LAUTERBACH A

General Commands Reference
Guide B

General Commands Reference Guide B

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
€= 1= = T 0T 1313 =T [- r—~
General Commands Reference GUIde Bcoooiiirrceecmrrnscscer s e s rsssssmse s ess s s ssssssmmeseeas 1
L 1= (o 8
BIVIC et REE R RN A AREEERARERREEERREAREEEEAAESRRREERSRESRRRRERRERRRRRRES 9
BMC Benchmark counters 9
BMC.<counter> Benchmark counters 10
BMC.<counter>.EVENT Assign event to counter 10
BMC.<counter>.FORMAT Counter value format 10
BMC.<counter>.RATIO Set two counters in relation 11
BMC.<counter>.SIZE Specify counter size 11
BMC.Attach BMC attach 12
BMC.Autolnit Automatic initialization 12
BMC.CLOCK Provide core clock for cycle counter 12
BMC.Init Initialize counters 13
BMC.PROfile Display counter changes per second 13
BMC.PROfileChart Profile chart with benchmark counter 14
BMC.PROfileChart.AddressGROUP Address group profile chart with BMC 14
BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC 15
BMC.PROfileChart.DistriB Distribution display with BMC 15
BMC.PROfileChart. GROUP Group profile chart with BMC 15
BMC.PROfileChart.Line Source code line profile chart with BMC 16
BMC.PROfileChart. MODULE Module profile chart with BMC 16
BMC.PROfileChart. PROGRAM Program profile chart with BMC 17
BMC.PROfileChart.sYmbol Symbol profile chart with BMC 18
BMC.PROfileChart. TASK Task profile chart with BMC 18
BMC.PROfileChart. TASKINFO Data trace via context ID with BMC 18
BMC.PROfileChart. TASKINTR ISR2 profile chart with BMC 19
BMC.PROfileChart. TASKKernel Task profile chart with BMC 19
BMC.PROfileChart. TASKORINTERRUPT Task and interrupts with BMC 19
BMC.PROfileChart. TASKSRV OS service routines profile chart with BMC 20
BMC.PROfileChart. TASKVSINTR Task related intr. profile chart with BMC 20
BMC.PROfileSTATistic Statistical analysis vs. time with benchmark counter 21
BMC.PROfileSTATistic.Address Address statistical analysis with BMC 21
©1989-2024 Lauterbach General Commands Reference Guide B 2

BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC 22
BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC 22
BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC 22
BMC.PROfileSTATistic. GROUP Group profile statistic with BMC 23
BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC 23
BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC 24
BMC.PROfileSTATistic. MODULE Module profile statistic with BMC 24
BMC.PROfileSTATistic. PROGRAM Program profile statistic with BMC 24
BMC.PROfileSTATistic. RUNNABLE Runnable profile statistic with BMC 25
BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC 25
BMC.PROfileSTATistic. TASK Task profile statistic with BMC 25
BMC.PROfileSTATistic. TASKINFO Data trace via context ID with BMC 26
BMC.PROfileSTATistic. TASKINTR ISR2 profile statistic with BMC 26
BMC.PROfileSTATistic. TASKKernel Task profile statistic with BMC 27
BMC.PROfileSTATistic. TASKORINTERRUPT Task or interrupt with BMC 27
BMC.PROfileSTATistic. TASKSRV OS service routines profile stat. with BMC 27
BMC.RESet Reset benchmark counter configuration 29
BMC.SnoopSet Assign event counter to SNOOPer trace 29
BMC.state Display BMC configuration window 32
BMC.STATistic Statistic analysis with benchmark counter 35
BMC.STATistic.ChildTREE Function callee context with BMC 35
BMC.STATistic.DistriB Distribution analysis with BMC 36
BMC.STATistic.Func Nesting function run-time with BMC 36
BMC.STATistic. GROUP Group run-time analysis with BMC 36
BMC.STATistic.LINKage Per caller function statistic with BMC 37
BMC.STATistic. MODULE Module statistic with BMC 37
BMC.STATistic.ParentTREE Statistic for call context with BMC 37
BMC.STATistic. PROGRAM Program statistic with BMC 38
BMC.STATistic.sYmbol Flat run-time analysis with BMC 38
BMC.STATistic. TASK Statistic for tasks with BMC 39
BMC.STATistic. TASKINFO Statistic for context ID messages with BMC 39
BMC.STATistic. TASKINTR Statistic for ISR2 with BMC 39
BMC.STATistic. TASKKernel Statistic for tasks with BMC 40
BMC.STATistic. TASKORINTERRUPT Tasks and interrupts with BMC 40
BMC.STATistic. TASKSRV Statistic for OS service routines with BMC 41
BMC.STATistic. TREE Tree nesting function run-time with BMC 41
0T 41 =T 42
BookMark Address and trace bookmarks 42
Overview BookMark 42
BookMark.CHange Edit the settings of a bookmark 43
BookMark.Create Create a new address bookmark 44
BookMark.Delete Delete an existing bookmark 45
BookMark.EditRemark Add/edit remark of a bookmark 46
©1989-2024 Lauterbach General Commands Reference Guide B 3

BookMark.EXPORT Export bookmarks 47
BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses 47
BookMark.EXPORT.preset Export bookmarks to an XML file 47
BookMark.EXPORT.SOURCE Export bookmarks for specified source files 49
BookMark.EXPORT.sYmbol Export bookmarks for specified symbols 49
BookMark.List List all bookmarks 51
BookMark.RESet Delete all bookmarks 52
BookMark.Toggle Toggles a single address bookmark 53
] =T 54
Break Stopping the program execution 54
Breakpoints 54
Break.Asm Stop program/set temporary breakpoint and switch to Asm mode 56
Break.CLEAR Reset complex triggers 57
Break.CONFIG Configuration of breakpoint behavior and breakpoint scope 58
Break.CONFIG.AlwaysAlive Alive Onchip breakpoints 58
Break.CONFIG.InexactAddress Inexact address range breakpoint 58
Break.CONFIG.InexactData Inexact data value breakpoint 59
Break.CONFIG.InexactResume Resuming on inexact breakpoints 60
Break.CONFIG.InexactTrigger Inexact trigger breakpoints 60
Break.CONFIG.MatchASID Use ASID specific breakpoints 61
Break.CONFIG.MatchMachine Use machine specific breakpoints 62
Break.CONFIG.MatchZone Use zone specific breakpoints 62
Break. CONFIG.METHOD Breakpoints implementation 64
Break.CONFIG.state Breakpoint configuration window 65
Break.CONFIG.UseContextID Context ID specific breakpoints 65
Break.CONFIG.UseMachinelD Machine ID specific breakpoints 66
Break.CONFIG.VarConvert Convert breakpoints on scalar variables 68
Break.Delete Delete breakpoints 69
Break.DeletePATtern Delete breakpoints allowing wildcards 70
Break.direct Stop program execution or set temporary breakpoints 71
Break.DISable Disable breakpoints 73
Break.ENable Enable breakpoints 74
Break.Hll Stop program/set temporary breakpoint and switch to HLL mode 75
Break.Init Initialize breakpoints 76
Break.List Display list of breakpoints 76
Break.Mix Stop program/set temporary breakpoint and switch to MIX mode 78
Break.MON:itor Switch back to stop mode debugging 79
Break.PASS Define pass condition for breakpoint 79
Break.PATtern Set temporary breakpoints allowing wildcards 80
Break.Program CTL interactive programming 80
Break.ReProgram Activate existing CTL program file 81
Break.REQuest Request a program break 81
Break.RESet Delete all breakpoints and reset the TRACES32 break system 81
©1989-2024 Lauterbach General Commands Reference Guide B 4

Break.Set Set breakpoints 82
On-chip Breakpoints 84
Breakpoint Types 86
Real-time vs. Intrusive Breakpoints 87
Breakpoint Options 88

Break.SetFunc Mark HLL functions 106

Break.SetLine Mark HLL lines 108

Break.SetMONitor Switch to run mode debugging at the next “Go” 108

Break.SetPATtern Set breakpoints allowing wildcards 108

Break.SetTask Stop the program execution when task is scheduled 110

Break.ViewProgram Show state of the CTL trigger unit 110

5 111

BSDL Boundary scan description language 111

BSDL.BYPASSall Check bypass mode 112

BSDL.CHECK Enable test result checking 112

BSDL.FILE Load a BSDL file 112

BSDL.FLASH Flash programming 113

BSDL.FLASH.IFCheck Check flash interface definition 113

BSDL.FLASH.IFDefine Define flash interface 115

BSDL.FLASH.IFMap Map flash interface 116

BSDL.FLASH.INIT Initialize flash interface 117

BSDL.HARDRESET TAP resetvia TRST 117

BSDL.IDCODEall Check ID codes 118

BSDL.LINKAGE Create a bypass device 118

BSDL.LoadDR Load data register from file 119

BSDL.MOVEDOWN Move selected chip downwards 120

BSDL.MOVEUP Move selected chip upwards 121

BSDL.ParkState Select JTAG parking state 121

BSDL.RESet Reset boundary scan configuration 122

BSDL.RUN Run JTAG sequence 122

BSDL.RUNTCK Toggle TCK 122

BSDL.SAMPLEall Sample all signals 123

BSDL.SELect Selectachip 123

BSDL.SET Set chip parameters 124

BSDL.SetAndRun Immediate data register takeover 130

BSDL.SOFTRESET TAP resetvia TMS 131

BSDL.state Display BSDL chain configuration window 132

BSDL.StepPauseDR Special DR shift 133

BSDL.SToreDR Store data register to file 134

BSDL.TwoStepDR Single/double data register shift 135

BSDL.UNLOAD Unload a chip from chain 135

0 8 - T 136

BTrace Script-controlled trace sink 136

©1989-2024 Lauterbach General Commands Reference GuideB | 5

BTrace-specific Trace Commandscccccrriiimmmmmnnssmsmmnss s sss s e ssmsss s 137

BTrace.<specific_cmds> Overview of BTrace-specific commands 137
BTrace.Mode Set the trace operation mode 137
BTrace.PUSH Push trace data 137
BTrace.state Display BTrace configuration window 140
Generic BTrace Trace COMMANAScoviiiiiiiiisssssmmrmmrsnnssssssssssssssmmsssssssssssssssssssssnnmmsnsssnssnns 141
BTrace.Arm Arm the trace 141
BTrace.AutoArm Arm automatically 141
BTrace.Autolnit Automatic initialization 141
BTrace.BookMark Set a bookmark in trace listing 141
BTrace.Chart Display trace contents graphically 141
BTrace.ComPare Compare trace contents 141
BTrace.DISable Disable the trace 142
BTrace.DRAW Plot trace data against time 142
BTrace.EXPORT Export trace data for processing in other applications 142
BTrace.FILE Load a file into the file trace buffer 142
BTrace.Find Find specified entry in trace 142
BTrace.FindAll Find all specified entries in trace 142
BTrace.FindChange Search for changes in trace flow 142
BTrace.GOTO Move cursor to specified trace record 142
BTrace.Init Initialize trace 143
BTrace.List List trace contents 143
BTrace.ListNesting Analyze function nesting 143
BTrace.LOAD Load trace file for offline processing 143
BTrace.OFF Switch off 143
BTrace.PROfileChart Profile charts 143
BTrace.PROTOcol Protocol analysis 143
BTrace.PROTOcol.Chart Graphic display for user-defined protocol 144
BTrace.PROTOcol.Draw Graphic display for user-defined protocol 144
BTrace.PROTOcol. EXPORT Export trace buffer for user-defined protocol 144
BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol 144
BTrace.PROTOcol.list Display trace buffer for user-defined protocol 144
BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol 144
BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol 144
BTrace.PROTOcol.STATistic Display statistics for user-defined protocol 145
BTrace.REF Set reference point for time measurement 145
BTrace.RESet Reset command 145
BTrace.SAVE Save trace for postprocessing in TRACE32 145
BTrace.SIZE Define buffer size 145
BTrace.STATistic Statistic analysis 145
BTrace.Timing Waveform of trace buffer 145
BTrace.TRACK Set tracking record 145
BTrace.View Display single record 146

©1989-2024 Lauterbach General Commands Reference GuideB | 6

BTrace.ZERO Align timestamps of trace and timing analyzers 146

©1989-2024 Lauterbach General Commands Reference GuideB | 7

General Commands Reference Guide B

Version 06-Jun-2024

History

08-Apr-2024 New option /TraceEnableEnable for the command Break.SetFunc.
11-Mar-2024 New option /TraceEnable for the command Break.SetFunc.
20-Jul-2023 New option /OnchipDetail for the command Break.List.
18-Jan-2023 New option /SPOT for the command Break.SetFunc.

07-Oct-2022 Information about task-aware real-time breakpoints for Cortex-X, Neoverse and RISC-V has
been added to the description of the Break.Set command.

09-Mar-2022 New option /DeleteHIT for the command Break.Set.

Dec-2021 New command Break. CONFIG.AlwaysAlive.

©1989-2024 Lauterbach General Commands Reference Guide B | 8

BMC

BMC

Benchmark counters

The BMC (BenchMark Counter) commands provide control and usage of the on-chip performance
monitoring capabilities. Benchmark counters are on-chip counters that count specific hardware events, e.g.,
the number of executed instructions.

The benchmark counters can be configured via the TRACE32 command line, a PRACTICE script (*.cmm),

or the BMC.state window. This document presents the generic functions while the architecture_specific

BMC commands are in the Processor Architecture Manual.

& B:BMCstate o[-l
control profile snoop SElLect CLOCK
[REset |[JExport PROfile | | | [snooper] [Efust || | [pmmo ~| [E[TREE || | 600.0MHz
DAutoIn'rt [CIsnoopset [:PROﬁIeCharl] [js\"mbol | [=] s¥mbol |
counter name |event zize value ratio ratio ov |
CLOCKS 3070335 2.405s

DREAD (Data Read Accesses)
DWRITE (Data Write Accesses

32BIT

335886 | OFF

Ox9FCBF | X/PMND ~ |194.865%

PMNZ OFF (Dizable Benchmarkcounter 32BIT QFF OFF
PMN3 OFF (Disable Benchmarkcounter) 32BIT QFF
PMN4 OFF (Disable Benchmarkcounter) 32BIT OFF
PMN5 OFF (Disable Benchmarkcounter) 32BIT QFF
ETM1 OFF (Disable Benchmarkcounter) 16BIT OFF H/PMMNL
ETMZ OFF (Disable Benchmarkcounter) 16BIT OFF K/PMN2
?] KPMMN3 »
K/PMMN4
K/PMMN5
KETML
XETMZ2
X/CLOCK
XTIME
CLOCK/X
TIME/X
See also
B BMC.<counter> B BMC.Attach B BMC.Autolnit B BMC.CLOCK
B BMC.Init B BMC.PROfile B BMC.PROfileChart B BMC.PROfileSTATistic
B BMC.RESet B BMC.SnoopSet B BMC.state B BMC.STATistic

A 'BMC Functions (Benchmark Counter)’ in ’General Function Reference’
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide B

9

BMC.<counter> Benchmark counters

See also
B BMC.<counter>.EVENT B BMC.<counter>.FORMAT B BMC.<counter>.RATIO B BMC.<counter>.SIZE
H BMC B BMC.state
BMC.<counter>.EVENT Assign event to counter
Format: BMC.<counter>.EVENT [<event> | <event_number>]

Assigns an event to a counter.

<event> Event name defined by core manufacturer.
<event_number> Custom event ID.
BMC.<counter>.EVENT ClockCycles ; <counter> counts clock cycles
BMC.<counter> ClockCycles ; equivalent
See also

B BMC.<counter>

BMC.<counter>.FORMAT Counter value format

Format: BMC.<counter>.FORMAT <format>

Sets up the display format for the for each benchmark counter.

BMC.<counter>.FORMAT DECimal ; Display the counter value in
; decimal format.

BMC.<counter>.FORMAT HEXadecimal ; Display the counter value in
; hexadecimal format.

See also
B BMC.<counter>

©1989-2024 Lauterbach General Commands Reference GuideB | 10

BMC.<counter>.RATIO Set two counters in relation

Format: BMC.<counter>.RATIO X/<counter _n>

It might be useful to set two counter values in relation to each other, e.g. data cache accesses (DCACCESS)
and data cache misses (DCMISS).

Example:

BMC.<counter>.EVENT DCMISS

BMC.<counter>.RATIO X/DCACCESS

See also
B BMC.<counter>

BMC.<counter>.SIZE Specify counter size

Format: BMC.<counter>.SIZE <size>

Specifies the width of a counter. Counters are cascaded to provide a counter of a bigger size.
Example:

BMC.<counter>.SIZE 32BIT

See also
B BMC.<counter>

©1989-2024 Lauterbach General Commands Reference GuideB | 11

BMC.Attach BMC attach

Format: BMC.Attach

Attaches to the BenchMark Counters without initializing the counter values to zero. This command is needed
when the counters are configured by the target application.

See also
H BMC Bl BMC.state
BMC.Autolnit Automatic initialization
Format: BMC.Autolnit [ON | OFF]

If this command is set to ON, The BMC.Init command will be executed automatically, when the user
program is started.

See also
H BMC B BMC.state
BMC.CLOCK Provide core clock for cycle counter
Format: BMC.CLOCK <clock>

TRACE32 calculates and displays time information, if clock cycles are counted and the core clock is known.
Example:

BMC.<counter> ClockCylces

BMC.CLOCK 450.Mhz

See also
H BMC B BMC.state 1 BMC.CLOCK()

©1989-2024 Lauterbach General Commands Reference GuideB | 12

BMC.Init Initialize counters

Format: BMC.Init

All counters are set to their initialization values.

See also
H BMC B BMC.state
BMC.PROfile Display counter changes per second
Format: BMC.PROfile [<y_scale>]

If the target system allows to read the event counters while the program execution is running, TRACES32 can

sample the values of up to three counters periodically. The counter changes per second are displayed
graphically. The default sampling rate is 10 times per second.

Push Legend to get a color legend

L B:BMC.PROfile v
[Fsw.][Crod [n]peot][® 0Tt FatolEt legend[@tod]
-50.0s -25.0s 0.
events /sec | | [y
CNTO =
50000000, —_— CNT1
CNT2
45000000, A
=]
40000000. L
35000000,
30000000,
e ! - -
See also
H BMC B BMC.state

©1989-2024 Lauterbach General Commands Reference Guide B

13

BMC.PROfileChart Profile chart with benchmark counter

The BMC.PROfileChart command group displays distributions versus time graphically similar to
<trace>.PROfileChart. The recorded instruction flow is synthesized with recorded benchmark counter
information to display the run-time analysis.

NOTE: Please note that the BMC.PROfileChart commands are only supported if the
trace logic of the target processor generates BMC counter information via trace
messages. Please refer to your Processor Architecture Manual for more
information.

See also

<trace>.PROfileChart

B <trace>.PROfileChart. TASKVSINTERRUPT B BMC.PROfileChart.AddressGROUP
B BMC.PROfileChart.DatasYmbol B BMC.PROfileChart.DistriB

B BMC.PROfileChart. GROUP B BMC.PROfileChart.Line

B BMC.PROfileChart. MODULE B BMC.PROfileChart. PROGRAM

B BMC.PROfileChart.sYmbol B BMC.PROfileChart. TASK

B BMC.PROfileChart. TASKINFO B BMC.PROfileChart. TASKINTR

B BMC.PROfileChart. TASKKernel B BMC.PROfileChart. TASKORINTERRUPT
B BMC.PROfileChart. TASKSRV B BMC.PROfileChart. TASKVSINTR
B BMC.PROfileSTATistic H BMC

B BMC.state B BMC.STATistic

[|

A

‘Release Information’ in’Legacy Release History’

BMC.PROfileChart.AddressGROUP Address group profile chart with BMC

Format: BMC.PROfileChart.AddressGROUP [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for address groups. The results include groups for both
program and data.

Refer to <trace>.PROfileChart.AddressGROUP for a description of the parameters and options.

See also

B BMC.PROfileChart B BMC.PROfileChart. GROUP
B <trace>.PROfileChart.AddressGROUP

©1989-2024 Lauterbach General Commands Reference GuideB | 14

BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC

Format: BMC.PROfileChart.DatasYmbol [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for debug symbols with addresses corresponding to the
accessed data values in the trace.

Refer to <trace>.PROfileChart.DatasYmbol for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart.DatasYmbol
BMC.PROfileChart.DistriB Distribution display with BMC
Format: BMC.PROfileChart.DistriB [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a graphical representation of the specified trace item as a percentage of a
time slice.

Refer to <trace>.PROfileChart.DistriB for a description of the parameters and options.

See also
B BMC.PROfileChart

BMC.PROfileChart. GROUP Group profile chart with BMC

Format: BMC.PROfileChart.GROUP [<trace_area>] [/[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for groups created with the GROUP.Create command. The
results only include groups within the program range. Groups for data addresses are not included.

©1989-2024 Lauterbach General Commands Reference GuideB | 15

Refer to <trace>.PROfileChart.GROUP for a description of the parameters and options.

See also

B BMC.PROfileChart B BMC.PROfileChart.AddressGROUP
M <trace>.PROfileChart. GROUP

BMC.PROfileChart.Line Source code line profile chart with BMC

Format: BMC.PROfileChart.Line [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart for high-level source code lines.

Refer to <trace>.PROfileChart.Line for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart.Line
BMC.PROfileChart.MODULE Module profile chart with BMC
Format: BMC.PROfileChart.MODULE [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of symbol modules. The list of loaded modules can be displayed
with sYmbol.List.Module.

Refer to <trace>.PROfileChart.MODULE for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart. MODULE

©1989-2024 Lauterbach General Commands Reference GuideB | 16

BMC.PROfileChart. PROGRAM Program profile chart with BMC

Format: BMC.PROfileChart.PROGRAM [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of loaded object file programs. The loaded programs can be
displayed with the command sYmbol.Browse *.

Refer to <trace>.PROfileChart.PROGRAM for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart. PROGRAM

©1989-2024 Lauterbach General Commands Reference GuideB | 17

BMC.PROfileChart.sYmbol Symbol profile chart with BMC

Format: BMC.PROfileChart.sYmbol [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display profile chart for debug symbols.

Refer to <trace>.PROfileChart.sYmbol for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart.sYmbol
BMC.PROfileChart.TASK Task profile chart with BMC
Format: BMC.PROfileChart.TASK [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS tasks. This feature is only available if TRACES32 has been
set for OS-aware debugging.

Refer to <trace>.PROfileChart.TASK for a description of the parameters and options.

See also
B BMC.PROfileChart W <trace>.PROfileChart. TASK
BMC.PROfileChart. TASKINFO Data trace via context ID with BMC
Format: BMC.PROfileChart.TASKINFO [<irace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter

information in order to display a profile chart of special messages written to the Context ID register for ETM
trace.

Refer to <trace>.PROfileChart. TASKINFO for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart. TASKINFO

©1989-2024 Lauterbach General Commands Reference GuideB | 18

BMC.PROfileChart.TASKINTR ISR2 profile chart with BMC

Format: BMC.PROfileChart.TASKINTR [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of ORTI based ISR2. This feature can only be used if ISR2 can
be traced based on the information provided by the ORTI file. Please refer to “OS Awareness Manual
OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileChart.TASKINTR for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart. TASKINTR
BMC.PROfileChart.TASKKernel Task profile chart with BMC
Format: BMC.PROfileChart.TASKKernel [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of Tasks with kernel marker. This feature is only available if
TRACE32 has been set for OS-aware debugging. Refer to Trace.STATistic. TASKKernel for more
information.

Refer to <trace>.PROfileChart. TASKKernel for a description of the parameters and options.

See also
B BMC.PROfileChart B <trace>.PROfileChart. TASKKernel
BMC.PROfileChart. TASKORINTERRUPT Task and interrupts with BMC
Format: BMC.PROfileChart. TASKORINTERRUPT [<irace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS tasks and interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

©1989-2024 Lauterbach General Commands Reference GuideB | 19

Refer to <trace>.PROfileChart. TASKORINTERRUPT for a description of the parameters and options.

See also

B BMC.PROfileChart W <trace>.PROfileChart. TASKORINTERRUPT

BMC.PROfileChart. TASKSRV OS service routines profile chart with BMC

Format: BMC.PROfileChart. TASKSRV [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of OS service routines.

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with

the TASK.ORTI command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more
information.

Refer to <trace>.PROfileChart. TASKSRYV for a description of the parameters and options.

See also

B BMC.PROfileChart B <trace>.PROfileChart. TASKSRV

BMC.PROfileChart. TASKVSINTR Task related intr. profile chart with BMC

Format: BMC.PROfileChart. TASKVSINTR [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a profile chart of task-related interrupt service routines.

This feature is only available if an OSEK/ORTI system is used and if the OS Awareness is configured with

the TASK.ORTI command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more
information.

Refer to <trace>.PROfileChart. TASKVSINTR for a description of the parameters and options.

See also

B BMC.PROfileChart B <trace>.PROfileChart. TASKVSINTR

©1989-2024 Lauterbach General Commands Reference Guide B | 20

BMC.PROfileSTATistic

Statistical analysis vs. time with benchmark counter

The BMC.PROfileSTATistic command group shows the results of numerical interval analysis in tabular
format. <trace>.PROfileSTATistic. The recorded instruction flow is synthesized with recorded benchmark
counter information to display the run-time analysis.

information.

NOTE: Please note that the BMC.PROfileSTATistic commands are only supported if
the trace logic of the target processor generates BMC counter information via
trace messages. Please refer to your Processor Architecture Manual for more

See also

B <trace>.PROfileSTATistic. TASKVSINTERRUPT B BMC.PROfileSTATistic.Address

B BMC.PROfileSTATistic.AddressGROUP B BMC.PROfileSTATistic.DatasYmbol
B BMC.PROfileSTATistic.DistriB B BMC.PROfileSTATistic. GROUP

B BMC.PROfileSTATistic.INTERRUPT B BMC.PROfileSTATistic.Line

B BMC.PROfileSTATistic. MODULE B BMC.PROfileSTATistic. PROGRAM
B BMC.PROfileSTATistic. RUNNABLE B BMC.PROfileSTATistic.sYmbol

B BMC.PROfileSTATistic. TASK B BMC.PRO(fileSTATistic. TASKINFO
B BMC.PROfileSTATistic. TASKINTR B BMC.PROfileSTATistic. TASKKernel
B BMC.PROfileSTATistic. TASKORINTERRUPT B BMC.PROfileSTATistic. TASKSRV
B BMC.PROfileChart H BMC

B BMC.state B <trace>.PROfileSTATistic

BMC.PROfileSTATistic.Address

Address statistical analysis with BMC

Format:

BMC.PROfileSTATistic.Address [<trace_area>] <address1>

[<address2> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for addresses.

Refer to <trace>.PROfileSTATistic.Address for a description of the parameters and options.

See also

B BMC.PROfileSTATistic

<trace>.PROfileSTATistic.Address

©1989-2024 Lauterbach

General Commands Reference Guide B | 21

BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC

Format: BMC.PROfileSTATistic.AddressGROUP|<trace_area>][/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for address groups. The results include
groups for both program and data.

Refer to <trace>.PROfileSTATistic.AddressGROUP for a description of the parameters and options.

See also

B BMC.PROfileSTATistic B BMC.PROfileSTATistic. GROUP
B <trace>.PROfileSTATistic.AddressGROUP

BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC

Format: BMC.PROfileSTATistic.DatasYmbol [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistic analysis versus time for debug symbols with addresses
corresponding to the accessed data values in the trace.

Refer to <trace>.PROfileSTATistic.DatasYmbol for a description of the parameters and options.

See also
B BMC.PROfileSTATistic W <trace>.PROfileSTATistic.DatasYmbol
BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC
Format: BMC.PROfileSTATistic.DistriB [%<format>] [<items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistic analysis versus time for the selected <items>. Without <items>
the statistic is based on the symbolic addresses.

©1989-2024 Lauterbach General Commands Reference Guide B | 22

Refer to <trace>.PROfileSTATistic.DistriB for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic.DistriB
BMC.PROfileSTATistic. GROUP Group profile statistic with BMC
Format: BMC.PROfileSTATistique.GROUP [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for groups created with the GROUP.Create
command. The results only include groups within the program range. Groups for data addresses are not
included.

Refer to <trace>.PROfileSTATistic. GROUP for a description of the parameters and options.

See also

B BMC.PROfileSTATistic B BMC.PROfileSTATistic.AddressGROUP
B <trace>.PROfileSTATistic. GROUP

BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC

Format: BMC.PROfileSTATistique.INTERRUPT [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic.INTERRUPT for a description of the parameters and options.

See also

B BMC.PROfileSTATistic B <trace>.PROfileSTATistic.INTERRUPT

©1989-2024 Lauterbach General Commands Reference GuideB | 23

BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC

Format: BMC.PROfileSTATistic.Line [<frace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for high-level source code lines.

Refer to <trace>.PROfileSTATistic.Line for a description of the parameters and options.

See also
B BMC.PROfileSTATistic W <trace>.PROfileSTATistic.Line
BMC.PROfileSTATistic. MODULE Module profile statistic with BMC
Format: BMC.PROfileSTATistic.MODULE [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for symbol modules. The list of loaded
modules can be displayed with sYmbol.List.Module.

Refer to <trace>.PROfileSTATistic. MODULE for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. MODULE
BMC.PROfileSTATistic. PROGRAM Program profile statistic with BMC
Format: BMC.PROfileSTATistic.PROGRAM [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for loaded object file programs. The loaded
programs can be displayed with the command sYmbol.Browse *.

Refer to <trace>.PROfileSTATistic.PROGRAM for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. PROGRAM

©1989-2024 Lauterbach General Commands Reference Guide B | 24

BMC.PROfileSTATistic. RUNNABLE Runnable profile statistic with BMC

Format: BMC.PROfileSTATistic. RUNNABLE [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for AUTOSAR runnables. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileSTATistic. RUNNABLE for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. RUNNABLE
BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC
Format: BMC.PROfileSTATistic.sYmbol [<irace_area>] [[<option>]

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display a statistical analysis versus time for debug
symbols.

Refer to <trace>.PROfileSTATistic.sYmbol for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic.sYmbol
BMC.PROfileSTATistic.TASK Task profile statistic with BMC
Format: BMC.PROfileSTATistic.TASK [<trace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS tasks. This feature is only available if
TRACE32 has been set for OS-aware debugging.

©1989-2024 Lauterbach General Commands Reference GuideB | 25

Refer to <trace>.PROfileSTATistic.TASK for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. TASK
BMC.PROfileSTATistic. TASKINFO Data trace via context ID with BMC
Format: BMC.PROfileSTATistic.TASKINFO [<frace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time of special messages written to the Context ID
register for ETM trace.

Refer to <trace>.PROfileSTATistic. TASKINFO for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. TASKINFO
BMC.PROfileSTATistic. TASKINTR ISR2 profile statistic with BMC
Format: BMC.PROfileSTATistic.TASKINTR [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for ORTI based ISR2. This feature can only
be used if ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS
Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.PROfileSTATistic. TASKINTR for a description of the parameters and options.

See also
B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. TASKINTR

©1989-2024 Lauterbach General Commands Reference GuideB | 26

BMC.PROfileSTATistic. TASKKernel Task profile statistic with BMC

Format: BMC.PROfileSTATistic.TASKKernel [<irace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for Tasks with kernel marker. Refer to
Trace.STATistic. TASKKernel for more information.

This feature is only available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic. TASKKernel for a description of the parameters and options.

See also

B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. TASKKernel

BMC.PROfileSTATistic. TASKORINTERRUPT Task or interrupt with BMC

Format: BMC.PROfileSTATistic. TASKORINTERRUPT [<trace_area>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS tasks and interrupts. This feature is
only available if TRACES32 has been set for OS-aware debugging.

Refer to <trace>.PROfileSTATistic. TASKORINTERRUPT for a description of the parameters and options.

See also

B BMC.PROfileSTATistic B <trace>.PROfileSTATistic. TASKORINTERRUPT

BMC.PROfileSTATistic. TASKSRV OS service routines profile stat. with BMC

Format: BMC.PROfileSTATistic.TASKSRYV [<frace_area>] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis versus time for OS service routines. This feature is only
available if an OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI
command. Please refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

©1989-2024 Lauterbach General Commands Reference Guide B | 27

Refer to <trace>.PROfileSTATistic. TASKSRV for a description of the parameters and options.

See also
B BMC.PROfileSTATistic W <trace>.PROfileSTATistic. TASKSRV

©1989-2024 Lauterbach General Commands Reference Guide B | 28

BMC.RESet Reset benchmark counter configuration

Format: BMC.RESet

Resets the BenchMark Counter configuration to the default settings.

See also
H BMC Bl BMC.state
BMC.SnoopSet Assign event counter to SNOOPer trace
Format: BMC.SnoopSet [ON | OFF]

The TRACE32 SNOOPer Trace can be used to record the event counters periodically, if the target system
allows to read the event counters while the program execution is running.

TRACE32 provides various ways to analyze the recorded information.

Example 1 for the pure JTAG debugger.

BMC.state ; display the BMC Configuration
; window
BMC.<counterl> <eventl> ; assign event of interest to

; the event counter

;BMC.<counter2> <event2> ; several assignments possible

BMC. SnoopSet ON ; configure the TRACE32 SNOOPer
; Trace for event counter recording

SNOOPer .state ; display the SNOOPer Trace
; Configuration window to inspect
; the setup

Go ; start the program execution to

; £ill the SNOOPer trace

©1989-2024 Lauterbach General Commands Reference Guide B | 29

Break

SNOOPer .List

SNOOPer . PROfileChart .COUNTER

stop the program execution

display a SNOOPer trace listing

please pay attention to the
ti.back time, it informs you on
the SNOOPer sampling rate

display a profile statistic

4| B::SNOOPer.PROfileChart. COUNTER

(=[O el

|W Setup...

ICMISS . DCMISS
-10.000s -5.000s
events/sec | |

mGroupﬂHl Conﬁg..JLn Goto... [#3Find... |[4» In][4 Out)[MM Full][% 1n || X out|[E Full][Fine |[Coarse]
|

-6.000s

-4.000s -2.000s 0.
| |

70000.0

60000.0

50000.0

40000.0

30000.0

20000.0

10000.0

g

m

li

o4 [m »

m

o

4 [m] r «

Example 2: In this script, an event counter recording is combined with an instruction flow trace recording.

BMC.state

BMC.<counterl> <eventl>

BMC. SnoopSet ON

SNOOPer.state

SNOOPer.SIZE 500000.

display the BMC Configuration
window

assign event of interest to
event counter

only one event counter possible

configure the TRACE32 SNOOPer
Trace for event counter recording

display the SNOOPer Trace
Configuration window to inspect
the setup

adjust the size of the SNOOPER
Trace

the SNOOPer Trace and the Trace
recording the instruction flow
should get full nearly at the
same point in time

©1989-2024 Lauterbach

General Commands Reference GuideB | 30

; initialize all units involved whenever the program execution is

; started,

Trace.AutoInit ON

SNOOPer .AutoInit ON
BMC.AutoInit ON

Go

Break

SNOOPer .List

this avoids invalid combinations

initialize the Trace recording
the instruction flow

initialize the SNOOPER Trace
initialize the event counter

start the program execution to
fill the SNOOPer trace

stop the program execution

display a SNOOPer trace listing

; please pay attention to the
; ti.back time, it informs you on
; the SNOOPer sampling rate

; select <counterl> for the
; statistic evaluation

BMC.SELect <counterl>

BMC.STATistic.sYmbol ; assign the recorded events to the
; recorded functions/symbol ranges

= | B:Trace STATistic.s¥mbol =l =@ |
(2 setup...| iii Groups... | 5% Config...| [Goto... |[=|Detailed|| £[Tree || fl chart |[B Profile |
items: 225. total: 10.869s samples: 1289478.
address [total min max avr count ratio¥% [1% 2% i
ktime_add_safe . 654us 0.340us 0.109us 001% [« -

0.300us
0.400us
4.634s
0.270us

. 609us 0.068us
. 654us

. 946s

ktime_divns

| 824.
0.063us

oad_baTance
lock_hrtimer_base

| B:BMC.STATistic.s¥rmbol [= =] =]
(& setup...)| iii Groups... | 3% Config...| [Goto... |[=|Detailed|| E[Tree || fl chart |[B Profile |
items: 225. total: 2630. samples: 1289478.
address |[total min max avr count ratio¥% [1% 2% i
T2x0_cache_sync 1635. 0. 1374. 817. E 62.167% |m—.
run_timer_softirg 992. 0. 26. 992. 1. 37.718% |e—
cascade 3. 0. 1 0. 180. 0.114% |« -
4| (1] | b
See also
H BMC B BMC.state

©1989-2024 Lauterbach General Commands Reference Guide B | 31

BMC.state Display BMC configuration window

[Step-by-Step Procedure] [Example]

Format: BMC.state

Displays the BMC.state window, where you can assign events to benchmark counters in order to count
these events and compare one counter in relation to another counter. The benchmarking results are
displayed in the BMC.state window.

NOTE: The layout and operating principle of the BMC.state window is the same for
most TRACE32 debuggers, i.e. the window is architecture-independent.

. For a few TRACE32 debuggers, the layout of the BMC.state window
remains architecture-specific because some chips offers only a limited
benchmark counter functionality.

. Architecture-specific BMC commands are described in the TRACES32
processor architecture manuals.

Choose Help menu > Processor Architecture Manual.

Description of Header and Columns: BMC.state Window (Using an OMAP4430 as an Example)

[&oamcane oo e
[T |~ control profile snoop SElLect CLOCK
RESet | [C]Export PROfile | | | [snooper | [||| [PMno ~| [=]TReE ||| 600.0MHz
[C] Autolnit [C]15noopSet [EPROﬁIeG\an] [js\‘mbol | [E]s¥mbol |
| counter name |event zize value ratio ratio ov |
E——— CLOCKS 3070335 |
= DREAD (Data Read Accesses) 32BIT 335856
| DWRITE (Data Write Accesses) ~|| 32BIT ~ |~ ':mi“::! .
- - 32BIT —
OFF (Disable Benchmarkcounter) 32BIT QFF
OFF (Disable Benchmarkcounter) 32BIT QFF _
OFF (Disable Benchmarkcounter) 32BIT E QFF "
OFF (Disable Benchmarkcounter) 16BIT QFF !
OFF (Disable Benchmarkcounter) 16BIT QFF Y

A The BMC.state window shows how two events, the DREAD and DWRITE events, can be counted by
assigning them to two benchmark counters, PMNO and PMN1.

B The first ratio column lets you analyze one benchmark counter in relation to another benchmark
counter. Here, the PMN1 counter is analyzed in relation to the PMNO counter. The result is displayed in
the second ratio column. See also BMC.<counter>.RATIO.

o For the CLOCKS benchmark counter, the runtime is given in seconds. This value is calcu-
lated from the clock frequency and the cycle count.
o For the other benchmark counters, the results are given in percentage, seconds, or Hertz.

C counter name. Performance counters from the core debug controller. The counter names are
architecture specific.

D counter name. CLOCKS: The clock cycle counter is activated if at least one of the performance
counters of the core debug controller is activated (not available on all cores).

©1989-2024 Lauterbach General Commands Reference Guide B | 32

E Header. For descriptions of the commands in the BMC.state window, please refer to the BMC.*
commands in this chapter.
Example: For information about the Autolnit check box, see BMC.Autolnit.

- event.The drop-down list shows the name of the event together with a short description in
parentheses. The available events are device-specific. See BMC.<counter>.EVENT.

- size. Displays the size of the performance counters. For architectures providing variable counter
sizes, the counter size can be adjusted with the BMC.<counter>.SIZE command.

- value. Number of hardware events counted. Right-click to display the value as decimal or hex.
In a PRACTICE script, you can format the value as hex or decimal using the command
BMC.<counter>.FORMAT, see example.

- ratio. See [B].

- ov. Counter overflow.

To Assign Events to Benchmark Counters via the User Interface TRACE32 PowerView:

1. At the TRACE32 command line type, BMC.state to open the window.
2. In the counter name column, click the benchmark counter you want to configure.

The selected row is highlighted in blue. Little white down-arrows indicate that you can configure the
values in these columns via drop-down lists [A].

3. In the event column, right-click the white down-arrow, and then select the event to be counted [B].

©1989-2024 Lauterbach General Commands Reference Guide B |

33

PRACTICE Script Example for the OMAP4430:

BMC.state

BMC.CLOCK 600.0MHz

;columns 'counter name' and
BMC.PMNO .EVENT DREAD

BMC.PMN1.EVENT DWRITE

column
FORMAT HEXadecimal

; 'value'
BMC . PMN1 .

column
RATIO X/PMNO

; 'ratio'
BMC . PMN1.

BMC.PROfile

;open the BMC.state window

;baseline for all benchmark counter
;calculations

'event'
;assign the DREAD event to the PMNO counter
;assign the DWRITE event to the PMN1 counter

; for demo purposes let's format the value
;of PMN1 as hex

;analyze PMN1 in relation to PMNO

;the BMC.PROfile window displays the current

;number of events per second.
2 if 0 events.

Go ;start real-time emulation - the BMC windows
WAIT 1.s ;are updated while the emulation is running
Break ;stop emulation

See also

H BMC B BMC.<counter> B BMC.Attach W BMC.Autolnit

B BMC.CLOCK H BMC.Init Bl BMC.PROfile B BMC.PROfileChart

B BMC.PROfileSTATistic B BMC.RESet B BMC.SnoopSet B BMC.STATistic

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide B | 34

BMC.STATistic Statistic analysis with benchmark counter

The BMC.STATistic command group can be used for statistical analysis based on the information sampled
to the trace buffer similar to <trace>.STATistic. The recorded instruction flow is additionally synthesized with
recorded benchmark counter information to display the run-time analysis.

NOTE: Please note that the BMC.STATistic commands are only supported if the trace
logic of the target processor generates BMC counter information via trace
messages. Please refer to your Processor Architecture Manual for more
information.

See also
B <trace>.STATistic. TASKVSINTERRUPT B BMC.STATistic.ChildTREE
B BMC.STATistic.DistriB B BMC.STATistic.Func
B BMC.STATistic. GROUP B BMC.STATistic.LINKage
B BMC.STATistic. MODULE B BMC.STATistic.ParentTREE
B BMC.STATistic. PROGRAM B BMC.STATistic.sYmbol
B BMC.STATistic. TASK Bl BMC.STATistic. TASKINFO
Bl BMC.STATistic. TASKINTR B BMC.STATistic. TASKKernel
B BMC.STATistic. TASKORINTERRUPT B BMC.STATistic. TASKSRV
W BMC.STATistic. TREE H BMC
Bl BMC.PROfileChart B BMC.state
M <trace>.STATistic
BMC.STATistic.ChildTREE Function callee context with BMC
Format: BMC.STATistic.ChildTREE <address> [<list_items>] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display the call tree and run-time of all functions called by the function specified
with the <address> parameter.

Refer to <trace>.STATistic.ChildTREE for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic.ChildTREE

©1989-2024 Lauterbach General Commands Reference Guide B | 35

BMC.STATistic.DistriB Distribution analysis with BMC

Format: BMC.STATistic.DistriB [%<format>] [<items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display the statistic distribution of the selected <items>. Without <items> the
statistic is based on the symbolic addresses.

Refer to <trace>.STATistic.DistriB for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic.DistriB
BMC.STATistic.Func Nesting function run-time with BMC
Format: BMC.STATistic.Func [%<format>] [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a nesting function run-time analysis.

Refer to <trace>.STATistic.Func for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic.Func
BMC.STATistic. GROUP Group run-time analysis with BMC
Format: BMC.STATistic. GROUP [%<format>] [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a run-time analysis for groups created with the GROUP.Create command.
The results only include groups within the program range. Groups for data addresses are not included.

Refer to <trace>.STATistic. GROUP for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. GROUP

©1989-2024 Lauterbach General Commands Reference Guide B | 36

BMC.STATistic.LINKage Per caller function statistic with BMC

Format: BMC.STATistic.LINKage <address> [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a function run-time statistic for a single function itemized by its callers.

Refer to <trace>.STATistic.LINKage for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic.LINKage
BMC.STATistic. MODULE Module statistic with BMC
Format: BMC.STATistic.MODULE [%<format>] [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of symbol modules. The list of loaded modules can be
displayed with sYmbol.List.Module.

Refer to <trace>.STATistic.MODULE for a description of the parameters and options.

See also
B BMC.STATistic W <trace>.STATistic. MODULE
BMC.STATistic.ParentTREE Statistic for call context with BMC
Format: BMC.STATistic.ParentTREE <address> [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of all callers of the specified function. The function is
specified by its start <address>.

Refer to <trace>.STATistic.ParentTREE for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic.ParentTREE

©1989-2024 Lauterbach General Commands Reference Guide B | 37

BMC.STATistic.PROGRAM Program statistic with BMC

Format: BMC.STATistic.MODULE [%<format>] [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of loaded object file programs. The loaded programs can
be displayed with the command sYmbol.Browse *.

Refer to <trace>.STATistic.PROGRAM for a description of the parameters and options.

See also
B BMC.STATistic W <trace>.STATistic.PROGRAM
BMC.STATistic.sYmbol Flat run-time analysis with BMC
Format: BMC.STATistic.sYmbol [%<format>] [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink (command Trace.METHOD) is synthesized with
recorded benchmark counter information in order to display a flat function run-time analysis.

= | B:BMC.STATistic.s¥mbol =0 =R
[Setup... || jii Groups... |38 Config...|[3 Gntu . | =l petailed|| =|TREE || il chart || B Profile || @ mnit |
items: total: 53436673. samples: 167477875,
address |[total min max avr coul ratio% [1% 2% 5% 10% i
sieve | 53051311, 149, 167. 162. 325829. (0/1)] 99.278% -
main 384567, 0. 10. 384567, 1. 0.719% |« =
funcl0 559. 559. 559. 559. 1. 0.001% |+
funcg 81. 81. 81. 81. 1. <0.001% |+
funcl3 53. 53. 53. 53. 1. <0.001% |«
func9 26. 0. 15. 26. 1. <0.001% |+
func2d 23. 23. 23. 23. 1. <0.001% |+
funcl 10. 0. 4. 1. 7. <0.001% |+ i
« m b

Refer to <trace>.STATistic.sYmbol for a description of the parameters and options.

See also
B BMC.STATistic W <trace>.STATistic.sYmbol

©1989-2024 Lauterbach General Commands Reference Guide B | 38

BMC.STATistic.TASK Statistic for tasks with BMC

Format: BMC.STATistic.TASK [%<format>] [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter

information in order to display a statistical analysis of OS tasks. This feature is only available if TRACE32
has been set for OS-aware debugging.

Refer to <trace>.STATistic.TASK for a description of the parameters and options.

See also
W BMC.STATistic MW <trace>.STATistic. TASK
BMC.STATistic.TASKINFO Statistic for context ID messages with BMC
Format: BMC.STATistic.TASKINFO [%<format>] [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of special messages written to the Context ID register for
ETM trace. Refer to <trace>.STATistic. TASKINFO for more information.

Refer to <trace>.STATistic. TASKINFO for a description of the parameters and options.

See also
B BMC.STATistic W <trace>.STATistic. TASKINFO
BMC.STATistic.TASKINTR Statistic for ISR2 with BMC
Format: BMC.STATistic.TASKINTR [%<format>] [<list_items> ...] [[<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of ORTI based ISR2. This feature can only be used if
ISR2 can be traced based on the information provided by the ORTI file. Please refer to “OS Awareness
Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

©1989-2024 Lauterbach General Commands Reference Guide B | 39

Refer to <trace>.STATistic. TASKINTR for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. TASKINTR
BMC.STATistic. TASKKernel Statistic for tasks with BMC
Format: BMC.STATistic. TASKKernel [%<format>] [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of tasks with kernel marker. Refer to

Trace.STATistic. TASKKernel for more information. This feature is only available if TRACES32 has been set
for OS-aware debugging.

Refer to <trace>.STATistic. TASKKernel for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. TASKKernel
BMC.STATistic. TASKORINTERRUPT Tasks and interrupts with BMC
Format: BMC.STATistic. TASKORINTERRUPT [%<format>] [<list_items> ...]

[/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of OS tasks and interrupts. This feature is only available if
TRACE32 has been set for OS-aware debugging.

Refer to <trace>.STATistic. TASKORINTERRUPT for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. TASKORINTERRUPT

©1989-2024 Lauterbach General Commands Reference Guide B | 40

BMC.STATistic. TASKSRV Statistic for OS service routines with BMC

Format: BMC.STATistic.TASKSRV [%<format>] [<list_items> ...] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a statistical analysis of OS service routines. This feature is only available if an
OSEK/ORTI system is used and if the OS Awareness is configured with the TASK.ORTI command. Please
refer to “OS Awareness Manual OSEK/ORTI” (rtos_orti.pdf) for more information.

Refer to <trace>.STATistic. TASKSRYV for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. TASKSRV
BMC.STATistic.TREE Tree nesting function run-time with BMC
Format: BMC.STATistic.TREE [%<format>] [{<list_items>}] [/<option>]

The instruction flow recorded to the selected trace sink is synthesized with recorded benchmark counter
information in order to display a graphical tree of the function nesting.

Refer to <trace>.STATistic.TREE for a description of the parameters and options.

See also
B BMC.STATistic B <trace>.STATistic. TREE

©1989-2024 Lauterbach General Commands Reference Guide B | 41

BookMark

BookMark Address and trace bookmarks
See also
B BookMark.CHange B BookMark.Create B BookMark.Delete B BookMark.EditRemark
B BookMark.EXPORT B BookMark.List B BookMark.RESet B BookMark.Toggle
B <trace>.BookMark B <trace>.BookMarkToggle B <trace>.GOTO B <trace>.TRACK
B COVerage

Overview BookMark

NOTE: Bookmark names are case sensitive.

There are two types of bookmarks, which are distinguished by their color:
. Address bookmarks are marked with a small green rectangle.

J Trace bookmarks are marked with a small yellow rectangle.

Using bookmarks, you can mark, locate, and identify trace records of interest or addresses of interest.
For code coverage, you can use bookmarks to add comments to not-executed code.

It is recommended that you use bookmarks together with the /Track option to improve navigation: Let's
assume that the List.auto /Track window is already open. When you single-click any of the address
bookmarks in the BookMark.List window, the cursor in the List.auto /Track window automatically points to
the corresponding assembler code. See figure below.

M B:BookMarkList =n| Wl <
(3% Delete Al 52 store...) (52 Load...][IF Geate...|
bookmark addr/record symbol/time source Tine |remark |
N any_EM™ R:00001FFS [harmymain |C:4 132+ demo'arm'compi lersarmyarm.C |586. [This 15 a remark for main P
§'My_Codel™ R:00001EAS [func24 C: \T32\dem0\ar‘m\comp1'Ier'\ar‘m\ar‘m c |548. |This is remark 1 for func24
j"l‘-‘ly_(oceZ" R:00001EAS [funcz4 C:4T32\demo'arm'compileriarmiarm. c [548. [This is remark 2 for funcz4
4 I3
i BuLitauto | /Track ==
[M step || M Over |[AsDiverge|| ¢ Retun][¢ up || » Go |[IN Break || ' Mode |[&f[%.]"3 | Find: arm.c
addr/1ine |code label mnemonic comment |
Bchar funczal) /= Char Return = L
{
return 55;

SR:00001EBOD |E=A mov ri, #0x0 i

When you double-click an address bookmark in the BookMark.List window, a new List window opens at
the bookmarked address.

When you double-click a trace bookmark in the BookMark.List window, a new <trace>.List window opens
at the bookmarked trace record.

©1989-2024 Lauterbach General Commands Reference Guide B | 42

BookMark.CHange Edit the settings of a bookmark

Format: BookMark.CHange "<bookmark_name>" <address> | <time> [<file>] [<line>]

Opens a dialog where you can change the settings of a bookmark and rename the bookmark. In addition,
you can use the BookMark.CHange command to create a new bookmark. Alternatively, you can right-click
the desired bookmark in the BookMark.List window, and then select Change.

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACES32, they are not needed in the dialog-mode of TRACES32.

Example:

;displays the settings for the bookmark "Loop"
BookMark.CHange "Loop"

; TRACE32 suggests a new bookmark name by incrementing to the next
;bookmark number
BookMark .CHange

;the bookmark name is incremented, and the new bookmark will refer
;to the symbol main (see screenshot below)
BookMark.CHange , main

E& B:BookMark.CHange , main EI@
name
2
address / symbol
\arm\main -] x4l Opens the Browse Symbols
dialog.
remark (sYmbol.Browse.sYmbol)
ok] [Set | [Delete | [cancel |
See also
B BookMark

©1989-2024 Lauterbach General Commands Reference Guide B | 43

BookMark.Create Create a new address bookmark

Format: BookMark.Create "<bookmark_name>" <address> | <time> [<file>] [<line>]

Creates a new address bookmark. If the <bookmark_name> exists already, the command
BookMark.Create will overwrite the address bookmark with the new parameters.

NOTE: To create a trace bookmark, use the <trace>.BookMark command.

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACES2, they are not needed in the dialog-mode of TRACES32.

Examples:

; create a new bookmark at 0x1000 and label it "start"
BookMark.Create "start" 0x1000

; create a new bookmark at the entry of func24 and name it "My Code"
BookMark.Create "My Code" func24

; overwrites the existing bookmark called "My _Code" with the address
; 0x2000
BookMark.Create "My Code" 0x2000

See also
B BookMark B <trace>.BookMark

©1989-2024 Lauterbach General Commands Reference Guide B | 44

BookMark.Delete Delete an existing bookmark

Format: BookMark.Delete "<bookmark_name>" [<address> | <time>] [<file>] [<line>]

Deletes an existing bookmark.

<bookmark_name> Bookmark names are case sensitive.

<time>, <file>, <line> The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACES32, they are not needed in the dialog-mode of TRACES32.

Examples:
BookMark.Delete "start" ; Delete the bookmark named "start"
BookMark.Delete "My Code" ; Delete the bookmark "My Code"

See also

B BookMark

©1989-2024 Lauterbach General Commands Reference Guide B | 45

BookMark.EditRemark

Add/edit remark of a bookmark

Format: BookMark.EditRemark " <bookmark_name>" [<remark>]

Adds a user-defined <remark> to a <bookmark_name>.

o To edit or delete a remark via the BookMark.List window, right-click the remark, and then select

the desired option from the popup menu.

. To edit or delete a remark via the TRACE32 command line, assign the desired string or empty

string to <remark>.

Adding another remark to the same bookmark-symbol combination overwrites the previous remark.
However, you can add multiple remarks to the same symbol if you also assign multiple bookmarks to that

symbol, as shown in the example below.
Example:

;open the Bookmark.List window
BookMark.List

;create a bookmark for symbol main and add a remark
BookMark.Create "any BM" main
BookMark.EditRemark "any BM" "This is a remark for main"

;create two new bookmarks at the entry of the symbol “func24”
;and name the bookmarks "My Codel, My Code2"

BookMark.Create "My Codel" func24

BookMark.Create "My Code2" func24

; for each bookmark of symbol “func24”, add one remark:

BookMark.EditRemark "My _Codel" "This is remark 1 for func24"
BookMark.EditRemark "My_Code2" "This is remark 2 for func24"

M B:BookMark.List

(=[O el

(3% Delete Al 52 store...) (52 Load...][IF Geate...|

bookmark addr/record symbol/time source

Tinel remark |

N any_EM™ R:00001FF38 [harmymain
§'My_Codel™ R:00001EAS [func24
J"I‘-‘Iy_(odeZ" R:00001EAS [func24

586.JThiz 15 a remark for main
548.§This is remark 1 for func24
548.§This is remark 2 for func24

C:\T32 demo’arm',compi | er armyarm. c
C: \T32\dem0\ar‘m\comp1'Ier‘\ar‘m\ar‘m <
C:T32 demo' arm' compileriarmarm. c

See also

B BookMark B <trace>.BookMark

©1989-2024 Lauterbach

General Commands Reference Guide B | 46

BookMark.EXPORT Export bookmarks

See also

B BookMark.EXPORT.ADDRESS B BookMark.EXPORT.preset
B BookMark.EXPORT.SOURCE B BookMark.EXPORT.sYmbol
B BookMark

BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses

Format: BookMark.EXPORT.ADDRESS <xm/_file> <address>... [[Append]

Exports only those bookmarks to an XML file that have been created for the specified addresses.

<address> Apply one or more address as filter criteria. Only bookmarks matching
the specified addresses are exported.

Append For a description and an example, see BookMark.EXPORT.

Example:

BookMark .EXPORT.ADDRESS ~~/bookmarks-addresses.xml 0Oxl3ce 0xl2aa

See also
B BookMark. EXPORT

BookMark.EXPORT.preset Export bookmarks to an XML file

Format: BookMark.EXPORT.preset <file> [<range> <address>] [[Append]

Exports all bookmarks to an XML file or just the bookmarks selected with <range> or <address>. The XML
file is formatted by placing a transformation template (*.xsl) in the same folder as the XML file.

<range> Range filter for exporting bookmarks that are located within a specified
address range.

©1989-2024 Lauterbach General Commands Reference Guide B | 47

<address>
address.

Append
the end of the file.

Address filter for exporting an individual bookmark located at a specified

The bookmarks displayed in the BookMark.List window are appended at

Using the STOre <file> BookMark command, you can save the bookmark list as a PRACTICE script

(*.cmm).

Example 1: All existing bookmarks are exported. The unformatted result is displayed in TRACE32, and

the formatted result is displayed in a browser window.

;export all bookmarks
BookMark.EXPORT "~~/bookmarks.xml" ,

; for demo purposes:

BookMark.Create "any BM" R:0x1FF8 ;e.g.

let's assume that you have added another bookmark
at this address

;append the new bookmark to the previous XML file
BookMark.EXPORT "~~/bookmarks.xml" R:0x1FF8 /Append

; for demo purposes:
; TRACE32 editor
EDIT.OPEN "~~/bookmarks.xml"

;place the transformation template in the same folder as the XML file

let's open the unformatted result in the internal

COPY "~~/demo/coverage/single_file_report/t32transform.xsl" \

"~~/t32transform.xsl"

;you can now open the formatted result in an external browser window

O0S.Command start iexplore.exe

"file:///C:/t32/bookmarks.xml"

The tildes ~~ expand to your TRACE32 system directory, by default c:\t32.

B:EDIT.OPEN CAT32\bookmarks.xml

(=[O el

[% save |[Fsave As.. || ¥P Save+Close || EF Quit+Close |

7xml version="1.0" encoding="150-8859-1" standalone="no" 7=
<7uml-stylesheet type="text/xs1" href="t3Ztransform.xs1"7>
<TRACE32 file="C:T32"bookmarks.xml"=

<marker:

<BookMark. EXPORT ts="1446466011" t32ver="5.2015.10.000067503" t3
<bookmark=<names1l«</name=<addr=R:0000225C</addr><sym="ar
<bookmark=<name>Loop</name=<addr>R : 000022AC</addr><sym=" =

m| e

3

hookmark address symbol source file
1 R:0000225¢ | Varmle\armisieve\d \armle\"arm.c™\arm.c

line
656

Loop R:000022Ac | \\armle\arm\sieve\19 \armle\"arm.c™arm.c 697 Green = address bookmark
3 Analyzer Yellow = trace bookmark
any BM | R:00001FF8 | Warmie\arm\main Varmle\"arm.c"arm.c 586

comment / justification
This is a remark.

A Unformatted result.

B Example of a formatted result in a browser window.

©1989-2024 Lauterbach

General Commands Reference Guide B

48

Example 2: A more complex demo script is included in your TRACES2 installation. To access the script, run
this command:

B::CD.PSTEP ~~/demo/coverage/example.cmm

See also
B BookMark. EXPORT

BookMark.EXPORT.SOURCE Export bookmarks for specified source files

Format: BookMark.EXPORT.SOURCE <xml_file> <source_file>... [[Append]

Exports only those bookmarks to an XML file that have been created within the specified source files.

<source_file> Apply one or more source files as filter criteria. The wildcards ‘*’ and ‘?’
are supported. Only bookmarks matching the filter criteria are exported.

Append For a description and an example, see BookMark.EXPORT.

Example:

BookMark .EXPORT.SOURCE ~~/bookmarks-sources.xml *\".\src\sieve.c"

See also
B BookMark. EXPORT

BookMark.EXPORT.sYmbol Export bookmarks for specified symbols

Format: BookMark.EXPORT.sYmbol <xm/_file> <symbol>... [[Append]

Exports only those bookmarks to an XML file that have been created for the specified symbols.

<symbol> Apply one or more symbol names as filter criteria. The wildcards ‘*’ and
‘?” are supported. Only bookmarks matching the filter criteria are
exported.

Append For a description and an example, see BookMark.EXPORT.

©1989-2024 Lauterbach General Commands Reference Guide B | 49

Example:

BookMark.EXPORT.sYmbol ~~/bookmarks-symbols.xml main *eve*

See also
B BookMark.EXPORT

©1989-2024 Lauterbach General Commands Reference Guide B | 50

BookMark.List List all bookmarks

Format: BookMark.List

Displays all existing bookmarks. There are two types of bookmarks, which are distinguished by their color:

Address bookmarks are marked with a small gféen rectangle.

. Trace bookmarks are marked with a small yellow rectangle.

The same bookmark color codes are also used in other TRACE32 windows.

M B:BookMark.List EI@
![x Dekete All (52 Store..| (52 Load... [[Ceste.. |

bookmark |addr/record symbol/time |source Tine |remark |
1 C:hT32%demoarm'compi lerarmyarm |686. [This 15 a remark.

C:4T32 demo'arm' compileriarmarm [697. |Green = address bookmark
Analyzer Yellow = trace bookmark

B::Trace.%i’st [Mrack = BuList.Mix /Track
(& sewp.. Jl A Goto...|[#3Find... [v chart |[B Profile || EE1 [M Step |[# Over |[A Diveroe | [/ Return|[¢ Up

un |address cycle |data symbaol N, addr/Tine |code label mnemonic
n r3,#0x12 : Q0002258 [EAFFFFFS b Ox224
R:00002294 fetch CAD00004 \harmle [] . .
Ox22AC 686[for (1 =0 ; 1 <= 5IZE
94 R:000022AC Tetc E2811001 armidg SR:0000225C E3A02000 -
697 anzahl++; . .
] ri,rl,#0x1 686 for (1 =0 ; 1 == 5IZE
—0001931 R:000022B0 fetch EAFFFFED \armle SR:00002260 |E3520012 cmp r2,#

4 | i

A Address bookmark.

B Trace bookmark.

Example:

BookMark.List ; display all bookmarks in a list
See also
B BookMark B <trace>.BookMark B <trace>.BookMarkToggle B AutoSTOre
B STOre

A 'Comment Your Results’ in ’Application Note for Trace-Based Code Coverage’

©1989-2024 Lauterbach General Commands Reference Guide B | 51

BookMark.RESet Delete all bookmarks

Format: BookMark.RESet

Resets the bookmarking system. Alternatively, click Delete All in the BookMark.List window.
Example:

BookMark.RESet ; reset all the bookmarks in the bookmarking system

See also
B BookMark

©1989-2024 Lauterbach General Commands Reference Guide B | 52

BookMark.Toggle

Toggles a single address bookmark

Format:

BookMark.Toggle "<bookmark_name>" [<address> | <time>] [<file>] [<line>]

Switches a single address bookmark on or off. TRACES32 executes the same command when you right-click

in a List.auto window, and

then choose Toggle Bookmark (see figure below).

The resulting bookmark names are auto-incremented 1, 2, 3, etc. User-defined bookmark names can be
created via the command line. A small green rectangle next to the address/line number indicates an address

bookmark.

}
}

}
int background()
{

register Tlong

i

=1 [BuList.auto /Track 1 EI@

ey W Over |[AsDiverge|[« Retum || ¢ up |[» Go |[Il Break |[¥Mode | Find:

| addr "I'inelsour‘ce - I
690| primz = 1 + 1 + 3; i

o k =1 + primz;

E Program Address

return anzahl;

flags[k] = FALSE; =
k += primz; + GoTil

a Breakpoint...
e Breakpoints

i Display Memory

anzahl++;
3

3

-2 o R PO
—

e Address bookmark at
sob for L line 692.
countl, countZ; %Edit Source I
[T & ViewInfo G

<bookmark_name>

<time>, <file>, <line>

Example:

List.auto /Track
BookMark.List
BookMark.Toggle

BookMark.Toggle

BookMark.Toggle

See also

User-defined bookmark name. An auto-incremented bookmark name can
be generated via the command line if a comma is entered instead of a
user-defined name.

The parameters <time>, <file>, and <line> are reserved for the scripting-
mode of TRACES32, they are not needed in the dialog-mode of TRACE32.

;display source listing
;display all bookmarks in a list

, 0x2290 ;switch on a bookmark at 0x2290 and
;auto-increment the bookmark name

"start" 0x1000 ;switch on a bookmark at 0x1000 and
;label it "start"

"start" ;switch off the existing bookmark

B BookMark

B <trace>.BookMarkToggle

©1989-2024 Lauterbach

General Commands Reference GuideB | 53

Break

Break Stopping the program execution

The Break command group can be used in TRACES32 for

. Stopping the target program execution asynchronously using the command Break.direct or
Break.REQuest

. Setting breakpoints
. Setting trace filters

. Programming complex triggers

See also
B Go

A ’Breakpoints’ in "Training Basic Debugging’
A ’'Breakpoints’ in "Training Basic SMP Debugging’

Breakpoints

A debugger has two methods to realize breakpoints: Software breakpoints and Onchip Breakpoints

A Software breakpoint replaces an instruction in the target memory by a special “breakpoint” instruction to
stop the program and return control the debugger. The number of software breakpoints is unlimited.
Breakpoints on instructions are called Program breakpoints by TRACE32 PowerView.

Onchip breakpoints use resources provided by the chip/core to realize a breakpoint. Onchip breakpoints are
only available in a limited number. Refer to your Processor Architecture Manual for a detailed list of the
available Onchip breakpoints. Onchip breakpoints can be set on instruction addresses (Program
breakpoints) or can be used to stop the core at a read or write access to a memory location (Read/Write
breakpoints).

Breakpoints can be set using the Break.Set command and controlled using the commands Break.Delete,
Break.ENable and Break.DISable or from the Break.List window. Breakpoints set with Break.Set are
permanent, i.e. they are not deleted when the program execution is stopped.

©1989-2024 Lauterbach General Commands Reference Guide B | 54

TRACE32 provides also so-called temporary breakpoints. Temporary breakpoints are only valid until the
program execution stops the next time. They are automatically deleted by TRACE32. There are various
commands that use temporary breakpoints. Just a few examples:

Break.direct <address> [<breakpoint_type>] Set a temporary breakpoint to the
specified <address> of the specified
<breakpoint_type>.

Go.direct <address> Set a temporary Program breakpoint to
<address> and start the program execution.

Var.Go <hll_expression>[Read | Write | ReadWrite] Set a temporary breakpoint to the
specified <hll_expression> of the specified
<breakpoint_type> and start the program
execution.

Go.Return Set a temporary Program breakpoint to
the function epilog/exit and start the
program execution.

The Break.Set command can also be used to set up trace filters as enabling or disabling the trace recording
on a specific program address. These are also called in TRACES32 Breakpoints, which do not have however
the default action “stop”.

The behavior of the different breakpoint types as well as their scope can be controlled with Break.CONFIG
command group or from the Break.CONFIG.state window.

Further details and examples about the breakpoint usage are provided in “Training Basic Debugging”
(training_debugger.pdf).

©1989-2024 Lauterbach General Commands Reference Guide B | 55

Break.Asm Stop program/set temporary breakpoint and switch to Asm mode

Format:

<breaktype>:

Break.Asm [<address> ...[/[<breaktype> ...]]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

DIALOG | DIALOGADVANCED

Without an <address> parameter, this command stops the program execution and switches the debug

mode to Asm.

With an <address> parameter, the command sets a temporary breakpoint at the given address. When the
breakpoint is hit, TRACE32 PowerView switches the debug mode to Asm.

Refer to the description of the command Mode.Asm for more information about the different debug modes.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
See also
B Break.direct

©1989-2024 Lauterbach

General Commands Reference Guide B

56

Break.CLEAR Reset complex triggers

Format: Break.CLEAR

Resets complex triggers. This command does not reset breakpoints.

See also

B Break.Delete B Break.direct B Break.Program B Break.ReProgram
M Break.ViewProgram

A ’Introduction’ in’Application Note for Complex Trigger Language’

©1989-2024 Lauterbach General Commands Reference Guide B | 57

Break.CONFIG Configuration of breakpoint behavior and breakpoint scope

The Break.CONFIG command group allows the configuration of the behavior of the different breakpoint
types as well as their scope.

See also
B Break.CONFIG.AlwaysAlive B Break.CONFIG.InexactAddress
B Break.CONFIG.InexactData B Break.CONFIG.InexactResume
B Break.CONFIG.InexactTrigger B Break.CONFIG.MatchASID
B Break.CONFIG.MatchMachine B Break.CONFIG.MatchZone
B Break. CONFIG.METHOD B Break.CONFIG.state
B Break.CONFIG.UseContextID B Break.CONFIG.UseMachinelD
B Break.CONFIG.VarConvert B Break.direct
B Break.Set
Break.CONFIG.AlwaysAlive Alive Onchip breakpoints
[build 142724 - DVD 02/2022]
Format: Break.CONFIG.AlwaysAlive [ON | OFF]
Default: OFF

Allows to keep Onchip breakpoints alive in core when target is stopped.

See also
B Break.CONFIG

Break.CONFIG.InexactAddress Inexact address range breakpoint

Format: Break.CONFIG.InexactAddress [ON | OFF]
TrOnchip.CONVert [ON | OFF] (deprecated)

Default: ON

Allows to specify how TRACE32 behaves if an Onchip breakpoint is set to an address range, but the
breakpoint logic of the core in use does not provide the appropriate resources (see note below).

©1989-2024 Lauterbach General Commands Reference Guide B | 58

ON TRACE32 will automatically adjust the address range to fit in the
breakpoint logic. This may cause the core to stop outside the desired
range. Please note that the Break.List window still display the
original address range, but the breakpoint is marked as intrusive
breakpoint. Please refer to “Real-time vs. Intrusive Breakpoints”, page
87 for more information.

OFF If the breakpoint logic can not implement the address range exact, the
error message “address does not fit in on-chip breakpoint resources” is
returned.

Break.CONFIG.InexactAddress can be used in conjunction with Break.CONFIG.InexactResume. If this
command is set to ON, TRACE32 will automatically resume the program execution if it detects that the stop
is due to an access outside the original address range set by the user. Please note however, that in some
cases, it is not possible to determine the exact address that caused the breakpoint to fire.

When stopping on an inexact breakpoint, the TRACES32 state line displays the message “stopped at
inexact breakpoint”.

NOTE: The breakpoint logic of the core usually allows to set Onchip breakpoints for single
addresses. Breakpoints for exact address ranges are however not supported by
many core architectures. Some core architectures allow only single addresses,

others only fixed ranges (e.g. Intel® x86/x64 allows ranges of 2, 4 or 8 bytes) and
many cores implement ranges as bit masks.

See also
M Break.CONFIG

A ’Release Information’ in’Legacy Release History’

Break.CONFIG.InexactData Inexact data value breakpoint
Format: Break.CONFIG.InexactData [ON | OFF]
Default: ON

©1989-2024 Lauterbach General Commands Reference Guide B | 59

The breakpoint logic of some processor architectures allows to set data value breakpoints i.e. to stop the
program execution when a specific data value is written or read to/from an address. The command
Break.CONFIG.InexactData can be used to specify how TRACES32 behaves when data value breakpoints
are not supported by the breakpoint logic of the core.

ON TRACE32 sets an Onchip breakpoint without data value and checks on
each breakpoint hit the value which is read/written from/to the breakpoint
address. The breakpoint is marked as intrusive in the Break.List window.
Please refer to “Real-time vs. Intrusive Breakpoints”, page 87 for more
information.

OFF If the breakpoint logic can not implement data value Onchip breakpoints,
the error message “data does not fit in on-chip breakpoint resources” is
returned.

Break.CONFIG.InexactData can be used in conjunction with Break.CONFIG.InexactResume. If this
command is set to ON, TRACE32 will automatically resume the program execution if the data value
written/read to/from the breakpoint address is different from the one selected by the user.

See also
B Break.CONFIG

Break.CONFIG.InexactResume Resuming on inexact breakpoints
Format: Break.CONFIG.InexactResume [ON | OFF]
Default: ON

Defines how TRACE32 behaves when the execution is stopped on an inexact breakpoint. Please refer to
Break.CONFIG.InexactAddress, Break.CONFIG.InexactData and Break.CONFIG.InexactTrigger for
more information.

See also
B Break.CONFIG

Break.CONFIG.InexactTrigger Inexact trigger breakpoints
Format: Break.CONFIG.InexactTrigger [ON | OFF]
Default: OFF

©1989-2024 Lauterbach General Commands Reference Guide B | 60

Enables/disables inexact breakpoints for TraceON, TraceOFF, TraceTrigger, BusTrigger and BusCount
breakpoints. Please refer to the documentation of the Break.Set command for more information about the
different breakpoint types.

Setting Break.CONFIG.InexactTrigger to ON will automatically set Break.CONFIG.InexactAddress ON.

See also
B Break.CONFIG

Break.CONFIG.MatchASID Use ASID specific breakpoints

Format: Break.CONFIG.MatchASID [ON | OFF]
TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)

Default: OFF

When this command is set to ON, Onchip breakpoints will be set specific to the ASID (Address Space
IDentifier) relative to the used task space ID or the space ID of the current task (if supported by the target
processor). Space IDs are enabled in TRACE32 with the command SYStem.Option.MMUSPACES ON.
OS-aware debugging has additionally to be enabled in TRACE32 in order to set ASID specific breakpoints.

Example:

Break.CONFIG.MatchASID ON

; set an Onchip breakpoint specific to the ASID of the process with
; space ID 0x159
Break.Set 0x159:0x97D0 /Onchip

; set an Onchip breakpoint specific to the ASID of the current process
Break.Set 0x97D0 /Onchip

The Onchip breakpoint will only trigger if the ASID used for the breakpoint is the current one. If the ASID is
not available for the target processor, MatchASID will be greyed out in the Break.CONFIG.state window
and the command will be locked.

See also
B Break.CONFIG

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide B | 61

Break.CONFIG.MatchMachine Use machine specific breakpoints

Format: Break.CONFIG.MatchMachine [ON | OFF]
TrOnchip.MatchMachine [ON | OFF] (deprecated)

Default: OFF

When this command is set to ON, Onchip breakpoints will be set specific to the specified machine ID or the
current machine ID if no machine is specified. The Onchip breakpoint will only trigger if the machine used for
the breakpoint is the current one. Machine IDs are enabled in TRACE32 with the command
SYStem.Option.MACHINESPACES ON. Hypervisor-aware debugging has additionally to be configured in
order to set machine specific breakpoints.

Example:

Break.CONFIG.MatchMachine ON

; Trace only machine 2 on a 64-bit architecture
Break.Set 2:::0x0:0x0--Oxffffffffffffffff /TraceEnable

See also
B Break.CONFIG

A ’Release Information’ in’Legacy Release History’

Break.CONFIG.MatchZone Use zone specific breakpoints

Format: Break.CONFIG.MatchZone [ON | OFF]
TrOnchip.MatchZone [ON | OFF] (deprecated)

Default: OFF

When this command is set to ON, Onchip breakpoint are set specific to the given zone or the current zone.
Zones are enabled in TRACE32 with the command SYStem.Option.ZoneSPACES ON.

©1989-2024 Lauterbach General Commands Reference Guide B | 62

Example:

Break.CONFIG.MatchZone ON

; Set an Onchip breakpoint on address 0x1000 for the Arm secure zone
Break.Set Z:0x1000 /Onchip

See also
B Break.CONFIG

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide B | 63

Break.CONFIG.METHOD

Breakpoints implementation

Format:

<breaktype>:

<impl>:

Break.CONFIG.METHOD [<breaktype> <impl>]
Break.METHOD [<breaktype> <impl>] (deprecated)
Break.IMPLementation [<breaktype> <impl>] (deprecated)
Break.SELect (deprecated)

Program
Read
Write
Alpha
Beta
Charly
Delta
Echo

AUTO
Onchip
SOFT

Defines the default implementation of breakpoints. Without any parameters, the command opens the

Break.CONFIG.state window.
AUTO Leave it to the debugger to use the appropriate breakpoint
implementation.
SOFT Advise TRACES2 to implement this breakpoint type as SOFTware
breakpoint.
Onchip Advise TRACE32 to implement this breakpoint type as Onchip
See also

B Break.CONFIG

©1989-2024 Lauterbach

General Commands Reference Guide B

64

Break.CONFIG.state Breakpoint configuration window

Format: Break.CONFIG.state

Opens the breakpoint configuration window.

¥ B::Break.CONFIG.state =n| Wl <
METHOD
VarConvert UseContextID Program Read Write
UseMachineID @ AUTO @ AUTO @ AUTO
V| InexactAddress SOFT SOFT SOFT
V| InexactData MatchASID Onchip Onchip Onchip
InexactTrigger MatchMachine
V| InexactResume V| MatchZone Alpha Beta Charly Delta Echo
@ AUTO @ AUTO @ AUTO @ AUTO @ AUTO
SOFT SOFT SOFT SOFT SOFT
Onchip Onchip Onchip Onchip Onchip

A For descriptions of the commands in the Break.CONFIG.state window, please refer to the
Break.CONFIG.* commands in this chapter.
Example: For information about VarConvert, see Break.CONFIG.VarConvert.

See also
B Break.CONFIG

Break.CONFIG.UseContextID Context ID specific breakpoints

Format: Break.CONFIG.UseContextID [ON | OFF]
TrOnchip.ContextlD [ON | OFF] (deprecated)

Default: OFF

©1989-2024 Lauterbach General Commands Reference Guide B | 65

Enables/disables the usage of the ContextID comparator, if supported by the target processor architecture,
for task selective Onchip breakpoints. Please note the CONTEXTIDR register has additionally to be written
by the kernel on every task switch.

ON Task-selective Onchip breakpoints will be implemented using the
ContextID comparator. The breakpoint is in this case non-intrusive i.e.
the execution will stop on the breakpoint only if the selected task is the
current one.

OFF Task-selective breakpoints will be implemented as intrusive breakpoints
i.e. the program execution will always stop on the breakpoint. The
execution will be automatically resumed by the debugger if the selected
task for the breakpoint is not the current one.

If the ContextID comparator is not available for the target processor architecture, UseContextID will be
greyed out in the Break.CONFIG.state window and the command will be locked.

See also
B Break.CONFIG

A ’'Release Information’ in’Legacy Release History’

Break.CONFIG.UseMachinelD Machine ID specific breakpoints

Format: Break.CONFIG.UseMachinelD [ON | OFF]
TrOnchip.MachinelD [ON | OFF] (deprecated)

Default: OFF

©1989-2024 Lauterbach General Commands Reference Guide B | 66

Enables/disables the usage of the VMID comparator to set machine specific breakpoints, if supported by the
target processor architecture. Please note the VMID has additionally to be written by the kernel on every

machine switch.

ON

OFF

See also

Machine-selective Onchip breakpoints will be implemented using the
VMID comparator. The breakpoint is in this case non-intrusive i.e. the
execution will stop on the breakpoint only if the selected machine is the
current one.

Machine-selective breakpoints will be implemented as intrusive

breakpoints i.e. the program execution will always stop on the breakpoint.

The execution will be automatically resumed by the debugger if the
selected machine for the breakpoint is not the current one.

B Break.CONFIG

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach

General Commands Reference Guide B |

67

Break.CONFIG.VarConvert Convert breakpoints on scalar variables

Format: Break.CONFIG.VarConvert [ON | OFF]
TrOnchip.VarCONVert [ON | OFF] (deprecated)

Default: OFF

Defines the debugger behavior when setting a breakpoint to a scalar variable (int, float, double).

ON The breakpoint is set to the start address of the variable. This setting
consumes the least amount of core breakpoint resources.

OFF The breakpoint is set to all the memory address range that holds the
variable value. This setting requires more core breakpoint resources, but
also triggers on partial accesses to the variable (e.g. only one byte of the
32 bit variable). Use this setting when searching for a variable being
partially overwritten (e.g. by an out-of bounds access to an array located
nearby).

See also
B Break.CONFIG

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide B | 68

Break.Delete

Delete breakpoints

Format:

<breaktype>:

Break.Delete [[<address> | <addressrange>] [[<breaktype> ...]]

Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount

TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id>| <machine_name>

Spot

Deletes all breakpoints if used without a parameter.

<address>, Specifying an <address> or an <addressrange> allows to delete only the
<addressrange> specified breakpoint.
<breaktype> Specifying a <breaktype> allow to delete all breakpoints of this type.
For a description of the breakpoint types and breakpoint options, see
Break.Set.
Examples:

Break.Delete

Break.Delete

Break.Delete

Break.Delete

0x1000--0x1fff 3

func9 H

mstaticl /Read 3

7

delete

delete
in the

delete
to the

delete

all breakpoints

all breakpoints
address range of 0x1000 to Ox1fff

the breakpoint at the entry
function func9

read breakpoints on integer

variable mstaticl

; delete write breakpoint on array flags
Var.Break.Delete flags /Write

See also

M Break.CLEAR

B Break.direct

A ’Breakpoint Handling’ in "Training Basic Debugging’
A ’Breakpoint Handling’ in "Training Basic SMP Debugging’

B Var.Break.Delete

©1989-2024 Lauterbach

General Commands Reference GuideB | 69

Break.DeletePATtern Delete breakpoints allowing wildcards

Format: Break.DeletePATtern <symbol_pattern> [I<type>]

Delete breakpoints allowing the wildcards ? and *. For details on deleting breakpoints, refer to the
Break.Delete command.

<type> Specifying a <type> allow to delete all breakpoints of this type.

For a description of the breakpoint types and breakpoint options, see

Break.Set.
Example:
Break.DeletePATtern *memory* /Program ; delete program breakpoints
; from all debug symbols that
; contain the string "memory".
See also

B Break.direct
A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideB | 70

Break.direct

Stop program execution or set temporary breakpoints

Format:

<breaktype>:

Break.direct [<address> ...[/<breaktype> ...]]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

DIALOG | DIALOGANVANCED

Break.direct stops the program execution, if no address parameter is specified

If address parameters are provided, Break.direct sets so-called temporary breakpoints at the specified
addresses. A temporary breakpoint is valid until the program stops the next time. Once the program stops,
all temporary breakpoints are deleted by the debugger. One application is to set temporary breakpoints on
multiple alternative execution paths, if it is not known which one will be taken.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
NOTE: Please note that break and b are abbreviations of the Break.direct

command and not of Break.Set.

Also note the convention used in TRACE32 manuals to spell commands
with all mandatory letters capitalized.

©1989-2024 Lauterbach

General Commands Reference Guide B | 71

Examples:

Go
Break

Break 0x1000

Go

Break main /Program

Break \main\100

Break funcl func9
Go

Go funcl func9

Var .Break ast /Read

start program execution
stop program execution

set a temporary Program breakpoint at
address 0x1000
start the program execution

set a temporary breakpoint of the type
Program to the entry of the function
main

set a temporary breakpoint to line 100
of module "main"

set temporary breakpoints to the entries
of the functions funcl and func9
start the program execution

or identical

set a temporary Read breakpoint to
the variable ast

See also

B Break.Asm M Break.CLEAR M Break.CONFIG M Break.Delete

B Break.DeletePATtern B Break.DISable M Break.ENable M Break HIl

B Break.Init B Break.List B Break.Mix M Break.MONitor
B Break.PASS W Break.PATtern B Break.Program B Break.ReProgram
B Break.REQuest B Break.RESet B Break.Set B Break.SetFunc
B Break.SetlLine M Break.SetMONitor B Break.SetPATtern B Break.SetTask

M Break.ViewProgram B Go.direct M Var.Break.direct

©1989-2024 Lauterbach

General Commands Reference Guide B | 72

Break.DISable Disable breakpoints

Format: Break.DISable [[<address> | <addressrange>] [[<breaktype> ...]]

<breaktype>: Program | ReadWrite | Read | Write
Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>

CORE <number>

Disables a breakpoint. The breakpoint remains set but is not active.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
Examples:
Break.DISable ; disable all breakpoints
Break.DISable sieve ; disable the breakpoint at address sieve
a B::Break.List EI@
(3% Delete All (O Disable All (@ Enable All][@ Init | Zmpl... || Estore... || BLoad... || Eiiset... |
address types imp]l |
F:40000?10ﬂpr0gra ONCHIP Func9 .
F:400012A8 |Program DISABLE sieve
See also

B Break.direct

A ’'Breakpoint Handling’ in "Training Basic Debugging’
A ’Breakpoint Handling’ in "Training Basic SMP Debugging’

©1989-2024 Lauterbach General Commands Reference GuideB | 73

Break.ENable Enable breakpoints
Format: Break.ENable [[<address> | <addressrange>] [[<breaktype> ...]]
<breaktype>: Program | ReadWrite | Read | Write

Onchip | HARD | SOFT

ProgramPass | ProgramFail
Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

TASK <task_magic> | <task_id> | <task_name>

CORE <number>

Enables a breakpoint. The breakpoint becomes active again.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
Examples:
Break.DISable sieve ; disable the breakpoint at address sieve
a B::Break.List EI@
(3% Delete All| (O Disable Al @ Enable AII][@mit || &impl... |[Bstore... || Bload... || Edset... |
address imp]l i
F:40000710 Program ONCHIP ‘ Func9 .
F:40001248 [P DISABLE | sieve
Break.ENable sieve ; enable the breakpoint at address sieve

See also

B Break.direct

A ’Breakpoint Handling’ in "Training Basic Debugging’
A ’Breakpoint Handling’ in "Training Basic SMP Debugging’

©1989-2024 Lauterbach

General Commands Reference Guide B | 74

Break.HlII Stop program/set temporary breakpoint and switch to HLL mode

Format:

<breaktype>:

Break.HIl [<address> ...[I<breaktype> ...]]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

DIALOG | DIALOGADVANCED

Stops the program execution or sets a temporary breakpoint and switches the debug mode to HIl. Please

refer to the description of the Mode.HIl command for more information.

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
See also
B Break.direct

©1989-2024 Lauterbach

General Commands Reference Guide B

75

Break.Init Initialize breakpoints

Format: Break.Init

Break.Init deletes all temporary breakpoints, sets all permanent breakpoint again and resets the breakpoint
counters.

See also
B Break.direct

A ’'Release Information’ in’Legacy Release History’

Break.List Display list of breakpoints
Format: Break.List [/<option>]
<option>: Onchip | CTL | Summary | HARD

Displays a list of all breakpoints.

a B::Break.List EI@
(3% Delete All| (O Disable All (@ Enable All|[@ Init [2 Method... | 22 store... || £ Load... || EiiSet... |
address type method |count
C:FEBFBAFA[Program SOFT Y [@ | s1eve’\20
C:FEBFADZ8--FEBFAQZE fwrite ONCHIP 0.,/1000. W [| mstaticl
C:FEBFB7AC--FEBFE7EE [write ONCHIP W (& | Tlags
The following options are mainly used for diagnosis:
Onchip Display details on Onchip breakpoints.
OnchipDetail Display details about the usage of the available address comparators

for the individual Onchip breakpoints.
[build 116363 - DVD 02/2020]

CTL Display details on CTL breakpoints.

Summary Summarizes the details about all breakpoints.

Physical (deprecated)

HARD Display details on HARDware breakpoints.
See also

B Break.direct

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideB | 76

A ’Breakpoint Handling’ in "Training Basic Debugging’
A ’Breakpoint Handling’ in "Training Basic SMP Debugging’

©1989-2024 Lauterbach General Commands Reference Guide B | 77

Break.Mix Stop program/set temporary breakpoint and switch to MIX mode

Format:

<breaktype>:

Break.Mix [<address> ...[/<breaktype> ...]]

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude

TASK <task_magic> | <task_id> | <task_name>

MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

DIALOG | DIALOGADVANCED

Stops program execution or sets a temporary breakpoint and switches the debug mode to Mix. Refer to

Mode.Mix for more information,

<breaktype> For a description of the breakpoint types and breakpoint options, see
Break.Set.
See also
B Break.direct

©1989-2024 Lauterbach

General Commands Reference Guide B

78

Break.MONitor Switch back to stop mode debugging

Format: Break.MONitor

This command is used in Run Mode debugging to switch back to Stop Mode and stop the program
execution.

The command Go.MONitor is used to switch from Stop Mode to Run Mode debugging.

See also
B Break.direct B Break.SetMONitor B Go.MONitor
Break.PASS Define pass condition for breakpoint
Format: Break.PASS [<boolean_expression>]

When the program execution is stopped by a breakpoint, and the boolean expression is true, the program
execution is automatically restarted. The feature can be cleared by entering the command without

arguments.
Examples:
Break.PASS Register (A7)>0x1000 ; automatically restart the program
; execution at a breakpoint hit, if
; the register A7 is larger than
; 0x1000
Break.Set 0x100 ; set a breakpoint
Break.Set sieve+34 ; set a second breakpoint
Go ; start the program execution
Break.PASS ; remove the pass condition

The following commands shows how a condition can be directly assigned to a single breakpoint.

Break.Set sieve+34 /Program /CONDition Register (R9)==0
Go

Break.Delete sieve+34

See also

B Break.direct B Break.ReProgram B Break.ViewProgram

©1989-2024 Lauterbach General Commands Reference GuideB | 79

Break.PATtern Set temporary breakpoints allowing wildcards

Format: Break.PATtern <symbol_pattern> [/<type>]

Sets a temporary breakpoint allowing the wildcards ? and *. For details on temporary breakpoints, refer to
the Break.direct command.

Example:
Break.PATtern *memory* /Program ; set temporary program breakpoints to
; all debug symbols that contain the
; string "memory".
See also

B Break.direct

A ’Release Information’ in’Legacy Release History’

Break.Program CTL interactive programming

Format: Break.Program [<file>]

Opens the Break.Program editor window, where you can create Complex Trigger Language (CTL) scripts.
The editor provides syntax highlighting, configurable auto-indentation and an online syntax check. The input
is guided by softkeys.

See also
M Break.CLEAR M Break.direct

A ’Introduction’ in’Application Note for Complex Trigger Language’

©1989-2024 Lauterbach General Commands Reference Guide B | 80

Break.ReProgram Activate existing CTL program file

Format: Break.ReProgram [<file>]

Activates an existing Complex Trigger Language (CTL) file.

See also
B Break.CLEAR B Break.direct B Break.PASS
A ’Introduction’ in’Application Note for Complex Trigger Language’

Break.REQuest Request a program break

Format: Break.REQuest

This command requests a program break but does not wait until the program execution is stopped.

See also
B Break.direct

Break.RESet Delete all breakpoints and reset the TRACE32 break system

Format: Break.RESet

Deletes all breakpoints and resets the TRACE32 break system.

See also
B Break.direct

©1989-2024 Lauterbach General Commands Reference Guide B | 81

Break.Set

Set breakpoints

[Breakpoint Types] [Breakpoint Options]

Format:

<impl>:

<breaktype>:

Break.Set [<address>|<range>] [/<breaktype> ...]] [[<impl>]

SOFT | Onchip

Program | ReadWrite | Read | Write
Onchip | HARD | SOFT
ProgramPass | ProgramFail

MemoryReadWrite | MemoryRead | MemoryWrite
RegisterReadWrite | RegisterRead | RegisterWrite
VarReadWrite | VarRead | VarWrite

DATA[.Byte | .Word | .Long] <value> ...

Alpha | Beta | Charly | Delta | Echo

WATCH | BusTrigger | BusCount
TraceEnable | TraceData | TraceON | TraceOFF | TraceTrigger

Spot

DISable | DISableHIT | DeleteHIT | NoMark | EXclude
TASK <task_magic> | <task_id> | <task_name>
MACHINE <machine_magic> | <machine_id>| <machine_name>
CORE <number>

COUNT <value>

CONDition <expression> [[AfterStep]

VarCONDition <hll_expression> [/AfterStep]

CMD <command_string>

RESUME

DIALOG | DIALOGADVANCED

The Break.Set command sets breakpoints via the TRACE32 command line. Without parameters, the
command opens the Break.Set dialog window for setting breakpoints.

NOTE:

You can configure the breakpoint behavior with the Break.CONFIG command
group.

©1989-2024 Lauterbach

General Commands Reference Guide B |

82

A detailed introduction into the breakpoint usage can be found in “Training Basic Debugging”
(training_debugger.pdf).

NOTE:

Do not erroneously abbreviate the command
Break.Set <address>

as

Break <address>

The command Break.Set <address> sets a permanent breakpoint, whereas the
command Break <address> sets a breakpoint that is automatically deleted when
the program execution is stopped the next time (temporary breakpoint).

The following breakpoint implementations are available:

SOFT The code at the breakpoint location is patched with a break instruction.
A software breakpoint usually requires RAM at the breakpoint location.
If you want to set software breakpoints to instructions in FLASH refer to
command FLASH.Auto.

Onchip The resources for the breakpoints are provided by the chip.

©1989-2024 Lauterbach

General Commands Reference Guide B |

83

On-chip Breakpoints

[Back to Top]
Refer to your Processor Architecture Manual for a detailed list of the available Onchip breakpoints.

For some processor architectures Onchip breakpoints can only mark single addresses (e.g Cortex-A9).
Most processor architectures, however, allow to mark address ranges with Onchip breakpoints. It is very
common that one Onchip breakpoint marks the start address of the address range while the second Onchip
breakpoint marks the end address (e.g. MPC57xx).

The command Break.CONFIG.VarConvert (TrOnchip.VarConvert in older software versions) allows to
control how range breakpoints are set for scalars (int, float, double).

Break.CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) the

ON breakpoint is set to the start address of the variable.

+ Requires only one single address breakpoint.

- Program will not stop on unintentional accesses to the variable’s
address space.

Break.CONFIG.VarConvert If a breakpoint is set to a scalar variable (int, float, double) breakpoints
OFF are set to all memory addresses that store the variable value.

+ The program execution stops also on any unintentional accesses
to the variable’s address space.

- Requires two onchip breakpoints since a range breakpoint is
used.

The current setting can be inspected and changed from the Break.CONFIG window.

Example: the red line in the Data.View window shows the range of the Onchip breakpoint.

Q B::Data.View vint EI@
breakpoint address | data [value symbo |
W SD:4000406C] 00 T d1ab 1 1 -~

5D:4000406D | 00
5D:4000406E | 00
5D:4000406F | 00

4 1 b

T

; Set an Onchip breakpoint to the start address of the variable vint
Break.CONFIG.VarConvert ON

Var .Break.Set vint /Write

Data.View vint

; Set an Onchip breakpoint to the whole memory range address of the
; variable vint

Break.CONFIG.VarConvert OFF

Var .Break.Set vint /Write

Data.View vin

©1989-2024 Lauterbach General Commands Reference Guide B | 84

Q B::Data.View vint

breakpoint address | data [value

SD:4000406C || 00 T
SD:4000406D| 00
SD:4000406E || 00
SD:4000406F || 00
SD:40004070 | 00

4

=E==E=

T T T

A number of processor architectures provide only bit masks or fixed range sizes to mark an address range
with Onchip breakpoints. In this case the address range is always enlarged to the smallest bit mask/next
allowed range that includes the address range.

It is recommended to control which addresses are actually marked with breakpoints by using the
Break.List /Onchip command:

Breakpoint setting:

Var .Break.Set str2

Break.List

8 B::Break List |-]
(3% Delete All| (O Disable All (@ Enable All|[@ Init [& Method... | 22 store... | 2 Load... || EilSet... |

address type method |

c:20005524——2000553?Jw|ﬂ1te ‘ONCHIP ‘ v str2 -

Break.List /Onchip

i B::Break List /Onchip =]
(3% Delete All| (O Disable All (@ Enable All|[@ Init [2 Method... | 22 store... || 2 Load... || EiiSet... |

address type method |onchip resource i
C:20005520——2000553?JWr1te ‘ONCHIP ‘Ol ‘\.-’ ‘(vppu'long)——(str2+0x13) -

4 [}

©1989-2024 Lauterbach General Commands Reference Guide B | 85

Breakpoint Types

[Back to Top]

The following breakpoint types are available:

Program

The program execution is stopped before the instruction marked with the
breakpoint is executed (for most processor architectures).

Default implementation for a Program breakpoint is SOFT for nearly all
processor architectures.

ReadWrite

The program executions is stopped at a read or write access to the
specified address.
Default implementation for a read/write breakpoint is Onchip.

Read

The program executions is stopped at a read access to the specified
address.
Default implementation for a read breakpoint is Onchip.

Write

The program executions is stopped at a write access to the specified
address.
Default implementation for a write breakpoint is Onchip.

There are two flavours of breakpoints:

. Break after make

The program execution is stopped after the read/write access was performed respectively after
the instruction marked with the breakpoint was executed.

. Break before make

The program execution is stopped before the instruction marked with the breakpoint was
executed respectively before the read/write access was performed.

©1989-2024 Lauterbach

General Commands Reference GuideB | 86

Real-time vs. Intrusive Breakpoints

[Back to Top]
Real-time breakpoints
The usage of a breakpoint does not influence the real-time behavior of the application program.
Intrusive breakpoints

The usage of the breakpoint influences the real-time behavior. Intrusive breakpoints perform as follows:

Program restart

Program execution

'

Breakpoint hit

Check not ok

Perform
check

Check ok

Stop

Each stop to perform the check suspends the program execution for at least 1 ms.

‘B::

components trace Data Var List PERF SYStem Step other pravious
|| HLL [up

The (short-time) display of a red S in the state line indicates that an intrusive breakpoint was hit.

TRACE32 implements real-time breakpoints whenever possible.

Intrusive breakpoints are marked with a special breakpoint indicator:

©1989-2024 Lauterbach General Commands Reference Guide B | 87

Breakpoint Options

[Back to Top]
If an instruction is conditionally executed (e.g. BGT - Branch Greater Then, LDREQB - Load Byte if Equal),
TRACER32 stops shortly to check the status flags in order to find out if the condition is satisfied.

. ProgramPass (intrusive breakpoint)

Stop program execution at ProgramPass
‘breakpoint

Check
status flag for
condition

Condition not satisfied

g Continue program
execution

Condition satisfied

Keep stop of program execution

L ProgramFail (intrusive breakpoint)

Stop program execution at ProgramFail
breakpoint

Check
status flag for
condition

Condition satisfied

p- Continue program
execution

Condition not satisfied

Keep stop of program execution

©1989-2024 Lauterbach General Commands Reference Guide B | 88

NOTE: The following options are not available for all processor architectures!

The following options can be used, if the on-chip debug unit of your processor makes it possible to stop the
program execution when a read or write access to an address is performed by a specific code section. If this
feature is not supported by your processor, these options are deactivated.

MemoryReadWrite Set a MemoryReadWrite breakpoint.

MemoryRead Set a MemoryRead breakpoint.

MemoryWrite Set a MemoryWrite breakpoint.

VarReadWrite Set a MemoryReadWrite breakpoint to a static variable.

VarRead Set a MemoryRead breakpoint to a static variable.

VarWrite Set a MemoryWrite breakpoint to a static variable.
Examples:

Stop the program execution when an instruction of the code range
; 0xA100--0xA32D writes to the address 0x400
Break.Set 0xA100--0xA32D /MemoryWrite 0x400

’

Stop the program execution when an instruction of the function sieve
; writes to the variable flags
Var.Break.Set sieve /VarWrite flags

’

©1989-2024 Lauterbach General Commands Reference Guide B | 89

The following options can be used, if the on-chip debug unit of you processor makes it possible to stop the
program execution when a read or write access to a core register is performed by a specific code section. If
this feature is not supported by your processor, these options are deactivated.

RegisterReadWrite Set a breakpoint which stops the cpu on a core register access.

RegisterRead Set a breakpoint which stops the cpu on a core register read.

RegisterWrite Set a breakpoint which stops the cpu on a core register write.

VarReadWrite Set a RegisterReadWrite breakpoint to a register variable.

VarRead Set a RegisterRead breakpoint to a register variable.

VarWrite Set a RegisterWrite breakpoint to a register variable.
Examples:

Stop the program execution when an instruction of the code range
0xA100--0xA32D writes to register R1

I

I

Break.Set 0xA100--0xA32D /RegisterWrite R1

Stop the program execution when an instruction of the function sieve
writes to the register variable i

I

I

Var.Break.Set sieve /VarWrite i

©1989-2024 Lauterbach General Commands Reference Guide B | 90

The following options are only used together with the on-chip trigger unit of the processor. Please refer to the

TrOnchip commands.

Alpha Set an Alpha breakpoint.
Beta Set an Beta breakpoint.
Charly Set an Charly breakpoint.
Delta Set an Delta breakpoint.
Echo Set an Echo breakpoint.
; Example for MPC500/800
; Generate a pulse on the processor pin IWPO
; 1f the function funcl is entered
Break.Set funcl /Alpha ; Set an Alpha breakpoint to the entry of
; funcl
TrOnchip.IW0 Ibus Alpha ; The addresses marked with Alpha
; breakpoints define the Ibus address
TrOnchip.IW0 WATCH ON ; Generate a pulse on IWPO when IW0 is hit

If the option Spot is selected, the program execution is only stopped shortly to update the TRACE32 screen
when the breakpoint is hit. As soon as the screen is updated, the program execution continues. Each stop at
a breakpoint with the option Spot takes approximately 50 ... 100 ms.

Spot Set the option Spot for a breakpoint.
Break.Set func7 /Program /Spot ; When the program breakpoint
; at the entry of function
; func7 is hit update the
; TRACE32 screen.
Break.Set data /Write /Spot ; Update the TRACE32 screen
; when a write access to the
; address data occurred.
Var.Break.Set flags[3] /Write /Spot ; Update the TRACE32 screen

; when a write access to the
; variable flags[3] occurred.

©1989-2024 Lauterbach

General Commands Reference Guide B | 91

The following options can be used, if they are supported by the used processor, they are deactivated

otherwise.

WATCH If the option WATCH is set, the program execution is not stopped at a
breakpoint hit, the WATCH facility of the processor is activated instead.
Examples for the WATCH facility are: Watchpoint Hit Messages with
NEXUS; a short pulse on a watchpoint pin for the MPC5xx family etc.

BusTrigger If the option BusTrigger is set, the program execution is not stopped at a
breakpoint hit, a pulse for the internal trigger bus of the TRACE32
development tool is generated instead. For information about the internal
trigger bus refer to the TrBus command.

BusCount If the option BusCount is set, the program execution is not stopped at a
breakpoint hit, the breakpoint hits are counted by the TRACE32 counter
system instead. For more information about the TRACE32 counter
system refer to the Counter command.

Examples:

Break.Set sieve /Program /Watch Activate the WATCH facility of
your processor when the
function sieve is entered.

Break.Set sieve /Program /BusTrigger Generate a 100 ns pulse for
the TRACE32 internal trigger
bus when the function sieve
is entered

TrBus.RESet Configure the TRACE32 internal
trigger bus

TrBus.Connect Out The TRIGGER connector of the
TRACE32 development tool works
as output

TrBus.Mode Low A 100 ns low pulse is
generated on TRIGGER

Break.Set sieve /Program /BusCount Count the entries to the
function sieve

Count.RESet

Count .Mode EventHigh

©1989-2024 Lauterbach

General Commands Reference Guide B | 92

The following options are available if a trace is used and trace control features are provided either by the
used processor or by the TRACE32 hardware. These options are deactivated otherwise.

TraceEnable Enable the trace on the specified event.
TraceData Sample the complete program flow and the specified data event.
TraceON Switch the sampling to the trace ON on the specified event.
TraceOFF Switch the sampling to the trace OFF on the specified event.
TraceTrigger Stop the sampling to the trace on the specified event. A trigger delay is
possible.
Examples:

; Sample only the function entries to funcb5 to the trace buffer
Break.Set funcb /Program /TraceEnable

; Sample only write accesses to the variable vint into the trace buffer
Var.Break.Set vint /Write /TraceEnable

Sample the complete program flow plus all write accesses to the
; variable vlong into the trace buffer
Var.Break.Set vlong /Write /TraceData

7

Start the sampling to the trace buffer, when the function func7 is

; entered and stop the sampling to the trace buffer after the variable
; WriteBuffer was read

Break.Set func7 /Program /TraceON

Var.Break.Set WriteBuffer /Read /TraceOFF

7

; Sample another 2000. records to the trace buffer after the function
; func23 was entered

Break.Set func23 /Program /TraceTrigger

Trace.TDelay 2000.

©1989-2024 Lauterbach General Commands Reference Guide B | 93

DISable Set the specified breakpoint, but disable it.

DISableHit Disable the breakpoint after it was hit.
DeleteHIT Delete the breakpoint when it is hit.
NoMark Don’t display a breakpoint indicator on the TRACE32 screen.
EXclude The breakpoint is inverted:
. by the inverting logic of the on-chip trigger unit
. by setting the specified breakpoint to the following 2 address
ranges
0x0--(start_of_breakpoint_range -1)
(end_of_breakpoint_range+l)--end_of_memory

The EXclude option only applies to the implementation Onchip or
Hardware.

If the implementation is Onchip and the Onchip trigger unit does not
provide an inverting logic, the processor has to provide the facility to set
the specified breakpoint type on 2 address ranges.

Examples:

; Set a Write breakpoint to the address data but disable it
Break.Set data /Write /DISable

; Set a Program breakpoint to the entry of the function sieve. Disable
; the breakpoint after it was hit.
Break.Set sieve /Program /DISableHit

; Set a Program breakpoint to the entry of the function sieve.
; delete the breakpoint when it is hit.
Break.Set sieve /Program /DeleteHIT

; Set a Write breakpoint to the code range 0x3F000--0x3FAFF to make sure
; that no write access happens to your code range, but suppress the

; display of a break indicator

Break.Set 0x3F000--0x3FAFF /Write /NoMark

; Stop the program execution when a instruction outside of the function
; sieve accesses the variable flags
Var.Break.Set sieve; /VarReadWrite flags; /EXclude

©1989-2024 Lauterbach General Commands Reference Guide B | 94

The following options allow to stop the program execution when a specific data value is read or written.

DATA.Byte <value> Define the data value for a byte access.

DATA.Word <value> Define the data value for a word access.

DATA.Long <value> Define the data value for a long access.

DATA.Quad <value> Define the data value for a quad access.

DATA.TByte <value> Define the data value for a triple-byte access.

DATA.HByte Define the data value for a hexabyte access.
<value>
DATA.auto <value> Define the data value for an HLL variable. The access width is taken from

the HLL information. If there is no HLL information available, the
architecture width is taken.

Examples:

; Stop the program execution when 0x33 is written to the address buffer
; via a byte write
Break.Set buffer /Write /DATA.Byte 0x33

; Stop the program execution when 0xf00023aa is read from the address
; long_value via a long read
Break.Set long value /Read /DATA.Long 0xf00023aa

; Stop the program execution when 0x0 is written to the variable
; flags[3]
Var.Break.Set flags[12] /Write /DATA 0x0

Break.Set word_value /Write /DATA.Word OyXXXXXXXXXXXXXXX1

J Not all data widths are supported for all architectures. Quad will normally not be available for
most 8-, 16- or 32-bit architectures. TByte and HByte are only available for specific DSP
architectures.

J If the processor provides data value breakpoints (see “On-chip Breakpoints”, page 84) a real-
time data value breakpoint is possible.

. TRACES3?2 provides an intrusive data value breakpoint, if the processor does not provide data
value breakpoints.

©1989-2024 Lauterbach General Commands Reference Guide B | 95

An intrusive data value breakpoint for “break after make” processors is implemented as follows:

restart program

Program execution

Breakpoint hit at intrusive
data value breakpoint

Debugger reads data
value at read/write address

No

Specified
data value?

©1989-2024 Lauterbach General Commands Reference Guide B | 96

An intrusive data value breakpoint for “break before make” processors is implemented as

follows:
restart program
Program execution <& Prog
Breakpoint hit at intrusive
data value breakpoint
Read
Yes access? No
Debugger reads data Debugger simulates
value at read address write access
Specified

data value? No

A intrusive data value breakpoint on a memory-mapped I/O register can
result in a failing read or destructive write access.

©1989-2024 Lauterbach General Commands Reference Guide B | 97

TASK <task_magic>, If OS-aware debugging is configured, TASK-aware breakpoints allow to
etc. stop the program execution at a breakpoint only if the specified
task/process is running.

TASK-aware breakpoints are implemented on most cores as intrusive
breakpoints. A few cores support real-time TASK-aware breakpoints (e.g
ARM/Cortex).

See also “What to know about the Task Parameters”
(general_ref_t.pdf).

MACHINE Specify the machine where you want to set the breakpoint. The
<machine_id>, etc. breakpoint action, such as stop, takes effect only if the program is
executed on the specified machine.

The breakpoint is a real-time breakpoint if the processor architecture
provides a machine ID register. Otherwise the breakpoint is an intrusive
breakpoint.

See also “What to know about the Machine Parameters”
(general_ref_t.pdf).

CORE <number> Specify the core where you want to set the breakpoint. The breakpoint
action, such as stop, takes effect only if the program is executed on the
specified core.

If a hex number is entered to identify the TASK, it is interpreted as task magic humber.

; Stop the program execution at the entry to funcl2 only if the task
; with the magic 0xC2034000 is running
Break.Set funcl2 /Program /TASK 0xC2034000

If a decimal number is entered to identify the TASK, it is interpreted as task ID. If the OS does not assign a
task ID, the decimal number is interpreted as magic instead.

; Stop the program execution at the entry to func9 only if the task
; with the ID 14. is running

Break.Set func9 /Program /TASK 14.

; 1f the RTOS doesn’t assign IDs, the ID is interpreted as magic

; Stop the program execution at the entry to func7 only if the task with
; the name task5 is running
Break.Set func7 /Program /TASK "task5"

©1989-2024 Lauterbach General Commands Reference Guide B | 98

Task-specific real-time breakpoints are available for:

ARM7/ARM9

By chaining the 2 on-chip breakpoints.

ARM11

Via the Context ID register.

Cortex-A/-R/-X

Via the Context ID register.

ColdFire Via ASID (Address Space ldentifier) for V4 architecture.
MMDSP8820 Via thread_ref register.
Neoverse Via the Context ID register.
RISC-V Via textr debug register.
Examples:

; example ARM7/ARM9

; disable all on-chip breakpoints

Break.DISable /Onchip

; set task-specific real-time breakpoint

Break.Set buzzer_high /Program /Onchip /TASK smxKillTask

; example ARM11/Cortex/Neoversetextra

; inform the debugger that your 0OS serves the Context ID register
Break.CONFIG.UseContextID ON

Break.Set DPhysicalDevice::Info /Program /Onchip /TASK EKern.exe:Threadl

; example for MMDSP8820
; 1f the 0S serves the thread_ID register
Break.Set buzzer high /Program /Onchip /TASK smxTask

; example for RISC-V
; 1f the 0S serves the scontext register
Break.Set buzzer high /Program /Onchip /TASK smxTask

©1989-2024 Lauterbach

General Commands Reference Guide B

99

If no task-specific real-time breakpoints are available, task-specific breakpoints are implemented as intrusive
breakpoints.

¢Stop program execution at task-related breakpoint

Check Not specified task ,
for specified g Continue program
task execution
Specified task
Keep stop of program execution
COUNT <value> Stop the program execution after <value> breakpoint hits.

Implementation: If the on-chip trigger unit provides a counter and the
breakpoint is implemented as Onchip, this counter is used.

Otherwise the program execution is stopped shortly at each breakpoint
hit, the counter is incremented and the program execution is restarted if
the current counter value is smaller then <value>. The current counter
value is displayed in the Break.List window.

Use the Break.Init command to reset the counter.

The on-chip debug units for the following processor architectures provide on-chip counters:

Architecture On-chip Counters

MMDSP 1 x 16-bit counter

MPC500/800 2 x 16-bit counter for instructions
2 x 16-bit counter for data

MPC5500 2 x 16-bit counter
(not MPC551x)

SH2A 1 x 12-bit counter

SH4 2 x 32-bit counter

StarCore 1 x 30-bit counter

Super10 1 x 16-bit counter

©1989-2024 Lauterbach General Commands Reference Guide B | 100

On-chip counter allow to count the event of interest in real-time. TRACES32 uses the on-chip counters only if
the implementation /Onchip is used:

Example:

; Stop the program execution after 5 entries to func25

Break.Set func25 /Program /Onchip /COUNT 5.

If no on-chip counter is provided by the on-chip debug unit or if the implementing /SOFT is used for a
Program breakpoint, an intrusive breakpoint is used to count the event of interest.

Stop program execution at breakpoint with counter

Check
the counter
value

Not final value

g Continue program
execution

Final value

Keep stop of program execution

Example:

; Stop the program execution after 5 entries to func25

Break.Set func25 /Program /SOFT /COUNT 5.

©1989-2024 Lauterbach General Commands Reference Guide B | 101

CONDition The program execution is only stopped at the breakpoint if the specified
<expression> condition is true. The condition has to be defined in the TRACE32 syntax
(intrusive breakpoint).

VarCONDition The program execution is only stopped at the breakpoint if the specified
<hll_expression> HLL condition is true. The condition has to be defined in the syntax of
your programming language (intrusive breakpoint).

AfterStep AfterStep forces TRACE32 to perform an assembler step before the
specified condition is verified. This option might be useful:
. If a Program breakpoint with condition is set to a register-indirect
call instruction
. If a Read/Write breakpoint with condition is set and the processor
architecture under debug stops before the read/write access
occurred.

©1989-2024 Lauterbach General Commands Reference GuideB | 102

Program execution is suspended
at a breakpoint with condition

AfterStep
check box
ON?

No

Yes

Perform assembler
single step

y

Verify
condition

Condition No _ _
is Continue with program
true? execution

Yes

Stop program execution

Examples:

; Stop the program execution at the instruction address 0x2228 only if
; the contents of Register R7 is greater 5.
Break.Set 0x2228 /Program /CONDition Register (R7)>5

Stop the program execution at the register-indirect call at 0x2228
only if the contents of Register R7 is greater 5, perform the register-
; indirect call before the condition is verified

Break.Set 0x2228 /Program /CONDition Register (R7)>5 /AfterStep

7

7

©1989-2024 Lauterbach General Commands Reference Guide B | 103

; Stop the program execution at a write access to vint only if flags[12]
; is equal to O
Var.Break.Set vint /Write /VarCONDition (flags([12]==0)

; Stop the program execution at a write access to vint only if flags[12]
; 1s equal to 0 and vint is greater 10

; perform an assembler single step because the processor architecture

; stops before the write access occurs (break-before make breakpoint)
Var.Break.Set vint /Write /VarCOND (flags[12]==0)&&(vint>10.) /AfterStep

Stop the program execution at the instruction address 0x2228 only if
; the contents of address 0x1234 has value of 0x55.
Break.Set 0x2228 /Program /CONDition Data.Word (D:0x1234)==0x55

I

©1989-2024 Lauterbach General Commands Reference GuideB | 104

CMD <string> Execute one or more TRACE32 commands when the breakpoint is hit.

RESUME [ON | OFF] ON: Restart the program execution after the commands are executed.
Please be aware that the execution of a single TRACE32 commands
takes at least 200 ms.

OFF: The program execution is not resumed.

It is recommended to set RESUME to OFF, if CMD

. starts a PRACTICE script with the command DO

. commands are used that open processing windows like
Trace.STATistic.Func, Trace.Chart.sYmbol or CTS.List

because the program execution is restarted before these commands are

finished.

Example:

Save the contents to register R12 to the file outregl.lst whenever
the breakpoint is hit.

’

’

Open #1 outregl.lst /Create

Break.Set sieve\l7 /Program /CMD "write #1 ""R12="" register (rl2)"
/RESUME
Close #1
DIALOG Open a standard Break.Set dialog for the breakpoint configuration.
DIALOGADVANCED Open a full Break.Set dialog for the breakpoint configuration (advanced
features).
See also
B Break.CONFIG B Break.direct B Var.Break.Set

A ’Release Information’ in’Legacy Release History’
A ’Breakpoint Handling’ in "Training Basic Debugging’
A ’Breakpoint Handling’ in "Training Basic SMP Debugging’

©1989-2024 Lauterbach General Commands Reference Guide B | 105

Break.SetFunc

Mark HLL functions

Format:

<option>:

Break.SetFunc [<range> | <module>] [[<option>]

TAGS

ALLRET
ALLBX

OoDD

ONLYAB
SIMPLE
PATCH

INTR | NOINTR
Program
TraceONOFF
BreakReturn
SPOT
TraceEnable
TraceEnableEnable

Without parameter, the entry point of all HLL functions is marked with an Alpha breakpoint and the exit point
with a Beta breakpoint. Otherwise, only the specified function(s)/range(s) is/are marked with Alpha and
Beta. The breakpoints can then be used for statistic analysis (see Analyzer.STATistic) or for function
runtime and nesting displays (see Analyzer.List).

ALLBX
(only ARM)

ALLRET

BreakReturn

INTR

ONLYAB

PATCH

SIMPLE

SPOT

Tags any BX instruction found in the function.

Tags any return instruction found in the function. This option is useful
when the compiler produces more than one exit point for a function, but
doesn't inform the debugger about it.

Sets stopping breakpoints at function returns.

Marks the beginning of the function by Alpha and Charly, as required for
interrupt programs.

Uses only Alpha and Beta breakpoints. When the INTR option is also set
then the combination of both will be used to mark interrupt functions. The
option is required when the Charly is not available (e.g. when using ROM
breakpoints on the C167 Bondout).

Uses debug patch information.

Tags the last instruction of a function even when the default strategy for
determining the end of a function would be different.

For a description, see Break.Set Spot.

©1989-2024 Lauterbach

General Commands Reference Guide B | 106

TAGS Processors with cache or prefetch can cause serious problems for
statistic analysis. The best workaround is to make a data access base
analysis. For this purpose extra code is added at each function entry and
exit. This code writes to two variable to tag the entry or exit of a function.
With the option TAGS all symbols beginning with '_r_" are marked with
Alpha and Beta. These symbols can be generated by Microtec compilers
to support performance analysis.

TraceEnable Enables the trace on the full address range covered by the specified
function.
TraceEnableEnable Enables the trace on the entries and exists of the specified function.
TraceONOFF Sets TraceON/TraceOFF breakpoints.
Examples:
Break.SetFunc ; marks all functions
Break.SetFunc 0x1000--0x2fff ; marks functions in address range
Break.SetFunc \mcc ; marks all functions in one module
See also

B Break.direct

A ’Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference GuideB | 107

Break.SetLine Mark HLL lines

Format: Break.SetLine [<range> | <module> | <function>] [[<option>]

<option>: Alpha | Beta | Charly

The HLL lines are marked with Alpha breakpoints. The breakpoints are set short after the first instruction of
the line, to prevent the access of the breakpoint by a prefetch of the CPU. The breakpoints can be used
either for HLL line sampling or for performance analysis on HLL line (see Analyzer.STATistic.Line).

Examples:
Break.SetLine ; marks all lines
Break.SetLine 0x1000--0x2fff ; marks lines in address range

Break.SetLine \mcc ; marks lines in one module

Break.SetLine main ; marks lines in function 'main'

See also
B Break.direct

Break.SetMONitor Switch to run mode debugging at the next “Go”

Format: Break.SetMONitor [ON | OFF]

Switches to run mode debugging at the next Go.

See also
B Break.direct B Break.MONitor B Go.MONitor
Break.SetPATtern Set breakpoints allowing wildcards
Format: Break.SetPATtern <symbol_pattern> [[<type>]

Sets breakpoints allowing the wildcards ? and *. For details on setting breakpoints, refer to the Break.Set
command.

©1989-2024 Lauterbach General Commands Reference Guide B | 108

Example:

Break.SetPATtern *memory* /Program ; set program breakpoints to
; all debug symbols that
; contain the string "memory".

See also
B Break.direct

A ’'Release Information’ in’Legacy Release History’

©1989-2024 Lauterbach General Commands Reference Guide B | 109

Break.SetTask Stop the program execution when task is scheduled

Format: Break.SetTask <task_magic> | <task_id> | <task_name>

Sets a breakpoint to stop as soon as the task is scheduled. This function is only available, if the debugger is
configured with the appropriate OS Awareness.

Depending on the capabilities of the OS and the OS Awareness, this command may set a conditional
breakpoint onto the OS variable that holds the current task, or a breakpoint to stop as soon as the saved PC
of this task is read. The program execution will be stopped inside the kernel scheduler. You can then step up
to the calling task manually.

<task_magic>, etc. See also “What to know about the Task Parameters”
(general_ref_t.pdf).

Examples:
Break.SetTask 7. ; set a breakpoint to the next entry of the
; task with the ID 7
Break.SetTask "modulel" ; set a breakpoint to the next entry of the
; task modulel
See also

B Break.direct

Break.ViewProgram Show state of the CTL trigger unit

Format: Break.ViewProgram

Opens a windows that shows the state of the Complex Trigger Language (CTL) trigger unit.

See also
B Break.CLEAR W Break.direct B Break.PASS

©1989-2024 Lauterbach General Commands Reference GuideB | 110

BSDL

BSDL

Boundary scan description language

The BSDL commands are used for reading boundary scan description language (IEE1149-1) files,
performing boundary scan tests and program external flash memories via the boundary scan chain. For
more information and step-by-step procedures, refer to “Boundary Scan User’s Guide”

(boundary_scan.pdf).

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the BSDL.state

window.

{&} B:BSDL.state

(=[O el

| Configure " Check

” Run |

[SZre

| [~ moveur |

[X unoap | [+ mMovEDOWN]

No. [Entity

Instruction

JtagClock
20.0MHz -

DR Name

IJTAG.LOCK
[Locked

DR Size

1 [xc95144xT_tgl00
2 [XC4VFX12_FF668
3 |XCF32P_vo48
4 [XCCACE_TQl44

J(

SAMPLE
EXTEST
BYPASS
BYPASS

BOUNDARY
BOUNDARY
BYPASS
BYPASS

432 .
[

983
1
1

The following TRACE32 m commands and o functions() are available to configure the boundary scan chain.

See also

B BSDL.BYPASSall B BSDL.CHECK B BSDL.FILE W BSDL.FLASH
B BSDL.HARDRESET W BSDL.IDCODEall B BSDL.LINKAGE W BSDL.LoadDR
B BSDL.MOVEDOWN B BSDL.MOVEUP B BSDL.ParkState W BSDL.RESet
B BSDL.RUN B BSDL.RUNTCK B BSDL.SAMPLEall B BSDL.SELect
W BSDL.SET B BSDL.SetAndRun B BSDL.SOFTRESET W BSDL.state

B BSDL.StepPauseDR B BSDL.SToreDR B BSDL.TwoStepDR B BSDL.UNLOAD
1 BSDL.GetDRBIt() 1 BSDL.GetPortLevel()

A ’What to know about Boundary Scan’ in 'Boundary Scan User's Guide’

A 'FLASH Programming via Boundary Scan’ in 'eMMC FLASH Programming User’s Guide’

A ’Boundary Scan Description Language (BSDL) Functions’ in ’General Function Reference’

A 'FLASH Programming via Boundary Scan’ in 'Serial FLASH Programming User's Guide’

©1989-2024 Lauterbach

General Commands Reference Guide B | 111

BSDL.BYPASSall Check bypass mode

Format: BSDL.BYPASSall

Sets all chips in the boundary scan chain in BYPASS mode and shifts a 32-bit random number through it. If
this test fails, an error will be reported.

See also
W BSDL W BSDL.state 1 BSDL.CHECK.BYPASS()
BSDL.CHECK Enable test result checking
Format: BSDL.CHECK ON | OFF

Enables or disables the test result checking for boundary scan. When enabled all data register bits with
expect high or low are checked after a BSDL.RUN / BSDL.RUN DR command. If a test fails, an error

message is printed.

See also
B BSDL B BSDL.state
BSDL.FILE Load a BSDL file
Format: BSDL.FILE <file>

Loads a BSDL file and places its entity on the current position in the boundary scan chain.

See also
H BSDL B BSDL.LINKAGE B BSDL.state

©1989-2024 Lauterbach General Commands Reference GuideB | 112

BSDL.FLASH Flash programming

BSDL.FLASH command group is used for programming non-volatile memories via boundary scan. The
following protocols are supported:

. Common flash interface (NOR flash memory)
. 12C

. SPI

. eMMC

With the BSDL.FLASH commands the boundary scan chain is prepared for flash programming, the flash
programming itself is done with either the FLASH or FLASHFILE commands.

See also
B BSDL.FLASH.IFCheck B BSDL.FLASH.IFDefine B BSDL.FLASH.IFMap B BSDL.FLASH.INIT
B BSDL W FLASH B FLASHFILE

A 'FLASH’ in’General Commands Reference Guide F’
A 'FLASHFILE’" in’General Commands Reference Guide F’

BSDL.FLASH.IFCheck Check flash interface definition

Format: BSDL.FLASH.IFCheck

Checks if flash definition is valid and all required flash ports are mapped to a device port. The check results
are displayed in the area window.

NOR flash:

J Required ports (will cause an error, if not mapped):
OE (output enable)
WE (write enable)
A0 - An (address ports, number n of address ports is defined with BSDL.FLASH.IFDefine)
DQO0-DQm (data ports, number m of data ports is defined with BSDL.FLASH.IFDefine)

J Optional ports (will cause a warning, if not mapped):
CE (chip enable)
RB (ready/busy)
BYTE (data bus width selection)
RESET (flash hardware reset)

WP (write protection/acceleration input)

©1989-2024 Lauterbach General Commands Reference GuideB | 113

SPI flash:

. Required ports (will cause an error, if not mapped):
CE (chip enable / chip select)
SCK (serial data clock)
Sl (serial data input)

SO (serial data output)

12C flash:

J Required ports (will cause an error, if not mapped):
SDA (serial data)
SCL (serial clock)

MMC flash:
. Required ports (will cause an error, if not mapped):
CLK (Clock)

CMD (Command)
DATO - DATn (Data I/0)

See also
B BSDL.FLASH 1 BSDL.CHECK.FLASHCONF()

©1989-2024 Lauterbach General Commands Reference GuideB | 114

BSDL.FLASH.IFDefine Define flash interface

Format:

<nor_param>:

<Spi_params>:

<i2c_param>:

<mmc_
param>:

BSDL.FLASH.IFDefine RESet <nor_param> | <spi_param> | <i2c_param> |
<mmc_param>

NOR <chip_number> <address_size> <data_size>

SPI <chip_number>

12C <chip_number>

MMC <chip_number> <data_size>

Defines the flash memory configuration:

RESet
NOR
SPI
12C
MMC

<chip_number>

<address_size>

Resets the BSDL flash configuration.
Selects NOR flash memory type.
Selects SPI flash memory type.
Selects 12C flash memory type.
Selects MMC flash memory type.

Number of the chip in the boundary scan chain to which the flash
memory is connected.

Number of address ports of the flash memory

<data_size> Number of data ports of the flash memory (max. 32 bit for NOR flash; 1,
4, or 8 bit for MMC flash)
BSDL.FLASH.IFDefine DELete ; deletes all BSDL flash
; configurations
BSDL.FLASH.IFDefine NOR 2. 23. 16. ; defines a NOR flash on chip
; 2 of the boundary scan chain
; with 23 address ports (A0-
; A22)and 16 data ports (DQO-
; DQ15)
See also
B BSDL.FLASH B FLASH.BSDLaccess
©1989-2024 Lauterbach General Commands Reference Guide B | 115

BSDL.FLASH.IFMap

Map flash interface

Format: BSDL.FLASH.IFMap <flash_port> <device_port>

Maps the generic flash ports to the device ports.

<flash_port>

Generic flash port names

NOR flash:

. CE (chip enable), OE (output enable), WE (write enable),

RB (ready busy), BYTE, RESET, WP (write protection)

CE2, OE2, WE2, RB2, BYTE2, RESET2, WP2

CE3, OE3, WE3, RB3, BYTES, RESET3, WP3

CE4, OE4, WE4, RB4, BYTE4, RESET4, WP4

A* (address), DQ* (data input/output)

SPI flash:

. CE (chip enable), SCK (serial clock), SI (Master output, slave
input), SO (Master input, slave output)

12C (FLASH EEPROM):

. SCL (serial clock), SDA (serial data)

MMC flash:

. CLK (Clock), CMD (Command), DATO - DAT7 (Data I/O)

<device_port>

Device port name (from the corresponding BSDL file, case insensitive)

Examples:
BSDL .FLASH.IFMap CE PR7C ; Maps the generic NOR flash port CE
; to the device port PR7C
BSDL .FLASH.IFMap DQ15 PR12A ; Maps the generic NOR flash port
; DQ15 to the device port PR12A
See also

B BSDL.FLASH

B FLASH.BSDLaccess

©1989-2024 Lauterbach

General Commands Reference Guide B |

116

BSDL.FLASH.INIT Initialize flash interface

Format: BSDL.FLASH.INIT SAFE | SAMPLE | ZERO | ONE | NONE

Initializes the boundary scan chain for flash programming. The boundary scan register of the device to which
the flash memory is connected, will be initialized to the parameter value, the flash control ports will be set in
the inactive state (all control ports set to '1’, data output driver disabled, address ports set to ’0’).

The chip, which is connected to the flash memory is set to EXTEST mode, all other chips are set to BYPASS

mode.
SAFE The boundary scan register is initialized to the SAFE (defined in the
corresponding BSDL file).
SAMPLE A SAMPLE run is executed and the sampled data are taken for
initialization.
ZERO The boundary scan register is initialized to all zero.
ONE The boundary scan register is initialized to all one.
NONE The boundary scan register is not initialized, it must be initialized before
with BSDL.SET, otherwise its state will be undefined.
See also

B BSDL.FLASH

BSDL.HARDRESET TAP reset via TRST

Format: BSDL.HARDRESET

TRST port is toggled and the TAP controllers are set to the “Select-DR-SCAN” state.

See also
W BSDL B BSDL.state

©1989-2024 Lauterbach General Commands Reference GuideB | 117

BSDL.IDCODEall Check ID codes

Format: BSDL.IDCODEall

Sets all chips in the boundary scan chain in IDCODE mode and checks the resulting ID codes. Chips,
without an ID code register will be set in BYPASS mode. If this test fails, an error will be reported.

See also
B BSDL B BSDL.state 1 BSDL.CHECK.IDCODE()
BSDL.LINKAGE Create a bypass device
Format: BSDL.LINKAGE <I/R size>

Creates a bypass device with instruction size <IR size> and places its entity on the current position in the
boundary scan chain.

See also
W BSDL B BSDL.FILE B BSDL . state

©1989-2024 Lauterbach General Commands Reference GuideB | 118

BSDL.LoadDR Load data register from file

Format: BSDL.LoadDR <chip_number> <register_name> <file> [[<option>]
<option>: ASCII
BlINary

Loads the content of <file> into data register <register_name> of IC <chip_number>.

J If the <file> contains more date than data register <register_name>, the redundant data from the
<file> will be ignored.

J If the <file> contains less data than data register <register_name> only the least significant bits
of data register <register_name> will be loaded.

<chip_number> Number of IC in the boundary scan chain, if the boundary scan chain has
only one IC, this parameter can be omitted.

<register_name> Data register name (must be defined in BSDL file).
<file> File with register data

ASCII File format is ASCII.

BINary File format is binary (default).

The BINary format is byte wise, the first byte will be the first 8 bit of the data register <register_name>.

The ASCII format is 1 bit per line. Line comments starts with “//”:

// ICO001 = CPU_TEST
// DR = USER_DATA[56]
1
0
0
0
0
1
0
0 // 21
1
See also
H BSDL B BSDL.SToreDR

©1989-2024 Lauterbach General Commands Reference GuideB | 119

BSDL.MOVEDOWN Move selected chip downwards

Format: BSDL.MOVEDOWN

Moves the selected chip down by one position (i.e. increase chip number by one).

Chip is either selected by the command BSDL.SELect or in the BSDL.state window.

See also
H BSDL B BSDL.state

©1989-2024 Lauterbach General Commands Reference Guide B | 120

BSDL.MOVEUP Move selected chip upwards

Format: BSDL.MOVEUP

Moves the selected chip up by one position (i.e. decrease chip number by one).

Chip is either selected by the command BSDL.SELect or in the BSDL.state window.

See also
W BSDL W BSDL.state
BSDL.ParkState Select JTAG parking state
Format: BSDL.ParkState Run-Test/ldle | Select-DR-Scan

Selects the parking state for the JTAG state machine. The parking state is the state where the JTAG state
machine will stop after a BSDL.HARDRESET, BSDL.SOFTRESET or a BSDL.RUN command. The default

parking state after a BSDL.RESet is Run-Test/Idle.

Run-Test/Idle Selects Run-Test/Idle as parking state for the JTAG state machine

Select-DR-Scan Selects Select-DR-Scan as parking state for the JTAG state machine

If the parking states of the debug and the boundary scan functions are different,
unintended side effects may occur. See “Boundary Scan User’s Guide” for

details.

See also
W BSDL

©1989-2024 Lauterbach General Commands Reference Guide B | 121

BSDL.RESet Reset boundary scan configuration

Format: BSDL.RESet

Deletes the boundary scan configuration and set all boundary scan options to their default values

See also
W BSDL

BSDL.RUN Run JTAG sequence

Format: BSDL.RUN [IR | DR]

The BSDL.RUN command will apply (i.e. shift out) the instruction and data register settings to the boundary
scan chain. Without any option, the instruction register settings are applied first and the data register settings
are applied second.

IR With the option IR only the instruction register settings are applied,
DR With the option DR only the data register settings are applied.
When a DR shift is executed, the result data can be viewed in the

settings/result window (opens with BSDL.SET <chip_number> or double
click on the corresponding entry in the BSDL.state entity list).

See also
W BSDL W BSDL state
BSDL.RUNTCK Toggle TCK
Format: BSDL.RUNTCK <count>

Toggles TCK for <count> clocks.

See also
W BSDL

©1989-2024 Lauterbach General Commands Reference GuideB | 122

BSDL.SAMPLEall Sample all signals

Format: BSDL.SAMPLEaAll

Sets all chips in the boundary scan chain in SAMPLE mode and runs a sample test. The results can be
viewed in the result window (see BSDL.SET).

See also
B BSDL B BSDL.state
BSDL.SELect Select a chip
Format: BSDL.SELect [<chip_number>]

Selects <chip_number> for the commands BSDL.MOVEUP, BSDL.MOVEDOWN, and BSDL.FILE.
. BSDL.MOVEUP, BSDL.MOVEDOWN: The selected chip is moved.
J BSDL.FILE: The loaded entity is placed after the selected chip

See also
H BSDL B BSDL.state

©1989-2024 Lauterbach General Commands Reference GuideB | 123

BSDL.SET Set chip parameters

Format: BSDL.SET [<chip_number>] [<set_selection>]

<set_ <ir_conf> | <dr_conf> | <bsr_conf> | <port_conf> | <pinmap_conf> | <options>
selection>:

<ir_conf>: IR <instr_name> | <opcode>

<dr_conf>: DR <bit_slice>ZERO | ONE | ExpectH | ExpectL | ExpectX | <opcode>
<bsr_conf>: BSR <bit_slice>ZERO | ONE | SAFE | SAMPLE | DiSable | ENable | Drive0 |

Drive1 | ExpectH | ExpectL | ExpectX | <opcode>

<port_conf>: PORT <port name>1101ZIHILIX

<pinmap_ PINMAP <pinmap_name>

conf>:

<options>: OPTION IN | OUT | BIDI | OBSERVE | INTERN | ALL | SPOTLIGHT |

MARKLINES | BSRHISTORY ON | OFF

The command BSDL.SET modifies the instruction and data register settings for a chip in the boundary scan
chain. The settings are applied to the system with BSDL.RUN command.

If the boundary scan chain has only chip, the <chip_number> can be omitted.

©1989-2024 Lauterbach General Commands Reference GuideB | 124

With <chip_number> as the only parameter BSDL.SET will open the settings/result window for

<chip_number>.

BSDL.SET 4. ; opens the settings/result window for chip 4
{5} BrBSDLSET 3. =0 E=R
BSDL Configuration - XCF32P_V048

Instructions Data format DR mode Filter data
BYPASS - © bin @ sample Input Observe
sampLe [P - :
@ ® 7
RELOAD 5) hex : Set Write | | [V]Output [[]Intern
EXTEST - () Set Read Bidi Spotlight
Data register: BOUNDARY (sample)
num port pin| pintyp | function | Req. EnabTe i
0 CE 13| IN INPUT 0 en -
1 | CLK 12 | IN INPUT |l | en
3 OE_RESET 11 | INOUT QUTPUT3 0 dis
4 | OE_RESET 11| INOUT | INPUT |sdew| en
6 CEO 10| ouUT QUTPUT3 0
8 | cLKouT 9| out OUTPUT3 | | dis

10 | cF 6| INOUT | OUTPUT3 |l | dis

11 | cF 6| INOUT | INPUT [udeww | en

12 BUSY 5] IN INPUT 0 en

14 | 07 48 | ouT OUTPUT3 [l |enay

16 | D6 47 | ouT OUTPUT3 [l |eenon

18 | D5 44 | ouT OUTPUT3 [l |eenon

20 | D4 43| ouT OUTPUT3 [l |eenon

22 | p3 33| out OUTPUT3 [l |eenon

24 | D2 32| out OUTPUT3 [l |eenon

26 | DL 29 | ouT OUTPUT3 [l |eenon

28 | DO 28 | ouT OUTPUT3 [l |ewenon

29 REV_SEL1 27 | IN INPUT 0 en

30 REV_SELO 26| IN INPUT 0 en

31 EN_EXT_SEL 25| IN INPUT 0 en i

Depending on the selected instruction, the data area of the settings/result window shows the results of the
last DR scan operation. The instruction and the view options for the chip can be modified.

The information from the BSDL file can be viewed by toggling the data area to the “File info” view. It shows
the provided instructions, compliance pattern, boundary scan register, TAP parameters, etc.

©1989-2024 Lauterbach

General Commands Reference Guide B

125

{&} B:BSDLSET 1.

Instructions

BYPASS
SAMFLE
EXTEST
CLAMP

BESDL Fileinfo

BSDL Configuration - xc95144x|_tq100

Data format DR mode Filter data

- @) bin © Sample [lmput [] Observe
® hex © setwrite | | [loutput [[]Intern

- () Set Read [¥] Bidi [¥] Spatlight

num port pin | pintype | function [cell [safe] ccell [disval] rslt
General

F1Tlename : xc95144xT_tql00. bsd

Entity : xc95144x1_tql00 =
Test Access Port Max. Tclk 10.0MHz, TCK Halt on LOW and HIGH

TCK port o TCK

TDI port : TDI

™S port : TMS

TDO port : TDO

TRST port -
Instruction Register (& bhits)

BEYPASS : supported

SAMPLE : supported

EXTEST : supported

CLAMP : supported

HIGHZ : supported

IDCODE : supported

INTEST : supported

USERCODE : not supported

FELANK : not supported

FBULK : not supported

FERASE : not supported

FPGM : not supported

FPGMI : not supported

FVFY : not supported

FVFYI : not supported

ISPEN : not supported

ISPENC : not supported

ISPEX : not supported

ID Code : 0x09608093

Package : tql00

PBO7_16
PBO7_16

000 20~ Bl R O

PBO7_14

=

Boundary Scan Register (432 bits)

- INTERNAL | BC_1 X - - -

- - INTERNAL | BC_1 X - - -
- - INTERNAL | BC_1 X - - -
-| - CONTROLR. | BC_1 0 - - -
73 | INOUT OUTPUT3 BC_1 X 3 0|z
73 | INOUT INPUT BC_1 X - - -
- - INTERNAL | BC_1 X - - -
- - INTERNAL | BC_1 X - - -
- - INTERNAL | BC_1 X - - -
- CONTROLR. | BC_1 0 - - -
BC_1 X 9 0|z

72 | INOUT OUTPUT3

Instruction register settings

IR Selects the instruction register for the BSDL.SET command.
<instr_name> Instruction names of the selected chip: SAMPLE/PRELOAD, BYPASS,
EXTEST
Depending on the chip more instructions may be available.
<opcode> One or more 64 bit integer values, only n(=instruction register size) bits

are used other bits will be ignored.

©1989-2024 Lauterbach General Commands Reference GuideB | 126

BSDL.SET 4. IR SAMPLE ; sets chip 4 in SAMPLE mode

BSDL.SET 4. IR 0x023 ; sets the instruction register of chip 4 to
; 0x023 (bits > instruction size will be
; lgnored

Data register settings

DR Selects the data register for the BSDL.SET command. The currently
selected instruction determines the data register size, the upper index of
the bit slice will be cut, if it exceed the data register size

<bit_slice> Bit slice can be:
i--k: the bits from i to k will be modified
i :bitiwill be modified
* 1 all bits will be modified

ZERO The selected bit slice will be set to zero.

ONE The selected bit slice will be set to one.

ExpectH The selected bit slice will be set to “expect high” (for read register)
ExpectL The selected bit slice will be set to “expect low” (for read register)
ExpectX The selected bit slice will be set to “ignore” (for read register)
<opcode> One or more 64 bit integer values, only n (=bit slice size) bits are used

other bits will be ignored.

BSDL.SET 4. DR 3.--16. ONE ; sets the bits 3..16 of chip 4 to one
BSDL.SET 4. DR 0 ZERO ; sets the bit 0 of chip 4 to zero
BSDL.SET 1. DR * 0x1234 ; sets data register of chip 1 to 0x1234

; all bits > 15 will be set to zero

Boundary scan register settings

BSR Selects the boundary scan register for the BSDL.SET command.
Register size is equal to the boundary scan register size, the upper index
of the bit slice will cut, if it exceed the register size

<bit_slice> Bit slice can be:
i--k : the bits from i to k will be modified
i :bitiwill be modified
* 1 all bits will be modified

©1989-2024 Lauterbach General Commands Reference GuideB | 127

ZERO The selected bit slice will be set to zero.

ONE The selected bit slice will be set to one.

SAFE The selected bit slice will be set to the SAFE state (according the BSDL
file).

SAMPLE The selected bit slice will be set to previously sampled data.

DISable All ports in the selected bit slice will be disabled (if a control cell is
defined)

ENable All ports in the selected bit slice will be enabled (if a control cell is
defined)

Drive0 All ports in the selected bit slice will drive ’0’, if the port is an output or

bidi. Output drivers will be enabled, if required.

Drivel All ports in the selected bit slice will drive ’1’, if the port is an output or
bidi. Output drivers will be enabled, if required.

ExpectH The selected bit slice will be set to “expect high” (for read register)
ExpectL The selected bit slice will be set to “expect low” (for read register)
ExpectX The selected bit slice will be set to “ignore” (for read register)
<opcode> One or more 64 bit integer values, only n (=bit slice size) bits are used

other bits will be ignored.

The settings for the boundary scan register are only meaningful in PRELOAD, EXTEST or INTEST mode.

BSDL.SET 4. BSR * SAMPLE ; initializes the boundary scan register
; of chip 4 with a previous sample run

BSDL.SET 1. BSR * SAFE ; initializes the boundary scan register
; of chip 1 to SAFE values

BSDL.SET 1. BSR 2--7 Drive0 ; drive 0 to the ports which are control-

; led by the register bits 2..7 of chip 1

Port settings

PORT Selects the port settings for the BSDL.SET command. The boundary
scan register is modified for this port (drive/expect value, enable/disable
output)

<port_name> Name of the port, which should be modified. The port name must be

listed in the definition of the boundary register in the BSDL file.

1 The selected port is set to drive 1 (only for output/bidir ports).

©1989-2024 Lauterbach General Commands Reference GuideB | 128

0 The selected port is set to drive 0 (only for output/bidir ports).

4 The selected port is set to drive 'Z’ (only for output/bidir ports).

H The selected port is set to expect high (only for input/bidir ports).
L The selected port is set to expect low (only for input/bidir ports).
X The selected port is set to ignore result (only for input/bidir ports).

BSDL.SET 4. PORT PL7A 1
BSDL.SET 3. PORT PS1 H

; set port PL7A of IC4 to “drive 1”
; set port PS1 of IC3 to “expect high”

Pin map settings

PINMAP Selects the pin map settings for the BSDL.SET command.

<pinmap_name> Name of the pin map, which should be selected. It must be a valid pin
map from the BSDL file.

This command can be used, if no default pin map is defined in the BSDL file or if it has multiple pin maps. It
has only an effect on the data output shown in the BSDL.SET window (boundary register view, fileinfo view).

BSDL.SET 3. PINMAP TQFP_48 ; select pin map TQFP_48 for IC3

©1989-2024 Lauterbach General Commands Reference Guide B | 129

Option settings

The options can be turned on or off.

OPTION Selects the options menu for the command BSDL.SET.
IN Show/hide inputs in result window.
OouT Show/hide outputs in result window.
BIDI Show/hide bidi ports in result window.
OBSERVE Show/hide observer cells in result window.
INTERN Show/hide internal cells in result window.
ALL Show/hide all cells in result window.
SPOTLIGHT Enable/disable the spotlight function in result window (Sample mode).
MARKLINES Enable/disable alternating line colors in result window.
BSRHISTORY Enable/disable graphical history view for boundary scan register in result
window (Sample mode).
BSDL.SET 4. OPTION IN ON ; show inputs in the settings/result
; window for chip 4
BSDL.SET 4. OPTION INTERN OFF ; hide internal registers in the
; settings/result window for chip 4
See also
W BSDL W BSDL.state
BSDL.SetAndRun Immediate data register takeover
Format: BSDL.SetAndRun ON | OFF

Enables or disables the set and run feature. If enabled, a modification of a data register bit or bitslice will
cause an immediate BSDL.RUN, i.e. the modified settings are applied immediately to the boundary scan

register chain.

See also

W BSDL

W BSDL.state

©1989-2024 Lauterbach

General Commands Reference Guide B | 130

BSDL.SOFTRESET TAP reset via TMS

Format: BSDL.SOFTRESET

A TMS reset (5 TCK cycles with TMS="1") are executed and the TAP controllers are set to the “Select-DR-
SCAN” state.

See also
H BSDL B BSDL.state

©1989-2024 Lauterbach General Commands Reference Guide B | 131

BSDL.state Display BSDL chain configuration window

Format: BSDL.state

The command BSDL.state opens the boundary scan chain configuration dialog. The entity, which is closest
to the TDO has the number one in the list, the entity with the highest number is connected to the TDI.

A double-click on a list entry will open the settings/result window for this entry.

{5} B:BSDL.state =n| Wl <
| Configure " Check ” Run |
[Zrme || «moveur | tagClock ITAG.LOCK
[X unoap | [+ mMovEDOWN] 20.0MHz ~ [lLocked
No. [Entity Instruction |DR Name DR Size i
1 |xc95144xT_tgl00 SANMPLE BOUNDARY 132 .
2 |XCAVFX12_FF668 EXTEST BOUNDARY 983
3 |XCF32P_v048 BYPASS BYPASS 1
4 |XCCACE_TQ144 BYPASS BYPASS 1
J 4 I3

The list shows the entity name (taken from the corresponding BSDL file), the current instruction and the
corresponding data register name and size for each entity in the boundary scan chain. If an instruction is
changed, its name and the corresponding data register will change its color. As soon as the changes are
applied to boundary scan chain (BSDL.RUN IR / BSDL.RUN DR), they will change their color to normal.
Configure (Chain configuration):

. FILE: Load a BSDL file and place it on the current position in the boundary scan chain

. MOVEUP, MOVEDOWN: move the selected entity up or down in the boundary scan chain

. UNLOAD: remove the selected entity from the boundary scan chain

Run

. RUN IR: the instruction register settings will be applied to the boundary scan chain.

. RUN DR: the data register setting will be applied to the boundary scan chain. The read data can

be viewed for each entity by opening the set/result window (double click on list entry)

. RUN: a instruction and data register shift will be executed (same as “RUN IR” + “RUN DR”)

©1989-2024 Lauterbach General Commands Reference GuideB | 132

Checks:

J BYPASSall: BYPASS mode for all entities will be set and tested, the result is shown right to this
button

. IDCODE¢ ll: IDCODE mode is set for all entities (if defined in the BSDL file) and tested, the result
is shown right to this button

J SAMPLEall: SAMPLE mode for all entities will be set and tested, the results for each entity can
be viewed in the set/result window (double click on list entry)

See also

W BSDL B BSDL.BYPASSall B BSDL.CHECK W BSDL.FILE

B BSDL.HARDRESET M BSDL.IDCODEall B BSDL.LINKAGE W BSDL.MOVEDOWN
B BSDL.MOVEUP H BSDL.RUN B BSDL.SAMPLEall B BSDL.SELect

W BSDL.SET B BSDL.SetAndRun B BSDL.SOFTRESET B BSDL.TwoStepDR
W BSDL.UNLOAD (0 BSDL.GetDRBit() (J BSDL.GetPortLevel()

A ’'Configuration of the Boundary Scan Chain’ in ‘Boundary Scan User’s Guide’
A ’Boundary Scan Description Language (BSDL) Functions’ in ’General Function Reference’

BSDL.StepPauseDR Special DR shift
Format: BSDL.StepPauseDR [ON | OFF]
Default: OFF.

Enables or disables the step through PauseDR for the boundary scan chain. If enabled, each DR-SCAN wiill
step through PauseDR and Exit2DR state.

See also
B BSDL

©1989-2024 Lauterbach General Commands Reference Guide B | 133

BSDL.SToreDR Store data register to file

Format: BSDL.SToreDR <chip_number> <register_name> <file> [[<option>]
<option>: ASCII
BlINary

Stores the data register <register_name> to <file>.

<chip_number> Number of IC in the boundary scan chain, if the boundary scan chain has
only one IC, this parameter can be omitted.

<register_name> Data register name (must be defined in BSDL file).
<file> File for register data
ASCII File format is ASCII.
BINary (default) File format is binary.
See also
B BSDL B BSDL.LoadDR

©1989-2024 Lauterbach General Commands Reference GuideB | 134

BSDL.TwoStepDR Single/double data register shift

Format: BSDL.TwoStepDR ON | OFF

Enables or disables double data register shift execution. When enabled, each BSDL.RUN DR command will
execute 2 data register shifts (BSDL.RUN will execute 1 instruction register shift and 2 data register shifts).

This option is useful in interactive connection test, when 1 device acts as a signal driver and another as a
signal receiver.

ON With TwoStepDR enabled, the modified data register of the driver is shifted
twice and the effect on the receiver could be observed immediately.

OFF Without TwoStepDR mode, the modified data register of the driver would be
shifted in and the data register from the previous cycle would be shifted out.
To see the modified signal from the driver on the receiver, a second
BSDL.RUN DR is required.

See also
W BSDL W BSDL.state
BSDL.UNLOAD Unload a chip from chain
Format: BSDL.UNLOAD <chip_number>| ALL

Removes one or all chips from the boundary scan chain configuration.

<chip_number> The <chip_number> is removed from the configuration.
ALL All chips are removed from the configuration.

See also

H BSDL B BSDL.state

©1989-2024 Lauterbach General Commands Reference Guide B | 135

BTrace

BTrace Script-controlled trace sink

BTrace allows to add trace information to TRACE32 PowerView using PRACTICE commands. This trace
information can then be displayed using the BTrace.* windows. The trace memory is reserved on the host

running TRACES32 PowerView.

The chapter “BTrace-specific Trace Commands”, page 137 describes the BTrace-specific commands.
While the chapter “Generic BTrace Trace Commands”, page 141 lists the BTrace analysis and display
commands, which are generic for all TRACES32 trace methods.

©1989-2024 Lauterbach General Commands Reference Guide B | 136

BTrace-specific Trace Commands

BTrace.<specific_cmds> Overview of BTrace-specific commands

BTrace.Mode Set the trace operation mode
Format: <trace>.Mode [<mode>]
<mode>: Fifo | Stack

Selects the trace operation mode.

Fifo If the trace is full, new records will overwrite older records. The trace
records always the last cycles before the break.

Stack If the trace is full recording will be stopped. The trace always records the
first cycles after starting the trace.

BTrace.PUSH Push trace data

Format: BTrace.PUSH <data> <data>

<cycle>

<data>: Read <address> <value> <time>

Write <address> <value> <time>

EXECUTE <address> <value> <time>

STATistic <address> <count> <time> <mintime> <maxtime>
STATisticROOT <time>

Adds trace records to BTrace.

©1989-2024 Lauterbach

General Commands Reference Guide B | 137

Definition of the <cycle> Parameter

Read

Write

EXECUTE

STATistic

STATisticROOT

Memory read access with data value.
Memory write access with data value.
Program execution.

Run-time statistic.

Total execution time (root).

Definition of the <data> Parameters

<address>:

<value>:

<count>:

<time>:

<mintime>:

<maxtime>:

Address of the added trace record.

Represents the data access value for cycles Read and Write.
Represents the opcode for cycle EXECUTE.

Number of calls. This value is displayed under count in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.

Timestamp of the trace record for cycles Read, Write and EXECUTE.
Total time for cycles STATistic and STATisticROOT.

Shortest execution time. This value is displayed under min in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.

Longest execution time. This value is displayed under max in the
BTrace.STATistic windows.
Cycles STATistic and STATisticROOT only.

©1989-2024 Lauterbach

General Commands Reference Guide B | 138

Examples

Example 1: Read, Write and EXECUTE cycles

BTrace.RESet

BTrace.SIZE 1000.

BTrace.Arm

BTrace.PUSH EXECUTE func2 0xB590 1lus

BTrace.PUSH Write mcount 1 2.us

BTrace.PUSH Read mstaticl 0 2.5us

BTrace.PUSH EXECUTE sYmbol.EXIT (func2) 0x4700 3us

BTrace.OFF

BTrace.List

Blrace List =R o

2 snp... || Goto...| #4Find... | flChart || BE Profile | EEMIPS | 4 More | X Less

record |run |address cycle |data symbol t1.back |
-00000004 P:000004D8 execute Yisievesieve\func2
-00000003 D:000067C8 wr-quad 0000000000000001 \sieve'sieve\mcount 1.000us
-00000002 D:000067C0 rd-quad 0000000000000000 Y'\sieve'sieve\mstaticl 0.500us
-00000001 P:0000054C execute Yisievelsieve\func2+0x74 0.500us

Example 2: STATIStic and STATisticROOT cycles

BTrace.RESet
BTrace.
BTrace.
BTrace.
BTrace.
BTrace.
BTrace.

BTrace.

OFF

PUSH
PUSH
PUSH
PUSH

SIZE 1000.

STATistic func2 3.
STATistic func3 2.
STATistic func4 1.
STATisticROOT 20.us
STATistic.Func

4.7us 2.us 2.5us
3.5us 0.5us 3us
l.us lus lus

= Bu:BTrace.STATistic.Func EI@
2 ... || §if Goups... || 58 Gonfig... | A Goto...|| = Detaikd || i Nesting|| % Chart
funcs: 4. total: 20.000us
range [total min max avr count intern® 1% 2% 5% 10% 20% |
(root) 0.000us - - - 0. (1,/0) 0.000%
func2 4.700us 2.000us 2.500us 1.567us 3. 23.500%
func3 3.500us 0.500us 3.000us 1.750us 2 17.500%
func4 1.000us 1.000us 1.000us 1.000us 1 5. 0003 | —
£

An example for RH850 using the BTrace and BenchMark Counters (BMC) can be found in TRACES32
system directory under ~~/demo/rh850/etc/runtime_measurement/runtime.cmm

©1989-2024 Lauterbach

General Commands Reference Guide B

139

BTrace.state Display BTrace configuration window

Format: BTrace.state

Displays the BTrace.state window, where you can configure the BTrace.

& B:BTrace EI@

state used

(O DISable |

® OFF 4,

O Arm SIZE

commands Mode
& Init @ Fifo
| st O stack

[AutoArm

[Autolnit

©1989-2024 Lauterbach General Commands Reference Guide B | 140

Generic BTrace Trace Commands

BTrace.Arm Arm the trace

See command <trace>.Arm in 'General Commands Reference Guide T' (general_ref_t.pdf, page 134).

BTrace.AutoArm Arm automatically

See command <trace>.AutoArm in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
135).

BTrace.Autolnit Automatic initialization

See command <trace>.Autolnit in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 140).

BTrace.BookMark Set a bookmark in trace listing
See command <trace>.BookMark in 'General Commands Reference Guide T' (general_ref_t.pdf, page
140).

BTrace.Chart Display trace contents graphically

See command <trace>.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 144).

BTrace.ComPare Compare trace contents

See command <trace>.ComPare in 'General Commands Reference Guide T' (general_ref_t.pdf, page
192).

©1989-2024 Lauterbach General Commands Reference Guide B | 141

BTrace.DISable Disable the trace

See command <trace>.DISable in 'General Commands Reference Guide T' (general_ref_t.pdf, page 197).

BTrace.DRAW Plot trace data against time

See command <trace>.DRAW in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 201).

BTrace.EXPORT Export trace data for processing in other applications
See command <trace>.EXPORT in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
212).

BTrace.FILE Load a file into the file trace buffer

See command <trace>.FILE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 233).

BTrace.Find Find specified entry in trace

See command <trace>.Find in 'General Commands Reference Guide T' (general_ref_t.pdf, page 235).

BTrace.FindAll Find all specified entries in trace

See command <trace>.FindAll in 'General Commands Reference Guide T' (general_ref_t.pdf, page 237).

BTrace.FindChange Search for changes in trace flow

See command <trace>.FindChange in 'General Commands Reference Guide T' (general_ref_t.pdf, page
238).

BTrace.GOTO Move cursor to specified trace record

See command <trace>.GOTO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 244).

©1989-2024 Lauterbach General Commands Reference Guide B | 142

BTrace.Init Initialize trace

See command <trace>.Init in 'General Commands Reference Guide T' (general_ref_t.pdf, page 246).

BTrace.List List trace contents

See command <trace>.List in 'General Commands Reference Guide T' (general_ref_t.pdf, page 248).

BTrace.ListNesting Analyze function nesting

See command <trace>.ListNesting in 'General Commands Reference Guide T' (general_ref_t.pdf, page
263).

BTrace.LOAD Load trace file for offline processing

See command <trace>.LOAD in 'General Commands Reference Guide T' (general_ref_t.pdf, page 270).

BTrace.OFF Switch off

See command <trace>.OFF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 278).

BTrace.PROfileChart Profile charts

See command <trace>.PROfileChart in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
283).

BTrace.PROTOcol Protocol analysis

See command <trace>.PROTOcol in 'General Commands Reference Guide T' (general_ref_t.pdf, page
339).

©1989-2024 Lauterbach General Commands Reference Guide B | 143

BTrace.PROTOcol.Chart Graphic display for user-defined protocol

See command <trace>.PROTOcol.Chart in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 339).

BTrace.PROTOcol.Draw Graphic display for user-defined protocol
See command <trace>.PROTOcol.Draw in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 341).

BTrace.PROTOcol.EXPORT Export trace buffer for user-defined protocol

See command <trace>.PROTOcol.EXPORT in 'General Commands Reference Guide T'
(general_ref_t.pdf, page 342).

BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol

See command <trace>.PROTOcol.Find in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 343).

BTrace.PROTOcol.list Display trace buffer for user-defined protocol

See command <trace>.PROTOcol.list in '‘General Commands Reference Guide T' (general_ref_t.pdf,
page 344).

BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileChart in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 347).

BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol

See command <trace>.PROTOcol.PROfileSTATistic in '‘General Commands Reference Guide T'
(general_ref_t.pdf, page 348).

©1989-2024 Lauterbach General Commands Reference Guide B | 144

BTrace.PROTOcol.STATistic Display statistics for user-defined protocol

See command <trace>.PROTOcol.STATistic in '‘General Commands Reference Guide T
(general_ref_t.pdf, page 350).

BTrace.REF Set reference point for time measurement

See command <trace>.REF in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

BTrace.RESet Reset command

See command <trace>.RESet in 'General Commands Reference Guide T' (general_ref_t.pdf, page 357).

BTrace.SAVE Save trace for postprocessing in TRACES32

See command <trace>.SAVE in 'General Commands Reference Guide T' (general_ref_t.pdf, page 358).

BTrace.SIZE Define buffer size

See command <trace>.SIZE in '‘General Commands Reference Guide T' (general_ref_t.pdf, page 373).

BTrace.STATistic Statistic analysis
See command <trace>.STATistic in '‘General Commands Reference Guide T' (general_ref_t.pdf, page
378).

BTrace.Timing Waveform of trace buffer

See command <trace>.Timing in 'General Commands Reference Guide T' (general_ref_t.pdf, page 499).

BTrace.TRACK Set tracking record

See command <trace>.TRACK in 'General Commands Reference Guide T' (general_ref_t.pdf, page 502).

©1989-2024 Lauterbach General Commands Reference Guide B | 145

BTrace.View Display single record

See command <trace>.View in 'General Commands Reference Guide T' (general_ref_t.pdf, page 504).

BTrace.ZERO Align timestamps of trace and timing analyzers

See command <trace>.ZERO in 'General Commands Reference Guide T' (general_ref_t.pdf, page 505).

©1989-2024 Lauterbach General Commands Reference Guide B | 146

	General Commands Reference Guide B
	History
	BMC
	BMC Benchmark counters
	BMC.<counter> Benchmark counters
	BMC.<counter>.EVENT Assign event to counter
	BMC.<counter>.FORMAT Counter value format
	BMC.<counter>.RATIO Set two counters in relation
	BMC.<counter>.SIZE Specify counter size
	BMC.Attach BMC attach
	BMC.AutoInit Automatic initialization
	BMC.CLOCK Provide core clock for cycle counter
	BMC.Init Initialize counters
	BMC.PROfile Display counter changes per second
	BMC.PROfileChart Profile chart with benchmark counter
	BMC.PROfileChart.AddressGROUP Address group profile chart with BMC
	BMC.PROfileChart.DatasYmbol Pointer profile chart with BMC
	BMC.PROfileChart.DistriB Distribution display with BMC
	BMC.PROfileChart.GROUP Group profile chart with BMC
	BMC.PROfileChart.Line Source code line profile chart with BMC
	BMC.PROfileChart.MODULE Module profile chart with BMC
	BMC.PROfileChart.PROGRAM Program profile chart with BMC
	BMC.PROfileChart.sYmbol Symbol profile chart with BMC
	BMC.PROfileChart.TASK Task profile chart with BMC
	BMC.PROfileChart.TASKINFO Data trace via context ID with BMC
	BMC.PROfileChart.TASKINTR ISR2 profile chart with BMC
	BMC.PROfileChart.TASKKernel Task profile chart with BMC
	BMC.PROfileChart.TASKORINTERRUPT Task and interrupts with BMC
	BMC.PROfileChart.TASKSRV OS service routines profile chart with BMC
	BMC.PROfileChart.TASKVSINTR Task related intr. profile chart with BMC
	BMC.PROfileSTATistic Statistical analysis vs. time with benchmark counter
	BMC.PROfileSTATistic.Address Address statistical analysis with BMC
	BMC.PROfileSTATistic.AddressGROUP Address group statistic with BMC
	BMC.PROfileSTATistic.DatasYmbol Pointer profile statistic with BMC
	BMC.PROfileSTATistic.DistriB Distribution statistical analysis with BMC
	BMC.PROfileSTATistic.GROUP Group profile statistic with BMC
	BMC.PROfileSTATistic.INTERRUPT Interrupt profile statistic with BMC
	BMC.PROfileSTATistic.Line High-level code line profile statistic with BMC
	BMC.PROfileSTATistic.MODULE Module profile statistic with BMC
	BMC.PROfileSTATistic.PROGRAM Program profile statistic with BMC
	BMC.PROfileSTATistic.RUNNABLE Runnable profile statistic with BMC
	BMC.PROfileSTATistic.sYmbol Symbol profile statistic with BMC
	BMC.PROfileSTATistic.TASK Task profile statistic with BMC
	BMC.PROfileSTATistic.TASKINFO Data trace via context ID with BMC
	BMC.PROfileSTATistic.TASKINTR ISR2 profile statistic with BMC
	BMC.PROfileSTATistic.TASKKernel Task profile statistic with BMC
	BMC.PROfileSTATistic.TASKORINTERRUPT Task or interrupt with BMC
	BMC.PROfileSTATistic.TASKSRV OS service routines profile stat. with BMC
	BMC.RESet Reset benchmark counter configuration
	BMC.SnoopSet Assign event counter to SNOOPer trace
	BMC.state Display BMC configuration window
	BMC.STATistic Statistic analysis with benchmark counter
	BMC.STATistic.ChildTREE Function callee context with BMC
	BMC.STATistic.DistriB Distribution analysis with BMC
	BMC.STATistic.Func Nesting function run-time with BMC
	BMC.STATistic.GROUP Group run-time analysis with BMC
	BMC.STATistic.LINKage Per caller function statistic with BMC
	BMC.STATistic.MODULE Module statistic with BMC
	BMC.STATistic.ParentTREE Statistic for call context with BMC
	BMC.STATistic.PROGRAM Program statistic with BMC
	BMC.STATistic.sYmbol Flat run-time analysis with BMC
	BMC.STATistic.TASK Statistic for tasks with BMC
	BMC.STATistic.TASKINFO Statistic for context ID messages with BMC
	BMC.STATistic.TASKINTR Statistic for ISR2 with BMC
	BMC.STATistic.TASKKernel Statistic for tasks with BMC
	BMC.STATistic.TASKORINTERRUPT Tasks and interrupts with BMC
	BMC.STATistic.TASKSRV Statistic for OS service routines with BMC
	BMC.STATistic.TREE Tree nesting function run-time with BMC

	BookMark
	BookMark Address and trace bookmarks
	Overview BookMark
	BookMark.CHange Edit the settings of a bookmark
	BookMark.Create Create a new address bookmark
	BookMark.Delete Delete an existing bookmark
	BookMark.EditRemark Add/edit remark of a bookmark
	BookMark.EXPORT Export bookmarks
	BookMark.EXPORT.ADDRESS Export bookmarks for specified addresses
	BookMark.EXPORT.preset Export bookmarks to an XML file
	BookMark.EXPORT.SOURCE Export bookmarks for specified source files
	BookMark.EXPORT.sYmbol Export bookmarks for specified symbols
	BookMark.List List all bookmarks
	BookMark.RESet Delete all bookmarks
	BookMark.Toggle Toggles a single address bookmark

	Break
	Break Stopping the program execution
	Breakpoints
	Break.Asm Stop program/set temporary breakpoint and switch to Asm mode
	Break.CLEAR Reset complex triggers
	Break.CONFIG Configuration of breakpoint behavior and breakpoint scope
	Break.CONFIG.AlwaysAlive Alive Onchip breakpoints
	Break.CONFIG.InexactAddress Inexact address range breakpoint
	Break.CONFIG.InexactData Inexact data value breakpoint
	Break.CONFIG.InexactResume Resuming on inexact breakpoints
	Break.CONFIG.InexactTrigger Inexact trigger breakpoints
	Break.CONFIG.MatchASID Use ASID specific breakpoints
	Break.CONFIG.MatchMachine Use machine specific breakpoints
	Break.CONFIG.MatchZone Use zone specific breakpoints
	Break.CONFIG.METHOD Breakpoints implementation
	Break.CONFIG.state Breakpoint configuration window
	Break.CONFIG.UseContextID Context ID specific breakpoints
	Break.CONFIG.UseMachineID Machine ID specific breakpoints
	Break.CONFIG.VarConvert Convert breakpoints on scalar variables
	Break.Delete Delete breakpoints
	Break.DeletePATtern Delete breakpoints allowing wildcards
	Break.direct Stop program execution or set temporary breakpoints
	Break.DISable Disable breakpoints
	Break.ENable Enable breakpoints
	Break.Hll Stop program/set temporary breakpoint and switch to HLL mode
	Break.Init Initialize breakpoints
	Break.List Display list of breakpoints
	Break.Mix Stop program/set temporary breakpoint and switch to MIX mode
	Break.MONitor Switch back to stop mode debugging
	Break.PASS Define pass condition for breakpoint
	Break.PATtern Set temporary breakpoints allowing wildcards
	Break.Program CTL interactive programming
	Break.ReProgram Activate existing CTL program file
	Break.REQuest Request a program break
	Break.RESet Delete all breakpoints and reset the TRACE32 break system
	Break.Set Set breakpoints
	On-chip Breakpoints
	Breakpoint Types
	Real-time vs. Intrusive Breakpoints
	Breakpoint Options

	Break.SetFunc Mark HLL functions
	Break.SetLine Mark HLL lines
	Break.SetMONitor Switch to run mode debugging at the next “Go”
	Break.SetPATtern Set breakpoints allowing wildcards
	Break.SetTask Stop the program execution when task is scheduled
	Break.ViewProgram Show state of the CTL trigger unit

	BSDL
	BSDL Boundary scan description language
	BSDL.BYPASSall Check bypass mode
	BSDL.CHECK Enable test result checking
	BSDL.FILE Load a BSDL file
	BSDL.FLASH Flash programming
	BSDL.FLASH.IFCheck Check flash interface definition
	BSDL.FLASH.IFDefine Define flash interface
	BSDL.FLASH.IFMap Map flash interface
	BSDL.FLASH.INIT Initialize flash interface
	BSDL.HARDRESET TAP reset via TRST
	BSDL.IDCODEall Check ID codes
	BSDL.LINKAGE Create a bypass device
	BSDL.LoadDR Load data register from file
	BSDL.MOVEDOWN Move selected chip downwards
	BSDL.MOVEUP Move selected chip upwards
	BSDL.ParkState Select JTAG parking state
	BSDL.RESet Reset boundary scan configuration
	BSDL.RUN Run JTAG sequence
	BSDL.RUNTCK Toggle TCK
	BSDL.SAMPLEall Sample all signals
	BSDL.SELect Select a chip
	BSDL.SET Set chip parameters
	BSDL.SetAndRun Immediate data register takeover
	BSDL.SOFTRESET TAP reset via TMS
	BSDL.state Display BSDL chain configuration window
	BSDL.StepPauseDR Special DR shift
	BSDL.SToreDR Store data register to file
	BSDL.TwoStepDR Single/double data register shift
	BSDL.UNLOAD Unload a chip from chain

	BTrace
	BTrace Script-controlled trace sink

	BTrace-specific Trace Commands
	BTrace.<specific_cmds> Overview of BTrace-specific commands
	BTrace.Mode Set the trace operation mode
	BTrace.PUSH Push trace data
	BTrace.state Display BTrace configuration window

	Generic BTrace Trace Commands
	BTrace.Arm Arm the trace
	BTrace.AutoArm Arm automatically
	BTrace.AutoInit Automatic initialization
	BTrace.BookMark Set a bookmark in trace listing
	BTrace.Chart Display trace contents graphically
	BTrace.ComPare Compare trace contents
	BTrace.DISable Disable the trace
	BTrace.DRAW Plot trace data against time
	BTrace.EXPORT Export trace data for processing in other applications
	BTrace.FILE Load a file into the file trace buffer
	BTrace.Find Find specified entry in trace
	BTrace.FindAll Find all specified entries in trace
	BTrace.FindChange Search for changes in trace flow
	BTrace.GOTO Move cursor to specified trace record
	BTrace.Init Initialize trace
	BTrace.List List trace contents
	BTrace.ListNesting Analyze function nesting
	BTrace.LOAD Load trace file for offline processing
	BTrace.OFF Switch off
	BTrace.PROfileChart Profile charts
	BTrace.PROTOcol Protocol analysis
	BTrace.PROTOcol.Chart Graphic display for user-defined protocol
	BTrace.PROTOcol.Draw Graphic display for user-defined protocol
	BTrace.PROTOcol.EXPORT Export trace buffer for user-defined protocol
	BTrace.PROTOcol.Find Find in trace buffer for user-defined protocol
	BTrace.PROTOcol.list Display trace buffer for user-defined protocol
	BTrace.PROTOcol.PROfileChart Profile chart for user-defined protocol
	BTrace.PROTOcol.PROfileSTATistic Profile chart for user-defined protocol
	BTrace.PROTOcol.STATistic Display statistics for user-defined protocol
	BTrace.REF Set reference point for time measurement
	BTrace.RESet Reset command
	BTrace.SAVE Save trace for postprocessing in TRACE32
	BTrace.SIZE Define buffer size
	BTrace.STATistic Statistic analysis
	BTrace.Timing Waveform of trace buffer
	BTrace.TRACK Set tracking record
	BTrace.View Display single record
	BTrace.ZERO Align timestamps of trace and timing analyzers

