LAUTERBACH A

PPC600 Family Debugger

PPC600 Family Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
PQIl, MPC5200, MPCB03/7XX, MPCT7AXX ...ccccerresermmerrrsssanmerssssssmmssessssnmesssssssnmssessssnmsssssssanmensans r=
PPC600 Family DEDUQGQENcciiiiiimriiiiems s iissmss s s ssmss s s ssmms s s ssmms s s smmss s s ssmmnnnas 1

L 1= (o 5

Y e Yo 11T £ o) o T 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 7
L= T 11 ' 8
Signal Level 8

ESD Protection 8
Target Design Requirement/Recommendationscccccccvrrrcccemmnsncsecersssssssceesessssscenes 9
General 9

L@ T T Q3 - ' R 10

QLo 18] o == 0 T To7 £ 3V 12
Problems with Memory Access 13

o 13
L0001 T 1T = o N 14
System Overview 14
PowerPC 600 Family Specific Implementationsccccomiirmiininsnnnnses s 15
Breakpoints 15
Software Breakpoints 15
Software Breakpoint Handling 16

On-chip Breakpoints 18
Software Breakpoints in Interrupt Handlers 19
Breakpoints in FLASH/ROM 19
Breakpoints on Physical or Virtual Addresses 19
Examples for Breakpoints 20
Software Breakpoints 20

On-chip Program Address Breakpoints 20
©1989-2024 Lauterbach PPC600 Family Debugger | 2

On-chip Data Address Breakpoints 20
Access Classes 21
Access Classes to Memory and Memory Mapped Resources 21
Access Classes to Other Addressable Core and Peripheral Resources 22
Cache 22
Memory Coherency 22
MESI States 23
Little Endian Operation 24
CPU specific SYStem Commandsccccuiivemmmmnnsssssmmnsssssmsss s ssssssssssssssssssssssssssssnas 25
SYStem.BdmClock Set JTAG frequency 25
SYStem.CPU Select the CPU type 25
SYStem.LOCK Lock and tristate the debug port 26
SYStem.MemAccess Select run-time memory access method 26
SYStem.Mode Select operation mode 27
SYStem.CONFIG.state Display target configuration 28
SYStem.CONFIG Configure debugger according to target topology 29
Daisy-Chain Example 32
TapStates 33
SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector 33
SYStem.CONFIG.CORE Assign core to TRACE32 instance 34
SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin 35
SYStem.CONFIG.QACK Control QACK pin 35
CPU specific System Commandscccceiiimmmirsmninimsinmsinsssssssssss s s sss s sssssssasanes 36
SYStem.Option.BASE Set base address for on-chip peripherals 36
SYStem.Option.BUS32 Use 32-Bit data-bus mode 37
SYStem.Option.CONFIG Select RCW configuration 37
SYStem.Option.DCREAD Read from data cache 38
SYStem.Option.DUALPORT Implicitly use run-time memory access 38
SYStem.Option.FREEZE Freeze timebase when core halted 39
SYStem.Option.HoldReset Setreset holdtime 40
SYStem.Option.HOOK Compare PC to hook address 40
SYStem.Option.HRCWOVerRide Override HRCW on SYStem.Up 41
SYStem.Option.ICFLUSH Invalidate instruction cache before go/step 41
SYStem.Option.ICREAD Read from instruction cache 42
SYStem.Option.IMASKASM Disable interrupts while single stepping 42
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 42
SYStem.Option.IP Set MSR_IP value for breakpoints / SYStem.Up 43
SYStem.Option.LittleEnd True little endian mode 43
SYStem.Option.MemProtect Enable memory access safeguard 43
SYStem.Option.MemSpeed Configure memory access timing 44
SYStem.Option.MMUSPACES Separate address spaces by space IDs 44
SYStem.Option.NoDebugStop Disable JTAG stop on debug events 45
SYStem.Option.NOTRAP Use alternative software breakpoint instruction 46
©1989-2024 Lauterbach PPC600 Family Debugger 3

SYStem.Option.OVERLAY Enable overlay support 47
SYStem.Option.PARITY Generate parity on memory access 47
SYStem.Option.PINTDebug Program interrupt debugging 48
SYStem.Option.PPCLittleEnd PPC little endian mode 48
SYStem.Option.PTE Evaluate PTE table for address translation 49
SYStem.Option.RESetBehavior Set behavior when target reset detected 49
SYStem.Option.ResetMode Select reset mode for SYStem.Up 50
SYStem.Option.SLOWRESET Relaxed reset timing 50
SYStem.Option.STEPSOFT Use alternative method for ASM single step 51
SYStem.Option.WaitReset Set reset wait time 52
SYStem.Option. WATCHDOG Leave software watchdog enabled 53
CPU specific MMU COMMANASccccceemmmmmimrriiiisssssssssssmssmnsssssssssssssssssssmmsssssssssesssssssssnnnnas 54
MMU.DUMP Page wise display of MMU translation table 54
MMU.List Compact display of MMU translation table 56
MMU.SCAN Load MMU table from CPU 58
MMU.Set Write MMU TLB entries to CPU 60
CPU specific BenchMarkCounter COmmandsc.ccceuimmnnmsminsmmsssssissssssssssssssssnssnes 61
BMC.<counter>.FREEZE Freeze counter in certain core states 61
BMC.FREEZE Freeze counters while core halted 62
CPU specific TrOnchip COmMmaNndsccccccmmmmniiemmrmmnnsssssnssssssssss s ssssssssns 63
TrOnchip.DISable Disable debug register control 63
TrOnchip.ENable Enable debug register control 63
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 63
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 64
TrOnchip.RESet Reset on-chip trigger settings 64
TrOnchip.state Display on-chip trigger window 64
TrOnchip.TEnable Set filter for the trace 64
TrOnchip. TOFF Switch the sampling to the trace to OFF 65
TrOnchip.TON Switch the sampling to the trace to “ON” 65
TrOnchip.TTrigger Set a trigger for the trace 65
Mechanical DeSCHPLON ...t s s s ssm s s e s s s mmmmmnnnnenes 66
JTAG/COP Connector PPC603e/700/MPC8200 66
LT T[T T 7 - 67
©1989-2024 Lauterbach PPC600 Family Debugger | 4

PPC600 Family Debugger

History

Version 06-Jun-2024

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.
[BsList.auto] [][&S]
M Step | M Over JAsDiverge « Return ¢ Up b Go Il Break | % Mode &=f L. Find: sieve.c
addr/T1ine |code label mnemonic comment |
SF:400015D0 [7COBO37E mr ril,rQ A
SF:400015D4 |912E0000 stw r9,0x0(r1l)
for (i = 0; 1 <= last; 1++) {
SF:400015D8 |35000000 14 rQ, 0x0
SF:400015DC |201F0008 stw ro,0x8(r31)
SF:400015E0 45000154 b 34
pLinkedListBuf[i].left = (i==last) 7 NULL : &pLinkedListBuf[i+l]; /* next element =/
: 813F0008 r9,0xB(r31 : ra,8(r3l)
SF:400015E8 |S01F000C 0
SF:400015EC |FFE90000
SF:400015F0 [419E0025
SF:400015F4 |501F0005
SF:400015F8 |30000001 hd

{ii} B:Register o B:PER = =R
RO 4 RS 303A FRle 0 R24 A
R1 40003F60 R 1 R17 0 R25 = Mode Entry Module (MC_ME)
R2 0 R10 0 R18 0 R2Z6 G5 00000000 S_CURRENT_MODE RESET
F3 40002160 R11 40002234 R19 0o R27 S_MTRANS O 5_DC o 5_PDO o 5
R4 2C R1z 0 R20 0 R28 S_DFLA unavailable S_CFLA un
R5 37 R13 0o R21 0 R29 S_FMPLL ©O S5_FX05C 0 S_FIRC O
R.G 40000000 R14 0o R2Z2 0 R3O0 40002220 S_SYSCLK 16 MHz int. RC osc.
R7 0 R15 0 R23 0 R31 40003F60

MCTL 00000000 TARGET_MODE RESET KEY 0000
[TEL 0 XER o CR 40000008 LR 40001610
[TEL 0 USPRGO o CTR 40001700 IP 400015E4 ME 00000000 RESET_DEST O

STANDEYD O STOPO 0 HALTO o RU

SPRGO 0 SRRO 0 IVPRE 40000000 MSR o RUNO 0 DRUN 0 SAFE o TE
SPRGL 0 SRR1 0 DEAR 0 PVRE 81710000
SPRGZ 0 CSRRO 0 ESR 0 DEC FFFFFFFF Is 00000000 I_TCONF_U O TI_TCONF 0 I_IMODE o v
SPRG3 0 CSRR1 0 MCSR 0 DECAR o < >
<

©1989-2024 Lauterbach

PPC600 Family Debugger | 5

Introduction

This document describes the processor specific settings and features of TRACE32-ICD for the following
CPU families:

MPC603x

MPC51xx, MPC5200, MPC5200B
MPC7xx, MPC74xx

MPC82xx, MPC83xx

MPC86xx

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

If some of the described functions, options, signals or connections in this Processor Architecture Manual are
only valid for a single CPU or for specific families, the name(s) of the family(ies) is added in brackets.

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach PPC600 Family Debugger | 6

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known PPC600 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS
. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /powerpc/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach PPC600 Family Debugger | 7

Warning

Signal Level

All

The debugger drives the output pins of the BDM/JTAG/COP connector with the
same level as detected on the VCCS pin. If the I/O pins of the processor are 3.3 V
compatible then the VCCS should be connected to 3.3 V.

See also System.up errors.

Supported debug voltage:

Debug cable with blue ribbon cable 2.5 ... 5.0 V.

Debug cable with gray ribbon cable 1.8 ... 5.0 V (Available since 03/2004).

ESD Protection

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACE32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

PPC600 Family Debugger |

Target Design Requirement/Recommendations

General

. Locate the JTAG / COP connector as close as possible to the processor to minimize the
capacitive influence of the trace length and cross coupling of noise onto the JTAG signals. Don’t
put any capacitors (or RC combinations) on the JTAG lines.

J Connect TDI, TDO, TMS and TCK directly to the CPU. Buffers on the JTAG lines will add delays
and will reduce the maximum possible JTAG frequency. If you need to use buffers, select ones
with little delay. Most CPUs will support JTAG above 50 MHz, and you might want to use high
frequencies for optimized download and upload performance.

J Ensure that JTAG HRESET is connected directly to the HRESET of the processor. This will
provide the ability for the debugger to drive and sense the status of HRESET. The target design
should only drive HRESET with open collector/open drain.

J For optimal operation, the debugger should be able to reset the target board completely
(processor external peripherals, e.g. memory controllers) with HRESET.

. In order to start debugging right from reset, the debugger must be able to control CPU HRESET
and CPU TRST independently. There are board design recommendations to tie CPU TRST to
CPU HRESET, but this recommendation is not suitable for JTAG debuggers.

. If the processor does not have QACK/QREQ pins, leave the corresponding pins on the debug
connector N/C.

J If the processor has QACK/QREQ pins, QACK must be LOW in order to halt the core for
debugging. If QACK is connected to the debug connector, the debugger can drive it LOW by
command. If QACK is not connected to any system controller, it is recommended to tie it to GND.

. The debug cable uses VCCS on the JTAG-VREF pin to generate the power supply for the JTAG
output buffers. The load on the JTAG-VREF pin caused by the debug cable depends on the
debug cable version:

Gray ribbon The VCCS pin is used as reference voltage for the internal power supply
cable in the debug cable. This causes a load of about 50 kQ. It is
recommended to use a resistor with max. 5 kQ to VCC, and max 1 kQ for
systems with VCCS = 1. 8V

Blue ribbon The VCCS pin should be connected to VCC through a resistor with max.
cable 10 O, as the output buffers are directly supplied by the VCCS pin.

©1989-2024 Lauterbach PPC600 Family Debugger | 9

Quick Start

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after the
TRACERS2 software was started.

B:
Select the CPU type to load the CPU specific settings.

SYStem.CPU MPC8323

Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip OxFF000000++0xXFFFFFFFF

This command is necessary for the use of on-chip breakpoints.

Enter debug mode.

SYStem.Up

This command resets the CPU (HRESET) and enters debug mode. After this command is executed,
it is possible to access the registers.

Show registers of on-chip peripherals.

PER.view

Set the chip selects to get access to the target memory.

Data.Set ANC: (IOBASE () |0x00010100) %Long O0xFF801801
Data.Set ANC: (IOBASE() |0x00010104) %Long O0xFF800EF4

Load the program and debug symbols.

Data.LOAD.E1f diabc.x

If the program was compiled on a different computer / environment, the source file path might
have to be adopted.

Data.LOAD.E1f diabc.x /StripPART 5. /SOURCEPATH "L:\prj\src"

©1989-2024 Lauterbach PPC600 Family Debugger | 10

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

9. Set a breakpoint to the function to be debugged.

Break.Set main

10. Start application. The core will halt when the breakpoint is reached.

Go

11. Open windows to show source code, core registers and local variables. The window position can
be specified with the WinPOS command.

Data.List
Register.view /SpotLight
Frame.view /Locals /Caller

©1989-2024 Lauterbach PPC600 Family Debugger | 11

Troubleshooting

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

Error Message

Reason

target power fail

Target has no power or debug cable is not connected. Check if the
JTAG VCC pin is driven by the target.

debugger configuration
error

The debugger was not able to determine the connected processor.
There are two possible reasons for this error: The CPU you are using
is not supported by the used software, or a communication error pre-
vented a correct determination. Check the AREA window for more
information.

target processor in reset

The reset line is/was asserted by the target while the debugger per-
formed a power-on reset. Try SYStem.Option.SLOWRESET, and
check signal level of the JTAG HRESET pin.

emulation debug port fail

The debugger was unable to perform a power-on reset with the pro-
cessor. Check all JTAG port signals.

emulation debug port fail
target reset fail

emulator debug port reset
error

If the target reset is asserted for >500ms, or the target reset state is
not reflected on the JTAG_HReset pin, SYStem.Option.SLOWRESET
might be necessary.

©1989-2024 Lauterbach

PPC600 Family Debugger | 12

Problems with Memory Access

For processors of some device families (esp. MPC82XX/MPC83XX), it is important that no unimplemented
memory addresses are accessed by the debugger. Unimplemented memory means address ranges which
would cause a data access exception when accessed by the target application in the current target state.
Memory that is only available after target initialization, like SDRAM is unimplemented memory until initialized
(e.g. a Data.dump window (or the stack view in the Register window) to SDRAM directly after reset). Also,
virtual addresses are unimplemented if the memory management unit is currently disabled or the address
unmapped (e.g. a Data.List window to Linux code at 0xC0000000 directly after reset).

The effects of accessing unimplemented memory are temporarily flickering memory windows up to
permanently hanging memory buses, which can only be recovered by a reset. The debugger can rarely
detect if a memory bus is hanging or not. Typical values displayed in dump/list windows are 0x00000000,

Hints for safe memory accesses:

. directly after reset, set R1 to zero before opening the register window (which includes the stack
view)
. directly after reset, close all windows that display data from SDRAM etc. which is not accessible

directly after reset

. MPC82XX: close the peripheral view window before SYStem.UP. Usually the IMMR base
address is different after reset and after target initialization. Always set the right base address
with SYStem.Option.BASE before opening the peripheral view.

J Protect the debugger from accessing unimplemented memory using MAP.DENYACCESS.

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach PPC600 Family Debugger | 13

https://support.lauterbach.com/kb

Configuration

System Overview

SWITCH

1 GBit Ethernet

PC or

Workstation

[—

Ethernet |©
Cable 2 o0&
R
=

L woommone — power DEBUG PRO

[oo —
L ome —

LAUTERBACH.

POWER DEBUG PRO

Desktop
Power Supply

Debug Cable

Target

Debug
Connector

PC or
Workstation

usB
Cable

POWER DEBUG USB INTERFACE / USB 3
LAUTERBACH.

T

POWER DEBUG INTERFACE / USB 3

Wall Mount
e
Power Supply

Debug Cable

Target

Debug
Connector

©1989-2024 Lauterbach

PPC600 Family Debugger

14

PowerPC 600 Family Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints. They can only be used in RAM areas. There is no
restriction in the number of software breakpoints. Please consider that setting a large number of software
breakpoints will reduce the debug speed.

All

Since this CPU can only be stopped by an on-chip breakpoint,
TRACE32-ICD sets an on-chip breakpoint to the Trap exception
handler, whenever a software breakpoint is used. Because of that,
software breakpoints can not be used if all on-chip breakpoints are
directly used.

MPC60X, MPC7XX,
MPC824X/6X, MPC74XX,
MPC5100, MPC86XX

The current exception position must be known by the debugger at
that time the SW-BP take place. See also SYStem.Option.IP.

MPC512X,
MPC5200,MPC8280,
MPC827X,MPC8247,
MPC8248, MPX83XX

CPUs with at least two on-chip breakpoints can use
SYStem.Option.IP BOTH. The debugger will set on-chip
breakpoints to both interrupt addresses.

For software breakpoint functionality, the debugger must set an on-chip breakpoint to the program interrupt
address. In some applications, especially during the target initialization stage, some applications have
interrupts disabled and use the interrupt address range for non-interrupt code. In this situation, there are two

possible workarounds:

J Configure CPU and debugger to use the interrupt addresses that are not used at this stage. This
can be done by setting MSR_IP. Please note that the target application can modify this value any
time.

. Force on-chip breakpoints to a different address until target initialization is finished. E.g. set the

on-chip breakpoint to the address where the code at the interrupt addresses is not executed
anymore. If this point is reached, clear the on-chip breakpoint and continue debugging. If the
used CPU has more than one on-chip breakpoint, set the second breakpoint to an unused

address

©1989-2024 Lauterbach

PPC600 Family Debugger | 15

Software Breakpoint Handling

For software breakpoint functionality, the debugger must set an on-chip breakpoint to the program interrupt
address. As PPC603-based cores have two possible interrupt addresses based on MSRJIP].

In situations where there are less than two on-chip breakpoints available there is a resource conflict. The

unavailability can be caused by CPU design, or if the user makes direct use of on-chip breakpoints.

If the source code modifies MSR[IP], then a manual correction is necessary to use the correct exception

handler.

Following some logic structure examples to explain this special situations.

Source code structure for all modes:

0x00 code

0x04 code

0x08 1. SW-BP

0x0C code

0x10 code

Ox14 code change MSR[IP] bitto 0

0x18 code

0x1C 2. SW-BP

0x20 code
AUTO-Mode:

Command Sequence / CPU Status MSRI[IP] Exception Pos | Comment

CPU is stopped, PC at 0x00 1 1

go 1 1

CPU stop at 0x08 1 1 Break OK.

go 1/0 1

CPU is still running 0 1 Break error!
Manual-Mode 0/1

Command Sequence / CPU Status MSRI[IP] Exception Pos | Comment

CPU is stopped, PC at 0x00 1 1

go 1 1

CPU stop at 0x08 1 1 Break OK.

set sys.option.ip 0 1 0

go 1/0 0

CPU stop at 0x1C 0 0 Break OK.

©1989-2024 Lauterbach

PPC600 Family Debugger

16

Conclusion:

This means, if you know, that your source code will change the MSR[IP] bit and your first SW-BP will take
affect after this alteration, so use the SYStem.Option.IP to select the right exception handler.

NOTE: If the target application uses page tables, software breakpoints can only be set to page tables which
are already available. If it is necessary to set breakpoints in pages not yet mapped, only on-chip breakpoints
can be used.

Software breakpoints can be overwritten by the target application, e.qg. if a breakpoint is set in an area which
will be loaded by a boot loader. Use on-chip breakpoints in this case.

©1989-2024 Lauterbach PPC600 Family Debugger | 17

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD:

. CPU family

. Instruction breakpoints: Number of on-chip breakpoints that can be used for program and spot
breakpoints
. Read/Write breakpoints: Number of on-chip breakpoints that can be used as read or write
breakpoints. Can be only set on 8 byte boundaries
. Data breakpoints: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.
CPU Family Instruction Read/Write Data Value Notes
Breakpoints Breakpoints Breakpoints
PPC603 1 single — — Instruction
RHPPC address breakpoint is not
MPC8240 available if software
MPC8245 breakpoints are used
MPC8255
MPC8260
MPC8265
MPC8266
MGT5100 1 single 1 single — Instruction
PPC7XX address address breakpoint is not
MPC74XX available if software
MPC86XX breakpoints are used
MPC512X 2 single 2 single If software
MPC5200 addresses addresses breakpoints are
MPC8247 or or used, instruction
MPC8248 1 range 1 range breakpoints are
MPC8270 reduced to one
MPC8275 single address
MPC8280
MPC83XX

NOTE: On-chip breakpoints can be cleared by the target application or by a target reset. If an on-chip
breakpoint is not hit, first check (with the peripheral view), if the on-chip breakpoint is set or not.

©1989-2024 Lauterbach

PPC600 Family Debugger | 18

Software Breakpoints in Interrupt Handlers

If software breakpoints are used in interrupt handlers, the registers SRR0 and SRR1 will be overwritten,
because software breakpoints also use SRR0/1. There are several ways to debug interrupt handlers without
corrupting SRR0/1:

. If MPC82XX, MPC5200 or RHPPC (G2_LE cores) is under debug, set SYStem.Option.NOTRAP
ILL.

J Use on-chip breakpoints. On-chip breakpoints will not corrupt SRR0/1. Please note that if only a
single on-chip instruction address breakpoint is available, using the on-chip breakpoint will
prevent using any further software breakpoints.

. Patch the interrupt handler, so that SRRO/1 are saved upon interrupt entry and restored before
interrupt exit. If the interrupt handler it patched that way, it is safe to use software breakpoints
after SRR0/1 have been saved.

Breakpoints in FLASH/ROM

If an instruction breakpoint is set, per default, the debugger tried to set a software breakpoint. If writing to the
breakpoint address failed, the debugger will set an on-chip breakpoint.

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM
(FLASH, EPROM) on the target. If a breakpoint is set within the specified address range, the debugger uses
automatically the available on-chip breakpoints. Use this command, if write accesses to a read-only memory
space are forbidden, e.g. because it could cause a reset etc.

Example:

MAP.BOnchip 0xFF800000--0xFFFFFFFF

Breakpoints on Physical or Virtual Addresses

On-chip breakpoints of almost all PPC603 based processors have a TE bit to configure if the breakpoint
matches, if the access was performed on physical addresses (MSR_IR / MSR_DR off) of on virtual
addresses (MSR_IR / MSR_DR on). In order to match, the processor compares IABR_TE / DABR_TE with
MSR_IR for instruction and with MSR_DR for data accesses.

Per default, the debugger configures the breakpoints to match on physical addresses. In order to set the on-
chip breakpoints to virtual addresses, use the command TRANSIation.ON (Activate MMU translation).
This command will enable MMU support, including breakpoint configuration.

Software breakpoints hit on virtual addresses if MSR_IR is set, and on physical addresses if MSR_IR is not
set, regardless of any other configuration.

©1989-2024 Lauterbach PPC600 Family Debugger | 19

Examples for Breakpoints

Software Breakpoints

Break.Set 0x101000

Break.Set FooBar

Software breakpoints on ranges not possible.

On-chip Program Address Breakpoints

’

I

single address

function name

Break.Set OxFFF00244 /onchip /program
Break.Set O0xFFF00244 /onchip
Break.Set MyFlashFunction /onchip

Break.Set 0x2000--0x2fff /onchip

single address
single address
function name

address range

NOTE: Address ranges are only possible with CPUs that have at least two on-chip program address

breakpoints. The option /program is optional.

On-chip Data Address Breakpoints

Break.Set 0xFFF00244 /read
Break.Set OxFFF00244 /write
Break.Set 0xFFF00244 /readwrite
Break.Set nMyValue /write

Break.Set 0x2000--0x2fff /readwrite

single address read
single address write
single address any
variable name

address range

Data address breakpoints of all PPC603e based cores will operate on 8 byte boundaries.

©1989-2024 Lauterbach

PPC600 Family Debugger

20

Access Classes

Access classes are used to specify how TRACE32 PowerView accesses memory, registers of
peripheral modules, addressable core resources, coprocessor registers and the TRACE32 Virtual

Memory.

Addresses in TRACE32 PowerView consist of:

J An access class, which consists of one or more letters/numbers followed by a colon (:)

o A number that determines the actual address

Here are some examples:

Command:

Effect:

Data.List P:0x1000

Opens a List window displaying program memory

Data.dump D:0xFF800000 /LONG Opens a DUMP window at data address OxFF800000

Data.Set SPR:415. %Long 0x00003300 Write value 0x00003300 to the SPR IVOR15

PRINT Data.Long(ANC:0xFFF00100) Print data value at physical address OxFFF00100

Access Classes to Memory and Memory Mapped Resources

The following memory access classes are available:

Access Class Description

P Program (memory as seen by core’s instruction fetch)
D Data (memory as seen by core’s data access)

IC L1 Instruction Cache (or L1 Unified cache)

DC L1 Data Cache

L2 L2 Cache

NC No Cache (access with caching inhibited)

In addition to the access classes, there are access class attributes: Examples:

Command:

Effect:

Data.List SP:0x1000

Opens a List window displaying supervisor program memory

Data.Set ED:0x3330 0x4F

Write Ox4F to address 0x3330 using real-time memory access

©1989-2024 Lauterbach

PPC600 Family Debugger | 21

The following access class attributes are available:

Access Class Attributes Description

E Use real-time memory access

A Given address is physical (bypass MMU)

U TS (translation space) == 1 (user memory)

S TS (translation space) == 0 (supervisor memory)

If an Access class attributes is specified without an access class, TRACE32 PowerView will automatically
add the default access class of the used command. For example, Data.List U:0x100 will be changed to

Data.List UP:0x100.

Access Classes to Other Addressable Core and Peripheral Resources

The following access classes are used to access registers which are not mapped into the processor’s
memory address space.

Access Class

Description

SPR

Special Purpose Register (SPR) access

PMR

Performance Monitor Register (PMR) access

SPRs and PMRs are addressed by specifying the register number after the access class.

Cache

Memory Coherency

The following table describes which memory will be updated depending on the selected access class

Access Class D-Cache I-Cache L2 Cache Memory (uncached)
DC: updated not updated not updated not updated
IC: not updated updated not updated not updated
L2: not updated not updated updated not updated
NC: not updated not updated not updated updated
D: updated not updated updated updated
not updated updated (*) updated updated

©1989-2024 Lauterbach

PPC600 Family Debugger | 22

(*) Depending on the debugger configuration, the coherency of the instruction cache will not be achieved by
updating the instruction cache, but by invalidating the instruction cache. See “SYStem.Option ICFLUSH
Invalidate instruction cache before go/step” (debugger_ppc600.pdf) for details.

MESI States

The cache logic of e300, €600, €700 and PPC603e based cores is described as MESI states. This MESI
state are represented in the CPU as the flags Valid and Dirty. The debugger will display both MESI state and
the status flag representation.

State translation table:

MESI state Flag

M (modified) Valid && Dirty

E (exclusive) Valid && NOT Dirty
S (shared) Shared

| (invalid) NOT Valid

©1989-2024 Lauterbach PPC600 Family Debugger | 23

Little Endian Operation

TRACE32 supports debugging processors which are operated in big-endian mode, true little-endian mode
and modified (PowerPC) little-endian mode. The debugger switched to little-endian presentation, if MSR[LE]
and one of the following system options is set:

. For true little-endian mode, enable SYStem.Option.LittleEnd.

J For modified (PowerPC) little-endian mode, enable SYStem.Option.PPCLE.

The following table lists processors which support one or both little endian modes:

Processor true little modified Notes
endian little endian

MPC603 — Yes

MPC745

MPC750 (FSL)

MPC755

PPC750xx (IBM)

MPC5121 Yes — €300 core only supports true little endian
MPC5123

MPC5125

MGT5100 Yes Yes HID2[TLE] == 1 for true little endian
MPC5200

MPC74XX — Yes

MPC8247 — Yes

MPC8248

MPC8271

MPC8272

MPC83XX Yes — €300 core only supports true little endian

MPC86XX — Yes

©1989-2024 Lauterbach PPC600 Family Debugger | 24

CPU specific SYStem Commands

SYStem.BdmClock

Set JTAG frequency

Format:

<frequency>:

SYStem.BdmClock <frequency>

0.1 ... 50.0 MHz.

Default: 10.0 MHz

Selects the frequency for the debug interface. Usually, the maximum allowed JTAG frequency for PowerPC
is 1/10th of the core frequency.

SYStem.CPU Select the CPU type
Format: SYStem.CPU <cpu>
<cpus: 603EV2 | 750 | 8240 | 8260 | 7448 | 5200 ...

Selects the CPU type. If the needed CPU type is not available in the CPU selection of the SYStem window,
or if the command results in an error,

. check if the licence of the debug cable includes the desired CPU type. You will find the
information in the VERSION window.

J check if the debugger software is up-to-date. Please check the VERSION window to see which
version is installed. CPUs that appeared later than the software release are usually not
supported. Please check www.lauterbach.com for updates. If the needed CPU appeared after
the release date of the debugger software, please contact technical support and request a
software update.

o if the CPU name matches one the names in the CPU selection. Search for the CPU name in the
SYStem window, or type SYStem.CPU to the command line and click through the hot keys.

©1989-2024 Lauterbach

PPC600 Family Debugger | 25

https://www.lauterbach.com

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.
If the system is locked, no access to the debug port will be performed by the debugger. While locked, the

debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied | <cpu_specific>
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

The run-time memory access has to be activated for each window by using the access class E: (e.g.
Data.dump E:0x100) or by using the format option %E (e.g. Var.View %E var1). ltis also possible to activate
this non-intrusive memory access for all memory ranges displayed on the TRACES32 screen by setting
SYStem.Option.DUALPORT ON.

NOTE: SYStem.MemAccess Enable is only available for the MPC86XX.

©1989-2024 Lauterbach PPC600 Family Debugger | 26

SYStem.Mode

Select operation mode

Format:

<mode>:

SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down | NoDebug | Go | Attach | StandBy | Up

Select target reset mode.

Down

NoDebug

Go

Attach

StandBy

Up

Disables the Debugger. The debugger does not influence the target or
the running application. The output signals of the debug cable are
tristated.

Resets the target with debug mode disabled. In this mode no debugging
is possible. The CPU state keeps in the state of NoDebug and the output
signals of the debug cable are tristated.

Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

Connect to the processor without asserting reset. The state of the
target/application does not change. After this command the CPU is in the
system.up mode and running.

If this mode is used to start debugging from power-on. The debugger will
wait until power-on is detected and then stop the CPU at the first
instruction at the reset address. Not available for all PowerPC families
covered by this manual.

Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

©1989-2024 Lauterbach

PPC600 Family Debugger | 27

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Lets you configure the electrical properties of the debug connection, such
as the communication protocol or the used pinout.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach PPC600 Family Debugger | 28

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:

<parameter>:
(JTAG):

SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

CORE <core>

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>

IRPOST <bits>

CHIPDRLENGTH <bits>

CHIPDRPATTERN [Standard | Alternate <pattern>]
CHIPDRPOST <bits>

CHIPDRPRE <bits>

CHIPIRLENGTH <bits>

CHIPIRPATTERN [Standard | Alternate <pattern>]
CHIPIRPOST <bits>

CHIPIRPRE <bits>

TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. ARM +
DSP). The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-

chain Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

©1989-2024 Lauterbach

PPC600 Family Debugger | 29

CORE

.. DRPOST <bits>

.. DRPRE <bits>

.. IRPOST <bits>

.. IRPRE <bits>

CHIPDRLENGTH
<bits>

CHIPDRPATTERN
[Standard | Alter-
nate <pattern>]

CHIPIRLENGTH
<bits>

CHIPIRPATTERN
[Standard | Alter-
nate <pattern>]

TAPState

TCKLevel

For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

Number of Data Register (DR) bits which needs to get a certain BYPASS
pattern.

Data Register (DR) pattern which shall be used for BYPASS instead of
the standard (1...1) pattern.

Number of Instruction Register (IR) bits which needs to get a certain
BYPASS pattern.

Instruction Register (IR) pattern which shall be used for BYPASS instead

of the standard pattern.

(default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated.

©1989-2024 Lauterbach

PPC600 Family Debugger | 30

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
NnTRST and nSRST (nRESET).

©1989-2024 Lauterbach PPC600 Family Debugger | 31

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach PPC600 Family Debugger | 32

TapStates

© 00 N o o~ W N =

—_ - e e
o A WO N =+ O

SYStem.CONFIG.CHKSTPIN

Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR

Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR
Test-Logic-Reset

Control pin 8 of debug connector

Format:

SYStem.CONFIG.CHKSTPIN LOW | HIIGH

Default: HIGH.

Controls the level of pin 8 (/CHKSTP_IN or /PRESENT) of the debug connector.

©1989-2024 Lauterbach

PPC600 Family Debugger

33

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach PPC600 Family Debugger | 34

SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin

Format: SYStem.CONFIG DriverStrength <signal> <LOW | MID | HIGH>
<signal>: TCK
Default: HIGH.

Configures the driver strength of the TCK pin.

Available for debug cables with serial number C15040204231 and higher.

SYStem.CONFIG.QACK Control QACK pin

Format: SYStem.CONFIG QACK TRISTATE | QREQ | LOW | HIGH

Controls the level and function of pin 2 (/QACK) of the debug connector. Default: TRISTATE.

TRISTATE Pin is disabled (tristate).

QREQ Pin is driven to level of QREQ (pin 5).
LOwW Pin is driven to GND permanently.

HIGH Pin is driven to JTAG_VREF permanently.

©1989-2024 Lauterbach PPC600 Family Debugger | 35

CPU specific System Commands

SYStem.Option.BASE Set base address for on-chip peripherals

Format: SYStem.Option.Base [AUTO | <value>]

MPC8260, MPC8280 and compatible

Set SYStem.Option.BASE to the base address of the internal memory map.The debugger uses this
address to disable the watchdog and to show the memory mapped registers of the on-chip peripherals (see
PER).

AUTO The debugger reads the RCW from FLASH to detect the base address of
the internal memory map address. Only works during SYStem.Up.
AUTO does not work, if the default reset configuration is used or if the
RCW is only visible during reset (e.g. when provided by an EPLD).

<value> Use if AUTO does not work, if using SYStem.Attach, or if the application
changes IMMR.

Before SYStem.Up:

If the default reset configuration is used, set value 0x00000000.

If the RCW is only visible during reset (e.g. when provided by an EPLD),
set the appropriate value.

SYStem.Attach, or when application changes IMMR:

Set the value that the internal memory map address set by the
application. Must be set correctly before core is halted.

MPC8240

SYStem.Option.BASE is not required and can be set to AUTO or 0x00000000.

MPC83XX, MPC512X, MPC5200, MPC86XX

The debugger will determine the current base address via JTAG access. This option has no effect.

PPC603x, PPC750xx, MPC755, PPC74XX

SYStem.Option.BASE is usually not required. It can be used to set the base address of the memory
mapped registers of an external memory/peripheral controller (MPC10X, TSI1xx, MV6xxxx, etc.)

©1989-2024 Lauterbach PPC600 Family Debugger | 36

SYStem.Option.BUS32 Use 32-Bit data-bus mode

Format: SYStem.Option.BUS32 [ON | OFF]

Default: OFF. Enable this option if the CPU is operated in the reduced 32-bit data bus width mode. This
mode is often used in designs with PPC603e processors.

SYStem.Option.CONFIG Select RCW configuration

Format: SYStem.Option.CONFIG [Master | Slave1..7]

For MPC82XX only. When SYStem.Option.BASE is set to AUTO, this setting defines if the RCW is read
from the location designated to the configuration master, or from one of the seven locations designated to
the configuration slaves. By default setting, the debugger will read from the configuration master location.

©1989-2024 Lauterbach PPC600 Family Debugger | 37

SYStem.Option.DCREAD Read from data cache

Format: SYStem.Option.DCREAD [ON | OFF]

Data.dump windows for access class D: displays the memory value from the data caches if valid. If no valid
data is found in the caches, the physical memory will be read. If supported by the CPU unified L2/L3 caches
will also be used if this system option is enabled

If caching is disabled via the appropriate hardware registers (HIDO for PPC603
Series) or cache is invalid, read and writes from/to memory will directly reflect to
O contents of physical memory even if a cache access class is selected.

The following table describes how DCREAD and ICREAD influence the behavior of the debugger
commands that are used to display memory.

DC: IC: NC: D: P:

ICREAD off D-Cache I-Cache phys. mem. phys. mem. phys. mem.
DCREAD off

ICREAD on D-Cache [-Cache phys. mem. phys. mem. I-Cache
DCREAD off

ICREAD off D-Cache [-Cache phys. mem. D-Cache phys. mem.
DCREAD on

ICREAD on D-Cache I-Cache phys. mem. D-Cache I-Cache
DCREAD on

SYStem.Option.DUALPORT Implicitly use run-time memory access
Format: SYStem.Option.DUALPORT [ON | OFF]

Forces all list, dump and view windows to use the access class E: (e.g. Data.dump E:0x100) or to use the
format option %E (e.g. Var.View %E var1) without being specified. Use this option if you want all windows to
be updated while the processor is executing code. This setting has no effect if
SYStem.Option.MemAccess is disabled or real-time memory access not available for used CPU.

Please note that while the CPU is running, MMU address translation can not be accesses by the debugger.
Only physical addresses accesses are possible. Use the access class modifier “A:” to declare the access
physical addressed, or declare the address translation in the debugger-based MMU manually using
TRANSIation.Create.

©1989-2024 Lauterbach PPC600 Family Debugger | 38

SYStem.Option.FREEZE Freeze timebase when core halted

Format: SYStem.Option.FREEZE [ON | OFF]

When enabled, the core’s timebase is stopped when the core is halted in debug mode. It is recommended to
set this option ON.

©1989-2024 Lauterbach PPC600 Family Debugger | 39

SYStem.Option.HoldReset Set reset hold time

Format: SYStem.Option.HoldReset [<time>]

<time>: 1us ... 10s

Set the time that the debugger will drive the reset pin LOW, e.g. at SYStem.Up. The time must be longer
than the BIST takes to complete. If called without parameter, the default reset hold time is used. The default
reset hold time is 100ms for processors that require a BIST delay, else 100us.

- hold time > < wait time -

RESET pin |

CPU State | RESET/BIST RESET DEBUG_HALT

See also SYStem.Option.WaitReset and SYStem.Option.SLOWRESET.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

©1989-2024 Lauterbach PPC600 Family Debugger | 40

SYStem.Option.HRCWOVerRide Override HRCW on SYStem.Up

Format: SYStem.Option.HRCWOVerRide <value>

MPC83XX and MPC512X only. Override the HRCW on SYStem.Up via JTAG. To disable this system option,
call without parameter. This command is usually required to connect to a processor with erased/empty flash
(HRCW not set).

<value> Hard reset configuration word (64 bit) in the order
OxHHHHHHHHLLLLLLLL
NOTE: . The CPU will remember and use the overridden HRCW until the next

power cycle or power-on reset.

. If JTAG_HRESET is connected to CPU_PORESET,
SYStem.Option.HRCWOVerRide will only work in conjunction with
SYStem.Option.ResetMode JTAG_HRST.

Usage:
SYStem.CPU MPC8360 ; select CPU
SYStem.Option.HRCWOVerRide 0x8060000004040006 ; desired HRCW
SYStem.Up ; reset processor
SYStem.Option.HRCWOVerRide ; disable HRCW
; override
SYStem.Option.ICFLUSH Invalidate instruction cache before go/step
Format: SYStem.Option.ICFLUSH [ON | OFF]
ON Invalidates the instruction cache before starting the target program (Step or
Go).
OFF Write accesses by the debugger to the memory of the class P: are

performed in the instruction cache and the memory.

©1989-2024 Lauterbach PPC600 Family Debugger | 41

SYStem.Option.ICREAD Read from instruction cache

Format: SYStem.Option.ICREAD [ON | OFF]

Data.List window and Data.dump window for access class P: displays the memory value from the
instruction cache if valid. If I-cache is not valid the physical memory will be read. If supported by the CPU,
L2 caches will also be used if this system option is enabled.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF. If enabled, the interrupt mask bits of the CPU will be set during assembler single-step
operations. The interrupt routine is not executed during single-step operations. After single step the interrupt
mask bits are restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF. If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

NOTE: Don’t enable this option for code that disables MSR_EE. The debugger will disable MSR_EE while
the CPU is running and restore it after the CPU stopped. If a part of the application is executed that disables
MSE_EE, the debugger can not detect this change and will restore MSE_EE.

©1989-2024 Lauterbach PPC600 Family Debugger | 42

SYStem.Option.IP Set MSR_IP value for breakpoints / SYStem.Up

Format: SYStem.Option.IP [0 | 1 | AUTO | BOTH]

This option is used by the debugger to use the correct exception handler for the software breakpoints. See
also Software Breakpoints.

AUTO Depend on the current/last state of the MSRJIP] bit the debugger uses
the lower or the higher exception handler.

0 Independent of the MSR[IP] the debugger uses the lower exception
handler at 0x00000700.

1 Independent of the MSR][IP] the debugger uses the higher exception
handler at OxFFFFQ700.

BOTH Use both exception handler addresses. Only available for CPUs with two

or more instruction address on-chip breakpoints (MPC8280, MPC83XX
and compatible).

SYStem.Option.LittleEnd True little endian mode

Format: SYStem.Option.LittleEnd [ON | OFF]

Enable this system option if the PowerPC core is operated in true little endian mode. If the CPU is operated
in modified (PowerPC) little endian mode, use command SYStem.Option.PPCLittleEnd.

To find out which mode is supported by the target processor, see Little Endian Operation.

SYStem.Option.MemProtect Enable memory access safeguard

Format: SYStem.Option.MemProtect [ON | OFF]

PowerQuicc Il (MPC824X, MPC826X, MPC827X, MPC8280) only.

This option can help to prevent a hanging memory bus caused by debugger accesses to unimplemented
memory. USe together with SYStem.Option.BASE AUTO.

©1989-2024 Lauterbach PPC600 Family Debugger | 43

Usage:

Set SYStem.Option.BASE to AUTO if RSTCONF is read from FLASH, or set the IMMR base
address manually for any other options.

SYStem.Option.MemProtect ON; CS7 or 11 will be enable on system.up for safe memory
accesses

SYStem.Up
SYStem.Option.BASE AUTO; enable automatic IMMR change detection

Start execution until the instruction that changes IMMR is reached, e.g. GO OxFFF09038
/ONCHIP

Step.ASM; assembler single step

Now the debugger will use the new IMMR address for peripheral view and servicing the
watchdog.

SYStem.Option.MemSpeed Configure memory access timing
Format: SYStem.Option.MemSpeed <value>
<value>: 1 (fastest) ... 255 (slowest)
0 (default speed)

This option can be used to configure the access speed for memory accesses by the debugger. Only use this
option when advised by Lauterbach.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]

SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach PPC600 Family Debugger | 44

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.NoDebugStop Disable JTAG stop on debug events
Format: SYStem.Option.NoDebugStop [ON | OFF]
Default: OFF.

On-chip debug events Breakpoint (instruction/data address), single step and branch trace can be configured
to cause one of two actions. If a JTAG debugger is used, the CPU is configured to stop for JTAG upon these
debug events.

If this option is set to ON, the CPU will be configured to not stop for JTAG, but to enter the breakpoint/trace
interrupt, like it does when no JTAG debugger is used.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use debug events. Typical usages for this option are run-mode debugging (e.g. with gdbserver) or setting
up the system for a branch trace via LOGGER (trace data in target RAM) or INTEGRATOR.

©1989-2024 Lauterbach PPC600 Family Debugger | 45

SYStem.Option.NOTRAP Use alternative software breakpoint instruction

Format:

<type>:

SYStem.Option.NOTRAP <type>

OFF | FPU | ILL
ON (deprecated, same as FPU)

Defines which instruction is used as software breakpoint instruction.

OFF

FPU

ILL

Use TRAP instructions as software breakpoint (default setting). Software
breakpoint will overwrite SRR0/1 registers.

Use an FPU instruction as software breakpoint.

Gives the ability to use the program interrupt in the application without
halting for JTAG.

This setting only works if the application does not use floating point
instructions (neither hardware nor software emulated). MSR[FP] must be
set to O at all times.

Software breakpoint will overwrite SRRO/1 registers.

Use an illegal instruction as software breakpoint. This setting is
recommended for MPC82XX, MPC5200, RHPPC (G2/G2_LE cores) and
MPC830X, MPC831X, MPC832X and MPC512X (e300c2/3/4). Gives the
ability to use the program interrupt in the application without halting for
JTAG.

lllegal instructions as software breakpoints will preserve SRR0/1
registers.

If the program interrupt is required by the application, and both FPU and ILL are not usable, use
SYStem.Option.PINTDebug as workaround.

©1989-2024 Lauterbach

PPC600 Family Debugger | 46

SYStem.Option.OVERLAY Enable overlay support

Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON

Data.List 0x2:0x11c4 ; Data.List <overlay_ id>:<address>
SYStem.Option.PARITY Generate parity on memory access
Format: SYStem.Option.PARITY [ON | OFF]

Compute the parity bit for the Data.Set command to support memory with parity.

©1989-2024 Lauterbach PPC600 Family Debugger | 47

SYStem.Option.PINTDebug Program interrupt debugging

Format: SYStem.Option.PINTDebug [ON | OFF]

Software breakpoints for e300/e600 (former PPC603e based) cores are implemented using the TRAP
instruction. However, the CPU will not stop for JTAG directly on the TRAP instruction. Instead, the TRAP
instruction causes a program interrupt. To let the CPU stop for JTAG, the debugger sets an on-chip
breakpoint to the program interrupt address ('0700).

The on-chip breakpoint at the program interrupt address will stop on all program interrupts, not just for TRAP
instructions. If the cause of the program interrupt is other than TRAP, the debugger will print a message, the
instruction pointer will be set to the instruction that caused the interrupt.

Enable this option, if it is necessary to execute program interrupts not caused by TRAP. The debugger will
restart the CPU automatically. This event will be displayed in the status line. Please note that this feature has
an impact on the real-time behavior, because the CPU will stop for a short time every time a program
interrupt occurs.

NOTE:] On some PowerPC core derivatives, SYStem.Option.PINTDebug can
not support debugging of illegal instruction type program interrupts. In
this case, illegal instructions halt the core similar to software breakpoints,
but without affecting SRR registers).

Affected processors are:

- MPC82XX, MPC5200 and RHPPC (G2/G2_LE cores)

- MPC830x (e200c4), MPC831x (€300c3) and MPC832x (e200c2)
- MPC512x (e200c4)

. If SYStem.Option.PINTDebug is enabled, on-chip breakpoints at the first
instruction of the program interrupt handler ('0700) are not possible. Set
the on-chip breakpoint to ‘0704 or other.

SYStem.Option.PPCLittleEnd PPC little endian mode

Format: SYStem.Option.PPCLittleEnd [ON | OFF]

Enable this system option if the PowerPC core is operated in modified (PowerPC) little endian mode. If the
CPU is configured for true little endian mode, use the command SYStem.Option.LittleEnd.

To find out which mode is supported by the target processor, see Little Endian Operation.

©1989-2024 Lauterbach PPC600 Family Debugger | 48

SYStem.Option.PTE Evaluate PTE table for address translation

Format: SYStem.Option.PTE [ON | OFF]

When OFF, the debugger will only evaluate BAT and ITLB/DTLB for address translation. When set to ON,
the debugger will also evaluate the PTE table in memory for address translation.

Important: At the time this option is enabled, PTE table and SDR1 register have to be fully set up. If this
option is enabled without PTE ready (or when memory is not yet initialized), wrong address translation or
even general memory access fail can result. Related to this, make sure to disable this option before
SYStem.Up or target reset.

SYStem.Option.RESetBehavior Set behavior when target reset detected
Format: SYStem.Option.RESetBehavior <mode>
<mode>: Disabled
AsyncHalt

Defines the debugger’s action when a reset is detected. Default setting is Disabled. The reset can only be
detected and actions taken if it is visible to the debugger’s reset pin.

Disabled No actions to the processor take place when a reset is detected.
Information about the reset will be printed to the message AREA.

AsyncHalt Halt core as soon as possible after reset was detected. The core will halt
shortly after the reset event.

©1989-2024 Lauterbach PPC600 Family Debugger | 49

SYStem.Option.ResetMode Select reset mode for SYStem.Up

Format: SYStem.Option.ResetMode <mode>

<mode> PIN | JTAG_PORST | JTAG_HRST | JTAG_SRST

MPC83XX and MPC512x only. Default: PIN. Selects the method the debugger uses to reset the processor
at SYStem.Up.

<mode> Effect at SYStem.Up.

PIN The reset pin (debug connector: pin 13) is asserted to reset the
processor.

JTAG_HRST A hard reset issue is issued via JTAG. The debug connector’s reset pin is

not asserted. This option requires that the HRCW is set via JTAG (see
SYStem.Option.HRCWOVerRide).

JTAG_PORST A power-on reset is issued via JTAG. The debug connector’s reset pin is
not asserted. This option requires that the HRCW is set via JTAG (see
SYStem.Option.HRCWOVerRide).

JTAG_SRST A soft reset is issued via JTAG. The debug connector’s reset pin is not
asserted.
SYStem.Option.SLOWRESET Relaxed reset timing
Format: SYStem.Option.SLOWRESET [ON | OFF]

This system option defines, how the debugger will test JTAG_HRESET. For some system mode changes,
the debugger will assert JTAG_HRESET. PEr default (OFF), the debugger will release RESET and then
read the HRESET signal until the HRESET pin is released. Reset circuits of some target boards prevent that
the current level of HRESET can be determined via JTAG_HRESET. If this system option is enabled, the
debugger will not read JTAG_HRESET, but instead waits four seconds and then assumes that the boards
HRESET is released.

©1989-2024 Lauterbach PPC600 Family Debugger | 50

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Format: SYStem.Option.STEPSOFT [ON | OFF]

The alternative method circumvents a processor problem when a store type instruction is executed at the
time a debug event occurs. This option is a workaround for the following errata:

o MPC7448 errata #24
o MPC8610 errata JTAG #2
o MPC8640/41 errata JTAG #4

Only enable this option, if one of the above processors is used and if the effect of this errata has been
observed.

If the code to be debugged is located in RAM, SYStem.Option.STEPSOFT can be used without further
configuration.

If the code to be debugged is located in read-only memory, the alternative method can be used if RAM is
available and free for debugger use. In this case, declare the read-only memory using MAP.BOnchip, and
the RAM used by the debugger using FLASH.TARGET.

NOTE: The alternative workaround can only fix issues caused by single steps. Manual
breaks and on-chip breakpoints can still be affected by the problem.

©1989-2024 Lauterbach PPC600 Family Debugger | 51

SYStem.Option.WaitReset Set reset wait time

Format: SYStem.Option.WaitReset [<time> [<reference>]]
<time>: 1us...10s
<reference>: default

RESET

RSTOUT

Set the time that the debugger will wait after releasing the reset pin, e.g. at SYStem.Up. If called without
parameter, the default reset wait time is used (10us).

If the reference is set to default, the wait time starts when the debugger releases reset. If the reference is set
to RESET or RSTOUT, the wait time starts when the debugger detects that reset is released on the
corresponding pin.

Use this command when SYStem.Up fails, and the message AREA shows the message “Target reset
detected during system.up sequence”. A wait time of several ms should be sufficient. If a wait time > 10ms is
required, the target might require a stronger RESET pull-up resistor.

- hold time > < wait time -

RESET pin |

CPU State | RESET/BIST RESET DEBUG_HALT

©1989-2024 Lauterbach PPC600 Family Debugger | 52

SYStem.Option.WATCHDOG Leave software watchdog enabled

Format: SYStem.Option.WATCHDOG [ON | OFF]

MPC8260, MPC8280, MPC83XX and compatible CPUs only.

ON While the CPU is stopped, the debugger will service the watchdog. When
the application is running, the application is expected to service the
watchdog.

OFF The debugger permanently disables the watchdog at SYStem.Up.

Software Watchdog Timer (SWT) — The SWT asserts a reset or non-maskable
interrupt (as selected by the system protection control register) if the software
fails to service the SWT for a designated period of time (e.g., because the
software is trapped in a loop or lost). After a system reset, this function is
enabled with a maximum time-out period and asserts a system reset if the time-
out is reached. The SWT can be disabled or its time-out period can be changed
in the SYPCR. Once the SYPCR is written, it cannot be written again until a
system reset.

©1989-2024 Lauterbach PPC600 Family Debugger | 53

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

PPC600 Family Debugger | 54

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

PPC600 Family Debugger |

55

CPU specific tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

BAT Displays the contents of the BAT table.

PTE Displays the contents of the PTE table.

MMU.List Compact display of MMU translation table

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.
<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.
PageTable Lists the entries of an MMU translation table.
. if <range> or <address> have a space ID: list the translation table
of the specified process
o else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach

PPC600 Family Debugger | 56

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

PPC600 Family Debugger |

57

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach PPC600 Family Debugger | 58

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific Tables in MMU.SCAN <table>

ITLB Loads the instruction translation table from the CPU to the debugger-internal
translation table.

DTLB Loads the data translation table from the CPU to the debugger-internal
translation table.

BAT Loads the Block Address Translation table from the CPU to the debugger-
internal translation table.

PTE Loads the PTE table from the CPU to the debugger-internal translation
table.

©1989-2024 Lauterbach

PPC600 Family Debugger | 59

MMU.Set Write MMU TLB entries to CPU

Format: MMU.Set <fable> <index> <way> <tlbhi> <tlblo> [<tlbext>]
<table>: ITLB
DTLB

Loads the specified MMU translation table from the CPU to the debugger-internal MMU table. Writing ITLB
and DTLB is not supported for all processors.

<index> Index (entry/set number) in TLB table

<tlbhi>, <tiblo>, Data of the TLB entry.

<tlbext>

<way> Way number within the set

DTLB Translation lookaside buffer for data load and store accesses
ITLB Translation lookaside buffer for instruction fetches

©1989-2024 Lauterbach PPC600 Family Debugger | 60

CPU specific BenchMarkCounter Commands

The BenchMarkCounter features are based on the core’s performance monitor, accessed through the
performance monitor registers (PMR). Only processors with €300¢c3 and e300c4 cores have performance
monitor registers:

. MPC830X
. MPC831X
. MPC512X

PMR access is only possible while the core is halted. For other processors, the BenchMarkCounter features
are not available.

NOTE:] For information about architecture-independent BMC commands, refer to
“BMC” (general_ref_b.pdf).
. For information about architecture-specific BMC commands, see
command descriptions below.
. Events can be assigned to the BMC commands BMC.<counter>.EVENT

<event> and BMC.<counter>.RATIO X/<counter n>.
For descriptions of available events, see Freescale’s e300 core reference
manual (Table 11-9, Performance Monitor Event Selection).

BMC.<counter>.FREEZE Freeze counter in certain core states
Format: BMC.<counter>.FREEZE <state> [ON | OFF]
<state>: USER | SUPERVISOR | MASKSET | MASKCLEAR

Halts the selected performance counter if one or more of the enabled states (i.e. states set to ON) match the
current state of the core. If contradicting states are enabled (e.g. SUPERVISOR and USER), the counter will
be permanently frozen. The table below explains the meaning of the individual states.

<state> Dependency in core

USER Counter frozen if MSR[PR]==1
SUPERVISOR Counter frozen if MSR[PR]==0
MASKSET Counter frozen if MSR[PMM]==
MASKCLEAR Counter frozen if MSR[PMM]==0

©1989-2024 Lauterbach PPC600 Family Debugger | 61

BMC.FREEZE Freeze counters while core halted

Format: BMC.FREEZE [ON | OFF]

Enable this setting to prevent that actions of the debugger have influence on the performance counter. As
this feature software controlled (no on-chip feature), some events (especially clock cycle measurements)
may be counted inaccurate even if this setting is set ON.

©1989-2024 Lauterbach PPC600 Family Debugger | 62

CPU specific TrOnchip Commands

The features supported by the TrOnchip command for TRACE32-ICD vary for the
different PowerPC families.

TrOnchip.DISable Disable debug register control

Format: TrOnchip.DISable

Not supported. The debugger always controls the debug registers.

TrOnchip.ENable Enable debug register control

Format: TrOnchip.ENable

Not supported. The debugger always controls the debug registers.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range
Break.Set 0x1000--0x17ff /Write ; 1000--17ff
Break.Set 0x1001--0x17ff /Write ; gives an error message

©1989-2024 Lauterbach PPC600 Family Debugger | 63

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Resets the trigger system to the default state.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.TEnable Set filter for the trace

Format: TrOnchip.TEnable <par> (deprecated)

Refer to the Break.Set command to set trace filters.

©1989-2024 Lauterbach PPC600 Family Debugger | 64

TrOnchip.TOFF Switch the sampling to the trace to OFF

Format: TrOnchip.TOFF (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TON Switch the sampling to the trace to “ON”

Format: TrOnchip.TON EXT | Break (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TTrigger Set a trigger for the trace

Format: TrOnchip.TTrigger <par> (deprecated)

Refer to the Break.Set command to set a trigger for the trace.

©1989-2024 Lauterbach PPC600 Family Debugger | 65

Mechanical Description

JTAG/COP Connector PPC603e/700/MPC8200

Signal Pin Pin Signal
TDO 1 2 (QACK-)
TDI 3 4 TRST-
(QREQ-) 5 6 JTAG-VREF
TCK 7 8 (PRESENT-)
T™MS 9 10 N/C
(SRESET-) 11 12 GND
HRESET- 13 - N/C (KEY PIN)
(CKSTOP-) 15 16 GND
NOTE: . This is a standard 16 pin double row (two rows of eight pins) connector (pin-
to-pin spacing: 0.100 in).
. Pin 6 (connected to VCCS) should have a resistance less than 5kOhm for

3.0~5.0V, less than 2kOhm for 1.8~3.0V.

. Pin 8 is permanently driven high (level of VCCS) by the debug cable.

. Signal in brackets are not needed by the debugger and can be left uncon-
nected.

. If CPUs have an QACK input and this input is unused, QACK should be
connected to GND. If the processor does not have QACK/QREQ pins,
leave pin 2 and 15 N/C

©1989-2024 Lauterbach PPC600 Family Debugger | 66

Technical Data

©1989-2024 Lauterbach PPC600 Family Debugger | 67

	PPC600 Family Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Signal Level
	ESD Protection

	Target Design Requirement/Recommendations
	General

	Quick Start
	Troubleshooting
	Problems with Memory Access

	FAQ
	Configuration
	System Overview

	PowerPC 600 Family Specific Implementations
	Breakpoints
	Software Breakpoints
	Software Breakpoint Handling
	On-chip Breakpoints
	Software Breakpoints in Interrupt Handlers
	Breakpoints in FLASH/ROM
	Breakpoints on Physical or Virtual Addresses
	Examples for Breakpoints
	Software Breakpoints
	On-chip Program Address Breakpoints
	On-chip Data Address Breakpoints

	Access Classes
	Access Classes to Memory and Memory Mapped Resources
	Access Classes to Other Addressable Core and Peripheral Resources

	Cache
	Memory Coherency
	MESI States

	Little Endian Operation

	CPU specific SYStem Commands
	SYStem.BdmClock Set JTAG frequency
	SYStem.CPU Select the CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CHKSTPIN Control pin 8 of debug connector
	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.DriverStrength Configure driver strength of TCK pin
	SYStem.CONFIG.QACK Control QACK pin

	CPU specific System Commands
	SYStem.Option.BASE Set base address for on-chip peripherals
	SYStem.Option.BUS32 Use 32-Bit data-bus mode
	SYStem.Option.CONFIG Select RCW configuration
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.FREEZE Freeze timebase when core halted
	SYStem.Option.HoldReset Set reset hold time
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.HRCWOVerRide Override HRCW on SYStem.Up
	SYStem.Option.ICFLUSH Invalidate instruction cache before go/step
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IP Set MSR_IP value for breakpoints / SYStem.Up
	SYStem.Option.LittleEnd True little endian mode
	SYStem.Option.MemProtect Enable memory access safeguard
	SYStem.Option.MemSpeed Configure memory access timing
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.NOTRAP Use alternative software breakpoint instruction
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.PARITY Generate parity on memory access
	SYStem.Option.PINTDebug Program interrupt debugging
	SYStem.Option.PPCLittleEnd PPC little endian mode
	SYStem.Option.PTE Evaluate PTE table for address translation
	SYStem.Option.RESetBehavior Set behavior when target reset detected
	SYStem.Option.ResetMode Select reset mode for SYStem.Up
	SYStem.Option.SLOWRESET Relaxed reset timing
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.WaitReset Set reset wait time
	SYStem.Option.WATCHDOG Leave software watchdog enabled

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Set Write MMU TLB entries to CPU

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.FREEZE Freeze counter in certain core states
	BMC.FREEZE Freeze counters while core halted

	CPU specific TrOnchip Commands
	TrOnchip.DISable Disable debug register control
	TrOnchip.ENable Enable debug register control
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.state Display on-chip trigger window
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to “ON”
	TrOnchip.TTrigger Set a trigger for the trace

	Mechanical Description
	JTAG/COP Connector PPC603e/700/MPC8200

	Technical Data

