
MANUAL

RISC-V Debugger

RISC-V Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 RISC-V .. 

 RISC-V Debugger ... 1

 History .. 5

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Script 7

 List of Abbreviations and Definitions 8

 Warning .. 9

 Quick Start of the JTAG Debugger .. 10

 Quick Start for Debug Module Configuration ... 15

 Debug Module Access via JTAG-DTM 16

 Debug Module Access via Debug Bus 17

 Quick Start for Multicore Debugging ... 19

 SMP Debugging 19

 SMP Debugging - Selective 20

 Homogeneous SMP/AMP Debugging 21

 Heterogeneous SMP/AMP Debugging 22

 Troubleshooting .. 23

 Communication between Debugger and Processor cannot be established 23

 FAQ ... 24

 RISC-V Specific Implementations .. 25

 Debug Specification for External Debug Support 25

 Access Classes 26

 Description of the Individual Access Classes 26

 Combination of Several Access Classes 28

 How to Create Valid Access Class Combinations 30

 Breakpoints 32

 Software Breakpoints 32
RISC-V Debugger | 2©1989-2024 Lauterbach

 On-chip Breakpoint Resources 32

 On-chip Breakpoints for Instruction Address 32

 On-chip Breakpoints for Data Address 32

 On-chip Data Value Breakpoints 33

 Examples for Standard Breakpoints 34

 Floating-Point Extensions 35

 Hardware Performance Monitor 36

 Hart State: Unavailable 37

 Semihosting 38

 Vector Extension 39

 CPU specific SETUP Command ... 40

 SETUP.DIS Disassembler configuration 40

 CPU specific SYStem Commands ... 42

 SYStem.CONFIG.state Display target configuration 42

 SYStem.CONFIG Configure debugger according to target topology 43

 <parameters> describing the “DebugPort” 46

 <parameters> describing the “JTAG” scan chain and signal behavior 49

 <parameters> configuring an Arm CoreSight Debug Access Port “AP” 54

 <parameters> describing debug and trace “Components” 60

 <parameters> describing Tessent Embedded Analytics details 61

 SYStem.CONFIG.HART.INDEX Set hart index 62

 SYStem.CPU Select the CPU to be debugged 63

 SYStem.JtagClock Define JTAG frequency 64

 SYStem.LOCK Tristate the JTAG port 65

 SYStem.MemAccess Select run-time memory access method 66

 SYStem.MemAccessStop Memory access while stopped 68

 SYStem.Mode Establish the communication with the target 69

 SYStem.Option Special setup 71

 SYStem.Option.Address32 Define address format display 71

 SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 71

 SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 72

 SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 72

 SYStem.Option.AXIHPROT Select AXI-AP HPROT bits 73

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 74

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 74

 SYStem.Option.DAPREMAP Rearrange DAP memory map 75

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 75

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 76

 SYStem.Option.DMACTiveRESet Allow debugger to reset DM via dmactive 77

 SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 77

 SYStem.Option.HARVARD Use Harvard memory model 78

 SYStem.Option.HoldReset Set reset duration time 78

 SYStem.Option.IMASKASM Disable interrupts while single stepping 79
RISC-V Debugger | 3©1989-2024 Lauterbach

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 79

 SYStem.Option.IsaEXTension Manually configure support for ISA extensions 80

 SYStem.Option.KeepAlive Keep hart available for debugger 80

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 81

 SYStem.Option.ResetDetection Choose method to detect a target reset 82

 SYStem.Option.ResetMode Select reset method 82

 SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoints 85

 SYStem.Option.SYSDownACTion Define action during SYStem.Down 86

 SYStem.Option.TRST Allow debugger to drive TRST 86

 SYStem.Option.WaitReset Set reset wait time 87

 SYStem.Option.ZoneSPACES Enable symbol management for zones 88

 SYStem.state Display SYStem.state window 89

 CPU specific FPU Command .. 90

 FPU.Set Write to FPU register 90

 CPU specific MMU Commands .. 91

 MMU.DUMP Page wise display of MMU translation table 91

 MMU.List Compact display of MMU translation table 93

 MMU.SCAN Load MMU table from CPU 94

 CPU specific TrOnchip Commands ... 96

 Target Adaption ... 97

 Connector Type and Pinout 97

 RISC-V Debug Cable with 20 pin Connector 97
RISC-V Debugger | 4©1989-2024 Lauterbach

RISC-V Debugger

Version 06-Jun-2024

History

17-Nov-23 New command SYStem.Option.IsaEXTension.

18-Aug-23 Marked SYStem.CONFIG.HARTINDEX as deprecated command and replaced by
SYStem.CONFIG.HART.INDEX.

17-Oct-22 New subchapter ‘Vector Extension’.

06-Oct-22 New command SYStem.Mode.StandBy.

06-Oct-22 New subchapter: ‘Hart State: Unavailable’.

29-Aug-22 New command: SYStem.Option.DMACTiveRESet.

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

02-Mar-22 New command: SYStem.Option.KeepAlive.

04-Sep-17 Initial version.
RISC-V Debugger | 5©1989-2024 Lauterbach

Introduction

This manual serves as a guideline for debugging one or multiple RISC-V cores via TRACE32.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

PRACTICE Script Language:

• “Training Script Language PRACTICE” (training_practice.pdf)

• “PRACTICE Script Language Reference Guide” (practice_ref.pdf)

Video Tutorials:

• Lauterbach YouTube channel
RISC-V Debugger | 6©1989-2024 Lauterbach

https://www.youtube.com/channel/UCwHuwQUTt_FquA86O6DaLnQ

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):

Demo and Start-up Script

Lauterbach provides ready-to-run start-up scripts for known hardware that is based on RISC-V.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/riscv/ subfolder of the system directory of TRACE32.
RISC-V Debugger | 7©1989-2024 Lauterbach

List of Abbreviations and Definitions

CSR Control and Status Register

DM Debug Module, as defined by the RISC-V debug specification

DTM Debug Transport Module, as defined by the RISC-V debug
specification

HART Hardware thread. A single RISC-V core contains one or multiple
hardware threads.

XLEN The current width of a RISC-V general purpose register in bits.
RISC-V Debugger | 8©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
RISC-V Debugger | 9©1989-2024 Lauterbach

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt.

2. Reset the debugger settings.

The RESet command ensures that no debugger setting remains from a former debug session. All
settings get set to their default value. RESet is not required if you start the debug session directly after
starting the TRACE32 development tool. RESet does not reset the target.

3. Select the chip or core you intend to debug.

Based on the selected chip the debugger sets the SYStem.CONFIG and SYStem.Option
commands the way which should be most appropriate for debugging this chip. Ideally no further setup
is required. Please note that the default configuration is not always the best configuration for your
target.

4. Configure the JTAG interface.

You can select the JTAG clock frequency, which the Debugger uses to communicate with the target.
This can be either done in the JtagClock field in the SYStem window, or by using the command line
with the command SYStem.JtagClock. The maximum clock frequency might depend on the
configuration of your FPGA design. The default clock frequency is 10 MHz.

In case of a JTAG daisy chain use command SYStem.DETECT SHOWChain to scan the chain. The
result is shown in a window. Double-click on the desired core to tell the debugger which core you’d like
to debug.

If the RISC-V Debug Module (DM) is accessible via a JTAG-DTM and the JTAG TAP of that JTAG-
DTM is daisy-chained with other TAPs then you can manually configure the JTAG daisy chain with
SYStem.CONFIG.IRPOST, SYStem.CONFIG.IRPRE, SYStem.CONFIG.DRPOST and
SYStem.CONFIG.DRPRE.

If the system has an Arm CoreSight Debug Access Port (Arm DAP) and the JTAG TAP of the DAP is

B::

RESet

SYStem.CPU <cpu_type>
RISC-V Debugger | 10©1989-2024 Lauterbach

daisy-chained with other TAPs then you can manually configure the JTAG daisy chain with
SYStem.CONFIG.DAPIRPOST, SYStem.CONFIG.DAPIRPRE, SYStem.CONFIG.DAPDRPOST
and SYStem.CONFIG.DAPDRPRE.

5. Configure memory access ports (if available).

If the target SoC has an Arm CoreSight debug infrastructure, then the memory access ports need to
be configured in order to make their buses accessible via the respective access classes.
For Arm SoC-400, see SYStem.CONFIG.APBAP.Port, SYStem.CONFIG.AHBAP.Port and
SYStem.CONFIG.AXIAP.Port for details.
For Arm SoC-600, see SYStem.CONFIG.APBAP.Base, SYStem.CONFIG.AHBAP.Base and
SYStem.CONFIG.AXIAP.Base for details.

6. Tell the debugger how to access the RISC-V Debug Module.

See chapter “Quick Start for Debug Module Configuration” (debugger_riscv.pdf) for details.

7. Select the reset method.

If the debugger is supposed to perform a system reset or core reset while connecting to the target,
then the reset method that is most suitable for the target needs to be configured with
SYStem.Option.ResetMode.

8. Connect to target.

This command establishes the JTAG communication to the target. It resets the processor and enters
debug mode (halts the processor; ideally at the reset vector). After this command is executed, it is
possible to access memory and registers.

Some devices can not communicate via JTAG while in reset or you might want to connect to a
running program without causing a target reset. In this case use

instead. A Break.direct will halt the processor.

9. Load the program you want to debug.

This loads the executable to the target and the debug/symbol information to the debugger’s host. If
the program is already on the target and you just need the debug/symbol information then load with
/NoCODE option.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

SYStem.Option.ResetMode <method>

SYStem.Up

SYStem.Mode Attach

Data.LOAD <file>
RISC-V Debugger | 11©1989-2024 Lauterbach

PRACTICE Script Example #1: RISC-V System with JTAG-DTM

LAUTERBACH recommends to prepare a PRACTICE script (*.cmm, ASCII file format) to be able to do all
the necessary actions with only one command, such as the command DO <file>.

The following example shows a system configuration for a RISC-V system with JTAG-DTM:

A typical example for a start sequence (in addition to the above configuration) might look like the following:

For more details about the configuration of a RISC-V system with JTAG-DTM, please see chapter
Debug Module access via JTAG-DTM.

RESet ; Reset the debugger configuration

SYStem.CPU FU540-C000 ; Select the SoC/CPU/core

SYStem.JtagClock 5.MHz ; Set JTAG clock frequency

SYStem.CONFIG IRPRE 4.
SYStem.CONFIG IRPOST 0.
SYStem.CONFIG DRPRE 1.
SYStem.CONFIG DRPOST 0.

; Configure JTAG daisy chain

SYStem.Option.ResetMode NDMRST ; Select the reset method

SYStem.Up ; Reset the target, stop the core at
; the reset vector, enter debug mode

Data.LOAD.Elf riscv_le.elf ; Load the application

Register.Set PC main ; Set the PC to function main

Register.Set X2 0x63FFFFFC ; Set the stack pointer to
; address 0x63FFFFFC

Break.Set P:0x1000 /Program ; Set breakpoint to address P:0x1000

List.Mix ; Open source code window

Register.view /SpotLight ; Open register window

Frame.view /Locals /Caller ; Open the stack frame with
; local variables

Var.Watch %SpotLight var1 var2 ; Open watch window for variables

PER.view ; Open window for tree view of
; system peripherals
RISC-V Debugger | 12©1989-2024 Lauterbach

PRACTICE Script Example #2: Arm CoreSight SoC-400

LAUTERBACH recommends to prepare a PRACTICE script (*.cmm, ASCII file format) to be able to do all
the necessary actions with only one command, such as the command DO <file>.

The following example shows a configuration for a RISC-V core in an Arm CoreSight SoC-400 system:

For additional configuration examples of a RISC-V system integrated into an Arm CoreSight SoC-400
system, please see chapter “Debug Module Access via Debug Bus”, subchapter for SoC-400.

RESet ; Reset debugger configuration

SYStem.CPU RV32 ; Select the SoC/CPU/core

SYStem.JtagClock 5.MHz ; Set JTAG clock frequency

SYStem.CONFIG.DAPIRPRE 4.
SYStem.CONFIG.DAPIRPOST 0.
SYStem.CONFIG.DAPDRPRE 1.
SYStem.CONFIG.DAPDRPOST 0.

; Configure JTAG daisy chain

SYStem.Option.ResetMode NDMRST ; Select the reset method

SYStem.CONFIG.APBAP1.Port 4.
SYStem.CONFIG.AXIAP1.Port 5.

; Configure DAP memory
; access ports (SoC-400)

SYStem.CONFIG.COREDEBUG.Base APB:0x2000 ; Configure APB base address
; of RISC-V debug module

SYStem.Up ; Reset the target, stop the
; core at the reset vector and
; enter debug mode
RISC-V Debugger | 13©1989-2024 Lauterbach

PRACTICE Script Example #3: Arm CoreSight SoC-600

LAUTERBACH recommends to prepare a PRACTICE script (*.cmm, ASCII file format) to be able to do all
the necessary actions with only one command, such as the command DO <file>.

The following example shows a configuration for a RISC-V core in an Arm CoreSight SoC-600 system:

For additional configuration examples of a RISC-V system integrated into an Arm CoreSight SoC-600
system, please see chapter “Debug Module Access via Debug Bus”, subchapter for SoC-600.

RESet ; Reset debugger configuration

SYStem.CPU RV32 ; Select the SoC/CPU/core

SYStem.JtagClock 5.MHz ; Set JTAG clock frequency

SYStem.CONFIG.DAPIRPRE 4.
SYStem.CONFIG.DAPIRPOST 0.
SYStem.CONFIG.DAPDRPRE 1.
SYStem.CONFIG.DAPDRPOST 0.

; Configure JTAG daisy chain

SYStem.Option.ResetMode NDMRST ; Select the reset method

SYStem.CONFIG.APBAP1.Base DP:0x30000
SYStem.CONFIG.AXIAP1.Base DP:0x70000

; Configure memory access port
; base addresses (SoC-600)

SYStem.CONFIG.COREDEBUG.Base APB:0x2000 ; Configure APB base address
; of RISC-V debug module

SYStem.Up ; Reset the target, stop the
; core at the reset vector and
; enter debug mode
RISC-V Debugger | 14©1989-2024 Lauterbach

Quick Start for Debug Module Configuration

The RISC-V Debug Module (DM) is the central IP block that contains the debug registers, which give the
debugger access to most RISC-V debug functionalities. Usually all RISC-V hardware threads (harts) in a
system are connected to the same DM.

A DM can be integrated into a system in various ways. Any abstract IP block which provides access to the
debug registers of the DM is called Debug Transport Module (DTM):

The RISC-V debug specification does not specify which interface and implementation the DTM needs to
have. In theory, the implementation of the DTM can be completely chip-specific. The RISC-V debug
specification does however define one standardized DTM, the so-called RISC-V JTAG-DTM.

The debugger needs to know how the DM’s debug registers can be accessed. That is why this chapter
provides a quick start for DM configuration. The following examples cover the most common use cases for
DM integration into a system:

• Example A: Debug Module Access via JTAG-DTM

• Example B: Debug Module Access via Debug Bus

D
eb

ug
ge

r

Chip

RISC-V hart #n

RISC-V hart #0RISC-V
Debug Module

(DM)

....Debug Transport Module
(DTM)
RISC-V Debugger | 15©1989-2024 Lauterbach

Debug Module Access via JTAG-DTM

The simplest way to access a RISC-V Debug Module (DM) from an external JTAG interface is via a
JTAG Debug Transport Module (JTAG-DTM). The JTAG-DTM is specified and standardized by the RISC-V
debug specification.

A simple example setup could look as follows:

The RISC-V debugger considers a JTAG-DTM the default way to access the DM. This means if no user
configuration implies any other way to access the DM then the debugger automatically assumes the
existence of a JTAG-DTM.

JTAG-DTM with JTAG port

If the JTAG-DTM does have a normal JTAG port (IEEE 1149.1), then
SYStem.CONFIG.DEBUGPORTTYPE needs to be set to “JTAG” (default setting).

JTAG-DTM with cJTAG port

However, the RISC-V debugger does also support JTAG-DTMs with a cJTAG port (IEEE 1149.7). In this
case, SYStem.CONFIG.DEBUGPORTTYPE needs to be set to “cJTAG”.

D
eb

ug
ge

r

Debug Port
JTAG or
cJTAG

RISC-V
JTAG Debug

Transport Module
(JTAG-DTM)

Chip

RISC-V hart #n

RISC-V hart #0RISC-V
Debug Module

(DM)

....
RISC-V Debugger | 16©1989-2024 Lauterbach

Debug Module Access via Debug Bus

An alternative way to make the RISC-V Debug Module (DM) accessible to a debugger is to map the debug
registers of the DM on an existing debug bus.

If the DM debug registers are bus-mapped then the bus type (i.e. the access class) and the base address of
the DM must be configured with the command SYStem.CONFIG COREDEBUG.Base.

Example: Arm CoreSight SoC-400

The following example shows a DM that is mapped on a debug bus of an Arm CoreSight SoC-400 system:

The type of the debug port (JTAG, cJTAG or SWD) can be configured via
SYStem.CONFIG.DEBUGPORTTYPE.

System
Memory

TRACE32 configuration:
SYStem.CONFIG AHBAP1.Port 0.
SYStem.CONFIG APBAP1.Port 1.
SYStem.CONFIG COREDEBUG.Base APB:0x2000

Debug Port
JTAG or
cJTAG or

SWDD
eb

ug
ge

r

Chip

Arm
Debug Access Port

(DAP)

0

1

AH
B

AP
B

0x2000

Memory
Access Port
(MEM-AP)

Memory
Access Port
(MEM-AP)

...

R
IS

C
-V

ha
rt

#0

R
IS

C
-V

ha
rt

#n

RISC-V
Debug

Module (DM)

Arm CoreSight SoC-400
RISC-V Debugger | 17©1989-2024 Lauterbach

Example: Arm CoreSight SoC-600

The following example shows a DM that is mapped on a debug bus of an Arm CoreSight SoC-600 system:

The type of the debug port (JTAG, cJTAG or SWD) can be configured via
SYStem.CONFIG.DEBUGPORTTYPE.

TRACE32 configuration:
SYStem.CONFIG AXIAP1.Base DP:0x1000
SYStem.CONFIG APBAP1.Base DP:0x3000
SYStem.CONFIG APBAP2.Base APB1:0xA000
SYStem.CONFIG COREDEBUG.Base APB2:0x8000

Debug Link
JTAG or
cJTAG or

SWD

Chip

D
P

AP
B1Memory

Access
Port

(MEM-AP)

0x3000

0xA000

Memory
Access

Port
(MEM-AP)

D
eb

ug
ge

r

..

R
IS

C
-V

ha
rt

#0

R
IS

C
-V

ha
rt

#n

RISC-V
Debug

Module (DM)AP
B2

0x8000

Arm CoreSight SoC-600

Memory
Access

Port
(MEM-AP)

0x1000 AX
I

System Memory
RISC-V Debugger | 18©1989-2024 Lauterbach

Quick Start for Multicore Debugging

This chapter provides a quick start for multicore processing. The following example scenarios cover the most
common use cases for symmetric multiprocessing (SMP) and asymmetric multiprocessing (AMP):

• Example A: SMP Debugging

• Example B: SMP Debugging - Selective

• Example C: Homogeneous SMP/AMP Debugging

• Example D: Heterogeneous SMP/AMP Debugging

SMP Debugging

This scenario for homogeneous symmetric multiprocessing (SMP) covers the following setup:

4 hardware threads (harts) of the same type are connected to the same RISC-V Debug Module of the same
chip, with the hart indexes of the RISC-V Debug Module ranging from 0 to 3. All 4 harts will be debugged
simultaneously via SMP.

Example A:

SYStem.CPU <type_a_cpu>
SYStem.CONFIG CORE 1. 1.
SYStem.CONFIG CoreNumber 4.
SYStem.CONFIG HART.INDEX 0. 1. 2. 3.
CORE.ASSIGN 1. 2. 3. 4.

; Core group 1 for chip 1
; 4 harts of type A in total

; Assign all 4 harts to the
; SMP session

Chip

RISC-V Debug Module

Hart indexes 1 2

B:: CORE.ASSIGN 1. 2. 3. 4.

0 3

Hart
type A

Hart
type A

Hart
type A

Hart
type A
RISC-V Debugger | 19©1989-2024 Lauterbach

SMP Debugging - Selective

This scenario for homogeneous symmetric multiprocessing (SMP) covers the following setup:

4 hardware threads (harts) of the same type are connected to the same RISC-V Debug Module of the same
chip, with the hart indexes of the RISC-V Debug Module ranging from 0 to 3. The harts with hart indexes 1
and 3 will be debugged simultaneously via SMP.

Example B:

SYStem.CPU <type_a_cpu>
SYStem.CONFIG CORE 1. 1.
SYStem.CONFIG CoreNumber 4.
SYStem.CONFIG HART.INDEX 0. 1. 2. 3.
CORE.ASSIGN 2. 4.

; Core group 1 for chip 1
; 4 harts of type A in total

; Assign harts with the
; logical indexes 2 and 4

Chip

RISC-V Debug Module

Hart indexes 1 2

B:: CORE.ASSIGN 2. 4.

0 3

Hart
type A

Hart
type A

Hart
type A

Hart
type A

Hart
type A
RISC-V Debugger | 20©1989-2024 Lauterbach

Homogeneous SMP/AMP Debugging

This scenario covers both homogeneous symmetric multiprocessing (SMP) and asymmetric
multiprocessing (AMP).

6 hardware threads (harts) of the same type are connected to the same RISC-V Debug Module of the same
chip, with the hart indexes of RISC-V Debug Module ranging from 0 to 5. The first 4 harts will be debugged
in an SMP session, and the remaining 2 harts in another SMP session.

Example C:

; ---- TRACE32 PowerView GUI #1 --

SYStem.CPU <type_a_cpu>
SYStem.CONFIG CORE 1. 1.
SYStem.CONFIG CoreNumber 6.
SYStem.CONFIG HART.INDEX 0. 1. 2. 3. 4. 5.
CORE.ASSIGN 1. 2. 3. 4.

; Core group 1 for chip 1
; 6 harts of type A in total

; Assign the first 4 harts

; ---- TRACE32 PowerView GUI #2 --

SYStem.CPU <type_a_cpu>
SYStem.CONFIG CORE 2. 1.
SYStem.CONFIG CoreNumber 6.
SYStem.CONFIG HART.INDEX 0. 1. 2. 3. 4. 5.
CORE.ASSIGN 5. 6.

; Core group 2 for chip 1
; 6 harts of type A in total

; Assign the last 2 harts

RISC-V Debug Module

Hart indexes 1 2

B:: CORE.ASSIGN 1. 2. 3. 4.

B:: CORE.ASSIGN 5. 6.

GUI #1

GUI #2

0 3 54

Hart
type A

Hart
type A

Hart
type A

Hart
type A

Hart
type A

Hart
type A

Chip
RISC-V Debugger | 21©1989-2024 Lauterbach

Heterogeneous SMP/AMP Debugging

This scenario covers both heterogeneous symmetric multiprocessing (SMP) and asymmetric
multiprocessing (AMP).

6 hardware threads (harts) are connected to the same RISC-V Debug Module of the same chip, with the
hart indexes of the RISC-V Debug Module ranging from 0 to 5. The first 4 harts are of type A and will be
debugged in an SMP session, and the remaining 2 harts are of type B and will be debugged in another SMP
session.

Example D:

; ---- TRACE32 PowerView GUI #1 --

SYStem.CPU <type_a_cpu>
SYStem.CONFIG CORE 1. 1.
SYStem.CONFIG CoreNumber 4.
SYStem.CONFIG HART.INDEX 0. 1. 2. 3.
CORE.ASSIGN 1. 2. 3. 4.

; Core group 1 for chip 1
; 4 harts of type A in total
; Hart indexes of type A
; Assign all 4 harts of type A

; ---- TRACE32 PowerView GUI #2 --

SYStem.CPU <type_b_cpu>
SYStem.CONFIG CORE 2. 1.
SYStem.CONFIG CoreNumber 2.
SYStem.CONFIG HART.INDEX 4. 5.
CORE.ASSIGN 1. 2.

; Core group 2 for chip 1
; 2 harts of type B in total
; Hart indexes of type B
; Assign all 2 harts of type B

RISC-V Debug Module

Hart indexes 1 2

B:: CORE.ASSIGN 1. 2. 3. 4.

B:: CORE.ASSIGN 1. 2.

GUI #1

GUI #2

0 3 54

Hart
type A

Hart
type A

Hart
type A

Hart
type A

Hart
type B

Hart
type B

Chip
RISC-V Debugger | 22©1989-2024 Lauterbach

Troubleshooting

Communication between Debugger and Processor cannot be established

Typically SYStem.Mode Up or SYStem.Mode Attach is the first command of a debug session for which
communication with the target board is required. That is why it is the most common command to fail in case
that there is any issue with the user configuration, debug connection or target.

The error messages in the AREA.view window (which can be identified by their red color) usually try to give
the user a short error description and a reason for the error. However in some scenarios it can be difficult to
deduce the error cause from an error message, because the error message is either too generic or the error
message is only the follow-up error of another issue that has nothing to do with the actual error message. In
order to still be able to resolve the error in such scenarios, the following lists the most common error causes:

• The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

• You did not select the correct core type via SYStem.CPU <type>.

• There is an issue with the JTAG interface. See www.lauterbach.com/adriscv.html and the
manuals or schematic of your target to check the physical and electrical interface. Maybe there is
the need to set jumpers on the target to connect the correct signals of the JTAG connector.

• Your RISC-V Debug Module (DM) is mapped on a debug bus, but the base address of the DM is
either not configured or incorrect. Check the settings of SYStem.CONFIG.COREDEBUG.Base.

• You might have several TAP controllers in your JTAG-chain. Example: The TAP of the JTAG-DTM
could be in a chain with other TAPs from other CPUs. In this case you have to check your pre-
and post-bit configuration. See for example SYStem.CONFIG.IRPRE or
SYStem.CONFIG.DAPIRPRE.

• The default frequency of the JTAG/SWD/cJTAG debug port is too high, especially if you emulate
your core or if you use an FPGA-based target. In this case try SYStem.JtagClock 50kHz and
optimize the speed when you got it working.

• The target cannot communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by Break.direct instead of SYStem.Mode Up.

• The target does not support the configured reset method. Select a different reset method via
SYStem.Option.ResetMode.

• The target needs a certain setup time during the reset assertion or after the reset release. Try to
adapt the reset timing via SYStem.Option.WaitReset and/or SYStem.Option.HoldReset.

• There is a watchdog which needs to be deactivated.

• There is the need to enable (jumper) the debug features on the target. It will e.g. not work if
nTRST signal is directly connected to ground on target side.

NOTE: In case of any error during the debug session, we highly recommend to open
the AREA.view window. This window usually contains a list of all recent warnings
and error messages, which can be very helpful for error diagnosis.
RISC-V Debugger | 23©1989-2024 Lauterbach

http://www.lauterbach.com/adriscv.html

• The target is in an unrecoverable state. Re-power your target and try again.

• The core has no power or is kept in reset.

• The core has no clock.

FAQ

Please refer to https://support.lauterbach.com/kb.
RISC-V Debugger | 24©1989-2024 Lauterbach

https://support.lauterbach.com/kb

RISC-V Specific Implementations

Debug Specification for External Debug Support

The Lauterbach debug driver for RISC-V is developed according to the official RISC-V debug specification
for external debug support. The latest official version can be found at
https://riscv.org/technical/specifications/
RISC-V Debugger | 25©1989-2024 Lauterbach

Access Classes

In TRACE32, addresses always consist of two parts:

• An access class which defines:
- What kind of memory (or register) to access
- How to perform the access

• A number that determines the address of the access

Each access class consists of one or more letters/numbers followed by a colon (:).

Examples:

It is possible to combine individual access classes.

For more background information, see the chapter about access classes in the TRACE32 Glossary.

In this section:

• Description of the Individual Access Classes

• Combination of Several Access Classes

• How to Create Valid Access Class Combinations

Description of the Individual Access Classes

Data.dump D:0x100
Data.dump AXI:0x80000000--0x80000FFF
PRINT Data.Long(CSR:0x300)

Description

P Program memory access.
See SYStem.MemAccessStop and SYStem.MemAccess for the used
access method.

D Data memory access.
See SYStem.MemAccessStop and SYStem.MemAccess for the used
access method.

M Machine privilege level

S Supervisor privilege level.
For debugger memory accesses with this access class, machine privilege
level is used.
RISC-V Debugger | 26©1989-2024 Lauterbach

U User privilege level.
For debugger memory accesses with this access class, machine privilege
level is used.

A Absolute addressing (physical address) on SoCs with Memory
Management Unit (MMU).

C “Current”. Do not use this access class. It might be shown by the debugger
if it is unknown what access class shall be used. The actual used access
class is derived from the current processor mode.

CSR Control and Status Register (CSR) access.
The CSR address of this access class does always address data of
maximum CSR register width XLEN. If a CSR register is smaller than the
maximum size, the unused segment gets filled up with zero.

E Allow memory access while the CPU is running.
See SYStem.MemAccess, SYStem.CpuBreak and SYStem.CpuSpot.
Any memory access class can be prefixed with E, if the memory supports
access while the CPU is running.

VM Virtual Memory (memory on the debug system).

APB APB bus access.
If the APB bus is accessible via an Arm CoreSight DAP (SoC-400), see
SYStem.CONFIG APBAP.Port for details.
If the APB bus is accessible via an Arm CoreSight DAP (SoC-600), see
SYStem.CONFIG APBAP.Base for details.

AHB
NAHB, ZAHB

AHB bus access.
If the AHB bus is accessible via an Arm CoreSight DAP (SoC-400), see
SYStem.CONFIG AHBAP.Port for details.
If the AHB bus is accessible via an Arm CoreSight DAP (SoC-600), see
SYStem.CONFIG AHBAP.Base for details.

AXI
NAXI, ZAXI

AXI bus access.
If the AXI bus is accessible via an Arm CoreSight DAP (SoC-400), see
SYStem.CONFIG AXIAP.Port for details.
If the AXI bus is accessible via an Arm CoreSight DAP (SoC-600), see
SYStem.CONFIG AXIAP.Base for details.

SB System bus access.
The memory accesses with this access class are performed via the
“System Bus Access block” of the RISC-V Debug Module.

Description
RISC-V Debugger | 27©1989-2024 Lauterbach

Combination of Several Access Classes

It is possible to combine certain individual access classes for an access. An access class combination can
consist of up to five access class specifiers. But any of the five specifiers can also be omitted.

The following examples will demonstrate combinations of three access classes:

• E: Allow memory access while the CPU is running

• A: Physical access, i.e. the MMU is bypassed.

• D: Data memory access

Combination of three access class specifiers:
In this example, let’s assume...

• You want to view the data memory from the perspective of the CPU:
Use “D” access class specifier.

• You want to be able to access the data memory independent of whether the CPU is running or halted:
Use “E” access class specifier.

• You want to make a physical access without any MMU address translation:
Use “A” access class specifier.

 When you put all three access class specifiers together, you will obtain the access class combination “EAD”:

Combination of two access class specifiers:
In this example, let’s assume...

• You want to view the data memory from the perspective of the CPU:
Use “D” access class specifier.

• You want to be able to access the data memory independent of whether the CPU is running or halted:
Use “E” access class specifier.

• You want to make a virtual access including MMU address translation:
Do not use “A” access class specifier.

 When you put the two access class specifiers together, you will obtain the access class combination “ED”:

Data.dump EAD:0x80000000 // Physical data memory access during run-time

Data.dump ED:0x80000000 // Virtual data memory access during run-time
RISC-V Debugger | 28©1989-2024 Lauterbach

One access class specifier:
In this example, let’s assume...

• You want to view the data memory from the perspective of the CPU:
Use “D” access class specifier.

• You do not want to be able to access the data memory while the CPU is running:
Do not use “E” access class specifier.

• You want to make a virtual access including MMU address translation:
Do not use “A” access class specifier.

This means in this case we wo not have a combination of access classes, but instead we simply have the
access class “D”:

No access class specifier:
In this example, we will see what happens when you do not specify any access class at all. In this case the
memory access by the debugger will be a virtual access using the current CPU context, i.e. the debugger
has the same view on memory as the CPU:

Data.dump D:0x80000000 // Virtual data memory access (only when stopped)

Data.dump 0x80000000 // Virtual memory access (only when stopped)
RISC-V Debugger | 29©1989-2024 Lauterbach

How to Create Valid Access Class Combinations

There are certain rules on if and how individual access classes can be combined. Only certain access
classes can be combined with each other, and they need to be combined in a certain order.

The illustrations below will show you how to combine access class specifiers for frequently-used access
class combinations.

Rules to create a valid access class combination:

• From each column of an illustration block, select only one access class specifier.

• You may skip any column - but only if the column in question contains an empty square.

• Do not change the original column order. Recommendation: Put together a valid combination by
starting with the left-most column, proceeding to the right.

Memory Access Through CPU (CPU View)

The debugger uses the CPU to access memory, so the CPU carries out the accesses requested by the
debugger. This can be either virtual or physical accesses. The accesses can either only happen when the
CPU is stopped, or also while the CPU is running.

Example combinations:

ED Data memory access at run-time

MD Data memory access with machine privilege level

EMD Data memory access with machine privilege level at run-time

AP Physical program memory access

E A M D

P

U

S

RISC-V Debugger | 30©1989-2024 Lauterbach

Control and Status Register (CSR) Access

This is used to access the CSRs of a core.

Example combinations:

System Bus Access

These accesses grant direct access to system buses, bypassing the CPU.

Example combinations:

ECSR CSR access at run-time

EZAXI Access secure memory location via AXI at run-time

ESB System bus access of RISC-V debug module at run-time

E CSR

E N

Z

AXI

AHB

E SB

APB
RISC-V Debugger | 31©1989-2024 Lauterbach

Breakpoints

For general information about setting breakpoints, refer to the Break.Set command.

Software Breakpoints

If a software breakpoint is used, the original instruction at the breakpoint location is temporarily patched by a
breakpoint instruction (RISC-V EBREAK instruction). There is no restriction in the number of software
breakpoints used in a debug session. However, using a software breakpoint requires both read and write
access to the respective memory location.

On-chip Breakpoint Resources

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the hardware of the
core itself.

For this purpose, a RISC-V core can have generic on-chip triggers that can either be used for on-chip
instruction breakpoints or on-chip data breakpoints. These generic triggers are called “address/data match
triggers”. The availability of such triggers is optional, and the number of triggers that are available depends
on the respective hardware of the core.

This means that on-chip instruction and on-chip data breakpoints share the number of available trigger
resources among each other.

One breakpoint can require one or multiple hardware resources, depending on the complexity of the
breakpoint.

Example: We have a core with five address/data match trigger resources, and each breakpoint requires
exactly one hardware resource. We can either set five on-chip instruction breakpoints, or we could set three
instruction breakpoints and two data breakpoints.

On-chip Breakpoints for Instruction Address

On-chip breakpoints for instruction addresses are used to stop the core when an instruction at a certain
address is executed.

The resources to set instruction breakpoints are provided by the hardware of the core. For details about the
implementation and number of these breakpoints, see chapter On-chip Breakpoint Resources.

On-chip instruction breakpoints are particularly useful in scenarios where the program code lies in read-only
memory regions such as ROM or flash, as software breakpoints cannot be used in such scenarios.
Furthermore breakpoints for instruction address ranges can only be realized with on-chip breakpoints.

On-chip Breakpoints for Data Address

On-chip breakpoints for data addresses are used to stop the core after a read or write access to a memory
address.
RISC-V Debugger | 32©1989-2024 Lauterbach

The resources to set data address breakpoints are provided by the core. For details about the
implementation and number of these breakpoints, see chapter On-chip Breakpoint Resources.

On-chip data address breakpoints with address range

Some RISC-V on-chip data address breakpoint triggers allow to set triggers for address ranges. Address
ranges for on-chip breakpoint of RISC-V can be implemented in two different ways:

• Address range via address mask:
An address range can be expressed with an address mask, if the range matches the following
criteria:

Let the address range be from address A to address B (B inside range), with A < B.
Let X = A XOR B (infix operator XOR: “exclusive or”).
Let Y = A AND X (infix operator AND: “logical and”).
Then all bits in X that equal to one have to be in consecutive order, starting from the least
significant bit.
Then Y has to equal zero.

• Address range via two addresses:
An address range can be expressed with a start address and an end address.

An address range via address mask requires less hardware resources than an address range via two
addresses. If the criteria for the address mask are met then the debugger will always automatically
choose the mask method, in order to save hardware resources.

Examples:

On-chip Data Value Breakpoints

The hardware resources of the core can be used to stop the core when a specific value is read or written:

• Data Value Breakpoint (Read):
Stop the core when a specific data value is read from a memory address.

• Data Value Breakpoint (Write):
Stop the core when a specific data value is written to a memory address.

For more information about data value breakpoints, see the Break.Set command.

Break.Set 0x0000--0x0FFF /Read ; Address range suitable for
; address mask

Break.Set 0x0100--0x01FF /Read ; Address range suitable for
; address mask

Break.Set 0x3040--0x307F /Write ; Address range suitable for
; address mask

Break.Set 0xA000--0xB0FF /Write ; Address range suitable for
; two addresses

Break.Set 0xA000--0xA0FD /Write ; Address range suitable for
; two addresses
RISC-V Debugger | 33©1989-2024 Lauterbach

Examples for Standard Breakpoints

Assume you have a target with

• FLASH from 0x0--0xffff

• RAM from 0x10000--0x3FFF

The command MAP.BOnchip can be used to inform the debugger for which memory regions breakpoints
should only be implemented as on-chip breakpoints. That is why we mark the FLASH region as follows:

The following shows examples for setting standard software breakpoints:

The following shows examples for setting standard on-chip breakpoints:

MAP.BOnchip 0x0--0xffff

Break.Set P:0x20100 /Program ; Software breakpoint on
; instruction address

Break.Set main /Program ; Software breakpoint on symbol

Break.Set P:0x40 /Program ; On-chip breakpoint on
; instruction address.
; Use on-chip breakpoint because
; address inside MAP.BOnchip range.

Break.Set P:0x20200 /Program
 /Onchip

; On-chip breakpoint on
; instruction address.
; Use on-chip breakpoint because
; of explicit ‘/Onchip’ option.

Break.Set P:0x40--0x48 /Program ; On-chip breakpoint on
; instruction address range

Break.Set D:0x1010 /Read ; On-chip read breakpoint on
; data address

Break.Set D:0x1020 /Write ; On-chip write breakpoint on
; data address

Break.Set D:0x1030 /ReadWrite ; On-chip read and write breakpoint
; on data address

Break.Set D:0x1010--0x101F /Read ; On-chip read breakpoint on
; data address range

Break.Set D:0x10 /Read
 /DATA.Long 0x123

; On-chip read breakpoint on
; data address, combined with
; condition for read data value
RISC-V Debugger | 34©1989-2024 Lauterbach

Floating-Point Extensions

The Lauterbach debugger for RISC-V provides support for floating-point extensions of the RISC-V ISA. This
covers both the single-precision floating-point extension (“F” extension) and the double-precision floating-
point extension (“D” extension).

The floating-point features are provided by the FPU (Floating-Point Unit) command group.

The FPU.view window does display the floating-point registers. Depending on whether the core under
debug supports single-precision or double-precision, the FPU.view window automatically adjusts its register
width.

RISC-V floating-point extensions are compliant with the IEEE 754-2008 arithmetic standard. Cores that
support the double-precision extension do automatically support the single-precision extension as well. The
RISC-V ISA specification defines that a 32 bit single-precision value is stored in a 64 bit double-precision
floating-point register by filling up the upper 32 bits of the register with all 1s (Not a Number (NaN) boxing).

When modifying values with FPU.Set, the user can decide in which floating-point precision notation the
value is written.

The FPU.view window does automatically display register values with NaN boxing in single-precision
representation, and register values without NaN boxing in double-precision representation. The following
example shows 64 bit floating-point registers that contain the same values in both single-precision and
double-precision representation:

A Single-precision representation

B Double-precision representation

A

B

RISC-V Debugger | 35©1989-2024 Lauterbach

Hardware Performance Monitor

The RISC-V ISA defines a so-called “Hardware Performance Monitor”, which consists of several hardware
counters (mcycle, minstret, mhpmcounter, ...). The existence of such a monitor and its counters is optional,
so it may not be available in all RISC-V devices.

The Lauterbach BMC (BenchMark Counter) command group does provide control and usage of these
hardware performance counters, if available on the chip:

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).
RISC-V Debugger | 36©1989-2024 Lauterbach

Hart State: Unavailable

The RISC-V Debug Module can flag a RISC-V hart as “unavailable”, by setting the respective
allunavail/anyunavail status bits of the dmstatus debug register.

The RISC-V debug specification says: “Harts may be unavailable for a variety of reasons including being
reset, temporarily powered down, and not being plugged into the hardware platform.”

If the debugger detects that a hart is currently flagged as unavailable, then it will display “unavailable” in the
bottom-right corner of the TRACE32 state line :

As long as the hart is in this state, it is not possible to manually halt the hart via the Break.direct command.

NOTE: In order to poll the state of a hart, the debugger needs to have full access to all
debug registers of the RISC-V debug module. This means that even when a
RISC-V hart is for example in reset or power-down, then the debug IP such as
RISC-V Debug Module, Debug Module Interface (DMI), etc should still be active
and available to the debugger.If however the debug IP, including the JTAG
connector, gets powered down as well (which is not recommended), then
please refer to SYStem.Mode.StandBy.
RISC-V Debugger | 37©1989-2024 Lauterbach

Semihosting

Semihosting is a technique for application programs running on a RISC-V processor to communicate with
the host computer of the debugger. This way the application can use the I/O facilities of the host computer
like keyboard input, screen output, and file I/O. This is especially useful if the target platform does not yet
provide these I/O facilities or in order to output additional debug information in printf() style.

The RISC-V semihosting is based on the "Semihosting for AArch32 and AArch64: Release 2.0"
specification available here: http://documentation-service.arm.com/static/5f905528f86e16515cdc1d25

A RISC-V semihosting call is invoked by the following semihosting trap instruction sequence:

Semihosting register definitions:

• Operation number register: a0

• Parameter register: a1

• Return register: a0

• Data block field size: 32bits for RV32, 64bits for RV64

There is no need to set any additional breakpoints since the ebreak instruction itself will stop the core. The
debugger will restart the core after the semihosting data is processed.

Semihosting for RISC-V is enabled by TERM.METHOD RISCVSWI and by opening a TERM.GATE window
for the semihosting screen output. The handling of the semihosting requests is only active when the
TERM.GATE window does exist.

slli x0, x0, 0x1f # 0x01f01013 Entry NOP
ebreak # 0x00100073 Break to debugger
srai x0, x0, 7 # 0x40705013 NOP encoding the semihosting call #7
RISC-V Debugger | 38©1989-2024 Lauterbach

Vector Extension

The Lauterbach debugger for RISC-V provides support for the vector register extension (“V” extension) of
the RISC-V ISA.

The vector features are provided by the VPU (Vector Processing Unit) command group. This command
group is only unlocked if the RISC-V target does support the vector extension.

The VPU.view window does display the vector registers. The vector register width VLEN is automatically
detected by the debugger, and the width of the vector registers in the VPU.view window is adjusted
accordingly.

As RISC-V vector registers (v0 - v31) can be quite large, the debugger displays them in sub-elements
(E0 - En), with a width of 32bits for each sub-element.

When modifying values with VPU.Set, the user can write to each sub-element (E0 - En) of a vector register
individually.

Example:

VPU.Set V8_E2 0x12345678 ; Write to vector register v8, sub-element #2
RISC-V Debugger | 39©1989-2024 Lauterbach

CPU specific SETUP Command

SETUP.DIS Disassembler configuration

Sets default values for configuring the disassembler output of newly opened windows. Affected windows
and commands are List.Asm, Register.view, and Register.Set.

The command does not affect existing windows containing disassembler output.

Example 1: The changed naming scheme takes immediate effect in the Register.view window.

Format: SETUP.DIS [<fields>] [<bar>] [<constants>]

<constants>: [RegNames | AbiNames] [<other_constants>]

<fields>, <bar>,
<constants>

For a description of the generic arguments, see SETUP.DIS in
general_ref_s.pdf.

AbiNames Use the ABI (application binary interface) naming scheme for the names
of the RISC-V general purpose registers.

RegNames
(default naming
scheme)

Use the register number (x0, x1, …, x31) naming scheme for the names
of the RISC-V general purpose registers.

SETUP.DIS RegNames ;by default, the register number naming scheme is
 ;used for the general purpose registers
Register.view ;let’s open a register window

;... your code

SETUP.DIS AbiNames ;let's now switch the naming scheme of the general
 ;purpose registers to the ABI naming scheme

A Register number naming scheme. B ABI naming scheme. The ABI names are also
available as aliases in Register.Set.

A B
RISC-V Debugger | 40©1989-2024 Lauterbach

Example 2: The changed naming scheme does not affect an existing List.Asm window. You need to open
another List.Asm window to view the changed naming scheme.

SETUP.DIS RegNames
List.Asm

;... your code

SETUP.DIS AbiNames
List.Asm ;open another disassembler output window

A Register number naming scheme (default naming scheme).

B ABI naming scheme. The ABI names are also available as aliases in Register.Set.

A

B

RISC-V Debugger | 41©1989-2024 Lauterbach

CPU specific SYStem Commands

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | AccessPorts | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector type
and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.
RISC-V Debugger | 42©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip debug and trace modules and (b) informs the
debugger on which memory bus and at which base address the debugger
can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

Format: SYStem.CONFIG <parameter>

<parameter>:
(DebugPort)

CJTAGFLAGS <flags>
CJTAGTCA <value>
CONNECTOR [MIPI34 | MIPI20T]
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0]
DEBUGPORTTYPE [JTAG | CJTAG | SWD]
Slave [ON | OFF]
SWDP [ON | OFF]
SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
DRPOST <bits>
DRPRE <bits>
IRPOST <bits>
IRPRE <bits>
IRWIDTH <bits>
Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

<parameter>:
(AccessPorts
)

AHBAPn.HPROT [<value> | <name>]
AHBAPn.RESet
AHBAPn.view
AHBAPn.XtorName <name>
RISC-V Debugger | 43©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session, e.g. by SYStem.Up.

<parameter>:
(AccessPorts
cont.)

APBAPn.RESet
APBAPn.view
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.RESet
AXIAPn.view
AXIAPn.XtorName <name>

JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

<parameter>:
(AccessPorts
SoC-400)

AHBAP.Port <port>
APBAP.Port <port>
AXIAP.Port <port>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>

<parameter>:
(AccessPorts
SoC-600)

AHBAP.Base <address>
APBAP.Base <address>
AXIAP.Base <address>
JTAGAPn.Base <address>

<parameter>:
(COmponents)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

ETR.CATUBase <address>

<parameter>:
(Tessent
Embedded
Analytics)

COREJPAM <name>
RISC-V Debugger | 44©1989-2024 Lauterbach

Syntax Remarks

The commands are not case sensitive. Capital letters show how the command can be shortened.
Example: “SYStem.CONFIG.TriState ON” -> “SYStem.CONFIG.TS ON”

The dots after “SYStem.CONFIG” can alternatively be a blank.
Example:
“SYStem.CONFIG.TriState ON” or “SYStem.CONFIG TriState ON”
RISC-V Debugger | 45©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS
<flags>

Activates workarounds for incomplete or buggy cJTAG (IEEE 1149.7)
implementations.
Bit 0: Disable scanning of cJTAG ID (TCA-scanning).
Bit 1: Target has no “keeper”. Use TRACE32 pseudo keeper.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes (cJTAG < 1.14).
Bit 4: APFC unlock required.
Bit 5: OAC required

Default: 0

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG (IEEE 1149.7) Star-2 configuration. The Star-2 configuration
requires a unique TCA for each device on the debug port.

CONNECTOR
[MIPI34 | MIPI20T]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This is
mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if µTrace (MicroTrace) is
used.

CORE <core>
<chip>

The command helps to identify debug and trace resources which are
commonly used by different cores. The command might be required in a
multicore environment if you use multiple debugger instances (multiple
TRACE32 PowerView GUIs) to simultaneously debug different cores on
the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different cores, for
example a common trace port. The default setting causes that each
debugger instance controls the same trace port. Sometimes it does not
hurt if such a module is controlled twice. But sometimes it is a must to tell
the debugger that these cores share resources on the same <chip>.
Whereby the “chip” does not need to be identical with the device on your
target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1
RISC-V Debugger | 46©1989-2024 Lauterbach

CORE <core>
<chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the cores
share the same resource if the control registers of the resource have the
same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derives from the CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with the
help of t32start.exe, you will get ascending values (1, 2, 3,...).

CoreNumber
<number>

Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are RISC-V core types which can
be used as a single core processor or as a scalable multicore processor
of the same type. If you intend to debug more than one such core in an
SMP debug session you need to specify the number of cores you intend
to debug.

Default: 1.

DEBUGPORT
[DebugCable0]

It specifies which probe cable shall be used e.g. “DebugCable0”. At the
moment only the CombiProbe allows to connect more than one probe
cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | CJTAG |
SWD]

It specifies the used debug port type “JTAG”, “CJTAG” or “SWD”. It
assumes the selected type is supported by the target.

Default: JTAG.

Slave [ON | OFF] If several TRACE32 debugger GUIs share the same debug port (AMP
debugging), all GUIs except one must have this option set to ON.

JTAG: Only one debugger GUI - the “master GUI” - is allowed to control
the signals nTRST and nSRST (nRESET), and perform a test-logic-reset
or system reset. Only this master GUI must have Slave OFF.

All other debugger GUIs are considered “slave GUIs” and need to have
the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
RISC-V Debugger | 47©1989-2024 Lauterbach

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel
<value>

Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
RISC-V Debugger | 48©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to.

The width of the JTAG instruction register of the TAP of a RISC-V JTAG Debug Transport Module
(JTAG-DTM) can be defined with IRWIDTH.

The TAP position of a RISC-V JTAG Debug Transport Module (JTAG-DTM) can be defined with the
commands IRPRE, IRPOST, DRPRE, and DRPOST.

The TAP position of an Arm CoreSight Debug Access Port (Arm DAP) can be defined with the
commands DAPIRPRE, DAPIRPOST, DAPDRPRE, and DAPDRPOST.

DRPOST <bits> Defines the TAP position of the RISC-V JTAG-DTM in a JTAG scan chain.
Number of TAPs in the JTAG chain between the TDI signal and the TAP
you are describing. In BYPASS mode, each TAP contributes one data
register bit. See example below.

Default: 0.

DRPRE <bits> Defines the TAP position of the RISC-V JTAG-DTM in a JTAG scan chain.
Number of TAPs in the JTAG chain between the TAP you are describing
and the TDO signal. In BYPASS mode, each TAP contributes one data
register bit. See example below.

Default: 0.

IRPOST <bits> Defines the TAP position of the RISC-V JTAG-DTM in a JTAG scan chain.
Number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between TDI signal and the TAP you are describing. See example below.

Default: 0.
RISC-V Debugger | 49©1989-2024 Lauterbach

IRPRE <bits> Defines the TAP position of the RISC-V JTAG-DTM in a JTAG scan chain.
Number of Instruction Register (IR) bits of all TAPs in the JTAG chain
between the TAP you are describing and the TDO signal. See example
below.

Default: 0.

IRWIDTH <bits> Defines the JTAG Instruction Register (IR) width of the JTAG TAP of the
RISC-V JTAG-DTM. See example below.

Default: 5.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain or SYStem.DETECT.SHOWChain command.
RISC-V Debugger | 50©1989-2024 Lauterbach

Example:

This example shows four TAPs in a JTAG daisy chain. The relevant TAP for RISC-V debugging is the
JTAG Debug Transport Module (JTAG-DTM) TAP. In order to address this TAP, the following settings are
necessary:

If your system contains an Arm CoreSight Debug Access Port (DAP) and the DAP is accessible via JTAG,
then the DAP’s JTAG Test Access Port controller (TAP) may be inside a JTAG daisy-chain together with
other TAPs. To tell the debugger the exact position of the DAP’s TAP within the JTAG daisy-chain, you will
require the commands DAPIRPRE, DAPIRPOST, DAPDRPRE, and DAPDRPOST. These settings are
especially important if the CoreSight DAP is not only used to access memory, but also to access the debug
registers of the RISC-V Debug Module.

SYStem.CONFIG IRWIDTH 5.
SYStem.CONFIG IRPRE 10.
SYStem.CONFIG IRPOST 7.
SYStem.CONFIG DRPRE 2.
SYStem.CONFIG DRPOST 1.

DAPDRPOST <bits> (default: 0) <number> of TAPs in the JTAG chain between the
DAP and the TDO signal of the debugger.

DAPDRPRE <bits> (default: 0) <number> of TAPs in the JTAG chain between the
TDI signal of the debugger and the DAP.

TAP 0

IR: 7 bits

TAP 1
RISC-V JTAG-DTM

IR: 5 bits
TDI TDO

TAP 2

IR: 4 bits

TAP 3

IR: 6 bits
RISC-V Debugger | 51©1989-2024 Lauterbach

DAPIRPOST <bits> (default: 0) <number> of instruction register bits in the JTAG
chain between the DAP and the TDO signal of the debugger.
This is the sum of the instruction register length of all TAPs
between the DAP and the TDO signal of the debugger.

DAPIRPRE <bits> (default: 0) <number> of instruction register bits in the JTAG
chain between the TDI signal and the DAP. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of
the debugger and the DAP.

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

During an AMP debug session, this parameter must be set to the same
value in all TRACE32 instances.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.
RISC-V Debugger | 52©1989-2024 Lauterbach

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
RISC-V Debugger | 53©1989-2024 Lauterbach

<parameters> configuring an Arm CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Memory busses (AHB, APB, AXI). This is especially important if the on-chip debug register
needs to be accessed this way. You can access the memory buses by using certain access
classes with the debugger commands: “AHB:”, “APB:”, “AXI:. The interface to these buses is
called Memory Access Port (MEM-AP).
The debug registers of some cores are accessible via such a memory bus (mostly APB).

2. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
RISC-V Debugger | 54©1989-2024 Lauterbach

Example 2: SoC-600

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>] (depre-
cated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
RISC-V Debugger | 55©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
RISC-V Debugger | 56©1989-2024 Lauterbach

SoC-400 Specific Commands

In an Arm SoC-400 system, the following SYStem.CONFIG commands configure the port-number for the
memory busses:

AHBAPn.XtorName
<name>

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access
class.

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class.
Default: port not available.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class.
Default: port not available.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class.
Default: port not available.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.
RISC-V Debugger | 57©1989-2024 Lauterbach

SoC-600 Specific Commands

It is possible to configure multiple Arm SoC-600 buses of one type (e.g. multiple APB buses). This is only
necessary if all these buses need to be accessed from within the same TRACE32 PowerView GUI (i.e. from
the same SMP session). To do so, each bus can be given its individual bus index.

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
RISC-V Debugger | 58©1989-2024 Lauterbach

If no explicit bus index is specified during configuration or use of an access class, then the debugger will
automatically imply and assume the index value 1.

Example:

SYStem.CONFIG.APBAP1.Base DP:0x1000000 ; first APB AP: index 1
SYStem.CONFIG.APBAP2.Base DP:0x2000000 ; second APB AP: index 2
SYStem.CONFIG.AXIAP.Base DP:0x3000000 ; first AXI AP: index 1 (implied)

Data.dump APB:0x80000000 ; use access class of first APB AP
Data.dump APB2:0x90000000 ; use access class of second APB AP
Data.dump AXI:0x30000000 ; use access class of first AXI AP
RISC-V Debugger | 59©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Components and Available Commands

SYStem.CONFIG.COREDEBUG.Base <address>
SYStem.CONFIG.COREDEBUG.RESet
SYStem.CONFIG.COREDEBUG.view

RISC-V Debug Module: bus type and base address of bus-mapped debug registers.

In some systems the debug registers of the RISC-V Debug Module (DM) are mapped on a debug bus
(without the use of a JTAG-DTM). In that case this command configures the bus type and the base address
of the DM register address space.

Example:

RISC-V DM debug registers mapped on APB bus with base address 0x80000000:

For further examples, see “Debug Module Access via Debug Bus”, page 17.

SYStem.CONFIG.COREDEBUG.Base APB:0x80000000

… .Base <address> Configure the start address of the debug register block of the
RISC-V debug module.
Configuring this address also notifies the debugger that the
debug registers are directly accessible for the debugger via
memory (and not e.g. via a JTAG-DTM).

… .RESet Undo the configuration of the start address of the debug register
block of the RISC-V debug module.
This does not cause a physical reset for the component on the chip.

… .view Opens a window showing the current configuration of this
command.
RISC-V Debugger | 60©1989-2024 Lauterbach

<parameters> describing Tessent Embedded Analytics details

For more information on the usage of Tessent Embedded Analytics with TRACE32, see “Tessent
Embedded Analytics Debugger Setup” manual.

… .COREJPAM <name> Configure a Tessent Embedded Analytics JTAG Processor
Analytic Module to access the RISC-V JTAG-DTM for debugging.
Use the name of an already configured JPAM.
RISC-V Debugger | 61©1989-2024 Lauterbach

SYStem.CONFIG.HART.INDEX Set hart index

Default: 0.

Configures the hardware thread index (hart index) that is used by the RISC-V Debug Module to interact with
a specific hart.

The command requires a hart index for each hart that is covered by SYStem.CONFIG.CoreNumber.

Example:

The Debug Module “hart index” should not be confused with other values such as the “hart ID” of the
mhartid CSR.

For further examples, see “Quick Start for Multicore Debugging”, page 19.

Format: SYStem.CONFIG.HART.INDEX <index>
SYStem.CONFIG.HARTINDEX <index> (deprecated)

<index>: 0. | 1. … n

SYStem.CONFIG.CoreNumber 5.
SYStem.CONFIG.HART.INDEX 3. 4. 5. 6. 7.
RISC-V Debugger | 62©1989-2024 Lauterbach

SYStem.CPU Select the CPU to be debugged

Selects the target core / CPU / SoC / chip to be debugged.

Format: SYStem.CPU <cpu>

<cpu>: RV32 | RV64 | …

<cpu> For a list of supported cores/CPUs/SoCs/chips, use the command
“SYStem.CPU *” or refer to the chip search on the Lauterbach
website.

NOTE: RV32 and RV64 are default entries for 32-bit and 64-bit RISC-V cores, respectively.
These entries should only be selected if there is no dedicated <cpu> entry available
that matches the target. If RV32/RV64 is selected then all chip-specific
configuration needs to be made manually by the user.

NOTE: All core entries have a prefix that is specific to the core vendor, in order to
prevent naming collisions.
Example: the E21 core from SiFive has the name “SF-E21”.
RISC-V Debugger | 63©1989-2024 Lauterbach

SYStem.JtagClock Define JTAG frequency

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer.

Format: SYStem.JtagClock [<frequency> | RTCK | ARTCK <frequency> |
 CTCK <frequency> | CRTCK <frequency>]
SYStem.BdmClock <frequency> (deprecated)

<frequency>: 10000. … 40000000.

<frequency> The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,
although no “.” is used.

RTCK The JTAG clock is controlled by the RTCK signal (Returned TCK). The
debugger does not progress to the next TCK edge until after an RTCK edge
is received. This mode is not recommended for this debugger since it is not
needed here.

ARTCK Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK). In ARTCK mode the debugger uses a fixed
JTAG frequency for TCK, independent of the RTCK signal. This frequency
must be specified by the user. TDI and TMS will be delayed by 1/2 TCK clock
cycle. TDO will be sampled with RTCK. This mode is not recommended for
this debugger since it is not needed here.

CTCK With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by a signal which derives from TCK, but which is timely
compensated regarding the debugger-internal driver propagation delays
(Compensation by TCK).

CRTCK With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by the RTCK signal. This compensates the debugger-internal driver
propagation delays, the delays on the cable and on the target
(Compensation by RTCK). This feature requires that the target sends back
the TCK signal onto the RTCK signal. In contrast to the RTCK option, the
TCK is always output with the selected, fixed frequency.
RISC-V Debugger | 64©1989-2024 Lauterbach

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the RISC-V DTM JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode.

Format: SYStem.LOCK [ON | OFF]
RISC-V Debugger | 65©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Denied.

This command defines if and how memory can be accessed with the “D:” and “P:” access classes while
the CPU is running.

A prerequisite for run-time access with the “D:” and “P:” access classes is that they are combined with the
access class prefix “E”.
An “ED:” or “EP:” access can make a run-time access according to the setting of this command.
A “D:” or “P:” access (without “E” prefix”) however will always deny run-time access, independent of the
setting of this command.

Although the CPU is not halted, run-time memory access creates an additional load on the CPU’s internal
data bus.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is running. For more information, see SYStem.CpuBreak and
SYStem.CpuSpot.

Format: SYStem.MemAccess <method>

<method>: Denied
SB
StopAndGo

NOTE: This command only takes effect while the CPU is running. For memory access
while the CPU is stopped, see SYStem.MemAccessStop.

AHB, AXI, SB, ... Depending on which memory buses are available on the chip, the
run-time memory access is done through the specified bus.

Denied No memory access is possible while the CPU is running.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.
RISC-V Debugger | 66©1989-2024 Lauterbach

If SYStem.MemAccess StopAndGo is set, it is possible to read from memory, to write to memory and to
set software breakpoints while the CPU is executing the program. To make this possible, the program
execution is shortly stopped by the debugger. Each stop takes some time depending on the speed of the
JTAG port and the operations that should be performed. A white S against a red background in the
TRACE32 state line warns you that the program is no longer running in real-time:

To update specific windows that display memory or variables while the program is running, select the
memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

No real-time
RISC-V Debugger | 67©1989-2024 Lauterbach

SYStem.MemAccessStop Memory access while stopped

Default: AUTO.

This command defines the memory access method with the “D:” and “P:” access classes while the CPU
is stopped.

If the AUTO method is configured, then the method that got automatically selected by the debugger can be
seen as soon as the debugger has performed at least one successful memory access. To see the selected
method, type “SYStem.MemAccessStop “ (with whitespace at the end) into the TRACE32 command line.
The method should appear in the status line below the command line:

Format: SYStem.MemAccessStop <method>

<method>: AUTO
AAM
PROGBUF
SB

NOTE: This command only takes effect while the CPU is stopped. For memory access
while the CPU is running, see SYStem.MemAccess.

AUTO Automatically choose the most suitable memory access method among
the methods that are supported by the target.

AAM Use the ‘access memory’ abstract command of the RISC-V Debug
Module.

PROGBUF Use program buffer execution via the RISC-V Debug Module.

SB Use the ‘system bus access’ block of the RISC-V Debug Module.
RISC-V Debugger | 68©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Prepare
Go
Attach
StandBy
Up

Down
(default)

Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Prepare Initializes a debug connection.
The debugger does initialize the debug IP, but it does not perform any
interaction with the CPU.

This debug mode is used if the CPU shall not be debugged or if it shall be
bypassed. The debugger can still access the memory, e.g. via direct
system bus access. However, any operation that could alter the CPU
state or would require CPU interaction (such as starting or stopping the
CPU, accessing memory via the CPU, or accessing GPR/CSR registers)
is not possible in this debug mode.

Go Initializes a debug connection, resets the target (see
SYStem.Option.ResetMode) and lets the CPU run from its reset vector.

Attach Initializes a debug connection. The debugger does not reset the CPU and
does not interact with the CPU in any intrusive way. Consequently the
CPU stays running if it was running, or stays stopped if it was stopped.
RISC-V Debugger | 69©1989-2024 Lauterbach

StandBy Keeps the target in reset via the JTAG reset line and waits until power is
detected on the JTAG port. For a reset, the SRST reset line has to be
connected to the debug connector.

Once power has been detected, the debugger initializes the debug
connection, briefly halts the CPU at the reset vector, restores as many
debug registers as possible (e.g. on-chip breakpoints, trace control) and
resumes the CPU from the reset vector to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: Since this mode requires SRST to be asserted right from the
beginning of the connect sequence, this mode is only applicable in
combination with SYStem.Option.ResetMode SRST2.

NOTE: This method only works under very specific circumstances. A
more recommended and less error-prone method to handle a core
power-down is described in chapter “Hart State: Unavailable”.

Up Initializes a debug connection, resets the target (see
SYStem.Option.ResetMode) and stops the CPU at its reset vector.
RISC-V Debugger | 70©1989-2024 Lauterbach

SYStem.Option Special setup
[SYStem.state window > Option]

The SYStem.Option commands are used to control special features of the debugger or to configure the
target. It is recommended to execute the SYStem.Option commands before the emulation is activated by a
SYStem.Up or SYStem.Mode command.

SYStem.Option.Address32 Define address format display

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of an AHB Access Port of a
DAP, when using the AHB: memory class.

This option is only meaningful if the chip contains an Arm CoreSight DAP.

Format: SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

ON Display all addresses as 32-bit values. 64-bit addresses are truncated.

OFF Display all addresses as 64-bit values.

AUTO Number of displayed digits depends on address size.

NARROW 32-bit display with extendible address field.

Format: SYStem.Option.AHBHPROT <value>
RISC-V Debugger | 71©1989-2024 Lauterbach

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

This option is only meaningful if the chip contains an Arm CoreSight DAP.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0)

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory
class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

Format: SYStem.Option.AXIACEEnable [ON | OFF]

Format: SYStem.Option.AXICACHEFLAGS <value>

<value>: DeviceSYStem
NonCacheableSYStem
ReadAllocateNonShareable
ReadAllocateInnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocateInnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocateInnerShareable
ReadWriteAllocateOuterShareable

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6
RISC-V Debugger | 72©1989-2024 Lauterbach

This option is only meaningful if the chip contains an Arm CoreSight DAP.

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an AXI Access
Port of a DAP, when using the AXI: memory class.

This option is only meaningful if the chip contains an Arm CoreSight DAP.

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

Format: SYStem.Option.AXIHPROT <value>
RISC-V Debugger | 73©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

This option is only meaningful if the chip contains an Arm CoreSight DAP.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
RISC-V Debugger | 74©1989-2024 Lauterbach

This option is only meaningful if the chip contains an Arm CoreSight DAP.

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

This option is only meaningful if the chip contains an Arm CoreSight DAP.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

This option is only meaningful if the chip contains an Arm CoreSight DAP.

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.
RISC-V Debugger | 75©1989-2024 Lauterbach

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

This option is only meaningful if the chip contains an Arm CoreSight DAP.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation
RISC-V Debugger | 76©1989-2024 Lauterbach

SYStem.Option.DMACTiveRESet Allow debugger to reset DM via dmactive
[build 150897 - DVD 09/2022]

Default: ON

If ON, the debugger will reset the RISC-V debug module via its dmcontrol.dmactive bit, before using it for the
first time. This is usually done while connecting to the target.

If OFF, the debugger will not reset the RISC-V debug module via its dmcontrol.dmactive bit, before using it
for the first time. Instead, it will only set the bit to high (if it is not high already).

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]

Default: ON.

If this option is OFF the debugger will never drive the nRESET (nSRST) line on the JTAG connector.
This is necessary if nRESET (nSRST) is no open collector or tristate signal.
Instead, during a SYStem.Up, the debugger will only assert a soft system reset via the “non-debug
module reset” bit (ndmreset) of the dmcontrol register.

Format: SYStem.Option.DMACTiveRESet [ON | OFF]

Format: SYStem.Option.EnReset <sub_cmd> (removed)

<sub_cmd>: ON (removed)
Use SYStem.Option.ResetMode SRST instead

OFF (removed)
Use SYStem.Option.ResetMode NDMRST instead

NOTE: Since release R.2021.02 this command is no longer available for the RISC-V
debugger. Please refer to its replacement, SYStem.Option.ResetMode.
RISC-V Debugger | 77©1989-2024 Lauterbach

SYStem.Option.HARVARD Use Harvard memory model

Default: OFF.

This option must be disabled if the RISC-V target does not use a Harvard memory model, i.e. if the target
does not have physically separate storage and signal pathways for program and data memory.

This option must be enabled if the RISC-V target does use a Harvard memory model.

SYStem.Option.HoldReset Set reset duration time

Default: 50ms.

Set the minimum time the debugger holds the reset active, before either deasserting the reset or continuing
with other operations such as debug register accesses (whichever occurs first).

This affects the sequences of SYStem.Up and SYStem.Mode.Go.

In case of SYStem.Mode.StandBy, this command affects the wait time starting after detection of the target
power-on (during which SRST is already asserted).

Format: SYStem.Option.HARVARD [ON | OFF]

Format: SYStem.Option.HoldReset <time>

<time>: 1us... 10s

nRESET

debug register access access

minimum hold time

?

RISC-V Debugger | 78©1989-2024 Lauterbach

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the ‘Step Interrupt Enable Bit’ (dcsr.stepie) will be cleared during assembler single-step
operations (Step.Asm). No interrupt routines will be executed during assembler single-step operations.

If disabled, the ‘Step Interrupt Enable Bit’ (dcsr.stepie) will be set during assembler single-step operations
(Step.Asm). Interrupt routines will be executed during assembler single-step operations.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt enable bits of the CPU (mstatus.MIE/SIE/UIE) will be cleared during HLL single-step
operations (Step.Hll or Step.Over). No interrupt routines will be executed during HLL single-step
operations. After the HLL single-step, the interrupt enable bits are restored to their original values before the
step.

If disabled, the debugger does not modify the interrupt enable bits of the CPU during HLL single-step
operations.

Format: SYStem.Option.IMASKASM [ON | OFF]

NOTE: Some RISC-V hardware implementations may have hardwired the dcsr.stepie
bit to zero.

Format: SYStem.Option.IMASKASM [ON | OFF]
RISC-V Debugger | 79©1989-2024 Lauterbach

SYStem.Option.IsaEXTension Manually configure support for ISA
extensions

[build 164710]

This command makes the debugger aware of the ISA extensions implemented in the current RISC-V hart
under debug. This may be needed when optional RISC-V ISA extensions reuse instruction opcodes from
other extensions and the debugger has no other means to resolve an opcode into the correct instruction.
Usually the debugger can detect which ISA extensions the current RISC-V hart under debug supports. But if
that is not the case, this command can be used to enable/disable the debugger’s support for it.

SYStem.Option.KeepAlive Keep hart available for debugger
[build 145331 - DVD 09/2022]

Default: ON.

Sets or clears the KEEPALIVE bit of the RISC-V hart.

Format: SYStem.Option.IsaEXTension.<extension> [AUTO | ON | OFF]

<extension>: D
ZCM

AUTO Enables the debugger’s auto detection for the given ISA extension.

ON Enable the support for the given ISA extension.
This prevents the debugger’s auto detection mechanism.

OFF Disable the support for the given ISA extension.
This prevents the debugger’s auto detection mechanism.

NOTE: The support for some RISC-V ISA extensions might not be settable when there
are conflicts with another extension that is already set.

Format: SYStem.Option.KeepAlive [ON | OFF]
RISC-V Debugger | 80©1989-2024 Lauterbach

The ‘keepalive’ bit suggests that the hardware should attempt to keep the hardware thread (hart) available
for the debugger, e.g. by keeping it from entering a low-power state once powered on. Even if the bit is
implemented by the hardware, the hardware might not be able to keep a hart available.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A
RISC-V Debugger | 81©1989-2024 Lauterbach

SYStem.Option.ResetDetection Choose method to detect a target reset

Default: nSRST

Selects the method how an external target reset can be detected by the debugger.

SYStem.Option.ResetMode Select reset method

Default: SRST.

Configures the reset method used by SYStem.Up and SYStem.Mode Go.

Format: SYStem.Option.ResetDetection <method>

<method>: nSRST | None

nSRST Detects a reset if nSRST (nRESET) line on the debug connector is pulled
low.

None Detection of external resets is disabled.

Format: SYStem.Option.ResetMode <method>

<method>: SRST
SRST2
NDMRST
HartRST

SRST System reset via the SRST signal of the JTAG connector. This signal is
sometimes also called nSRST, RST or RESET.
SRST is asserted directly before the halt request. See paragraph
ResetMode SRST for details.

SRST2 System reset via the SRST signal of the JTAG connector. This signal is
sometimes also called nSRST, RST or RESET.
SRST is asserted before the first debug register access. See paragraph
ResetMode SRST2 for details.
RISC-V Debugger | 82©1989-2024 Lauterbach

The behavior of the respective reset method can be further influenced by the following configuration options:

• SYStem.Option.HoldReset

• SYStem.Option.WaitReset

ResetMode SRST

The sequence of SYStem.Up with SYStem.Option.ResetMode SRST looks as follows:

The above debug register access sequence labeled with ‘halt’ does only contain accesses to the ‘dmcontrol’
debug register.

The test-logic-reset via nTRST can be configured by SYStem.Option.TRST.

NDMRST System reset via the ‘ndmreset’ bit of the ‘dmcontrol’ debug register in
the RISC-V Debug Module.
See paragraph ResetMode NDMRST for details.

HartRST Hardware thread (hart) reset via the ‘hartreset’ bit of the ‘dmcontrol’
debug register in the RISC-V Debug Module.
Resets all harts that are currently selected via CORE.ASSIGN.
See paragraph ResetMode HartRST for details.

nSRST

nTRST

halt request

CPU state

debug register access

? reset halted

DM initialization halt debug
RISC-V Debugger | 83©1989-2024 Lauterbach

ResetMode SRST2

The sequence of SYStem.Up with SYStem.Option.ResetMode SRST2 looks as follows:

The above debug register access sequence labeled with ‘DM initialization’ (Debug Module initialization) can
contain accesses to any arbitrary debug register. That is why this sequence should only be used if the target
allows debugger access to all debug registers while SRST is asserted.

The test-logic-reset via nTRST can be configured by SYStem.Option.TRST.

ResetMode NDMRST

The sequence of SYStem.Up with SYStem.Option.ResetMode NDMRST looks as follows:

The above debug register access sequence labeled with ‘halt’ does only contain accesses to the ‘dmcontrol’
debug register.

The test-logic-reset via nTRST can be configured by SYStem.Option.TRST.

nSRST

nTRST

halt request

CPU state

debug register access

?

DM initialization halt debug

reset halted

dmcontrol.ndmreset

nTRST

halt request

CPU state

debug register access

?

halt debug

reset halted

DM initialization
RISC-V Debugger | 84©1989-2024 Lauterbach

ResetMode HartRST

The sequence of SYStem.Up with SYStem.Option.ResetMode HartRST looks as follows:

The above debug register access sequence labeled with ‘halt’ does only contain accesses to the ‘dmcontrol’
debug register.

The test-logic-reset via nTRST can be configured by SYStem.Option.TRST.

SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoints

Default: OFF.

Instructs the debugger to only use 32-bit accesses to patch the code of software breakpoints.

Format: SYStem.Option.SOFTLONG [ON | OFF]

NOTE: If the debugger should be restricted to only use 32-bit accesses for any kind of
memory access (not only for software breakpoints), then please see the
command MAP.BUS32 instead.

dmcontrol.hartreset

nTRST

halt request

CPU state

debug register access

?

halt debug

reset halted

DM initialization
RISC-V Debugger | 85©1989-2024 Lauterbach

SYStem.Option.SYSDownACTion Define action during SYStem.Down

Default: NONE.

Defines the action that shall be taken when a SYStem.Down is performed.

The respective action, however, will not be executed if the debugger performs an automated SYStem.Down
after an error situation.

SYStem.Option.TRST Allow debugger to drive TRST
[SYStem.state window > TRST]

Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high).

If this option is enabled, the debugger may make a test-logic-reset via nTRST during the connect sequence
to the target.

Independent of whether this option is ON or OFF, the debugger’s connect sequence may contain other
mechanisms for test-logic-reset or test-logic initialization (for example in case of JTAG debugging, the
sequence may additionally contain five consecutive TMS pulses to reset the JTAG TAP).

Format: SYStem.Option.SYSDownACTion <action>

<action>: NONE
DCSRRST

NONE No action.

DCSRRST Reset certain bits of the Debug Control and Status Register (DCSR) of
the core under debug to their respective default values. This does not
affect the dcsr.prv bits or bitfields with implementation-specific reset
values (“preset reset values”).
This action can be intrusive, as it may be necessary to temporarily halt
the core in order to access the register.

Format: SYStem.Option.TRST [ON | OFF]
RISC-V Debugger | 86©1989-2024 Lauterbach

SYStem.Option.WaitReset Set reset wait time

Default: 50ms.

Set the time that the debugger will wait after deassertion of a reset, e.g. during SYStem.Up or
SYStem.Mode.Go.

Before the wait time is over, the debugger will not perform any other target interactions such as JTAG shifts
or debug register accesses.

Format: SYStem.Option.WaitReset <time>

<time>: 1us... 10s

nRESET

debug register access access

wait time
RISC-V Debugger | 87©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES Enable symbol management for zones
[Example]

Default: OFF.

The SYStem.Option.ZoneSPACES command must be set to ON if separate symbol sets are used for the
following RISC-V modes:

• Machine mode (access classes M:, MD:, and MP:)

• Supervisor mode (S:, SD:, and SP:) and

• User mode (access classes U:, UD,: and UP:)

RISC-V has two CPU mode dependent address spaces. Within TRACE32, these two CPU mode
dependent address spaces are referred to as zones:

• In Machine mode, no address translation is performed. TRACE32 treats the Machine mode as
one zone.

• In Supervisor mode as well as in User mode, addresses are translated by the hardware MMU.
Both modes share the same address space because they use the same translation. Thus,
TRACE32 treats both Supervisor mode and User mode as one single zone.

Due to the different address translation in these modes, different code and data can be visible on the same
logical address.

Format: SYStem.Option.ZoneSPACES [ON | OFF]

NOTE: For an explanation of the TRACE32 concept of address spaces (zone spaces,
MMU spaces, and machine spaces), see “TRACE32 Concepts”
(trace32_concepts.pdf).

OFF TRACE32 does not separate symbols by access class. Loading two or
more symbol sets with overlapping address ranges will result in
unpredictable behavior. Loaded symbols are independent of the CPU
mode.

ON Separate symbol sets can be loaded for each zone, even with
overlapping address ranges. Loaded symbols are specific to one of the
CPU zones.
RISC-V Debugger | 88©1989-2024 Lauterbach

SYStem.Option.ZoneSPACES ON

SYStem.Option.ZoneSPACES is set to ON if the user wants to debug code which is executed in
Supervisor or User mode, such as a operating system, and code which is executed in Machine mode, such
as exception handlers.

If SYStem.Option.ZoneSPACES is ON, TRACE32 enforces any memory address specified in a TRACE32
command to have an access class which clearly indicates to which zone the memory address belongs.

If an address specified in a command uses an anonymous access class such as D:, P: or C:, the access
class of the current PC context is used to complete the addresses’ access class.

If a symbol is referenced by name, the associated access class of its zone will be used automatically, so that
the memory access is done within the correct CPU mode context. As a result, the symbol’s logical address
will be translated to the physical address with the correct MMU translation table.

Example:

SYStem.state Display SYStem.state window

Displays the SYStem.state window for system settings that configure debugger and target behavior.

SYStem.Option.ZoneSPACES ON

; 1. Load a Linux image to Supervisor mode
; (access classes S:, SP: and SD: are used for the symbols of Linux.
; access classes U:, UP: and UD: are used for User mode applications):
Data.LOAD.ELF vmlinux S:0x0 /NoCODE

; 2. Load a secure driver image to Machine mode:
; (access classes M:, MP: and MD: are used for the symbols):
Data.LOAD.ELF secdriver M:0x0 /NoCODE

Format: SYStem.state
RISC-V Debugger | 89©1989-2024 Lauterbach

CPU specific FPU Command

FPU.Set Write to FPU register

Writes to a floating-point register of the RISC-V core under debug.

Example:

Format: FPU.Set <register>[.<precision>] [<expression> | <float>]

<register>: F0 | F1 … F31

<precision>: auto
Single
Double

auto Automatic detection of the floating-point precision.
The debugger automatically detects whether the current value of
<register> is single-precision or double-precision, and uses the detected
precision for the register write.
• If single-precision is detected, FPU.Set <register>.auto is equal to

FPU.Set <register>.Single.
• If double-precision is detected, FPU.Set <register>.auto is equal to

FPU.Set <register>.Double.

Single Uses single-precision floating-point representation for the register write.

Double Uses double-precision floating-point representation for the register write.

<float> Parameter Type: Float.

<expression> Parameter Type: Decimal or hex.

FPU.Set F4.auto 1.4 ; Write to register with
 ; automatic detection of precision
FPU.Set F4.Single 2.7 ; Write to register with single-precision
FPU.Set F4.Double 3.2 ; Write to register with double-precision

FPU.Set F6.Single 0xABCD ; Write to register with single-precision
 ; in hexadecimal notation
FPU.Set F6.Double 12. ; Write to register with double-precision
 ; in decimal notation
RISC-V Debugger | 90©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
RISC-V Debugger | 91©1989-2024 Lauterbach

CPU specific Tables in MMU.DUMP <table>

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
RISC-V Debugger | 92©1989-2024 Lauterbach

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID: list the translation table

of the specified process
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
RISC-V Debugger | 93©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation table

of the specified process
• else, this command loads the table the CPU currently uses for MMU

translation.
RISC-V Debugger | 94©1989-2024 Lauterbach

If neither <range> nor <address> are specified, the page table will be scanned from 0 to <scan_range>

<scan_range> depends on the selected or auto-detected MMU format.

• MMU format SV32: <scan_range> = 232 - 1

• MMU format SV39: <scan_range> = 239 - 1

• MMU format SV48: <scan_range> = 248 - 1

• MMU format SV57: <scan_range> = 257 - 1

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.
• For information about the first three parameters, see “What to know

about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL [Clear] Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

<range> The address range of the page table which will be scanned for valid
entries.

<address> The start address from which the page table will be scanned for valid
entries.
The end address for the scan is <address> + <scan_range>
<scan_range> is explained below.
RISC-V Debugger | 95©1989-2024 Lauterbach

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the RISC-V debugger.
RISC-V Debugger | 96©1989-2024 Lauterbach

Target Adaption

Connector Type and Pinout

RISC-V Debug Cable with 20 pin Connector

Adaption for RISC-V Debug Cable: See www.lauterbach.com/adriscv.html

Signal Pin Pin Signal
VREF-DEBUG 1 2 N/C
TRST- 3 4 GND
TDI 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
RTCK 11 12 GND
TDO 13 14 GND
RESET- 15 16 GND
N/C 17 18 GND
N/C 19 20 GND

Pin 2, pin 17 and pin 19 must under no circumstances be connected on the
target side. Otherwise the hardware of the debugger can get damaged.
RISC-V Debugger | 97©1989-2024 Lauterbach

http://www.lauterbach.com/adriscv.html

	RISC-V Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Script
	List of Abbreviations and Definitions

	Warning
	Quick Start of the JTAG Debugger
	Quick Start for Debug Module Configuration
	Debug Module Access via JTAG-DTM
	Debug Module Access via Debug Bus

	Quick Start for Multicore Debugging
	SMP Debugging
	SMP Debugging - Selective
	Homogeneous SMP/AMP Debugging
	Heterogeneous SMP/AMP Debugging

	Troubleshooting
	Communication between Debugger and Processor cannot be established

	FAQ
	RISC-V Specific Implementations
	Debug Specification for External Debug Support
	Access Classes
	Description of the Individual Access Classes
	Combination of Several Access Classes
	How to Create Valid Access Class Combinations

	Breakpoints
	Software Breakpoints
	On-chip Breakpoint Resources
	On-chip Breakpoints for Instruction Address
	On-chip Breakpoints for Data Address
	On-chip Data Value Breakpoints
	Examples for Standard Breakpoints

	Floating-Point Extensions
	Hardware Performance Monitor
	Hart State: Unavailable
	Semihosting
	Vector Extension

	CPU specific SETUP Command
	SETUP.DIS Disassembler configuration

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring an Arm CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> describing Tessent Embedded Analytics details

	SYStem.CONFIG.HART.INDEX Set hart index
	SYStem.CPU Select the CPU to be debugged
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.MemAccessStop Memory access while stopped
	SYStem.Mode Establish the communication with the target
	SYStem.Option Special setup
	SYStem.Option.Address32 Define address format display
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DMACTiveRESet Allow debugger to reset DM via dmactive
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.HARVARD Use Harvard memory model
	SYStem.Option.HoldReset Set reset duration time
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IsaEXTension Manually configure support for ISA extensions
	SYStem.Option.KeepAlive Keep hart available for debugger
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.ResetDetection Choose method to detect a target reset
	SYStem.Option.ResetMode Select reset method
	SYStem.Option.SOFTLONG Use 32-bit access to set SW breakpoints
	SYStem.Option.SYSDownACTion Define action during SYStem.Down
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.Option.WaitReset Set reset wait time
	SYStem.Option.ZoneSPACES Enable symbol management for zones
	SYStem.state Display SYStem.state window

	CPU specific FPU Command
	FPU.Set Write to FPU register

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	CPU specific TrOnchip Commands
	Target Adaption
	Connector Type and Pinout
	RISC-V Debug Cable with 20 pin Connector

