LAUTERBACH A

STRED Debugger and Trace

STRED Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
LS N 2 r—
STRED Debugger and TracCecccccccecerrisissssmimssssssssisssssssssissssssssssssssssssssssssnssssssssansesssnssan
o Yo 11T o) 5
Brief Overview of Documents for New Users 5
Demo and Start-up Scripts 6
L= T 1 ' 7
L@ T T Q3 - i 8
Lo 18] o == 0 T To7 £ 3V 9
SYStem.Up Errors 9
O
L0 o o) 1o 11T = 1T o R
System Overview 10
[71 o W ' o 1 1T R 12
Breakpoints 12
Software Breakpoints 12
On-chip Breakpoints 13
On-chip Breakpoints on instructions 13
Runtime Access 14
Access Classes 15
Debug Code 16
LI 111 T 17
CPU specific SYStem Commandsccccuiivemmrmnnnssmssmmissssmss s s ssssssssssssssssssssnas 19
SYStem.CONFIG Configure debugger according to target topology 19
<parameters> describing the “DebugPort” 22
<parameters> describing the “JTAG” scan chain and signal behavior 24
<parameters> configuring a CoreSight Debug Access Port “AP” 26
<parameters> describing debug and trace “Components” 32
<parameters> which are “Deprecated” 38
©1989-2024 Lauterbach STRED Debugger and Trace 2

<parameters> describing the STRED “Core” 40
Configurable Debug and System Registers 40
SYStem.CONFIG.state Display target configuration 41
SYStem.CPU Select the used CPU 42
SYStem.JtagClock Define JTAG frequency 43
SYStem.LOCK Lock and tristate the debug port 44
SYStem.MemAccess Select run-time memory access method 45
SYStem.Mode Establish the communication with the target 46
SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 47
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 47
SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 47
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 48
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 49
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 49
SYStem.Option.DAPREMAP Rearrange DAP memory map 50
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 50
SYStem.Option.DbgBase Set base address of debug code 51
SYStem.Option.DbgOvwr Allow debug code overwrite 51
SYStem.Option.DbgTrap Allow trap handler address overwrite 51
SYStem.Option.DEBUGPORTOptions Options for debug port handling 52
SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 53
SYStem.Option.EnTRST Control TAP reset 53
SYStem.Option.IMASKASM Disable interrupts while single stepping 53
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 54
CPU specific Benchmarking Commandscccccccmmmiinmmmrmnnsssssssmmnsssssssssss s s 55
BMC.<counter>.MODE Configure counter mode 55
CPU specific TrOnchip Commandscccuciiminssmsinsssiismsssssssssssssss s s sssssssssssasanes 56
TrOnchip.state Display on-chip trigger window 56
TrOnchip.RESet Set on-chip trigger to default state 56
RTM - Trace Source Configuration ... s e 57
RTM Trace source RTM 57
RTM.CLEAR Reset RTM registers to default values 58
RTM.CoreENable Select specific cores for RTM trace 58
RTM.DataTrace Configure data-trace 59
RTM.OFF Switch RTM off 59
RTM.ON Switch RTM on 60
RTM.Register Display RTM registers 60
RTM.RESet Reset RTM settings 61
RTM.state Display RTM settings 61
RTM.Trace Disable RTM configuration by the debugger 61
RTM.TracelD Set RTM trace ID range 62
Target Adaptionccccceiiiiemriinisr s s e 63
©1989-2024 Lauterbach STRED Debugger and Trace 3

Target Adaption for ARM 63

Probe Cables 63
Interface Standards JTAG, Serial Wire Debug, cJTAG 63
Connector Type and Pinout 64

©1989-2024 Lauterbach STRED Debugger and Trace | 4

STRED Debugger and Trace

Version 06-Jun-2024

Introduction

This documentation describes the processor specific settings and features for the TRACE32 debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

J “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach STRED Debugger and Trace | 5

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

TRACE32 PowerView for STRED / PowerDebug PRO

Before you can start debugaging, the debug environment needs to be set up.
This setup is usually done by a start-up script.Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified tofit your exact system setup and configuration.

Related manuals

g3 TRACE32 Online Help
@ Debugger Basics - Training
@ Training Script Language PRACTICE

£ Welcome to TRACE32! [f=lfE ==

[C] show this dialog at start
Re-open dialog via menu Help -> Welcome to TRACE32

I 2 Help ‘ [#9 Start with examples

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts for known STRED-based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

@ None () Chip

_! Board

Search for newest scripts at https://www.lauterbach.com/scripts.html

(2 conFiG) [Tree view | (28 LISTCONFIG|

$3 Search for scripts... EI@
| Search " Selection ” Manuals |

stred v@ 8 demo files found.

Fitter

4

Title Chip Board |
Setup Core5ight comporents for MERI. SRT* - P
lAMP-demo script for MSR1-ARPU on STAB00C (RAM) MSR1-ARPU STAB0OC
SMP-demo script for MSR1-ARPU on STAS00C (RAM) MSR1-ARPU STAB0OC
AMP-demo script for MSR1-ARPU with Offchip-Trace on STAB0OC (RAM) MSR1-ARPU STABDOC
SMP-demo script for MSR1-ARPU with Offchip-Trace on STAB00C (RAM) MSR1-ARPU STABDOC
IAMP-demo script for MSR1-ARPU with Onchip-Trace on STAS00C (RAM) MSR1-ARPU STABDOC
SMP-demo script for MSR1-ARPU with Onchip-Trace on STAS00C (RAM) MSR1-ARPU STABDOC
SMP-demo script for MSR1-ARPU with Onchip-Trace on STAS00C (RAM) MSR1-ARPU STABDOC >

You can also manually navigate in the ~~/demo/stred/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach

STRED Debugger and Trace

6

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

STRED Debugger and Trace |

7

Quick Start

Starting up the debugger is done as follows:

1.

Reset the debugger.

RESet

The RESet command ensures that no debugger setting remains from a former debug session. All
settings get their default value. RESet is not required if you start the debug session directly after
booting the TRACES32 development tool. RESet does not reset the target.

Select the chip or core you intend to debug.

SYStem.CPU <cpu_type>

Based on the selected chip the debugger sets the SYStem.CONFIG and SYStem.Option
commands the way which should be most appropriate for debugging this chip. Ideally no further setup
is required.

Connect to target.

SYStem.Up

This command establishes the JTAG communication to the target. It resets the processor and enters
debug mode (processor is halted). After this command is executed, it is possible to access memory
and registers.

You might want to connect to a running program without causing a target reset. In this case use
SYStem.Mode Attach instead. A Break.direct command will halt the processor.

Load the program you want to debug.

Data.LOAD.E1lf sieve.elf

This loads the executable to the target and the debug/symbol information to the debugger’s host. If
the program is already on the target then load with the /NoCODE option.

©1989-2024 Lauterbach STRED Debugger and Trace | 8

Troubleshooting

SYStem.Up Errors

No information available.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach STRED Debugger and Trace | 9

https://support.lauterbach.com/kb

Configuration

System Overview

SWITCH

1 GBit Ethernet

PC or
Workstation

[—

Cable

Ethernet |[O™

e T

[oo —
[

LauTERBACH

POWER DEBUG PRO

Desktop
Power Supply

-

Debug Cable

Target

Debug
Connector

©1989-2024 L

auterbach

STRED Debugger and Trace

10

SWITCH

1 GBit Ethernet

PC or
Workstation

Ethernet
Cable

Debug Cable

POWER TRACE Il
LAUTERBACH

Target

Debug
Connector

Trace
Connector

T

POWER DEBUG INTERFACE / USB 3

Wall Mount
.
Power Supply

O
Preprocessor
AUTOFOCUS i
| ——— — | —
POWER DEBUG PRO
POWER TRACE Il
L Desktop
Power Supply
PC or
Workstation
Target
L FOBES S J PPOWER DEBUG USB INTERFACE / USB 3 com bi Pro be
usB ©1re }:‘:“i S
cable |7 g3
o 2
E o
|

©1989-2024 Lauterbach

STRED Debugger and Trace

11

Debugging

Breakpoints

There are two implementations for breakpoints:
J Software breakpoints

J On-chip breakpoints

Software Breakpoints

In order to stop the program execution at a selected instruction, the code at the break location is patched by
an illegal instruction. If the illegal instruction comes to the execution stage of the pipeline, an illegal
instruction trap is raised, the program execution is stopped by the debug code and the debug mode
becomes active.

Software breakpoints can be set to instructions in RAM and with some preparations also to instructions in

FLASH (see FLASH.Create and FLASH.AUTO). Software breakpoints on instructions in FLASH should
only be used, if the number of on-chip breakpoints is insufficient.

The number of software breakpoints is unlimited.

©1989-2024 Lauterbach STRED Debugger and Trace | 12

On-chip Breakpoints

This implementation is called on-chip, because the debugger uses resources provided by the processor to

set a breakpoint.

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD:

. On-chip breakpoints: Total amount of available on-chip breakpoints.

J Instruction breakpoints: Number of on-chip breakpoints that can be used for program
breakpoints.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read/Write
breakpoints.

J Data breakpoints: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

Family On-chip Instruction Read/Write Data
Breakpoints Breakpoints Breakpoints Breakpoints
STRED 4 instruction 4 1 —

1 read/write

single address

range as bit mask
break before make

ReadWrite only

On-chip Breakpoints on instructions

On-chip breakpoints are handled by the CPU internally and do not require to modify the program memory.

Therefore they can be used to set a breakpoint on an instruction in FLASH or ROM.

With the command MAP.BOnchip <range> it is possible to instruct the debugger to use On-chip
breakpoints for the specified range as default (it is still possible to override this with parameters like /SOFT
for the break.set command). Typically it is used for FLASH/ROM memories. If a breakpoint is set within the
specified address range, the debugger uses automatically the available on-chip breakpoints.

Use the command MAP.List to see for which address ranges the debugger uses on-chip breakpoints.

©1989-2024 Lauterbach

STRED Debugger and Trace | 13

Example for Breakpoints

For example, if a target system has FLASH from 0x0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFF.
The command to configure TRACES32 correctly for this configuration is:

Map.BOnchip 0x0--0xXFFFFF

Example software breakpoints:

Break.Set 0x100000 /Program

Break.Set funcl /Program

Example on-chip breakpoints:

Break.Set 0x1000 /Program

Break.Set func2 /Program

Break.Set 0x101000 /Program /Onchip

Runtime Access

I

Software BP on RAM address

Software BP on symbol in RAM

On-chip BP on FLASH address
On-chip BP on symbol in FLASH

Force On-chip BP on RAM address

The STRED can read/write memory while the program execution is running, but can not read the Program
Counter (PC). Runtime access can be enabled or disabled with the SYStem.MemAccess command. To
access memory at runtime, the access class extension E should be used.

Example:

7

view memory with runtime access
Data.dump ED:0x3F00000++0xff /SpotLight

141 BuData.dump ED:0x3F00000++0xff /SpotLight

(=[O el

ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:
ED:

address
03F00000
03F00010
03F00020
03F00030
03F00040
03F00050
03F00060
03F00070
03F00080
03F00090
03F000AD
03F000B0
03F000CO
03F000D0
03FO00ED
03FO00FO

C 0123456789ABCDEF

+00000000 00000000 00000000 00000000

00000000 03FDZ2300 03FDZEOD
03FD3B00 03FD2300 00000000
00000000 00000000 00000000

00000022

00000200
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000006

01010101
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00003034
03F26204

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
03F000F4
00000000

QO2ERGAN 43
00000001

03FD3300 HNNNNETEN FENIEe

00000000 % ; LENgFENNNRNN N

00000000 RN NN A
g Y

£
£

00000000
00000000
00000000
00000000 5%
00000000 5%
00000000

00000000
00000000
00000000 NN 0%
03F00108 YHNNERSENENY

UXUUHK

©1989-2024 Lauterbach

STRED Debugger and Trace | 14

Access Classes

For background information about the term access class, see “TRACE32 Glossary” (glossary.pdf).

The following access classes are available for STRED:

Access Class Description

AHB, APB Memory access via bus masters, so named Memory Access Ports (MEM-
AP), provided by a Debug Access Port (DAP). The DAP is a ARM
CoreSight component.

D Data Memory

DSU Memory access via Debug Support Unit (DSU) via JTAG Access Port
(JTAG-AP) provided by a Debug Access Port (DAP). For target systems
without DAP, the DSU is directly accessed via JTAG.

E Run-time memory access (see SYStem.CpuAccess and
SYStem.MemAccess)

P Program Memory

VM Virtual Memory (memory on the debug system)

Example:

; view data memory
Data.dump D:0x0000--0x1fff

; view program code
List.auto P:0x10000

; view memory via DSU access
Data.dump DSU:0x0000--0x1fff

; view memory via AHB access
Data.dump AHB:0x0000--0x1fff

©1989-2024 Lauterbach

STRED Debugger and Trace | 15

Debug Code

Debugging a STRED CPU requires a few instructions of debug code to support operations that can only be
done by the CPU, but not directly by the debugger. For example, to halt a running CPU, the debugger
requests a debug interrupt and the CPU is halted by the zzz instruction that is part of the debug code.

The instruction sequence of the debug code is:

sync
ZZZ

rfe

msr %$r0, %sr2
jpda +4

stw [3r0], %rl
.word Oxffff

The binary code is:

0x03, O0xOE, 0x00, 0x00, 0x00, OxFE, 0x00, OxF8
0x02, OxFB, 0x02, 0xDC, 0x10, 0x9B, OxFF, OXFF

By default, the debug code is written to the CPU memory on SYStem.Mode Up or SYStem.Mode Attach.
The debugger will also set the debug interrupt handler and the trap handler to the base address of the debug
code. The base address of the debug code can be set with SYStem.Option.DbgBase.

If the debug code is included in the executed program code, SYStem.Option.DbgOvwr can be used to
prevent the debugger from writing the debug code. In this case, SYStem.Option.DbgBase must be used to
inform the debugger about the location of the debug code.

If the executed program code implements it's own trap handler routine, SYStem.Option.DbgTrap can be
used to prevent the debugger from overwriting the trap handler. In this case, the program code should also
include the debug code and must jump to the debug code base address when a debug trap (illegal
instruction, ibreak or dbreak) is detected.

©1989-2024 Lauterbach STRED Debugger and Trace | 16

Tracing

Processors of the STRed series implement an RTM for trace support. This section provides examples for
typical RTM trace configurations. It does not include configurations specific for certain chips or trace
hardware.

For information about Coresight component configuration please refer to “Setup of the Debugger for a
CoreSight System” (app_arm_coresight.pdf). For information about trace hardware setup refer to the
“AutoFocus User’s Guide” (autofocus_user.pdf). For information about target system specific trace
configurations refer to the technical reference manual or data sheet of the respective chip or target system.

Example: Basic RTM Flow Trace

The trace capture setup is controlled by the RTM command group. This examples shows a simple setup for
RTM flow trace on a single core. It is possible to select multiple cores for trace. By default all cores are

traced..
RTM.Trace ON ; RTM conditions and filter are set by the debugger
RTM.CoreENable 0. ; trace only core 0
RTM.ON ; enable trace recording

Example: RTM Flow Trace with Manual Register Configuration

This example demonstrates a manual RTM configuration and behaves exactly as the previous flow trace
example. Setting RTM.Trace to "OFF" prevents the debugger from overwriting the RTM condition, trigger
and filter registers. As this method provides full control over the RTM registers, it can be adjusted for more
sophisticated use cases.

Please refere to the RelSC Trace Module Specification for more information about how to configure the RTM
registers.

RTM.Trace OFF

PRIVATE &rtm
&rtm=COMPonent .BASE ("RTM", 0)

Data.Set &rtm+0x000 %$Long 0x301 ; enable funnel ports
Data.Set &rtm+0x380 %Long 0x001 ; enable log for processor 0
Data.Set &rtm+0x280 %Long 0x488 ; enable flow trace

RTM.ON

©1989-2024 Lauterbach STRED Debugger and Trace | 17

Example: Basic RTM Data Trace

This examples shows a setup for RTM flow trace and data trace. Every read and write access to any
address is recorded.

RTM.Trace ON
RTM.CoreENable 0.
RTM.DataTrace ON

RTM.ON

7

RTM conditions and filter are set by the debugger
trace only core 0

enable data trace

enable trace recording

Example: RTM Data Trace with Address Range

This example uses the manual RTM register configuration to set up a data trace restricted to a specific
address range. The RTM.DataTrace configuration is ignored when RTM.Trace is set to "OFF".

RTM.Trace OFF

PRIVATE &rtm
&rtm=COMPonent .BASE ("RTM", 0)

Data.Set
Data.Set
Data.Set

; enable
Data.Set
Data.Set
Data.Set
Data.Set

RTM.ON

&rtm+0x000
&rtm+0x380
&rtm+0x280

data trace
&rtm+0x180
&rtm+0x184
&rtm+0x188
&rtm+0x284

$Long 0x301 8
$Long 0x001 8
$Long 0x488 8

enable all funnel ports
enable log for processor 0
enable flow trace

in the address range 0x1000--0x1FFFF

%$Long 0x1000 ; address range start

%$Long Ox1FFF ; address range end

$Long 0x03000001 ; log address and data trace
%$Long 0x00020000 ; enable data trace

©1989-2024 Lauterbach

STRED Debugger and Trace |

18

CPU specific SYStem Commands

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:
(DebugPort)

<parameter>:
(JTAG)

<parameter>:
(AccessPorts)

SYStem.CONFIG <parameter>

CONNECTOR

CORE <core> <chip>

CoreNumber <number>

DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD]

Slave [ON | OFF]

SWDP [ON | OFF]

SWDPIdleHigh <value>

SWDPTargetSel <value>

TriState [ON | OFF]

DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>
TAPState <state>
TCKLevel </evel>

AHBAPN.Base <address>
AHBAPN.HPort <value> <name>
AHBAPN.Port <port>
AHBAPN.RESet

AHBAPnN.view
AHBAPN.XtorName <name>

APBAPnNn.Base <address>
APBAPN.Port <port>
APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPort <value> <name>
AXIAPN.Port <port>
AXIAPNn.RESet

AXIAPN.view
AXIAPn.XtorName <name>

©1989-2024 Lauterbach

STRED Debugger and Trace

19

<parameter>:
(AccessPorts
cont.)

<parameter>:
(COmponents)

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPN.CorePort <port>
JTAGAPN.RESet
JTAGAPN.view
JTAGAPN.XtorName <name>

MEMORYAPN.HPort <value> <name>
MEMORYAPN.Port <port>
MEMORYAPN.RESet
MEMORYAPN.view
MEMORYAPN.XtorName <name>

CTl.Base <address>

CTI.Config <type>

CTI.RESet

CTl.view

CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
QV1]

ETB.ATBSource <source>

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL-
STOP | FULLCTI]

ETB.view

FUNNEL.ATBSource <source>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet

FUNNEL.view

HTM.Base <address>
HTM.RESet

HTM.Type [CoreSight | WPT]
HTM.view

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>

©1989-2024 Lauterbach

STRED Debugger and Trace | 20

<parameter>: REP.RESet
(COmponents REP.view
cont.)
RTM.Base <address>
RTM.RESet

STM.Base <address>
STM.Mode <mode>
STM.RESet
STM.Type <type>

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet

TPIU.Type [CoreSight | Generic]

<parameter>: DSP.ProcessorID
(Core) DSP.RESet
DSP.state

DSP.<register> <address>

<parameter>: CTICONFIG [NONE | ARMV1 | ARMPostlInit | OMAP3 | TMS570 | CortexV1 |
(Deprecated) QV1 | ARPU]

The SYStem.CONFIG command group informs the debugger about the available on-chip debug and trace
components and how to access them.

Default values are set by SYStem.CPU depending on the selected chip. Ideally there is no need for any
further SYStem.CONFIG command, but some target systems require to adjust the default setup.

SYStem.CONFIG settings shall be modified after the SYStem.CPU command and before starting the
debug session e.g. by SYStem.Up.

©1989-2024 Lauterbach STRED Debugger and Trace | 21

<parameters> describing the “DebugPort”

CONNECTOR Specifies the connector “MIPI34” or “MIPI20T” on the target. This
[MIPI34 | MIPI20T] is mainly needed in order to notify the trace pin location.

Default: MIPI34 if a CombiProbe is used, MIPI20T if a yTrace
(MicroTrace) or debug cable is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if multiple debugger instances
(multiple TRACE32 PowerView GUIs) are used to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

CoreNumber <numer> Configures the number of cores to be considered in a Symmetric
MultiProcessing (SMP) debug session. There are core types which
can be used as single core processor or as scalable multicore
processor (with all cores of the same type). If more than one core
should be debugged in an SMP debug session it is necessary to
specify the number of cores.

Default: 1.
DEBUGPORT Specifies which probe cable shall be used e.g. “DebugCableA” or
[DebugCable0 | DebugCa- “DebugCableB”. At the moment only the CombiProbe allows to
bleA | DebugCableB] connect more than one probe cable.

DEBUGPORTTYPE [JTAG Specifies the used debug port type. It assumes the selected type is
| SWD] supported by the target.

Default: JTAG.

©1989-2024 Lauterbach STRED Debugger and Trace | 22

Slave [ON | OFF]

SWDP [ON | OFF]

SWDPIdleHigh <value>

SWDPTargetSel <value>

TriState [ON | OFF]

If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need

to have the setting Slave ON.
Default:

OFF if CORE=1 in the configuration file (e.g. config.t32.).
ON if CORE=... >1 in the configuration file.

With this command the normal JTAG interface can be changed to

the serial wire debug mode. SWDP (Serial Wire Debug Port) uses
just two signals instead of five. It is required that the target and the

debugger hard- and software supports this interface.
Default: OFF.

Keep SWDIO line high when idle. Only for Serial Wire Debug
mode. Usually the debugger will pull the SWDIO data line low,
when no operation is in progress, so while the clock on the
SWCLK line is stopped (kept low).

Default: OFF.
Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

. NTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach

STRED Debugger and Trace |

23

<parameters> describing the “JTAG” scan chain and signal behavior

A JTAG interface provides access to a Test Access Port controller (TAP). The TAP implements a state
machine to read and write data to an Instruction Register (IR) and a Data Register (DR).

A JTAG interface is controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled via a single JTAG interface by daisy-chaining the TAPs (serial connection).
To access one specific TAP in the chain, a BYPASS pattern (all ones) must be sent to all other TAPs. To
handle this the debugger needs to know the position of the TAP within the JTAG scan chain. The TAP
position can be defined with the DRPOST, DRPRE, IRPOST and IRPRE commands in the table below.

DRPOST <bits> Defines the TAP position in a JTAG scan chain. Should be configured to
the number of TAPs in the JTAG chain between the TDI signal and the
described TAP, as every TAP contributes one data register bitin BYPASS
mode.

For target systems where the core TAP is only accessibly via the Debug
Access Port (DAP), this command defines the position of the core TAP on
the JTAG Access Port (JTAG-AP) of the DAP.

Default: 0.

DRPRE <bits> Defines the TAP position in a JTAG scan chain. Should be configured to
the number of TAPs in the JTAG chain between the described TAP and
the TDO signal, as every TAP contributes one data register bit in
BYPASS mode.

For target systems where the core TAP is only accessibly via the Debug
Access Port (DAP), this command defines the position of the core TAP on
the JTAG Access Port (JTAG-AP) of the DAP.

Default: 0.

IRPOST <bits> Defines the TAP position in a JTAG scan chain. Should be configured to
the number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between the TDI signal and the described TAP.

For target systems where the core TAP is only accessibly indirectly via
the ARM CoreSight DAP, this command defines the position of the core
TAP on the JTAG Access Port (JTAG-AP) of the DAP.

Default: 0.

©1989-2024 Lauterbach STRED Debugger and Trace | 24

IRPRE <bits> Defines the TAP position in a JTAG scan chain. Should be configured to
the number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between the described TAP and the TDO signal.

For target systems where the core TAP is only accessibly via the Debug
Access Port (DAP), this command defines the position of the core TAP on
the JTAG Access Port (JTAG-AP) of the DAP.

Default: 0.

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of the TCK signal when all debuggers are in tristate mode. Usually
defined by a pull-up or pull-down resistor on the target.

Default: 0.

©1989-2024 Lauterbach STRED Debugger and Trace | 25

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

ROM table
Access Port
(MEM-AP)
CoreSight
Component
JTAG

Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach STRED Debugger and Trace | 26

Example 2: SoC-600

SoC-600

Debug
MING))

(va-v9/2¢€) da

AHBAPN.HPROT <port>
SYStem.Option.AHBH-
PROT <port>
(deprecated)

AXIAPNn.HPROT <port>
SYStem.Option.AXIHPROT
<port> (deprecated)

MEMORYAPN.HPROT
<port>

I
NO-9/ZE E

CoreSight
Component

ROM table

{| CoreSight
. Component

ROM table
Memory System 2

CoreSight
. Component

ROM table

H9-v9/Ce

Memory System 1

(0] VREVIEM (expected) * [CoreSight

. Component

; C%c;;;s)ir?;rtut (possible) Memory System 3

Default: 0.

Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXIl: memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

©1989-2024 Lauterbach

STRED Debugger and Trace | 27

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]
>Domain) of an Access Port, when using the AXI: memory class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>
DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable

Description

=0x30: Domain=0x3, Cache=0x0
=0x32: Domain=0x3, Cache=0x2
=0x06: Domain=0x0, Cache=0x6

ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable

ReadWriteAllocateOuterShareable

=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:
=0xOE:
=0x1E:
=0x2E:

Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

©1989-2024 Lauterbach

STRED Debugger and Trace

28

AHBAPN.XtorName AHB bus transactor name that shall be used for “AHBN:” access
<name> class.

APBAPN.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access

class.
DEBUGAPN.XtorName APB bus transactor name identifying the bus where the debug
<name> register can be found. Used for “DAP:” access class.
MEMORYAPN.XtorName AHB bus transactor name identifying the bus where system
<nhame> memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.
... .RESet Undo the configuration for this access port. This does not cause

a physical reset for the access port on the chip.

... .View Opens a window showing the current configuration of the access
port.

©1989-2024 Lauterbach STRED Debugger and Trace | 29

S0C-400 Specific Commands

AHBAPN.Port <port>

APBAPN.Port <port>

AXIAPN.Port <port>

DEBUGAPN.Port <port>

JTAGAPnN.CorePort <port>

JTAGAPN.Port <port>

MEMORYAPN.Port <port>

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBN:” access class. Default: <port>=0.

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.

©1989-2024 Lauterbach

STRED Debugger and Trace | 30

S0C-600 Specific Commands

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPNn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

STRED Debugger and Trace | 31

<parameters> describing debug and trace “Components”

The debugger must be configured to know all debug and trace components of the target system which shall

be used for debugging. On the Components tab in the SYStem.CONFIG.state window, the current
configuration of debug and trace components can be viewed:

Type CoreSight -

& B::5Y5tem. CONFIG /COmponents EI@
| DebugPort ” Jtag ” AccessPorts " COmponent5|
|— Select components to display - v|
Tl
Base APB:0x41903000 [eed]
Config NOMNE -
ETFL
Base APB:0x41908000 [eed]
ATBSource FUNNEL1 (=
FUNNELL
Base APB:0x41907000 [...
ATBSource RTM 3 STM1 4 =) &
RTM
Base D:0x3FFFO00 [eed]
5TM1
Base APB:0x41904000 [...] Name [eed]
Type ARM - Mode 5TPv2 M
TPIUL
Base APB:0x4190A000 [...] ATBSource ETFL [eed]

New components can be added here or with the respective commands (see the table below).

It is possible to have several of the following components: ETB, ETF, ETR, FUNNEL, STM.

For these components, a index (starting from 1) is appended to the component name to create a unique

identifier, e.g. FUNNEL1, FUNNEL2. A component identifier without index always refers to the first

component (with index 1)., e.g. FUNNEL equals FUNNEL1.

©1989-2024 Lauterbach

STRED Debugger and Trace

32

Example:

Core

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

» ETM

Core ——® ETM

CONFIG.
CONFIG.
CONFIG
CONFIG.
CONFIG
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.
CONFIG.

1

FUNNEL

FUNNEL

COREDEBUG.Base 0x80010000 0x80012000

BMC.Base 0x80011000 0x80013000
.ETM.Base 0x8001c000 0x8001d000

STM1 .Base EAHB:0x20008000

.STM1.Type ARM

STM1 .Mode STPv2

FUNNEL1 .Base 0x80004000
FUNNEL2 .Base 0x80005000
TPIU.Base 0x80003000

FUNNEL1 .ATBSource ETM.0 0 ETM.1 1

FUNNELZ2 .ATBSource FUNNEL1 0 STM1 7
TPIU.ATBSource FUNNEL2

TPIU

©1989-2024 Lauterbach

STRED Debugger and Trace

33

<component>.ATBSource
<source>

<component>.Base
<address>

... .Name

Configures for trace information collecting components from where
the trace data is coming. This way the debugger is informed about the
interconnection of different trace components.

A base address must be configured for components using the
<component>.Base command before they can used as source for
<component>.ATBSource <source>.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore <source> is a list of up to eight source and port
pairs when a FUNNEL is configured.

Example: FUNNEL1.ATBSource ETF1 0 ETF2 1 ETF3 5

In an Symmetric MultiProcessing (SMP) debug session, a list of base
addresses can be used to specify one component per core. To
identify a certain component as source, the core index (starting from
0) must be appended to the source name.

Example:
ETF.Base 0x1000 0x2000 0x3000
FUNNEL.ATBSource ETF.0 0O ETF1 2 ETF2 4

For a list of possible components including a short description see
Available Components.

Configures the start address of a register block used to configure a
component. This is also used to notify the existence of the
component.

In an Symmetric MultiProcessing (SMP) debug session, a list of base
addresses can be used to specify one component per core for CTI,
ETB, ETF and ETR:

<component>.Base <address1> <address2> <address3> ...
Example: ETF.Base 0x1000 0x2000 0x3000

For a list of possible components including a short description see
Available Components.

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView GUI
shares with other opened PowerView GUIs settings and the state of
components identified by the same name and component type.
Components using different names are not shared. Other attributes
as the address or the type are used when no name is configured.

©1989-2024 Lauterbach

STRED Debugger and Trace | 34

Example: Shared None-Programmable Funnel:

PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

<component>.RESet Undo the configuration for the component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description see
Available Components.

<component>.view Opens a window showing the current configuration of the component.

For a list of possible components including a short description see
Available Components.

CTI.Config <type> Configures the interconnection of Cross Trigger Interfaces (CTI).
Certain ways of interconnection are common and these are
supported by the debugger e.g. to cause a synchronous halt of
multiple cores.

NONE: The CTI is not used by the debugger.
ARPU: This mode should be used for a MSR1-ARPU CTI.
others: Please check the ARM or ARMv8 manual for other CTI

types.

ETB.NoFlush [ON | OFF] Deactivates the ETB flush request at the end of trace recording.
This is a workaround for a hardware bug on certain chips. Some
trace data is lost at the end of the recording. Don’t use it if not
needed.

ETB.Size <size> Specifies the size of the Embedded Trace Buffer (ETB). The ETB
size can normally be read out by the debugger. Therefore this
command is only needed if this can not be done for any reason.

©1989-2024 Lauterbach STRED Debugger and Trace | 35

ETB.STackMode [NotAvail- Specifies the which method is used to implement the Stack mode

bale | TRGETM | FULLTI- of the on-chip trace.
DRM | NOTSET | NotAvailable: stack mode is not available for this on-chip trace.
FULLSTOP | FULLCTI] TRGETM: the trigger delay counter of the onchip-trace is used. It

starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for Tl devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

FUNNEL.PROGrammable Default is ON. If set to ON the peripheral is controlled by TRACE32

[ON | OFF] in order to route ATB trace data through the ATB bus network. If
PROGrammable is configured to value OFF then TRACE32 will
not access the FUNNEL registers and the base address doesn't
need to be configured. This can be useful for FUNNELSs that don't
have registers or when those registers are read-only. TRACE32
need still be aware of the connected ATB trace sources and sink in
order to know the ATB topology. To build a complete topology
across multiple instances of PowerView the property Name should
be set at all instances to a chip wide unique identifier.

HTM.Type [CoreSight | Selects the type of the AMBA AHB Trace Macrocell (HTM).

WPT] CoreSight is the type as described in the ARM CoreSight manuals.
WPT is a NXP proprietary trace module.

STM.Mode <mode> Selects the protocol type used by the System Trace Module (STM).

STM.Type <type> Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols.

TPIU.Type [CoreSight | Selects the type of the Trace Port Interface Unit (TPIU).

Generic]

CoreSight: A CoreSight TPIU, control register located at
TPIU.Base <address> will be handled by the debugger.

Generic: A proprietary TPIU, control register will not be handled by
the debugger.

Default: CoreSight.

©1989-2024 Lauterbach STRED Debugger and Trace | 36

Available Components

CTl.Base <address>

CTl.Config <type>

CTI.RESet <address>

Cross Trigger Interface (CTI) - Cross Trigger Interface (CTI) - ARM CoreSight module

If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>

ETF.Base <address>

ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETR.ATBSource <source>

ETR.Base <address>

ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module

Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single ATB (AMBA Trace Bus).

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HTM.Base <address>

HTM.RESet

HTM.Type [CoreSight | WPT]

AMBA AHB Trace Macrocell (HTM) - ARM CoreSight module

Trace source generating trace data of access to an AHB (AMBA High-performance Bus).

©1989-2024 Lauterbach STRED Debugger and Trace | 37

RTM.Base <address>

RTM.RESet

RelSC Trace Module (RTM)

A real time trace engine providing instructions and data tracing for the RelSC or STRed processor family.

STM.Base <address>

STM.Mode <mode>

STM.RESet

STM.Type <type>

System Trace Macrocell (STM) - MIPI, ARM CoreSight, others

Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>

TPIU.Base <address>

TPIU.Name <string>

TPIU.Type [CoreSight | Generic]

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our

commands. The new commands can deal even with complex structures.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostinit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARPU: This mode is used for the ARPU CTI connection on
MSR1 cores.

©1989-2024 Lauterbach STRED Debugger and Trace | 38

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>: <parameter>:
(Deprecated) (New)
CTICONFIG <type> CTI.Config <type>

©1989-2024 Lauterbach STRED Debugger and Trace | 39

<parameters> describing the STRED “Core”

STRED cores provide memory mapped registers for debug support. Since the memory map of these
registers depends on the implementation, it is necessary to configure the debugger accordingly to debug a
specific target system. Please note that normally the SYStem.CPU selection already configures proper
default settings and using the commands described in this section shouldn’'t be necessary.

DSP.ProcessorliD

DSP.RESet

DSP.state

DSP.<register>
<addresses>

Configures the processor ID that is used by the target system to identify a
specific processor within a multi-core system.

Resets all SYStem.CONFIG.DSP settings to default values depending
on the current SYStem.CPU selection.

Displays the SYStem.CONFIG.DSP.state window to display and modify
SYStem.CONFIG.DSP settings.

Configures the processor specific location of debug and system registers
required for debugging.

In a Symmetric MultiProcessing (SMP) debug session, debug and
system register addresses can be independent per core. Therefore one
address per core should be specified or a single address if the register is
common for all cores.

For a list of all configurable debug and system registers see
Configurable Debug and System Registers.

Configurable Debug and System Registers

DbgIRQ
DbgRESet
DbgCLocK
DbgWakeUp
DbgGPIO
BootPC

DbgConFiG

DbgINTerrupt
systemMISC

DspNUMber

DSP debug Interrupt request register.

DSP reset register.

DSP clock control register.

DSP wakeup register.

Base address of DSP general purpose debug registers.

Defines the Program Counter (PC) start value after a system reset.

Base address of DSP configuration registers (used to configure e.g. trap
handling or on-chip breakpoints).

Base address of the debug interrupt configuration registers.
System MISC register (used for interrupt masking).

DSP number (or Processor ID) register.

©1989-2024 Lauterbach

STRED Debugger and Trace | 40

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | AccessPorts | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector
(default) type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

©1989-2024 Lauterbach STRED Debugger and Trace | 41

SYStem.CPU

Select the used CPU

Format:

<cpu>:

SYStem.CPU <cpu>

STRED5 | STRED6 | MSR1-ARPU | ...

Default: STREDS.

Selects the processor type and, depending on the selected processor, configures default settings for the

SYStem.CONFIG and SYStem.Option command groups.

©1989-2024 Lauterbach

STRED Debugger and Trace

42

SYStem.JtagClock Define JTAG frequency

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
CTCK <frequency> | CRTCK <frequency>]

SYStem.BdmClock (deprecated)

<frequency>: 10000. ... 40000000.

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency> . The debugger cannot select all frequencies accurately. It chooses
the next possible frequency and displays the real value in the
SYStem.state window.

] Besides a decimal number like “100000.” short forms like “10kHz”
or “15MHz” can also be used. The short forms imply a decimal

value, although no “” is used.

RTCK The debug clock is controlled by the RTCK signal (Returned TCK).

ARTCK Accelerated method to control the debug clock by the RTCK signal
(Accelerated Returned TCK). This option is only relevant for JTAG debug
ports.

CTCK With this option higher debug port speeds can be reached. The

TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature
can be used with a debug cable version 3 or newer. If it is selected,
although the debug cable is not suitable, a fixed frequency will be
selected instead (minimum of 10 MHz and selected clock).

CRTCK With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable and
on the target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK/SWCLK
is always output with the selected, fixed frequency.

©1989-2024 Lauterbach STRED Debugger and Trace | 43

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach STRED Debugger and Trace | 44

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: Enable

Denied

StopAndGo

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the core is executing the program.

Enable (default) Memory access during program execution to target is enabled.
CPU (deprecated)

Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

©1989-2024 Lauterbach STRED Debugger and Trace | 45

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

NoDebug

Prepare

Go

Attach

Up

Down Disables the debug connection. The state of the DSP remains

(Default) unchanged. The JTAG port is tristated.

NoDebug Same as Down.

Prepare Resets the DSP and establishes the debug connection. The debugger
does not check the state of the core or system components. This can be
used, for example, to set up clock configurations on the target before
switching to System.Mode Up.

Go Resets the DSP, establishes the debug connection and starts the user
program immediately.

Attach The debug connection is established without resetting the DSP.

Select Down before connecting the debugger cable to the target and
switch then to Attach.

Up Resets the DSP and establishes the debug connection. The DSP is
stopped in debug mode after the reset.

StandBy Not available.

©1989-2024 Lauterbach

STRED Debugger and Trace | 46

SYStem.Option. AHBHPROT Select AHB-AP HPROT bits

Format: SYStem.Option. AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPNn.HPROT instead.

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory

class.

©1989-2024 Lauterbach STRED Debugger and Trace | 47

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

©1989-2024 Lauterbach STRED Debugger and Trace | 48

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach STRED Debugger and Trace | 49

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to contain
an address range followed by a single address.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

©1989-2024 Lauterbach STRED Debugger and Trace | 50

SYStem.Option.DbgBase Set base address of debug code

Format: SYStem.Option.DbgBase <address>

Configures the start address of the memory location reserved for the debug code. For more information
about the debug code, see “Debug Code”, page 16.

SYStem.Option.DbgOvwr Allow debug code overwrite
Format: SYStem.Option.DbgOvwr [ON | OFF]
Default: ON.

If enabled, the debugger will write the debug code to the target system memory on SYStem.Up or
SYStem.Attach. For more information about the debug code, see “Debug Code”, page 16.

This option should be disabled if the debug code must not be written by the debugger, but is already
available at the expected memory location (SYStem.Option.DbgBase) on the target system.

SYStem.Option.DbgTrap Allow trap handler address overwrite
Format: SYStem.Option.DbgTrap [ON | OFF]
Default: ON.

If enabled, the debugger will set the trap handler address to the debug code base address. For more
information about the debug code, see “Debug Code”, page 16.

This option must be disabled if the code running on the target system should use it's own trap handler
routine. In this case, this trap handler routine must take care that IBREAK, DBREAK and
ILLEGAL_INSTRUCTION exceptions are forwarded to the debug code.

©1989-2024 Lauterbach STRED Debugger and Trace | 51

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

©1989-2024 Lauterbach

STRED Debugger and Trace | 52

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)

[SYStem.state window> EnReset]

Format: SYStem.Option.EnReset [ON | OFF]

Default: ON.

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if NRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that NRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.EnTRST Control TAP reset
Format: SYStem.Option.EnTRST [ON | OFF]
Default: ON.

To set the debug interface in a defined state the TAP is reset by driving the TRST pin low and additionally
holding TMS low for five 5 TCKs. By setting the EnTRST option to OFF only the TMS method is used. The
reason for introducing this command was that in some target systems several chips were connected to the
TRST line, which must not be reset together with the debug TAP.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, all interrupts will be masked during assembler single-step operations by use of the disable
interrupt bit in the MISC system register. After the single step the register is restored to the original value. If
the option is disabled, the MISC system register is not modified.

©1989-2024 Lauterbach STRED Debugger and Trace | 53

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, all interrupts will be masked during HLL single-step operations by use of the disable interrupt bit
in the MISC system register. After the single step the register is restored to the original value. If the option is
disabled, the MISC system register is not modified.

©1989-2024 Lauterbach STRED Debugger and Trace | 54

CPU specific Benchmarking Commands

The BMC (BenchMark Counter) commands provide control and usage of the on-chip benchmark and
performance counters if available on the chip.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.<counter>.MODE Configure counter mode
Format: BMC.<counter>.MODE [USER | SUPERUSER | ANY]
Default: ANY.

Configures if the assigned event is counted while the core is in a specific operating mode.

USER Event is counted only if the core is operating in user mode.
SUPERUSER Event is counted only if the core is operating in super user mode.
ANY Event is always counted.

©1989-2024 Lauterbach STRED Debugger and Trace | 55

CPU specific TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach STRED Debugger and Trace | 56

RTM - Trace Source Configuration

RTM Trace source RTM

The RTM (RelSC Trace Module) is a multi-processor trace source providing real-time instruction and data
tracing for STRED processors. A variety of trigger and filter settings are supported for flexible, selective
tracing. The multi-processor design allows cross trace and trigger conditions on up to 16 processors.

The RTM command group is used to configure the trace source RTM. The RTM command group is locked if
TRACE32 is not informed about the existence of a RTM trace source. For some chips, the RTM is a default
setting, and the RTM command group is automatically activated after the chip is selected with the
SYStem.CPU command. If the CPU selection does not include an RTM by default, TRACE32 can be
manually informed about the start address of the RTM configuration space, as shown in the example below.
Please refer to the manual of your chip to check if an RTM is available and to get the right start address.

; Use the CPU selection to get a default setup.

; An RTM might be already included.

SYStem.CPU <cpu>

IF COMPonent .AVAILABLE ("RTM")==FALSE ()

(
; Add RTM manually by defining the start address
SYStem.CONFIG.RTM.Base <address>

For configuration of the trace source RTM, use the TRACE32 command line, a PRACTICE script (*.cmm), or
the RTM.state window.

& B:RTM.state EI@
rkm control
OFF | Trace
8 ON DataTrace
QFF A
commands TracelD
RESet AUTO -
@ CLEAR
® Register
@ Trace
@ TPIU

A For descriptions of the commands in the RTM.state window, please refer to the RTM.* commands in
this chapter. Example: For information about ON, see RTM.ON.

Exceptions:

. The Trace button opens the Trace window, see <trace>.state.

. The TPIU button opens the TPIU window, see TPIU.state.

. The List buttons opens the Trace.List window, see <trace>.List.

©1989-2024 Lauterbach STRED Debugger and Trace | 57

See also

B RTM.CLEAR Bl RTM.CoreENable B RTM.DataTrace B RTM.OFF
H RTM.ON B RTM.Register B RTM.RESet B RTM.state
B RTM.Trace B RTM.TracelD
RTM.CLEAR Reset RTM registers to default values
Format: RTM.CLEAR

Resets RTM registers to their default values. This can be used as preparation for manual RTM
configurations (see RTM.Trace OFF).

See also
B RTM B RTM.state
RTM.CoreENable Select specific cores for RTM trace
Format: RTM.CoreENable <logical_core_numbers>

Enables or disables trace data generation for specific cores. Cores are identified by their logical core
numbers assigned by TRACES32 as they are used by CORE.select. If no logical core number is specified,
RTM trace is enabled for all cores.

Examples:

RTM.CoreENable 0.

7

enable RTM trace only for core 0

RTM.CoreENable 0. 2. ; enable RTM trace for core 0 and core 2
RTM.CoreENable ; enable RTM trace for all cores

See also

B RTM B RTM.state

©1989-2024 Lauterbach

STRED Debugger and Trace | 58

RTM.DataTrace Configure data-trace

Format: RTM.DataTrace <option>

<option>: OFF | Address | Data | ON | OnlyAddress | OnlyData | Only

Configures which elements are included in the data trace:

OFF Trace program flow without data trace.

Address Trace program flow and addresses of memory accesses.

Data Trace program flow and data values of memory accesses.

ON Trace program flow, addresses and data values of memory accesses.
OnlyAddress Trace addresses of memory accesses without program flow.

OnlyData Trace data values of memory accesses without program flow.

Only Trace addresses and data values of memory accesses without program flow.
NOTE: There is no correlation between addresses and data values of memory

accesses in a RTM data trace.

See also
H RTM B RTM.state
RTM.OFF Switch RTM off
Format: RTM.OFF

Disables the RTM trace source functionality.

See also
B RTM B RTM.state

©1989-2024 Lauterbach STRED Debugger and Trace | 59

RTM.ON Switch RTM on

Format: RTM.ON

Enables the RTM trace source functionality.

See also
H RTM B RTM.state

RTM.Register Display RTM registers

Format: RTM.Register

Displays RTM registers and the registers of trace-related modules.

Example:
™ B:RTM.Register EI@
= BT -
@ Control -
RTMMISC 1000000F EnabTed EnabTed EnabTed P EnabTed T
Disabled Disabled Disabled P Disabled
Disabled Disabled Disabled P11 Disabled
Disabled Disabled G Disabled P15L0GC Disabled
Disabled Disabled TT ATE standard
AVG o Ox10
RTMSTART 00000000 START Disabled
@ Funnel
@ Conditions
= Trigger and Filter
RTMTFRO 00000483 None 1]
51 N 52
None I TR None
off TSTART Disabled
Start log
RTMTFR1 0oo00000 None (COND_REG o
Any Keep
None I None
off Disabled
Use cond. reg. log bits
RTMTFR2 0oo00000 None (COND_REG o
Any NEXT_STATE Keep 52
'l 1 +
See also
H RTM B RTM.state

©1989-2024 Lauterbach STRED Debugger and Trace | 60

RTM.RESet Reset RTM settings

Format: RTM.RESet

Resets all settings of the RTM.state window to their default.

See also
H RTM B RTM.state
RTM.state Display RTM settings
Format: RTM.state

Opens the RTM.state window to configure the trace source RTM and view the current configuration.

& B:RTM.state EI@
rkm control
OFF | Trace
@ 0N DataTrace
OFF v
commands TracelD
RESet AUTO -
@ CLEAR
® Register
@ Trace
@ TPIU

See also
B RTM B RTM.CLEAR B RTM.CoreENable B RTM.DataTrace
B RTM.OFF H RTM.ON B RTM.Register B RTM.RESet
B RTM.Trace B RTM.TracelD
RTM.Trace Disable RTM configuration by the debugger
Format: RTM.Trace [ON | OFF]
Default: ON

©1989-2024 Lauterbach STRED Debugger and Trace | 61

Controls if the RTM trace configuration is done by the debugger. If disabled, the debugger still modifies the
RTM start bit and the RTM trace ID, but nothing else. Processor log bits, funnel port enable bits, conditions,
filters and triggers must be configured manually.

ON Enables RTM trace configuration by the debugger.

OFF Disables RTM trace configuration by the debugger. RTM registers must
be manually configured.

Disabling RTM trace configuration by the debugger is a feature intended for expert users, as it requires
detailed knowledge about the RTM. Please refer to the RTM reference manual for more information.

See also
H RTM Bl RTM.state
RTM.TracelD Set RTM trace ID range
Format: RTM.TracelD <id>
<id>: AUTO | 0x10 | 0x20 | 0x30 | 0x40 | 0x50 | 0x60

Default: AUTO.

Configures the trace ID range used by the RTM. Trace IDs are used to identify the trace source of a trace
data packet within a common trace stream. Each core that is traced by the RTM is assigned a unique trace
ID that equals the trace ID of the first core plus the index of the core (starting at 0).

AUTO Allow TRACES2 to automatically select a trace ID range for the RTM.
0x10, 0x20, 0x30, Manually select the trace ID range used by the RTM. The specified value
0x40, 0x50, 0x60 is the trace ID used for trace data from the first processor connected to

the RTM. The trace ID must be a multiple of 16 in the range from 16
(0x10) to 96 (0x60). The RTM uses a unique trace ID for each connected
processor in ascending order.

See also
B RTM B RTM.state

©1989-2024 Lauterbach STRED Debugger and Trace | 62

Target Adaption

The STRED is usually debugged and traced as part of an Arm/Cortex multi-core chip. In this case the
adaptation is defined by the Arm/Cortex and its target adaptation.

Target Adaption for ARM

Probe Cables

For debugging, two kinds of probe cables can be used to connect the debugger to the target:

o CombiProbe

For an off-chip core trace, an additional trace probe cable “Preprocessor” is needed.

Interface Standards JTAG, Serial Wire Debug, cJTAG

Debug Cable and CombiProbe support the following interface standards:

. JTAG (IEEE 1149.1)

J Serial Wire Debug (CoreSight ARM)

J Compact JTAG (IEEE 1149.7, cJTAG)

The different interface standards are supported by the same connector. Only some signals get a different

function. The interface standard to be used can be selected with the TRACE32 commands listed below. This
assumes of course that your target supports the selected interface standard.

Interface TRACE32 Commands

JTAG The JTAG interface is activated with
SYStem.CONFIG DEBUGPORTTYPE JTAG.

Serial Wire Debug The Serial Wire Debug interface is activated with
SYStem.CONFIG DEBUGPORTTYPE SWD.

In a multidrop configuration, you need to specify the address of your
debug client with SYStem.CONFIG SWDPTARGETSEL.

Compact JTAG (cJTAG) Compact JTAG (cJTAG) interface is activated with
SYStem.CONFIG DEBUGPORTTYPE CJTAG.

Your system might need bug fixes which can be activated with
SYStem.CONFIG CJTAGFLAGS.

Serial Wire Debug (SWD) and Compact JTAG (cJTAG) require a Debug Cable version V4 or newer
(delivered since 2008) or a CombiProbe (any version) and one of the newer base modules (Power Debug
Pro, Power Debug Interface USB 2.0/USB 3.0, Power Debug Ethernet, PowerTrace or Power Debug II).

©1989-2024 Lauterbach STRED Debugger and Trace | 63

Connector Type and Pinout

Debug Cable

Adaption for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html.

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior, and PCB design hints, refer to “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf).

CombiProbe

Adaption for ARM CombiProbe: See https://www.lauterbach.com/adarmcombi.html.

The CombiProbe will always be delivered with 10-pin, 20-pin, 34-pin connectors. The CombiProbe cannot
detect which one is used. If you use the trace of the CombiProbe, you need to inform TRACE32 about the
used connector because the trace signals can be at different locations:

SYStem.CONFIG CONNECTOR MIPI34 | MIPI20T.

If you use more than one CombiProbe cable (twin cable is no standard delivery), you need to specify which
cable you want to use with SYStem.CONFIG DEBUGPORT DebugCableA | DebugCableB. The
CombiProbe can detect the location of the cable if only one is connected.

Preprocessor

Adaption for ARM ETM Preprocessor Mictor: See https://www.lauterbach.com/adetmmictor.html.
Adaption for ARM ETM Preprocessor MIPI-60: See https://www.lauterbach.com/adetmmipi60.html.

Adaption for ARM ETM Preprocessor HSSTP: See https://www.lauterbach.com/adetmhsstp.html.

©1989-2024 Lauterbach STRED Debugger and Trace | 64

https://www.lauterbach.com/adarmdbg.html
https://www.lauterbach.com/adarmcombi.html
https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/adetmmipi60.html
https://www.lauterbach.com/adetmhsstp.html

	STRED Debugger and Trace
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	Debugging
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	On-chip Breakpoints on instructions

	Runtime Access
	Access Classes
	Debug Code

	Tracing
	CPU specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”
	<parameters> describing the STRED “Core”
	Configurable Debug and System Registers

	SYStem.CONFIG.state Display target configuration
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DbgBase Set base address of debug code
	SYStem.Option.DbgOvwr Allow debug code overwrite
	SYStem.Option.DbgTrap Allow trap handler address overwrite
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.EnTRST Control TAP reset
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	CPU specific Benchmarking Commands
	BMC.<counter>.MODE Configure counter mode

	CPU specific TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state

	RTM - Trace Source Configuration
	RTM Trace source RTM
	RTM.CLEAR Reset RTM registers to default values
	RTM.CoreENable Select specific cores for RTM trace
	RTM.DataTrace Configure data-trace
	RTM.OFF Switch RTM off
	RTM.ON Switch RTM on
	RTM.Register Display RTM registers
	RTM.RESet Reset RTM settings
	RTM.state Display RTM settings
	RTM.Trace Disable RTM configuration by the debugger
	RTM.TraceID Set RTM trace ID range

	Target Adaption
	Target Adaption for ARM
	Probe Cables
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Connector Type and Pinout

