
MANUAL

Intel® x86/x64 Debugger

Intel® x86/x64 Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 x86 .. 

 Intel® x86/x64 Debugger .. 1

 History .. 7

 Brief Overview of Documents for New Users ... 8

 Welcome Dialog 8

 Help Menu 9

 Further Documents 10

 Warning .. 12

 Quick Start ... 13

 Troubleshooting .. 16

 FAQ ... 16

 x86 specific Implementations .. 17

 Tool Identification 17

 Onchip Breakpoints 17

 Breakpoints after Reset/Power Cycle 18

 Access Classes 19

 Overview 19

 Memory Model 30

 Segmentation 31

 Platform Controller Hub (PCH) 32

 Debugging a CPU only 33

 Debugging a PCH only 33

 Debugging a CPU and a PCH 33

 Systems Using a Merged Debug Port 33

 Systems Using Separate Debug Ports 34

 PCH Selection for CPU Debug on a Merged Debug Port 34

 Slave Core Debugging 34

 Start Master Debugger 35

 Locating the Slave Core 35
Intel® x86/x64 Debugger | 2©1989-2024 Lauterbach

 Starting the Slave Debugger 36

 CPU specific JTAG.CONFIG Commands .. 37

 JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals 37

 JTAG.CONFIG.DRiVer Set slew rate of JTAG signals 37

 JTAG.CONFIG.PowerDownTriState Automatically tristate outputs 38

 JTAG.CONFIG.TckRun Free-running TCK mode 38

 JTAG.CONFIG.TDOEdge Select TCK edge 38

 JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages 39

 JTAG.CONFIG.Voltage.REFerence Set reference voltage source 40

 JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages 40

 CPU specific SYStem.DETECT Commands .. 41

 SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores 41

 SYStem.DETECT.CORES Detect core/thread number 41

 SYStem.DETECT.HyperThreads Detect hyper thread status 42

 SYStem.DETECT.TARGET Fully automatic board setup 43

 SYStem.DETECT.TOPOlogy Detect board topology 44

 CPU specific SYStem Settings ... 45

 SYStem.CONFIG.state Display target configuration 45

 SYStem.CONFIG Configure debugger according to target topology 46

 Multicore Settings (daisy chain) 46

 SYStem.CORESTATES Core states overview 49

 SYStem.CPU Select the target CPU/SOC 51

 SYStem.JtagClock Define JTAG clock 51

 SYStem.LOCK Tristate the JTAG port 51

 SYStem.MemAccess Select run-time memory access method 52

 SYStem.Mode Establish the communication with the target 52

 SYStem.Option.Address32 Use 32 bit address display only 53

 SYStem.Option.BIGREALmode Enable Big Real mode handling 54

 SYStem.Option.BranchSTEP Enables branch stepping 55

 SYStem.Option.BreakDELAY Set max. break delay 55

 SYStem.Option.C0Hold Hold CPU in C0 state 55

 SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections 56

 SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure 56

 SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections 56

 SYStem.Option.IMASKASM Disable interrupts while single stepping 57

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 57

 SYStem.Option.InstrSUBmitFOrcePHYSicalPRDY Use physical PRDY 57

 SYStem.Option.InstrSUBmitIGnorePHYSicalPRDY Ignore physical PRDY 57

 SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission 58

 SYStem.Option.IntelSOC Slave core is part of Intel® SoC 58

 SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs 59

 SYStem.Option.JTAGOnly Use only JTAG signals 59
Intel® x86/x64 Debugger | 3©1989-2024 Lauterbach

 SYStem.Option.MACHINESPACES Address extension for guest OSes 59

 SYStem.Option.MEMoryMODEL Define memory model 60

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 63

 SYStem.Option.MultiCoreWhiskers Server board whisker setup 64

 SYStem.Option.NoDualcoreModule Disable dualcore module support 64

 SYStem.Option.NoHyperThread Disable HyperThreading support 65

 SYStem.Option.NoIPAdjust Do not adjust IP at reset vector 65

 SYStem.Option.NoReBoot Disable watchdog causing reboot 65

 SYStem.Option.OSWakeupTIME Set the OS wake up time 66

 SYStem.Option.PC10MODE Wake up target from package C10 66

 SYStem.Option.PreserveDRX Preserve DRx resources 66

 SYStem.Option.PreserveLBR Preserve LBR resources 66

 SYStem.Option.ProbeModeNOSaveRestore No save/restore 67

 SYStem.Option.ProbeModeONDEmand On demand save/restore 68

 SYStem.Option.PWRCycleTime Set power cycle time 68

 SYStem.Option.PWROFFTime Set power off assertion time 68

 SYStem.Option.PWRONTime Set power on assertion time 69

 SYStem.Option.PWRONWaitTime Set power on time 69

 SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset 69

 SYStem.Option.REL Relocation register 69

 SYStem.Option.RESetDELAY Set reset delay 70

 SYStem.Option.RESetDetection Select reset detection source 70

 SYStem.Option.RESetMode Select reset method 71

 SYStem.Option.RESetTIME Set reset assertion time 71

 SYStem.Option.RESetWaitTIME Set reset input wait time 71

 SYStem.Option.S0Hold Hold SoC in S0 state 72

 SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint 72

 SYStem.Option.STandBYAttach In standby mode, only attach to target 72

 SYStem.Option.STandBYAttachDELAY Delay after standby 73

 SYStem.Option.STepINToEXC Step into interrupt or exception handler 73

 SYStem.Option.TOPOlogy Select server board topology 73

 SYStem.Option.WatchDogWaitTIME Set the reset watch dog time 74

 SYStem.Option.WFSMemAccess Allow WFS memory access 74

 SYStem.Option.WHISKER Select a whisker 74

 SYStem.Option.ZoneSPACES Enable symbol management for zones 75

 SYStem.PCH Select the target PCH 77

 SYStem.POWER Control target power 77

 SYStem.STALLPhase Set system into stall phase 78

 SYStem.StuffInstruction Submit instruction to CPU in probe mode 78

 SYStem.StuffInstructionRead Submit instruction and read 78

 SYStem.TIMINGS Display timings window 79

 Command Groups for Special Registers .. 80

 CPU specific MMU Commands .. 81
Intel® x86/x64 Debugger | 4©1989-2024 Lauterbach

 MMU.DUMP Page wise display of MMU translation table 81

 MMU.List Compact display of MMU translation table 85

 MMU.SCAN Load MMU table from CPU 87

 MMU.Set Set MMU register 88

 CPU specific TrOnchip Commands - Onchip Triggers .. 89

 TrOnchip.PrintList Print possible onchip triggers 89

 TrOnchip.RESet Reset settings to defaults 89

 TrOnchip.Set Break on event 89

 TrOnchip.Set.BootStall Enter bootstall 89

 TrOnchip.Set.C6Exit Break on C6 exit 91

 TrOnchip.Set.ColdRESet Break on cold reset 91

 TrOnchip.Set.CpuBootStall Enter CPU bootstall 91

 TrOnchip.Set.ENCLU Break on ENCLU event 92

 TrOnchip.Set.GeneralDetect Break on general detect 92

 TrOnchip.Set.INIT Break on init 92

 TrOnchip.Set.MachineCheck Break on machine check 92

 TrOnchip.Set.RESet Break on target reset 93

 TrOnchip.Set.ShutDown Break on shutdown 93

 TrOnchip.Set.SMMENtry Break on SMM entry 93

 TrOnchip.Set.SMMEXit Break on SMM exit 93

 TrOnchip.Set.SMMINto Step into SMM when single stepping 94

 TrOnchip.Set.TraceHub Enter/leave trace hub break 94

 TrOnchip.Set.VMENtry Break on VM entry 94

 TrOnchip.Set.VMEXit Break on VM exit 95

 TrOnchip.state Display onchip trigger window 97

 CPU specific Events for the ON and GLOBALON Command 98

 CPU specific BenchmarkCounter Commands ... 99

 BMC.<counter> Select BMC event to count 99

 BMC.<counter>.COUNT Select count mode for BMC 99

 CPU specific Onchip Trace Commands .. 100

 Onchip.Buffer Configure onchip trace source 100

 CPU specific Functions .. 102

 SYStem.CoreStates.APIC() 102

 SYStem.CoreStates.HYPER() 102

 SYStem.CoreStates.MODE() 102

 SYStem.CoreStates.PHYS() 103

 SYStem.CoreStates.PRIOR() 103

 SYStem.CoreStates.SMM() 103

 SYStem.CoreStates.VMX() 104

 SYStem.Option.MEMoryMODEL() 104

 SYStem.Option.TOPOlogy() 104

 SYStem.Option.TOPOlogy.SOCKETS() 104
Intel® x86/x64 Debugger | 5©1989-2024 Lauterbach

 SYStem.ReadPDRH() 105

 SYStem.ReadPDRL() 105

 TrOnchip.IsAvailable() 105

 TrOnchip.IsSet() 106

 VMX() 106

 VMX.Guest() 106

 SYStem Trace Settings ... 107

 Connectors .. 108

 JTAG Connector 108

 MIPI34 Connector 109

 MIPI60-C Connector 110

 MIPI60-Cv2 Connector 112

 MIPI60-Q Connector 114
Intel® x86/x64 Debugger | 6©1989-2024 Lauterbach

Intel® x86/x64 Debugger

Version 06-Jun-2024

History

07-Jun-2022 New command: JTAG.CONFIG.TckRun.
Intel® x86/x64 Debugger | 7©1989-2024 Lauterbach

Brief Overview of Documents for New Users

Welcome Dialog

The Welcome to TRACE32! dialog provides access to the most important manuals when TRACE32 is
started the first time.

For the Intel® x86/x64 architecture the following manuals are listed:

• Intel x86/x64 Debugger is the manual you are currently reading. It provides all the information

you need to establish a TRACE32 debug session for an Intel® x86/x64 chip.

• “Training Script Language PRACTICE” (training_practice.pdf) teaches you how to write, test
and use a start-up script to establish a debug session.

• “Training Basic SMP Debugging for Intel® x86/x64” (training_debugger_x86.pdf) teaches you
how to use the standard features of the TRACE32 debugger.

If you unchecked Show this dialog at start in the Welcome to TRACE32! dialog, you can use the following
command to get access to this dialog:

The following documents are also good starting points:

• “Tools for Intel® x86/x64” (tools_intel_x86.pdf) presents the delivery contents of the individual
TRACE32 products and describes which steps are required to assemble a ready-to-use debug tool.

• “Intel® Application Note for Server Setup” (app_x86_server.pdf) explains the configuration of

TRACE32 for Intel® Xeon® server systems.

The following documents are a good starting point for USB Debugging via Intel® DCI:

• “Debugging via Intel® DCI User´s Guide” (dci_intel_user.pdf).

• “Debugging via USB User´s Guide” (usbdebug_user.pdf).

WELCOME.view
Intel® x86/x64 Debugger | 8©1989-2024 Lauterbach

Help Menu

The Help menu provides additionally access to all Training Manuals.

Beside the Processor Architecture Manual, which is the generic name for this manual within TRACE32 a
number of training manuals are provided:

• HLL Debugging provides access to “Training Source Level Debugging” (training_hll.pdf) which
mainly teaches you how to load the application program, how to display and format C-variables.

If you are using C++ refer to “Application Note C++ Debugging” (app_cpp_debugging.pdf).

• PRACTICE provides access to “Training Script Language PRACTICE” (training_practice.pdf).

• Debugger x86/x84 provides access to “Training Basic SMP Debugging for Intel® x86/x64”
(training_debugger_x86.pdf).

• Intel Processor Trace provide access to “Training Intel® Processor Tracing”

(training_ipt_trace.pdf). This manual teaches you how to configure the Intel® Processor Trace,
how to record trace information, how to analyze and display the recorded information.

• OS Linux x86/x64 provides access to “Training Linux Debugging for Intel® x86/x64”
(training_rtos_linux_x86.pdf). This manual teaches you how to set up TRACE32 for Linux-aware
debugging and how to use the Linux-awareness in a TRACE32 debug session.
Intel® x86/x64 Debugger | 9©1989-2024 Lauterbach

All TRACE32 menus can be extended by the user. The following script shows a short example of how to add
a manual to the TRACE32 Help menu.

If you need the code of a manual (like __ICRIPT_ in the above example) please contact
support@lauterbach.com.

Further Documents

The following manuals might also be of interest for Intel® x86/x64 users:

Trace manuals:

• “Intel® Processor Trace” (trace_intel_pt.pdf) provides configuration information, a command
reference for the IPT command group and connector details.

MENU.ReProgram
(
 ADD
 MENU
 (
 POPUP "&Help"
 (
 AFTER "Processor Architecture Manual"
 MENUITEM "[:manual]Intel Processor Trace Manual" "HELP __ICRIPT_"
)
)
)

Intel® x86/x64 Debugger | 10©1989-2024 Lauterbach

UEFI-aware debugging:

• “UEFI Awareness Manual BLDK” (uefi_bldk.pdf) provides configuration information, a feature

overview for the TRACE32 UEFI debugger for Intel® BLDK, an overview of all relevant EXTension
commands and functions.

• “UEFI Awareness Manual H2O” (uefi_h2o.pdf) provides configuration information, a feature
overview for the TRACE32 UEFI debugger for InsydeH2O, an overview of all relevant EXTension
commands and functions.

OS-aware debugging:

• “OS Awareness Manual Linux” (rtos_linux_stop.pdf) provides configuration information, a
feature overview for Linux stop-mode debugging, an overview of all relevant commands,
functions and error messages.

This manual is automatically added to the TRACE32 Help menu, when the TRACE32 Linux
menu is programmed.

• “OS Awareness Manual Windows Standard” (rtos_windows.pdf) provides configuration
information, a feature overview for standard windows debugging, an overview of all relevant
commands and functions.

This manual is automatically added to the TRACE32 Help menu, when the TRACE32
MSWindows menu is programmed.

The following command allows to add manuals of interest to the Bookmarks tab of the TRACE32 online
help:

HELP.Bookmark.ADD.file <file> <description> <title>
Intel® x86/x64 Debugger | 11©1989-2024 Lauterbach

Warning

NOTE: To prevent debugger and target from damage it is recommended to
connect or disconnect the debug cable only while the target power is
OFF.

Recommendation for the software start:

1. Disconnect the debug cable from the target while the target
power is off.

2. Connect the host system, the TRACE32 hardware and the
debug cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the debug cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the debug cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
Intel® x86/x64 Debugger | 12©1989-2024 Lauterbach

Quick Start

After starting TRACE32 PowerView for Intel® x86 (64 bit) please proceed as follows to debug your platform:

If you have been provided with a start-up script for your platform, first make sure that the platform is
powered. Then simply execute the script as follows:

If you do not have a start-up script and want to debug an Intel® Xeon® server system platform, please refer
to “Intel® Application Note for Server Setup” (app_x86_server.pdf) for how to do the necessary setup.

If you do not have a start-up script and want to debug an Intel® AtomTM or an Intel® CoreTM i3/i5/i7 Client
platform, please type (make sure the platform is powered first):

In most cases this setup is sufficient, and after the commands have been executed successfully it is possible
to debug the target, including accessing memory and registers.

If for some reason the above is not successful, please follow the more detailed steps on the next page.

DO <file>

SYStem.DETECT TARGET

SYStem.Mode.Attach

Break
Intel® x86/x64 Debugger | 13©1989-2024 Lauterbach

1. First TRACE32 must know which CPU/SOC your platform has. TRACE32 can normally detect
this automatically as follows (make sure the platform is powered first):

2. Such automatic detection is not supported for all possible platforms. If the automatic detection
does not succeed, please select the CPU/SOC of the connected platform directly:

3. If you are not sure about the name of the CPU/SOC you can open a window with a list of
available names:

Note that this is not a full list of all supported CPUs/SOCs. It only contains names of public,
already launched products.

4. Next TRACE32 must know the number of cores/threads of the selected CPU/SOC. This step is

required for Intel® CoreTM i3/i5/i7 Client platforms, but can often be skipped for Intel® AtomTM
platforms:

5. After the platform CPU/SOC has been detected/selected and the number of cores/threads have
been detected (as necessary), further target-specific settings and options can be selected.

But in most cases the default values of other settings and options have automatically been set to the
most useful values at this point. This means that in most cases it should now be possible to do basic
debugging without any further initial configuration of TRACE32.

6. Attach to the target and enter debug mode.

The first command attaches the debugger to the running target. The second command stops the
target and enters debug mode (often called probe mode for x86/x64 targets).
After these commands are executed it is possible to access memory and registers.

SYStem.DETECT CPU

SYStem.CPU <cpu> | <soc>

SYStem.CPU

SYStem.DETECT CORES

NOTE: SYStem.DETECT TARGET (as used on the previous page) is basically
SYStem.DETECT CPU followed by SYStem.DETECT CORES.

SYStem.Mode.Attach

Break
Intel® x86/x64 Debugger | 14©1989-2024 Lauterbach

A simple start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

RESet ; Reset the TRACE32 software settings

WinCLEAR ; Close all windows

SYStem.DETECT TARGET ; Detect platform CPU/SOC and cores/threads

SYStem.Mode.Attach ; Attach to the running target

Break ; Stop the target and enter debug mode

Register.view /SpotLight ; Open register and stack window *)

List.Mix ; Open source code window *)
Intel® x86/x64 Debugger | 15©1989-2024 Lauterbach

Troubleshooting

No information available

FAQ

Please refer to https://support.lauterbach.com/kb.
Intel® x86/x64 Debugger | 16©1989-2024 Lauterbach

https://support.lauterbach.com/kb

x86 specific Implementations

Tool Identification

The following TRACE32 functions allow you to check which Intel® x86/x64 specific TRACE32 tool are
controlled by the TRACE32 software.

Onchip Breakpoints

The list below gives an overview of the availability and the usage of the onchip breakpoints. The following
notations are used:

• Onchip breakpoints: Total amount of available onchip breakpoints.

• Instruction breakpoints: Number of onchip breakpoints that can be used to set Program break-
points.

• Read/Write breakpoints: Number of onchip breakpoints that stop the program when a write or
read/write to a certain address happens.

• Data value breakpoint: Number of onchip data breakpoints that stop the program when a spe-
cific data value is written to an address or when a specific data value is read from an address.

hardware.COMBIPROBE() Returns TRUE if a TRACE32 CombiProbe is connected.

hardware.QUADPROBE() Returns TRUE if a TRACE32 QuadProbe is connected.

ID.WHISKER(<int>) Returns the identifier for the connected TRACE32 whisker cable.

ID.CABLE() Returns 0x3836 if Intel® x86/x64 XDP60 Debug Cable is connected.

IF hardware.COMBIPROBE()
(
 IF ID.WHISKER(0)==0x10
 (
 PRINT "Connected Tool is CombiProbe MIPI60-C"
)
 IF ID.WHISKER(0)==0x11
 (
 PRINT "Connected Tool is CombiProbe MIPI60-Cv2"
)
 IF ID.WHISKER(0)==(0x2||0x09)
 (
 PRINT "Connected tool is CombiProbe DCI OOB"
)
)

Intel® x86/x64 Debugger | 17©1989-2024 Lauterbach

A detailed introduction into the breakpoint handling can be found in “Training Basic SMP Debugging for
Intel® x86/x64” (training_debugger_x86.pdf).

Breakpoints after Reset/Power Cycle

TRACE32 PowerView displays Unknown State in the note column of the Break.List window, if TRACE32
detects that the target is reset/re-powered and the cores immediately start the program execution. In this
case it is likely that the breakpoint settings are cleared.

Family
Onchip
Breakpoints

Instruction
Breakpoints

Read/Write
Breakpoint

Data Value
Breakpoints

Intel®
x86/x64

4 4
single address

4

Write or
Read/Write

single address or
ranges up to
8 bytes (aligned)

—

Intel® x86/x64 Debugger | 18©1989-2024 Lauterbach

Access Classes

Overview

Access Class Description

C Generic

D Data

P Program

A Absolute

AD Absolute Data

AP Absolute Program

I Intermediate

ID Intermediate Data

IP Intermediate Program

L Linear

LD Linear Data

LP Linear Program

R Real Mode

RD Real Mode Data

RP Real Mode Program

ARD Absolute Real Mode Data

ARP Absolute Real Mode Program

LRD Linear Real Mode Data

LRP Linear Real Mode Program

N Protected Mode (32-bit)

ND Protected Mode Data (32-bit)

NP Protected Mode Program (32-bit)

AND Absolute Protected Mode Data (32-bit)
Intel® x86/x64 Debugger | 19©1989-2024 Lauterbach

ANP Absolute Protected Mode Program (32-bit)

LND Linear Protected Mode Data (32-bit)

LRP Linear Protected Mode Program (32-bit)

X 64-bit Mode

XD 64-bit Mode Data

XP 64-bit Mode Program

AXD Absolute 64-bit Mode Data

AXP Absolute 64-bit Mode Program

LXD Linear 64-bit Mode Data

LXP Linear 64-bit Mode Program

O Protected Mode (16-bit)

OD Protected Mode Data (16-bit)

OP Protected Mode Program (16-bit)

AOD Absolute Protected Mode Data (16-bit)

AOP Absolute Protected Mode Program (16-bit)

LOD Linear Protected Mode Data (16-bit)

LOP Linear Protected Mode Program (16-bit)

IO IO Ports

MSR MSR Registers

CID CPUID Instruction

VMCS VMCS Registers

IOSF IOSF Sideband

Q Real Big Mode (Real Mode supporting 32-bit addresses)

QD Real Big Mode Data

QP Real Big Mode Program

AQD Absolute Real Big Mode Data

AQP Absolute Real Big Mode Program

Access Class Description
Intel® x86/x64 Debugger | 20©1989-2024 Lauterbach

LQD Linear Real Big Mode Data

LQP Linear Real Big Mode Program

E Run-time Memory Access

S System Management Mode (SMM)

SD SMM Data

SP SMM Program

SN SMM Protected Mode (32-bit)

SND SMM Protected Mode Data (32-bit)

SNP SMM Protected Mode Program (32-bit)

SX SMM 64-bit Mode

SXD SMM 64-bit Mode Data

SXP SMM 64-bit Mode Program

SO SMM Protected Mode (16-bit)

SOD SMM Protected Mode Data (16-bit)

SOP SMM Protected Mode Program (16-bit)

SQ SMM Real Big Mode (Real Mode supporting 32-bit addresses)

SQD SMM Real Big Mode Data

SQP SMM Real Big Mode Program

AS Absolute SMM

ASD Absolute SMM Data

ASP Absolute SMM Program

LS Linear SMM

LSD Linear SMM Data

LSP Linear SMM Program

G VMX Guest Mode

H VMX Host Mode

CSS Current value of CS

Access Class Description
Intel® x86/x64 Debugger | 21©1989-2024 Lauterbach

D:, P:

The D: prefix refers to the DS segment register and the P: prefix to the CS segment register. Both D: and P:
memory classes access the same memory. It is not possible to split program and data memory. Real Mode
or Protected Mode (16, 32 or 64-bit) addressing is chosen dependent on the current processor mode.

A:, AD:, AP:

Absolute addressing. The address parameter specifies the absolute address thus disregarding
segmentation and paging. It is possible to use “A” as a prefix to most other memory classes.

DSS Current value of DS

SSS Current value of SS

ESS Current value of ES

FSS Current value of FS

GSS Current value of GS

Data.Set P:0x0--0x0ffff 0x0 ; fill program memory with zero

Data.Set 0x0--0x0ffff 0x0 ; fill data memory with zero

Data.Set 0x100 0x0 ; set location DS:0x100 to 0

Data.Assemble 0x100 nop ; assemble to location CS:0x100

Data.Assemble 0x0--0x0fff nop ; fill program memory with nop
; instruction

Data.Set A:0x12000 0x33 ; write to absolute address 0x12000 in
; program/data memory

Data.dump AD:0x12000 ; displays absolute address 0x12000
; from data memory

Access Class Description
Intel® x86/x64 Debugger | 22©1989-2024 Lauterbach

I:, ID:, IP:

Intermediate addressing. This memory class is used in connection with virtualization. It corresponds to the
guest physical address, i.e., disregards segmentation and paging of the guest, but does not disregard
possible second level paging done by the host (use A: for that).

L:, LD:, LP:

Linear addressing. The address parameter specifies the linear address thus disregarding segmentation but
not paging. It is possible to use “L” as a prefix to most other memory classes.

R:, RD:, RP:

Real Mode addressing.

Data.Set I:0x12000 0x33 ; write to guest absolute address
; 0x12000 in program/data memory

Data.dump ID:0x12000 ; displays guest absolute address
; 0x12000 from data memory

Data.Set L:0x12000 0x33 ; write to linear address 0x12000 in
; program/data memory

Data.dump LD:0x12000 ; displays absolute address 0x12000
; from data memory

Data.Set R:0x1234:0x5678 ; write to Real Mode address 0x1234:0x5678

Data.Set R:0x100 ; write to Real Mode address DS:0x100
Intel® x86/x64 Debugger | 23©1989-2024 Lauterbach

N:, ND:, NP:

Protected Mode (32-bit) addressing. (“N” is for Normal.)

X:, XD:, XP:

64-bit Mode addressing. (“X” is for eXtended.)

O:, OD:, OP:

Protected Mode (16-bit) addressing. (“O” is for Old.)

Q:, QD:, QP:

Big Real Mode addressing. Real Mode (16-bit opcodes), supporting 32-bit addresses.
See SYStem.Option.BIGREALmode ON for details.

Data.Set N:0x0f0:0x5678 ; write to Protected Mode address 0x5678 of
; selector 0x0f0

Data.dump ND:0x12345678 ; display memory at Protected Mode address
; DS:0x12345678

Data.List NP:0x0C000000 ; disassemble memory in 32-bit mode at
; Protected Mode address CS:0x0C000000

Data.dump XD:0x0000123456789ABC ;display memory at 64-bit Mode
;linear address 0x0000123456789ABC

Data.List OP:0x4321 ; disassemble memory in 16-bit mode at
; Protected Mode address CS:0x4321

Data.Set
Q:0x1234:0x5678ABCD

; write to 32-bit Big Real Mode address
0x1234:0x5678ABCD

Data.Set Q:0x10008000 ; write to 32-bit Big Real Mode address
DS:0x10008000
Intel® x86/x64 Debugger | 24©1989-2024 Lauterbach

IO:

Access IO ports.

MSR:

Accesses MSR registers. The address format is as follows:

Data.Out IO:0xCF8 %long 0xF ; output 32-bit value 0xF at IO port
; 0xCF8

Bits Meaning

23-0 MSR[23-0]

27-24 MSR[31-28]

31-28 Ignored

Data.dump msr:0x0 ; display MSR registers starting with
; MSR register 0

Data.dump msr:0x0C000080 ; display MSR registers starting with
; MSR register 0xC0000080
Intel® x86/x64 Debugger | 25©1989-2024 Lauterbach

CID:

Return CPUID values. The address format is as follows:

VMCS:

Access virtual-machine control data structures (VMCSs). The “address” to be used with this memory class
is the corresponding field encoding of an VMCS component.

Bits Meaning

 1-0 Return Register
(0=EAX, 1=EBX, 2=ECX, 3=EDX)

 3-2 Ignored

14-4 EAX[10-0]

15 EAX[31]

29-16 ECX[13-0]

31-30 Ignored

Data.dump cid:0x0 ; display CPUID values starting with
; initial EAX value 0x0

Data.dump cid:0x8020 ; display CPUID values starting with
; initial EAX value 0x80000002

Data.In cid:0x20041 ; return EBX CPUID value with initial
; EAX value 0x4 and initial ECX value
; 0x2

Data.In VMCS:0x6C00 ; display the host CR0 VMCS component
Intel® x86/x64 Debugger | 26©1989-2024 Lauterbach

IOSF:

Access IOSF sideband.

The address format uses a “<segment>:<offset>“ syntax, where the “segment” is 16 bits, and the “offset” 64
bits:

IOSF:<8-bit Opcode><8-bit PortID>:<8-bit FID><4-bit BAR><4-bit Reserved><48-bit Address>

“Segment” part:

“Offset” part:

Bits Meaning

 7-0 Port ID

15-8 Opcode

Bits Meaning

47-0 Address

51-48 Reserved

55-52 BAR

63-56 FID

Data.In IOSF:0x0608:3C /long ; Read IOSF sideband with opcode 0x06,
; port ID 0x08 and address 0x3C.
; (FID and BAR are both 0)

Data.Set IOSF:0x0608:3C %long
0xdeadbeef

; Write IOSF sideband with opcode 0x06,
; port ID 0x08 and address 0x3C.
; (FID and BAR are both 0)

Data.In
IOSF:0x0608:0xFF701234567890A
B /long

; Read IOSF sideband with opcode 0x06,
; port ID 0x08, FID 0xFF, BAR 0x7 and
; address 0x1234567890AB
Intel® x86/x64 Debugger | 27©1989-2024 Lauterbach

E:

Run-time memory access. This access class must be used for any kind of run-time memory access (be it
intrusive or non-intrusive). For that, “E” can be used as a prefix to every other access class.

S:, SD:, SP:, SN:, SND:, SNP:, SX:, SXD:, SXP:, SO:, SOD:, SOP:, SQ:, SQD:, SQP: SR:

The “S” prefix refers to System Management Mode. All these access classes behave like the corresponding
ones without the “S” only that they refer to SMM memory instead of normal memory.

G:, GD:, GP:, GN:, GND:, GNP:, GX:, GXD:, GXP:, GO:, GOD:, GOP:, GQ:, GQD:, GQP:
GS:, GSD:, GSP:, GSN:, GSND:, GSNP:, GSX:, GSXD:, GSXP:, GSO:, GSOD:, GSOP:, GSQ:, GSQD:,
GSQP: GSR:

When the VMX mode of the target is enabled, TRACE32 indicates the affiliation of logical or linear
addresses with the VMX Guest mode by adding the prefix “G” to the access class.

H:, HD:, HP:, HN:, HND:, HNP:, HX:, HXD:, HXP:, HO:, HOD:, HOP:, HQ:, HQD:, HQP:
HS:, HSD:, HSP:, HSN:, HSND:, HSNP:, HSX:, HSXD:, HSXP:, HSO:, HSOD:, HSOP:, HSQ:, HSQD:,
HSQP: HSR:

When the VMX mode of the target is enabled, TRACE32 indicates the affiliation of logical or linear
addresses with the VMX Host mode by adding prefix “H” to the access class.

Data.dump END:0x12345678 ; display memory at Protected Mode
; address DS:0x12345678 during run-time

Data.dump ASD:0x3f300000 ; display SMM memory at absolute
; address 0x3f300000

Data.dump GD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Guest
; mode

Data.dump HD:0x2a000000 ; display data memory of address
; 0x2a000000 belonging to VMX Host
; mode
Intel® x86/x64 Debugger | 28©1989-2024 Lauterbach

Segment register aliases CSS:, DSS:, SSS:, ESS:, FSS:, GSS:

These are not real access classes but aliases which allow to modify the segment descriptor of an address. If
one of these six identifiers precedes an address, the value of segment register CS, DS, SS, ES, FS or GS
will be used as descriptor in the address.

These aliases are of use only if you want to work directly with segment based addressing in real or protected
mode. Note that SYStem.Option.MEMoryMODEL must be set to LARGE to support segmentation to its
fullest extent in protected mode.

Example: Let’s assume the processor is in protected mode and the segment register FS contains the value
0x18 which is a 32-bit data segment. We want to write to an address with offset 0x12000, using FS as
segment register.

Data.Set FSR:0x12000 0x33 ; write 0x33 to address FSR:0x12000.
; Effectively, this will use 0x18 as
; segment descriptor.
; (If we are in protected mode and FS
; is a 32-bit data segment) you could
; alternatively use
; Data.Set ND:0x18:0x12000 0x33
; ^ FS contains 0x18

Data.dump SSR:0x12000 ; display memory at SSR:0x12000

NOTE: To avoid confusion with the access classes ES: and GS:, all six segment
selector identifiers have been renamed from CS:, DS:, ES:, FS:, GS:, SS: to
CSS:, DSS:, ESS:, FSS:, GSS:, SSS: as of TRACE32 build 75425 - DVD
09/2016.

• Prefix ES: indicates an unspecific (non-program and non-data) dual-port
memory accesses in System Management Mode.

• Prefix GS: indicates an unspecific system management memory access
in VMX Guest Mode.
Intel® x86/x64 Debugger | 29©1989-2024 Lauterbach

Memory Model

The Intel® x86 memory model describes the way the debugger considers the six segments CS (code
segment), DS (data segment), SS (stack segment), ES, FS and GS and the usage of the LDT (local
descriptor table) for the current debug session.

A further introduction into the concept of x86 memory models can be found in the Intel® software
developer’s manual (please refer to the chapter describing segments in protected mode memory
management).

TRACE32 supports a number of memory models when working with addresses and segments: LARGE,
FLAT, ProtectedFLAT, LDT and SingleLDT. Activating the space IDs with SYStem.Option.MMUSPACES
ON will override any other selected memory model. TRACE32 now behaves as if the memory model FLAT
is selected and additionally uses space IDs in the address to identify process-specific address spaces (see
SYStem.Option.MMUSPACES for more details).

Effect of the Memory Model on the Debugger Operation

In protected mode, the address translation of x86 processors support segment translation and paging (if
enabled). Segment translation cannot be disabled in hardware. If the TRACE32 address translation is
enabled (TRANSlation.ON, TRANSlation.TableWalk ON), the same translation steps are executed when
the debugger performs a memory access to protected mode addresses.

The values loaded into base, limit and attribute of the segment registers CS, DS, ES, FS, GS and SS
depend on the code being executed and how it makes use of the segments. Setup of the segment registers
is an essential step in loading executable code into memory. Choosing the appropriate TRACE32 memory
model adjusts the segment register handling on the debugger side to the segment register handling on the
software side.

For this purpose, TRACE32 offers six memory models. The memory model affects:

• The TRACE32 address format

• Whether or not segment information is used when the debugger accesses memory

• Whether a LDT descriptor is used to dynamically fetch code and data segments from the local
descriptor table LDT when the debugger accesses memory

• The way how the segment base and limit values are evaluated when an address is translated
from a protected mode address into a linear and/or physical address

• The way the segment attribute information such as code or data width (16/32/64 bit) is evaluated
when code or data memory is accessed

For a more detailed description of the memory models supported by TRACE32, see
SYStem.Option.MEMoryMODEL.
Intel® x86/x64 Debugger | 30©1989-2024 Lauterbach

Selecting the Memory Model

After reset, the TRACE32 memory model LARGE is enabled by default. Use one of the following commands
to select a different TRACE32 memory model for the current debug session:

1. SYStem.Option.MEMoryMODEL

2. SYStem.Option.MMUSPACES

3. Data.LOAD - When loading an executable file, specify one of these command options FLAT,
ProtectedFLAT, SingleLDT, LDT, or LARGE to select the TRACE32 memory model you want to
apply to the executable.

The PRACTICE function SYStem.Option.MEMoryMODEL() returns the name of the currently enabled
memory model.

Segmentation

TRACE32 allows to work with segments, both in real and in protected mode. If the debugger address
translation is enabled with TRANSlation.ON, real mode or protected mode addresses will be translated to
linear addresses. If paging is enabled on the target and the TRACE32 table walk mechanism is enabled with
TRANSlation.TableWalk ON, the linear addresses will finally be translated to physical addresses.

Segment translation by TRACE32 is only supported if SYStem.Option.MEMoryMODEL is set to one of
these settings: LARGE, ProtectedFLAT, LDT, SingleLDT. For a description of these option, see
SYStem.Option.MEMoryMODEL. The default option LARGE, selected after SYStem.Up, is suitable for
most debug scenarios where segment translation is used.

Protected mode addresses can be recognized by one of these access classes:

• X:, XD:, XP: (64-bit protected mode)

• N:, ND:, NP: (32-bit protected mode)

• O:, OD:, OP: (16-bit protected mode)

If no segment descriptor is given for such an address, the descriptor from the code segment register (CS)
will be augmented to program addresses, and the segment descriptor from the data segment register (DS)
will be augmented to data addresses. The command MMU.view can be used to view the current settings of
the six segment registers CS, DS, ES, FS, GS, and SS. The augmented segment descriptor is shown as
part of the address.

During segment translation of a protected mode address, TRACE32 will extract the segment descriptor from
the address and search for it in the six segment registers CS, DS, ES, FS, and GS. If found, the stored
values of the segment shadow register (base, limit and attribute) will be used for the linear translation of the
protected mode address. Else, a descriptor table walk will be performed through the global descriptor table

PRINT SYStem.Option.MEMoryMODEL() ;print the name of the memory model
 ;to the TRACE32 message line
Intel® x86/x64 Debugger | 31©1989-2024 Lauterbach

GDT, provided the register GDTB (global descriptor table base) points to a valid GDT in memory. If found,
the base, limit, and attribute from the GDT entry will be used for the translation. If the address’ segment
descriptor is not found in the GDT, or the GDT entry is not suitable for the translation of the given address
type, the protected mode address cannot be translated to a linear address by TRACE32.

It is possible to explicitly enforce one of the six segment registers CS, DS, ES, FS, GS or SS to be used for
the segment translation of an address. This can be accomplished by specifying the segment register instead
of a protected mode access class. Use one of the segment register identifiers CSS:, DSS:, ESS:, FSS:,
GSS: or SSS: therefore.

Example: The address in this Data.dump command will use the segment descriptor of segment register FS
instead of the default segment descriptor from segment register DS.

Platform Controller Hub (PCH)

All Intel® client/server platforms have a Platform Controller Hub (PCH) separate from the CPU. This section
describes selection and usage of the PCH in TRACE32. How to select the PCH - and when it is necessary -
depends on the usage model and the physical debug port.

There are three types of physical debug ports on Intel® client/server platforms:

1. Separate CPU debug port (no access to the PCH)

2. Separate PCH debug port (no access to the CPU)

3. Merged CPU/PCH debug port (access to both CPU and PCH)

Note that most Atom based platforms do not have a separate PCH. For such platforms, most information in
this section does not apply.

In the following the three main usage models are described.

Data.dump FSS:0xa7000

NOTE: TRACE32 will not perform segment translation at if the processor is in 64-bit
mode (IA-32e mode). Further, no segment translation is performed for 64-bit
protected mode addresses (addresses with access class X:, XD:, XP:). If no
segment translation is performed, protected mode addresses are translated directly
to linear addresses, disregarding the segment descriptor of the address.

This mimics the behavior of the processor, which treats the segment base
registers as zero and performs no segment limit checks if the IA-32e mode
(64-bit mode) is enabled.
Intel® x86/x64 Debugger | 32©1989-2024 Lauterbach

Debugging a CPU only

When debugging the CPU only, it is normally not required to select a PCH (but see “PCH Selection for
CPU Debug on a Merged Debug Port”, page 34), and it is advisable to set SYStem.PCH NONE. This is
the default setting, so it only needs to be set if it has been changed earlier in the debug session.

This setup is applicable to both a separate CPU debug port and a merged CPU/PCH debug port.

Debugging a PCH only

When debugging the PCH only, it is necessary to select NONE for the CPU.

This setup is applicable to both a separate PCH debug port and a merged CPU/PCH debug port.

Debugging a CPU and a PCH

Systems Using a Merged Debug Port

When debugging a system with the CPU and the PCH on a single merged debug port, it is possible to
control both through a single instance of TRACE32. To do so, you must select both the CPU and the PCH:

Note, with this combined CPU/PCH setup, low-level JTAG shifts can only be made to the CPU from the
TRACE32 instance. To make low-level JTAG shifts to the PCH, the merged debug port system must be
handled by TRACE32 as having two separate debug ports, see “Systems Using Separate Debug Ports”,
page 34.

SYStem.PCH NONE ; there is no PCH
SYStem.CPU <cpu>
SYStem.Option.MultiCoreWhiskers A0 ; select CPU whisker/TCK if needed

SYStem.PCH <pch>
SYStem.CPU NONE ; there is no CPU
SYStem.Option.MultiCoreWhiskers D1 ; select PCH whisker/TCK if needed

SYStem.PCH <pch>
SYStem.CPU <cpu>
SYStem.Option.MultiCoreWhiskers A0 ; select CPU whisker/TCK if needed
; do not select any PCH whisker/TCK
; TCK1 of the CPU whisker is automatically chosen as PCH whisker
Intel® x86/x64 Debugger | 33©1989-2024 Lauterbach

Systems Using Separate Debug Ports

When debugging a system with the CPU and the PCH on separate debug ports, you must start two
separate instances of TRACE32. The 1st instance must be set up as described in “Debugging a CPU
only”, page 33, and the 2nd instance must be set up as described in “Debugging a PCH only”, page 33.
Additionally, the 2nd instance must include the command:

PCH Selection for CPU Debug on a Merged Debug Port

There are several cases where it is necessary to select the PCH, even when the main intention is to debug
only the CPU on a merged debug port:

• When using a DCI debug port instead of a dedicated Intel XDP60 or Intel MIPI60 debug port.
This is because the DCI engine on the target is located in the PCH. For more information on DCI
usage, see “Debugging via Intel® DCI User´s Guide” (dci_intel_user.pdf).

• When the target has a PMODE signal, as PMODE is controlled by the PCH. For more
information, see SYStem.Option.RESetDetection.

• When wanting to debug a core in the PCH concurrently with the main CPU. In this case the core
in the PCH must be debugged as a slave in a multicore setup, see “Slave Core Debugging”,
page 34.

For all these cases the setup described in “Systems Using a Merged Debug Port”, page 33, must be
used.

Slave Core Debugging

Following the steps in the Quick Start Section, TRACE32 is set up and attached to an Intel® platform. With
these steps, you can debug the main application CPU of the platform. All cores of the main CPU are typically
handled in a single TRACE32 instance as an SMP setup. Beside the main application CPU cores, there
could be other, often special purpose cores, integrated on the same platform. These are called slave cores

in TRACE32 terminology. On Intel® client/server platforms, slave cores can also exist in the PCH. This
section describes the steps needed to debug slave cores.

Each slave core requires a dedicated TRACE32 instance in addition to the instance for the main application
CPU cores, i.e., an AMP multicore setup is needed. We call the TRACE32 instance that handles the main
application CPU cores the master debugger and the TRACE32 instance that handles a slave core the slave
debugger. TRACE32 also supports simultaneous debugging of multiple slave cores using multiple slave
debuggers.

A salve cores is first characterized by its core type. Make sure the TRACE32 executable that matches the
core type is installed, for example t32mx86 for a 32-bit x86 slave core. Then, if the an SoC integrates
multiple slave cores of the same type, TRACE32 needs to know exactly which core your want to debug. This
is done by assigning each slave core an SOC ID, which is unique to cores of the same type. If there is just
one core of a certain core type, the corresponding ID is always 0.

In general, debugging a slave core consists of 3 steps introduced in the sections below.

SYStem.CONFIG.Slave off
Intel® x86/x64 Debugger | 34©1989-2024 Lauterbach

Start Master Debugger

The master debugger must be started before any slave. In the master debugger, follow the Quick Start
Section to set up the CPU type. If you need to debug a slave core in the PCH, make sure to configure the
PCH type as well (see section Platform Controller Hub).

The master debugger must be set to at least Prepare mode before you can debugging any slave core. If the
master debugger remains in Down or NoDebug mode, the debug port is disabled and no access to the
slave core is possible.

Locating the Slave Core

To find out the ID for a slave core if there is more than one core of that type, use the following command in
the master debugger.

A window will open with a column showing the SOC ID associated with each TAP of the platform, including

both CPU and PCH. Please consult your Intel® support to know if a slave core exists behind a certain TAP
and which core type it is.

Note that the SoC ID assignment is valid only for a given CPU and PCH configuration. If you change the
CPU or PCH selection in the master debugger, the SOC ID may become different for the same slave core. In
this case please re-run this command to get the up-to-date IDs. The following example shows the SOC ID
assignment for difference configurations, considering a system that contains 2 x86 slave cores in the CPU
and 1 in the PCH.

• CPU only

• PCH only

SYStem.DETECT CLTapchain

SYStem.CPU <cpu_name>
SYStem.PCH NONE
;SOC ID assignment:
;slave core 1 in CPU -> 0
;slave core 2 in CPU -> 1
;slave core in PCH -> N/A

SYStem.CPU NONE
SYStem.PCH <pch_name>
;SOC ID assignment:
;slave core 1 in CPU -> N/A
;slave core 2 in CPU -> N/A
;slave core in PCH -> 0
Intel® x86/x64 Debugger | 35©1989-2024 Lauterbach

• CPU+PCH

Starting the Slave Debugger

In the next step, start the TRACE32 executable that matches the slave core type and do the following setup
in the slave debugger:

The command SYStem.Option.IntelSOC is essential for the slave debugger setup. It indicates TRACE32 to
locate the slave core in the master SoC according to its ID, instead of to treat it as a stand-alone core. If there
is just one core in the SOC of the chosen core type, the SOC ID argument can be left out.

Note that slave cores in Intel® platforms are often protected by security features. A suitable security setting is

often needed before such a core can be debugged. Please consult your Intel® support to check how to get
access to the slave core you are interested in.

SYStem.CPU <cpu_name>
SYStem.PCH <pch_name>
;SOC ID assignment:
;slave core 1 in CPU -> 0
;slave core 2 in CPU -> 1
;slave core in PCH -> 2

SYStem.CPU <slave_core_type>
SYStem.Option.IntelSOC ON <soc_id>
;do other slave core specific settings if necessary
SYStem.Mode.Attach
Intel® x86/x64 Debugger | 36©1989-2024 Lauterbach

CPU specific JTAG.CONFIG Commands

JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals

Using the JTAG.CONFIG command group, you can change electrical characteristics of MIPI-60 debug
signals to account for target irregularities.

Availability of these commands is dependent on the Debug probe hardware in use.

Many of these commands allow specifying individual whiskers. Multiple whiskers may be selected.
Specifying no whiskers indicates that the characteristics of all possible whiskers will be altered.

JTAG.CONFIG.DRiVer Set slew rate of JTAG signals

Default: Fast.

Selects whether to use a series inductor to slow the slew rate of output signals.

Format: JTAG.CONFIG.DRiVer.<signal> Fast | Slow [/<whisker>]

<signal>: all | TCK | TCK0 | TCK1 | TMS | TDI | nTRST | nPREQ

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

all Set rate for all relevant signals.

TCK
TCK0
TCK1
TMS
TDI
nTRST
nPREQ

Set rate only for selected signal.

FAST Use direct drive of selected signals.

SLOW Insert inductor on drive of selected signals to limit voltage change rate.
Intel® x86/x64 Debugger | 37©1989-2024 Lauterbach

JTAG.CONFIG.PowerDownTriState Automatically tristate outputs

Default: ON.

Enables or disables the automatic setting of all signals to tristate when a power down state of the target is
detected.

JTAG.CONFIG.TckRun Free-running TCK mode
[build 143356 - DVD 09/2022]

Default: OFF.

Enables free-running TCK mode for the respective TCK signal.

JTAG.CONFIG.TDOEdge Select TCK edge

Default: RISING

Selects which edge of TCK signal is used for reading TDO.

Format: JTAG.CONFIG.PowerDownTriState ON | OFF [/<whisker>]

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Format: command.subcommand OFF | TCK0 | TCK1 [/<whisker>]

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Format: JTAG.CONFIG.TDOEdge Rising | Falling [/<whisker>]

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD
Intel® x86/x64 Debugger | 38©1989-2024 Lauterbach

JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages

Default: 600mV

Sets voltage threshold to use for determining active state for selected Hook signals.

Format: JTAG.CONFIG.Voltage.HooKTHreshold.<signal> <source> [/<whisker>]
 [ON | OFF]

<signal>: all | Hook0 | Hook6 | Hook8 | Hook9

<source>: AUTO
<voltage>

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

all Set threshold for all Hook input signals.

Hook0
Hook6
Hook8
Hook9

Set threshold for selected Hook input signal only.

AUTO Use threshold derived from reference voltage.

<voltage> Value in volts to use as threshold.
Intel® x86/x64 Debugger | 39©1989-2024 Lauterbach

JTAG.CONFIG.Voltage.REFerence Set reference voltage source

Default: AUTO.

Selects source to use for reference voltage.

JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages

Default: AUTO.

Sets the voltage threshold to use for determining active state for selected JTAG signals.

Format: JTAG.CONFIG.Voltage.REFerence <source>

<source>: AUTO
<voltage>

AUTO Use reference voltage supplied from target system.

<voltage> Use specified value in volts as reference voltage.

Format: JTAG.CONFIG.Voltage.THreshold.<signal> <source> [/<whisker>]

<signal>: all | TDO | PRDY

<source>: AUTO
<voltage>

<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

all Set threshold for TDO and PRDY.

TDO
PRDY

Set threshold for only selected signal.

AUTO Use threshold derived from reference voltage.

<voltage> Value in volts to use as threshold.
Intel® x86/x64 Debugger | 40©1989-2024 Lauterbach

CPU specific SYStem.DETECT Commands

The SYStem.DETECT commands detect various configuration parameters of attached target board and
apply these parameters to TRACE32.

For information about architecture-independent SYStem.DETECT commands, refer to “General
Commands Reference Guide S” (general_ref_s.pdf).

For information about architecture-specific SYStem.DETECT commands, see command descriptions
below.

SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores

See “Locating the Slave Core”, page 35.

SYStem.DETECT.CORES Detect core/thread number

The command SYStem.DETECT.CORES detects the core number and the hyper thread status of the target
board. The setup of TRACE32 is changed accordingly.

This command requires:

• Topology configuration (with SYStem.Option.TOPOlogy)

• Whisker configuration (with SYStem.Option.MultiCoreWhiskers)

• CPU configuration (with SYStem.DETECT.CPU or SYStem.CPU)

Format: SYStem.DETECT.CLTapchain

Format: SYStem.DETECT.CORES
Intel® x86/x64 Debugger | 41©1989-2024 Lauterbach

SYStem.DETECT.HyperThreads Detect hyper thread status

The command SYStem.DETECT.HyperThreads detects the hyper thread status of the CPU. The setup of
TRACE32 is changed accordingly. This command is intended for analysis and not for target board setup.

This command requires:

• Topology configuration (with SYStem.Option.TOPOlogy)

• Whisker configuration (with SYStem.Option.MultiCoreWhiskers)

• CPU configuration (with SYStem.DETECT.CPU or SYStem.CPU)

Format: SYStem.DETECT.HyperThreads
Intel® x86/x64 Debugger | 42©1989-2024 Lauterbach

SYStem.DETECT.TARGET Fully automatic board setup

The command SYStem.DETECT.TARGET detects all required board setup parameters:

• The board topology

• The required whiskers for the detected topology

• The CPU and the PCH

• Merged debug port configuration

• The reset detection method

• The total core number for all CPUs of the target system

• The Hyperthread status

The setup of TRACE32 is changed accordingly.

Example: With SYStem.DETECT.TARGET the board setup simplifies to:

Format: SYStem.DETECT.TARGET [/<option>] [/Verbose]

<option>: Auto | CPUonly | PCHonly

<option> For a description of the options, see SYStem.DETECT.TOPOlogy.

SYStem.DETECT TARGET
; target-specific configuration e.g.:
; SYStem.Option.RESetWaitTIME <milliseconds>
SYStem.Mode Attach
Intel® x86/x64 Debugger | 43©1989-2024 Lauterbach

SYStem.DETECT.TOPOlogy Detect board topology

The command SYStem.DETECT.TOPOlogy detects:

• The board topology

• The required whiskers for the detected topology

• The CPU and the PCH

• Merged debug port configuration

• The reset detection method

The setup of TRACE32 is changed accordingly.

Format: SYStem.DETECT.TOPOlogy [/<option>] [/Verbose]

<option>: Auto | CPUonly | PCHonly

Auto • Default option
• Detects and configures TRACE32 for CPU debugging.
• Configures merged and non-merged debug ports.
• Merged debug ports: enables CPU + PCH debugging (see “Sys-

tems Using a Merged Debug Port” (debugger_x86.pdf)).

CPUonly • Detects and configures TRACE32 for CPU only debugging.
• Merged debug ports are not configured.

PCHonly Detects and configures TRACE32 for PCH only debugging.

Verbose Prints the detected topologies to the AREA window.
Intel® x86/x64 Debugger | 44©1989-2024 Lauterbach

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | COmponents | USB

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.
NOTE: In most cases, you do not need to make any settings on the Jtag
tab of the SYStem.CONFIG.state window.

COmponents Informs the debugger about the existence and interconnection of system
trace modules.

USB Informs the TRACE32 software about the configuration settings required
for debugging via a USB cable. In addition, the icons on the USB tab
display the configuration status.

For descriptions of the commands on the USB tab, see “Debugging via
USB User´s Guide” (usbdebug_user.pdf).
Intel® x86/x64 Debugger | 45©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Multicore Settings (daisy chain)

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are used to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. This information is
required for some CPUs before the debugger can be activated, e.g., by SYStem.Mode.Attach.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time.
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or
pull-down resistor, other trigger inputs need to be kept in inactive state.

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>: IRPRE <bits>
IRPOST<bits>
DRPRE <bits>
DRPOST <bits>
TriState [ON | OFF]
Slave [ON | OFF]
TAPState <state>
TCKLevel <level>

NOTE: Almost no Intel x86/x64 targets require setting any of the four parameters IRPRE,
IRPOST, DRPRE, DRPOST when using TRACE32
The configuration of the JTAG tap chain is handled automatically by the debugger
when the appropriate CPU/SoC has been selected.

NOTE: It is possible to use the command SYStem.DETECT.DaisyChain to probe the
JTAG chain for the presence and positions of TAP controllers.

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.
Intel® x86/x64 Debugger | 46©1989-2024 Lauterbach

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.
See also Daisy-Chain Example.

TriState [ON | OFF] (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port.

Slave [ON | OFF] (default: OFF) If several debuggers share the same debug port, all except
one must have this option active.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel [0 | 1] (default: 0) Level of TCK signal when all debuggers are tristated.
Intel® x86/x64 Debugger | 47©1989-2024 Lauterbach

Daisy-Chain Example

For a daisy-chain example, please refer to “Daisy-Chain Example” (general_ref_s.pdf).

TapStates

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan

5 Update-DR

6 Capture-DR

7 Select-DR-Scan

8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle

13 Update-IR

14 Capture-IR

15 Test-Logic-Reset
Intel® x86/x64 Debugger | 48©1989-2024 Lauterbach

SYStem.CORESTATES Core states overview

This command opens an overview window showing mode, state and more for each core/hyperthread of the
CPU. This information is updated every time the CPU is stopped.

Possible values in the Mode column

Format: SYStem.CORESTATES

Column Description

Curr. Currently selected core

Core Core index as numbered by the debugger

Phys. Index of physical core

Hyper. Index of hyperthread of physical core

APIC APIC ID of core

Mode Current mode of core (see below)

Prior State Indicates any special state the core is in (see below)

SMM Shows if a core is in SMM mode (indicated by “Yes”)

VMX Shows if a core is in VMX mode (indicated by “Host” or “Guest”)

NOTE: By double-clicking a line, the current core can be selected.

Mode Value Description

Inactive The core is not accessible (e.g. due to a hang)

Real The core is in real mode

Prot16 The core is in protected mode 16 bit

Prot32 The core is in protected mode 32 bit

Prot64 The core is in protected mode 64 bit
Intel® x86/x64 Debugger | 49©1989-2024 Lauterbach

Possible values in the Prior State column

Prior State Value Description

Breakpoint The core stopped due to a breakpoint

Reset The core stopped at the reset vector

SMM Entry The core stopped at SMM Entry

SMM Exit The core stopped at SMM Exit

VM Entry The core stopped at VM Entry

VM Exit The core stopped at VM Exit

Machine Check The core stopped due to a Machine Check

INIT The core stopped in the INIT state

HLT The core stopped in the HLT state

Shutdown The core stopped due to Shutdown

WFS The core stopped in the Wait-for-SIPI state

MWAIT The core stopped in an MWAIT state
Intel® x86/x64 Debugger | 50©1989-2024 Lauterbach

SYStem.CPU Select the target CPU/SOC

Selects the target CPU/SOC.

If no CPU/SOC name is provided, a window with a list of available names is opened. Note that this is not a
full list of all supported CPUs/SOCs, it only contains names of public, already launched products.

After the CPU/SOC has been selected, further target-specific settings and options can be chosen.

SYStem.JtagClock Define JTAG clock

Default: 5.0 MHz.

Selects the clock frequency of the JTAG debug interface communication.

Use the command SYStem.DETECT.JtagClock to experimentally detect the maximum possible JTAG
clock frequency for a particular setup.

SYStem.LOCK Tristate the JTAG port

Default: OFF.

When the system is locked, no access to the JTAG port will be performed by the debugger. While locked, the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the JTAG state machine remains unchanged while the system is locked.
To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG TCKLevel
must be set properly. They define the TAP state and TCK level which is selected when the debugger
switches to tristate mode.

Format: SYStem.CPU <cpu> | <soc>

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

Format: SYStem.LOCK [ON | OFF]
Intel® x86/x64 Debugger | 51©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method
.

Default: Denied.

SYStem.Mode Establish the communication with the target

Format: SYStem.MemAccess Denied | StopAndGo

Denied No x86/x64 targets support non-intrusive real-time memory access.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Prepare
Go
Attach
StandBy
Up

Down Down mode. Disconnects the debugger from the target.
If the CPU is stopped in debug mode it is forced to leave and start
running before the debugger is tristated.

NoDebug Equivalent to Down.

Prepare Resets JTAG.
This must be used before doing raw JTAG shifting. Not used for normal
debugging

Go Connects the debugger and resets the target.
Intel® x86/x64 Debugger | 52©1989-2024 Lauterbach

SYStem.Option.Address32 Use 32 bit address display only

Default: AUTO.

Attach Connects the debugger to the running target.
The state of the CPU remains unchanged.

StandBy Standby mode.
The debugger must be in this mode to handle scenarios where the target
looses power and where the debugger must react when the power
returns.
The default behavior is to stop at the reset vector, rearm onchip
breakpoints and set the CPU running again.
The default behavior can be overwritten by using
SYStem.Option.STandBYAttach, TrOnchip.Set.ColdRESet
or TrOnchip.Set.BootStall.

Up Connects the debugger, resets the target, enters debug mode and stops
the CPU at the reset vector.

NOTE: Some CPUs are not resettable via the JTAG interface, i.e., Go and/or Up
might not work for all targets.

NOTE: Standby functionality is not available for all CPUs.

Format: SYStem.Option.Address32 [ON | OFF | AUTO]
Intel® x86/x64 Debugger | 53©1989-2024 Lauterbach

This option only has an effect when in 64-bit mode. When the option is ON, a

SYStem.Option.BIGREALmode Enable Big Real mode handling

Default: OFF.

The Big Real mode makes use of the fact that the hardware address registers in the core and the MMU of
x386 and newer CPUs can hold 32 bit addresses, even if the CPU is in real mode. If
SYStem.Option.BIGREALmode is enabled and the processor is in real mode, TRACE32 uses 32-bit
addresses and 16-bit real-mode opcodes. The current PC is reported with the Big Real mode access class
QP: instead of the real mode access class RP:

In Big Real mode, as in protected mode, the address extension (the first number in addresses like
P:0x00A0:0x8000) specifies a descriptor and not a segment offset. This descriptor must be one of the 6
existing segment descriptors shown in the MMU.view window for CS, DS, ES, FS, GS or SS. Specifying a
segment descriptor other than CS, DS, ES, FS, GS or SS will fail because in real mode there is no descriptor
table walk.

ON All addresses are truncated to 32 bit. The high 32 bits of a 64-bit address are
not shown when the address is displayed, and when an address is entered
the high 32 bits are ignored (thereby effectively being set to zero).

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.

NOTE: The actual memory access mode is NOT affected by this option.

Format: SYStem.Option.BIGREALmode [ON | OFF]

NOTE: The command takes effect only if the processor is in real mode.

ON SYStem.Option.BIGREALmode ON switches from the real mode to the
Big Real mode. TRACE32 now works with 32-bit addresses (instead of 16
bit real-mode addresses). Opcodes are decoded as 16-bit real mode
opcodes. The processor itself continues to be in real mode.

OFF If the processor is in real mode and SYStem.Option.BIGREALmode is
OFF, TRACE32 works only with real-mode addresses and 16-bit offsets.
Intel® x86/x64 Debugger | 54©1989-2024 Lauterbach

In Big Real mode, the TRACE32 debugger address translation will add the code segment base CSB (for
program addresses) or data segment base DSB (for data addresses) to the address offset. In contrast, if
SYStem.Option.BIGREAL is disabled, CSB or DSB will be ignored during the debugger address
translation and the segment offset will be multiplied by 16 and added to the address offset instead.

SYStem.Option.BranchSTEP Enables branch stepping

Default: OFF.

If enabled, the debugger changes the behavior of normal single stepping to “single stepping on branches”:
Only taken branches are visited when stepping.

SYStem.Option.BreakDELAY Set max. break delay

Default: 500 ms.

Sets the max. break delay during which the debugger attempts to stop the CPU cores.

Increasing the break delay might help stop the CPU cores in certain power down scenarios, for example.

SYStem.Option.C0Hold Hold CPU in C0 state

Default: OFF.

If enabled, the CPU is being held in the C0 state. In C0 the CPU is fully powered all the time. The CPU does
not enter any power-saving modes and no peripherals are powered down.

Format: SYStem.Option.BranchStep [ON | OFF]

Format: SYStem.Option.BreakDELAY <ms>

Format: SYStem.Option.C0Hold [ON | OFF]
Intel® x86/x64 Debugger | 55©1989-2024 Lauterbach

SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections

Default: OFF.

When enabled, debug redirections are ignored by the debugger. This means that onchip breakpoints and
most onchip triggers will not be functional.

This option is available for special handling if the target program needs to react to the debug redirections
itself.

SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure

Default: OFF.

When enabled, the debugger ignores all other TAPs in the SoC and considers just the plain x86 core. This
option is typically used in early design phases to verify the x86 core in FPGA, for example.

To debug a plain x86 core, select an SoC that contains this type of core and enable this option.

SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections

Default: OFF.

When enabled, SW breakpoint redirections are ignored by the debugger. This means that SW breakpoints
will not be functional.

This option is available for special handling if the target program needs to react to the SW breakpoint
redirections itself.

Format: SYStem.Option.IGnoreDEbugReDirections [ON | OFF]

NOTE: SW breakpoints in the debugger are still functional even if this option is enabled.

Format: SYStem.Option.IGnoreSOC [ON | OFF]

Format: SYStem.Option.IGnoreSWBPReDirections [ON | OFF]
Intel® x86/x64 Debugger | 56©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

SYStem.Option.InstrSUBmitFOrcePHYSicalPRDY Use physical PRDY

Default: OFF.

If enabled, the debugger forces usage of the physical PRDY pin for checking completion of instruction
submissions in Probe Mode even if SYStem.Option.JTAGOnly ON.

SYStem.Option.InstrSUBmitIGnorePHYSicalPRDY Ignore physical PRDY

Default: OFF.

If enabled, the debugger ignores the physical PRDY pin for checking completion of instruction submissions
in Probe Mode. A fixed delay is used instead, see SYStem.Option.InstrSUBmitTimeout

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]

Format: SYStem.Option.InstrSUBmitFOrcePHYSicalPRDY [ON | OFF]

Format: SYStem.Option.InstrSUBmitIGnorePHYSicalPRDY [ON | OFF]
Intel® x86/x64 Debugger | 57©1989-2024 Lauterbach

SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission

Default: 2000 us.

Sets the timeout for instruction submission completion checking in Probe Mode. If no PRDY response has
been registered within the time range, an error is issued in TRACE32. Note that a PRDY response can refer
to either physical PRDY, virtual PRDY or RCM PRDY.

In the case that a mode is used which does not use PRDY at all (e.g., SYStem.Option.JTAGDirectCPU
ON), the timeout value is used as a fixed delay after each instruction submission instead.

SYStem.Option.IntelSOC Slave core is part of Intel® SoC

Default: OFF.

Used for AMP multicore debugging to inform the slave debugger that the core is part of an Intel® SoC. When
enabled, all IR and DR pre/post settings are handled automatically, no manual configuration is necessary.

The usage requires that the TRACE32 instance is slave in a multicore setup with a TRACE32 x86 master
debugger. For more details, see “Slave Core Debugging”, page 34.

Format: SYStem.Option.InstrSUBmitTimeout <us>

Format: SYStem.Option.IntelSOC [ON | OFF] [<soc_id>]

<soc_id> An integer ID used by TRACE32 to identify a specific core in an SOC if
there is more than one core of the same type. This ID is platform specific.
For more details, see “Slave Core Debugging”, page 34.
Default: 0.
Intel® x86/x64 Debugger | 58©1989-2024 Lauterbach

SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs

Default: CPU dependent.

If enabled, the debugger talks directly to the CPU TAPs. If disabled, the debugger uses other JTAG-only
methods to control the CPU (virtual PREQ/PRDY, RCM).

It is recommended to use the default setting unless special cases require otherwise.

Not all targets support SYStem.Option.JTAGDirectCPU OFF

SYStem.Option.JTAGOnly Use only JTAG signals

Default: CPU dependent.

If enabled, the debugger uses only the five JTAG signals (TCK,TMS,TDI,TDO,TRST) for controlling the
target. If disabled, the debugger also uses extra non-JTAG signals (PREQ,PRDY, ...).

It is recommended to use the default setting unless special cases require otherwise.

Not all targets support SYStem.Option.JTAGOnly OFF

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

Format: SYStem.Option.JTAGDirectCPU [ON | OFF]

NOTE: This option is only relevant when SYStem.Option.JTAGOnly ON

Format: SYStem.Option.JTAGOnly [ON | OFF]

Format: SYStem.Option.MACHINESPACES [ON | OFF]
Intel® x86/x64 Debugger | 59©1989-2024 Lauterbach

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

• Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

• The debugger address translation (MMU and TRANSlation command groups) can be individually
configured for each virtual machine.

• Individual symbol sets can be loaded for each virtual machine.

SYStem.Option.MEMoryMODEL Define memory model

Default: LARGE (Multi-Segment Model).

Selects the memory model TRACE32 uses for code and data accesses. The memory model describes how
the CS (code segment), DS (data segment), SS (stack segment), ES, FS and GS segment registers are
currently used by the processor.

The command SYStem.Option.MMUSPACES ON will override the setting of
SYStem.Option.MEMoryMODEL with the memory model MMUSPACES.

The selection of the memory model affects the following areas:

• The way TRACE32 augments program or data addresses with information from the segment
descriptors. Information augmented is the segment selector, offset, limit and access width.

• The TRACE32 address format

• The way TRACE32 handles segments when the debugger address translation is enabled
(TRANSlation.ON).

Format: SYStem.Option.MEMoryMODEL <model>

<model>: LARGE | FLAT | LDT | SingleLDT | ProtectedFLAT
Intel® x86/x64 Debugger | 60©1989-2024 Lauterbach

LARGE

This is the default memory model. It is enabled after reset. This memory model is used if the application
makes use of the six segment registers (CS, DS, ES, FS, GS, SS) and the global descriptor table (GDT)
and/or the local descriptor table (LDT).

TRACE32 supports GDT and LDT descriptor table walks in this memory model. If a TRACE32 address
contains a segment descriptor and the specified segment descriptor is not present in any of the six
segments CS, DS, ES, FS, GS or SS, TRACE32 will perform a descriptor table walk through the GDT or the
LDT to extract the descriptor information and apply it to the address.

Access classes of program and data addresses will be augmented with information from the CS and DS
segments.

Segment translation is used in TRACE32 address translation. See also Segmentation.

TRACE32 addresses display the segment selector to the left of the address offset. The segment selector
indicates the GDT or LDT segment descriptor which is used for the address.

Example address: NP:0x0018:0x0003F000

LDT

This memory model should be selected if a LDT is present and the debugger uses multiple entries from it.
TRACE32 addresses contain a LDTR segment selector specifying the LDT entry which applies to an
address.

Access classes of program and data addresses will be augmented with the information specified by the
LDTR segment selector.

Segment translation is used in TRACE32 address translation.

TRACE32 addresses display three numeric elements:

• The 16-bit LDTR segment selector used pointing to the LDT for the address

• The 16-bit CS (for program addresses) or DS (for data addresses) segment selector, extracted
from the LDT

• The 16-bit address offset

Example address: NP:0x0004:0x0018:0x8000

SingleLDT

This memory model should be selected if a LDT is present but the debugger works with only one single LDT
entry. The LDT is not used to differentiate addresses.

Access classes of program and data addresses will be augmented with information from the CS (for
program addresses) or DS (for data addresses) segment.

Segment translation is used in TRACE32 address translation.
Intel® x86/x64 Debugger | 61©1989-2024 Lauterbach

TRACE32 addresses display the segment selector to the left of the address offset.

Example address: NP:0x001C:0x0003F000

ProtectedFLAT

Use this memory model to only apply segment translation and limit checks for the segments CS and DS.
The segment register contents are kept constant. Consequently, TRACE32 addresses contain no segment
descriptor because no descriptor table walk is used to reload the segment registers.

Access classes of addresses are not augmented with segment information.

TRACE32 addresses display only the access class and the address offset.

Example address: NP:0x0003F000

Segment translation is used in TRACE32 address translation for limit checking. Accesses to program
addresses use the CS segment, accesses to data addresses use the DS segment.

FLAT

This memory model is used if segmentation plays no role for an application and memory management
makes use of paging only.

Segments are ignored, no segment translation is performed. Accesses to program and data addresses are
treated the same.

Example address: NP:0x0003F000

MMUSPACES

This memory model can only be enabled with the command SYStem.Option.MMUSPACES ON.

The memory model MMUSPACES is used if TRACE32 works with an OS Awareness and memory space
identifiers (space IDs). Space IDs are used in addresses to identify process-specific address spaces.

Segments are ignored, no segment translation is performed.

TRACE32 addresses display a 16-bit memory space identifier to the left of the address offset.

Example address: NP:0x29A:0x0003F000
Intel® x86/x64 Debugger | 62©1989-2024 Lauterbach

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

NOTE: The command SYStem.Option.MMUSPACES ON overrides the command
SYStem.Option.MEMoryMODEL.
Intel® x86/x64 Debugger | 63©1989-2024 Lauterbach

SYStem.Option.MultiCoreWhiskers Server board whisker setup

Configures the required whiskers for server boards. It can more than one whisker be selected, e.g:
SYStem.Option.MultiCoreWhiskers A0 A1.

SYStem.Option.NoDualcoreModule Disable dualcore module support

Default: OFF if the CPU supports dual core modules. ON if the CPU does not support dual core modules.

If Dual Core Module support is disabled in the CPU, this option must be enabled.

It is required to use this option before attaching to the target, that is, before using the SYStem.Mode.Attach
or SYStem.Mode.Up commands.

Format: SYStem.Option.MultiCoreWhiskers A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1

A0 Whisker A, TCK0

A1 Whisker A, TCK1

B0 Whisker B, TCK0

B1 Whisker B, TCK1

C0 Whisker C, TCK0

C1 Whisker C, TCK1

D0 Whisker D, TCK0

D1 Whisker D, TCK1

Format: SYStem.Option.NoDualcoreModule [ON | OFF]
Intel® x86/x64 Debugger | 64©1989-2024 Lauterbach

SYStem.Option.NoHyperThread Disable HyperThreading support

Default: OFF if the CPU supports hyper threading. ON if the CPU does not support hyper threading

If HyperThreading is disabled in the CPU, this option must be enabled.

It is required to use this option before attaching to the target, that is, before using the SYStem.Mode.Attach
or SYStem.Mode.Up commands.

SYStem.Option.NoIPAdjust Do not adjust IP at reset vector

Default: OFF

Some CPUs, in some scenarios, do not initialize the instruction pointer correctly at the reset/INIT vector. To
give a consistent user experience, the debugger by default forces the correct initialization in such cases.

An advanced user can disable the forced adjustment by setting this option to ON.

SYStem.Option.NoReBoot Disable watchdog causing reboot

Default: ON.

On some targets a watchdog timer causes a power cycle or a warm/cold reset if no forward progress is
detected in the FW/BIOS.

To avoid such a target reboot (e.g., when stopping at the reset vector), if this option is enabled, the debugger
will disable the watchdog timer if possible.

Format: SYStem.Option.NoHyperThread [ON | OFF]

Format: SYStem.Option.NoIPAdjust [ON | OFF]

Format: SYStem.Option.NoReBoot [ON | OFF]
Intel® x86/x64 Debugger | 65©1989-2024 Lauterbach

SYStem.Option.OSWakeupTIME Set the OS wake up time

Default 20ms.

Sets a wait time after a break, to wake up an operating system from sleep states.

SYStem.Option.PC10MODE Wake up target from package C10

Default: OFF.

Enables the flow to wake up target system from package C10 low power mode for debugging. This feature is
target dependent and is not available for all Intel platforms.

SYStem.Option.PreserveDRX Preserve DRx resources

Default: OFF.

If enabled, prevents other software from touching debug resources, including flags, debug registers (DRx),
pending debug exceptions.

SYStem.Option.PreserveLBR Preserve LBR resources

Default: OFF.

If enabled, prevents other software from touching LBR resources.

Format: SYStem.Option.OSWakeupTIME <milliseconds>

Format: SYStem.Option.PC10MODE [ON | OFF]

Format: SYStem.Option.PreserveDRX [ON | OFF]

Format: SYStem.Option.PreserveLBR [ON | OFF]
Intel® x86/x64 Debugger | 66©1989-2024 Lauterbach

SYStem.Option.ProbeModeNOSaveRestore No save/restore

Default: OFF.

When enabled, the debugger does not carry out the state save/restore flow when entering/existing Probe
Mode.

This option is only to be used for initial testing on slow emulation/simulation setups.

Format: SYStem.Option.ProbeModeNOSaveRestore [ON | OFF]
Intel® x86/x64 Debugger | 67©1989-2024 Lauterbach

SYStem.Option.ProbeModeONDEmand On demand save/restore

Default: OFF.

When enabled, the debugger carries out the state save/restore flow for each thread only on demand when in
Probe Mode.

On demand means that only when registers, memory, etc. are being accessed through a given thread, will
the state save/restore flow for that thread be carried out. Such a thread is then said to have been visited.

An important restriction compared to the normal save/restore handling applies: Onchip breakpoints can only
be set for threads that have been visited. Due to this restriction, "Break.IMPLementation.Program SOFT" is
automatically executed when enabling this option to enforce the use of SW breakpoints in the default case.

This option is meant for use for servers with many cores to speed up the total Probe Mode entry/exit time.

SYStem.Option.PWRCycleTime Set power cycle time

Default: CPU dependent (typical: 3000ms).

Sets the time between power off and power on for the command SYStem.POWER CYCLE.

SYStem.Option.PWROFFTime Set power off assertion time

Default: CPU dependent (typical: 6000ms).

Sets the maximum assertion time for “Power Button” signal (hook2) to power off the system.

Format: SYStem.Option.ProbeModeONDEmand [ON | OFF]

Format: SYStem.Option.PWRCycleTime <milliseconds>

Format: SYStem.Option.PWROFFTime <milliseconds>
Intel® x86/x64 Debugger | 68©1989-2024 Lauterbach

SYStem.Option.PWRONTime Set power on assertion time

Default: CPU dependent (typical: 1000ms).

Sets the maximum assertion time for “Power Button” signal (hook2) to power on the system. If the system
has not powered on, it will wait for PWRONWaitTime.

SYStem.Option.PWRONWaitTime Set power on time

Default: CPU dependent (typical: 3000ms).

Sets the maximum wait time after assertion of “Power Button” signal (hook2) to power on the system.

SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset

Default: OFF.

When enabled, if a (warm) reset happens, the debugger attempts to stop at the reset vector, rearm onchip
breakpoints and set the CPU running again.

SYStem.Option.REL Relocation register
[build 130480 - DVD 09/2021]

REL option must be set to the same value the user program write to the REL register.

The adjusted I/O base address can be read back with the functions IOBASE() and IOBASE.ADDRESS().
They return the offset or the complete address (offset and access mode) for the I/O area.

Format: SYStem.Option.PWRONTime <milliseconds>

Format: SYStem.Option.PWRONWaitTime <milliseconds>

Format: SYStem.Option.ReArmBreakPoints [ON | OFF]

Format: SYStem.Option.REL <value>
Intel® x86/x64 Debugger | 69©1989-2024 Lauterbach

SYStem.Option.RESetDELAY Set reset delay

Default: CPU dependent (typical: 200ms)

Sets the reset delay during which the debugger attempts to stop the CPU cores at the reset vector for the
command SYStem.Up and the onchip trigger TrOnchip.Set RESet ON.

Increasing the break delay might help stop the CPU cores at the reset vector for certain platforms.

SYStem.Option.RESetDetection Select reset detection source

Default: See below

Selects the reset detection source used by TRACE32.

For more on selecting a PCH, see “Platform Controller Hub (PCH)”, page 32.

Format: SYStem.Option.RESetDELAY <milliseconds>

Format: SYStem.Option.RESetDetection OFF | HOOK | PMODE

OFF Ignore reset indications from the platform.
This setting should be used if the platform does not have any reset
indication or if the reset indication signal is not supported by TRACE32.
This is the default if a PCH has been selected which has a reset
indication signal not supported by TRACE32.

HOOK Use the classical HOOK reset pin for reset indication.
This is the default if no PCH has been selected.

PMODE Use the PMODE signal for reset indication.
Usage of PMODE as reset detection source requires the selection of a
PCH with supported PMODE.
This is the default value if a PCH has been selected which has a reset
indication signal supported by TRACE32.
Intel® x86/x64 Debugger | 70©1989-2024 Lauterbach

SYStem.Option.RESetMode Select reset method

Default: WARM.

Used to select if a warm or a cold reset should happen when using SYStem.Mode Go or SYStem.Up.

This option does not have an effect for all targets.

SYStem.Option.RESetTIME Set reset assertion time

Default: CPU dependent (typical: 200ms)

Sets the reset assertion time for the commands SYStem.Mode Go and SYStem.Up.

SYStem.Option.RESetWaitTIME Set reset input wait time

Default: CPU dependent (typical: 200ms)

Sets the maximum wait time for the reset signal from the target after reset assertion with the commands
SYStem.Mode Go and SYStem.Up.

If the target system has a reset_i signal (hook 6) and no reset input signal was detected during
RESetTime+RESetWaitTIME, a warning will be displayed.

Format: SYStem.Option.RESetMode WARM | COLD

Format: SYStem.Option.RESetTIME <milliseconds>

Format: SYStem.Option.RESetWaitTIME <milliseconds>

reset_o (hook 7)

reset_i (hook 6)

preq

RESetTIME RESetWaitTIME ResetDELAY WatchDogWaitTIME
Intel® x86/x64 Debugger | 71©1989-2024 Lauterbach

For the command SYStem.Up RESetWaitTIME controls the preq assertion:

• On systems without reset input (hook 6), preq will be asserted after RESetWaitTIME to halt the
target at the reset vector

• On systems with reset input (hook 6), preq will be asserted as soon a reset input assertion from
the target is detected. If no reset input assertion is detected, SYStem.Up aborts with an error.

See also: SYStem.Option.RESetTIME for timing diagram.

SYStem.Option.S0Hold Hold SoC in S0 state

Default: OFF.

If enabled, the SoC is being held in the S0 state. The CPU is still free to use its C states. See also
SYStem.Option.C0Hold. This option does not have an effect for all targets.

SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint

Default: OFF.

When enabled, this option forces the debugger to use only 32-bit memory access when patching code with
the software breakpoint instruction.

SYStem.Option.STandBYAttach In standby mode, only attach to target

Default: ON.

Format: SYStem.Option.S0Hold [ON | OFF]

Format: SYStem.Option.SOFTLONG [ON | OFF]

NOTE: MAP.BUS8 / BUS16 / BUS32 (used for restricting general memory access to the
given width) does NOT influence the access width used for patching code with the
software breakpoint instruction. So if MAP.BUS32 is used for a code memory
range, this option must be enabled for SW breakpoints to work as well.

Format: SYStem.Option.STandBYAttach [ON | OFF]
Intel® x86/x64 Debugger | 72©1989-2024 Lauterbach

When enabled, this option changes the behavior of the Standby mode (see SYStem.Mode): The debugger
does not attempt to stop at the reset vector, but instead just attaches to the running CPU.

SYStem.Option.STandBYAttachDELAY Delay after standby

Default: 20ms.

When power returns in Standby mode (see SYStem.Mode) and SYStem.Option.STandBYAttach ON, this
options sets the delay before the automatic SYStem.Mode.Attach is carried out.

SYStem.Option.STepINToEXC Step into interrupt or exception handler

Default: OFF.

When enabled, this option allows the debugger to step into interrupt and exception handlers. This is not
supported on older CPUs.

SYStem.Option.TOPOlogy Select server board topology

Selects the server board topology.

Format: SYStem.Option.STandBYAttachDELAY <milliseconds>

Format: SYStem.Option.STepINToEXC [ON | OFF]

Format: SYStem.Option.TOPOlogy 1X1 | 1X2 | 2X1 | 2X2

1X1 1 CPU

1X2 2 CPUs (1 JTAG chain with 2 CPUs)

2X1 2 CPUs (2 JTAG chains with 1 CPU each)

2X2 4 CPUs (2 JTAG chains with 2 CPUs each)
Intel® x86/x64 Debugger | 73©1989-2024 Lauterbach

SYStem.Option.WatchDogWaitTIME Set the reset watch dog time

Default: CPU dependent (typical: 2ms)

Sets the wait time for disabling the watch dog after a reset break with the command SYStem.Up or the
onchip trigger TrOnchip.Set RESet ON.

See also: SYStem.Option.RESetTIME for timing diagram.

SYStem.Option.WFSMemAccess Allow WFS memory access

Default: OFF

When a core is in the Wait-For-SIPI (WFS) state, the debugger by default inhibits memory access through
that particular core. This is because the instruction pointer might not be initialized correctly by the CPU. This
could lead to illegal memory accesses which in the worst case could crash the platform.

An advanced user can allow WFS memory access by setting this option to ON.

SYStem.Option.WHISKER Select a whisker

Selects a whisker on debug probes, which supports more than one JTAG chain (e.g. QuadProbe). It is
mainly intended to temporarily select a whisker in the system mode “Down” for commands like
SYStem.DETECT.CPU.

Format: SYStem.Option.WatchDogWaitTIME <milliseconds>

Format: SYStem.Option.WFSMemAccess [ON | OFF]

Format: SYStem.Option.WHISKER A0 | A1 | B0 | B1 | C0 | C1 | D0 | D1

A0 Whisker A, TCK0

A1 Whisker A, TCK1

B0 Whisker B, TCK0

B1 Whisker B, TCK1
Intel® x86/x64 Debugger | 74©1989-2024 Lauterbach

 The selected whisker may be changed by the debugger, when not in system mode “Down”.

SYStem.Option.ZoneSPACES Enable symbol management for zones
[Examples]

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets are used for the
following CPU operation modes:

• VMX host mode (access class H: and related access classes)

• VMX guest mode (access class G: and related access classes)

• System management mode (access class S: and related access classes)

• Normal (non-system management mode)

Within TRACE32, these CPU operation modes are referred to as zones.

In each CPU operation mode (zone), the CPU uses separate MMU translation tables for memory accesses
and separate register sets. Consequently, in each zone, different code and data can be visible on the same
logical address.

C0 Whisker C, TCK0

C1 Whisker C, TCK1

D0 Whisker D, TCK0

D1 Whisker D, TCK1

Format: SYStem.Option.ZoneSPACES [ON | OFF]

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

OFF TRACE32 does not separate symbols by access class. Loading two or more
symbol sets with overlapping address ranges will result in unpredictable
behavior. Loaded symbols are independent of the CPU mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.
Intel® x86/x64 Debugger | 75©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES ON

SYStem.Option.ZoneSPACES is set to ON for two typical use cases:

• Debugging of virtualized systems. Typically separate symbol sets are used for the VMX host
mode and the VMX guest mode. The symbol sets are loaded to the access classes H: (host
mode) and G: (guest mode).

• Debugging of system management mode (SMM). The CPU typically enters and leaves the SMM,
so loading separate symbol sets for the SMM and the normal mode are helpful. Symbols valid for
the SMM zone use SMM access classes. SMM access classes are preceded by the letter S
(such as SND:, SNP:, SXD:, SXP:). Symbols valid for the normal mode zone use access classes
which are not preceded by the letter S (such as ND:, NP:, XD:, XP:).

If SYStem.Option.ZoneSPACES is ON, TRACE32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which zone the memory address belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the addresses’ access class.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

Examples

Example 1: Use SYStem.Option.ZoneSPACES for VMX host and guest debugging.

SYStem.Option.ZoneSPACES ON

; 1. Load the Xen hypervisor symbols for the VMX host mode
; (access classes H:, HP:and HD: are used for the symbols):
Data.LOAD.ELF xen-syms H:0x0 /NoCODE

; 2. Load the vmlinux symbols for the VMX guest mode
; (access classes G:, GP: and GD: are used for the symbols):
Data.LOAD.ELF vmlinux G:0x0 /NoCODE

; 3. Load the sieve symbols without specification of a target access
; class:
Data.LOAD.ELF sieve /NoCODE
; Assuming that the current CPU mode is VMX host mode in this example,
; the symbols of sieve will be assigned the access classes H:, HP:
; and HD: during loading.
Intel® x86/x64 Debugger | 76©1989-2024 Lauterbach

Example 2: Use SYStem.Option.ZoneSPACES for system management mode (SMM) debugging.

SYStem.PCH Select the target PCH

Default: NONE.

Selects the target PCH.

For more information, see “Platform Controller Hub (PCH)”, page 32.

SYStem.POWER Control target power

If supported by the target, this command turns the target power ON (if off), OFF (if on), or does a power
CYCLE (if on).

SYStem.Option.ZoneSPACES ON

; 1. Load the symbols for non-SMM (normal) mode
; (32 bit protected mode access classes N:, NP: and ND:):
Data.LOAD.ELF bootloader N:0x0 /NoCODE

; 2. Load the symbols for the SMM mode
; (32 bit protected mode access classes SN:, SNP: and SND:):
Data.LOAD.ELF smmdriver SN:0x0 /NoCODE

Format: SYStem.PCH <pch> | NONE

Format: SYStem.POWER [ON | OFF | CYCLE]
Intel® x86/x64 Debugger | 77©1989-2024 Lauterbach

SYStem.STALLPhase Set system into stall phase

Sets the target system into the selected stall phase (if supported). It should be used only if the system has
already entered SoC/PCH Bootstall. Use SYStem.Mode.Attach to leave the stall phases completely.

SYStem.StuffInstruction Submit instruction to CPU in probe mode

This command can be used to submit an assembler instruction (<mnemonic>) to the CPU in Probe Mode.

The <address> is a "dummy" address used only to decide the instruction size. This means that just either
"O:0", "N:0" or "X:0" can be used as <address> to determine if 16, 32 or 64 bit instruction size, respectively.

SYStem.StuffInstructionRead Submit instruction and read

This command is like SYStem.StuffInstruction but where PDRL and PDRH are read after issuing the
instruction. The PDR values can be retrieved afterwards using the functions SYStem.ReadPDRL() and
SYStem.ReadPDRH().

Format: SYStem.STALLPhase <stall_phase> | NEXT

NEXT Sets the system to the next stall phase supported by your target.

Format: SYStem.StuffInstruction <address> <mnemonic>

Format: SYStem.StuffInstructionRead <address> <mnemonic>
Intel® x86/x64 Debugger | 78©1989-2024 Lauterbach

SYStem.TIMINGS Display timings window

Opens the SYStem.TIMINGS window, which gives an overview of all configurable timing settings related to
target debugging. The values shown below are the default settings.

Format: SYStem.TIMINGS

A To change any value, simply edit the window field directly or use the corresponding command, e.g.,
SYStem.TIMINGS.BreakDELAY 1000. or the equivalent SYStem.Option.BreakDELAY 1000.

See the corresponding SYStem.Option for descriptions of the timing settings, e.g.,
SYStem.Option.BreakDELAY.

A

Intel® x86/x64 Debugger | 79©1989-2024 Lauterbach

Command Groups for Special Registers

The command groups for special registers are documented in the general_ref_<x>.pdf manuals. For more
information, click the blue hyperlinks.

AVX Command group for the AVX registers (Advanced Vector Extension)

AVX512 Command group for the AVX512 registers (Advanced Vector Extension)

MMX Command group for the MMX registers (MultiMedia eXtension)

SSE Command group for the SSE registers (Streaming SIMD Extension)
Intel® x86/x64 Debugger | 80©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>] [/<option>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display
a page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: dis-

plays the translation table of the specified process and/or machine
• else, this command displays the table the CPU currently uses for

MMU translation.

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.
Intel® x86/x64 Debugger | 81©1989-2024 Lauterbach

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

MACHINE
<machine_magic> |
<machine_id> |
<machine_name>

The following options are only available if
SYStem.Option.MACHINESPACES is set to ON.

Dumps a page table of a virtual machine. The MACHINE option applies
to PageTable and KernelPageTable and some <cpu_specific_tables>.

The parameters <machine_magic>, <machine_id> and
<machine_name> are displayed in the TASK.List.MACHINES window.

Fulltranslation For page tables of guest machines both the intermediate address and the
physical address is displayed in the MMU.DUMP window.

The physical address is derived from a table walk using the guest’s
intermediate page table.
Intel® x86/x64 Debugger | 82©1989-2024 Lauterbach

CPU specific Tables in MMU.DUMP <table>

Examples for Page Tables in Virtualized Systems

Example 1:

EPT Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

GDT
MMU.GDT (deprecated)

Displays the contents of the Global Descriptor Table.

IDT
MMU.IDT (deprecated)

Displays the contents of the Interrupt Descriptor Table.

LDT
MMU.LDT (deprecated)

Displays the contents of the Local Descriptor Table.

IntermedPageTable Displays the Intermediate Page Table (IPT). The IPT is the translation
table used by the TRACE32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.

When the VMX mode is not enabled or not available on a CPU, an
IPT can be specified using the command
MMU.FORMAT <format> <ipt_base_address> /Intermediate

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_id>
MMU.DUMP.PageTable /MACHINE 2.

; <machine_name>
MMU.DUMP.PageTable /MACHINE "Dom0"
Intel® x86/x64 Debugger | 83©1989-2024 Lauterbach

Example 2:

Example 3:

SYStem.Option.MACHINESPACES ON

; your code to load Hypervisor Awareness and define guest machine setup.

; <machine_name>:::<task_name>
MMU.DUMP.TaskPageTable "Dom0:::swapper"

SYStem.Option.MACHINESPACES ON

;your code to load Hypervisor Awareness and define guest machine setup.

;a) dumps the current guest page table of the current machine, showing
; the intermediate addresses.
; Without the option /Fulltranslation the column "physical" is hidden.
MMU.DUMP.PageTable 0x400000

;b) With the option /Fulltranslation the intermediate addresses
; are translated to physical addresses and shown in column "physical"
MMU.DUMP.PageTable 0x400000 /Fulltranslation

;c) dumps the current page table of machine 2
; <machine_id>
MMU.DUMP.PageTable /MACHINE 2. /Fulltranslation
Intel® x86/x64 Debugger | 84©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.
In contrast to MMU.DUMP, multiple consecutive page table entries with identical page attributes are listed as
a single line, showing the total mapped address range.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
 [/<option>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process or a specific
machine if a space ID and/or a machine ID is given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID and/or machine ID: list

the translation table of the specified process and/or machine
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.
Intel® x86/x64 Debugger | 85©1989-2024 Lauterbach

CPU specific Tables in MMU.List <table>

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

<option> For description of the options, see MMU.DUMP.

EPT Displays the contents of the Extended Page Table (EPT).
The EPT is used for VMX guest mode translations.

IntermedPageTable Displays the Intermediate Page Table (IPT). The IPT is the translation table
used by the TRACE32 debugger address translation to translate
intermediate addresses to physical addresses when
SYStem.Option.MACHINESPACES is set to ON.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.

When the VMX mode is not enabled or not available on a CPU, an IPT
can be specified using the command
MMU.FORMAT <ipt_base_address> /Intermediate
Intel® x86/x64 Debugger | 86©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>] [/<option>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL
<cpu_specific_tables>

<option>: MACHINE <machine_magic> | <machine_id> | <machine_name>
Fulltranslation

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID and/or machine ID: loads

the translation table of the specified process and/or machine
• else, this command loads the table the CPU currently uses for

MMU translation.

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
table of the kernel and copies its address translation into the debugger-
internal static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static
translation table.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.
Intel® x86/x64 Debugger | 87©1989-2024 Lauterbach

CPU specific Tables in MMU.SCAN <table>

MMU.Set Set MMU register

Assigns <value> to an MMU <register>.

ALL Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the
debugger-internal static translation table.
See also the appropriate OS Awareness Manual.

<option> For description of the options, see MMU.DUMP.

EPT Loads the translation entries of the Extended Page Table to the
debugger-internal static translation table.

GDT Loads the Global Descriptor Table from the CPU to the debugger-internal
static translation table.

GDTLDT Loads the Global and Local Descriptor Table from the CPU to the
debugger-internal static translation table.

LDT Loads the Local Descriptor Table from the CPU to the debugger-internal
static translation table.

IntermedPageTable Loads the Intermediate Page Table (IPT) into the debugger-internal static
translation table. The IPT is the translation table used by the TRACE32
debugger address translation to translate intermediate addresses to
physical addresses when SYStem.Option.MACHINESPACES ON is set.

If the CPU’s VMX mode is enabled, the IPT is identical to the EPT.

When the VMX mode is not enabled or not available on a CPU, an IPT
can be specified using command
MMU.FORMAT <ipt_base_address> /Intermediate

Format: MMU.Set <register> <value>
Intel® x86/x64 Debugger | 88©1989-2024 Lauterbach

CPU specific TrOnchip Commands - Onchip Triggers

TrOnchip.PrintList Print possible onchip triggers

Prints a list of Onchip Triggers available for this architecture. These are the legal values for use in the
TrOnchip.IsSet() and TrOnchip.IsAvailable() functions.

TrOnchip.RESet Reset settings to defaults

Resets the TrOnchip settings to their default values.

TrOnchip.Set Break on event

TrOnchip.Set.BootStall Enter bootstall

Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger enters SoC/PCH Bootstall (if supported by the SoC/PCH).

Format: TrOnchip.PrintList

Format: TrOnchip.RESet

NOTE: TRACE32 cannot activate the selected settings while the program execution is
running.

Format: TrOnchip.Set.BootStall [ON | OFF]
Intel® x86/x64 Debugger | 89©1989-2024 Lauterbach

Example:

TRACE32 indicates successful Bootstall mode entry as follows:

• bootstall is displayed in the Debug field of the TRACE32 state line.

• The current mode of the debugger is Prepare (StandBy).

After finishing operations in Bootstall mode, it can be left by one of the following commands (thereby
returning the debugger to normal debug mode operation):

• SYStem.Attach: Leave bootstall and let the target boot normally from reset.

• SYStem.Mode Go: Leave bootstall and let the target boot normally from reset.

• SYStem.Up: Leave bootstall and stop the CPU at the reset vector.

SYStem.Mode StandBy ; Prepare TRACE32 to enter bootstall
; mode on the next power cycle

TrOnchip.Set.BootStall ON

; power off SoC/PCH

; power on SoC/PCH
Intel® x86/x64 Debugger | 90©1989-2024 Lauterbach

TrOnchip.Set.C6Exit Break on C6 exit

Default: OFF.

If enabled, the program execution is stopped when a C6 Exit happens.

TrOnchip.Set.ColdRESet Break on cold reset

Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger stops the CPU at the reset vector (if supported by the SoC/PCH).

Example:

TrOnchip.Set.CpuBootStall Enter CPU bootstall

Default: OFF.

If enabled, this trigger changes the default behavior of the Standby mode (see SYStem.Mode) as follows:
After a power cycle, the debugger enters CPU Bootstall (if supported by the CPU).

An example of how to use this feature is given in the description of the command TrOnchip.Set.BootStall.

Format: TrOnchip.Set.C6Exit [ON | OFF]

Format: TrOnchip.Set.ColdRESet [ON | OFF]

SYStem.Mode StandBy ; Prepare TRACE32 to stop the CPU
; at the reset vector after a power
; cycleTrOnchip.Set ColdRESet ON

Format: TrOnchip.Set.CpuBootStall [ON | OFF]
Intel® x86/x64 Debugger | 91©1989-2024 Lauterbach

TrOnchip.Set.ENCLU Break on ENCLU event

Default: OFF.

If enabled, the program execution is stopped when an ENCLU event happens.

TrOnchip.Set.GeneralDetect Break on general detect

Default: OFF.

If enabled, the program execution is stopped when a General Detect exception happens.

TrOnchip.Set.INIT Break on init

Default: OFF.

If enabled, the program execution is stopped when a processor INIT happens.

TrOnchip.Set.MachineCheck Break on machine check

Default: OFF.

If enabled, the program execution is stopped when a Machine Check exception happens.

Format: TrOnchip.Set.ENCLU [ON | OFF]

Format: TrOnchip.Set.GeneralDetect [ON | OFF]

Format: TrOnchip.Set.INIT [ON | OFF]

Format: TrOnchip.Set.MachineCheck [ON | OFF]
Intel® x86/x64 Debugger | 92©1989-2024 Lauterbach

TrOnchip.Set.RESet Break on target reset

Default: OFF.

If enabled, the program execution is stopped at the reset vector when a target reset happens.

TrOnchip.Set.ShutDown Break on shutdown

Default: OFF.

If enabled, the program execution is stopped when a Shutdown occurs.

TrOnchip.Set.SMMENtry Break on SMM entry

Default: OFF.

If enabled, the program execution is stopped each time SMM is entered.

TrOnchip.Set.SMMEXit Break on SMM exit

Default: OFF.

If enabled, the program execution is stopped each time SMM is exited.

Format: TrOnchip.Set.RESet [ON | OFF]

Format: TrOnchip.Set.ShutDown [ON | OFF]

Format: TrOnchip.Set.SMMENtry [ON | OFF]

Format: TrOnchip.Set.SMMEXit [ON | OFF]
Intel® x86/x64 Debugger | 93©1989-2024 Lauterbach

TrOnchip.Set.SMMINto Step into SMM when single stepping

Default: OFF.

If enabled, if during an assembler single step an SMM interrupt happens, the debugger steps into the SMM
handler. If disabled, the debugger steps over the SMM handler.

TrOnchip.Set.TraceHub Enter/leave trace hub break

Default: OFF.

If enabled, the debugger enters Trace Hub Break next time a target reset happens. To leave Trace Hub
Break, set to OFF.

Example:

It is also possible to enter Trace Hub Break directly after leaving Bootstall mode (see
TrOnchip.Set.BootStall). Simply set to ON before.

TrOnchip.Set.VMENtry Break on VM entry

Default: OFF.

If enabled, the program execution is stopped each time a virtual machine VM entry happens.

Format: TrOnchip.Set.SMMINto [ON | OFF]

Format: TrOnchip.Set.TraceHub [ON | OFF]

TrOnchip.Set.TraceHub ON ; prepare for Trace Hub Break

; cause target reset

; target enters Trace Hub Break

TrOnchip.Set.TraceHub OFF ; leave Trace Hub Break

Format: TrOnchip.Set.VMENtry [ON | OFF]
Intel® x86/x64 Debugger | 94©1989-2024 Lauterbach

TrOnchip.Set.VMEXit Break on VM exit

Default: OFF with all control bits disabled.

If enabled, the program execution is stopped each time a virtual machine VM exit event happens for the
enabled control bits.

Format: TrOnchip.Set.VMEXit [ON | OFF | All | None | <value> | <controlbits>]

<value>: <hexadecimal> | <integer> | <binary>

<controlbits>: {<controlbit>}

<controlbit>: SWINT_EXCEPTION_NMI | EXTERNAL_INTERRUPT | TRIPLE_FAULT |
INIT | SIPI | IO_SMI | OTHER_SMI | PND_VIRT_INTERRUPT |
PND_VIRT_NMI | TASK_SWITCH | CPUID | GETSEC | HLT | INVD |
INVLPG | RDPMC | RDTSC | RSM | VMCALL | VMCLEAR |
VMLAUNCH | VMPTRLD | VMPTRST | VMREAD | VMRESUME |
VMWRITE | VMXOFF | VMXON | CR_ACCESS | DR_ACCESS | IOEXIT |
RDMSR | WRMSR | ENTRY_BADGUEST | ENTRY_BADMSR |
EXITFAULT | MWAIT | MONITOR_TRAP_FLAG | CORRUPTED_VMCS |
MONITOR | PAUSE | ENTRY_MCA | CSTATE_SMI |
TPR_BELOW_THRESHOLD | APIC_ACCESS | LEVEL_TRIG_EOI |
GDTR_IDTR_ACCESS | LDTR_TR_ACCESS | EPT_VIOLATION |
EPT_MISCONFIG | INVL_EPT | RDTSCP | VMXTIMER | INVLD_VPID |
WBINVD
Intel® x86/x64 Debugger | 95©1989-2024 Lauterbach

The TrOnchip control window is extended by the control bits:

• When VMEXit is set to ON.

• When control bits are set via the command line.

VMEXit check box:

All/None button:

ON The VM exit event is enabled and the program execution is stopped on a
VM exit. If previously no control bit was enabled then all control bits are
enabled.

OFF The VM exit event is disabled. The control bit remain unchanged.

All The VM exit event is enabled and all control bits are enabled.

None The VM exit event is disabled and all control bits are disabled.
Intel® x86/x64 Debugger | 96©1989-2024 Lauterbach

Examples:

TrOnchip.state Display onchip trigger window

Displays the TrOnchip control window.

; Trigger VM exit event on signals TRIPLE_FAULT, VMWRITE and INIT
TrOnchip.Set.VMEXit TRIPLE_FAULT VMWRITE INIT
; TrOnchip.Set.VMEXit 0x200000C
; TrOnchip.Set.VMEXit 0y10000000000000000000001100

; Enable VM exit event on all control bit signals
TrOnchip.Set.VMEXit All
;TrOnchip.Set.VMEXit 0x7FFFFFFFFFFFFF

; Disable VM exit event and clear all control bits
TrOnchip.Set.VMEXit None

Format: TrOnchip.state

If enabled, the program execution is stopped at
the specified event

If enabled, the default behavior of the command
SYStem.Mode StandBy is changed
Intel® x86/x64 Debugger | 97©1989-2024 Lauterbach

CPU specific Events for the ON and GLOBALON Command

TRACE32 can be programmed to detect CPU specific events and execute a user-defined <action> in
response to the detected <event>. The user-defined action is a PRACTICE script (*.cmm).

The following commands and CPU specific events are available:

GLOBALON <event> [<action>] Global event-controlled PRACTICE script execution.
The event is detectable during an entire TRACE32 session.

ON <event> [<action>] Event-controlled PRACTICE script execution.
The event is detectable only by a particular PRACTICE script.

CPU specific <event> Description

BOOTSTALL The target entered Bootstall.

CPUBOOTSTALL The target entered CPU Bootstall.

TRACEHUBBREAK The target entered Trace Hub Break.

PBREAKRESET The CPU stopped at the reset vector.

PBREAKVMENTRY The CPU stopped due to a VM Entry event.

PBREAKVMEXIT The CPU stopped due to a VM Exit event.

PBREAKSMMENTRY The CPU stopped due to an SMM Entry event.

PBREAKSMMEXIT The CPU stopped due to an SMM Exit event.

PBREAKGENERALDETECT The CPU stopped due to a General Detect event.

PBREAKINIT The CPU stopped due to an Init event.

PBREAKMACHINECHECK The CPU stopped due to a Machine Check event.

PBREAKSHUTDOWN The CPU stopped due to a Shutdown event.

PBREAKC6EXIT The CPU stopped due to a C6 Exit event.

PBREAKENCLU The CPU stopped due to an ENCLU event.
Intel® x86/x64 Debugger | 98©1989-2024 Lauterbach

CPU specific BenchmarkCounter Commands

The BMC (BenchMark Counter) commands provide control and usage of the x86 performance monitoring
capabilities. The benchmark counters can only be read while the target application is halted. Currently only
the pre-defined architectural performance events are supported.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.<counter> Select BMC event to count

Currently only the two generic benchmark counters PMC0 and PMC1 are supported. Each of these two
counters can count one of the seven pre-defined architectural performance events. Please see the chapter

on “Performance Monitoring” in the “Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3” for details.

BMC.<counter>.COUNT Select count mode for BMC

Default: DUR.

Selects the count mode for <counter>. In DURation mode, all cycles, where the selected event is enabled,
are counted. In EDGE mode, only rising edges of the selected event are counted.

Format: BMC.PMC0 <event>
BMC.PMC1 <event>

<event>: OFF
UCC
URC
IR
LLCR
LLCM
BIR
BMR

Format: BMC.<counter>.COUNT <mode>

<mode>: DUR | EDGE
Intel® x86/x64 Debugger | 99©1989-2024 Lauterbach

CPU specific Onchip Trace Commands

For information about architecture-independent Onchip commands, refer to “Onchip Trace Commands”
(general_ref_o.pdf).

For information about architecture-specific Onchip commands, see command descriptions below.

Onchip.Buffer Configure onchip trace source

Provides control of the architectural x86 execution trace capabilities:

• LBR (Last Branch Records)

• BTS (Branch Trace Store)

• IPT (Intel® Processor Trace)

Format: Onchip.Buffer <item>

<item>: LBR | BTS | IPT | ITH
BASE <base>
SIZE <size>
TOPA [ON | OFF]

LBR Chooses LBR as the trace source.
LBR uses onchip registers to store the last 4, 8, or 16 (CPU dependent)
taken branches/interrupts for each HW thread/core. The LBR feature is
always available.

BTS Chooses BTS as the trace source.
BTS stores BTMs (Branch Trace Messages) in a user-defined area in target
RAM for all HW threads/cores.
• BTS/BTM is not always available.
• As a rule of thumb, BTS is usually available on iCore CPUs, whereas

it is not functional on Atom CPUs.

IPT Chooses IPT (Intel® Processor Trace) as the trace source. See “Training
Intel® Processor Tracing” (training_ipt_trace.pdf).

ITH Chooses ITH (Intel® Trace Hub) as trace source.

BASE <base> Sets the base of the trace buffer to the linear address <base>.
Intel® x86/x64 Debugger | 100©1989-2024 Lauterbach

Please see the chapter on “Debugging, Profiling Branches and Timestamp Counter” in the public “Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3” for more details on LBR, BTM and BTS.

SIZE <size> Sets the size of the trace buffer to <size> bytes.

In the case of BTS, note that the buffer must be big enough to hold BTMs for
all HW threads/cores.

TOPA Enables/Disables Table Of Physical Addresses:
• OFF: Trace data will be written to default memory location or

address defined by Onchip.Buffer.Base.
• ON: Onchip.Buffer.Base points to a structure which defines the

memory output area. Please consult Intel® Processor Trace
documentation for more information.

Only applicable if Onchip.Buffer.IPT is selected!

NOTE: BTMs may not be observable on Intel Atom processor family processors that do
not provide an externally visible system bus.

NOTE: BTMs visibility is implementation specific and limited to systems with a front
side bus (FSB). BTMs may not be visible to newer system link interfaces or a
system bus that deviates from a traditional FSB.
Intel® x86/x64 Debugger | 101©1989-2024 Lauterbach

CPU specific Functions

SYStem.CoreStates.APIC()

Returns the APIC ID of the specified “virtual” core index <core>. This corresponds to the APIC column in
the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.HYPER()

Returns the hyper thread index of the specified “virtual” core index <core>. This corresponds to the
Hyper. column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.MODE()

Returns the core mode of the specified “virtual” core index <core>. This corresponds to the Mode
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

Syntax: SYStem.CoreStates.APIC(<core>)

Syntax: SYStem.CoreStates.HYPER(<core>)

Syntax: SYStem.CoreStates.MODE(<core>)
Intel® x86/x64 Debugger | 102©1989-2024 Lauterbach

SYStem.CoreStates.PHYS()

Returns the physical core index of the specified “virtual” core index <core>. This corresponds to the
Phys. column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: Decimal value.

SYStem.CoreStates.PRIOR()

Returns the prior state of the specified “virtual” core index <core>. This corresponds to the Prior State
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.CoreStates.SMM()

Returns the SMM state of the specified “virtual” core index <core>. This corresponds to the SMM
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

Syntax: SYStem.CoreStates.PHYS(<core>)

Syntax: SYStem.CoreStates.PRIOR(<core>)

Syntax: SYStem.CoreStates.SMM(<core>)
Intel® x86/x64 Debugger | 103©1989-2024 Lauterbach

SYStem.CoreStates.VMX()

Returns the VMX mode of the specified “virtual” core index <core>. This corresponds to the VMX
column in the SYStem.CORESTATES window.

Parameter Type: Decimal value.

Return Value Type: String.

SYStem.Option.MEMoryMODEL()

Returns the name of the currently enabled memory model.

Return Value Type: String.

SYStem.Option.TOPOlogy()

Returns the name of the currently selected topology (e.g. “1X2”).

Return Value Type: String.

SYStem.Option.TOPOlogy.SOCKETS()

Returns the total number of CPU sockets for the currently selected topology.

Return Value Type: Decimal value.

Syntax: SYStem.CoreStates.VMX(<core>)

Syntax: SYStem.Option.MEMoryMODEL()

Syntax: SYStem.Option.TOPOlogy()

Syntax: SYStem.Option.TOPOlogy.SOCKETS()
Intel® x86/x64 Debugger | 104©1989-2024 Lauterbach

SYStem.ReadPDRH()

Returns the PDRH value previously read with the command SYStem.StuffInstructionRead.

Return Value Type: Hex value.

SYStem.ReadPDRL()

Returns the PDRL value previously read with the command SYStem.StuffInstructionRead.

Return Value Type: Hex value.

TrOnchip.IsAvailable()
[build 73501 - DVD 09/2016]

Returns TRUE if the named Onchip trigger is available for this architecture. A list of potential values for
<trigger_name> can be generated with the TrOnchip.PrintList command.

Parameter Type: String.

Return Value Type: Boolean.

Examples:

Syntax: SYStem.ReadPDRH()

Syntax: SYStem.ReadPDRL()

Syntax: TrOnchip.IsAvailable("<trigger_name>")

PRINT TrOnchipIsAvailable("ColdRESet")
PRINT TrOnchipIsAvailable("CRES")
Intel® x86/x64 Debugger | 105©1989-2024 Lauterbach

TrOnchip.IsSet()
[build 73501 - DVD 09/2016]

Returns TRUE if the named Onchip trigger is set. A list of potential values for <trigger_name> can be
generated with the TrOnchip.PrintList command.

Parameter Type: String.

Return Value Type: Boolean.

Examples:

VMX()
[build 42354 - DVD 02/2013]

Returns TRUE if in VMX mode, FALSE otherwise.

Return Value Type: Boolean.

VMX.Guest()
[build 42354 - DVD 02/2013]

Returns TRUE if in VMX guest mode, FALSE otherwise. This function is only applicable if VMX() returns
TRUE.

Return Value Type: Boolean.

Syntax: TrOnchip.IsSet("<trigger_name>")

PRINT TrOnchip.IsSet("TraceHub")
PRINT TrOnchip.IsSet("TH")

Syntax: VMX()

Syntax: VMX.Guest()
Intel® x86/x64 Debugger | 106©1989-2024 Lauterbach

SYStem Trace Settings

For information, see “System Trace User’s Guide” (trace_stm.pdf).
Intel® x86/x64 Debugger | 107©1989-2024 Lauterbach

Connectors

JTAG Connector

This JTAG connector is a 60-pin XDP connector.

Signal Pin Pin Signal
GND 1 2 GND

PREQ- 3 4 N/C
PRDY- 5 6 N/C

GND 7 8 GND
N/C 9 10 N/C
N/C 11 12 N/C

GND 13 14 GND
N/C 15 16 N/C
N/C 17 18 N/C

GND 19 20 GND
N/C 21 22 N/C
N/C 23 24 N/C

GND 25 26 GND
N/C 27 28 N/C
N/C 29 30 N/C

GND 31 32 GND
N/C 33 34 N/C
N/C 35 36 N/C

GND 37 38 GND
PWRGOOD 39 40 N/C

N/C 41 42 N/C
VTREF 43 44 N/C

N/C 45 46 RESET-
N/C 47 48 DBR-

GND 49 50 GND
N/C 51 52 TDO
N/C 53 54 TRST-
N/C 55 56 TDI
TCK 57 58 TMS
GND 59 60 GND
Intel® x86/x64 Debugger | 108©1989-2024 Lauterbach

MIPI34 Connector

Signal Pin Pin Signal
VTREF DEBUG 1 2 TMS

GND 3 4 TCK
GND 5 6 TDO

N/C (KEY) - 8 TDI
GND 9 10 N/C
GND 11 12 N/C
GND 13 14 N/C
GND 15 16 TRST-
GND 17 18 PREQ-
GND 19 20 PRDY-
GND 21 22 PTI 0 CLK
GND 23 24 PTI 0 DATA[0]
GND 25 26 PTI 0 DATA[1]
GND 27 28 PTI 0 DATA[2]
GND 29 30 PTI 0 DATA[3]
GND 31 32 N/C
GND 33 34 VTREF TRACE
Intel® x86/x64 Debugger | 109©1989-2024 Lauterbach

MIPI60-C Connector

MIPI60 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 No Connect

HOOK[6]=Reset In 7 8 10 kOhm to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE

PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[0]

PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 PTI_1_DATA[4]/PTI_2_DATA[0]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5]/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6]/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_0_DATA[7] 33 34 HOOK[7]=Reset Out

PTI_0_DATA[8]/PTI_3_DATA[0] 35 36 HOOK[3]=Boot Stall
PTI_0_DATA[9]/PTI_3_DATA[1] 37 38 HOOK[2]=CPU Boot Stall

PTI_0_DATA[10]/PTI_3_DATA[2] 39 40 HOOK[1]=Power Button
PTI_0_DATA[11]/PTI_3_DATA[3] 41 42 HOOK[0]=PWRGOOD
PTI_0_DATA[12]/PTI_3_DATA[4] 43 44 HOOK[5]
PTI_0_DATA[13]/PTI_3_DATA[5] 45 46 HOOK[4]
PTI_0_DATA[14]/PTI_3_DATA[6] 47 48 I2C_SCL
PTI_0_DATA[15]/PTI_3_DATA[7] 49 50 I2C_SDA

TCK1 51 52 GND
TRIG_INOUT 53 54 DBG_UART_TX

TRIG_IN 55 56 DBG_UART_RX
GND 57 58 GND

PTI_3_CLK 59 60 PTI_2_CLK
Intel® x86/x64 Debugger | 110©1989-2024 Lauterbach

Not all pins of the Intel® MIPI60 connector are connected to the CombiProbe Intel x86/x64 MIPI60-C. The
connected pins are displayed with their name on a gray background in the picture below.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 Open Drain Reset Out

Reset In 7 8 No Connect
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VREF_TRACE

PTI_0_CLK 13 14 PTI_1_CLK
GND 15 16 GND

No Connect 17 18 PTI_1_DATA[0]
PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 No Connect
PTI_0_DATA[4] 27 28 No Connect
PTI_0_DATA[5] 29 30 No Connect
PTI_0_DATA[6] 31 32 No Connect
PTI_0_DATA[7] 33 34 Reset Out

No Connect 35 36 Boot Stall
No Connect 37 38 CPU Boot Stall
No Connect 39 40 Power Button
No Connect 41 42 PWRGOOD
No Connect 43 44 No Connect
No Connect 45 46 No Connect
No Connect 47 48 I2C_SCL
No Connect 49 50 I2C_SDA
No Connect 51 52 No Connect
No Connect 53 54 DBG_UART_TX
No Connect 55 56 DBG_UART_RX

GND 57 58 GND
No Connect 59 60 No Connect
Intel® x86/x64 Debugger | 111©1989-2024 Lauterbach

MIPI60-Cv2 Connector

Converged MIPI60 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 HOOK[7]=Reset Out

HOOK[6]=PMODE/Reset In 7 8 10 kOHM to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE

PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[0]

PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 PTI_1_DATA[4]/PTI_2_DATA[0]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5]/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6]/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_0_DATA[7] 33 34 No Connect

PTI_0_DATA[8]/PTI_3_DATA[0] 35 36 HOOK[3]=Boot Stall
PTI_0_DATA[9]/PTI_3_DATA[1] 37 38 HOOK[2]=CPU Boot Stall

PTI_0_DATA[10]/PTI_3_DATA[2] 39 40 HOOK[1]=Power Button
PTI_0_DATA[11]/PTI_3_DATA[3] 41 42 HOOK[0]=PWRGOOD
PTI_0_DATA[12]/PTI_3_DATA[4] 43 44 No Connect
PTI_0_DATA[13]/PTI_3_DATA[5] 45 46 No Connect
PTI_0_DATA[14]/PTI_3_DATA[6] 47 48 I2C_SCL
PTI_0_DATA[15]/PTI_3_DATA[7] 49 50 I2C_SDA

TCK1 51 52 No Connect
HOOK[9] 53 54 DBG_UART_TX
HOOK[8] 55 56 DBG_UART_RX

GND 57 58 GND
PTI_3_CLK 59 60 PTI_2_CLK
Intel® x86/x64 Debugger | 112©1989-2024 Lauterbach

Not all pins of the Converged MIPI60 connector are connected to the CombiProbe Intel x86/x64
MIPI60-Cv2. The connected pins are displayed with their name on a gray background in the picture below.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 Reset Out

PMODE/Reset In 7 8 No Connect
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VREF_TRACE

PTI_0_CLK 13 14 PTI_1_CLK
GND 15 16 GND
GND 17 18 PTI_1_DATA[0]

PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 No Connect
PTI_0_DATA[4] 27 28 No Connect
PTI_0_DATA[5] 29 30 No Connect
PTI_0_DATA[6] 31 32 No Connect
PTI_0_DATA[7] 33 34 No Connect

No Connect 35 36 Boot Stall
No Connect 37 38 CPU Boot Stall
No Connect 39 40 Power Button
No Connect 41 42 PWRGOOD
No Connect 43 44 No Connect
No Connect 45 46 No Connect
No Connect 47 48 I2C_SCL
No Connect 49 50 I2C_SDA

TCK1 51 52 reserved by TRACE32
HOOK[9] 53 54 DBG_UART_TX
HOOK[8] 55 56 DBG_UART_RX

GND 57 58 GND
No Connect 59 60 No Connect
Intel® x86/x64 Debugger | 113©1989-2024 Lauterbach

MIPI60-Q Connector

Converged MIPI60 target pinout specified by Intel®.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 HOOK[7]=Reset Out

HOOK[6]=PMODE/Reset In 7 8 10 kOHM to GND
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VTREF_TRACE

PTI_0_CLK 13 14 PTI_1_CLK
POD_PRESENT1_N 15 16 GND
POD_PRESENT2_N 17 18 PTI_1_DATA[0]

PTI_0_DATA[0] 19 20 PTI_1_DATA[1]
PTI_0_DATA[1] 21 22 PTI_1_DATA[2]
PTI_0_DATA[2] 23 24 PTI_1_DATA[3]
PTI_0_DATA[3] 25 26 PTI_1_DATA[4]/PTI_2_DATA[0]
PTI_0_DATA[4] 27 28 PTI_1_DATA[5]/PTI_2_DATA[1]
PTI_0_DATA[5] 29 30 PTI_1_DATA[6]/PTI_2_DATA[2]
PTI_0_DATA[6] 31 32 PTI_1_DATA[7]/PTI_2_DATA[3]
PTI_0_DATA[7] 33 34 No Connect

PTI_0_DATA[8]/PTI_3_DATA[0] 35 36 HOOK[3]=Boot Stall
PTI_0_DATA[9]/PTI_3_DATA[1] 37 38 HOOK[2]=CPU Boot Stall

PTI_0_DATA[10]/PTI_3_DATA[2] 39 40 HOOK[1]=Power Button
PTI_0_DATA[11]/PTI_3_DATA[3] 41 42 HOOK[0]=PWRGOOD
PTI_0_DATA[12]/PTI_3_DATA[4] 43 44 No Connect
PTI_0_DATA[13]/PTI_3_DATA[5] 45 46 No Connect
PTI_0_DATA[14]/PTI_3_DATA[6] 47 48 I2C_SCL
PTI_0_DATA[15]/PTI_3_DATA[7] 49 50 I2C_SDA

TCK1 51 52 No Connect
HOOK[9] 53 54 DBG_UART_TX
HOOK[8] 55 56 DBG_UART_RX

GND 57 58 GND
PTI_3_CLK 59 60 PTI_2_CLK
Intel® x86/x64 Debugger | 114©1989-2024 Lauterbach

Not all pins of the Converged Intel® MIPI60 connector are connected to the Whisker MIPI60-Q for Quad-
Probe x86/x64. The connected pins are displayed with their name on a gray background in the picture below.

Signal Pin Pin Signal
VREF_DEBUG 1 2 TMS

TCK0 3 4 TDO
TDI 5 6 Reset Out

PMODE/Reset In 7 8 No Connect
TRST_N 9 10 PREQ_N
PRDY_N 11 12 VREF_TRACE

No Connect 13 14 No Connect
GND 15 16 GND
GND 17 18 No Connect

No Connect 19 20 No Connect
No Connect 21 22 No Connect
No Connect 23 24 No Connect
No Connect 25 26 No Connect
No Connect 27 28 No Connect
No Connect 29 30 No Connect
No Connect 31 32 No Connect
No Connect 33 34 No Connect
No Connect 35 36 Boot Stall
No Connect 37 38 CPU Boot Stall
No Connect 39 40 Power Button
No Connect 41 42 PWRGOOD
No Connect 43 44 No Connect
No Connect 45 46 No Connect
No Connect 47 48 I2C_SCL
No Connect 49 50 I2C_SDA

TCK1 51 52 reserved by TRACE32
HOOK[9] 53 54 DBG_UART_TX
HOOK[8] 55 56 DBG_UART_RX

GND 57 58 GND
No Connect 59 60 No Connect
Intel® x86/x64 Debugger | 115©1989-2024 Lauterbach

	Intel® x86/x64 Debugger
	History
	Brief Overview of Documents for New Users
	Welcome Dialog
	Help Menu
	Further Documents

	Warning
	Quick Start
	Troubleshooting
	FAQ
	x86 specific Implementations
	Tool Identification
	Onchip Breakpoints
	Breakpoints after Reset/Power Cycle
	Access Classes
	Overview

	Memory Model
	Segmentation
	Platform Controller Hub (PCH)
	Debugging a CPU only
	Debugging a PCH only
	Debugging a CPU and a PCH
	Systems Using a Merged Debug Port
	Systems Using Separate Debug Ports

	PCH Selection for CPU Debug on a Merged Debug Port

	Slave Core Debugging
	Start Master Debugger
	Locating the Slave Core
	Starting the Slave Debugger

	CPU specific JTAG.CONFIG Commands
	JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals
	JTAG.CONFIG.DRiVer Set slew rate of JTAG signals
	JTAG.CONFIG.PowerDownTriState Automatically tristate outputs
	JTAG.CONFIG.TckRun Free-running TCK mode
	JTAG.CONFIG.TDOEdge Select TCK edge
	JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages
	JTAG.CONFIG.Voltage.REFerence Set reference voltage source
	JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages

	CPU specific SYStem.DETECT Commands
	SYStem.DETECT.CLTapchain Show SOC IDs of SOC slave cores
	SYStem.DETECT.CORES Detect core/thread number
	SYStem.DETECT.HyperThreads Detect hyper thread status
	SYStem.DETECT.TARGET Fully automatic board setup
	SYStem.DETECT.TOPOlogy Detect board topology

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Multicore Settings (daisy chain)

	SYStem.CORESTATES Core states overview
	SYStem.CPU Select the target CPU/SOC
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Use 32 bit address display only
	SYStem.Option.BIGREALmode Enable Big Real mode handling
	SYStem.Option.BranchSTEP Enables branch stepping
	SYStem.Option.BreakDELAY Set max. break delay
	SYStem.Option.C0Hold Hold CPU in C0 state
	SYStem.Option.IGnoreDEbugReDirections Ignore debug redirections
	SYStem.Option.IGnoreSOC Ignore SoC TAP chain structure
	SYStem.Option.IGnoreSWBPReDirections Ignore SW BP redirections
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.InstrSUBmitFOrcePHYSicalPRDY Use physical PRDY
	SYStem.Option.InstrSUBmitIGnorePHYSicalPRDY Ignore physical PRDY
	SYStem.Option.InstrSUBmitTimeout Timeout for instruction submission
	SYStem.Option.IntelSOC Slave core is part of Intel® SoC
	SYStem.Option.JTAGDirectCPU JTAG directly to CPU TAPs
	SYStem.Option.JTAGOnly Use only JTAG signals
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.MEMoryMODEL Define memory model
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MultiCoreWhiskers Server board whisker setup
	SYStem.Option.NoDualcoreModule Disable dualcore module support
	SYStem.Option.NoHyperThread Disable HyperThreading support
	SYStem.Option.NoIPAdjust Do not adjust IP at reset vector
	SYStem.Option.NoReBoot Disable watchdog causing reboot
	SYStem.Option.OSWakeupTIME Set the OS wake up time
	SYStem.Option.PC10MODE Wake up target from package C10
	SYStem.Option.PreserveDRX Preserve DRx resources
	SYStem.Option.PreserveLBR Preserve LBR resources
	SYStem.Option.ProbeModeNOSaveRestore No save/restore
	SYStem.Option.ProbeModeONDEmand On demand save/restore
	SYStem.Option.PWRCycleTime Set power cycle time
	SYStem.Option.PWROFFTime Set power off assertion time
	SYStem.Option.PWRONTime Set power on assertion time
	SYStem.Option.PWRONWaitTime Set power on time
	SYStem.Option.ReArmBreakPoints Rearm breakpoints on reset
	SYStem.Option.REL Relocation register
	SYStem.Option.RESetDELAY Set reset delay
	SYStem.Option.RESetDetection Select reset detection source
	SYStem.Option.RESetMode Select reset method
	SYStem.Option.RESetTIME Set reset assertion time
	SYStem.Option.RESetWaitTIME Set reset input wait time
	SYStem.Option.S0Hold Hold SoC in S0 state
	SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoint
	SYStem.Option.STandBYAttach In standby mode, only attach to target
	SYStem.Option.STandBYAttachDELAY Delay after standby
	SYStem.Option.STepINToEXC Step into interrupt or exception handler
	SYStem.Option.TOPOlogy Select server board topology
	SYStem.Option.WatchDogWaitTIME Set the reset watch dog time
	SYStem.Option.WFSMemAccess Allow WFS memory access
	SYStem.Option.WHISKER Select a whisker
	SYStem.Option.ZoneSPACES Enable symbol management for zones
	SYStem.PCH Select the target PCH
	SYStem.POWER Control target power
	SYStem.STALLPhase Set system into stall phase
	SYStem.StuffInstruction Submit instruction to CPU in probe mode
	SYStem.StuffInstructionRead Submit instruction and read
	SYStem.TIMINGS Display timings window

	Command Groups for Special Registers
	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Set MMU register

	CPU specific TrOnchip Commands - Onchip Triggers
	TrOnchip.PrintList Print possible onchip triggers
	TrOnchip.RESet Reset settings to defaults
	TrOnchip.Set Break on event
	TrOnchip.Set.BootStall Enter bootstall
	TrOnchip.Set.C6Exit Break on C6 exit
	TrOnchip.Set.ColdRESet Break on cold reset
	TrOnchip.Set.CpuBootStall Enter CPU bootstall
	TrOnchip.Set.ENCLU Break on ENCLU event
	TrOnchip.Set.GeneralDetect Break on general detect
	TrOnchip.Set.INIT Break on init
	TrOnchip.Set.MachineCheck Break on machine check
	TrOnchip.Set.RESet Break on target reset
	TrOnchip.Set.ShutDown Break on shutdown
	TrOnchip.Set.SMMENtry Break on SMM entry
	TrOnchip.Set.SMMEXit Break on SMM exit
	TrOnchip.Set.SMMINto Step into SMM when single stepping
	TrOnchip.Set.TraceHub Enter/leave trace hub break
	TrOnchip.Set.VMENtry Break on VM entry
	TrOnchip.Set.VMEXit Break on VM exit
	TrOnchip.state Display onchip trigger window

	CPU specific Events for the ON and GLOBALON Command
	CPU specific BenchmarkCounter Commands
	BMC.<counter> Select BMC event to count
	BMC.<counter>.COUNT Select count mode for BMC

	CPU specific Onchip Trace Commands
	Onchip.Buffer Configure onchip trace source

	CPU specific Functions
	SYStem.CoreStates.APIC()
	SYStem.CoreStates.HYPER()
	SYStem.CoreStates.MODE()
	SYStem.CoreStates.PHYS()
	SYStem.CoreStates.PRIOR()
	SYStem.CoreStates.SMM()
	SYStem.CoreStates.VMX()
	SYStem.Option.MEMoryMODEL()
	SYStem.Option.TOPOlogy()
	SYStem.Option.TOPOlogy.SOCKETS()
	SYStem.ReadPDRH()
	SYStem.ReadPDRL()
	TrOnchip.IsAvailable()
	TrOnchip.IsSet()
	VMX()
	VMX.Guest()

	SYStem Trace Settings
	Connectors
	JTAG Connector
	MIPI34 Connector
	MIPI60-C Connector
	MIPI60-Cv2 Connector
	MIPI60-Q Connector

