LAUTERBACH A

Intel® x86/x64 Debugger

Intel® x86/x64 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
€. r=
INtel® X86/X64 DEDUGUGET ...cerriurrrirnrrisssiismsrssasssssmssssss s ssss s ssms s s san s sa s e sasan s saamneems e nnsmnnnann 1

L 1= (o 7
Brief Overview of Documents for New USErSc.cciiciiciiissssmsmmmmnnmnnsissssssssssssssmsssnssnssnas 8
Welcome Dialog 8

Help Menu 9
Further Documents 10
A= T o 1T ' 12

L@ T T Q=3 - . 13

QLo 18] o =X 0 Lo To 1] 3T 16

o 16

x86 specific Implementationscco i —————— 17

Tool Identification 17
Onchip Breakpoints 17
Breakpoints after Reset/Power Cycle 18
Access Classes 19
Overview 19

Memory Model 30
Segmentation 31
Platform Controller Hub (PCH) 32
Debugging a CPU only 33
Debugging a PCH only 33
Debugging a CPU and a PCH 33

Systems Using a Merged Debug Port 33

Systems Using Separate Debug Ports 34

PCH Selection for CPU Debug on a Merged Debug Port 34

Slave Core Debugging 34

Start Master Debugger 35

Locating the Slave Core 35
©1989-2024 Lauterbach Intel® x86/x64 Debugger | 2

Starting the Slave Debugger 36
CPU specific JTAG.CONFIG COMMANAScccoviirummrinsismmsrmssssmssssssssssssssssssssssssssssssssnnss 37
JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals 37
JTAG.CONFIG.DRiVer Set slew rate of JTAG signals 37
JTAG.CONFIG.PowerDownTriState Automatically tristate outputs 38
JTAG.CONFIG.TckRun Free-running TCK mode 38
JTAG.CONFIG.TDOEdge Select TCK edge 38
JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages 39
JTAG.CONFIG.Voltage.REFerence Set reference voltage source 40
JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages 40
CPU specific SYStem.DETECT CoOmMMAaNdScccoceiicmmmnsmsissmsmsssmsssssssssmsssssmsssssssssssnns 41
SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores 41
SYStem.DETECT.CORES Detect core/thread number 41
SYStem.DETECT.HyperThreads Detect hyper thread status 42
SYStem.DETECT.TARGET Fully automatic board setup 43
SYStem.DETECT.TOPOlogy Detect board topology 44
CPU specific SYStem Settingscccccvvmmiriniiminnnrr s s ssmssnneas 45
SYStem.CONFIG.state Display target configuration 45
SYStem.CONFIG Configure debugger according to target topology 46
Multicore Settings (daisy chain) 46
SYStem.CORESTATES Core states overview 49
SYStem.CPU Select the target CPU/SOC 51
SYStem.JtagClock Define JTAG clock 51
SYStem.LOCK Tristate the JTAG port 51
SYStem.MemAccess Select run-time memory access method 52
SYStem.Mode Establish the communication with the target 52
SYStem.Option.Address32 Use 32 bit address display only 53
SYStem.Option.BIGREALmode Enable Big Real mode handling 54
SYStem.Option.BranchSTEP Enables branch stepping 55
SYStem.Option.BreakDELAY Set max. break delay 55
SYStem.Option.COHold Hold CPU in CO state 55
SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections 56
SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure 56
SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections 56
SYStem.Option.IMASKASM Disable interrupts while single stepping 57
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 57
SYStem.Option.InstrSUBmIitFOrcePHYSicalPRDY Use physical PRDY 57
SYStem.Option.InstrSUBmitIGnorePHY SicalPRDY Ignore physical PRDY 57
SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission 58
SYStem.Option.IntelSOC Slave core is part of Intel® SoC 58
SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs 59
SYStem.Option.JTAGOnly Use only JTAG signals 59
©1989-2024 Lauterbach Intel® x86/x64 Debugger 3

SYStem.Option.MACHINESPACES Address extension for guest OSes 59
SYStem.Option.MEMoryMODEL Define memory model 60
SYStem.Option. MMUSPACES Separate address spaces by space IDs 63
SYStem.Option.MultiCoreWhiskers Server board whisker setup 64
SYStem.Option.NoDualcoreModule Disable dualcore module support 64
SYStem.Option.NoHyperThread Disable HyperThreading support 65
SYStem.Option.NolPAdjust Do not adjust IP at reset vector 65
SYStem.Option.NoReBoot Disable watchdog causing reboot 65
SYStem.Option.OSWakeupTIME Set the OS wake up time 66
SYStem.Option.PC10MODE Wake up target from package C10 66
SYStem.Option.PreserveDRX Preserve DRx resources 66
SYStem.Option.PreservelLBR Preserve LBR resources 66
SYStem.Option.ProbeModeNOSaveRestore No save/restore 67
SYStem.Option.ProbeModeONDEmand On demand save/restore 68
SYStem.Option.PWRCycleTime Set power cycle time 68
SYStem.Option.PWROFFTime Set power off assertion time 68
SYStem.Option.PWRONTIme Set power on assertion time 69
SYStem.Option.PWRONWaitTime Set power on time 69
SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset 69
SYStem.Option.REL Relocation register 69
SYStem.Option.RESetDELAY Setresetdelay 70
SYStem.Option.RESetDetection Select reset detection source 70
SYStem.Option.RESetMode Select reset method 71
SYStem.Option.RESetTIME Set reset assertion time 71
SYStem.Option.RESetWaitTIME Set reset input wait time 71
SYStem.Option.SOHold Hold SoC in SO state 72
SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint 72
SYStem.Option.STandBYAttach In standby mode, only attach to target 72
SYStem.Option.STandBYAttachDELAY Delay after standby 73
SYStem.Option.STepINToEXC Step into interrupt or exception handler 73
SYStem.Option. TOPOlogy Select server board topology 73
SYStem.Option.WatchDogWaitTIME Set the reset watch dog time 74
SYStem.Option.WFSMemAccess Allow WFS memory access 74
SYStem.Option.WHISKER Select a whisker 74
SYStem.Option.ZoneSPACES Enable symbol management for zones 75
SYStem.PCH Select the target PCH 77
SYStem.POWER Control target power 77
SYStem.STALLPhase Set system into stall phase 78
SYStem.StuffInstruction Submit instruction to CPU in probe mode 78
SYStem.StuffInstructionRead Submit instruction and read 78
SYStem.TIMINGS Display timings window 79
Command Groups for Special Registersccccuvcmmnnni s 80
CPU specific MMU COMMANASccoiicmmiiimrinienmnsmsisssssssssmssssssssssssssssms s s sasssssasssasssssnssnns 81
©1989-2024 Lauterbach Intel® x86/x64 Debugger 4

MMU.DUMP Page wise display of MMU translation table 81
MMU.List Compact display of MMU translation table 85
MMU.SCAN Load MMU table from CPU 87
MMU.Set Set MMU register 88
CPU specific TrOnchip Commands - Onchip Triggersccccecmmiicmrininnmnssssssmssssanens 89
TrOnchip.PrintList Print possible onchip triggers 89
TrOnchip.RESet Reset settings to defaults 89
TrOnchip.Set Break on event 89
TrOnchip.Set.BootStall Enter bootstall 89
TrOnchip.Set.C6EXxit Break on C6 exit 91
TrOnchip.Set.ColdRESet Break on cold reset 91
TrOnchip.Set.CpuBootStall Enter CPU bootstall 91
TrOnchip.Set.ENCLU Break on ENCLU event 92
TrOnchip.Set.GeneralDetect Break on general detect 92
TrOnchip.Set.INIT Break on init 92
TrOnchip.Set.MachineCheck Break on machine check 92
TrOnchip.Set.RESet Break on target reset 93
TrOnchip.Set.ShutDown Break on shutdown 93
TrOnchip.Set. SMMENTtry Break on SMM entry 93
TrOnchip.Set. SMMEX:it Break on SMM exit 93
TrOnchip.Set. SMMINto Step into SMM when single stepping 94
TrOnchip.Set. TraceHub Enter/leave trace hub break 94
TrOnchip.Set.VMENtry Break on VM entry 94
TrOnchip.Set.VMEXit Break on VM exit 95
TrOnchip.state Display onchip trigger window 97
CPU specific Events for the ON and GLOBALON Commandccccciiiriininsssssssnnnmeenns 98
CPU specific BenchmarkCounter Commandsccccccccmmmmriinississssssssscsesssssessssssssssssnnes 99
BMC.<counter> Select BMC event to count 99
BMC.<counter>.COUNT Select count mode for BMC 99
CPU specific Onchip Trace Commandscccccceemermmissssmsmmmisssssmmsssss s sssssssssees 100
Onchip.Buffer Configure onchip trace source 100
CPU specific FUNCLIONSooiieiiin s ss s s s s s e 102
SYStem.CoreStates.APIC() 102
SYStem.CoreStates.HYPER() 102
SYStem.CoreStates.MODE() 102
SYStem.CoreStates.PHYS() 103
SYStem.CoreStates.PRIOR() 103
SYStem.CoreStates.SMM() 103
SYStem.CoreStates.VMX() 104
SYStem.Option.MEMoryMODELY() 104
SYStem.Option. TOPOlogy() 104
SYStem.Option. TOPOIlogy.SOCKETS() 104
©1989-2024 Lauterbach Intel® x86/x64 Debugger | 5

SYStem.ReadPDRH() 105
SYStem.ReadPDRL() 105
TrOnchip.IsAvailable() 105
TrOnchip.lsSet() 106
VMX() 106
VMX.Guest() 106
SYStem Trace Sethings ... s s s 107
{0 3] 4 = o3 (o S 108
JTAG Connector 108
MIPI34 Connector 109
MIPI160-C Connector 110
MIP160-Cv2 Connector 112
MIP160-Q Connector 114
©1989-2024 Lauterbach Intel® x86/x64 Debugger | 6

Intel® x86/x64 Debugger

Version 06-Jun-2024

History

07-Jun-2022 New command: JTAG.CONFIG.TckRun.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 7

Brief Overview of Documents for New Users

Welcome Dialog

The Welcome to TRACE32! dialog provides access to the most important manuals when TRACES32 is

started the first time.

£5) Welcome to TRACE32! == 5

TRACE32 PowerView for Intel x86 (64 bit) / PowerDebug PRO

Before you can start debugging, the debug environment needs to be set up.

This setup is usually done by a start-up script. Click "Start with examples" to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals
i3 Intel x86/x64 Debugger

i3 Basic Debugging Intel@ x86/x64
@ Training Script Language PRACTICE

[¥] Show this dialog at start I T Help] [#1 Start with examples]

For the Intel® x86/x64 architecture the following manuals are listed:

Intel x86/x64 Debugger is the manual you are currently reading. It provides all the information

you need to establish a TRACE32 debug session for an Intel® x86/x64 chip.

“Training Script Language PRACTICE” (training_practice.pdf) teaches you how to write, test

and use a start-up script to establish a debug session.

“Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) teaches you
how to use the standard features of the TRACE32 debugger.

If you unchecked Show this dialog at start in the Welcome to TRACE32! dialog, you can use the following
command to get access to this dialog:

WELCOME . view

The following documents are also good starting points:

“Tools for Intel® x86/x64” (tools_intel_x86.pdf) presents the delivery contents of the individual
TRACER32 products and describes which steps are required to assemble a ready-to-use debug tool.

“Intel® Application Note for Server Setup” (app_x86_server.pdf) explains the configuration of

TRACE32 for Intel® Xeon® server systems.

The following documents are a good starting point for USB Debugging via Intel® DCI:

“Debugging via Intel® DCI User’s Guide” (dci_intel_user.pdf).
“Debugging via USB User’s Guide” (usbdebug_user.pdf).

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

8

Help Menu

The Help menu provides additionally access to all Training Manuals.

? Contents
| &) Index
4] Find
i Tree
@ TRACE32 PowerView User Manual

@ Processor Architecture Manual
@ Debugger User Guide

" Training Manuals 2 g HLL Debugging

5] PRACTICE

@ Debugger x86/x04
@ Intel Processor Trace
J2 Setup PDF Viewer i O Linuwx x86/x64

#3 Demo Scripts
€3 Welcome to TRACE32

Lauterbach Homepage
Support L4
& About TRACE32...

Beside the Processor Architecture Manual, which is the generic name for this manual within TRACE32 a
number of training manuals are provided:

HLL Debugging provides access to “Training Source Level Debugging” (training_hll.pdf) which
mainly teaches you how to load the application program, how to display and format C-variables.

If you are using C++ refer to “Application Note C++ Debugging” (app_cpp_debugging.pdf).
PRACTICE provides access to “Training Script Language PRACTICE” (training_practice.pdf).

Debugger x86/x84 provides access to “Training Basic SMP Debugging for Intel® x86/x64”
(training_debugger_x86.pdf).

Intel Processor Trace provide access to “Training Intel® Processor Tracing”

(training_ipt_trace.pdf). This manual teaches you how to configure the Intel® Processor Trace,
how to record trace information, how to analyze and display the recorded information.

OS Linux x86/x64 provides access to “Training Linux Debugging for Intel® x86/x64”
(training_rtos_linux_x86.pdf). This manual teaches you how to set up TRACES32 for Linux-aware
debugging and how to use the Linux-awareness in a TRACE32 debug session.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 9

All TRACES32 menus can be extended by the user. The following script shows a short example of how to add
a manual to the TRACE32 Help menu.

MENU.ReProgram
(
ADD
MENU
(
POPUP "&Help"
(
AFTER "Processor Architecture Manual"
MENUITEM "[:manual]Intel Processor Trace Manual" "HELP _ ICRIPT "

? Contents

&) Index

#3 Find

H Tree

@ TRACE32 PowerView User Manual

@ Processor Architecture Manual

e Intel Processor Trace Manual

@ Debugger User Guide

@ Training Manuals L4

#3 Demo Scripts
€3 Welcome to TRACE32

& Setup PDF Viewer

Lauterbach Homepage
Support D
& About TRACE32...

If you need the code of a manual (like __ICRIPT_ in the above example) please contact
support@Ilauterbach.com.

Further Documents

The following manuals might also be of interest for Intel® x86/x64 users:

Trace manuals:

. “Intel® Processor Trace” (trace_intel_pt.pdf) provides configuration information, a command
reference for the IPT command group and connector details.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 10

UEFIl-aware debugging:

“UEFI Awareness Manual BLDK” (uefi_bldk.pdf) provides configuration information, a feature

overview for the TRACE32 UEFI debugger for Intel® BLDK, an overview of all relevant EXTension
commands and functions.

“UEFI Awareness Manual H20” (uefi_h2o0.pdf) provides configuration information, a feature
overview for the TRACE32 UEFI debugger for InsydeH20, an overview of all relevant EXTension
commands and functions.

OS-aware debugging:

“0OS Awareness Manual Linux” (rtos_linux_stop.pdf) provides configuration information, a
feature overview for Linux stop-mode debugging, an overview of all relevant commands,
functions and error messages.

This manual is automatically added to the TRACES32 Help menu, when the TRACES32 Linux
menu is programmed.

“OS Awareness Manual Windows Standard” (rtos_windows.pdf) provides configuration
information, a feature overview for standard windows debugging, an overview of all relevant
commands and functions.

This manual is automatically added to the TRACE32 Help menu, when the TRACE32
MSWindows menu is programmed.

The following command allows to add manuals of interest to the Bookmarks tab of the TRACE32 online

help:

I HELP.Bookmark.ADD.file <file> <description> <title>

= =R
? Contents 5] Index 43 Find ' Command Tree M Bookmarks i Print
Selected bookmark: shov delete
Store bookmarks to file: | & Store... || &2 Load... |
description title filename
TRACE3Z UEFI Debugger Tor Intel BLDK [UEFI BLDK Debugger [C:\T32_DVDZ_2016_Pre'\pdfuefi_bTdk. pdf
}

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 11

Warning

NOTE:

To prevent debugger and target from damage it is recommended to
connect or disconnect the debug cable only while the target power is

OFF.

Recommendation for the software start:

1.

N o o &~

Disconnect the debug cable from the target while the target
power is off.

Connect the host system, the TRACES32 hardware and the
debug cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.

Connect the debug cable to the target.
Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the debug cable from the target.
Close the TRACE32 software.

Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

12

Quick Start

After starting TRACE32 PowerView for Intel® x86 (64 bit) please proceed as follows to debug your platform:

If you have been provided with a start-up script for your platform, first make sure that the platform is
powered. Then simply execute the script as follows:

DO <file>

If you do not have a start-up script and want to debug an Intel® Xeon® server system platform, please refer
to “Intel® Application Note for Server Setup” (app_x86_server.pdf) for how to do the necessary setup.

If you do not have a start-up script and want to debug an Intel® Atom™ or an Intel® Core ™ 3/i5/i7 Client
platform, please type (make sure the platform is powered first):

SYStem.DETECT TARGET
SYStem.Mode.Attach

Break

In most cases this setup is sufficient, and after the commands have been executed successfully it is possible
to debug the target, including accessing memory and registers.

If for some reason the above is not successful, please follow the more detailed steps on the next page.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 13

1. First TRACES32 must know which CPU/SOC your platform has. TRACE32 can normally detect
this automatically as follows (make sure the platform is powered first):

SYStem.DETECT CPU

2. Such automatic detection is not supported for all possible platforms. If the automatic detection
does not succeed, please select the CPU/SOC of the connected platform directly:

SYStem.CPU <cpu> | <soc>

3. If you are not sure about the name of the CPU/SOC you can open a window with a list of
available names:

SYStem.CPU

Note that this is not a full list of all supported CPUs/SOC:s. It only contains names of public,
already launched products.

4. Next TRACES32 must know the number of cores/threads of the selected CPU/SOC. This step is

required for Intel® Core™ i3/i5/i7 Client platforms, but can often be skipped for Intel® Atom™
platforms:

SYStem.DETECT CORES

NOTE: SYStem.DETECT TARGET (as used on the previous page) is basically
SYStem.DETECT CPU followed by SYStem.DETECT CORES.

5. After the platform CPU/SOC has been detected/selected and the number of cores/threads have
been detected (as necessary), further target-specific settings and options can be selected.

But in most cases the default values of other settings and options have automatically been set to the
most useful values at this point. This means that in most cases it should now be possible to do basic
debugging without any further initial configuration of TRACE32.

6. Attach to the target and enter debug mode.

SYStem.Mode.Attach

Break

The first command attaches the debugger to the running target. The second command stops the
target and enters debug mode (often called probe mode for x86/x64 targets).
After these commands are executed it is possible to access memory and registers.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 14

A simple start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

RESet

WinCLEAR

SYStem.DETECT TARGET
SYStem.Mode.Attach
Break

Register.view /SpotLight

List.Mix

Reset the TRACE32 software settings

Close all windows

Detect platform CPU/SOC and cores/threads
Attach to the running target

Stop the target and enter debug mode

Open register and stack window *)

Open source code window)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

15

Troubleshooting

No information available

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 16

https://support.lauterbach.com/kb

x86 specific Implementations

Tool Identification

The following TRACE32 functions allow you to check which Intel® x86/x64 specific TRACES32 tool are
controlled by the TRACES32 software.

hardware.COMBIPROBE() Returns TRUE if a TRACE32 CombiProbe is connected.
hardware.QUADPROBE() Returns TRUE if a TRACE32 QuadProbe is connected.
ID.WHISKER(<int>) Returns the identifier for the connected TRACES32 whisker cable.

ID.CABLE() Returns 0x3836 if Inte/® x86/x64 XDP60 Debug Cable is connected.

IF hardware.COMBIPROBE ()

(IF ID.WHISKER(0)==0x10
| PRINT "Connected Tool is CombiProbe MIPI60-C"
)IF ID.WHISKER(0)==0x11
| PRINT "Connected Tool is CombiProbe MIPI60-Cv2"
iF ID.WHISKER (0)==(0x2||0x09)
| PRINT "Connected tool is CombiProbe DCI OOB"
)

Onchip Breakpoints

The list below gives an overview of the availability and the usage of the onchip breakpoints. The following
notations are used:

. Onchip breakpoints: Total amount of available onchip breakpoints.

J Instruction breakpoints: Number of onchip breakpoints that can be used to set Program break-
points.

. Read/Write breakpoints: Number of onchip breakpoints that stop the program when a write or

read/write to a certain address happens.

. Data value breakpoint: Number of onchip data breakpoints that stop the program when a spe-
cific data value is written to an address or when a specific data value is read from an address.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 17

Onchip Instruction Read/Write Data Value

Family Breakpoints Breakpoints Breakpoint Breakpoints
Intel® 4 4 4 —
x86/x64 single address

Write or

Read/Write

single address or
ranges up to
8 bytes (aligned)

A detailed introduction into the breakpoint handling can be found in “Training Basic SMP Debugging for
Intel® x86/x64” (training_debugger_x86.pdf).

Breakpoints after Reset/Power Cycle

TRACE32 PowerView displays Unknown State in the note column of the Break.List window, if TRACE32
detects that the target is reset/re-powered and the cores immediately start the program execution. In this
case it is likely that the breakpoint settings are cleared.

Fle Edt View Var Bresk Run CPU Misc Trace Perf Cov INTELCOUGARPOINT Window Help
kLl deern|g o o dum e @12
3 B::Break List
(& Delete All (O Disable Al @ Enable All][@ it | Z1mpl... || S store... || Sload... || Kilset... |

address types imp]l note
¥ : 00000000004 00EGC [[Program SOFT Unknown State | main'\6 ,
X:0000000000602E31--0000000000602E31 [jWrite ONCHIP |Unknown State | vtriplearray[1][1][1]
4

][pata [wvar [ust J[pere][Svstem |[other][previous

Wros T | b e

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 18

Access Classes

Overview

Access Class Description

C Generic

D Data

P Program

A Absolute

AD Absolute Data

AP Absolute Program

| Intermediate

ID Intermediate Data

IP Intermediate Program

L Linear

LD Linear Data

LP Linear Program

R Real Mode

RD Real Mode Data

RP Real Mode Program

ARD Absolute Real Mode Data
ARP Absolute Real Mode Program
LRD Linear Real Mode Data

LRP Linear Real Mode Program

N Protected Mode (32-bit)

ND Protected Mode Data (32-bit)
NP Protected Mode Program (32-bit)
AND Absolute Protected Mode Data (32-bit)

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

19

Access Class

Description

ANP Absolute Protected Mode Program (32-bit)
LND Linear Protected Mode Data (32-bit)

LRP Linear Protected Mode Program (32-bit)

X 64-bit Mode

XD 64-bit Mode Data

XP 64-bit Mode Program

AXD Absolute 64-bit Mode Data

AXP Absolute 64-bit Mode Program

LXD Linear 64-bit Mode Data

LXP Linear 64-bit Mode Program

0] Protected Mode (16-bit)

oD Protected Mode Data (16-bit)

OP Protected Mode Program (16-bit)

AOD Absolute Protected Mode Data (16-bit)
AOP Absolute Protected Mode Program (16-bit)
LOD Linear Protected Mode Data (16-bit)

LOP Linear Protected Mode Program (16-bit)
10 10 Ports

MSR MSR Registers

CID CPUID Instruction

VMCS VMCS Registers

IOSF IOSF Sideband

Q Real Big Mode (Real Mode supporting 32-bit addresses)
QD Real Big Mode Data

QP Real Big Mode Program

AQD Absolute Real Big Mode Data

AQP Absolute Real Big Mode Program

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

20

Access Class Description
LaQb Linear Real Big Mode Data
LQP Linear Real Big Mode Program
E Run-time Memory Access
S System Management Mode (SMM)
SD SMM Data
SP SMM Program
SN SMM Protected Mode (32-bit)
SND SMM Protected Mode Data (32-bit)
SNP SMM Protected Mode Program (32-bit)
SX SMM 64-bit Mode
SXD SMM 64-bit Mode Data
SXP SMM 64-bit Mode Program
SO SMM Protected Mode (16-bit)
SOD SMM Protected Mode Data (16-bit)
SOP SMM Protected Mode Program (16-bit)
sQ SMM Real Big Mode (Real Mode supporting 32-bit addresses)
sQbD SMM Real Big Mode Data
sQpP SMM Real Big Mode Program
AS Absolute SMM
ASD Absolute SMM Data
ASP Absolute SMM Program
LS Linear SMM
LSD Linear SMM Data
LSP Linear SMM Program
VMX Guest Mode
H VMX Host Mode
CSS Current value of CS

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

21

Access Class Description

DSS Current value of DS

SSS Current value of SS

ESS Current value of ES

FSS Current value of FS

GSS Current value of GS
D:, P:

The D: prefix refers to the DS segment register and the P: prefix to the CS segment register. Both D: and P:
memory classes access the same memory. It is not possible to split program and data memory. Real Mode
or Protected Mode (16, 32 or 64-bit) addressing is chosen dependent on the current processor mode.

Data.Set P:0x0--0x0ffff 0x0

Data.Set 0x0--0xO0ffff 0x0

Data.Set 0x100 0x0

Data.Assemble 0x100 nop

Data.Assemble 0x0--0x0fff nop

A:, AD:, AP:

7

fill program memory with zero
fill data memory with zero
set location DS:0x100 to O
assemble to location CS:0x100

fill program memory with nop
instruction

Absolute addressing. The address parameter specifies the absolute address thus disregarding
segmentation and paging. It is possible to use “A” as a prefix to most other memory classes.

Data.Set A:0x12000 0x33

Data.dump AD:0x12000

7

7

7

7

write to absolute address 0x12000 in
program/data memory

displays absolute address 0x12000
from data memory

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 22

I;, ID:, IP:

Intermediate addressing. This memory class is used in connection with virtualization. It corresponds to the
guest physical address, i.e., disregards segmentation and paging of the guest, but does not disregard
possible second level paging done by the host (use A: for that).

Data.Set I:0x12000 0x33 ; write to guest absolute address

; 0x12000 in program/data memory

Data.dump ID:0x12000 ; displays guest absolute address

; 0x12000 from data memory

L:, LD:, LP:

Linear addressing. The address parameter specifies the linear address thus disregarding segmentation but
not paging. It is possible to use “L” as a prefix to most other memory classes.

Data.Set L:0x12000 0x33 ; write to linear address 0x12000 in

; program/data memory

Data.dump LD:0x12000 ; displays absolute address 0x12000
; from data memory

R:, RD:, RP:

Real Mode addressing.

Data.Set R:0x1234:0x5678 ; write to Real Mode address 0x1234:0x5678

Data.Set R:0x100 ; write to Real Mode address DS:0x100

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 23

N:, ND:, NP:

Protected Mode (32-bit) addressing. (“N” is for Normal.)

Data.Set N:0x0£f0:0x5678 ; write to Protected Mode address 0x5678 of
; selector 0x0f0

Data.dump ND:0x12345678 ; display memory at Protected Mode address
; DS:0x12345678

Data.List NP:0x0C000000 ; disassemble memory in 32-bit mode at
; Protected Mode address CS:0x0C000000

X:, XD:, XP:

64-bit Mode addressing. (“X” is for eXtended.)

Data.dump XD:0x0000123456789ABC ;display memory at 64-bit Mode
;linear address 0x0000123456789ABC

0O:, OD:, OP:

Protected Mode (16-bit) addressing. (“O” is for Old.)

Data.List OP:0x4321 ; disassemble memory in 16-bit mode at
; Protected Mode address CS:0x4321

Q:, QD:, QP:

Big Real Mode addressing. Real Mode (16-bit opcodes), supporting 32-bit addresses.
See SYStem.Option.BIGREALmMode ON for details.

Data.Set ; write to 32-bit Big Real Mode address
Q:0x1234:0x5678ABCD 0x1234:0x5678ABCD
Data.Set Q:0x10008000 ; write to 32-bit Big Real Mode address

DS:0x10008000

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 24

10:

Access IO ports.

Data.Out I0:0xCF8 %$long OxF

MSR:

output 32-bit value 0xF at IO port
0xCF8

Accesses MSR registers. The address format is as follows:

Bits Meaning
23-0 MSR[23-0]
27-24 MSR[31-28]
31-28 Ignored

Data.dump msr:0x0

Data.dump msr:0x0C000080

display MSR registers starting with
MSR register 0

display MSR registers starting with
MSR register 0xC0000080

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

25

CID:

Return CPUID values. The address format is as follows:

Bits Meaning
1-0 Return Register
(0=EAX, 1=EBX, 2=ECX, 3=EDX)
3-2 Ignored
14-4 EAX[10-0]
15 EAX[31]
29-16 ECX[13-0]
31-30 Ignored
Data .dump cid:0x0 ; display CPUID values starting with

; initial EAX value 0x0

Data .dump cid:0x8020 ; display CPUID values starting with
; initial EAX value 0x80000002

Data.In cid:0x20041 ; return EBX CPUID value with initial
; EAX value 0x4 and initial ECX wvalue
; 0x2
VMCS:

Access virtual-machine control data structures (VMCSs). The “address” to be used with this memory class
is the corresponding field encoding of an VMCS component.

Data.In VMCS: 0x6C00 ; display the host CR0O VMCS component

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 26

IOSF:

Access IOSF sideband.

The address format uses a “<segment>: <offset>" syntax, where the “segment” is 16 bits, and the “offset” 64

bits:

IOSF:<8-bit Opcode><8-bit PortiD>:<8-bit FID><4-bit BAR><4-bit Reserved><48-bit Address>

“Segment” part:

Bits Meaning
7-0 Port ID
15-8 Opcode
“Offset” part:

Bits Meaning
47-0 Address
51-48 Reserved
55-52 BAR
63-56 FID

Data.In IOSF:0x0608:3C /long

Data.Set IOSF:0x0608:3C %$long
Oxdeadbeef

Data.In
TIOSF:0x0608:0xFF701234567890A
B /long

Read IOSF sideband with opcode 0x06,
port ID 0x08 and address 0x3C.
(FID and BAR are both 0)

Write IOSF sideband with opcode 0x06
port ID 0x08 and address 0x3C.
(FID and BAR are both 0)

Read IOSF sideband with opcode 0x06,
port ID 0x08, FID OxFF, BAR 0x7 and
address 0x1234567890AB

I

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

27

E:

Run-time memory access. This access class must be used for any kind of run-time memory access (be it
intrusive or non-intrusive). For that, “E” can be used as a prefix to every other access class.

Data.dump END:0x12345678 ; display memory at Protected Mode
; address DS:0x12345678 during run-time

S:, SD:, SP:, SN:, SND:, SNP:, SX:, SXD:, SXP:, SO:, SOD:, SOP:, SQ:, SQD:, SQP: SR:

The “S” prefix refers to System Management Mode. All these access classes behave like the corresponding
ones without the “S” only that they refer to SMM memory instead of normal memory.

Data.dump ASD:0x3£300000 ; display SMM memory at absolute
; address 0x3£300000

G:, GD:, GP:, GN:, GND:, GNP:, GX:, GXD:, GXP:, GO:, GOD:, GOP:, GQ:, GQD:, GQP:
GS:, GSD:, GSP:, GSN:, GSND:, GSNP:, GSX:, GSXD:, GSXP:, GSO:, GSOD:, GSOP:, GSQ:, GSQD:,
GSQP: GSR:

When the VMX mode of the target is enabled, TRACES32 indicates the affiliation of logical or linear
addresses with the VMX Guest mode by adding the prefix “G” to the access class.

Data .dump GD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Guest
; mode

H:, HD:, HP:, HN:, HND:, HNP:, HX:, HXD:, HXP:, HO:, HOD:, HOP:, HQ:, HQD:, HQP:
HS:, HSD:, HSP:, HSN:, HSND:, HSNP:, HSX:, HSXD:, HSXP:, HSO:, HSOD:, HSOP:, HSQ:, HSQD:,
HSQP: HSR:

When the VMX mode of the target is enabled, TRACES32 indicates the affiliation of logical or linear
addresses with the VMX Host mode by adding prefix “H” to the access class.

Data .dump HD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Host
; mode

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 28

Segment register aliases CSS:, DSS:, SSS:, ESS:, FSS:, GSS:

These are not real access classes but aliases which allow to modify the segment descriptor of an address. If
one of these six identifiers precedes an address, the value of segment register CS, DS, SS, ES, FS or GS

will be used as descriptor in the address.

These aliases are of use only if you want to work directly with segment based addressing in real or protected
mode. Note that SYStem.Option.MEMoryMODEL must be set to LARGE to support segmentation to its
fullest extent in protected mode.

Example: Let’s assume the processor is in protected mode and the segment register FS contains the value
0x18 which is a 32-bit data segment. We want to write to an address with offset 0x12000, using FS as

segment register.

Data.Set

Data.dump

FSR:0x12000 0x33

SSR:0x12000

; write 0x33 to address FSR:0x12000.
; Effectively, this will use 0x18 as

segment descriptor.
(If we are in protected mode and FS
is a 32-bit data segment) you could

; alternatively use
; Data.Set ND:0x18:0x12000 0x33

~ FS contains 0x18

; display memory at SSR:0x12000

NOTE:

To avoid confusion with the access classes ES: and GS:, all six segment
selector identifiers have been renamed from CS:, DS:, ES;, FS:, GS:, SS: to
CSS:, DSS:, ESS:, FSS:, GSS:, SSS: as of TRACE32 build 75425 - DVD

09/2016.

. Prefix ES: indicates an unspecific (hon-program and non-data) dual-port

memory accesses in System Management Mode.

. Prefix GS: indicates an unspecific system management memory access
in VMX Guest Mode.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

29

Memory Model

The Intel® x86 memory model describes the way the debugger considers the six segments CS (code
segment), DS (data segment), SS (stack segment), ES, FS and GS and the usage of the LDT (local
descriptor table) for the current debug session.

A further introduction into the concept of x86 memory models can be found in the Intel® software
developer’s manual (please refer to the chapter describing segments in protected mode memory
management).

TRACES2 supports a number of memory models when working with addresses and segments: LARGE,
FLAT, ProtectedFLAT, LDT and SingleLDT. Activating the space IDs with SYStem.Option.MMUSPACES
ON will override any other selected memory model. TRACE32 now behaves as if the memory model FLAT
is selected and additionally uses space IDs in the address to identify process-specific address spaces (see
SYStem.Option.MMUSPACES for more details).

Effect of the Memory Model on the Debugger Operation

In protected mode, the address translation of x86 processors support segment translation and paging (if
enabled). Segment translation cannot be disabled in hardware. If the TRACE32 address translation is
enabled (TRANSIation.ON, TRANSIation.TableWalk ON), the same translation steps are executed when
the debugger performs a memory access to protected mode addresses.

The values loaded into base, limit and attribute of the segment registers CS, DS, ES, FS, GS and SS
depend on the code being executed and how it makes use of the segments. Setup of the segment registers
is an essential step in loading executable code into memory. Choosing the appropriate TRACE32 memory
model adjusts the segment register handling on the debugger side to the segment register handling on the
software side.

For this purpose, TRACES2 offers six memory models. The memory model affects:
. The TRACE32 address format
. Whether or not segment information is used when the debugger accesses memory

. Whether a LDT descriptor is used to dynamically fetch code and data segments from the local
descriptor table LDT when the debugger accesses memory

. The way how the segment base and limit values are evaluated when an address is translated
from a protected mode address into a linear and/or physical address

J The way the segment attribute information such as code or data width (16/32/64 bit) is evaluated
when code or data memory is accessed

For a more detailed description of the memory models supported by TRACES32, see
SYStem.Option.MEMoryMODEL.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 30

Selecting the Memory Model

After reset, the TRACE32 memory model LARGE is enabled by default. Use one of the following commands
to select a different TRACE32 memory model for the current debug session:

1. SYStem.Option.MEMoryMODEL
2. SYStem.Option.MMUSPACES

3. Data.LOAD - When loading an executable file, specify one of these command options FLAT,
ProtectedFLAT, SingleLDT, LDT, or LARGE to select the TRACE32 memory model you want to
apply to the executable.

The PRACTICE function SYStem.Option.MEMoryMODEL() returns the name of the currently enabled
memory model.

PRINT SYStem.Option.MEMoryMODEL () ;print the name of the memory model
;to the TRACE32 message line

Segmentation

TRACE32 allows to work with segments, both in real and in protected mode. If the debugger address
translation is enabled with TRANSIation.ON, real mode or protected mode addresses will be translated to
linear addresses. If paging is enabled on the target and the TRACES32 table walk mechanism is enabled with
TRANSIation.TableWalk ON, the linear addresses will finally be translated to physical addresses.

Segment translation by TRACE32 is only supported if SYStem.Option.MEMoryMODEL is set to one of
these settings: LARGE, ProtectedFLAT, LDT, SingleLDT. For a description of these option, see
SYStem.Option.MEMoryMODEL. The default option LARGE, selected after SYStem.Up, is suitable for
most debug scenarios where segment translation is used.

Protected mode addresses can be recognized by one of these access classes:
J X:, XD:, XP: (64-bit protected mode)
. N:, ND:, NP: (32-bit protected mode)
J O:, OD:, OP: (16-bit protected mode)

If no segment descriptor is given for such an address, the descriptor from the code segment register (CS)
will be augmented to program addresses, and the segment descriptor from the data segment register (DS)
will be augmented to data addresses. The command MMU.view can be used to view the current settings of
the six segment registers CS, DS, ES, FS, GS, and SS. The augmented segment descriptor is shown as
part of the address.

During segment translation of a protected mode address, TRACE32 will extract the segment descriptor from
the address and search for it in the six segment registers CS, DS, ES, FS, and GS. If found, the stored

values of the segment shadow register (base, limit and attribute) will be used for the linear translation of the
protected mode address. Else, a descriptor table walk will be performed through the global descriptor table

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 31

GDT, provided the register GDTB (global descriptor table base) points to a valid GDT in memory. If found,
the base, limit, and attribute from the GDT entry will be used for the translation. If the address’ segment
descriptor is not found in the GDT, or the GDT entry is not suitable for the translation of the given address
type, the protected mode address cannot be translated to a linear address by TRACES32.

It is possible to explicitly enforce one of the six segment registers CS, DS, ES, FS, GS or SS to be used for
the segment translation of an address. This can be accomplished by specifying the segment register instead
of a protected mode access class. Use one of the segment register identifiers CSS:, DSS:, ESS:, FSS;,
GSS: or SSS: therefore.

Example: The address in this Data.dump command will use the segment descriptor of segment register FS
instead of the default segment descriptor from segment register DS.

Data.dump FSS:0xa7000

NOTE: TRACES2 will not perform segment translation at if the processor is in 64-bit
mode (IA-32e mode). Further, no segment translation is performed for 64-bit
protected mode addresses (addresses with access class X:, XD:, XP:). If no
segment translation is performed, protected mode addresses are translated directly
to linear addresses, disregarding the segment descriptor of the address.

This mimics the behavior of the processor, which treats the segment base
registers as zero and performs no segment limit checks if the 1A-32e mode
(64-bit mode) is enabled.

Platform Controller Hub (PCH)

All Intel® client/server platforms have a Platform Controller Hub (PCH) separate from the CPU. This section
describes selection and usage of the PCH in TRACES32. How to select the PCH - and when it is necessary -
depends on the usage model and the physical debug port.

There are three types of physical debug ports on Intel® client/server platforms:

1. Separate CPU debug port (no access to the PCH)

2. Separate PCH debug port (no access to the CPU)

3. Merged CPU/PCH debug port (access to both CPU and PCH)

Note that most Atom based platforms do not have a separate PCH. For such platforms, most information in
this section does not apply.

In the following the three main usage models are described.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 32

Debugging a CPU only

When debugging the CPU only, it is normally not required to select a PCH (but see “PCH Selection for
CPU Debug on a Merged Debug Port”, page 34), and it is advisable to set SYStem.PCH NONE. This is
the default setting, so it only needs to be set if it has been changed earlier in the debug session.

SYStem.PCH NONE ; there is no PCH
SYStem.CPU <cpu>

SYStem.Option.MultiCoreWhiskers AQO ; select CPU whisker/TCK if needed

This setup is applicable to both a separate CPU debug port and a merged CPU/PCH debug port.

Debugging a PCH only

When debugging the PCH only, it is necessary to select NONE for the CPU.
SYStem.PCH <pch>

SYStem.CPU NONE ; there is no CPU

SYStem.Option.MultiCoreWhiskers D1 ; select PCH whisker/TCK if needed

This setup is applicable to both a separate PCH debug port and a merged CPU/PCH debug port.

Debugging a CPU and a PCH

Systems Using a Merged Debug Port

When debugging a system with the CPU and the PCH on a single merged debug port, it is possible to
control both through a single instance of TRACE32. To do so, you must select both the CPU and the PCH:

SYStem.PCH <pch>

SYStem.CPU <cpu>

SYStem.Option.MultiCoreWhiskers A0 ; select CPU whisker/TCK if needed
; do not select any PCH whisker/TCK

; TCKl of the CPU whisker is automatically chosen as PCH whisker

Note, with this combined CPU/PCH setup, low-level JTAG shifts can only be made to the CPU from the
TRACES32 instance. To make low-level JTAG shifts to the PCH, the merged debug port system must be

handled by TRACES32 as having two separate debug ports, see “Systems Using Separate Debug Ports”,
page 34.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 33

Systems Using Separate Debug Ports

When debugging a system with the CPU and the PCH on separate debug ports, you must start two
separate instances of TRACE32. The 1st instance must be set up as described in “Debugging a CPU
only”, page 33, and the 2nd instance must be set up as described in “Debugging a PCH only”, page 33.
Additionally, the 2nd instance must include the command:

SYStem.CONFIG.Slave off

PCH Selection for CPU Debug on a Merged Debug Port

There are several cases where it is necessary to select the PCH, even when the main intention is to debug
only the CPU on a merged debug port:

. When using a DCI debug port instead of a dedicated Intel XDP60 or Intel MIPI60 debug port.
This is because the DCI engine on the target is located in the PCH. For more information on DCI
usage, see “Debugging via Intel® DCI User’s Guide” (dci_intel_user.pdf).

J When the target has a PMODE signal, as PMODE is controlled by the PCH. For more
information, see SYStem.Option.RESetDetection.

. When wanting to debug a core in the PCH concurrently with the main CPU. In this case the core
in the PCH must be debugged as a slave in a multicore setup, see “Slave Core Debugging”,
page 34.

For all these cases the setup described in “Systems Using a Merged Debug Port”, page 33, must be
used.

Slave Core Debugging

Following the steps in the Quick Start Section, TRACE32 is set up and attached to an Intel® platform. With
these steps, you can debug the main application CPU of the platform. All cores of the main CPU are typically
handled in a single TRACES2 instance as an SMP setup. Beside the main application CPU cores, there

could be other, often special purpose cores, integrated on the same platform. These are called slave cores

in TRACE32 terminology. On Intel® client/server platforms, slave cores can also exist in the PCH. This
section describes the steps needed to debug slave cores.

Each slave core requires a dedicated TRACE32 instance in addition to the instance for the main application
CPU cores, i.e., an AMP multicore setup is needed. We call the TRACE32 instance that handles the main
application CPU cores the master debugger and the TRACE32 instance that handles a slave core the slave
debugger. TRACES2 also supports simultaneous debugging of multiple slave cores using multiple slave
debuggers.

A salve cores is first characterized by its core type. Make sure the TRACES2 executable that matches the
core type is installed, for example t32mx86 for a 32-bit x86 slave core. Then, if the an SoC integrates
multiple slave cores of the same type, TRACE32 needs to know exactly which core your want to debug. This
is done by assigning each slave core an SOC ID, which is unique to cores of the same type. If there is just
one core of a certain core type, the corresponding ID is always 0.

In general, debugging a slave core consists of 3 steps introduced in the sections below.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 34

Start Master Debugger

The master debugger must be started before any slave. In the master debugger, follow the Quick Start
Section to set up the CPU type. If you need to debug a slave core in the PCH, make sure to configure the
PCH type as well (see section Platform Controller Hub).

The master debugger must be set to at least Prepare mode before you can debugging any slave core. If the
master debugger remains in Down or NoDebug mode, the debug port is disabled and no access to the
slave core is possible.

Locating the Slave Core

To find out the ID for a slave core if there is more than one core of that type, use the following command in
the master debugger.

SYStem.DETECT CLTapchain

A window will open with a column showing the SOC ID associated with each TAP of the platform, including

both CPU and PCH. Please consult your Intel® support to know if a slave core exists behind a certain TAP
and which core type it is.

Note that the SoC ID assignment is valid only for a given CPU and PCH configuration. If you change the
CPU or PCH selection in the master debugger, the SOC ID may become different for the same slave core. In
this case please re-run this command to get the up-to-date IDs. The following example shows the SOC ID
assignment for difference configurations, considering a system that contains 2 x86 slave cores in the CPU
and 1 in the PCH.

. CPU only

SYStem.CPU <cpu_name>
SYStem.PCH NONE

;SOC ID assignment:

;slave core 1 in CPU -> 0
;slave core 2 in CPU -> 1
;slave core in PCH -> N/A

. PCH only

SYStem.CPU NONE

SYStem.PCH <pch_name>

;SOC ID assignment:

;slave core 1 in CPU -> N/A
;slave core 2 in CPU -> N/A
;slave core in PCH -> 0

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 35

« CPU+PCH

SYStem.CPU <cpu_name>
SYStem.PCH <pch_name>
;SOC ID assignment:
;slave core 1 in CPU -> 0
;slave core 2 in CPU -> 1
;slave core in PCH -> 2

Starting the Slave Debugger

In the next step, start the TRACES32 executable that matches the slave core type and do the following setup
in the slave debugger:

SYStem.CPU <slave_core_type>

SYStem.Option.IntelSOC ON <soc_id>

;do other slave core gspecific settings if necessary
SYStem.Mode.Attach

The command SYStem.Option.IntelSOC is essential for the slave debugger setup. It indicates TRACES32 to
locate the slave core in the master SoC according to its ID, instead of to treat it as a stand-alone core. If there
is just one core in the SOC of the chosen core type, the SOC ID argument can be left out.

Note that slave cores in Intel® platforms are often protected by security features. A suitable security setting is

often needed before such a core can be debugged. Please consult your Intel® support to check how to get
access to the slave core you are interested in.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 36

CPU specific JTAG.CONFIG Commands

JTAG.CONFIG

Electrical characteristics of MIPI-60 debug signals

Using the JTAG.CONFIG command group, you can change electrical characteristics of MIPI-60 debug
signals to account for target irregularities.

Availability of these commands is dependent on the Debug probe hardware in use.

Many of these commands allow specifying individual whiskers. Multiple whiskers may be selected.
Specifying no whiskers indicates that the characteristics of all possible whiskers will be altered.

JTAG.CONFIG.DRiVer

Set slew rate of JTAG signals

Format:

<signal>:

<whisker>:

JTAG.CONFIG.DRiVer.<signal> Fast | Slow [/<whisker>]

all | TCK | TCKO | TCK1 | TMS | TDI | nTRST | nPREQ

WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: Fast.

Selects whether to use a series inductor to slow the slew rate of output signals.

all

TCK
TCKO
TCK1
TMS
TDI
nTRST
nPREQ

FAST

SLOwW

Set rate for all relevant signals.

Set rate only for selected signal.

Use direct drive of selected signals.

Insert inductor on drive of selected signals to limit voltage change rate.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 37

JTAG.CONFIG.PowerDownTriState Automatically tristate outputs

Format: JTAG.CONFIG.PowerDownTriState ON | OFF [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD
Default: ON.

Enables or disables the automatic setting of all signals to tristate when a power down state of the target is

detected.
JTAG.CONFIG.TckRun Free-running TCK mode
[build 143356 - DVD 09/2022]
Format: command.subcommand OFF | TCKO | TCK1 [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD
Default: OFF.

Enables free-running TCK mode for the respective TCK signal.

JTAG.CONFIG.TDOEdge Select TCK edge
Format: JTAG.CONFIG.TDOEdge Rising | Falling [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: RISING

Selects which edge of TCK signal is used for reading TDO.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 38

JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages

Format: JTAG.CONFIG.Voltage.HooKTHreshold.<signal> <source> [[<whisker>]
[ON | OFF]
<signal>: all | HookO | Hook6 | Hook8 | Hook9
<source>: AUTO
<voltage>
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: 600mV

Sets voltage threshold to use for determining active state for selected Hook signals.

all Set threshold for all Hook input signals.

HookO Set threshold for selected Hook input signal only.
Hook6

Hook8

Hook9

AUTO Use threshold derived from reference voltage.
<voltage> Value in volts to use as threshold.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 39

JTAG.CONFIG.Voltage.REFerence

Set reference voltage source

Format:

<source>:

JTAG.CONFIG.Voltage.REFerence <source>

AUTO
<voltage>

Default: AUTO.

Selects source to use for reference voltage.

AUTO

<voltage>

JTAG.CONFIG.Voltage.THreshold

Use reference voltage supplied from target system.

Use specified value in volts as reference voltage.

Set JTAG threshold voltages

Format:

<signal>:

<source>:

<whisker>:

JTAG.CONFIG.Voltage.THreshold.<signal> <source> [/<whisker>]

all | TDO | PRDY

AUTO
<voltage>

WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: AUTO.

Sets the voltage threshold to use for determining active state for selected JTAG signals.

all

TDO
PRDY

AUTO

<voltage>

Set threshold for TDO and PRDY.

Set threshold for only selected signal.

Use threshold derived from reference voltage.

Value in volts to use as threshold.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

40

CPU specific SYStem.DETECT Commands

The SYStem.DETECT commands detect various configuration parameters of attached target board and
apply these parameters to TRACE32.

For information about architecture-independent SYStem.DETECT commands, refer to “General
Commands Reference Guide S” (general_ref_s.pdf).

For information about architecture-specific SYStem.DETECT commands, see command descriptions

below.
SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores
Format: SYStem.DETECT.CLTapchain

See “Locating the Slave Core”, page 35.

SYStem.DETECT.CORES Detect core/thread number

Format: SYStem.DETECT.CORES

The command SYStem.DETECT.CORES detects the core number and the hyper thread status of the target
board. The setup of TRACE32 is changed accordingly.

This command requires:

J Topology configuration (with SYStem.Option.TOPOlogy)

. Whisker configuration (with SYStem.Option.MultiCoreWhiskers)
J CPU configuration (with SYStem.DETECT.CPU or SYStem.CPU)

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 41

SYStem.DETECT.HyperThreads Detect hyper thread status

Format: SYStem.DETECT.HyperThreads

The command SYStem.DETECT.HyperThreads detects the hyper thread status of the CPU. The setup of
TRACE32 is changed accordingly. This command is intended for analysis and not for target board setup.

This command requires:

. Topology configuration (with SYStem.Option.TOPOlogy)

J Whisker configuration (with SYStem.Option.MultiCoreWhiskers)
J CPU configuration (with SYStem.DETECT.CPU or SYStem.CPU)

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 42

SYStem.DETECT.TARGET Fully automatic board setup

Format: SYStem.DETECT.TARGET [/<option>] [/Verbose]

<option>: Auto | CPUonly | PCHonly

The command SYStem.DETECT.TARGET detects all required board setup parameters:
J The board topology
U The required whiskers for the detected topology

o The CPU and the PCH

J Merged debug port configuration
. The reset detection method
. The total core number for all CPUs of the target system

J The Hyperthread status

The setup of TRACE32 is changed accordingly.

<option> For a description of the options, see SYStem.DETECT.TOPOIlogy.

Example: With SYStem.DETECT.TARGET the board setup simplifies to:

SYStem.DETECT TARGET

; target-specific configuration e.g.:

; SYStem.Option.RESetWaitTIME <milliseconds>
SYStem.Mode Attach

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 43

SYStem.DETECT.TOPOlogy

Detect board topology

Format:

<option>:

SYStem.DETECT.TOPOIlogy [/<option>] [/Verbose]

Auto | CPUonly | PCHonly

The command SYStem.DETECT.TOPOlogy detects:

The board topology

The required whiskers for the detected topology

The CPU and the PCH

Merged debug port configuration

The reset detection method

The setup of TRACE32 is changed accordingly.

Auto . Default option
. Detects and configures TRACE32 for CPU debugging.
. Configures merged and non-merged debug ports.
. Merged debug ports: enables CPU + PCH debugging (see “Sys-
tems Using a Merged Debug Port” (debugger_x86.pdf)).
CPUonly . Detects and configures TRACE32 for CPU only debugging.
. Merged debug ports are not configured.
PCHonly Detects and configures TRACE32 for PCH only debugging.
Verbose Prints the detected topologies to the AREA window.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

44

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | COmponents | USB

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

NOTE: In most cases, you do not need to make any settings on the Jtag
tab of the SYStem.CONFIG.state window.

COmponents Informs the debugger about the existence and interconnection of system
trace modules.

USB Informs the TRACES2 software about the configuration settings required
for debugging via a USB cable. In addition, the icons on the USB tab
display the configuration status.

For descriptions of the commands on the USB tab, see “Debugging via
USB User’s Guide” (usbdebug_user.pdf).

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 45

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:

SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

IRPRE <bits>
IRPOST <bits>
DRPRE <bits>
DRPOST <bits>
TriState [ON | OFF]
Slave [ON | OFF]
TAPState <state>
TCKLevel </evel>

Multicore Settings (daisy chain)

NOTE:

Almost no Intel x86/x64 targets require setting any of the four parameters IRPRE,
IRPOST, DRPRE, DRPOST when using TRACE32

The configuration of the JTAG tap chain is handled automatically by the debugger
when the appropriate CPU/SoC has been selected.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are used to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. This information is
required for some CPUs before the debugger can be activated, e.g., by SYStem.Mode.Attach.

NOTE:

It is possible to use the command SYStem.DETECT.DaisyChain to probe the
JTAG chain for the presence and positions of TAP controllers.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time.
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or
pull-down resistor, other trigger inputs need to be kept in inactive state.

DRPRE

DRPOST

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 46

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

See also Daisy-Chain Example.

TriState [ON | OFF] (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port.

Slave [ON | OFF] (default: OFF) If several debuggers share the same debug port, all except
one must have this option active.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel [0 | 1] (default: 0) Level of TCK signal when all debuggers are tristated.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 47

Daisy-Chain Example

For a daisy-chain example, please refer to “Daisy-Chain Example” (general_ref_s.pdf).

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N O 0o A W N =

—_ =k ek ek ek e
a A~ W MDD =+ O

Test-Logic-Reset

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 48

SYStem.CORESTATES Core states overview

Format: SYStem.CORESTATES

This command opens an overview window showing mode, state and more for each core/hyperthread of the
CPU. This information is updated every time the CPU is stopped.

=] Busys.CORESTATES fole =
Curr. | Core | Phys. [Hyper. | APIC | Mode Prior State SMM [WMX
W 0 0 0 Real Ereakpoint
0 1 1 Prot64 MWAIT
2 1 0 2 Prot64 MWAIT
3 1 1 3 Prot64 MWAIT
4 2 0 4 Prot64 MWAIT
5 2 1 5 Prot64 MWAIT
6 3 0 6 Prot64 MWAIT
7 3 1 7 Prot64 MWAIT -
Column Description
Curr. Currently selected core
Core Core index as numbered by the debugger
Phys. Index of physical core
Hyper. Index of hyperthread of physical core
APIC APIC ID of core
Mode Current mode of core (see below)
Prior State Indicates any special state the core is in (see below)
SMM Shows if a core is in SMM mode (indicated by “Yes”)
VMX Shows if a core is in VMX mode (indicated by “Host” or “Guest”)
NOTE: By double-clicking a line, the current core can be selected.

Possible values in the Mode column

Mode Value Description

Inactive The core is not accessible (e.g. due to a hang)
Real The core is in real mode

Prot16 The core is in protected mode 16 bit

Prot32 The core is in protected mode 32 bit

Prot64 The core is in protected mode 64 bit

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 49

Possible values in the Prior State column

Prior State Value Description

Breakpoint The core stopped due to a breakpoint
Reset The core stopped at the reset vector
SMM Entry The core stopped at SMM Entry
SMM Exit The core stopped at SMM Exit

VM Entry The core stopped at VM Entry

VM Exit The core stopped at VM Exit

Machine Check

The core stopped due to a Machine Check

INIT The core stopped in the INIT state

HLT The core stopped in the HLT state
Shutdown The core stopped due to Shutdown

WFS The core stopped in the Wait-for-SIPI state
MWAIT The core stopped in an MWAIT state

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

50

SYStem.CPU Select the target CPU/SOC

Format: SYStem.CPU <cpu> | <soc>

Selects the target CPU/SOC.

If no CPU/SOC name is provided, a window with a list of available names is opened. Note that this is not a
full list of all supported CPUs/SOCs, it only contains names of public, already launched products.

After the CPU/SOC has been selected, further target-specific settings and options can be chosen.

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

Default: 5.0 MHz.
Selects the clock frequency of the JTAG debug interface communication.

Use the command SYStem.DETECT.JtagClock to experimentally detect the maximum possible JTAG
clock frequency for a particular setup.

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

When the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the JTAG state machine remains unchanged while the system is locked.
To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG TCKLevel
must be set properly. They define the TAP state and TCK level which is selected when the debugger
switches to tristate mode.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 51

SYStem.MemAccess Select run-time memory access method

Format:

SYStem.MemAccess Denied | StopAndGo

Default: Denied.

Denied No x86/x64 targets support non-intrusive real-time memory access.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
SYStem.Mode Establish the communication with the target
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Prepare
Go
Attach
StandBy
Up
Down Down mode. Disconnects the debugger from the target.
If the CPU is stopped in debug mode it is forced to leave and start
running before the debugger is tristated.
NoDebug Equivalent to Down.
Prepare Resets JTAG.
This must be used before doing raw JTAG shifting. Not used for normal
debugging
Go Connects the debugger and resets the target.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 52

Attach Connects the debugger to the running target.
The state of the CPU remains unchanged.

StandBy Standby mode.
The debugger must be in this mode to handle scenarios where the target
looses power and where the debugger must react when the power
returns.
The default behavior is to stop at the reset vector, rearm onchip
breakpoints and set the CPU running again.
The default behavior can be overwritten by using
SYStem.Option.STandBYAttach, TrOnchip.Set.ColdRESet
or TrOnchip.Set.BootStall.

Up Connects the debugger, resets the target, enters debug mode and stops
the CPU at the reset vector.

NOTE: Some CPUs are not resettable via the JTAG interface, i.e., Go and/or Up
might not work for all targets.

NOTE: Standby functionality is not available for all CPUs.

SYStem.Option.Address32 Use 32 bit address display only
Format: SYStem.Option.Address32 [ON | OFF | AUTO]

Default: AUTO.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 53

This option only has an effect when in 64-bit mode. When the option is ON, a

ON All addresses are truncated to 32 bit. The high 32 bits of a 64-bit address are
not shown when the address is displayed, and when an address is entered
the high 32 bits are ignored (thereby effectively being set to zero).

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.

NOTE: The actual memory access mode is NOT affected by this option.
SYStem.Option.BIGREALmode Enable Big Real mode handling

Format: SYStem.Option.BIGREALmode [ON | OFF]

Default: OFF.
NOTE: The command takes effect only if the processor is in real mode.
ON SYStem.Option.BIGREALmode ON switches from the real mode to the

Big Real mode. TRACE32 now works with 32-bit addresses (instead of 16
bit real-mode addresses). Opcodes are decoded as 16-bit real mode
opcodes. The processor itself continues to be in real mode.

OFF If the processor is in real mode and SYStem.Option.BIGREALmode is
OFF, TRACE32 works only with real-mode addresses and 16-bit offsets.

The Big Real mode makes use of the fact that the hardware address registers in the core and the MMU of
x386 and newer CPUs can hold 32 bit addresses, even if the CPU is in real mode. If
SYStem.Option.BIGREALmode is enabled and the processor is in real mode, TRACE32 uses 32-bit
addresses and 16-bit real-mode opcodes. The current PC is reported with the Big Real mode access class
QP: instead of the real mode access class RP:

In Big Real mode, as in protected mode, the address extension (the first number in addresses like
P:0x00A0:0x8000) specifies a descriptor and not a segment offset. This descriptor must be one of the 6
existing segment descriptors shown in the MMU.view window for CS, DS, ES, FS, GS or SS. Specifying a
segment descriptor other than CS, DS, ES, FS, GS or SS will fail because in real mode there is no descriptor
table walk.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 54

In Big Real mode, the TRACES32 debugger address translation will add the code segment base CSB (for
program addresses) or data segment base DSB (for data addresses) to the address offset. In contrast, if
SYStem.Option.BIGREAL is disabled, CSB or DSB will be ignored during the debugger address
translation and the segment offset will be multiplied by 16 and added to the address offset instead.

SYStem.Option.BranchSTEP Enables branch stepping
Format: SYStem.Option.BranchStep [ON | OFF]
Default: OFF.

If enabled, the debugger changes the behavior of normal single stepping to “single stepping on branches”
Only taken branches are visited when stepping.

SYStem.Option.BreakDELAY Set max. break delay

Format: SYStem.Option.BreakDELAY <ms>

Default: 500 ms.

Sets the max. break delay during which the debugger attempts to stop the CPU cores.

Increasing the break delay might help stop the CPU cores in certain power down scenarios, for example.

SYStem.Option.COHold Hold CPU in CO state
Format: SYStem.Option.COHold [ON | OFF]
Default: OFF.

If enabled, the CPU is being held in the CO state. In C0O the CPU is fully powered all the time. The CPU does
not enter any power-saving modes and no peripherals are powered down.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 55

SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections

Format: SYStem.Option.IGnoreDEbugReDirections [ON | OFF]

Default: OFF.

When enabled, debug redirections are ignored by the debugger. This means that onchip breakpoints and
most onchip triggers will not be functional.

This option is available for special handling if the target program needs to react to the debug redirections

itself.
NOTE: SW breakpoints in the debugger are still functional even if this option is enabled.
SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure
Format: SYStem.Option.IGnoreSOC [ON | OFF]
Default: OFF.

When enabled, the debugger ignores all other TAPs in the SoC and considers just the plain x86 core. This
option is typically used in early design phases to verify the x86 core in FPGA, for example.

To debug a plain x86 core, select an SoC that contains this type of core and enable this option.

SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections
Format: SYStem.Option.IGnoreSWBPReDirections [ON | OFF]
Default: OFF.

When enabled, SW breakpoint redirections are ignored by the debugger. This means that SW breakpoints
will not be functional.

This option is available for special handling if the target program needs to react to the SW breakpoint
redirections itself.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 56

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.InstrSUBmIitFOrcePHYSicalPRDY Use physical PRDY
Format: SYStem.Option.InstrSUBmIitFOrcePHYSicalPRDY [ON | OFF]
Default: OFF.

If enabled, the debugger forces usage of the physical PRDY pin for checking completion of instruction
submissions in Probe Mode even if SYStem.Option.JTAGOnly ON.

SYStem.Option.InstrSUBmitiGnorePHYSicalPRDY Ignore physical PRDY

Format: SYStem.Option.InstrSUBmitiGnorePHYSicalPRDY [ON | OFF]

Default: OFF.

If enabled, the debugger ignores the physical PRDY pin for checking completion of instruction submissions
in Probe Mode. A fixed delay is used instead, see SYStem.Option.InstrSUBmitTimeout

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 57

SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission

Format: SYStem.Option.InstrSUBmitTimeout <us>

Default: 2000 us.

Sets the timeout for instruction submission completion checking in Probe Mode. If no PRDY response has
been registered within the time range, an error is issued in TRACE32. Note that a PRDY response can refer
to either physical PRDY, virtual PRDY or RCM PRDY.

In the case that a mode is used which does not use PRDY at all (e.g., SYStem.Option.JTAGDirectCPU
ON), the timeout value is used as a fixed delay after each instruction submission instead.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC
Format: SYStem.Option.IntelSOC [ON | OFF] [<soc_id>]
Default: OFF.

Used for AMP multicore debugging to inform the slave debugger that the core is part of an Intel® SoC. When
enabled, all IR and DR pre/post settings are handled automatically, no manual configuration is necessary.

The usage requires that the TRACES32 instance is slave in a multicore setup with a TRACES32 x86 master
debugger. For more details, see “Slave Core Debugging”, page 34.

<soc_id> An integer ID used by TRACES32 to identify a specific core in an SOC if
there is more than one core of the same type. This ID is platform specific.
For more details, see “Slave Core Debugging”, page 34.
Default: 0.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 58

SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs

Format: SYStem.Option.JTAGDirectCPU [ON | OFF]

Default: CPU dependent.

NOTE: This option is only relevant when SYStem.Option.JTAGOnly ON

If enabled, the debugger talks directly to the CPU TAPs. If disabled, the debugger uses other JTAG-only
methods to control the CPU (virtual PREQ/PRDY, RCM).

It is recommended to use the default setting unless special cases require otherwise.

Not all targets support SYStem.Option.JTAGDirectCPU OFF

SYStem.Option.JTAGOnly Use only JTAG signals

Format: SYStem.Option.JTAGOnIy [ON | OFF]

Default: CPU dependent.

If enabled, the debugger uses only the five JTAG signals (TCK, TMS,TDI, TDO,TRST) for controlling the
target. If disabled, the debugger also uses extra non-JTAG signals (PREQ,PRDY, ...).

It is recommended to use the default setting unless special cases require otherwise.

Not all targets support SYStem.Option.JTAGOnly OFF

SYStem.Option.MACHINESPACES Address extension for guest OSes
Format: SYStem.Option.MACHINESPACES [ON | OFF]
Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 59

After loading a Hypervisor Awareness, TRACES2 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

. Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACES2 currently supports machine IDs up to 30.

J The debugger address translation (MMU and TRANSIation command groups) can be individually
configured for each virtual machine.

. Individual symbol sets can be loaded for each virtual machine.
SYStem.Option.MEMoryMODEL Define memory model
Format: SYStem.Option.MEMoryMODEL <model>
<model>: LARGE | FLAT | LDT | SingleLDT | ProtectedFLAT

Default: LARGE (Multi-Segment Model).

Selects the memory model TRACE32 uses for code and data accesses. The memory model describes how
the CS (code segment), DS (data segment), SS (stack segment), ES, FS and GS segment registers are
currently used by the processor.

The command SYStem.Option.MMUSPACES ON will override the setting of
SYStem.Option.MEMoryMODEL with the memory model MMUSPACES.

The selection of the memory model affects the following areas:

. The way TRACE32 augments program or data addresses with information from the segment
descriptors. Information augmented is the segment selector, offset, limit and access width.

o The TRACE32 address format

. The way TRACE32 handles segments when the debugger address translation is enabled
(TRANSIation.ON).

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 60

LARGE

This is the default memory model. It is enabled after reset. This memory model is used if the application
makes use of the six segment registers (CS, DS, ES, FS, GS, SS) and the global descriptor table (GDT)
and/or the local descriptor table (LDT).

TRACE32 supports GDT and LDT descriptor table walks in this memory model. If a TRACE32 address
contains a segment descriptor and the specified segment descriptor is not present in any of the six
segments CS, DS, ES, FS, GS or SS, TRACE32 will perform a descriptor table walk through the GDT or the
LDT to extract the descriptor information and apply it to the address.

Access classes of program and data addresses will be augmented with information from the CS and DS
segments.

Segment translation is used in TRACE32 address translation. See also Segmentation.

TRACE32 addresses display the segment selector to the left of the address offset. The segment selector
indicates the GDT or LDT segment descriptor which is used for the address.

Example address: NP:0x0018:0x0003F000

LDT

This memory model should be selected if a LDT is present and the debugger uses multiple entries from it.
TRACE32 addresses contain a LDTR segment selector specifying the LDT entry which applies to an
address.

Access classes of program and data addresses will be augmented with the information specified by the
LDTR segment selector.

Segment translation is used in TRACES32 address translation.

TRACER32 addresses display three numeric elements:
J The 16-bit LDTR segment selector used pointing to the LDT for the address

J The 16-bit CS (for program addresses) or DS (for data addresses) segment selector, extracted
from the LDT

o The 16-bit address offset

Example address: NP:0x0004:0x0018:0x8000

SingleLDT

This memory model should be selected if a LDT is present but the debugger works with only one single LDT
entry. The LDT is not used to differentiate addresses.

Access classes of program and data addresses will be augmented with information from the CS (for
program addresses) or DS (for data addresses) segment.

Segment translation is used in TRACES32 address translation.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 61

TRACE32 addresses display the segment selector to the left of the address offset.
Example address: NP:0x001C:0x0003F000

ProtectedFLAT

Use this memory model to only apply segment translation and limit checks for the segments CS and DS.
The segment register contents are kept constant. Consequently, TRACES32 addresses contain no segment
descriptor because no descriptor table walk is used to reload the segment registers.

Access classes of addresses are not augmented with segment information.
TRACE32 addresses display only the access class and the address offset.
Example address: NP:0x0003F000

Segment translation is used in TRACE32 address translation for limit checking. Accesses to program
addresses use the CS segment, accesses to data addresses use the DS segment.

FLAT

This memory model is used if segmentation plays no role for an application and memory management
makes use of paging only.

Segments are ignored, no segment translation is performed. Accesses to program and data addresses are
treated the same.

Example address: NP:0x0003F000

MMUSPACES

This memory model can only be enabled with the command SYStem.Option.MMUSPACES ON.

The memory model MMUSPACES is used if TRACES32 works with an OS Awareness and memory space
identifiers (space IDs). Space IDs are used in addresses to identify process-specific address spaces.

Segments are ignored, no segment translation is performed.
TRACE32 addresses display a 16-bit memory space identifier to the left of the address offset.

Example address: NP:0x29A:0x0003F000

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 62

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

NOTE: The command SYStem.Option.MMUSPACES ON overrides the command
SYStem.Option.MEMoryMODEL.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 63

SYStem.Option.MultiCoreWhiskers Server board whisker setup

Format: SYStem.Option.MultiCoreWhiskers A0| A1|B0|B1|C0|C1|DO0| D1

Configures the required whiskers for server boards. It can more than one whisker be selected, e.g:
SYStem.Option.MultiCoreWhiskers A0 A1.

A0 Whisker A, TCKO
A1 Whisker A, TCK1
BO Whisker B, TCKO
B1 Whisker B, TCK1
co Whisker C, TCKO
C1 Whisker C, TCK1
DO Whisker D, TCKO
D1 Whisker D, TCK1
SYStem.Option.NoDualcoreModule Disable dualcore module support
Format: SYStem.Option.NoDualcoreModule [ON | OFF]

Default: OFF if the CPU supports dual core modules. ON if the CPU does not support dual core modules.
If Dual Core Module support is disabled in the CPU, this option must be enabled.

It is required to use this option before attaching to the target, that is, before using the SYStem.Mode.Attach
or SYStem.Mode.Up commands.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 64

SYStem.Option.NoHyperThread Disable HyperThreading support

Format: SYStem.Option.NoHyperThread [ON | OFF]

Default: OFF if the CPU supports hyper threading. ON if the CPU does not support hyper threading
If HyperThreading is disabled in the CPU, this option must be enabled.

It is required to use this option before attaching to the target, that is, before using the SYStem.Mode.Attach
or SYStem.Mode.Up commands.

SYStem.Option.NolPAdjust Do not adjust IP at reset vector
Format: SYStem.Option.NolPAdjust [ON | OFF]
Default: OFF

Some CPUs, in some scenarios, do not initialize the instruction pointer correctly at the reseV/INIT vector. To
give a consistent user experience, the debugger by default forces the correct initialization in such cases.

An advanced user can disable the forced adjustment by setting this option to ON.

SYStem.Option.NoReBoot Disable watchdog causing reboot
Format: SYStem.Option.NoReBoot [ON | OFF]
Default: ON.

On some targets a watchdog timer causes a power cycle or a warm/cold reset if no forward progress is
detected in the FW/BIOS.

To avoid such a target reboot (e.g., when stopping at the reset vector), if this option is enabled, the debugger
will disable the watchdog timer if possible.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 65

SYStem.Option.OSWakeupTIME Set the OS wake up time

Format: SYStem.Option.OSWakeupTIME <milliseconds>

Default 20ms.

Sets a wait time after a break, to wake up an operating system from sleep states.

SYStem.Option.PC10MODE Wake up target from package C10
Format: SYStem.Option.PC10MODE [ON | OFF]
Default: OFF.

Enables the flow to wake up target system from package C10 low power mode for debugging. This feature is
target dependent and is not available for all Intel platforms.

SYStem.Option.PreserveDRX Preserve DRx resources
Format: SYStem.Option.PreserveDRX [ON | OFF]
Default: OFF.

If enabled, prevents other software from touching debug resources, including flags, debug registers (DRXx),
pending debug exceptions.

SYStem.Option.PreserveLBR Preserve LBR resources
Format: SYStem.Option.PreserveLBR [ON | OFF]
Default: OFF.

If enabled, prevents other software from touching LBR resources.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 66

SYStem.Option.ProbeModeNOSaveRestore No save/restore

Format: SYStem.Option.ProbeModeNOSaveRestore [ON | OFF]

Default: OFF.

When enabled, the debugger does not carry out the state save/restore flow when entering/existing Probe
Mode.

This option is only to be used for initial testing on slow emulation/simulation setups.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 67

SYStem.Option.ProbeModeONDEmand On demand save/restore

Format: SYStem.Option.ProbeModeONDEmand [ON | OFF]

Default: OFF.

When enabled, the debugger carries out the state save/restore flow for each thread only on demand when in
Probe Mode.

On demand means that only when registers, memory, etc. are being accessed through a given thread, will
the state save/restore flow for that thread be carried out. Such a thread is then said to have been visited.

An important restriction compared to the normal save/restore handling applies: Onchip breakpoints can only
be set for threads that have been visited. Due to this restriction, "Break.IMPLementation.Program SOFT" is
automatically executed when enabling this option to enforce the use of SW breakpoints in the default case.

This option is meant for use for servers with many cores to speed up the total Probe Mode entry/exit time.

SYStem.Option.PWRCycleTime Set power cycle time

Format: SYStem.Option.PWRCycleTime <milliseconds>

Default: CPU dependent (typical: 3000ms).

Sets the time between power off and power on for the command SYStem.POWER CYCLE.

SYStem.Option.PWROFFTime Set power off assertion time

Format: SYStem.Option.PWROFFTime <milliseconds>

Default: CPU dependent (typical: 6000ms).

Sets the maximum assertion time for “Power Button” signal (hook2) to power off the system.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 68

SYStem.Option.PWRONTime Set power on assertion time

Format: SYStem.Option.PWRONTime <milliseconds>

Default: CPU dependent (typical: 1000ms).

Sets the maximum assertion time for “Power Button” signal (hook2) to power on the system. If the system
has not powered on, it will wait for PWRONWaitTime.

SYStem.Option.PWRONWaitTime Set power on time

Format: SYStem.Option.PWRONWaitTime <milliseconds>

Default: CPU dependent (typical: 3000ms).

Sets the maximum wait time after assertion of “Power Button” signal (hook2) to power on the system.

SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset
Format: SYStem.Option.ReArmBreakPoints [ON | OFF]
Default: OFF.

When enabled, if a (warm) reset happens, the debugger attempts to stop at the reset vector, rearm onchip
breakpoints and set the CPU running again.

SYStem.Option.REL Relocation register

[build 130480 - DVD 09/2021]

Format: SYStem.Option.REL <value>

REL option must be set to the same value the user program write to the REL register.

The adjusted I/O base address can be read back with the functions IOBASE() and IOBASE.ADDRESS).
They return the offset or the complete address (offset and access mode) for the I/O area.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 69

SYStem.Option.RESetDELAY Set reset delay

Format: SYStem.Option.RESetDELAY <milliseconds>

Default: CPU dependent (typical: 200ms)

Sets the reset delay during which the debugger attempts to stop the CPU cores at the reset vector for the
command SYStem.Up and the onchip trigger TrOnchip.Set RESet ON.

Increasing the break delay might help stop the CPU cores at the reset vector for certain platforms.

SYStem.Option.RESetDetection Select reset detection source

Format: SYStem.Option.RESetDetection OFF | HOOK | PMODE

Default: See below

Selects the reset detection source used by TRACE32.

OFF Ignore reset indications from the platform.
This setting should be used if the platform does not have any reset
indication or if the reset indication signal is not supported by TRACES32.
This is the default if a PCH has been selected which has a reset
indication signal not supported by TRACES32.

HOOK Use the classical HOOK reset pin for reset indication.
This is the default if no PCH has been selected.

PMODE Use the PMODE signal for reset indication.
Usage of PMODE as reset detection source requires the selection of a
PCH with supported PMODE.
This is the default value if a PCH has been selected which has a reset
indication signal supported by TRACE32.

For more on selecting a PCH, see “Platform Controller Hub (PCH)”, page 32.

©1989-2024 Lauterbach Intel® x86/x64 Debugger |

70

SYStem.Option.RESetMode Select reset method

Format: SYStem.Option.RESetMode WARM | COLD

Default: WARM.
Used to select if a warm or a cold reset should happen when using SYStem.Mode Go or SYStem.Up.

This option does not have an effect for all targets.

SYStem.Option.RESetTIME Set reset assertion time

Format: SYStem.Option.RESetTIME <milliseconds>

Default: CPU dependent (typical: 200ms)

Sets the reset assertion time for the commands SYStem.Mode Go and SYStem.Up.

reset_o (hook 7)

reset_i (hook 6)

preq | 1 L1 v
RESe(TIME | RESetWaitTIME . ResetDELAY WatchDogWaitTIME
SYStem.Option.RESetWaitTIME Set reset input wait time
Format: SYStem.Option.RESetWaitTIME <milliseconds>

Default: CPU dependent (typical: 200ms)

Sets the maximum wait time for the reset signal from the target after reset assertion with the commands
SYStem.Mode Go and SYStem.Up.

If the target system has a reset_i signal (hook 6) and no reset input signal was detected during
RESetTime+RESetWaitTIME, a warning will be displayed.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 71

For the command SYStem.Up RESetWaitTIME controls the preq assertion:

J On systems without reset input (hook 6), preq will be asserted after RESetWaitTIME to halt the
target at the reset vector

. On systems with reset input (hook 6), preq will be asserted as soon a reset input assertion from
the target is detected. If no reset input assertion is detected, SYStem.Up aborts with an error.

See also: SYStem.Option.RESetTIME for timing diagram.

SYStem.Option.SOHold Hold SoC in SO state
Format: SYStem.Option.SOHold [ON | OFF]
Default: OFF.

If enabled, the SoC is being held in the SO state. The CPU is still free to use its C states. See also
SYStem.Option.COHold. This option does not have an effect for all targets.

SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint
Format: SYStem.Option.SOFTLONG [ON | OFF]
Default: OFF.

When enabled, this option forces the debugger to use only 32-bit memory access when patching code with
the software breakpoint instruction.

NOTE: MAPBUS8 / BUS16 / BUS32 (used for restricting general memory access to the
given width) does NOT influence the access width used for patching code with the
software breakpoint instruction. So if MAP.BUS32 is used for a code memory
range, this option must be enabled for SW breakpoints to work as well.

SYStem.Option.STandBYAttach In standby mode, only attach to target
Format: SYStem.Option.STandBYAttach [ON | OFF]
Default: ON.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 72

When enabled, this option changes the behavior of the Standby mode (see SYStem.Mode): The debugger
does not attempt to stop at the reset vector, but instead just attaches to the running CPU.

SYStem.Option.STandBYAttachDELAY Delay after standby

Format: SYStem.Option.STandBYAttachDELAY <milliseconds>

Default: 20ms.

When power returns in Standby mode (see SYStem.Mode) and SYStem.Option.STandBYAttach ON, this
options sets the delay before the automatic SYStem.Mode.Attach is carried out.

SYStem.Option.STepINToEXC Step into interrupt or exception handler
Format: SYStem.Option.STepINToEXC [ON | OFF]
Default: OFF.

When enabled, this option allows the debugger to step into interrupt and exception handlers. This is not

supported on older CPUs.
SYStem.Option.TOPOlogy Select server board topology
Format: SYStem.Option.TOPOlogy 1X111X2 | 2X1 | 2X2

Selects the server board topology.

1X1 1 CPU

1X2 2 CPUs (1 JTAG chain with 2 CPUs)

2X1 2 CPUs (2 JTAG chains with 1 CPU each)
2X2 4 CPUs (2 JTAG chains with 2 CPUs each)

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 73

SYStem.Option.WatchDogWaitTIME Set the reset watch dog time

Format: SYStem.Option.WatchDogWaitTIME <milliseconds>

Default: CPU dependent (typical: 2ms)

Sets the wait time for disabling the watch dog after a reset break with the command SYStem.Up or the
onchip trigger TrOnchip.Set RESet ON.

See also: SYStem.Option.RESetTIME for timing diagram.

SYStem.Option.WFSMemAccess Allow WFS memory access
Format: SYStem.Option.WFSMemAccess [ON | OFF]
Default: OFF

When a core is in the Wait-For-SIPI (WFS) state, the debugger by default inhibits memory access through
that particular core. This is because the instruction pointer might not be initialized correctly by the CPU. This
could lead to illegal memory accesses which in the worst case could crash the platform.

An advanced user can allow WFS memory access by setting this option to ON.

SYStem.Option.WHISKER Select a whisker

Format: SYStem.Option.WHISKER AO0|A1(B0IB1/CO|C1|DO0|D1

Selects a whisker on debug probes, which supports more than one JTAG chain (e.g. QuadProbe). It is
mainly intended to temporarily select a whisker in the system mode “Down” for commands like

SYStem.DETECT.CPU.

A0 Whisker A, TCKO
A1l Whisker A, TCK1
BO Whisker B, TCKO
B1 Whisker B, TCK1

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 74

Cco Whisker C, TCKO

C1 Whisker C, TCK1
DO Whisker D, TCKO
D1 Whisker D, TCK1

The selected whisker may be changed by the debugger, when not in system mode “Down”.

SYStem.Option.ZoneSPACES Enable symbol management for zones
[Examples]
Format: SYStem.Option.ZoneSPACES [ON | OFF]
Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets are used for the
following CPU operation modes:

J VMX host mode (access class H: and related access classes)

. VMX guest mode (access class G: and related access classes)

J System management mode (access class S: and related access classes)
. Normal (non-system management mode)

Within TRACES32, these CPU operation modes are referred to as zones.

NOTE: For an explanation of the TRACES32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical address.

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of the CPU mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 75

SYStem.Option.ZoneSPACES ON

SYStem.Option.ZoneSPACES is set to ON for two typical use cases:

J Debugging of virtualized systems. Typically separate symbol sets are used for the VMX host
mode and the VMX guest mode. The symbol sets are loaded to the access classes H: (host
mode) and G: (guest mode).

. Debugging of system management mode (SMM). The CPU typically enters and leaves the SMM,
so loading separate symbol sets for the SMM and the normal mode are helpful. Symbols valid for
the SMM zone use SMM access classes. SMM access classes are preceded by the letter S
(such as SND:, SNP:, SXD:, SXP:). Symbols valid for the normal mode zone use access classes
which are not preceded by the letter S (such as ND:, NP:, XD:, XP:).

If SYStem.Option.ZoneSPACES is ON, TRACE32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which zone the memory address belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the addresses’ access class.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

Examples

Example 1: Use SYStem.Option.ZoneSPACES for VMX host and guest debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the Xen hypervisor symbols for the VMX host mode
; (access classes H:, HP:and HD: are used for the symbols):
Data.LOAD.ELF xen-syms H:0x0 /NoCODE

; 2. Load the vmlinux symbols for the VMX guest mode
; (access classes G:, GP: and GD: are used for the symbols):
Data.LOAD.ELF vmlinux G:0x0 /NoCODE

; 3. Load the sieve symbols without specification of a target access

; class:

Data.LOAD.ELF sieve /NoCODE

; Assuming that the current CPU mode is VMX host mode in this example,
; the symbols of sieve will be assigned the access classes H:, HP:

; and HD: during loading.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 76

Example 2: Use SYStem.Option.ZoneSPACES for system management mode (SMM) debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the symbols for non-SMM (normal) mode
(32 bit protected mode access classes N:, NP: and ND:) :
Data.LOAD.ELF bootloader N:0x0 /NoCODE

; 2. Load the symbols for the SMM mode

(32 bit protected mode access classes SN:, SNP: and SND:) :
Data.LOAD.ELF smmdriver SN:0x0 /NoCODE

SYStem.PCH Select the target PCH

Format: SYStem.PCH <pch> | NONE

Default: NONE.
Selects the target PCH.

For more information, see “Platform Controller Hub (PCH)”, page 32.

SYStem.POWER Control target power

Format: SYStem.POWER [ON | OFF | CYCLE]

If supported by the target, this command turns the target power ON (if off), OFF (if on), or does a power
CYCLE (if on).

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 77

SYStem.STALLPhase Set system into stall phase

Format: SYStem.STALLPhase <stall_phase> | NEXT

Sets the target system into the selected stall phase (if supported). It should be used only if the system has
already entered SoC/PCH Bootstall. Use SYStem.Mode.Attach to leave the stall phases completely.

NEXT Sets the system to the next stall phase supported by your target.
SYStem.Stuffinstruction Submit instruction to CPU in probe mode
Format: SYStem.Stuffinstruction <address> <mnemonic>

This command can be used to submit an assembler instruction (<mnemonic>) to the CPU in Probe Mode.

The <address> is a "dummy" address used only to decide the instruction size. This means that just either
"0:0", "N:0" or "X:0" can be used as <address> to determine if 16, 32 or 64 bit instruction size, respectively.

SYStem.StufflnstructionRead Submit instruction and read

Format: SYStem.StufflnstructionRead <address> <mnemonic>

This command is like SYStem.Stuffinstruction but where PDRL and PDRH are read after issuing the
instruction. The PDR values can be retrieved afterwards using the functions SYStem.ReadPDRL() and
SYStem.ReadPDRH().

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 78

SYStem.TIMINGS Display timings window

Format: SYStem.TIMINGS

Opens the SYStem.TIMINGS window, which gives an overview of all configurable timing settings related to
target debugging. The values shown below are the default settings.

{ & BuSYStem TIMINGS [= | = |[=25)
BreakDELA‘r‘ 500. ms
PWROFFTime 6000. ms
PWRCycleTime 3000. ms
PWRONTime 1000. ms
PWRONWaitTime 3000. ms
RESetTIME 200. ms
RESetDELAY 500. ms
RESetWaitTIME 200. ms
WatchDogWaitTIME 2. ms
0SWakeupTIME 20. ms

A To change any value, simply edit the window field directly or use the corresponding command, e.g.,
SYStem.TIMINGS.BreakDELAY 1000. or the equivalent SYStem.Option.BreakDELAY 1000.

See the corresponding SYStem.Option for descriptions of the timing settings, e.g.,
SYStem.Option.BreakDELAY.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 79

Command Groups for Special Registers

The command groups for special registers are documented in the general_ref_<x>.pdf manuals. For more
information, click the blue hyperlinks.

AVX Command group for the AVX registers (Advanced Vector Extension)
AVX512 Command group for the AVX512 registers (Advanced Vector Extension)
MMX Command group for the MMX registers (MultiMedia eXtension)

SSE Command group for the SSE registers (Streaming SIMD Extension)

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 80

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>] [/<option>]

MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Displays the contents of the CPU specific MMU translation table.

o If called without parameters, the complete table will be displayed.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: dis-
plays the translation table of the specified process and/or machine
. else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 81

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List. MACHINES window.

Fulltranslation

For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 82

CPU specific Tables in MMU.DUMP <table>

EPT Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

GDT Displays the contents of the Global Descriptor Table.
MMU.GDT (deprecated)

IDT Displays the contents of the Interrupt Descriptor Table.
MMU.IDT (deprecated)

LDT Displays the contents of the Local Descriptor Table.
MMU.LDT (deprecated)

IntermedPageTable Displays the Intermediate Page Table (IPT). The IPT is the translation
table used by the TRACES32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an

IPT can be specified using the command
MMU.FORMAT <format> <ipt_base_address> [Intermediate

Examples for Page Tables in Virtualized Systems

Example 1:

SYStem.Option.MACHINESPACES ON
; your code to load Hypervisor Awareness and define guest machine setup.
i <machine_id>

MMU .DUMP. PageTable /MACHINE 2.

i <machine_name>
MMU .DUMP. PageTable /MACHINE "Dom0 "

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 83

Example 2:

SYStem.Option.MACHINESPACES ON

i <machine_name>: : :<task_name>
MMU.DUMP . TaskPageTable "DomO0: : : swapper"

Example 3:

SYStem.Option.MACHINESPACES ON
;your code to load Hypervisor Awareness and define guest machine setup.

;a) dumps the current guest page table of the current machine, showing
g the intermediate addresses.

MMU . DUMP . PageTable 0x400000

;b) With the option /Fulltranslation the intermediate addresses
9 are translated to physical addresses and shown in column "physical"
MMU.DUMP . PageTable 0x400000 /Fulltranslation

;¢) dumps the current page table of machine 2
; <machine_id>
MMU .DUMP. PageTable /MACHINE 2. /Fulltranslation

your code to load Hypervisor Awareness and define guest machine setup.

Without the option /Fulltranslation the column "physical" is hidden.

©1989-2024 Lauterbach Intel® x86/x64 Debugger |

84

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
[/<option>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

J If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID and/or machine ID: list
the translation table of the specified process and/or machine

. else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 85

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

o For information about the first three parameters, see “What to
know about the Task Parameters™ (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

<option>

For description of the options, see MMU.DUMP.

CPU specific Tables in MMU.List <table>

EPT

Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

IntermedPageTable

Displays the Intermediate Page Table (IPT). The IPT is the translation table
used by the TRACES32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES is set to ON.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an IPT

can be specified using the command
MMU.FORMAT <ipt_base_address> /Intermediate

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

86

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>] [[<option>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id>| <machine_name>
Fulltranslation

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

. If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable

Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.

. if <range> or <address> have a space ID and/or machine ID: loads
the translation table of the specified process and/or machine
o else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manual.
©1989-2024 Lauterbach Intel® x86/x64 Debugger | 87

ALL

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.

See also the appropriate OS Awareness Manual.

<option>

For description of the options, see MMU.DUMP.

CPU specific Tables in MMU.SCAN <table>

EPT Loads the translation entries of the Extended Page Table to the
debugger-internal static translation table.

GDT Loads the Global Descriptor Table from the CPU to the debugger-internal
static translation table.

GDTLDT Loads the Global and Local Descriptor Table from the CPU to the
debugger-internal static translation table.

LDT Loads the Local Descriptor Table from the CPU to the debugger-internal

static translation table.

IntermedPageTable

Loads the Intermediate Page Table (IPT) into the debugger-internal static
translation table. The IPT is the translation table used by the TRACE32
debugger address translation to translate intermediate addresses to
physical addresses when SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.
When the VMX mode is not enabled or not available on a CPU, an IPT

can be specified using command
MMU.FORMAT <ipt_base_address> [Intermediate

MMU.Set

Set MMU register

Format: MMU.Set <register> <value>

Assigns <value>to an MMU <register>.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 88

CPU specific TrOnchip Commands - Onchip Triggers

TrOnchip.PrintList Print possible onchip triggers

Format: TrOnchip.PrintList

Prints a list of Onchip Triggers available for this architecture. These are the legal values for use in the
TrOnchip.IsSet() and TrOnchip.lsAvailable() functions.

TrOnchip.RESet Reset settings to defaults

Format: TrOnchip.RESet

Resets the TrOnchip settings to their default values.

TrOnchip.Set Break on event
NOTE: TRACE32 cannot activate the selected settings while the program execution is
running.
TrOnchip.Set.BootStall Enter bootstall
Format: TrOnchip.Set.BootStall [ON | OFF]
Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger enters SoC/PCH Bootstall (if supported by the SoC/PCH).

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 89

Example:

SYStem.Mode StandBy

TrOnchip.Set.BootStall ON

; Prepare TRACE32 to enter bootstall

; mode on the next power cycle

; power off SoC/PCH

; power

File Edit View Var Break Run CPU Misc Trace Pef Cov INTELCOUGARPOINT
R R S R

Window Help

Hul o eee @i 2

on SoC/PCH

&2 BuSVStem [=|[=@][] | 4F B:Tronchip (===
Mode MemAccess Option tronchip
© Down CPU IMASKASM
© NoDebug @ Denied [¥] IMASKHLL [¥] CONVert
(0) Prepare CpuAccess COHold VarCONVert
© Go ©) Enable [Cl3TAGONlY
(©) Attach @ Denied [¥] NoReBoot
) StandBv) Nonstop [STepINTEXC £
: i [C]sTandBYAttach [C] sMmmnto
© Up [C] SMMENtry
[C] SMMEXit
[Tl wmENtry
CPU JtagClock [Flvmexit
200MHz ~ [l GeneralDetect
[T
[MachineCheck
[T shutDown
[CIRESet
1 [] ColdRESet
BootStall
[C] cpuBootstall
‘B: :
trigger [devices] [trace] [S Y — -] [] [previous

o

HLL PR

TRACE32 indicates successful Bootstall mode entry as follows:

J bootstall is displayed in the Debug field of the TRACE32 state line.

J The current mode of the debugger is Prepare (StandBy).

After finishing operations in Bootstall mode, it can be left by one of the following commands (thereby
returning the debugger to normal debug mode operation):

J SYStem.Attach: Leave bootstall and let the target boot normally from reset.

J SYStem.Mode Go: Leave bootstall and let the target boot normally from reset.

. SYStem.Up: Leave bootstall and stop the CPU at the reset vector.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

90

TrOnchip.Set.C6Exit Break on C6 exit

Format: TrOnchip.Set.C6EXxit [ON | OFF]

Default: OFF.

If enabled, the program execution is stopped when a C6 Exit happens.

TrOnchip.Set.ColdRESet Break on cold reset
Format: TrOnchip.Set.ColdRESet [ON | OFF]
Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger stops the CPU at the reset vector (if supported by the SoC/PCH).

Example:
SYStem.Mode StandBy ; Prepare TRACE32 to stop the CPU
; at the reset vector after a power
TrOnchip.Set.CpuBootStall Enter CPU bootstall
Format: TrOnchip.Set.CpuBootStall [ON | OFF]
Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger enters CPU Bootstall (if supported by the CPU).

An example of how to use this feature is given in the description of the command TrOnchip.Set.BootStall.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 91

TrOnchip.Set.ENCLU Break on ENCLU event

Format: TrOnchip.Set.ENCLU [ON | OFF]

Default: OFF.

If enabled, the program execution is stopped when an ENCLU event happens.

TrOnchip.Set.GeneralDetect Break on general detect
Format: TrOnchip.Set.GeneralDetect [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped when a General Detect exception happens.

TrOnchip.Set.INIT Break on init

Format: TrOnchip.Set.INIT [ON | OFF]

Default: OFF.

If enabled, the program execution is stopped when a processor INIT happens.

TrOnchip.Set.MachineCheck Break on machine check
Format: TrOnchip.Set.MachineCheck [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped when a Machine Check exception happens.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 92

TrOnchip.Set.RESet Break on target reset

Format: TrOnchip.Set.RESet [ON | OFF]

Default: OFF.

If enabled, the program execution is stopped at the reset vector when a target reset happens.

TrOnchip.Set.ShutDown Break on shutdown
Format: TrOnchip.Set.ShutDown [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped when a Shutdown occurs.

TrOnchip.Set. SMMENtry Break on SMM entry
Format: TrOnchip.Set.SMMENtry [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped each time SMM is entered.

TrOnchip.Set.SMMEXit Break on SMM exit
Format: TrOnchip.Set.SMMEXit [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped each time SMM is exited.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 93

TrOnchip.Set.SMMINto Step into SMM when single stepping

Format: TrOnchip.Set.SMMINto [ON | OFF]

Default: OFF.

If enabled, if during an assembler single step an SMM interrupt happens, the debugger steps into the SMM
handler. If disabled, the debugger steps over the SMM handler.

TrOnchip.Set.TraceHub Enter/leave trace hub break
Format: TrOnchip.Set.TraceHub [ON | OFF]
Default: OFF.

If enabled, the debugger enters Trace Hub Break next time a target reset happens. To leave Trace Hub
Break, set to OFF.

Example:

TrOnchip.Set.TraceHub ON ; prepare for Trace Hub Break
; cause target reset
; target enters Trace Hub Break

TrOnchip.Set.TraceHub OFF ; leave Trace Hub Break

It is also possible to enter Trace Hub Break directly after leaving Bootstall mode (see
TrOnchip.Set.BootStall). Simply set to ON before.

TrOnchip.Set.VMENtry Break on VM entry
Format: TrOnchip.Set.VMENtry [ON | OFF]
Default: OFF.

If enabled, the program execution is stopped each time a virtual machine VM entry happens.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 94

TrOnchip.Set.VMEXit Break on VM exit

Format:

<value>:

<controlbits>:

<controlbit>:

TrOnchip.Set.VMEXit [ON | OFF | All | None | <value> | <controlbits>]

<hexadecimal> | <integer> | <binary>

{<controlbit>}

SWINT_EXCEPTION_NMI | EXTERNAL_INTERRUPT | TRIPLE_FAULT |
INIT | SIPI | 10_SMI | OTHER_SMI | PND_VIRT_INTERRUPT |
PND_VIRT_NMI | TASK_SWITCH | CPUID | GETSEC | HLT | INVD |
INVLPG | RDPMC | RDTSC | RSM | VMCALL | VMCLEAR |
VMLAUNCH | VMPTRLD | VMPTRST | VMREAD | VMRESUME |
VMWRITE | VMXOFF | VMXON | CR_ACCESS | DR_ACCESS | IOEXIT |
RDMSR | WRMSR | ENTRY_BADGUEST | ENTRY_BADMSR |
EXITFAULT | MWAIT | MONITOR_TRAP_FLAG | CORRUPTED_VMCS |
MONITOR | PAUSE | ENTRY_MCA | CSTATE_SMI |
TPR_BELOW_THRESHOLD | APIC_ACCESS | LEVEL_TRIG_EOI |
GDTR_IDTR_ACCESS | LDTR_TR_ACCESS | EPT_VIOLATION |
EPT_MISCONFIG | INVL_EPT | RDTSCP | VMXTIMER | INVLD_VPID |
WBINVD

Default: OFF with all control bits disabled.

If enabled, the program execution is stopped each time a virtual machine VM exit event happens for the

enabled control bits.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 95

The TrOnchip control window is extended by the control bits:

. When VMEXit is set to ON.

. When control bits are set via the command line.
AF BxTrOnchip =N =R <=
tronchip Set WMEXit <controlbits=
0X7FFFFFFFFFFFFF Al
CONVert SWINT_EX_HMI EXTINT [¥] TRIPFAULT INIT SIPI 10_SMI
[Tvarconvert OTHER_SM1 PND_VIRT_INT7 PND_VIRT_NMI TASK_SWITCH CPUID GETSEC
HLT INVD INVLPG RDPMC RDTSC RSM

- [wmcaLL [wmcLEAR [wmLauNCH Y| WMPTRLD [¥IvmPTRST [¥] vMREAD

¢ [¥] VMRESUME [¥]VMWRITE [¥]vMXOFF [¥] wMXON CR_ACCESS DR_ACCESS
[sMmmito T0EXIT RDMSR [¥] WRMSR ENTRY_BADGUEST [¥] ENTRY_BADMSR EXITFAULT
[l smmentry MWALT MON_TRAP_FLAG CORRUPTED_VMCS [¥] MONITOR PAUSE ENTRY_MCA
[l smmexit [#] CSTATE_SMI [#]TPR_BEON_THRSHAD [#] APIC_ACCESS [|LEVEL_TRIG_EOI [/|GDTR_IDTR_ACCESS [¥]LDTR_TR_ACCESS
[vMENtry [7]EPT_VIOLATION [#]EPT_MISCONFIG [¥]INVL_EPT ¥IRDTSCP [#] WBINVD [INVLD_VPID
Ml vmexit [¥] WBINVD
[T GeneralDetect
[T
[C MachineChedk
[T ShutDown
[C]RESet
[7] coldrRESet
[C] BootStall
CpuBootStall

VMEXit check box:

ON The VM exit event is enabled and the program execution is stopped on a
VM exit. If previously no control bit was enabled then all control bits are
enabled.

OFF The VM exit event is disabled. The control bit remain unchanged.

All/None button:
All The VM exit event is enabled and all control bits are enabled.
None The VM exit event is disabled and all control bits are disabled.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger |

96

Examples:

; Trigger VM exit event on signals TRIPLE_FAULT, VMWRITE and INIT
TrOnchip.Set .VMEXit TRIPLE_ FAULT VMWRITE INIT

; TrOnchip.Set.VMEXit 0x200000C

; TrOnchip.Set.VMEXit O0y10000000000000000000001100
; Enable VM exit event on all control bit signals
TrOnchip.Set.VMEXit All

; TrOnchip.Set.VMEXit Ox7FFFFFFFFFFFFF

; Disable VM exit event and clear all control bits
TrOnchip.Set.VMEXit None

TrOnchip.state Display onchip trigger window

Format: TrOnchip.state

Displays the TrOnchip control window.

Plo o)

tronchip

RESet

V| CONVert

Set

SMMINto
SMMENtry
SMMEXit

VMENL
wath If enabled, the program execution is stopped at

GeneralDetect the specified event
INIT
MachineChedk
ShutDown
RESet

ColdRESet
BootStall
CpuBootStall

If enabled, the default behavior of the command
SYStem.Mode StandBy is changed

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 97

CPU specific Events for the ON and GLOBALON Command

TRACE32 can be programmed to detect CPU specific events and execute a user-defined <action> in
response to the detected <event>. The user-defined action is a PRACTICE script (*.cmm).

The following commands and CPU specific events are available:

GLOBALON <event> [<action>] Global event-controlled PRACTICE script execution.

The event is detectable during an entire TRACE32 session.

ON <event> [<action>]

Event-controlled PRACTICE script execution.

The event is detectable only by a particular PRACTICE script.

CPU specific <event> Description

BOOTSTALL The target entered Bootstall.

CPUBOOTSTALL The target entered CPU Bootstall.
TRACEHUBBREAK The target entered Trace Hub Break.
PBREAKRESET The CPU stopped at the reset vector.
PBREAKVMENTRY The CPU stopped due to a VM Entry event.
PBREAKVMEXIT The CPU stopped due to a VM Exit event.
PBREAKSMMENTRY The CPU stopped due to an SMM Entry event.
PBREAKSMMEXIT The CPU stopped due to an SMM Exit event.
PBREAKGENERALDETECT The CPU stopped due to a General Detect event.
PBREAKINIT The CPU stopped due to an Init event.
PBREAKMACHINECHECK The CPU stopped due to a Machine Check event.
PBREAKSHUTDOWN The CPU stopped due to a Shutdown event.
PBREAKCGEXIT The CPU stopped due to a C6 Exit event.
PBREAKENCLU The CPU stopped due to an ENCLU event.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

98

CPU specific BenchmarkCounter Commands

The BMC (BenchMark Counter) commands provide control and usage of the x86 performance monitoring
capabilities. The benchmark counters can only be read while the target application is halted. Currently only
the pre-defined architectural performance events are supported.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.<counter> Select BMC event to count

Format: BMC.PMCO <event>
BMC.PMC1 <event>

<event>: OFF
uccC
URC
IR
LLCR
LLCM
BIR
BMR

Currently only the two generic benchmark counters PMCO and PMC1 are supported. Each of these two
counters can count one of the seven pre-defined architectural performance events. Please see the chapter

on “Performance Monitoring” in the “Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume

3” for details.
BMC.<counter>.COUNT Select count mode for BMC
Format: BMC.<counter>.COUNT <mode>
<mode>: DUR | EDGE
Default: DUR.

Selects the count mode for <counter>. In DURation mode, all cycles, where the selected event is enabled,
are counted. In EDGE mode, only rising edges of the selected event are counted.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 99

CPU specific Onchip Trace Commands

For information about architecture-independent Onchip commands, refer to “Onchip Trace Commands”
(general_ref_o.pdf).

For information about architecture-specific Onchip commands, see command descriptions below.

Onchip.Buffer Configure onchip trace source
Format: Onchip.Buffer <item>
<items: LBR | BTS | IPT | ITH
BASE <base>
SIZE <size>
TOPA [ON | OFF]

Provides control of the architectural x86 execution trace capabilities:
J LBR (Last Branch Records)
J BTS (Branch Trace Store)

. IPT (Intel® Processor Trace)

LBR Chooses LBR as the trace source.

LBR uses onchip registers to store the last 4, 8, or 16 (CPU dependent)
taken branches/interrupts for each HW thread/core. The LBR feature is
always available.

BTS Chooses BTS as the trace source.

BTS stores BTMs (Branch Trace Messages) in a user-defined area in target

RAM for all HW threads/cores.

. BTS/BTM is not always available.

. As a rule of thumb, BTS is usually available on iCore CPUs, whereas
it is not functional on Atom CPUs.

IPT Chooses IPT (Intel® Processor Trace) as the trace source. See “Training
Intel® Processor Tracing” (training_ipt_trace.pdf).

ITH Chooses ITH (Intel® Trace Hub) as trace source.

BASE <base> Sets the base of the trace buffer to the linear address <base>.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 100

SIZE <size> Sets the size of the trace buffer to <size> bytes.

In the case of BTS, note that the buffer must be big enough to hold BTMs for

all HW threads/cores.

TOPA Enables/Disables Table Of Physical Addresses:

. OFF: Trace data will be written to default memory location or
address defined by Onchip.Buffer.Base.

. ON: Onchip.Buffer.Base points to a structure which defines the
memory output area. Please consult Intel® Processor Trace
documentation for more information.

Only applicable if Onchip.Buffer.IPT is selected!

NOTE: BTMs may not be observable on Intel Atom processor family processors that do
not provide an externally visible system bus.

NOTE: BTMs visibility is implementation specific and limited to systems with a front
side bus (FSB). BTMs may not be visible to newer system link interfaces or a
system bus that deviates from a traditional FSB.

Please see the chapter on “Debugging, Profiling Branches and Timestamp Counter” in the public “Intel® 64
and 1A-32 Architectures Software Developer's Manual, Volume 3” for more details on LBR, BTM and BTS.

©1989-2024 Lauterbach

Intel® x86/x64 Debugger | 101

CPU specific Functions

SYStem.CoreStates.APIC()

Syntax: SYStem.CoreStates.APIC(<core>)

Returns the APIC ID of the specified “virtual” core index <core>. This corresponds to the APIC column in
the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.HYPER()

Syntax: SYStem.CoreStates.HYPER(<core>)

Returns the hyper thread index of the specified “virtual” core index <core>. This corresponds to the
Hyper. column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.MODE()

Syntax: SYStem.CoreStates.MODE(<core>)

Returns the core mode of the specified “virtual” core index <core>. This corresponds to the Mode
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 102

SYStem.CoreStates.PHYS()

Syntax: SYStem.CoreStates.PHYS(<core>)

Returns the physical core index of the specified “virtual” core index <core>. This corresponds to the
Phys. column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.PRIOR()

Syntax: SYStem.CoreStates.PRIOR(<core>)

Returns the prior state of the specified “virtual” core index <core>. This corresponds to the Prior State
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.CoreStates.SMM()

Syntax: SYStem.CoreStates.SMM(<core>)

Returns the SMM state of the specified “virtual” core index <core>. This corresponds to the SMM
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 103

SYStem.CoreStates.VMX()

Syntax: SYStem.CoreStates.VMX(<core>)

|7l

Returns the VMX mode of the specified “virtua
column in the SYStem.CORESTATES window.

core index <core>. This corresponds to the VMX

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.Option.MEMoryMODEL()

Syntax: SYStem.Option.MEMoryMODELY()

Returns the name of the currently enabled memory model.

Return Value Type: String.

SYStem.Option.TOPOlogy()

Syntax: SYStem.Option.TOPOlogy()

Returns the name of the currently selected topology (e.g. “1X2”).

Return Value Type: String.

SYStem.Option.TOPOlogy.SOCKETS()

Syntax: SYStem.Option.TOPOlogy.SOCKETS()

Returns the total number of CPU sockets for the currently selected topology.

Return Value Type: Decimal value.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 104

SYStem.ReadPDRH()

Syntax: SYStem.ReadPDRH()

Returns the PDRH value previously read with the command SYStem.StufflnstructionRead.

Return Value Type: Hex value.

SYStem.ReadPDRL()

Syntax: SYStem.ReadPDRLY()

Returns the PDRL value previously read with the command SYStem.StufflnstructionRead.

Return Value Type: Hex value.

TrOnchip.IsAvailable()

[build 73501 - DVD 09/2016]

Syntax: TrOnchip.IsAvailable(" <trigger_name>")

Returns TRUE if the named Onchip trigger is available for this architecture. A list of potential values for
<trigger_name> can be generated with the TrOnchip.PrintList command.

Parameter Type: String.
Return Value Type: Boolean.
Examples:

PRINT TrOnchipIsAvailable("ColdRESet")
PRINT TrOnchipIsAvailable("CRES")

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 105

TrOnchip.IsSet()

[build 73501 - DVD 09/2016]

Syntax: TrOnchip.IsSet(" <trigger_name>")

Returns TRUE if the named Onchip trigger is set. A list of potential values for <trigger_name> can be
generated with the TrOnchip.PrintList command.

Parameter Type: String.
Return Value Type: Boolean.
Examples:

PRINT TrOnchip.IsSet ("TraceHub")
PRINT TrOnchip.IsSet ("TH")

VMX()

[build 42354 - DVD 02/2013]

Syntax: VMX()

Returns TRUE if in VMX mode, FALSE otherwise.

Return Value Type: Boolean.

VMX.Guest()

[build 42354 - DVD 02/2013]

Syntax: VMX.Guest()

Returns TRUE if in VMX guest mode, FALSE otherwise. This function is only applicable if VMX() returns
TRUE.

Return Value Type: Boolean.

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 106

SYStem Trace Settings

For information, see “System Trace User’s Guide” (trace_stm.pdf).

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 107

Connectors

JTAG Connector

This JTAG connector is a 60-pin XDP connector.

Signal
GND
PREQ-
PRDY-
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
PWRGOOD
N/C
VTREF
N/C
N/C
GND
N/C
N/C
N/C
TCK
GND

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
GND
N/C
N/C
N/C
RESET-
DBR-
GND
TDO
TRST-
TDI
TMS
GND

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

108

MIPI34 Connector

Signal
VTREF DEBUG
GND
GND

N/C (KEY)
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

Pin Pin
1 2
3 4
5 6
- 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34

Signal

TMS

TCK

TDO

TDI

N/C

N/C

N/C

TRST-
PREQ-
PRDY-

PTI 0 CLK
PTI 0 DATA[O]
PTI 0 DATA[1]
PTI 0 DATA[2]
PTI 0 DATA[3]
N/C

VTREF TRACE

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

109

MIPI60-C Connector

MIPI160 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS
TCKO 3 4 TDO
TDI 5 6 No Connect
HOOK]|6]=Reset In 7 8 10 kOhm to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE
PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[O]
PTI_0_DATA[O0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 PTI_1_DATA[4]/PTI_2_DATA[O]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5])/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6])/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_0_DATA[7] 33 34 HOOK][7]=Reset Out
PTI_0_DATA[8]/PTI_3_DATA[0] 35 36 HOOK[3]=Boot Stall
PTI_O_DATA[9]/PTI_3_DATA[1] 37 38 HOOK[2]=CPU Boot Stall
PTI_0_DATA[10])/PTI_3_DATA[2] 39 40 HOOK]1]=Power Button
PTI_O_DATA[11)/PTI_3_DATA[3] 41 42 HOOK[0]=PWRGOOD
PTI_O_DATA[12])/PTI_3_DATA[4] 43 44 HOOK]5]
PTI_O_DATA[13])/PTI_3_DATA[5] 45 46 HOOK]4]
PTI_0_DATA[14]/PTI_3_DATA[6] 47 48 12C_SCL
PTI_O_DATA[15]/PTI_3_DATA[7] 49 50 12C_SDA
TCK1 51 52 GND
TRIG_INOUT 53 54 DBG_UART_TX
TRIG_IN 55 56 DBG_UART_RX
GND 57 58 GND
PTI_3_CLK 59 60 PTI_2_CLK

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 110

Not all pins of the Intel® MIPI60 connector are connected to the CombiProbe Intel x86/x64 MIPI60-C. The
connected pins are displayed with their name on a gray background in the picture below.

Signal
VREF_DEBUG
TCKO

TDI

Reset In
TRST_N
PRDY_N
PTI_0_CLK
GND

No Connect
PTI_0_DATA[O]
PTI_0_DATA[1]
PTI_0_DATA[2]
PTI_0_DATA[3]
PTI_0_DATA[4]
PTI_0_DATA[5]
PTI_0_DATA[6]
PTI_0_DATA[7]
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
GND

No Connect

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal
TMS
TDO

Open Drain Reset Out

No Connect
PREQ_N
VREF_TRACE
PTI_1_CLK
GND
PTI_1_DATA[O]
PTI_1_DATA[1]
PTI_1_DATA[2]
PTI_1_DATA[3]
No Connect
No Connect
No Connect
No Connect
Reset Out
Boot Stall

CPU Boot Stall
Power Button
PWRGOOD
No Connect
No Connect
I2C_SCL
12C_SDA

No Connect
DBG_UART_TX
DBG_UART_RX
GND

No Connect

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

111

MIPI60-Cv2 Connector

Converged MIPI60 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS
TCKO 3 4 TDO
TDI 5 6 HOOK]7]=Reset Out
HOOK|[6]=PMODE/Reset In 7 8 10 kOHM to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE
PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[0]
PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_O_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_O_DATA[3] 25 26 PTI_1_DATA[4])/PTI_2_DATA|[O0]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5]/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6]/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_O_DATA[7] 33 34 No Connect
PTI_0_DATA[8])/PTI_3_DATAI[0] 35 36 HOOK][3]=Boot Stall
PTI_O_DATA[9])/PTI_3_DATA[1] 37 38 HOOK][2]=CPU Boot Stall
PTI_0_DATA[10]/PTI_3_DATA[2] 39 40 HOOK([1]=Power Button
PTI_O_DATA[11]/PTI_3_DATA[3] 41 42 HOOKJ[0]=PWRGOOD
PTI_O_DATA[12]/PTI_3_DATA[4] 43 44 No Connect
PTI_O_DATA[13]/PTI_3_DATA[5] 45 46 No Connect
PTI_O_DATA[14)/PTI_3_DATA[6] 47 48 12C_SCL
PTI_O_DATA[15])/PTI_3_DATA[7] 49 50 12C_SDA
TCKA1 51 52 No Connect
HOOK]J9] 53 54 DBG_UART_TX
HOOK]8] 55 56 DBG_UART_RX
GND 57 58 GND
PTI_3_CLK 59 60 PTI_2_CLK

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 112

Not all pins of the Converged MIPI60 connector are connected to the CombiProbe Intel x86/x64
MIP160-Cv2. The connected pins are displayed with their name on a gray background in the picture below.

Signal
VREF_DEBUG
TCKO

TDI

PMODE/Reset In

TRST_N
PRDY_N
PTI_0_CLK
GND

GND
PTI_0_DATA[O]
PTI_O_DATA[1]
PTI_0_DATA[2]
PTI_0_DATA[3]
PTI_0_DATA[4]
PTI_0_DATA[5]
PTI_O0_DATA[6]
PTI_0_DATA[7]
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
TCKA1
HOOK]J9]
HOOK]8]

GND

No Connect

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal

TMS

TDO

Reset Out

No Connect
PREQ_N
VREF_TRACE
PTI_1_CLK
GND
PTI_1_DATA[O]
PTI_1_DATA[1]
PTI_1_DATA[2]
PTI_1_DATA[3]
No Connect
No Connect
No Connect
No Connect
No Connect
Boot Stall

CPU Boot Stall
Power Button
PWRGOOD
No Connect
No Connect
I2C_SCL
12C_SDA
reserved by TRACE32
DBG_UART_TX
DBG_UART_RX
GND

No Connect

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

113

MIPI60-Q Connector

Converged MIPI60 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS
TCKO 3 4 TDO
TDI 5 6 HOOK]7]=Reset Out
HOOK|[6]=PMODE/Reset In 7 8 10 kOHM to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE
PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[0]
PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_O_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_O_DATA[3] 25 26 PTI_1_DATA[4])/PTI_2_DATA|[O0]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5]/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6]/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_O_DATA[7] 33 34 No Connect
PTI_0_DATA[8])/PTI_3_DATAI[0] 35 36 HOOK][3]=Boot Stall
PTI_O_DATA[9])/PTI_3_DATA[1] 37 38 HOOK][2]=CPU Boot Stall
PTI_0_DATA[10]/PTI_3_DATA[2] 39 40 HOOK([1]=Power Button
PTI_O_DATA[11]/PTI_3_DATA[3] 41 42 HOOKJ[0]=PWRGOOD
PTI_O_DATA[12]/PTI_3_DATA[4] 43 44 No Connect
PTI_O_DATA[13]/PTI_3_DATA[5] 45 46 No Connect
PTI_O_DATA[14)/PTI_3_DATA[6] 47 48 12C_SCL
PTI_O_DATA[15])/PTI_3_DATA[7] 49 50 12C_SDA
TCKA1 51 52 No Connect
HOOK]J9] 53 54 DBG_UART_TX
HOOK]8] 55 56 DBG_UART_RX
GND 57 58 GND
PTI_3_CLK 59 60 PTI_2_CLK

©1989-2024 Lauterbach Intel® x86/x64 Debugger | 114

Not all pins of the Converged Intel® MIPI60 connector are connected to the Whisker MIPI60-Q for Quad-

Probe x86/x64. The connected pins are displayed with their name on a gray background in the picture below.

Signal

VREF_DEBUG

TCKO
TDI

PMODE/Reset In

TRST_N
PRDY_N
No Connect
GND

GND

No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
TCK1
HOOK]9]
HOOK]8]
GND

No Connect

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60

Signal

TMS

TDO

Reset Out

No Connect
PREQ_N
VREF_TRACE
No Connect
GND

No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
No Connect
Boot Stall

CPU Boot Stall
Power Button
PWRGOOD
No Connect
No Connect
I2C_SCL
12C_SDA
reserved by TRACE32
DBG_UART_TX
DBG_UART_RX
GND

No Connect

©1989-2024 Lauterbach

Intel® x86/x64 Debugger

115

	Intel® x86/x64 Debugger
	History
	Brief Overview of Documents for New Users
	Welcome Dialog
	Help Menu
	Further Documents

	Warning
	Quick Start
	Troubleshooting
	FAQ
	x86 specific Implementations
	Tool Identification
	Onchip Breakpoints
	Breakpoints after Reset/Power Cycle
	Access Classes
	Overview

	Memory Model
	Segmentation
	Platform Controller Hub (PCH)
	Debugging a CPU only
	Debugging a PCH only
	Debugging a CPU and a PCH
	Systems Using a Merged Debug Port
	Systems Using Separate Debug Ports

	PCH Selection for CPU Debug on a Merged Debug Port

	Slave Core Debugging
	Start Master Debugger
	Locating the Slave Core
	Starting the Slave Debugger

	CPU specific JTAG.CONFIG Commands
	JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals
	JTAG.CONFIG.DRiVer Set slew rate of JTAG signals
	JTAG.CONFIG.PowerDownTriState Automatically tristate outputs
	JTAG.CONFIG.TckRun Free-running TCK mode
	JTAG.CONFIG.TDOEdge Select TCK edge
	JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages
	JTAG.CONFIG.Voltage.REFerence Set reference voltage source
	JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages

	CPU specific SYStem.DETECT Commands
	SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores
	SYStem.DETECT.CORES Detect core/thread number
	SYStem.DETECT.HyperThreads Detect hyper thread status
	SYStem.DETECT.TARGET Fully automatic board setup
	SYStem.DETECT.TOPOlogy Detect board topology

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Multicore Settings (daisy chain)

	SYStem.CORESTATES Core states overview
	SYStem.CPU Select the target CPU/SOC
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Use 32 bit address display only
	SYStem.Option.BIGREALmode Enable Big Real mode handling
	SYStem.Option.BranchSTEP Enables branch stepping
	SYStem.Option.BreakDELAY Set max. break delay
	SYStem.Option.C0Hold Hold CPU in C0 state
	SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections
	SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure
	SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.InstrSUBmitFOrcePHYSicalPRDY Use physical PRDY
	SYStem.Option.InstrSUBmitIGnorePHYSicalPRDY Ignore physical PRDY
	SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs
	SYStem.Option.JTAGOnly Use only JTAG signals
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MEMoryMODEL Define memory model
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MultiCoreWhiskers Server board whisker setup
	SYStem.Option.NoDualcoreModule Disable dualcore module support
	SYStem.Option.NoHyperThread Disable HyperThreading support
	SYStem.Option.NoIPAdjust Do not adjust IP at reset vector
	SYStem.Option.NoReBoot Disable watchdog causing reboot
	SYStem.Option.OSWakeupTIME Set the OS wake up time
	SYStem.Option.PC10MODE Wake up target from package C10
	SYStem.Option.PreserveDRX Preserve DRx resources
	SYStem.Option.PreserveLBR Preserve LBR resources
	SYStem.Option.ProbeModeNOSaveRestore No save/restore
	SYStem.Option.ProbeModeONDEmand On demand save/restore
	SYStem.Option.PWRCycleTime Set power cycle time
	SYStem.Option.PWROFFTime Set power off assertion time
	SYStem.Option.PWRONTime Set power on assertion time
	SYStem.Option.PWRONWaitTime Set power on time
	SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset
	SYStem.Option.REL Relocation register
	SYStem.Option.RESetDELAY Set reset delay
	SYStem.Option.RESetDetection Select reset detection source
	SYStem.Option.RESetMode Select reset method
	SYStem.Option.RESetTIME Set reset assertion time
	SYStem.Option.RESetWaitTIME Set reset input wait time
	SYStem.Option.S0Hold Hold SoC in S0 state
	SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint
	SYStem.Option.STandBYAttach In standby mode, only attach to target
	SYStem.Option.STandBYAttachDELAY Delay after standby
	SYStem.Option.STepINToEXC Step into interrupt or exception handler
	SYStem.Option.TOPOlogy Select server board topology
	SYStem.Option.WatchDogWaitTIME Set the reset watch dog time
	SYStem.Option.WFSMemAccess Allow WFS memory access
	SYStem.Option.WHISKER Select a whisker
	SYStem.Option.ZoneSPACES Enable symbol management for zones
	SYStem.PCH Select the target PCH
	SYStem.POWER Control target power
	SYStem.STALLPhase Set system into stall phase
	SYStem.StuffInstruction Submit instruction to CPU in probe mode
	SYStem.StuffInstructionRead Submit instruction and read
	SYStem.TIMINGS Display timings window

	Command Groups for Special Registers
	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set MMU register

	CPU specific TrOnchip Commands - Onchip Triggers
	TrOnchip.PrintList Print possible onchip triggers
	TrOnchip.RESet Reset settings to defaults
	TrOnchip.Set Break on event
	TrOnchip.Set.BootStall Enter bootstall
	TrOnchip.Set.C6Exit Break on C6 exit
	TrOnchip.Set.ColdRESet Break on cold reset
	TrOnchip.Set.CpuBootStall Enter CPU bootstall
	TrOnchip.Set.ENCLU Break on ENCLU event
	TrOnchip.Set.GeneralDetect Break on general detect
	TrOnchip.Set.INIT Break on init
	TrOnchip.Set.MachineCheck Break on machine check
	TrOnchip.Set.RESet Break on target reset
	TrOnchip.Set.ShutDown Break on shutdown
	TrOnchip.Set.SMMENtry Break on SMM entry
	TrOnchip.Set.SMMEXit Break on SMM exit
	TrOnchip.Set.SMMINto Step into SMM when single stepping
	TrOnchip.Set.TraceHub Enter/leave trace hub break
	TrOnchip.Set.VMENtry Break on VM entry
	TrOnchip.Set.VMEXit Break on VM exit
	TrOnchip.state Display onchip trigger window

	CPU specific Events for the ON and GLOBALON Command
	CPU specific BenchmarkCounter Commands
	BMC.<counter> Select BMC event to count
	BMC.<counter>.COUNT Select count mode for BMC

	CPU specific Onchip Trace Commands
	Onchip.Buffer Configure onchip trace source

	CPU specific Functions
	SYStem.CoreStates.APIC()
	SYStem.CoreStates.HYPER()
	SYStem.CoreStates.MODE()
	SYStem.CoreStates.PHYS()
	SYStem.CoreStates.PRIOR()
	SYStem.CoreStates.SMM()
	SYStem.CoreStates.VMX()
	SYStem.Option.MEMoryMODEL()
	SYStem.Option.TOPOlogy()
	SYStem.Option.TOPOlogy.SOCKETS()
	SYStem.ReadPDRH()
	SYStem.ReadPDRL()
	TrOnchip.IsAvailable()
	TrOnchip.IsSet()
	VMX()
	VMX.Guest()

	SYStem Trace Settings
	Connectors
	JTAG Connector
	MIPI34 Connector
	MIPI60-C Connector
	MIPI60-Cv2 Connector
	MIPI60-Q Connector

