTS | ART | Hardware

INCremental INCRemental code coverage is based on the trace recording. After the
trace recording stopped the command COVerage.ADD can be used to
add the current trace recording to the code coverage database.

Incremental code coverage is the preferred method for the Trace.Modes
Fifo, Stack and Leash, but it can also be used in conjunction with the
Trace.Mode STREAM.

SPY SPY code coverage is based on the trace recording. It can only be
selected if the Trace.Mode STREAM is active. While trace data is being
recorded, streaming to the host is automatically interrupted at regular
intervals in order to update the coverage database.

SPY code coverage is only recommended if the processor/trace protocol
in use is not supported by RTS. For setup details, refer to the chapter
“SPY Mode Code Coverage” in Application Note for Trace-Based Code
Coverage, page 65 (app_code_coverage.pdf).

SPY code coverage is only possible for static code and is otherwise
subject to the same restrictions as Trace.Mode STREAM.

RTS RTS stands for Real-time Processing. The COVerage.METHOD RTS is
automatically enabled if RTS.ON. Trace data are processed while
recording and a live display of the code coverage results is possible. For
details refer to the examples given in the description of the RTS
command group.

RTS code coverage is subject to the same restrictions as the RTS
command group.

ART ART code coverage is based on the assembler single steps recorded to
the TRACE32 Advanced Register Trace ART. The code coverage
database is updated after every single step.
ART code coverage is only supported for a limited number of processor
architectures. If your processor architecture is not supported, the ART
method will be grayed out in the COVerage window and the
COVerage.METHOD ART command will return a “command locked”
error. Please contact in this case the Lauterbach technical support.
General Commands Reference Guide C | 153©1989-2024 Lauterbach

See also

■ COVerage ■ COVerage.state ■ Analyzer.Mode ■ ART
■ RTS.ON

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’
▲ ’Release Information’ in ’Legacy Release History’

COVerage.Mode Activate code coverage for virtual targets

Activates code coverage for virtual targets with minimal trace activation.

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.OFF Deactivate coverage

Coverage data will not be recorded.

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

Format: COVerage.Mode <mode>

<mode>: FastCOVerage [ON | OFF]

FastCOVerage Code coverage via the MCD interface. TRACE32 instructs a virtual target
via the MCD interface to perform a code coverage analysis. Upon
completion of the coverage analysis, the coverage information is
imported to the TRACE32 coverage database with the COVerage.ADD
command.

Prerequisite: COVerage.METHOD.INCremental is selected in the
COVerage.state window.

Format: COVerage.OFF
General Commands Reference Guide C | 154©1989-2024 Lauterbach

COVerage.ON Activate coverage

Activates the currently selected COVerage.METHOD.

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

Format: COVerage.ON
General Commands Reference Guide C | 155©1989-2024 Lauterbach

COVerage.Option Set coverage options

Using the COVerage.Option command group, you can configure how TRACE32 processes or displays
code coverage data.

See also

■ COVerage.Option.BLOCKMode ■ COVerage.Option.ITrace
■ COVerage.Option.SourceMetric ■ COVerage.Option.StaticInfo
■ COVerage ■ COVerage.state

COVerage.Option.BLOCKMode Enable/disable line block mode

Changes how code coverage measurements are applied to source code lines.

Example: Please refer to COVerage.EXPORT.CBA.

See also

■ COVerage.Option ■ COVerage.EXPORT.CBA

Format: COVerage.Option.BLOCKMode [ON | OFF]

ON The code coverage result is applied to all associated source code lines.

OFF The code coverage result is applied only to the last source code line.
General Commands Reference Guide C | 156©1989-2024 Lauterbach

COVerage.Option.ITrace Enable instruction trace processing

TRACE32 does not record trace information about conditional instructions in the simulator. If a trace, which
has been recorded on real hardware, should be loaded in the simulator, the additional info is processed.

See also

■ COVerage.Option

COVerage.Option.SourceMetric Select code coverage metric

Code coverage for the selected metric is performed based on the trace data.

Format: COVerage.Option.ITrace [ON | OFF]

ON Conditional instruction trace is processed.

OFF Only the simulator bus trace is processed.

Format: COVerage.Option.SourceMetric <criterion>

<criterion>: Call
CONDition
Decision
Function
MCDC
ObjectCode
Statement

ObjectCode ObjectCode coverage is performed.

Statement Indicates if a source code line has achieved the code coverage criterion
statement coverage.

Decision Indicates if a source code line has achieved the code coverage criterion
decision coverage.

MCDC Modified condition/decision coverage (MC/DC).
Indicates if a source code line has achieved the code coverage criterion
modified condition/decision coverage.
General Commands Reference Guide C | 157©1989-2024 Lauterbach

Blocks of assembly instructions are not affected by this option.

For more information about all the metrics, please refer to the chapter “Code Coverage Analysis” in
Application Note for Trace-Based Code Coverage, page 76 (app_code_coverage.pdf).

See also

■ COVerage.Option ❏ COVerage.SourceMetric()

▲ ’Code Coverage Analysis’ in ’Application Note for Trace-Based Code Coverage’
▲ ’Release Information’ in ’Legacy Release History’

Function Indicates which functions have been (at least partially) executed.

Call Indicates which function calls have been executed.
General Commands Reference Guide C | 158©1989-2024 Lauterbach

COVerage.Option.StaticInfo Perform code coverage precalculations

Performs the following precalculations for the code coverage if ON:

• Object code coverage

- IT block preprocessing to improve the coverage results for ARM Thumb code.

- Counting the conditional branches for the conditional branch analysis.

• Statement and decision coverage

- Detection of literal pools and alignment padding blocks.

- Counting the instructions for modules/functions without source code information.

See also

■ COVerage.Option

Format: COVerage.Option.StaticInfo [ON | OFF]

ON (default) Perform precalculations.

OFF Do not perform precalculations (recommended in the case of issues with the
code coverage).
General Commands Reference Guide C | 159©1989-2024 Lauterbach

COVerage.RESet Clear coverage database

Discards the complete code coverage information and restores the default code coverage settings.

See also

■ COVerage ■ COVerage.state

▲ ’Trace Data Collection’ in ’Application Note for Trace-Based Code Coverage’

COVerage.SAVE Save coverage database to file

Saves the code coverage information to a file.

See also

■ COVerage ■ COVerage.state

▲ ’Appendix B: Assemble Multiple Test Runs at Address Level’ in ’Application Note for Trace-Based Code Coverage’

Format: COVerage.RESet
<trace>.COVerage.RESet (deprecated)

Format: COVerage.SAVE <file>
<trace>.COVerage.SAVE (deprecated)

<file> The default extension of the file name is *.acd.
General Commands Reference Guide C | 160©1989-2024 Lauterbach

COVerage.Set Coverage modification

Marks the defined range with the specified execution state. If the instruction is already marked with an
execution state the new state is added incrementally.

See also

■ COVerage ■ COVerage.state

Format: COVerage.Set [<address> | <range>] <state>
<trace>.COVerage.Set (deprecated)

<state> NOTTAKEN
TAKEN
NOTEXEC
ONLYEXEC
OK
General Commands Reference Guide C | 161©1989-2024 Lauterbach

COVerage.state Configure coverage

Opens the COVerage.state window, where you can configure the code coverage analysis and display the
results.

See also

■ COVerage ■ COVerage.ADD ■ COVerage.Delete ■ COVerage.EXPORT
■ COVerage.INFO ■ COVerage.Init ■ COVerage.List ■ COVerage.ListCalleEs
■ COVerage.ListCalleRs ■ COVerage.ListFunc ■ COVerage.ListInlineBlock ■ COVerage.ListLine
■ COVerage.ListModule ■ COVerage.ListVar ■ COVerage.LOAD ■ COVerage.MAP
■ COVerage.METHOD ■ COVerage.Mode ■ COVerage.OFF ■ COVerage.ON
■ COVerage.Option ■ COVerage.RESet ■ COVerage.SAVE ■ COVerage.Set
■ COVerage.TreeWalkSETUP ■ RTS.OFF

▲ ’Release Information’ in ’Legacy Release History’

Format: COVerage.state

A For descriptions of the commands in the COVerage.state window, please refer to the COVerage.*
commands in this chapter.
Example: For information about the ListFunc button, see COVerage.ListFunc.

B Click to display the results of the code coverage analysis.

A B
General Commands Reference Guide C | 162©1989-2024 Lauterbach

COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols

See also

■ COVerage.TreeWalkSETUP.<sub_cmd> ■ COVerage
■ COVerage.state ❏ COVerage.TreeWalk()

COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree

Prepares a tree with modules, functions, and HLL lines. The tree can be traversed with the PRACTICE
function COVerage.TreeWalk().

Format: COVerage.TreeWalkSETUP.<sub_cmd>

<sub_cmd>: ADDRESS [<address> | <address_range>]
preset [<filter>] [/<option>]
SOURCE [<source_file>]
sYmbol [<symbol>…]

ADDRESS Defines a filter for the addresses you want to include in the tree.

preset If the command contains no parameters, then all symbols are
included in the tree.
The <filter> parameter allows to reduce the number of symbols.

SOURCE Defines a filter for the source files you want to include in the tree.
The syntax of the pathname is oriented towards the symbol and path
columns in the sYmbol.Browse.SOURCE window.

sYmbol Defines a filter for the symbols you want to include in the tree.

<symbol>, <source> You can use one or more items as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only items matching the filter criteria are displayed.
General Commands Reference Guide C | 163©1989-2024 Lauterbach

Example:

See also

■ COVerage.TreeWalkSETUP

PRIVATE &node

; create a tree with all symbols starting with “func”
COVerage.TreeWalkSETUP.sYmbol func*

&node=COVerage.TreeWalk("Init") ; get the first tree element
WHILE "&node"!=""
(
 IF STRing.SCAN("&node","\",0.)==0. ; element is a module
 (
 PRINT "The next module is: &node"
)
 ELSE IF STRing.SCAN("&node","--",0.)>-1. ; element is an HLL line
 (
 PRINT "The next HLL line is: &node"
)
 ELSE ; element is a function
 (
 PRINT "The next function is: &node"
)
 &node=COVerage.TreeWalk("Recurse") ; get the next tree element
)

General Commands Reference Guide C | 164©1989-2024 Lauterbach

CTS

CTS Context tracking system (CTS)

CTS (Context Tracking System) is a technique that allows the context of the target system to be
reconstructed for each single record sampled to the trace buffer. Context of the target system means here
the contents of the CPU registers, the memories, the caches and TLBs (for selected architectures only).

See also

■ CTS.CACHE ■ CTS.CAPTURE ■ CTS.Chart.sYmbol ■ CTS.EXPORT
■ CTS.FixedControl ■ CTS.GOTO ■ CTS.INCremental ■ CTS.Init
■ CTS.List ■ CTS.ListNesting ■ CTS.Mode ■ CTS.OFF
■ CTS.ON ■ CTS.PROCESS ■ CTS.PROfileChart ■ CTS.RESet
■ CTS.SELectiveTrace ■ CTS.SKIP ■ CTS.SmartTrace ■ CTS.state
■ CTS.STATistic ■ CTS.TAKEOVER ■ CTS.UNDO ■ CTS.UseConst
■ CTS.UseDataTrace ■ CTS.UseFinalContext ■ CTS.UseFinalMemory ■ CTS.UseSIM
■ CTS.UseStartMemory ■ Go.Back

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide C | 165©1989-2024 Lauterbach

Trace-based Debugging

The main application for CTS is the so-called trace-based debugging. Trace-based debugging allows to re-
run the program and data flow sampled to the trace buffer on the TRACE32 screen. Precondition to perform
a full-featured trace-based debugging is that the complete program and data flow until the stop of the
program execution is sampled to the trace buffer. Otherwise CTS has to be configured to give correct results
(See CTS.state).

After selecting the start point for the trace-based debugging TRACE32 does the following:

• The TRACE32 screen displays the context of the processor as it was when the selected start
point was recorded to the trace buffer (e.g. CPU registers, source listing, variables etc.).

• The yellow CTS field in the state line indicates that the TRACE32 screen no longer displays the
current state of the CPU.

• All run-time control buttons in the List window are yellow, to indicate that trace-based debugging
is enabled.

If trace-based debugging in on, you can use all run-time control commands to re-run the information
sampled to the trace buffer on the TRACE32 screen (e.g. Step.single, Step.Back, Go.Return,
Var.Step.Till etc.).

Select the start point for the trace-based debugging
General Commands Reference Guide C | 166©1989-2024 Lauterbach

Trace-based debugging can be switched off by either using the Off button in the List window or by entering
CTS.OFF into the command line.

Full High-Level Language Trace Display

If the complete program and data flow until the stop of the program execution is sampled to the trace buffer
TRACE32 can display a full High-Level Language trace containing also register and stack variables. See the
command CTS.List.

Reconstruction of Trace Gaps (TRACE32-ICD)

CTS.List can also be used to reconstruct trace information:

• trace information lost through an overload of the trace port can be reconstructed in most cases.

• if only read cycles are sampled to prevent an overload of the trace port, CTS can reconstruct all
write cycles.
General Commands Reference Guide C | 167©1989-2024 Lauterbach

CTS Commands

CTS.CACHE CTS cache analysis

TRACE32 allows to perform a cache analysis using CTS technology, i.e. based on the program execution
captured in a trace recording.

The cache analysis requires detailed knowledge of the structure of the CPU’s cache. For most CPUs
TRACE32 is aware of the cache structure.

To check if TRACE32 has the correct information for the cache structure of your CPU, open the
CTS.CACHE.state window. To define the cache structure for TRACE32, use the TRACE32 command line
or adjust the settings in the CTS.CACHE.state window.

After CTS is switched to ON and CTS.Mode CACHE is selected, the contents of the caches and TLBs can
be reconstructed. The cache analysis can be used for the following tasks:

• To support you to improve the cache hit rate by changing code and data locations

• To verify the cache hit rates after code changes

• To identify candidates for TCMs (tightly coupled memories) or faster memories

• To support you to find performance or bus bottlenecks

• To support you to improve the system performance and to reduce the power consumption

• To support you to try and verify different cache strategies

• To support you to identify optimum cache configuration and sizes for new silicons

Format: CTS.CACHE
General Commands Reference Guide C | 168©1989-2024 Lauterbach

The command group CTS.CACHE provides also the following advanced performance analysis features:

• Analysis of the branch prediction unit

• Analysis of the external bus interface

• Analysis of idle/stall operations

Even if these commands analyze different aspects of a microcontroller they are summarized here.

See also

■ CTS.CACHE.Allocation ■ CTS.CACHE.CYcles
■ CTS.CACHE.DefineBus ■ CTS.CACHE.L1Architecture
■ CTS.CACHE.LFSR ■ CTS.CACHE.ListAddress
■ CTS.CACHE.ListFunc ■ CTS.CACHE.ListLine
■ CTS.CACHE.ListModules ■ CTS.CACHE.ListRequests
■ CTS.CACHE.ListSet ■ CTS.CACHE.ListVar
■ CTS.CACHE.MMUArchitecture ■ CTS.CACHE.Mode
■ CTS.CACHE.Replacement ■ CTS.CACHE.RESet
■ CTS.CACHE.SETS ■ CTS.CACHE.Sort
■ CTS.CACHE.state ■ CTS.CACHE.Tags
■ CTS.CACHE.TLBArchitecture ■ CTS.CACHE.View
■ CTS.CACHE.ViewBPU ■ CTS.CACHE.ViewBus
■ CTS.CACHE.ViewStalls ■ CTS.CACHE.WAYS
■ CTS.CACHE.Width ■ CTS
■ CTS.PROfileChart.CACHE ■ CTS.state

▲ ’Release Information’ in ’Legacy Release History’
General Commands Reference Guide C | 169©1989-2024 Lauterbach

CTS.CACHE.Allocation Define the cache allocation technique

The command CTS.CACHE.Allocation describes how the CPU deals with a cache miss on a data
store/write access.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.Allocation <cache> ReadAlloc | WriteAlloc

<cache>: IC
DC
L2
L3

ReadAlloc The data from a memory address is only loaded to the cache on
read/load accesses.

WriteAlloc The data from a memory address is loaded to the cache on a store/write
access and the new data is written in the cache line. Please note that this
also depends on the cache mode (write-through or copy-back).

CTS.CACHE.Allocation IC ReadAlloc ; the instruction cache is a
; read allocate cache
General Commands Reference Guide C | 170©1989-2024 Lauterbach

CTS.CACHE.CYcles Define counting method for cache analysis

Defines which method is used to count the cache hit/cache miss rate.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.DefineBus Define bus interface

Defines the bus interface that is the base for the analysis of the bus utilization by the command
CTS.CACHE.ViewBus.

SIMPLE indicates that the number of clock cycles required by each type of memory access can be directly
given.

Format: CTS.CACHE.CYcle Core | Bus | NonSequential

Core The hit or miss counter is incremented on every core cycle.

Bus The hit or miss counter is incremented on every bus cycle.

NonSequential The hit or miss counter is only incremented if the CPU accesses a new
cache line or performs a non-sequential access.

Format: CTS.CACHE.DefineBus <bus> <range> <bus_type> <frequency> <unknown>
<read> <readreq> <readline> <write> <writeseq> <writeline> <writehalf>

<bus>: BUS0
BUS1
BUS2
BUS3

<bus_type>: SIMPLE32
SIMPLE32I
SIMPLE32D
SIMPLE64
SIMPLE64I
SIMPLE64D
General Commands Reference Guide C | 171©1989-2024 Lauterbach

See also

■ CTS.CACHE ■ CTS.CACHE.state

<range> Memory range addressed by the bus. The physical address has to be
specified (memory class A:)

<frequency> Bus frequency.

<unknown> Average number of clock cycles required by a memory access that is
categorized as unknown by the cache analysis.

<read> Number of clock cycles required by a memory read access.

<readseq> Number of clock cycles required by a subsequent memory read access
(e.g. burst access).

<readline> Number of clock cycles required by a cache line fill.

<write> Number of clock cycles required by a memory write access.

<writeseq> Number of clock cycles required by a subsequent memory write access
(e.g. burst access).

<writeline> Number of clock cycles required to write the contents of a cache line
back to memory (copy back).

<writehalf> Number of clock cycles required to write the contents of half a cache line
back to memory (copy back).

CTS.CACHE.DefineBus BUS0 A:0++0xffffffff SIMPLE64 100.MHz
1. 1. 1. 4. 1. 1. 4. 2.

CTS.CACHE.DefineBus BUS1 A:0x80000000++0x1ffffff SIMPLE32 100.MHz
5. 8. 1. 6. 7. 1. 8. 4.
General Commands Reference Guide C | 172©1989-2024 Lauterbach

CTS.CACHE.L1Architecture Define architecture for L1 cache

Defines the CACHE structure. This command defines the architecture of the level 1 cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.LFSR Linear-feedback shift register for random generator

Set the start value of the linear-feedback shift register for random replacement strategy.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.L1Architecture Harvard | Unified | UnifiedSplit

Harvard The L1 cache has Harvard architecture, which means that there is an
instruction cache and a data cache available.

Unified The L1 cache is a unified cache, which means that the same cache is
used for instruction fetches and data loads/stores.

UnifiedSplit The L1 cache is a unified cache, which means that the same cache is
used for instruction fetches and data loads/stores.
TRACE32 splits however the unified cache in an instruction and data
cache for the cache analysis. The splitting is based on the cycle type
(e.g. read, write, ptrace, exec).

Format: CTS.CACHE.LFSR IC | DC | L2 | L3 <lfsr>
General Commands Reference Guide C | 173©1989-2024 Lauterbach

CTS.CACHE.ListAddress Address based cache analysis

Performs a cache analysis based on addresses.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ListAddress IC | DC | L2 | L3 <range>

cached Number of accesses to cached memory.

hits Number of cache hits.
(percentage based on all cached accesses)

misses Number of cache misses.
(percentage based on all cached accesses)

victims Number of cache lines that were thrown out of the cache after a cache
miss occurred.

CTS.CACHE.ListAddress IC 0x8000--0x12000
General Commands Reference Guide C | 174©1989-2024 Lauterbach

CTS.CACHE.ListFunc Function based cache analysis

Performs a function-based cache analysis.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ListFunc IC | DC | L2 | L3 [<range> | <address>]

CTS.CACHE.ListFunc IC 8000++0fff ; perform a function based cache
; cache analysis for the specified
; address range
General Commands Reference Guide C | 175©1989-2024 Lauterbach

CTS.CACHE.ListLine HLL line based cache analysis

Performs an HLL-line-based cache analysis.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.ListModules Module based cache analysis

Performs a module-based cache analysis.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ListLine IC | DC | L2 | L3 [<range> | <address>]

CTS.CACHE.ListLine IC dosomethingbad

Format: CTS.CACHE.ListModules IC | DC | L2 | L3 [<range> | <address>]
General Commands Reference Guide C | 176©1989-2024 Lauterbach

CTS.CACHE.ListRequests Display request for a single cache line

Display which addresses compete for the same cache line.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ListRequests IC | DC | L2 | L3 <address>

CTS.CACHE.ListRequests IC 0x30 ; Display which addresses compete for
; the cache line 0x30 of the instruction
; cache
General Commands Reference Guide C | 177©1989-2024 Lauterbach

CTS.CACHE.ListSet Cache set based cache analysis

Performs a cache analysis based on cache sets.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.ListVar Variable based cache analysis

Performs a cache analysis based on variables.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ListSet IC | DC | L2 | L3

Format: CTS.CACHE.ListVar IC | DC | L2 | L3 [<range> | <address>]
General Commands Reference Guide C | 178©1989-2024 Lauterbach

CTS.CACHE.MMUArchitecture Define MMU architecture for cache control

If the MMU architecture is set, the cache analysis takes all manipulations on the cache control registers
into account for the cache analysis:

• Cache flushes

• Switch-on and switch-off of the caches

• Cache locks

If CTS.CACHE.MMUArchitecture is set to NONE, the manipulations on the cache control registers are not
taken into account for the cache analysis.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.MMUArchitecture <control>

<control>: NONE
ARM920T | ARM922T | ARM925T | ARM926EJ | ARM946E
ARM1136J | ARM1156T2 | ARM1176JZ | ARM11MPCORE
CortexA5 | CortexA7 | CortexA8 | CortexA9
CortexR4 | CortexR5 | CortexR7 | CortexR8
MXPLMEM
SCORPION
E200MMU | E200MPU | E200FLASH | E200FLASH2
M340
MCF5272
SC140E
NIOS2E | NIOS2S | NIOS2F
TC1766 | TC1796
General Commands Reference Guide C | 179©1989-2024 Lauterbach

CTS.CACHE.Mode Define memory coherency strategy

This command defines the strategy used for the memory coherency for each cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.Mode IC | DC | L2 | L3 <mode>

<mode>: CopyBack
WriteThrough
MMU

CopyBack Copy back strategy guarantees memory coherency.
When a cache hit occurred for a data store/write, the cache contents is
updated and the corresponding cache line is marked as dirty. The data
value is copied back to memory when the contents of the cache line is
evicted.

WriteThrough Write Through strategy guarantees memory coherency.
When a cache hit occurs for a data store/write, the cache contents is
updated and the data is also stored/written to memory.

MMU The strategy for memory coherency is taken from the MMU.
General Commands Reference Guide C | 180©1989-2024 Lauterbach

CTS.CACHE.Replacement Define the replacement strategy

This command defines the replacement strategy for each cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.Replacement <cache> <replace>

<cache>: IC | DC | L2 | L3 | ITLB | DTLB | TLB0 | TLB1

<replace>: Cyclic
FreeCyclic
PseudoCyclic
FreePseudoCyclic
Random
FreeRandom
LRU
MMU

Cyclic Cyclic (round-robin) replacement strategy is used. One round robin
counter for each cache set.

FreeCyclic Cyclic (round-robin) replacement strategy is used, but if an empty cache
line is found it is filled first.

PseudoCyclic Cyclic (round-robin) replacement strategy is used. But there is only one
round robin counter for all cache sets.

FreePseudoCyclic Cyclic (round-robin) replacement strategy is used
• but if an empty cache line is found it is filled first
• but there is only one round robin counter for all cache sets

Random Random replacement strategy is used.

FreeRandom Random replacement strategy is used, but if an empty cache line is found
it is filled first.

LRU Last recently used replacement strategy is used.

MMU The replacement strategy is defined by the CPU.
Please use CTS.CACHE.Replacement MMU is your CPU uses a not
listed replacement strategy.
General Commands Reference Guide C | 181©1989-2024 Lauterbach

CTS.CACHE.RESet Reset settings of CTS cache window

Resets the settings of the CTS.CACHE window.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.SETS Define the number of cache sets

This command defines the number of cache sets for each cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CACHE.Sort Define sorting for all list commands

Defines the sorting for all list commands.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.RESet

Format: CTS.CACHE.SETS <cache> <sets>

<cache>: IC | DC | L2 | L3 | ITLB | DTLB | TLB0 | TLB1

CTS.CACHE.SETS IC 4. ; The instruction CACHE has 4 sets

CTS.CACHE.SETS DC 4. ; The data CACHE has 4 sets

Format: CTS.CACHE.Sort OFF | Address | Victims
General Commands Reference Guide C | 182©1989-2024 Lauterbach

CTS.CACHE.state Display settings of CTS cache analysis

Displays the cache structure of your CPU in the CTS.CACHE.state window. For background information,
see CTS.CACHE.

See also

■ CTS.CACHE ■ CTS.CACHE.Allocation
■ CTS.CACHE.CYcles ■ CTS.CACHE.DefineBus
■ CTS.CACHE.L1Architecture ■ CTS.CACHE.LFSR
■ CTS.CACHE.ListAddress ■ CTS.CACHE.ListFunc
■ CTS.CACHE.ListLine ■ CTS.CACHE.ListModules
■ CTS.CACHE.ListRequests ■ CTS.CACHE.ListSet
■ CTS.CACHE.ListVar ■ CTS.CACHE.MMUArchitecture
■ CTS.CACHE.Mode ■ CTS.CACHE.Replacement
■ CTS.CACHE.RESet ■ CTS.CACHE.SETS
■ CTS.CACHE.Sort ■ CTS.CACHE.Tags
■ CTS.CACHE.TLBArchitecture ■ CTS.CACHE.View
■ CTS.CACHE.ViewBPU ■ CTS.CACHE.ViewBus
■ CTS.CACHE.ViewStalls ■ CTS.CACHE.WAYS
■ CTS.CACHE.Width ■ CTS.state

Format: CTS.CACHE.state
General Commands Reference Guide C | 183©1989-2024 Lauterbach

CTS.CACHE.Tags Define address mode for cache lines

Defines the cache structure.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.Tags IC | DC | L2 | L3 <tag>

<tag>: VIVT
PIPT
VIPT
AVIVT

VIVT Virtual Index, Virtual Tag
The logical address is used as tag for a cache line.

PIPT Physical Index, Physical Tag
The physical address is used as tag for a cache line.

VIPT Virtual Index, Physical Tag

AVIVT Address Space ID + Virtual Index, Virtual Tag
General Commands Reference Guide C | 184©1989-2024 Lauterbach

CTS.CACHE.TLBArchitecture Define architecture for the TLB

This command defines the architecture for the TLB cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.TLBArchitecture Harvard | Unified | UnifiedSplit

Harvard The TLB cache has Harvard architecture, that means there is an
instruction TLB and a data TLB available.

Unified The TLB cache is a unified cache, that means the same TLB is used for
instruction fetches and data loads/stores.

UnifiedSplit The TLB cache is a unified cache, that means the same TLB is used for
instruction fetches and data loads/stores.
But TRACE32 splits the unified cache in an instruction and data TLB for
the cache analysis. The splitting is based on the cycles type (e.g.
read/write/ptrace/exec).
(not implemented yet)
General Commands Reference Guide C | 185©1989-2024 Lauterbach

CTS.CACHE.View Display the results for the cache analysis
[Columns] [Buttons]

Displays the results for the cache analysis. CTS.Mode CACHE has to be selected before any calculation
can be started. The calculation of the results for the cache analysis can be activated as follows:

• By using the command CTS.PROCESS. That way the complete trace contents is analyzed.

• By selecting a part of the trace contents e.g. a function. The starting point for the analysis is
selected by setting a reference point (command Analyzer.REF) to the relevant trace record [A].
The endpoint for the analysis is selected by setting the CTS point (command CTS.GOTO) to the
relevant trace record [B].

The result:

Format: CTS.CACHE.View

A

B

General Commands Reference Guide C | 186©1989-2024 Lauterbach

Interpretation of the result:

All memory accesses

cached

hits miss

victims

readswrites

unknown
known

copybackswritethrusnawritestrashes flushes
General Commands Reference Guide C | 187©1989-2024 Lauterbach

Description of Buttons in the CTS.CACHE.View Window

[Back to Top]

Description of Columns in the CTS.CACHE.View Window

[Back to Top]

Setup Display a Trace configuration window.

CTS Display CTS settings window.

Params Display information about the cache structure (CTS.CACHE.state).

Process Initiate calculation for cache analysis (CTS.PROCESS).

List Display a CTS listing (CTS.List).

BPU Display a statistic for branch prediction unit (CTS.CACHE.ViewBPU).

Stalls Display a statistic for idles/stalls (CTS.CACHE.ViewStalls).

Bus Display a statistic for bus utilization (CTS.CACHE.ViewBus).

unknown All accesses for which TRACE32 has no information
The cache analysis is based on the memory addresses recorded in the
trace buffer. Before the first memory address is mapped to a specific
cache line the contents of this cache line is unknown.
Other reasons for unknown are: gaps in the trace recording, missing
address information etc.
(percentage is based on all memory accesses)

cached Number of accesses to cached addresses
(percentage is based on all memory accesses)

hits Number of cache hits
(percentage is based on all cached accesses)

miss Number of cache misses
(percentage is based on all cached accesses)

victims Number of cache victims
(percentage is based on all cached accesses)

flushes Number of cache lines that were flushed
(percentage is based on all memory accesses)

copybacks Number of cache lines that were copied back to memory
(percentage is based on all memory accesses)
General Commands Reference Guide C | 188©1989-2024 Lauterbach

See also

■ CTS.CACHE ■ CTS.CACHE.state

writethrus Number of cache lines that were written through to memory
(percentage is based on all memory accesses)

nawrites Writes in a read-allocated cache
(percentage is based on all memory accesses)

reads Number of not-cached reads
(percentage is based on all memory accesses)

writes Number of not-cached writes
(percentage is based on all memory accesses)

trashes Discarded accesses (ARM11 only)
(percentage is based on all memory accesses)
General Commands Reference Guide C | 189©1989-2024 Lauterbach

CTS.CACHE.ViewBPU Display statistic for branch prediction unit

For details about the program flow prediction please refer to your processor manual.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ViewBPU

BTAC Branch Target Address Cache / Branch Folding

STATIC Static Branch Predictor

RSTACK Return Stack

instrs Total number of instructions.

branches Total number of branches.

taken Number of taken branches.

nottaken Number of not-taken branches.

predictions Total number of branch predictions.

unknown Since the contents of Branch Target Address Cache is unknown at the
beginning of the analysis, the first
<size_of_branch_target_address_cache> predictions are unknown.

misses No entry was found in the Branch Target Address Cache for the branch
source address.

hits An entry for the branch source address was found in the Branch Target
Address Cache and the prediction was correct.

fails An entry for the branch source address was found in the Branch Target
Address Cache, but the prediction failed.
General Commands Reference Guide C | 190©1989-2024 Lauterbach

CTS.CACHE.ViewBus Display statistics for the bus utilization

Displays a detailed analysis of the bus utilization.

See also

■ CTS.CACHE ■ CTS.CACHE.state

Format: CTS.CACHE.ViewBus

unknown Number of clock cycles consumed by memory accesses that are
categorized as unknown by the cache analysis

read Number of clock cycles consumed by memory read accesses

readseq Number of clock cycles consumed by subsequent memory read accesses
(e.g. burst access)

readline Number of clock cycles consumed by cache line fill operations

write Number of clock cycles consumed by memory write accesses

writeseq Number of clock cycles consumed by subsequent memory write accesses
(e.g. burst access)

writeline Number of clock cycles consumed by writing the contents of a cache line
back to memory (copy back)

writehalf Number of clock cycles consumed by writing the contents of half a cache
line back to memory (copy back)

bytes Number of bytes transferred via the external bus interface

clocks Number of clock cycles the external bus was busy

bytes/s Transmission rate

clocks/s Transmission frequency

used Bus load in percentage
General Commands Reference Guide C | 191©1989-2024 Lauterbach

CTS.CACHE.ViewStalls Display statistics for idles/stalls

Analyses over the measurement interval how much cycles/time was taken by idles/stalls and how much
cycles/time the CPU was really working.

Format: CTS.CACHE.ViewStalls

total Number of analyzed clock cycles
measurement time

idles Number of idles cycles (the CPU is not executing instructions)
time the CPU was in idle mode
percentage of time/clocks the CPU was in idle mode
number of time the CPU was in idle state
The number of idles states is calculated as follows:
• number of times the CPU went in power-down or sleep mode (e.g.

for the ARM architecture the number of times a Wait for Interrupt
CP15 operation was performed)

• number of times a single instruction last more the 1000. clock
cycles

work Number of cycles the processor was working
time the CPU was working
percentage of time the processor was working
number of instructions that were executed by the processor

stalls Number of stalls

time the CPU was stalled

percentage of time the CPU was stalled

mstalls Number of memory stalls
time taken by memory stalls
percentage of time taken by memory stalls
Memory stalls are caused by e.g. cache misses, TLB misses, accesses
to slow memory …
General Commands Reference Guide C | 192©1989-2024 Lauterbach

See also

■ CTS.CACHE ■ CTS.CACHE.state

▲ ’Release Information’ in ’Legacy Release History’

CTS.CACHE.WAYS Define number of cache ways

This command defines the number of cache ways (blocks) for each cache.

See also

■ CTS.CACHE ■ CTS.CACHE.state

istalls Number of interlock stalls
time taken by interlock stalls
percentage of time taken by interlock stalls
Interlock stalls are caused by e.g. resource conflicts between
instructions, data dependencies …

fstalls Number of fetch stalls
time taken by fetch stalls
percentage of time taken by fetch stalls
Fetch stalls are caused by e.g. pipeline reload etc.

Format: CTS.CACHE.WAYS <cache> <ways>

<cache>: IC | DC | L2 | L3 | ITLB | DTLB | TLB0 | TLB1

CTS.CACHE.WAYS IC 4. ; The instruction CACHE has 4 blocks

CTS.CACHE.WAYS DC 4. ; The data CACHE has 4 blocks
General Commands Reference Guide C | 193©1989-2024 Lauterbach

CTS.CACHE.Width Define width of cache line

This command define the width of a single cache line in bytes.

See also

■ CTS.CACHE ■ CTS.CACHE.state

CTS.CAPTURE Copy real memory to the virtual memory for CTS

Copies “real” memory to the TRACE32 virtual memory (VM:) for all places where VM: is already mapped.

See also

■ CTS ■ CTS.state

▲ ’Release Information’ in ’Legacy Release History’

Format: CTS.CACHE.Width IC | DC | L2 | L3 <width>

CTS.CACHE.Width IC 32. ; A cache line for the instruction cache
; is 32. byte

Format: CTS.CAPTURE

...
; Capture a snapshot of the system for the analysis.
CTS.CAPTURE
Go ; Start the analysis.
Break ; Stop the analysis.
...
General Commands Reference Guide C | 194©1989-2024 Lauterbach

CTS.Chart.ChildTREE Display callee context of a function as chart

Show call tree and run-time of all functions called by the specified functions based on the CTS data.
Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.ChildTREE for a description of the parameters and options.

See also

■ <trace>.Chart.ChildTREE

CTS.Chart.Func Function activity chart

Displays the time spent in different functions as chart based on the CTS data. Gaps in the trace caused by
FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.Func for a description of the parameters and options.

See also

■ <trace>.Chart.Func

CTS.Chart.INTERRUPT Display interrupt chart

Displays the time spent in different interrupts as time chart based on the CTS data. Gaps in the trace caused
by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.INTERRUPT for a description of the parameters and options.

See also

■ <trace>.Chart.INTERRUPT

Format: CTS.Chart.ChildTREE <address>

Format: CTS.Chart.Func [<trace_area>] [/<option>]

Format: CTS.Chart.INTERRUPT [<trace_area>] [/<option>]
General Commands Reference Guide C | 195©1989-2024 Lauterbach

CTS.Chart.INTERRUPTTREE Display interrupt nesting

Displays the interrupt nesting as time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <Trace>.Chart.INTERRUPTTREE for a description of the parameters and options.

See also

■ <trace>.Chart.INTERRUPTTREE

CTS.Chart.Nesting Show function nesting at cursor position

Shows the function call stack as a time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.Chart.Nesting for a description of the parameters and options.

See also

■ <trace>.Chart.Nesting

CTS.Chart.RUNNABLE Runnable activity chart

The time spent in different AUTOSAR Runnables is displayed graphically. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Format: CTS.Chart.INTERRUPTTREE [<trace_area>] [/<option>]

Format: <trace>.Chart.Nesting [<trace_area>] [/<option>]

Format: <trace>.Chart.RUNNABLE [<trace_area>] [/<option>]
General Commands Reference Guide C | 196©1989-2024 Lauterbach

Refer to <trace>.Chart.Nesting for a description of the parameters and options.

See also

■ <trace>.Chart.RUNNABLE

CTS.Chart.sYmbol Execution time at different symbols as chart

Displays the distribution of program execution time at different symbols as a time chart based on the CTS
data. Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.sYmbol for a description of the parameters and options.

See also

■ CTS ■ CTS.PROfileChart ■ CTS.state ■ <trace>.Chart.sYmbol

CTS.Chart.TASK Task activity chart

Displays the time spent in different tasks based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.Chart.TASK for a description of the parameters and options.

See also

■ <trace>.Chart.TASK

Format: CTS.Chart.sYmbol [<trace_area>] [/<option>]

Format: <trace>.Chart.TASK [<trace_area>] [/<option>]
General Commands Reference Guide C | 197©1989-2024 Lauterbach

CTS.Chart.TASKINFO Chart for context ID special messages

Displays a graphical chart based on the CTS data for special messages written to the context ID register
(ETM trace).

Refer to <trace>.Chart.TASKINFO for a description of the parameters and options.

See also

■ <trace>.Chart.TASKINFO

CTS.Chart.TASKINTR Display ISR2 time chart (ORTI)

Displays an ORTI based ISR2 time chart based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature can only be
used if ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS
Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <trace>.Chart.TASKINTR for a description of the parameters and options.

See also

■ <trace>.Chart.TASKINTR

CTS.Chart.TASKKernel Display task time chart with kernel markers (ORTI)

Similar command to <trace>.Chart.TASKKernel. The analysis is however based on the CTS data. Gaps in
the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).
This feature is only available if TRACE32 has been set for OS-aware debugging.

Format: CTS.Chart.TASKINFO [<trace_area>] [/<option>]

Format: CTS.Chart.TASKINTR [<trace_area>] [/<option>]

Format: CTS.Chart.TASKKernel [<trace_area>] [/<option>]
General Commands Reference Guide C | 198©1989-2024 Lauterbach

Refer to <trace>.Chart.TASKKernel for a description of the parameters and options.

See also

■ <trace>.Chart.TASKKernel

CTS.Chart.TASKORINTERRUPT Task and interrupt activity chart

Displays the time spent in different tasks and interrupts based on the CTS data. Gaps in the trace caused by
FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.Chart.TASKORINTERRUPT for a description of the parameters and options.

See also

■ <trace>.Chart.TASKORINTERRUPT

CTS.Chart.TASKSRV Service routine run-time analysis

The time spent in OS service routines and different tasks is displayed. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <Trace>.Chart.TASKSRV for a description of the parameters and options.

CTS.Chart.TASKVSINTERRUPT Time chart of interrupted tasks

Shows a graphical representation of tasks that were interrupted by interrupt service routines based on the
CTS data. Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON). This feature is only available if TRACE32 has been set for OS-aware debugging.

Format: <trace>.Chart.TASKORINTERRUPT [<trace_area>] [/<option>]

Format: CTS.Chart.TASKSRV [<trace_area>] [/<option>]

Format: CTS.Chart.TASKVSINTERRUPT [<trace_area>] [/<option>]
General Commands Reference Guide C | 199©1989-2024 Lauterbach

Refer to <trace>.Chart.TASKVSINTERRUPT for a description of the parameters and options.

See also

■ <trace>.Chart.TASKVSINTERRUPT

CTS.Chart.TASKVSINTR Time chart of task-related interrupts

Displays a time-chart for task-related interrupt service routines based on the CTS data. Gaps in the trace
caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON). This
feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the
TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.Chart.TASKVSINTR for a description of the parameters and options.

See also

■ <trace>.Chart.TASKVSINTR

CTS.Chart.TREE Display function chart as tree view

The result of this command shows a graphical chart tree of the function nesting based on the CTS data.
Gaps in the trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled
(CTS.SmartTrace ON).

Refer to <trace>.Chart.TREE for a description of the parameters and options.

See also

■ <trace>.Chart.TREE

Format: CTS.Chart.TASKVSINTR [<trace_area>] [/<options> …]

Format: CTS.Chart.TREE [<trace_area>] [/<option>]
General Commands Reference Guide C | 200©1989-2024 Lauterbach

CTS.EXPORT Export trace data

Exports the trace contents with CTS information for postprocessing by an external analysis tool. The
command is similar to <trace>.EXPORT.

See also

■ CTS

CTS.FixedControl Execution time at different symbols as chart

Fixes control register values to current value. Only supported for PowerPC E200ZX.

See also

■ CTS

CTS.GOTO Select the specified record for CTS (absolute)

Selects the specified record for the trace based debugging. If CTS is OFF, CTS is switched to ON by this
command.

Format: CTS.EXPORT <file> [<trace_area>] [/<option>]

<option> FILE | CORE | CACHE | BUS

FILE Exports the trace contents loaded with <trace>.FILE.

CORE Exports core accesses.

CACHE Exports cache accesses. This option is only available if CTS.Mode
CACHE has been selected.

BUS Exports bus accesses. This option is only available if CTS.Mode CACHE
has been selected.

Format: CTS.FixedControl [ON | OFF]

Format: CTS.GOTO <record> [/FILE]
General Commands Reference Guide C | 201©1989-2024 Lauterbach

This command can be used to set the starting point for trace-based debugging.

See also

■ CTS ■ CTS.state

CTS.INCremental CTS displays intermediate results while processing

See also

■ CTS ■ CTS.state

CTS.Init Restart CTS processing

Restarting the CTS processing has effects:

• CTS.List is reprocessed.

• The target context for trace-based debugging is re-processed.

• The new settings of the CTS window take effect.

See also

■ CTS ■ CTS.state

FILE Takes trace memory contents loaded by <trace>.LOAD.

CTS.GOTO -123. ; Select record -123. for CTS

Format: CTS.INCremental [ON | OFF]

ON CTS.List displays intermediate results while TRACE32 is processing the
trace contents.

OFF CTS.List displays the result after TRACE32 has completely processed
the trace contents.

Format: CTS.Init
General Commands Reference Guide C | 202©1989-2024 Lauterbach

CTS.List List trace contents

Format: CTS.List [<record> | <record_ range>] [<items> …] [/<options>]

<options>: FILE
Track
Mark <item>
TASK <task_magic> | <task_id> | <task_name>
<other_generic_options>

<items>: %<format>
DEFault | ALL | CPU | LINE | PORTS
Run
CYcle | Data[.<subitem> | BDATA | List[.<subitem>]
Address | BAddress | FAddress
| sYmbol | sYmbolN | PAddress | PsYmbol | Var
TIme[.<subitem>]
FUNC | FUNCR | FUNCVar | IGNORE
LeVel | MARK[.<marker> | FLAG[.<flag_index>]
Trigger | Trigger.A | Trigger.B
SPARE
<special_lines>

<format>: Ascii | BINary | Decimal | Hex | Signed | Unsigned
HighLow | Timing
TimeAuto | TimeFixed
LEN <size>

<options> For a detailed description of all other parameters and options, refer to the
<trace>.List command.

TASK <task_magic>,
etc.

Filters the CTS.List window by the specified task.
See also “What to know about the Task Parameters”
(general_ref_t.pdf).
General Commands Reference Guide C | 203©1989-2024 Lauterbach

Description of Buttons in the CTS.List Window

Cache analysis results (when enabled) are shown in the following formats:

• <cache_mode> <cyclecount>?
Information about a number of accesses is unknown.

• <cache_mode> <hits>/<misses>
Regular cached cycles.

• <cache_mode> <hits>/<misses>/<bypasses>
Bypasses are cycles that where not using the cache (non-allocated write cycles or trash cycles).

See also

■ CTS ■ CTS.state

Setup … Open a <trace>.state window to configure the trace.

CTS … Open a CTS.view window to configure CTS.

Goto … Open a <trace>.GOTO dialog box to move the cursor to a specific record.

Find … Open a <trace>.Find dialog box to search for specific entries in the trace.

TREE Open a CTS.STATistic.TREE window to display the call structure of the
trace contents as a tree.

Chart Opens a CTS.Chart.sYmbol window to display the program execution
time at different symbols as a time chart.

Chart Opens a CTS.Chart.Func window to display the time spent in different
functions as chart.

More/Less The More and Less button allow to switch between the following displays:
• Interrupts and task levels
• Function nesting
• HLL lines
• HLL lines and disassembled code
• All CPU cycles
General Commands Reference Guide C | 204©1989-2024 Lauterbach

▲ ’Release Information’ in ’Legacy Release History’

CTS.ListNesting Analyze function nesting

Investigates issues in the construction of the call tree for the nesting function run-time analysis based on the
CTS data.

Refer to <Trace>.ListNesting for a description of the parameters and options.

See also

■ CTS

▲ ’Release Information’ in ’Legacy Release History’

CTS.Mode Operation mode

See also

■ CTS ■ CTS.state

Format: CTS.ListNesting[<trace_area>] [/<option>]

Format: CTS.Mode [Full | Memory | CACHE]

Full (default) The trace contains the full program and data flow information.

Memory The trace contains only data flow information, a selective trace on
specific data accesses was performed. CTS can reconstruct the memory
contents only.
CTS is used here e.g. to reconstruct the contents of several HLL
variables or task control block information.

CACHE Reconstruct the contents of caches and TBLs (only required if a cache
analysis is performed).
General Commands Reference Guide C | 205©1989-2024 Lauterbach

CTS.OFF Switch off trace-based debugging

Trace-based debugging is switch to off. The current context of the target system is re-displayed on the
TRACE32 screen.

See also

■ CTS ■ CTS.state

CTS.ON Switch on trace-based debugging

Switches trace-based debugging to ON. The starting point is either 0./1. or the last selected record.

Use CTS.GOTO to switch CTS to ON with at specific starting point.

See also

■ CTS ■ CTS.state

▲ ’Release Information’ in ’Legacy Release History’

CTS.PROCESS Process cache analysis

Switches CTS to ON and calculates the results for the cache analysis by processing the complete trace
contents.

See also

■ CTS ■ CTS.state

Format: CTS.OFF

Format: CTS.ON

Format: CTS.PROCESS [/FILE]
General Commands Reference Guide C | 206©1989-2024 Lauterbach

CTS.PROfileChart Profile charts

Displays distributions versus time graphically based on the CTS data. Gaps in the trace caused by FIFO
overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

Refer to <trace>.PROfileChart for a description of the parameters and options.

See also

■ CTS ■ CTS.Chart.sYmbol ■ CTS.STATistic

▲ ’Release Information’ in ’Legacy Release History’

CTS.PROfileChart.CACHE Display cache analysis results graphically

Displays the results of the CTS cache analysis as profile chart.

Example:

Format: CTS.PROfileChart [<trace_area>] [/<option>]

Format: CTS.PROfileChart.CACHE <cache> [<trace_area>] [/<option>]

<cache> IC | DC | L2 | L3 | STALLS | BUS0 | BUS1 | BUS2 | BUS3 | MIPS | BTAC |
STATIC | RSTACK

<option> FILE
FlowTrace | BusTrace
ReScale | TimeScale | TimeZero | TimeREF
Vector | Steps
Track | ZoomTrack

<trace_area>
<option>

Refer to <trace>.PROfileChart

CTC.Mode CACHE
CTS.ON
CTS.PROFileChart DC
CTS.PROFileChart IC
General Commands Reference Guide C | 207©1989-2024 Lauterbach

See also

■ CTS.CACHE

CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart

Displays the dynamic program behavior versus time graphically based on the CTS data.

Refer to <trace>.PROfileChart.sYmbol for a description of the parameters and options.

See also

■ <trace>.PROfileChart.sYmbol

Format: CTS.PROfileChart.sYmbol [<trace_area>] [/<option>]
General Commands Reference Guide C | 208©1989-2024 Lauterbach

CTS.PROfileChart.TASK Task profile chart

Displays the dynamic task behavior versus time graphically based on the CTS data. This feature is only
available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASK for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASK

CTS.PROfileChart.TASKINFO Profile chart for context ID special messages

Displays a graphical profile chart based on the CTS data for special messages written to the context ID
register (ETM trace).

Refer to <trace>.PROfileChart.TASKINFO for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKINFO

CTS.PROfileChart.TASKINTR ISR2 profile chart

Displays the dynamic behavior of ORTI based ISR2 versus time graphically based on the CTS data. This
feature can only be used if ISR2 can be traced based on the information provided by the ORTI file. Please
refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to <trace>.PROfileChart.TASKINTR for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKINTR

Format: CTS.PROfileChart.TASK [<trace_area>] [/<option>]

Format: CTS.PROfileChart.TASKINFO [<trace_area>] [/<option>]

Format: CTS.PROfileChart.TASK [<trace_area>] [/<option>]
General Commands Reference Guide C | 209©1989-2024 Lauterbach

CTS.PROfileChart.TASKKernel Task profile chart with kernel markers

Similar command to <trace>.PROfileChart.TASKKernel. The analysis is however based on the CTS data.
This feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASKKernel for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKKernel

CTS.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart

Displays the dynamic behavior of tasks and interrupts versus time graphically based on the CTS data. This
feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASKORINTERRUPT for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKORINTERRUPT

CTS.PROfileChart.TASKSRV OS service routines profile chart

Displays the dynamic behavior of OS service routines versus time graphically based on the CTS data. This
feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the
TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.PROfileChart.TASKSRV for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKSRV

Format: CTS.PROfileChart.TASKKernel [<trace_area>] [/<option>]

Format: CTS.PROfileChart.TASKORINTERRUPT [<trace_area>] [/<option>]

Format: CTS.PROfileChart.TASKSRV [<trace_area>] [/<option>]
General Commands Reference Guide C | 210©1989-2024 Lauterbach

CTS.PROfileChart.TASKVSINTR Task-related interrupts profile chart

Displays the dynamic behavior of task-related interrupts versus time graphically based on the CTS data.
This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with
the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more
information.

Refer to <trace>.PROfileChart.TASKVSINTR for a description of the parameters and options.

See also

■ <trace>.PROfileChart.TASKVSINTR

Format: CTS.PROfileChart.TASKVSINTR [<trace_area>] [/<option>]
General Commands Reference Guide C | 211©1989-2024 Lauterbach

CTS.RESet Reset the CTS settings

Resets the CTS setting and switch trace based debugging to off.

See also

■ CTS ■ CTS.state

CTS.SELectiveTrace Trace contains selective trace information

See also

■ CTS

CTS.SKIP Select the specified record for CTS (relative)

Selects a specific record for CTS relative to the currently selected record.

See also

■ CTS ■ CTS.state

Format: CTS.RESet

Format: CTS.SELectiveTrace [ON | OFF]

ON A selective trace was performed, so the trace buffer does not contain the
complete program and data flow. The sampling to the trace buffer is
either controlled by the development tool or by the processor. In this case
CTS clears the register and memory context after each discontinuance of
the program/data flow.
It is recommended to switch CTS.UseFinalMemory to OFF (not
supported for all CPUs).

OFF (default) The trace contains the relevant program and data flow.

Format: CTS.SKIP <delta> [/FILE]

CTS.SKIP 20.
General Commands Reference Guide C | 212©1989-2024 Lauterbach

CTS.SmartTrace CTS smart trace

Enables/disables CTS SmartTrace. When SmartTrace is enabled, all CTS commands as CTS.List and
CTS.Chart will fill gaps in the trace caused by FIFO overflows.

Only supported for the following architectures:

• PowerPC MPC5xx Nexus

• PowerPC MPC5xxx Nexus

• ARM ETMv3

• MCORE Nexus

• StarCore Nexus

SmartTrace is an algorithm developed by LAUTERBACH. It allows to offset trace data loss caused by a
FIFO OVERFLOW under certain circumstances. SmartTrace investigates whether there is a clear path from
address A to address B via direct branches that can be reached in the calculated number of clock cycles
with the instructions used. If a clear path exists the lost trace data can be reconstructed.

See also

■ CTS ■ CTS.state

▲ ’Release Information’ in ’Legacy Release History’

Format: CTS.SmartTrace [ON | OFF]
General Commands Reference Guide C | 213©1989-2024 Lauterbach

CTS.state Display CTS settings

Displays the CTS settings.

The settings below are recommended in case:

• the program execution is still running while CTS is used

• or not all CPU cycles until the stop of the program execution are sampled to the trace buffer

In both cases the current state of the target can not be used by CTS.

Recommended settings for selective trace on data:

Format: CTS.state [<address> | <range>]

CTS.UseFinalMemory OFF ; don’t use the current state of
; the target memory for CTS

CTS.UseFinalContext OFF ; don’t use the current state of
; the CPU register for CTS

MAP.CONST
sYmbol.SECRANGE(\.sdata2)

; attribute the constant section

Data.COPY
sYmbol.SECRANGE(\.sdata2) VM:

; copy contents of constant section
; to the virtual memory. This
; allows CTS to use this memory
; contents even when the program
; execution is running

CTS.UseConst ON ; read accesses to all memory
; locations with the attribute
; CONST are used by CTS

CTS.Mode Memory ; CTS reconstructs only the memory
General Commands Reference Guide C | 214©1989-2024 Lauterbach

Recommended settings if a selective trace is used:

The following settings are only necessary if the not sampled parts of the program/data flow change the
memory or register contents.

Recommended settings if only the program flow is sampled to the trace buffer:

See also

■ CTS ■ CTS.CACHE ■ CTS.CACHE.state ■ CTS.CAPTURE
■ CTS.Chart.sYmbol ■ CTS.GOTO ■ CTS.INCremental ■ CTS.Init
■ CTS.List ■ CTS.Mode ■ CTS.OFF ■ CTS.ON
■ CTS.PROCESS ■ CTS.RESet ■ CTS.SKIP ■ CTS.SmartTrace
■ CTS.TAKEOVER ■ CTS.UseConst ■ CTS.UseFinalContext ■ CTS.UseFinalMemory
■ CTS.UseSIM ■ Go.BackTillWarning ■ Go.TillWarning

CTS.SELectiveTrace ON ; Clear memory and register context
; at each discontinuance of the
; program/data flow

CTS.UseFinalMemory OFF ; CTS doesn’t use the current
; memory

CTS.UseFinalContext OFF ; CTS doesn’t use the current CPU
; registers

CTS.UseFinalMemory OFF ; CTS doesn’t use the current
; memory
General Commands Reference Guide C | 215©1989-2024 Lauterbach

CTS.STATistic Nesting function runtime analysis

The CTS.STATistic command group displays a statistical analysis based on the CTS data. Gaps in the
trace caused by FIFO overflows are filled by CTS when SmartTrace is enabled (CTS.SmartTrace ON).

See also

■ CTS ■ CTS.PROfileChart

CTS.STATistic.ChildTREE Show callee context of a function

Show call tree and run-time of all functions called by the specified function based on the CTS data. The
function is specified by its start <address>.

Refer to the description of <trace>.STATistic.ChildTREE for more information.

See also

■ <trace>.STATistic.TREE

CTS.STATistic.Func Nesting function runtime analysis

Analyzes the function nesting and calculates the time spent in functions and the number of function calls
based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.Func for more information.

See also

■ <trace>.STATistic.Func

Format: CTS.STATistic.ChildTREE <address> [/<option>]

Format: CTS.STATistic.Func [<trace_area>] [/<option>]
General Commands Reference Guide C | 216©1989-2024 Lauterbach

CTS.STATistic.GROUP Group run-time analysis

The time spent in groups and the number of calls is calculated (flat statistic) based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace. The results only include groups within the program range.
Groups for data addresses are not included.

Refer to the description of <trace>.STATistic.GROUP for more information.

See also

■ <trace>.STATistic.GROUP

CTS.STATistic.INTERRUPT Interrupt statistic

Analyzes the function nesting and calculates the time spent in interrupts and the number of interrupt calls
based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.INTERRUPT for more information.

See also

■ <trace>.STATistic.INTERRUPT

CTS.STATistic.INTERRUPTTREE Interrupt nesting

This command displays a graphical tree of the interrupt nesting based on the CTS data. This feature is only
available if TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.INTERRUPTTREE for more information.

See also

■ <trace>.STATistic.INTERRUPTTREE

Format: CTS.STATistic.GROUP [<trace_area>] [/<option>]

Format: CTS.STATistic.INTERRUPT [<trace_area>] [/<option>]

Format: CTS.STATistic.INTERRUPTTREE [<trace_area>] [/<option>]
General Commands Reference Guide C | 217©1989-2024 Lauterbach

CTS.STATistic.LINKage Per caller statistic of function

Performs a function run-time statistic for a single function itemized by its callers based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.LINKage for more information.

See also

■ <trace>.STATistic.LINKage

CTS.STATistic.MODULE Code execution broken down by module

Shows a statistical analysis of symbol modules based on the CTS data. The list of loaded modules can be
displayed with sYmbol.List.Module. CTS tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.MODULE for more information.

See also

■ <trace>.STATistic.MODULE

CTS.STATistic.ParentTREE Show the call context of a function

Show call tree and run-time of all callers of the specified function based on the CTS data. CTS tries to fill
gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.ParentTREE for more information.

See also

■ <trace>.STATistic.ParentTREE

Format: CTS.STATistic.LINKage [<trace_area>] [/<option>]

Format: CTS.STATistic.MODULE [<trace_area>] [/<option>]

Format: CTS.STATistic.ParentTREE [<trace_area>] [/<option>]
General Commands Reference Guide C | 218©1989-2024 Lauterbach

CTS.STATistic.PROGRAM Code execution broken down by program

Shows a statistical analysis of loaded object file programs based on the CTS data. CTS tries to fill gaps in
the trace using SmartTrace. The loaded programs can be displayed with the command sYmbol.Browse *.

Refer to the description of <trace>.STATistic.PROGRAM for more information.

See also

■ <trace>.STATistic.PROGRAM

CTS.STATistic.RUNNABLE Runnable runtime analysis

Analyzes the function nesting and calculates the time spent in AUTOSAR Runnables and the number of
Runnable calls based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace. This feature is
only available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to the description of <trace>.STATistic.RUNNABLE for more information.

See also

■ <trace>.STATistic.RUNNABLE

CTS.STATistic.sYmbol Flat run-time analysis

Displays the execution time in different symbol regions based on the CTS data. CTS tries to fill gaps in the
trace using SmartTrace.

Refer to the description of <trace>.STATistic.sYmbol for more information.

See also

■ <trace>.STATistic.sYmbol

Format: CTS.STATistic.PROGRAM [<trace_area>] [/<option>]

Format: CTS.STATistic.RUNNABLE [<trace_area>] [/<option>]

Format: CTS.STATistic.sYmbol [<trace_area>] [/<option>]
General Commands Reference Guide C | 219©1989-2024 Lauterbach

CTS.STATistic.TASK Task statistic

Displays a task runtime statistic based on the CTS data. CTS tries to fill gaps in the trace using SmartTrace.
This feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.TASK for more information.

See also

■ <trace>.STATistic.TASK

CTS.STATistic.TASKINFO Statistic for context ID special messages

Displays a run-time statistic based on the CTS data for special messages written to the context ID register
(ETM trace).

Refer to <trace>.STATistic.TASKINFO for a description of the parameters and options.

See also

■ <trace>.STATistic.TASKINFO

CTS.STATistic.TASKINTR ISR2 statistic (ORTI)

Displays an ORTI based ISR2 runtime statistic based on the CTS data. CTS tries to fill gaps in the trace
using SmartTrace. This feature can only be used if ISR2 can be traced based on the information provided by
the ORTI file. Please refer to “OS Awareness Manual NORTi” (rtos_norti.pdf) for more information.

Refer to the description of <trace>.STATistic.TASKINTR for more information.

See also

■ <trace>.STATistic.TASKINTR

Format: CTS.STATistic.TASK [<trace_area>] [/<option>]

Format: CTS.STATistic.TASKINFO [<trace_area>] [/<option>]

Format: CTS.STATistic.TASKINTR [<trace_area>] [/<option>]
General Commands Reference Guide C | 220©1989-2024 Lauterbach

CTS.STATistic.TASKKernel Task statistic with kernel markers

Similar command to <trace>.STATistic.TASKKernel. The analysis is however based on the CTS data. This
feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.TASKKernel for more information.

See also

■ <trace>.STATistic.TASKKernel

CTS.STATistic.TASKORINTERRUPT Task and interrupt statistic

Displays the execution time in different tasks and interrupts based on the CTS data. CTS tries to fill gaps in
the trace using SmartTrace. This feature is only available if TRACE32 has been set for OS-aware
debugging.

Refer to the description of <trace>.STATistic.TASKORINTERRUPT for more information.

See also

■ <trace>.STATistic.TASKORINTERRUPT

CTS.STATistic.TASKSRV OS service routines statistic

Displays the execution time in OS service routines based on the CTS data. CTS tries to fill gaps in the trace
using SmartTrace. This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is
configured with the TASK.ORTI command. Please refer to “OS Awareness Manual NORTi”
(rtos_norti.pdf) for more information.

Format: CTS.STATistic.TASK [<trace_area>] [/<option>]

Format: CTS.STATistic.TASKORINTERRUPT [<trace_area>] [/<option>]

Format: CTS.STATistic.TASKSRV [<trace_area>] [/<option>]
General Commands Reference Guide C | 221©1989-2024 Lauterbach

Refer to the description of <trace>.STATistic.TASKSRV for more information.

See also

■ <trace>.STATistic.TASKSRV

CTS.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related

Displays the execution time in task-related interrupts based on the CTS data. CTS tries to fill gaps in the
trace using SmartTrace. This feature is only available if TRACE32 has been set for OS-aware debugging.

Refer to the description of <trace>.STATistic.TASKVSINTERRUPT for more information.

See also

■ <trace>.STATistic.TASKVSINTERRUPT

CTS.STATistic.TREE Tree display of nesting function run-time analysis

The results of this command shows a graphical tree of the function nesting based on the CTS data. CTS
tries to fill gaps in the trace using SmartTrace.

Refer to the description of <trace>.STATistic.TREE for more information.

See also

■ <trace>.STATistic.TREE

▲ ’Release Information’ in ’Legacy Release History’

Format: CTS.STATistic.TASKVSINTERRUPT [<trace_area>] [/<option>]

Format: CTS.STATistic.TREE [<trace_area>] [/<option>]
General Commands Reference Guide C | 222©1989-2024 Lauterbach

CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target

If CTS is active, the TRACE32 screen displays the contents of the registers and memories as they have
been when the currently active CTS record (see the yellow CTS field in the state line) was sampled to the
state line. The command CTS.TAKEOVER takes the register and memory contents over to the target and
deactivates CTS.

See also

■ CTS ■ CTS.state

CTS.UNDO Revert last CTS command

Undoes last CTS run-control command (e.g CTS Step).

See also

■ CTS.UseConst ■ CTS.UseFinalMemory ■ CTS.UseSIM ■ CTS

CTS.UseConst Use constants for the CTS processing

CTS.UseConst become effective after CTS.UseFinalMemory is set to OFF.

See also

■ CTS.UNDO ■ CTS.UseDataTrace ■ CTS.UseFinalContext ■ CTS.UseFinalMemory
■ CTS.UseSIM ■ CTS.UseStartMemory ■ CTS ■ CTS.state

Format: CTS.TAKEOVER

Format: CTS.UNDO

Format: CTS.UseConst [ON | OFF]

ON Read accesses to all memory locations that have the mapper attribute
CONST are evaluated by CTS even if CTS.UseFinalMemory is switched
to OFF.

OFF Memory locations with the attribute CONST are not used by CTS.
General Commands Reference Guide C | 223©1989-2024 Lauterbach

CTS.UseDataTrace Use sampling cycles for CTS

See also

■ CTS.UseConst ■ CTS.UseFinalMemory ■ CTS.UseSIM ■ CTS

CTS.UseFinalContext Use the CPU registers for CTS
[build 164999 - DVD 02/2024]

See also

■ CTS.UseFinalMemory ■ CTS.UseConst ■ CTS.UseSIM ■ CTS
■ CTS.state

Format: CTS.UseDataTrace [ON | OFF]

ON (default) CTS uses the data cycles sampled to the trace buffer.

OFF CTS doesn’t use the data cycles sampled to the trace buffer.

Format: CTS.UseFinalContext [ON | OFF]
CTS.UseRegister [ON | OFF] (deprecated)

ON (default) CTS uses the current contents of the CPU registers. When a CPU
register was not accessed by the program section sampled to the trace
buffer, CTS assumes, that the register had the current contents during all
program steps.

OFF CTS doesn’t use the current contents of the CPU registers. This is
required if the program execution is still running when CTS is used or if
the program execution was still running after the sampling to the trace
buffer was stopped.
General Commands Reference Guide C | 224©1989-2024 Lauterbach

CTS.UseFinalMemory Use memory contents for CTS
[build 164999 - DVD 02/2024]

See also

■ CTS.UseFinalContext ■ CTS.UNDO ■ CTS.UseConst ■ CTS.UseDataTrace
■ CTS.UseSIM ■ CTS.UseStartMemory ■ CTS ■ CTS.state
■ MAP.VOLATILE

Format: CTS.UseFinalMemory [ON | OFF]
CTS.UseMemory [ON | OFF] (deprecated)

ON (default) The memory contents is used by CTS.
• When a memory location was not accessed by the program sec-

tion sampled to the trace buffer, CTS assumes, that the memory
location had the current contents during all program steps.

• When there was no write access to a memory location by the pro-
gram section sampled to the trace buffer, CTS assumes, that the
current contents was read by read accesses to this memory loca-
tion sampled to the trace buffer.

To set CTS.UseFinalMemory to ON requires, that all CPU cycles until the
stop of the program execution were sampled to the trace buffer.
Memory ranges that are changed not only by the CPU core e.g.
peripherals or dual-ported memories can be excluded by using the
MAP.VOLATILE command

OFF CTS.UseFinalMemory OFF is required:
• if not all CPU cycles until the stop of the program execution were

sampled to the trace buffer.
• if the program execution is still running while CTS is used.
• if no data flow is sampled to the trace buffer.
MAP.CONST can be used to define memory ranges with constant
contents that are used by CTS if CTS.UseConst is set to ON.
General Commands Reference Guide C | 225©1989-2024 Lauterbach

CTS.UseSIM Use instruction set simulator for CTS

See also

■ CTS.UseStartMemory ■ CTS.UNDO ■ CTS.UseConst ■ CTS.UseDataTrace
■ CTS.UseFinalContext ■ CTS.UseFinalMemory ■ CTS ■ CTS.state

Format: CTS.UseSIM [ON | OFF]

ON (default) CTS uses the instruction set simulator.

OFF (For error diagnosis only.)
General Commands Reference Guide C | 226©1989-2024 Lauterbach

CTS.UseStartMemory Use virtual memory contents as initial values for CTS

This command is typically used for short trace recordings to minimize the number of unknown cycles. It
allows you to use the virtual memory contents as initial values for CTS. When you use the command,
make sure that the trace recording contains the program start.

See also

■ CTS.UseSIM ■ CTS.UseConst ■ CTS.UseFinalMemory ■ CTS

Format: CTS.UseStartMemory [ON | OFF]
CTS.UseVM [ON | OFF] (deprecated)

ON The virtual memory contents (VM:) are used as initial values for CTS.
This allows you to have valid memory contents even for the first record.

OFF The virtual memory contents are not used.

...
; It is recommended to make this setting very early on in a script.
CTS.UseStartMemory ON
...
; ---
; For the 1st analysis:

; Before the trace is started, data can be copied to the virtual memory
; (VM:) of TRACE32.
; Copy contents of specified address range to TRACE32 virtual memory.
Data.Copy 0x3fa000++0xfff VM:
; Start the trace recording and completely fill the trace buffer.
Go
Break
...
; ---
; For the 2nd analysis:

; Repeat the above Data.Copy command.
CTS.CAPTURE
; Start the trace recording and completely fill the trace buffer.
Go
Break
...
General Commands Reference Guide C | 227©1989-2024 Lauterbach

	General Commands Reference Guide C
	History
	CACHE
	CACHE View and modify CPU cache contents
	CACHE.CLEAN Clean CACHE
	CACHE.ComPare Compare CACHE with memory
	CACHE.DUMP Dump CACHE
	CACHE.FLUSH Clean and invalidate CACHE
	CACHE.GET Get CACHE contents
	CACHE.INFO View all information related to an address
	CACHE.INVALIDATE Invalidate CACHE
	CACHE.List List CACHE contents
	CACHE.ListFunc List cached functions
	CACHE.ListLine List cached source code lines
	CACHE.ListModule List cached modules
	CACHE.ListVar List cached variables
	CACHE.LOAD Load previously stored cache contents
	CACHE.RELOAD Reload previously loaded cache contents
	CACHE.SAVE Save cache contents for postprocessing
	CACHE.SNAPSHOT Take cache snapshot for comparison
	CACHE.UNLOAD Unload previously loaded cache contents
	CACHE.view Display cache control register

	CAnalyzer
	CAnalyzer Trace features of Compact Analyzer

	CAnalyzer - Compact Analyzer specific Trace Commands
	CAnalyzer.<specific_cmds> Overview of CAnalyzer-specific commands
	CAnalyzer.CLOCKDelay Set clock delay
	CAnalyzer.CLOSE Close named pipes
	CAnalyzer.DecodeMode Define how to decode the received trace data
	CAnalyzer.I2C I2C control
	CAnalyzer.PipeLOAD Load a previously saved file
	CAnalyzer.PipeRePlay Replay a previously recorded stream
	CAnalyzer.PipeSAVE Define a file that stores received data
	CAnalyzer.PipeWRITE Define a named pipe as trace sink
	CAnalyzer.SAMPLE Set sample time offset
	CAnalyzer.ShowFocus Display data eye
	CAnalyzer.ShowFocusClockEye Show clock eye
	CAnalyzer.ShowFocusEye Show data eyes
	CAnalyzer.TERMination Configure parallel trace termination
	CAnalyzer.TOut Route trigger to PODBUS (CombiProbe/µTrace)
	CAnalyzer.TraceCLOCK Configure the trace port frequency
	CAnalyzer.TracePORT Select which trace port is used
	CAnalyzer.WRITE Define a file as trace sink

	Generic CAnalyzer Trace Commands
	CAnalyzer.ACCESS Define access path to program code for trace decoding
	CAnalyzer.Arm Arm the trace
	CAnalyzer.AutoArm Arm automatically
	CAnalyzer.AutoFocus Calibrate AUTOFOCUS preprocessor
	CAnalyzer.AutoInit Automatic initialization
	CAnalyzer.BookMark Set a bookmark in trace listing
	CAnalyzer.BookMarkToggle Toggles a single trace bookmark
	CAnalyzer.Chart Display trace contents graphically
	CAnalyzer.CLOCK Clock to calculate time out of cycle count information
	CAnalyzer.ComPare Compare trace contents
	CAnalyzer.ComPareCODE Compare trace with memory
	CAnalyzer.CustomTrace Custom trace
	CAnalyzer.CustomTraceLoad Load a DLL for trace analysis/Unload all DLLs
	CAnalyzer.DISable Disable the trace
	CAnalyzer.DRAW Plot trace data against time
	CAnalyzer.EXPORT Export trace data for processing in other applications
	CAnalyzer.ExtractCODE Extract code from trace
	CAnalyzer.FILE Load a file into the file trace buffer
	CAnalyzer.Find Find specified entry in trace
	CAnalyzer.FindAll Find all specified entries in trace
	CAnalyzer.FindChange Search for changes in trace flow
	CAnalyzer.FindProgram Advanced trace search
	CAnalyzer.FindReProgram Activate advanced existing trace search program
	CAnalyzer.FindViewProgram State of advanced trace search programming
	CAnalyzer.FLOWPROCESS Process flowtrace
	CAnalyzer.FLOWSTART Restart flowtrace processing
	CAnalyzer.Get Display input level
	CAnalyzer.GOTO Move cursor to specified trace record
	CAnalyzer.Init Initialize trace
	CAnalyzer.JOINFILE Concatenate several trace recordings
	CAnalyzer.List List trace contents
	CAnalyzer.ListNesting Analyze function nesting
	CAnalyzer.ListVar List variable recorded to trace
	CAnalyzer.LOAD Load trace file for offline processing
	CAnalyzer.MERGEFILE Combine two trace files into one
	CAnalyzer.Mode Set the trace operation mode
	CAnalyzer.OFF Switch off
	CAnalyzer.PortFilter Specify utilization of trace memory
	CAnalyzer.PortType Specify trace interface
	CAnalyzer.PROfileChart Profile charts
	CAnalyzer.PROfileSTATistic Statistical analysis in a table versus time
	CAnalyzer.PROTOcol Protocol analysis
	CAnalyzer.PROTOcol.Chart Graphic display for user-defined protocol
	CAnalyzer.PROTOcol.Draw Graphic display for user-defined protocol
	CAnalyzer.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.Find Find in trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.list Display trace buffer for user-defined protocol
	CAnalyzer.PROTOcol.PROfileChart Profile chart for user-defined protocol
	CAnalyzer.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	CAnalyzer.PROTOcol.STATistic Display statistics for user-defined protocol
	CAnalyzer.REF Set reference point for time measurement
	CAnalyzer.RESet Reset command
	CAnalyzer.SAVE Save trace for postprocessing in TRACE32
	CAnalyzer.SelfArm Automatic restart of trace recording
	CAnalyzer.SIZE Define buffer size
	CAnalyzer.SnapShot Restart trace capturing once
	CAnalyzer.SPY Adaptive stream and analysis
	CAnalyzer.state Display trace configuration window
	CAnalyzer.STATistic Statistic analysis
	CAnalyzer.STREAMCompression Select compression mode for streaming
	CAnalyzer.STREAMFILE Specify temporary streaming file path
	CAnalyzer.STREAMFileLimit Set size limit for streaming file
	CAnalyzer.STREAMLOAD Load streaming file from disk
	CAnalyzer.STREAMSAVE Save streaming file to disk
	CAnalyzer.TDelay Trigger delay
	CAnalyzer.TestFocus Test trace port recording
	CAnalyzer.TestFocusClockEye Scan clock eye
	CAnalyzer.TestFocusEye Check signal integrity
	CAnalyzer.TestUtilization Tests trace port utilization
	CAnalyzer.THreshold Optimize threshold for trace lines
	CAnalyzer.Timing Waveform of trace buffer
	CAnalyzer.TraceCONNECT Select on-chip peripheral sink
	CAnalyzer.TRACK Set tracking record
	CAnalyzer.TSELect Select trigger source
	CAnalyzer.View Display single record
	CAnalyzer.ZERO Align timestamps of trace and timing analyzers

	CIProbe
	CIProbe Trace with Analog Probe and CombiProbe/μTrace (MicroTrace)

	CIProbe-specific Trace Commands
	CIProbe.<specific_cmds> Overview of CIProbe-specific commands
	CIProbe.ALOWerLIMit Set lower trigger/filter comparator value
	CIProbe.ATrigEN Enable/disable trigger contribution of a channel
	CIProbe.ATrigMODE Set trigger/filter condition
	CIProbe.AUPPerLIMit Set upper trigger/filter comparator value
	CIProbe.Mode Set trace operation mode
	CIProbe.state Display CIProbe configuration window
	CIProbe.TDelay Define trigger delay
	CIProbe.TOut Route CIProbe trigger to PODBUS
	CIProbe.TSELect Route PODBUS trigger to CIProbe
	CIProbe.TSYNC.SELect Select trigger input pin and edge or state

	Generic CIProbe Trace Commands
	CIProbe.Arm Arm the trace
	CIProbe.AutoArm Arm automatically
	CIProbe.AutoInit Automatic initialization
	CIProbe.BookMark Set a bookmark in trace listing
	CIProbe.BookMarkToggle Toggles a single trace bookmark
	CIProbe.Chart Display trace contents graphically
	CIProbe.ComPare Compare trace contents
	CIProbe.DISable Disable the trace
	CIProbe.DisConfig Trace disassembler configuration
	CIProbe.DRAW Plot trace data against time
	CIProbe.EXPORT Export trace data for processing in other applications
	CIProbe.FILE Load a file into the file trace buffer
	CIProbe.Find Find specified entry in trace
	CIProbe.FindAll Find all specified entries in trace
	CIProbe.FindChange Search for changes in trace flow
	CIProbe.Get Display input level
	CIProbe.GOTO Move cursor to specified trace record
	CIProbe.Init Initialize trace
	CIProbe.List List trace contents
	CIProbe.ListNesting Analyze function nesting
	CIProbe.ListVar List variable recorded to trace
	CIProbe.LOAD Load trace file for offline processing
	CIProbe.OFF Switch off
	CIProbe.PROfile Rolling live plots of trace data
	CIProbe.PROfile.channel Display profile of signal probe channels
	CIProbe.PROfileChart Profile charts
	CIProbe.PROfileSTATistic Statistical analysis in a table versus time
	CIProbe.PROTOcol Protocol analysis
	CIProbe.PROTOcol.Chart Graphic display for user-defined protocol
	CIProbe.PROTOcol.Draw Graphic display for user-defined protocol
	CIProbe.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	CIProbe.PROTOcol.Find Find in trace buffer for user-defined protocol
	CIProbe.PROTOcol.list Display trace buffer for user-defined protocol
	CIProbe.PROTOcol.PROfileChart Profile chart for user-defined protocol
	CIProbe.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	CIProbe.PROTOcol.STATistic Display statistics for user-defined protocol
	CIProbe.REF Set reference point for time measurement
	CIProbe.RESet Reset command
	CIProbe.SAVE Save trace for postprocessing in TRACE32
	CIProbe.SIZE Define buffer size
	CIProbe.SnapShot Restart trace capturing once
	CIProbe.SPY Adaptive stream and analysis
	CIProbe.STATistic Statistic analysis
	CIProbe.STREAMCompression Select compression mode for streaming
	CIProbe.STREAMFILE Specify temporary streaming file path
	CIProbe.STREAMFileLimit Set size limit for streaming file
	CIProbe.Timing Waveform of trace buffer
	CIProbe.TRACK Set tracking record
	CIProbe.View Display single record
	CIProbe.ZERO Align timestamps of trace and timing analyzers

	ClipStore
	ClipSTOre Store settings to clipboard

	CLOCK
	CLOCK Display date and time
	CLOCK.BACKUP Set backup clock frequency
	CLOCK.DATE Alias for DATE command
	CLOCK.OFF Disable clock frequency computation
	CLOCK.ON Enable clock frequency computation
	CLOCK.OSCillator Set board oscillator frequency
	CLOCK.Register Display PLL related registers
	CLOCK.RESet Reset CLOCK command group settings
	CLOCK.state Display clock frequencies
	CLOCK.SYSCLocK Set external clock frequency
	CLOCK.VCOBase Set "VCOBase" clock frequency
	CLOCK.VCOBaseERAY Set "FlexRay VCOBase" clock frequency

	CMI
	CMI Clock management interface

	CMN
	CMN Coherent mesh network

	CMN<trace> - Trace Data Analysis
	CMN<trace> Command groups for CMN<trace>
	Overview CMN<trace>
	CMNAnalyzer Analyze CMN information recorded by TRACE32 PowerTrace
	CMNCAnalyzer Analyze CMN information recorded by CombiProbe
	CMNHAnalyzer Analyze CMN information captured by the host analyzer
	CMNLA Analyze CMN information from binary source
	CMNOnchip Analyze CMN information captured in target onchip memory

	CORE
	CORE Cores in an SMP system
	Overview CORE
	CORE.ADD Add core/thread to the SMP system
	CORE.ASSIGN Assign a set of physical cores/threads to the SMP system
	CORE.List List information about cores
	CORE.NUMber Assign a number of cores/threads to the SMP system
	CORE.ReMove Remove core from the SMP system
	CORE.select Change currently selected core
	CORE.SHOWACTIVE Show active/inactive cores in an SMP system
	CORE.SINGLE Select single core for debugging

	Count
	Count Universal counter
	Overview Count
	Counter of TRACE32-ICD
	Counter Functions

	Count.AutoInit Automatic counter reset
	Count.Gate Gate time
	Count.GO Start measurement
	Count.Init Reset counter
	Count.Mode Mode selection
	Count.OUT Forward counter input signal to trigger system/output
	Count.PROfile Graphic counter display
	Count.RESet Reset command
	Count.Select Select input source
	Count.state State display

	COVerage
	COVerage Trace-based code coverage
	COVerage.ADD Add trace contents to code coverage system
	COVerage.Delete Set code coverage tagging to never
	COVerage.EXPORT Export code coverage information
	COVerage.EXPORT.CBA Export coverage results in CBA format
	COVerage.EXPORT.CSV Export coverage results in CSV format
	COVerage.EXPORT.JSON Export code coverage results in JSON format
	COVerage.EXPORT.JSONE Export code coverage in extended JSON format
	COVerage.EXPORT.ListCalleEs Export the function callees
	COVerage.EXPORT.ListCalleEs.<sub_cmd> Export callees information
	COVerage.EXPORT.ListCalleRs Export the function callers
	COVerage.EXPORT.ListCalleRs.<sub_cmd> Export callers information
	COVerage.EXPORT.ListFunc Export code coverage results at function level
	COVerage.EXPORT.ListFunc.<sub_cmd> Export function
	COVerage.EXPORT.ListInlineBlock Export inlined code blocks
	COVerage.EXPORT.ListInlineBlock.<sub_cmd> Export cov. inlined
	COVerage.EXPORT.ListLine Export HLL lines
	COVerage.EXPORT.ListLine.<sub_cmd> Export HLL lines information
	COVerage.EXPORT.ListModule Export modules
	COVerage.EXPORT.ListModule.<sub_cmd> Export modules information
	COVerage.EXPORT.ListVar Export HLL variables
	COVerage.EXPORT.ListVar.<sub_cmd> Export HLL variables information
	COVerage.INFO Information about conditional instructions
	COVerage.Init Clear coverage database
	COVerage.List Coverage display
	COVerage.ListCalleEs Display coverage for callees function
	COVerage.ListCalleEs.<sub_cmd> Display coverage for callees function
	COVerage.ListCalleRs Display coverage for callers function
	COVerage.ListCalleRs.<sub_cmd> Display coverage for callers function
	COVerage.ListFunc Display coverage for functions
	COVerage.ListFunc.<sub_cmd> Display coverage for HLL function
	COVerage.ListInlineBlock Display coverage for inlined block
	COVerage.ListInlineBlock.<sub_cmd> Display coverage for inlined block
	COVerage.ListLine Display coverage for HLL lines
	COVerage.ListLine.<sub_cmd> Display coverage for HLL lines
	COVerage.ListModule Display coverage for modules
	COVerage.ListModule.<sub_cmd> Display coverage for modules
	COVerage.ListVar Display coverage for variable
	COVerage.ListVar.<sub_cmd> Display coverage for variables
	COVerage.LOAD Load coverage database from file
	COVerage.MAP Map the coverage to a different range
	COVerage.METHOD Select code coverage method
	COVerage.Mode Activate code coverage for virtual targets
	COVerage.OFF Deactivate coverage
	COVerage.ON Activate coverage
	COVerage.Option Set coverage options
	COVerage.Option.BLOCKMode Enable/disable line block mode
	COVerage.Option.ITrace Enable instruction trace processing
	COVerage.Option.SourceMetric Select code coverage metric
	COVerage.Option.StaticInfo Perform code coverage precalculations
	COVerage.RESet Clear coverage database
	COVerage.SAVE Save coverage database to file
	COVerage.Set Coverage modification
	COVerage.state Configure coverage
	COVerage.TreeWalkSETUP Prepare a tree with code coverage symbols
	COVerage.TreeWalkSETUP.<sub_cmd> Prepare a coverage symbol tree

	CTS
	CTS Context tracking system (CTS)
	Trace-based Debugging
	Full High-Level Language Trace Display
	Reconstruction of Trace Gaps (TRACE32-ICD)
	CTS Commands
	CTS.CACHE CTS cache analysis
	CTS.CACHE.Allocation Define the cache allocation technique
	CTS.CACHE.CYcles Define counting method for cache analysis
	CTS.CACHE.DefineBus Define bus interface
	CTS.CACHE.L1Architecture Define architecture for L1 cache
	CTS.CACHE.LFSR Linear-feedback shift register for random generator
	CTS.CACHE.ListAddress Address based cache analysis
	CTS.CACHE.ListFunc Function based cache analysis
	CTS.CACHE.ListLine HLL line based cache analysis
	CTS.CACHE.ListModules Module based cache analysis
	CTS.CACHE.ListRequests Display request for a single cache line
	CTS.CACHE.ListSet Cache set based cache analysis
	CTS.CACHE.ListVar Variable based cache analysis
	CTS.CACHE.MMUArchitecture Define MMU architecture for cache control
	CTS.CACHE.Mode Define memory coherency strategy
	CTS.CACHE.Replacement Define the replacement strategy
	CTS.CACHE.RESet Reset settings of CTS cache window
	CTS.CACHE.SETS Define the number of cache sets
	CTS.CACHE.Sort Define sorting for all list commands
	CTS.CACHE.state Display settings of CTS cache analysis
	CTS.CACHE.Tags Define address mode for cache lines
	CTS.CACHE.TLBArchitecture Define architecture for the TLB
	CTS.CACHE.View Display the results for the cache analysis
	CTS.CACHE.ViewBPU Display statistic for branch prediction unit
	CTS.CACHE.ViewBus Display statistics for the bus utilization
	CTS.CACHE.ViewStalls Display statistics for idles/stalls
	CTS.CACHE.WAYS Define number of cache ways
	CTS.CACHE.Width Define width of cache line
	CTS.CAPTURE Copy real memory to the virtual memory for CTS
	CTS.Chart.ChildTREE Display callee context of a function as chart
	CTS.Chart.Func Function activity chart
	CTS.Chart.INTERRUPT Display interrupt chart
	CTS.Chart.INTERRUPTTREE Display interrupt nesting
	CTS.Chart.Nesting Show function nesting at cursor position
	CTS.Chart.RUNNABLE Runnable activity chart
	CTS.Chart.sYmbol Execution time at different symbols as chart
	CTS.Chart.TASK Task activity chart
	CTS.Chart.TASKINFO Chart for context ID special messages
	CTS.Chart.TASKINTR Display ISR2 time chart (ORTI)
	CTS.Chart.TASKKernel Display task time chart with kernel markers (ORTI)
	CTS.Chart.TASKORINTERRUPT Task and interrupt activity chart
	CTS.Chart.TASKSRV Service routine run-time analysis
	CTS.Chart.TASKVSINTERRUPT Time chart of interrupted tasks
	CTS.Chart.TASKVSINTR Time chart of task-related interrupts
	CTS.Chart.TREE Display function chart as tree view
	CTS.EXPORT Export trace data
	CTS.FixedControl Execution time at different symbols as chart
	CTS.GOTO Select the specified record for CTS (absolute)
	CTS.INCremental CTS displays intermediate results while processing
	CTS.Init Restart CTS processing
	CTS.List List trace contents
	CTS.ListNesting Analyze function nesting
	CTS.Mode Operation mode
	CTS.OFF Switch off trace-based debugging
	CTS.ON Switch on trace-based debugging
	CTS.PROCESS Process cache analysis
	CTS.PROfileChart Profile charts
	CTS.PROfileChart.CACHE Display cache analysis results graphically
	CTS.PROfileChart.sYmbol Dynamic program behavior as profile chart
	CTS.PROfileChart.TASK Task profile chart
	CTS.PROfileChart.TASKINFO Profile chart for context ID special messages
	CTS.PROfileChart.TASKINTR ISR2 profile chart
	CTS.PROfileChart.TASKKernel Task profile chart with kernel markers
	CTS.PROfileChart.TASKORINTERRUPT Task and interrupt profile chart
	CTS.PROfileChart.TASKSRV OS service routines profile chart
	CTS.PROfileChart.TASKVSINTR Task-related interrupts profile chart
	CTS.RESet Reset the CTS settings
	CTS.SELectiveTrace Trace contains selective trace information
	CTS.SKIP Select the specified record for CTS (relative)
	CTS.SmartTrace CTS smart trace
	CTS.state Display CTS settings
	CTS.STATistic Nesting function runtime analysis
	CTS.STATistic.ChildTREE Show callee context of a function
	CTS.STATistic.Func Nesting function runtime analysis
	CTS.STATistic.GROUP Group run-time analysis
	CTS.STATistic.INTERRUPT Interrupt statistic
	CTS.STATistic.INTERRUPTTREE Interrupt nesting
	CTS.STATistic.LINKage Per caller statistic of function
	CTS.STATistic.MODULE Code execution broken down by module
	CTS.STATistic.ParentTREE Show the call context of a function
	CTS.STATistic.PROGRAM Code execution broken down by program
	CTS.STATistic.RUNNABLE Runnable runtime analysis
	CTS.STATistic.sYmbol Flat run-time analysis
	CTS.STATistic.TASK Task statistic
	CTS.STATistic.TASKINFO Statistic for context ID special messages
	CTS.STATistic.TASKINTR ISR2 statistic (ORTI)
	CTS.STATistic.TASKKernel Task statistic with kernel markers
	CTS.STATistic.TASKORINTERRUPT Task and interrupt statistic
	CTS.STATistic.TASKSRV OS service routines statistic
	CTS.STATistic.TASKVSINTERRUPT Statistic of interrupts, task-related
	CTS.STATistic.TREE Tree display of nesting function run-time analysis
	CTS.TAKEOVER Take memory/registers reconstructed by CTS over to target
	CTS.UNDO Revert last CTS command
	CTS.UseConst Use constants for the CTS processing
	CTS.UseDataTrace Use sampling cycles for CTS
	CTS.UseFinalContext Use the CPU registers for CTS
	CTS.UseFinalMemory Use memory contents for CTS
	CTS.UseSIM Use instruction set simulator for CTS
	CTS.UseStartMemory Use virtual memory contents as initial values for CTS

