LAUTERBACH A

Debugger Tutorial

Debugger Tutorial

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Debugger Getting Startedcccoccciiiiinminr e r=
(D 11 o W o 1= g I T o - | N 1
L 1= (o 4
About the TULOrialccccoicrirr s s e s s s s s smmm s s e s e e e se s s s s s snnmmmnnnnnnns 4
Connect the TRACE32 HardWarecccccccccemmminnsmmnmmmnsssssssssssssssssssssssssssssmsssssssssmssssssssamssssnas 5
Start TRACES32 POWEIVIEWcciiicmiiiiininimsmnsmssissssnsses s s ssss s ssms s sassmsssssss s sssamssnsmns assns snssmnnns 5
Set Up the Debug ENVironmeNnt ... nssssssss s s s ssssssssssssssssnnas 8
A Typical Setup Procedure 9
CPU Selection 9
Adjust the JTAG Clock 9
Establish Debug Communication 10
Additional Settings 11
Load Application 11

£33 €= 1 0 o TR] 14
Write a Start-Up Script 14
Run a Start-up Script 15
Automated Start-up Scripts 15
User Interface - TRACE32 POWEIVIEWcoiiiiiiimiiiiiemsrissssssnssssssss s sssssssss s sssss s ssssssssssssnsans 16
TRACES32 Command Line and Softkeys 18
Window Captions - What Makes Them Special in TRACE32? 19
Debugging the Program ... s s s sssssss s s ssssssss s s snssssssssennsan 20
Basic Debug Commands 20
Debug Modes 21
Displaying the Stack Frame 23
ST = 14 o o] 1| 24
Setting Breakpoints 24
Setting Read/Write Breakpoints 25
Listing all Breakpoints 26
= T o - 27
Displaying Variables 27
Displaying Variables of the Current Program Context 28
Using the Symbol Browser 28
©1989-2024 Lauterbach Debugger Tutorial | 2

Formatting Variables 29
Modifying Variables 30
1= 1 0T 31
Displaying Memory 31
Modifying Memory 32
Peripheral View 33

Store Window Configuration ... s s s s s s e ssmnnas 34
L=y g e 0 4113 =T o = T 35
Contacting the Lauterbach Support 37
©1989-2024 Lauterbach Debugger Tutorial | 3

Debugger Tutorial

Version 06-Jun-2024

History

05-Jun-2024 Revised manual

About the Tutorial

This tutorial guides you through the necessary steps to configure and start a debug session using a
TRACE32 hardware-assisted debugger. It also demonstrates basic debug functionality using the TRACE32
PowerView interface, helping you become familiar with the fundamental features of TRACE32

This is an entry-level document intended for users with little or no prior experience with TRACE32 debug
tools. For a detailed overview of all debug features, refer to “Training Basic Debugging”
(training_debugger.pdf).

To follow this tutorial, a basic understanding of software debugging and the C-programming language is
helpful, as it will allow you to follow the example code provided. Additionally, a basic knowledge of the target
processor and the assembler/compiler used is necessary to get your debug system running.

This tutorial assumes that the TRACE32 debugger software is already installed. You can do so install the
TRACE32 software from the DVD included with the tools. Alternatively, you can download the TRACES32
software installation package can also be downloaded from the Lauterbach website. The Installation

process is outlined in “Software Installation” in TRACE32 Installation Guide, page 20 (installation.pdf).

©1989-2024 Lauterbach Debugger Tutorial | 4

Connect the TRACE32 Hardware

To proceed with this tutorial, a functioning target platform is needed, such as a development board.

Follow then these steps:
. If the debug probe is already connected to the target, disconnect it while the target power is off.

. Connect the TRACES32 hardware according to the instructions provided in “Tool Configuration”
in TRACE32 Installation Guide, page 9 (installation.pdf).

o Power on the TRACE32 hardware

. Proceed with the next chapter of this tutorial

Start TRACE32 PowerView

The TRACES32 executables are named t32m<architecture>[.exe] and are located in the bin\<os>
directory within TRACE32 installation directory
(e.g. bin\windows64 or bin/pc_linux64).

These executables launch the TRACES32 graphical user interface, known as TRACE32 PowerView. Each
executable is specific to a target processor architecture; for example, t32marm starts TRACE32 PowerView
for Arm, while t32mtc starts it for TriCore. The executables available in the bin\<os> folder are
determined by the target processor architectures selected during the installation process.

You can start TRACE32 PowerView by either double-clicking the t32m<architecture> executable or
running it from the command line without any additional parameters.

Example for Windows:

C:\T32\bin\windows64\t32marm. exe

Example for Linux:

/opt/t32/bin/pc_linux64/t32marm

©1989-2024 Lauterbach Debugger Tutorial | 5

TRACE32 PowerView will initiate an “interactive connection mode”, enabling users to select the desired
operation mode through user interface:

B =CONNECTION.STARTUP [E=N EER

TRACE32 PowerView Connection Configuration

Power\View is ready connect to a debug module, to the built-in simulator, as well as to other hardware
and software solutions. Continue by choosing an interactive connection method.

Interactive connection

Choose Wizard for more guidance, or CONNECTION. Select for more overview, CONMNECTION.Select is
intended for experienced users.

Use Connection Wizard Use COMNECTION.Select Dialog

[]Remember my choice

Help

Check the manual for more information. Open Help

Please follow the “Connection Widzard” and enure that the TRACE32 debugger module being used is
powered on and connected to the host PC via USB or Ethernet.

NOTE: Before TRACES32 Release R.2024.09, a configuration file was by default used
to define the TRACE32 operation mode and various other TRACE32 settings.
However, this tutorial will not delve into the configuration file. For further details,
please refer to the “TRACE32 Installation Guide” (installation.pdf).

If the connection to the TRACES32 debugger hardware is successfully established, the TRACE32 PowerView
interface starts. By default, a “Welcome to TRACE32!” dialog appears. This dialog displays the target
architecture and used TRACES32 debug module. It and includes links to key manuals.

TRACE32 PowerView for ARM - O *
File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help
(M A+ || 2R 0 0SS @ 1 L

£ Welcome to TRACE32! = =R

TRACE32 PowerView for ARM / PowerDebug X50

Before you can start debugging, the debug environment needs to be set up.

This setup is usually done by a start-up script. Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals

@ ArmvE and Armv3 Debugger
@ Debugger Tutorial
@ Training Script Language PRACTICE

[15how this dialog at start D Help 4 Start with examples
Re-open dialog via menu Help -> Welcome to TRACE32

B::
TRACE32 Development System (c) 1989-2024 Lauterbach GmbH

components trace Data Var List PERF SYStem Step other previous

©1989-2024 Lauterbach Debugger Tutorial | 6

The status line will display a red “power down” status, indicating that no reference voltage has been detected
at the VCC pin of the debug probe. This is normal, since the debug probe is not yet connected to a powered
target board.

Connect now the debug probe to your target platform then power on the target. The status line will indicate a
grey “system down” status.

N TRACE32 PowerView for ARM - | X

File Edit View Var Break Run CPU Misc Trace Perf Cov Window Help

(M A3 e |2 D RS @ L

TRACE32 PowerView for ARM / PowerDebug X50

Before you can start debugging, the debug environment needs to be set up.

This setup is usually done by a start-up script. Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified to fit your exact system setup and configuration.

Belated

@ ArmvE and Armv3 Debugger
@ Debugger Tutorial
@ Training Script Language PRACTICE

[Show this dialog at start | DHep [#3Start with ccamples
Re-open dialog via menu Help -> Welcome to TRACE32

B::|
TRACE32 Development System (c) 1989-2024 Lauterbach GmbH

| com || tce || Data || var || List || PERF || SvStem || Step || oother || previous |

(system down | N I U I

©1989-2024 Lauterbach Debugger Tutorial | 7

Set Up the Debug Environment

We can proceed now with the necessary steps to establish a debug connection with the target processor.
The start-up procedure for the debug session depends significantly on the processor used.

NOTE: For detailed information on CPU-specific settings, refer to the Processor
Architecture Manual, which can be accessed by selecting Help > Processor
Architecture Manual from the TRACE32 PowerView menu.

To simplify the start-up procedure for TRACES32 users, the demo directory within the TRACES2 installation
folder includes a comprehensive collection of ready-to-run PRACTICE scripts. These scripts contain the

necessary configurations to establish a debug connection with a wide variety of publicly available target
chips and boards.

You can search for a suitable script for your target platform using the “Search scripts...” view, which can be
accessed by clicking the Start with examples button in the Welcome to TRACE32! dialog. Additionally, you

can open the “Search scripts...” view from the TRACE32 PowerView menu by selecting “File” > “Seach
for Script”.

$3 Search for scripts... EI@

Search Selection Manuals

Example search: OMAP44* Linux

| arm™ flash v| X Search | 699 demo files found.
Filter

@nNone Ochip O Board

Search for newest scripts at https://www.lauterbach.com/scripts.html

& CONFIG| | % Tree view | |28 LISTCONFIG

Title 1 Board v |
BEAKZHIZ (KeyStoreZ) Serial ig} Programming Script - ~
Example for j declaration of 5T AZFx internal | - -
Serial Programming script for ADZS-SC584-EZLITE (Analog Device) ADSP-SC58* -
Example Tor [@EH] declaration of Analog Devices ADUC702x internal [HEHI. ADuC702* -
arvell 8805050 QSPI NS Programming Template 8805050 -
05PI Program script for the AMG54x - -
Example Tor [@ER] declaration of Ambig Apollo internal [@ESI APOLLO™ - v

You can also inspect the demo directory manually from the TRACES32 installation directory.

©1989-2024 Lauterbach

Debugger Tutorial | 8

A Typical Setup Procedure

This chapter outlines a typical setup procedure for the debugger. To demonstrate the necessary steps, we
will start with a manual setup. Later, we will show you how to use PRACTICE scripts (*.cmm) to automate
this process. For simplicity, we will use here a single-core system as an example.

The SYStem Window offers access to all CPU-specific settings. You can access this window by selecting
the “CPU” and then choosing “SYStem Settings...”

& T = lEl -23 1
Mode MemAccess Option Option Option DieMode
@® Down DAP v ||| OJmaskasm | | CIDUALPORT | | @ AUTO Dpsvscu — O %
(O NoDebug [l maskHLL (O ACCESS | -
O Prepare CpuBreak CImTDIS O ARM Cortextd
CortexMo A
OGo teable v | | EATRST O THUMB CortexMo+
CortexMl
O Attach uSpot [EnReset S
(O standBy enable ~ [ResBreak CortexM23
) CortexM3
Up (StandBy WaitReset CONFIG CortexM33
CortexM33F
CortexM4 b

rE‘.Jut

cPu JtagClock

|| cortexnz | | [10.0MHz |

CPU Selection

The initial step is to inform the TRACE32 debugger about the specific core/chip on your target [A, B]. A
manual selection is not necessary if the target processor architecture supports automatic detection using the
command SYStem.DETECT CPU. However, it's worth noting that this automatic detection is not always

supported, such as in the case of Arm processors.

SYStem.DETECT CPU Auto detection of CPU
SYStem.CPU <cpu> Select the CPU/chip
Examples:

SYStem.CPU CortexR5

SYStem.CPU CortexR5* ; Wild card symbols allowed

Adjust the JTAG Clock

The debugger uses a default JTAG clock of 10 MHz [F]. This frequency impacts the download speed. You
may need to reduce the JTAG frequency if there are buffers, additional loads, high capacities on the JTAG

lines, or if VTREF is very low.

I SYStem.JtagClock <frequency> Select the JTAG clock

©1989-2024 Lauterbach Debugger Tutorial | 9

Examples:

SYStem.JtagClock 1MHz ; Reduce the JTAG clock to 1MHz on
; a slow target

SYStem.JtagClock 20MHz CTCK ; Use compensation clock with
; an Arm debug cable

Establish Debug Communication

Establish communication between the debugger and the core. The most common method is to select the Up
mode [D].

When Up is selected, the following steps are per default performed:

J The core is reset.

. Communication between the debugger and the core is initialized.

J The core is stopped at the reset vector, if supported by the core in use.

I SYStem.Up Establish the communication between the debugger and the core

Another useful method to establish the communication between the debugger and the core is Attach [E].
Attach allows the debugger to connect to an already running core. The Break.direct command can then be

used to stop the target processor’s execution.

SYStem.Mode Attach Establish the communication between the debugger and the target
core (without reset)

Break.direct Stop program execution
If you get an error after selecting Up or Attach, refer to the Processor Architecture Manual.

SYStem.Option Commands

Please note that some cores require additional settings using SYStem.Option commands, for example
related to reset handling, before communication can be established. Most relevant options can be
configured from the SYStem window. The available SYStem.Option commands depend on the target
processor architecture. A description of all available options can be found in the Processor Architecture
Manual.

In case you need assistance, please refer to the chapter “Contacting the Lauterbach Support”, page 40.

©1989-2024 Lauterbach Debugger Tutorial | 10

Additional Settings

In some cases, additional settings using Data.Set commands are necessary after establishing the debug
connection. For example, you man need to disable a watchdog or initilize the target RAM.

Data.Set <address>|<range> [%<format>] <string> Modify memory-mapped
configuration register/on-chip
peripheral

Example: command sequence to disable a watchdog. The specific sequence will vary depending on the
target processor used.

; disable the Watchdog

Data.Set AD:0x40011C00 %Long O0x1ACCES551
Data.Set AD:0x40011C00 %Long OxE5331AAE
Data.Set AD:0x40011008 %Byte 0x0

For more information, please refer to the TRACE32 demo scripts and the documentation of your target
processor.

Load Application

Setting up a debug environment involves loading the code to be debugged and the associated debug
symbols. TRACE32 PowerView supports a wide range of compilers and compiler output formats. You can
find a list of supported compilers on the Lauterbach website.

The most important commands for loading the code to be debugged and the associated debug symbols is
Data.LOAD. Per default, the command loads the code/data from the specified file into the target memory
and loads the symbol and debug information into TRACE32 PowerView. Using the option /NoCODE only the

debug symbols are loaded.

Data.LOAD.<sub_cmd> <file> [<option> Load code and debug symbols

Data.LOAD.<sub_cmd> <file> INOCODE /<option> Load only debug symbols

<sub_cmd> defines the file format, for example EIf. If you omit the format, TRACE32 PowerView tries to do
an auto-detection.

The necessary steps for loading the application vary depending on whether the application is intended to run
from RAM or flash memory.

Application Located in RAM

If the application is intended to run from RAM, you can directly use the Data.LOAD command. Just type
Data.LOAD.* then select the file you want to download.

©1989-2024 Lauterbach Debugger Tutorial | 11

Examples:

Data.LOAD.E1f demo_sram.elf ; Load code and debug symbols from
; E1f file

Data.LOAD.E1f * ; Load code and debug symbols from
; ELF file

; open file browser to select file

Application Located in Flash

TRACES2 supports programming on-chip and off-chip NOR flash memories, as well as serial flash
memories, such as NAND, SPI and eMMC. However, For simplicity, this tutorial will focus on on-chip flash
programming.

Ready-to-run scripts for most on-chip flash memories can be found in the TRACE32 installation under
~~/demo/<architecture>/flash/<cpu>.cmm

Examples:

~~/demo/arm/flash/stm32h7.cmm

~~/demo/tricore/flash/tc37x.cmm

To program your application to the on-chip flash memory of your processor/chip, follow these steps:

1. Call the flash programming script appropriate to your processor/chip.

2. The script will perform all necessary preparations then displays a pop-up asking the user to
confirm proceeding with the flash programming.
TRACE32 PowerView

o Program internal flash memaory?

Yes Mo

3. A file dialog is then opened, allowing you to browse the target application you want to program.

If the application is compiled with debug symbols they are automatically loaded into TRACE32 PowerView
along with the flash programming.

The following framework can be used to call the flash programming script from your start-up script

CD.DO ~~/demo/tricore/flash/tc37x.cmm PREPAREONLY
FLASH.ReProgram ALL

Data.LOAD.El1f myapplication.elf

FLASH.ReProgram off

SYStem.Up

©1989-2024 Lauterbach Debugger Tutorial | 12

A video tutorial on programming the processor’s internal flash memory using TRACES32 is available
here:
support.lauterbach.com/kb/articles/flash-programming

Further Documents:

. For on-chip and off-chip NOR, as well as memory-mapped serial flash programming, refer to the
“Onchip/NOR FLASH Programming User’s Guide” (norflash.pdf).

. For non-memory-mapped flash programming, such as NAND, SPI and eMMC, refer to “NAND
FLASH Programming User’s Guide” (nandflash.pdf), “Serial FLASH Programming User’s
Guide” (serialflash.pdf) or “eMMC FLASH Programming User’s Guide” (emmcflash.pdf).

©1989-2024 Lauterbach Debugger Tutorial | 13

https://support.lauterbach.com/kb/articles/flash-programming

Start-Up Scripts

Itis strongly recommended to summarize the commands used to set up the debug environment in a start-up
script. For this purpose, the script language PRACTICE is provided.

The standard extension for a script file is . cmm.

Write a Start-Up Script

The debugger provides an PRACTICE script editor, that allows to write, to run and to debug a start-up script.
The editor window provides syntax highlighting, configurable auto-indentation as well as multiple undo and
redo.

I PEDIT <file> Open <file> with the script editor

PEDIT my_startup.cmm

The debugger provides two commands, that allow you to convert debugger configuration information to a

script.
STOre <file> [<item>] Generate a script that allows to reproduce the current settings
ClipSTOre [<item>] Generate a command list in the clip-text that allows to reproduce the
current settings
STOre system settings.cmm SYStem ; Generate a script that allows you
; to reproduce the settings of the
; SYStem window at any time
PEDIT system settings.cmm ; Open the file system_settings.cmm
ClipSTOre SYStem ; Generate a command list that

; allows you to reproduce the

; settings of the SYStem window

; at any time

; The generated command list can be
; pasted in any editor

©1989-2024 Lauterbach Debugger Tutorial | 14

Run a Start-up Script

You can run a PRACTICE script from the TRACE32 PowerView interface by selecting the menu “File” >
“Run Script...”. This action corresponds to using the TRACE32 command DO with the script name as

parameter.

I DO <file> run PRACTICE script

Example:

DO my_startup.cmm

Alternatively, you can select the “File” > “ChangeDir and Run Script...”. The difference here is that
TRACE32 PowerView will change the current working directory to the directory of the selected file before
running the script.

I ChDir.DO <file> Change directory and run script
Example:

ChDir.DO C:\my_ scipts\my_startup.cmm

Automated Start-up Scripts

When a TRACE32 instance starts, the PRACTICE script autostart.cmm is executed, which then calls the
following scripts:

. system-settings.cmm (from the TRACE32 system directory, usually C:\T32)

J user-settings.cmm (from the user settings directory: on Windows %APPDATA%\TRACES32 or
~/.trace32 otherwise)

J work-settings.cmm (from the current working directory)

With the command line option -s <startup_script> you can specify an additional PRACTICE script (*.cmm)
which is automatically started afterwards.

Example:

C:\T32\t32arm.exe -s C:\my_scripts\start.cmm

©1989-2024 Lauterbach Debugger Tutorial | 15

User Interface - TRACE32 PowerV

iew

The graphical user interface (GUI) of TRACES32 is called TRACE32 PowerView.

The following screenshot presents the main components of this interface.

TRACE32 PawerView — u] X
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Periphersls Window Help Main Menu Bar
Mk A+ e |2 08B adEs @2 Main Tool Bar
£ Bulistauto [= = e
M Step B Over | A Diverge | 4 Return ¢ Up » Ge 11 Break % Mode |||t Find: sieve.c
addr/1ine |source | oc |
813 count = 0; ~
815 for (1 =0 ; i1 «= SIZE ; flags[i++] = TRUE) ;
817 for (i = 0; i <= SIZE; i++) { =
818 if (FlagsTi]) 1 Window Area
819 prime = i + 1 + 3;
_E!I_Fla_
821 while <= 5IZE) Pragram Address
822 Flags[k] = FALSE;
823 k += prime; + GoTill =
825 count++; ﬁ Breakpoint... c
3 ; a Breakpoints g
829 return count; iad Display Memory R o
A [Bockmark... 5
R — M Toggle Bookmarks=t
=]| &2
& S| ®el sy spcree S (=@]
t. Up Down Args [Locals [Caller Task: - Edit Source 4030?F3é 5] Stack | L]
—~000[[sTeve Ic C 4030CFF4
I L3 =Ci? A v _ | & Viewlnfo 403039DC
= prime = 37 - y o7FF
RS Copy Address > 403039cs
= count = 10 0 Kb 25 K14 40301CD8
— R7 1 PC 40301E80
001 ||main() SPSR 0 CPSR 200001D3
=3j =55 S —
. i'lnc = 60 I _ USR FIQ:
= sign =1 R8 1 R8 1]
@ p = 0x40302E84 RS9 40307F30 RO 0
I I FR10 4030CFF4 R1O o
779 sieve(); F F E1l 4030390C RI11l 0
-002||gomain (asm) R12 07FF R12 1]
w [T = R13 0 R13 o hd
Be Command Line
Message Line
components trace Data Var List PERF S¥Stem Step. Go other previous Soft keyLi ne
NSRi40301E80 \isieve_ram_arm_vTisievesieve+ (x60 stopped HLL WP State Line

We'll briefly explain the GUI using the List command and List window as an example. For a more

comprehensive introduction, a video tutorial about the TRACE32 PowerView GUI is available here:
support.lauterbach.com/kb/articles/introduction-to-trace32-gui

To open the List window, do one of the following:
. Choose View > List Source from the menu

. At the TRACE32 command line, type: List (or L)

©1989-2024 Lauterbach

Debugger Tutorial

16

https://support.lauterbach.com/kb/articles/introduction-to-trace32-gui

The List window displays the code in both assembler mnemonic and HLL (High-Level Language). HLL

refers to the programming language of your source code, e.g. C or C++.

N TRACE32 PowerView - O x®
File Edit View Var Break Run CPU Misc Trace Probe Perf Cov Peripherals Window Help
['m0 W | f Registers gl @l mEses @ 2
| % Dump..
£ List Source |—':' H—EI H_EE ‘
Pl Ste| & Watch & Return ¢ Up » Go 11 Break %% Mode ||6=f | L. Find: sieve.c
qic comment |

NSR?; 65/ Referenced Var

mow -
NSR:q) Tdrh + 0
NSR:q 89 Locals bFi r3
NSR:4 : drh rz,[r
NoR:4 ﬁ Stackframe with Locals b r3lr2
& Stackframe
NSR:4 = cpy ro,r3
NSR:4 o Peripherals sub ri3,rll,#0x0
NSR:4 pop {ri1}
NSR:4 £ Symbols > bx ria
il Groups
Opens the
Bookmarks void):
Trace List . ; - - List W|nd0W
roid) __attribute__ ((section (".data"))) = 0;
Message Area chdogTrigger) (void);
int main(void)
NSR:4030184C||E92D4810 main: push {ra,r11,ri14}
NSR:40301850|E2BDEODE add rll,rl3 £0x8
; E24DD034 sub rl3,rl3,#0x34 ; rl3,rl3,#52 — Program
int I;
short int inc, sign; = e ()
char y o o [= == counter PC
. _ R4 40302E48 FRI1Z 40 A
702 func_sin(); RS 40302E48 R13 40303A14
NSR:40301858 |[EBFFFEDF b I’ 0 _ RE 68 R14 40300124
L _ R7 1 PC
do { 2 _ SPsR 0 CPSR 00001D3 v
705 (monHook) < >
B::List|
components trace Data Var List PERF S¥Stem Step Go other previons
NSR:40301854 \\sieve_ram_arm_vTisieveimain+0x8 stopped MIX |UP

In the List window, the gray bar indicates the position of the program counter (PC). In the screenshot above,

it is located at the symbolic address of the label main.

A video tutorial about the source code display in TRACE32 is available here:

support.lauterbach.com/kb/articles/displaying-the-source-code

To summarize, you can execute commands in TRACE32 PowerView using the following methods:

1. Menus on the menu bar

2
3. Context menus in TRACE32 windows
4

Using commands via the TRACE32 command line.

Buttons on the main toolbar and the buttons on the toolbars of TRACE32 windows

©1989-2024 Lauterbach

Debugger Tutorial | 17

https://support.lauterbach.com/kb/articles/displaying-the-source-code

TRACE32 Command Line and Softkeys

TRACE32 commands are not case sensitive: register.view isthe same as Register.view
. UPPER CASE letters indicate the short forms of commands and must not be omitted.

o All lower case letters can be omitted.

This makes short forms an efficient time saver when entering frequently-used commands in the command

line.

Examples:

J Instead of the long form Register.view type justthe shortform r or R
. Instead of the long form List type just the shortform 1 or L

The softkeys are located below the command line. The camel casing (i.e. upper and lower case letters) on
any softkey indicates the long form of a command. The softkeys guide you through the command input,
displaying all possible commands and parameters.

Example - To assemble the Data.dump command using the softkeys:

1. Click Data.

2 Click dump.

3. Type the <range> or <address> you want to dump. For example, 0x1000--0x2000
4

Click [ok] to execute the command.

The Data.dump window will open.

‘B:: —— Command line
emulate trigger | devices | | trace | Data || Var | | List | | other | | previous I—— Softkeys
SR:00001FF8 \\armle\arm\main system ready MIX |UP

‘B:: DATA.
| [ok] i| dump |I View | | Print | | List | | Set | | Assemble | | other | | previous
SR:00001FF8 \\armle\arm\main system ready MIX |UP

‘B::DATA.DUMPIOxlOOO——OXZOOOI

| [ok] | | <ranges | | <address> | | options previous
SR:00001FF8 \\armle\arm\main system ready MIX |UP

©1989-2024 Lauterbach Debugger Tutorial | 18

Window Captions - What Makes Them Special in TRACE32?

The command used to open a window is displayed in the window caption, along with any parameters and

options used.

[N TRACE32 PowerView - O X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(M A+ e[pn|E 20 =suldas @2
[= =)=
Ml Step B Over | Ay Diverge | 4 Return ¢ Up » Go Il Break %% Mode ||6=f | t.. Find:
addr /Tine [code Tabel mnemonic comment |
"
int main(void)
ST:000012A4|(E5FO main: push {r4— ,rl4}
ST:000012A6|EOED sub 3
ST.:000012A8,|AF0D2 ad.d. 7 sp,#ms
1 t
FEH IData dump 0x1000--0x2000 I < —
691 Quun T3> 0123456?89AECDEF i
ST:000012AA [F7FFF SD: 00001000 +1C03F309 4918J.COC L1EBA0D0EA 60546013 5 ~
SD:00001010 | 68F968B8 4B0OD4AQC FFFCFOOL 1COC1CO3 & F‘JH _
5SD:00001020 | 60FC60BE 68F968E8 4BOE4AOD FFEEFOOL §°%° =
594 SD:00001030 | DIBDIEO3 BOOG46BD BCO1BCBO 46C04700 W
ST:000012AE [4BC2 SD:00001040 | 00000000 00000000 99999994 3FB99999
ST:000012B0 [6516 5D:00001050 | 00000000 4072C000 00000000 40540000 2
ST:000012B2 [2B00 SD:00001060 | 66666666 404F6666 00006AFQ EOBZB5E0
ST:000012B4 [DOO3 SD:00001070 | 2300AF00 23046076 4B31603B 609A4A31
SD:00001080 | 2200462F 4B2E60DA 605AZ200 22004B2C iy
ST:000012E6 |1BC0 5D:00001090 | 23006014 E045607B 683B687A DOOBAZ9A >
ST:000012B8 [651E SD:000010A0 | 1C5A687E Q09B1C13 O09BLB9B 18944A25
ST:000012BA [FOOOF SD:000010B0 | 2200E000 68794823 0Q09BELCOB O09BL1B5EB
SD:000010C0 | 330818C3 687BG0LA DDOS2ZBOO 1ESAGETE &
5D:000010D0 | 009B1C13 009B189E 189A4A1A 4A1SEQ00 S5
ST:000012BE |1B5F 5D:000010E0 | 68794818 D09B1COB O0SBLB5B 330818C3 SHyhY
ST:000012C0 (220C SD:000010F0 | 4914605A 1C13687A 18980096 18CE0O09B Z° WiI A
ST:000012C2 |601A
6598 -
5T:000012C4 |4BBE dr r3,0x15C0 v
I 1
F:I Data.dump 0x1000--0x2000 I
[ok] options previeus
ST:000012A8 \\sieve\sieve\main-+0x4 stopped MIX [UP

You can re-insert a command from a window caption (a) into the command line (b) in order to modify
the command. Let’s do this with the Register window.

1.
2.

Choose View > Register from the menu.

Right-click the window caption (a).

Modify the command, e.g. by adding the /SpotLight option: This will highlight changed registers.

B fregiservien | (@) ll&hké#deHMlll|||||||||||||||||||

R4 1 RI1Z 25 R12

RS 564C FR13 OFE4 R': 564{ R13 OFE4

RE 0 R14]} RE 0 R14 0

R7 0 PC 2258 R7 0 PC 22A0

SPSR 10 CPsR 800000D3 SPSR 10 CPsR 800000D3
4 4

\

(b) ‘B: :|B::Register.view /SpotLight

[[ok]][options

Click [ok] to execute the modified command.

Click M/ Single Step on the TRACE32 toolbar. Changed registers are highlighted immediately.

©1989-2024 Lauterbach

Debugger Tutorial |

19

Debugging the Program

Basic Debug Commands

The basic debug commands are accessible from:

. the Run menu
o the toolbar of the List window
o the main toolbar

o the TRACE32 command line.

Single stepping M is one of these fundamental debug commands.
Run CPU Misc Trace Probe Pef Cov ARMY Window Help

[m— o o o ;5
W Step Over Call F3
WA Step Diverge Path F4 = BuList.auto EI@
4 GoNext I M step | W Over ||\ ADiverge/ ¢ Retumn| ¢ Up b Go || Il Break || U%[Mode &= t. "% Fir
¢ GoRetum Fs T e L e N
¢ Golp %2 ST:0000158
+ GoTill... ST:0000138C |4
» Go 7 ST:0000138E |5
1 Break & snooongg
"% Mode F9 snooongi
S5T:00001396
ST:00001398 |6
722 ast.fieldl
: 1dr r3,0x15C0
5T:0000139C Idr r3, r3]
ST:0000139E 1s ri,r 4
ST:000013A0 |0 sr ri,r3,#0x1s
Single Step
Step over function calls or subroutines
Step till next unreached line
Go to the next code line written in the program listing
Useful e.g. to leave loops
M » A | + ¢ | (I || - Stop the program execution
IGo / Start program execution
Go Up / return to the caller function
| Go Return / Go to the last instruction of the current function
B::5tep. B::Go.
[[ok]][single][Asm][Hil][Mix [[ok]][direct][Asm][Hil][Mix][Return
SR:00001014 ‘\\armle\Global__main+0x14 SR:00001014 \\armle\Global__main+0x14

©1989-2024 Lauterbach Debugger Tutorial | 20

TRACE32 PowerView also offers more complex debug control commands. For example, you can step until
an expression changes or becomes true.

Example:

Var.Step.Till i>11. ; single-steps the program until the
; variable i becomes greater than 11.
; Please note that TRACE32 uses a dot to
; denote decimal numbers.

Debug Modes

Take a look at the state line at the bottom of the TRACE32 PowerView main window:

N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(M A+ || 2R 0 0SS @ 1 L
= [B:List.auto] EI@
M Step W Over | MAyDiverge | & Return ¢ Up p Go 1l Break I 1% Mode Iﬁ t. Find:
addr/T1ine |code label mnemonic comment |
SP:000019F4 00005 3CC dca 0x53CC ~
main()
s86||{
5T :000019F8||B5 90 main: push {r4,r7,ri14}
] EO&2 sub sp,#0x8
int J;
char * p;
vtripplearray[0][0]1[0] = 1;
S5T:000019FC |2001 mow ri, #0x1
ST:000019FE |4954 1dr rl,0x1B50 hd
B::
components trace Data Var List PERF SYStem Step other previous
ST:000019FA \\thumble\armmain+0x2 stopped MIX |UP

=

The state line provides the following information

A The (symbolic) address of the current cursor position.
The program counter (PC) is highlighted in gray.

B The state of the debugger: stopped indicates that the program execution is stopped. At this
point, you can inspect or modify memory, for example.

C The state line displays the currently selected debug mode, which can be:
o HLL (High Level Language)
. ASM (assembler)

U MIXed mode showing both HLL and its corresponding assembler mnemonic.

©1989-2024 Lauterbach Debugger Tutorial | 21

1. On the toolbar of the List window, click Mode to toggle the debug mode to HLL.

Debug mode HLL Debug mode MIX
Butistaut = (Bsitauto == s
MR A e e M Step| B Over| My Tiop| ¢ Fam | @& Up|| P Go | I Bresk| V5|0 |] | .
line [source | addr/Tine code label mnemonic |
581 Tor T x = 0.0 ; X < 62.8 ; X a SP:000019F4 |000053CC C 0x53CC A
582 sinewave[index++] = .
583 |} main()
s86||{
maini) ST:000019F8]|E520 main: push {r4,r7,r1a}
i | ST:000019FA [E0E2 . . sub sp,#0x8
int J; int J;
char * p; char * p;
590 vtripplearray[0][0]1[0] = 1; vtripplearray[0][0]1[0] = 1;
591 vtripplearray[1][0][0] = 2; ST:000019FC (20 mow ro,#0x1
592 vitripplearray[11[0] = 3; ST:000019FE |4954 Tdr rl,0x1B50
593 vtripplearray 0] [0][1] = 4; ST:00001A00 |7005 strb ro, [ri]
= 591 vtripplearray[1][0]1[0] = 2;
595 funcz(); WZDDZ mov ro,#0x2
ST : 0000 = st ro, [rl,20x0C]
597 funczai); 592 vtripplearray[0][1]1[0] = 3;
ST:00001A06 |2003 mow ri, #0x3
599 funczb(; ST:00001A08 |7108 strb ro, [rl,£0x4]
vtripplearray[0][0]1[1] = 4;
601 func2e(l; ST:00001A0A |2004 mon ro,#0x4
Y] 5T :00001A0C |7048 strb ro, [rl,20x1] b
£ > £ >

2. Click Step.
In HLL mode, this action moves the program execution to the next source code line.

3. Click Mode again to toggle the debug mode to MIX.

4. Click Step.
This time, the step executes one assembler instruction.

5. Right-click a code line, then select Go Till.
Program execution starts, and stops when the program reaches the selected code line.

N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
(M LI e d»n|E 2R O smiEsdcs @ o
=1 [BuList.auto] EI@
M Step W Over | A Diverge | ¢ Return ¢ Up p Go Il Break | M Mode | &f t.
addr/Tine code label mnemonic comment |
~
607 ast.count = 12345;
i 84C dr r0,0x1B5C
ST:00001A24 4940 Tdr r1,0x1B60
ST:00001A2C |60458 str ro, [rl,20x4]
ast.lef *
ST:00001AZE |454C 1 , Ox1B60
5T :00001A30
609 . 1 R ~ Program Address
5T:00001A32 |6900 dr ro, [ro,20x10]
5T :00001A34 |0850 Isr ro,ro,#0x2 Ii Go Till I
ST:00001A36 D050 1s1 ro,rd, #0x2 =
ST:00001A38 (2301 n r3,#0x1 &j Breakpoint...
ST:00001A3A 43518 ro,r3 .
ST:00001A3C [6108 0.1, #0x10] | @ Breakpoints »
610 ast.fieldz = =
ST:00001A3E [4845 imi| Display Memory >
ST:00001A40 |6900
5T:00001A42 |231C P Ezai=it
ST:00001444 [4398 A Toggle Bookmark
ST:00001A46 |2308
ST:00001A48 |4318 +H+ Set PC Here
ST :00001A44 |5108 ro, [rl,20x101 | o,
ST :00001A4C |06C0 r0,r0, #0x1B E,(Edit Source
®
612 ast = func4(ast J; z ViewInfo
ST:00001A4E (4668 mow ro,rl3 b
ST:00001A50 |310C add r1,#0x0C Copyaddis=
ST:00001A52 |C990 Tdm ri!,{r4,r7}
ST:00001A54 |C020 stmia r0!,{r4,r7} Go Till There W
u List There
B:: Assemble...
Modify...
components trace Data Var List Patch... previous
ST:00001A30 \\thumble\armimain+0x38 stopped MIX |UP

©1989-2024 Lauterbach Debugger Tutorial | 22

Displaying the Stack Frame

For the next example, we will assume that we have the following call hierarchy: main () calls func2 () and

func2 () calls funcl():

i

M | W | 4t | S| Stp

line |source

main()
5861
int j;
char * p;
590 vtripplearray[0][0]
591 vtripplearray[1][0]]

vtripplearray[0][1]]]
vtripplearray[0][0]]]

funczal();

i

| Mistep || M over || ¥ next | & Retwrn | Qup |
1line |source | =

-

Eo‘i d func2()

int autovar;

register int regvar; 3
static int fstatic =g
static int fstatic2;

autovar = regvar = f| | M Step || M over |

int * intptr;
171 funcl(&fstatic); { P

166
167 autovar++; Tine |source =
static void funcl(intptr) O

Select Show Stack in the Var menu. This will open the Frame.view window, displaying the call hierarchy.

The /Locals option displays the local variables of each function, while the /Caller option shows a few source
code lines to indicate where the function was called.

This screenshot corresponds to the calling hierarchy described above.

N TRACE32 PowerView

File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

| Mo® .&| & Watch...
of View...

3y, Data View...
ﬁ Breakpoint...
E’J Show Function...
@ Show Watch
& Show Locals

5 Show Current Vars

W Format...

IR D HuE VS B 2L

oo e |

[Locals (A Caller

intptr = O0x7FA4

funcz()

= autovar = 45
= regvar = 44

= fstatic = 44
= fstaticz = 0

funcl(&autovar J;

Ll

/* to force au

B::[Frame.view /Locals /Caller

©1989-2024 Lauterbach

Debugger Tutorial | 23

Breakpoints

Video tutorials about breakpoints in TRACE32 PowerView are available here:
support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Setting Breakpoints

Let’s set a breakpoint at the instruction prime = i + i + 3 andthe instructionk += prime

To set a program breakpoint, double-click a code line where you want to set the breakpoint. Ensure to click
the white space in the code line, and not the code literal. All code lines with a program breakpoint are
marked with a red vertical bar.

i1 [BeList] =R o
M Step | B Over | \AsDiverge « Return|| ¢ Up » Go 1l Break | % Mode |62 T Find: sieve.c
addr/1ine [source |
char Tl1ags[SIZE+1l]; ~
static int sieveivoid) * sjeve of erathostenes *
794 |{
register int 1, prime, k;
int count;
798 count = 03
800 for (1 =0 ; i <= S5IZE ; flags[i++] = TRUE) ;
802 for (i = 0; :I[-'Ic_ SIZE, 1-H— {
— ags[il)
504 = 3;
Lo S LR
806 while (k <= SIZE) {
— flags[k] = FALSE;
I 808|] _» k += prime;
810 count-H—,
v
To set a breakpoint to an instruction that is not in the focus of the current source listing:
1. Choose Var > Show Function from the menu.
The sYmbol.Browse.Function window opens.
N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
[» B A| 365 Watch.. TR DB SEE @ 2P
T & View..
3y, Data View...
ﬁ Breakpoint...
= Show Function... —#i B::s¥mbaol. Browse.Function * /Click "Data.List ™" /Delete
& Show Watch Filter: |\\"'\“‘* | t. "3 | Type: I [Funcs
5{3’ Show Locals symbol tyvpe address 1
unce (tToat () R:00001244--00001293
ﬁ Show Stack uncy R:00001294--000012FF
= uncs R:00001300--0000146F
& Show Current Vars uncg R:00001470--000014CB
& Format.. I|sl'|'eve | R:00001B7C--00001BCF I v
2. Select the function you are interested in, for example sieve.

The List window will open, displaying this function. This window is now fixed to the start address
of the function sieve and does not move with the program counter cursor.

©1989-2024 Lauterbach Debugger Tutorial | 24

https://support.lauterbach.com/kb/articles/using-breakpoints-in-trace32

Setting Read/Write Breakpoints

You can set a breakpoint that halts the program execution at a read or write access to a memory location,

such as global variable.

To set a breakpoint on the array £1ags, for instance, right-click on the array name in the List window then

select Breakpoints > Write.

= [BuList.auto]

(28 el

[Mistep |[M over]@Diverge][SReturn [Gup |

b Go || HlBreak]%Mode | Find:

addr/1ine |source

689 for (1 =0; 1 <=5IZE ; i++)
691 | . CAFTBLI)
Variable

Egi &5 Add to Watch Window
695 fff View in Window

S Set Value..,
=y i LSE;
698 &5 Modify Value...

+ GoTil 2
700 a Breakpoint...

@ Advanced Breakpoint

1 ’ 3
J‘ [1| o "
......................... Breakpoints 4

Display Memory

Read
Display Trace
+] Grep in Sourcefiles

Spot
other 4 e

Alpha
Beta
Charly
Delta
Echo

3
h e

ReadWrite C

8 B::Break.List

(o)[O el

(3% Delete All] [Disable All[@ Enable Alll @ mit

][&Memod...][532 store...][2 Load...]@ Set...]

address

method

type
C:20005500--20005 512JWF1te

Fl

ONCHIP W tTags
e

©1989-2024 Lauterbach

Debugger Tutorial

25

Listing all Breakpoints

1. Choose Break > List from the menu to list all breakpoints.
The Break.List window opens, providing an overview of the set breakpoints.

Break Run CPU Misc Trace Probe Pedf Cov Window Help

© set. HEEL I TN XS

a Configuration...

o

X Delete All B9 B::Break.List

(o8)

B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...

“F Trigger Bus.. address type method |
JF OnChip Trigger... T:00001650[Program SOFT Y & | sieveill
= SOFT ¥ [&| sieve\20

Trigger Reset

T:OOOOlGGCﬁPr‘Dgr‘am

‘ IEI‘

A Address of the breakpoint.
B Breakpoint type, for example Program, Read, Write
C Breakpoint method: SOFTware, ONCHIP or DISABLED.

D Symbolic address of the breakpoint. Example:
. sieve\1ll means source code line 11 in function sieve.

2. On the toolbar, click | *| Go to start the program execution.

3. When the program execution stops at a breakpoint, it is highlighted in the Break.List window.

a B::Break.List EI@
B senp... || 3% Delete All|| O Disable Al @ Enable All| @ Init | 52 store...| 52 Load... || B set...
address type method |
T:00001650|Program SOFT v & | steve\I1
T:0000166C |Program SOFT y (&4 | sieve\20

©1989-2024 Lauterbach Debugger Tutorial |

26

Variables

Video tutorials about variable display in TRACES32 are available here:
support.lauterbach.com/kb/articles/variable-logging-and-monitoring-in-trace32

Displaying Variables

Let’s display the variables £1ags, def, and ast.

1. Choose Var > Watch... from the menu.

The Var.AddWatch window will open, displaying the variables known to the symbol database.
N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help
[Mm% A | 365 Watch.. TR D EHE S @ 2L

T & View..

3y, Data View... 1
? Breakpoint.... Filter: |*** | t. | |"¥ | Type l:l [JFunes
=i Show Function... symbol type address
t (strtypel) D:00005114--00005127
65 Show Watch 2 (st:uclteun"t:nl) D:00005 380--00005 397 ~
&% Show Locals cstrl onst unsigned char [17]1) D:00004DE4--00004DF4
def (struct abc) D:00004EFC--00004F03
ﬁ Show Stack enuml Cint) none
_ enumz2 (int) none
&5 Show Current Vars enumd (int) none
enum? Cint) none
8 (int)
& ol :nﬂmvar‘ (e:uT enumtyp) D:OOOSSESC——OOOMFOC
Cint) none
£1 funsi | char [191) D:0000677C--000067 8E
[E (E’I:t gnef'\-s a D:00004F10--00004F13
mst@ticl (int) D:00004E80--00004E83
ms*icz (int) D:00004E84--00004E87 hd
L]
2. Double-click the variable £1ags.
The Var.Watch window will open, displaying the selected variable.
& BuVar.Watch EI@
| - [5 et watch | [ot view | | [
[Eflags =@, 1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,110 |
] 1 b
3. Alternative steps:

- In the Var.Watch window, click Watch, and then double-click the variables def and
ast to add them to the Var.Watch window.

& BuVar.Watch EI@
- I 65 Watch ! 6ol View

ast (word = 0x0, count = 12346, tert = ux>o3C, right = 0x0, T1eTdl .
= def (x=0, y=0)
®flags = (1, 1,1,0,1,1,0,1,1,0,1,1,0,1,1, 0,1, 1, 0)

4 I 2

- From a List window, drag and drop any variable you want into the Var.Watch window.

- In a List window, right-click any variable, and then select Add to Watch window from the
context menu.

©1989-2024 Lauterbach Debugger Tutorial |

27

https://support.lauterbach.com/kb/articles/variable-logging-and-monitoring-in-trace32

- If you want to display a more complex structure or an array in a separate window,
select the menu Var > View.

Displaying Variables of the Current Program Context

1. Set the program counter (PC) to the function sieve () by typing the following at the TRACE32
command line:

Register.Set PC sieve

2. Select the menu Var > Show Current Vars.

The Var.REF window opens, displaying all variables accessed by the current program context.

TRACE32 PowerView - | X

File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

[» B A| 365 Watch.. TR D EHE S @ 2L

T bl View..
3y, Data View...
ﬁ Breakpoint...
=i Show Function... o || B 2

&% Show Watch
& Show Locals
ﬁ Show Stack
& Show Current Vars

& Format...

=,1,1,1,1,1,1,1,1,1,1,1, 0,1, 1, 0, 0, 1, 0)

3. Click M| Step on the TRACE32 PowerView toolbar to execute a few single steps.
The Var.REF window is updated automatically.

Using the Symbol Browser

The symbol browser offers an overview of the variables, functions, and modules currently stored in the
symbol database.

1. Select Var from the menu, then choose Watch...

The Var.AddWatch window will open, allowing you to browse through the contents of the symbol
database. Global variables are displayed in black and functions in gray. Double-clicking a function
will display its local variables are displayed.

2. In the Var.AddWatch window, double-click func2.

©1989-2024 Lauterbach Debugger Tutorial | 28

2 BuVarAddWatch *

[0

symbol

3| Type: [| [varabies | (ISource

address

(o] 2)

5
defaultstring

|
D:00006818--0000681F ,
D:00006720--00006724

D:00007E94--00007ESS

Formatting Variables

har [19 D:00007E98--00007EAA
=Y [B:List func2]
_ M step |[% over || ¥ Next |[¢ Retun | & up |
laddr/Tine |source
% B:VarAddWatch * ﬁ?) LFIntptr J++;
W func2* ut" u; e void func2()
symbol address 160 |{
(F-0004)--(F-0001) int autovar;
D:0000563C--0000563F register int regvar;
D:00005640--00005643 static int fstatic = 44;
R2 static int fstatic2;
4 166J autovar = regvar = fstatic;
4 m

To format the display of variables with global settings:

1. Choose Var from the menu, then select Format.

2. In the SETUP.Var window, configure your settings. TRACE32 applies your settings to all Var.view
windows that you open afterwards.

To format the display of an individual variable:

1. At the command line, type: var.view ast (The variable ast is included in this demo.)

2. In the Var.view window, right-click ast, and then click Format.

The Change Variable Format dialog opens.

3. Select the Type check box to display the variable ast with the complete type information.

4. Click Apply. The format of ast in the Var.view window is updated immediately.

©1989-2024 Lauterbach

Debugger Tutorial | 29

E=H(EE =

(word = Ox0, count = 12346 = 0x303A, left = Ox583C, right = Ox0, T1eldl -

Variable

« [g4 Add to Watch Window
ff} View in Window

&3 Set Value...

&5 Modify Value...

+ GoTill

a Breakpoint...

@ Advanced Breakpoint
e Breakpoints

i Display Memory
Display Trace

7 Grep in Sourcefiles
other

-

) [

28 Change Variable Format

(= ==]

— radix — format — pointer
Decimal Compact String
Hex Fixed WideString
BINary TREE sYmbol
Ascii SHOW PDUMP
DUMP — Open — Recursive ——
SCALED [oFe || | [oFF -

— other

- display

[~ Indax herited SPaces
| Type HIdden E
|| Location MEthods SpotLight

=)

(stat1c strtypel

< I

ast = ((unsigned char *) word = Ox0, (int) count = 12346 = 0x303A, (struct structl #) Teft = =

-

[

5. For more complex variable select TREE in the Change Variable Format dialog box.

Click + and - to expand
and collapse the tree.

B (static strtyﬁel) ast = (~

E| (uns‘l gned ¢

ar *) word = 0x0 — NULL,
Lo-t) count = 12346 = 0x303A,

»

Modifying Variables

B (sjruct structl #) left = 0x583C — (

unsigned char *) word = Ox0,

= (struct structl #) right = Ox0 — NULL

=

int) count = 12346 = 0x303A,
(struct structl '—‘) left = 0x583C,
B (struct structl *) right = 0x0,

= (int:2) fieldl =1 2 0x1,

= (unsigned int:3) field2 = 2 = 0x2),

<

I | o

1. Double-click the variable value to modify the value. The Var.set command will be displayed in the
command line. The short form of the command is v or v

-

(2] | (8 Waich) [0 View | |

@ def

#H ast = (word = DxD, count = 12346, Teft = 0x583C, right = Ox0, fieldl =1, f1 .
= 0

(x
mflags = [a,], 0. 1,1, 0,1,1,0,1,0,0,1,1,0, 0,1, 0

< I

B::V [flags[1] =

<

lags[1] =1
[okl J[formats J[<var> || J(J(J(J(J(
2. Enter the new value directly after the equal sign and confirm with [ok].

©1989-2024 Lauterbach

Debugger Tutorial | 30

Memory

Displaying Memory

1. To display a memory dump in a Data.dump window, do one of the following:

Choose View from the menu then select Dump,

Click & Memory Dump on the toolbar,

Type: Data.dump in the TRACE32 command line. You can also specify an address or

symbol directly, e.g.: Data.dump flags

2. In the Data.dump dialog, enter the data item, e.g. £lags

Alternatively click [z] to browse through the symbol database.

3. In the Browse Symbols window, double-click the symbol £1ags to select it, and then click OK.
N TRACE32 PowerView
File Edit View Var Break Run CPU Misc Trace Pedf Cov Pe

| M

addn

| ® | i Reqisters

1) 2 R

M Stef gt Watch
&5 Referenced Var
5{9}’ Locals

' 2dr

:f|Data. dump

% &= Stackframe with Locals
E add -
ST:000 g5 Stackframe str [[ok]][<ranges][<adrirxzss>][options
5T:000 o Peripherals mov pc,ri4 SR:00001FF8 ‘\armle\arm\main
3 Symbols »
$iif BxData.dump [F=% (o =5
Address [Expression
» [&]0OH
Width Access Options Flag
@ default @ default [CITrack Read
) Byte @E Orient Write
©) Word [V] Ascii
) Long [T] Spotlight
Z Browse Symbols =0 ESH =
W (] [-2] Type: Variables ~| [C]Source
symbol type address i
ast (strtypel)] 0:0000583C--0000584F -
aun (struct unionl) D:00005AA8--00005ABF |
background | w
cstrl (unsigned D:00005500--00005510
def (struct a) D:00005624--00005628
enumvar (enum enur __1_; D:00005634--00005634
unsigned char D: 00006EA4--00006EB6 .
Funco l Double-click £1ags.
Funci [flags=01,1,1,1,11,1,1,111,0,0,1,1,0,0,1,0) }
funcl0
tuncll %
J 4

©1989-2024 Lauterbach

Debugger Tutorial

31

In the following screenshot, the Data.dump window is called via the TRACE32 command line.

address [0 1 2
SD:00007ESO | OO 0O OO0
SD:00007EAQ | O1 00 01
SD:00007EBO | 58 6D 9E
SD:00007ECO | BC D3 22
5D:00007EDO | BE 2B 28
SD:00007EEQ | 55 55 C5
sD:00007EF0 | 00 00 0O 4w
SD:00007F00 | 58 6D 9E Xm
SD:00007F10 | 33 CE 83 36 4B C7 62 BF EE 60 CD 34 00 00 00 00 3%%6K5
sD:00007F20 | 34 00 00 00 25 00 00 00 OO OO OO0 00 CE 2B OO0 0O 4%%%s

‘B: :[Data.dump flags /Byte »Dﬂmdumpﬂagsmﬁe

[ok] options

Access Class + Address HEX ASCII

There are different ways to define an address range:

J <start_address>--<end_address> (SD is an access class)

Data.dump SD:0x5530--SD:0x554F

o <start_address>++<offset>

Data.dump cstrl++0x1f /Byte ;start at cstrl plus the next 0xl1f bytes

Modifying Memory

1. In a Data.dump window, double-click the value you want to modify.
A Data.Set command for the selected address is displayed in the command line. The short form
of the commandis D.S or d.s

N TRACE32 PowerView - | X
File Edit View Var Break Run CPU Misc Trace Perf Cov Peripherals Window Help

(M A+ || 2R 0 0SS @ 1 L

& [= ==
address |0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
; ; #FiConstant 5tr
M

MM

SD:00004DF0
SD:00004E00
SD:00004E10
SD:00004E20
SD:00004E30
SD:00004E40
SD:00004E50
SD:00004EB0
SD:00004E7D

> < m >

—? D.S SD:0x4DE4 %LE]
[ok] Byte Word Long Quad Oct other previous
SD:00004DE4 “Nthumble\armbcstrl stopped MIX |UP
2. Enter the new value directly after %LE, and then confirm with [ok].

(%LE stands for Little Endian).

©1989-2024 Lauterbach Debugger Tutorial | 32

Peripheral View

TRACE32 supports a freely configurable window for displaying and manipulating configuration registers and

on-chip peripheral registers at a logical level. Predefined peripheral files are available for most standard

processors/chips.

You can open the peripheral register view in the TRACES2 by selection the CPU menu, then Peripherals, or
by using the command PER.view in the TRACE32 command line.

I PER.view Display peripheral registers
B:PERview = =R
N - ~
= SCU (System Control Unit)
B CCU (Clocking and Clock Control Uni
B RCU (Reset Control Unit)
SCU_RSTSTAT 10010000 Not terminated Not terminated
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
Not requested Not requested
SCU_RSTCON 00000282 No reset No reset
No reset No reset
Application reset Application reset
No reset Application reset
SCIU_ARSTDIS 00000000 No No
No No
IN 00000000 No reset
2 00009FFC hd
£ >

©1989-2024 Lauterbach

Debugger Tutorial

33

Store Window Configuration

To save the window configuration for you next debug session use Store Windows... from the Window
menu. This action generates a PRACTICE file that includes all commands to reactivate your complete
window configuration automatically.

app | Window Help
¥ | | B Cascade

=== = Tile Horizontally W B B::B:5TOre ™ Win x
on Tile Vertically
ﬁ | reropizns = « v <« Local Disk (C:) » T32 » scripts v O Search scripts »
Create Duplicate window B Organise ~ MNew folder =2 0
X Clear Windows on Page [Desktop & Mame Date modified Type

2% Clear all Windows = .
1 £ Decuments B o BT 03/06/2024 14:13 CMM File

PO "
pt° Store Windows... ; Downloads
=) -
22 Load Windows... J” Music
= Bulist.auto &=| Pictures
{ii BuRegisterview /Spotlight B Videos
ocate ¥/
“im Local Disk (C:)
>
File name: | win_layout.cmm -
Save as type: | Store Setting in PRACTICE Script (*.cmm) ~

» Hide Folders Cancel

The saved window layout can be loaded again for the next debug session with the Load Windows... from
the Window menu.

You can also add a call into your start-up file:

DO win_layout.cmm

©1989-2024 Lauterbach Debugger Tutorial | 34

Getting Online Help

The online help system consists of several documents. They are accessible as PDF-files directly from the
TRACE32 software and can be found in the pdf£ directory.

o =
? Contents 5| Index 43 Find ' Command Tree M Bookmarks o) Print
open al | | Sh close al more | | @ less use fitter: bdmarm;icrstm;

= About the TRACE3Z OnTine Help

TRACE32 Glossary

TRACE32 Debugger Getting Started
TRACE32 Documents

TRACE32 Training

TRACE32 Installation

TRACE32 Technical Support

= TRACE3Z Index

= TRACE3Z Directory

There are different ways to open the TRACES32 online help:

. Help Topics button on the toolbar

Run CPU_Micc Trace

' |||I‘:°-_Et?| |

. Help menu > Contents
? Contents

5] Index

#3 Find...

B Tree

@ PowerView User's Guide

@ Processor Architecture Manual
@ Debugger Tutorial

@ Training Manuals >

o HELP command in the command line
E: :[HELP
components trace

. Help button in the Welcome to TRACE32! dialog.

©1989-2024 Lauterbach Debugger Tutorial | 35

The help system is organized in a multilevel structured way. The screen below shows how to find this tutorial.

B HELP =N =R)

? Contents 5| Index #1 Find ' Command Tree M Bookmarks o) Print

open al || 55 dlose al more || @ less use fitter: bdmarm;icrstm;

|
= About the TRACE3Z OnTine Help
TRACE32 Glossary
=) TRACE32 Debugger Getting Started
ICD Quick Installation
T325tart
Establish Your Debug Session

= About the Tutoria
® Working with the Debugger
@ Main Window of TRACE32

TRACE32 Documents

TRACE32 Training

TRACE32 Installation

TRACE32 Technical Support

= TRACE3Z Index

= TRACE3Z Directory

It is also possible to help for a single command. Enter the command into the command line, add a space and
push F1.

©1989-2024 Lauterbach Debugger Tutorial | 36

Contacting the Lauterbach Support

If you need assistance in setting up the debugging environment, be sure to include detailed system

information.
1. To generate a system information report, choose Help > Support > Systeminformation ...
& Generate TRACE32 Support Information EI@
Press the following button to get help on how to generate Support Information: @

Company:

Prefix:

Firstname:

Surname:

Street:

City:

Country:

Department:

P.0. Box:

ZIP Code:

Telephone:

eMail:

Product:

Target CPU: MNOME

Hostsystern: | Windows 10 ~

Compiler:

Realtime05:

Generate Support Information:

Save to Clipboard

Safe Mode:

Save to File

|

2. Fill in the form then click Save to File,

3. Send the system information as an attachment to support@lauterbach.com together with the

problem description.

©1989-2024 Lauterbach

Debugger Tutorial

37

	Debugger Tutorial
	History
	About the Tutorial
	Connect the TRACE32 Hardware
	Start TRACE32 PowerView
	Set Up the Debug Environment
	A Typical Setup Procedure
	CPU Selection
	Adjust the JTAG Clock
	Establish Debug Communication
	Additional Settings
	Load Application

	Start-Up Scripts
	Write a Start-Up Script
	Run a Start-up Script
	Automated Start-up Scripts

	User Interface - TRACE32 PowerView
	TRACE32 Command Line and Softkeys
	Window Captions - What Makes Them Special in TRACE32?

	Debugging the Program
	Basic Debug Commands
	Debug Modes
	Displaying the Stack Frame

	Breakpoints
	Setting Breakpoints
	Setting Read/Write Breakpoints
	Listing all Breakpoints

	Variables
	Displaying Variables
	Displaying Variables of the Current Program Context
	Using the Symbol Browser
	Formatting Variables
	Modifying Variables

	Memory
	Displaying Memory
	Modifying Memory
	Peripheral View

	Store Window Configuration
	Getting Online Help
	Contacting the Lauterbach Support

