LAUTERBACH A

PPC400/PPC440 Debugger
and Trace

PPC400/PPC440 Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns r—
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
PPCA00/PPCAA4Qcooiieeeeierrescmcerressssssessassssmesesssssmneseessssmseseassanmessesssnmsseesssnnaneessssnmnnsesssanmnnnens r=
PPC400/PPC440 Debugger and TraCecccceruvsersssmsmsssnsmsssmsmssssssssssssssssssssssssssssssassnsssssans 1

L 1= (o 5

Y e Yo 11T £ o) o T 5

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 6
L= T 11 ' 7
Target Design Requirement/Recommendationscccociiiminiscsninesnnnsesssssmssnsmssnnas 8
General 8

QUICK STart JTAG ...ceiiciccerressssscerresssms e s ssssssme s ressssms e s eessssmnenessssmmeneesssammssessssnmesnesssannnnees 9

Lo 18] o == 0 T To7 £ 3V 11
SYStem.Up Errors 11

o 11
ConfigUIration ... 12
System Overview 12

ICD Trace Extension for PPC400 (ICT)ccccciiiiremmrmmisssmmsrmmsssssssssssssss s sssssssss s snsssssssssnnsans 13
General Fact for PPC403 RiscTrace Use 13
Debugging and Trace Mode 13

What does the PPC403 Trace Mode provide? 13

Used Options for RiscTrace 14

CPU specific Implementationscccccccimiiiiicccssccceecc e s 15
General Restrictions 15
Breakpoints 15
Software Breakpoints 15

On-chip Breakpoints 16
Breakpoint Restrictions 16
Breakpoint in ROM 16
Example for Breakpoints 17
©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 2

Memory Classes 18
Memory Coherency 18
CPU specific SYStem Commandsccccevveemmrrrnsscerrmssssmeessssssmsssesssmmssssssssmssssssssmesseas 19
SYStem.BdmClock Set JTAG clock frequency 19
SYStem.CPU Select the used CPU 19
SYStem.LOCK Lock and tristate the debug port 19
SYStem.MemAccess Select run-time memory access method 20
SYStem.Mode Select operation mode 20
SYStem.CONFIG.state Display target configuration 21
SYStem.CONFIG Configure debugger according to target topology 22
Daisy-Chain Example 24
TapStates 25
SYStem.CONFIG.CORE Assign core to TRACES2 instance 26
CPU specific SYStem ComMmMaNdScccccccmemmmmiiiinississssssmmsssrsnsssssssssssssmssssssssssessssssssssnnnas 27
SYStem.Option.CLOCKX2 Selects the clock for the real-time trace 27
SYStem.Option.DCFREEZE Freeze contents of cache while debugging 27
SYStem.Option.DCREAD Read from data cache 28
SYStem.Option.DMALOW Switch DMA to low priority 28
SYStem.Option.DataTrace Enable data trace via branch table method 28
SYStem.Option.FREEZERUN Stop timer in user mode 28
SYStem.Option.FREEZE Stop timer in debug mode 29
SYStem.Option.FlowTrace Prepare CPU for real-time trace 29
SYStem.Option.FOLDING Execute more instructions per cycle 29
SYStem.Option.HOOK Compare PC to hook address 29
SYStem.Option.ICFLUSH Invalidate instruction cache 31
SYStem.Option.ICREAD Read from instruction cache 31
SYStem.Option.IMASKASM Disable interrupts while single stepping 31
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 31
SYStem.Option.ISOCM Configure first address of ISOCM 32
SYStem.Option. MMUSPACES Separate address spaces by space IDs 32
SYStem.Option.NoDebugStop Disable JTAG stop on debug events 33
SYStem.Option.NoJdtagHalt Disable HALT line 33
SYStem.Option.NOTRAP Use alternative instruction to enter debug mode 34
SYStem.Option.OVERLAY Enable overlay support 34
SYStem.Option.ResetMode Selects the reset mode 35
SYStem.Option.SLOWRESET Activate SLOWRESET 35
SYStem.Option.STEPSOFT Use alternative method for ASM single step 35
SYStem.Option. TURBO Skip additional checks/waits 36
CPU specific TrOnchip Commandsccccceecicciiinsseccmrmmrrrrsssssssssssssssssssssssssssssssssssssssnnes 37
TrOnchip.state Setup window 37
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 38
TrOnchip.DISable Disable NEXUS trace register control 38
©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace 3

TrOnchip.ENable Use CPU internal trigger logic 38
TrOnchip.RESet Set on-chip trigger to default state 39
TrOnchip.Set Trigger sources 39
TrOnchip.TEnable Set filter for the trace 39
TrOnchip. TOFF Switch the sampling to the trace to OFF 39
TrOnchip.TON Switch the sampling to the trace to 'ON’ 40
TrOnchip.TTrigger Set a trigger for the trace 40
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 40
TrOnchip.SYNCHRONOUS Switches mode for data breakpoints 40
CPU specific MMU COMMANASccccececmmmmimmiiiiissssssssssscemmsssesesssssssssssnssmmsssssssssesssssssssnnnnas 42
MMU.DUMP Page wise display of MMU translation table 42
MMU.List Compact display of MMU translation table 44
MMU.SCAN Load MMU table from CPU 46
MMU.FORMAT Define MMU table structure 48
MMU.Set. TLB Create a TLB entry on the TARGET 48
MMU.TLBINIT Reset TLB 51
MMU.TLBRESET Reset TLB 51

19 1= o1 T o T 0T o] V=T o (o 52
Mechanical Description 52
JTAG Connector PPC401/403/405 and IOP480 52
Mictor Connector PPC440 52
LI Lo =T 00T T T o o 53
Mictor Connector 38 pin (Version B) for PPC440 53
Mictor Connector 38 pin (Version B) for PPC405 54
Connector 20 pin (Version A) for PPC405 (obsolete) 54
Mictor Connector 38 pin (Version B) for PPC403 55
Connector 20 pin (Version A) for PPC403 55
©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 4

PPC400/PPC440 Debugger and Trace

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second

parameter.
i [BrListauto] =R
M Step | B Over | \AsDiverge « Return|| ¢ Up b Go | Il Break | ! Mode & t. Find: sieve.c
addr/T1ine |code label mnemonic comment |
SF:400015D0 |7C n ~
SF:400015D4 |212
559
SF:400015D8 |3
SF:400015DC |201F stw
SF:400015E0 45000154 b 4 734
pLinkedListBuf[i].left = (i==last) 7 NULL : &pLinkedListBuf[i+l]; /* next element *
] 813F0008 Iwz r9,0x8(r3l) ; ra9,8(r3l)
SF:400015E8 |501 Twz (r31l)
SF:400015EC [7F cmpw
SF:400015F0 |41 beq
SF:400015F4 |&C Twz
SF:400015F8 |3 addic v
{} B:Register o B:PER
RO 4 RS 303A 0 R24
R1 40003F60 R9 1 0 R25 = Mode Entry Module (M
R2 R10 o 0 R26 G5 00000000 RESET
R3 40002160 R11 40002234 0 R27 S0 s5.0C 0
R4 € R1Z 0 0 R28 unavailable
RS 37 R13 o 0 RZ9 0 S_FX05C O
& 40000000 R14 0 0 R30 40002220 SCLK 16 MHz int. RC osc.
R7 0 R15 o 0 R31 40003F60
MCTL 00000000 TARGET_MODE RESET KEY 0000
TEL o o CR 40000008 LR 40001610
TEU o 0 CTR 40001700 IP 400015E4 ME 00000000 RESET_DEST O
STANDEYD O STOPO 0 HALTO o RU
o 0 IVPR 40000000 MSR o RUNO 0 DRUN 0 SAFE 0 TE
o 0 DEAR 0 PVRE 81710000
o 0 ESR 0 DEC FFFFFFFE Is 00000000 I_ICONF_U O I_ICONF 0 I_IMODE o v
o 0 MCSR 0 DECAR o hd < >
>

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 5

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known PowerPC400/PowerPC440 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /powerpc/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 6

Warning

ESD Protection

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o &~ o

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACES32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACE32 hardware.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace |

7

Target Design Requirement/Recommendations

General

Locate the JTAG connector as close as possible to the processor to minimize the capacitive influence of
the trace length and cross coupling of noise onto the BDM signals.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 8

Quick Start JTAG

Starting up the Debugger is done as follows:

1.

Select the device prompt B: for the ICD Debugger, if the device prompt is not active after starting
the TRACES32 software.

Select the CPU type to load the CPU specific settings.

SYStem.CPU PPC403gcx

Map the EPROM simulator (optional).

MAP.ROM 0x0--0x1FFFF

Tell the debugger where’s FLASH/ROM on the target.

MAP.BOnchip 0x100000++0x0fffff

This command is necessary for the use of on-chip breakpoints.

Enter debug mode

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

Set the chip selects to get access to the target memory.

Data.Set

Load the program.

Data.LOAD.E1f GNU603 ; ELF specifies the format, GNU603 is
; the file name)

The option of the Data.LOAD command depends on the file format generated by the compiler. A
detailed description of the Data.LOAD command is given in the “General Commands Reference”.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 9

The start-up can be automated using the programming language PRACTICE. A typical start sequence is
shown below. This sequence can be written to a PRACTICE script file (*.cmm, ASCII format) and executed

with the command DO <file>.

EEN:

WinCLEAR

MAP.BOnchip 0x100000++0xQ0fffff
SYStem.CPU 403gcx

SYStem.Up

Data.LOAD.E1f GNU403
Register.Set PC main
List.Mix

Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %Spotlight flags ast

PER.view

Break.Set sieve

Break.Set 0x1000 /Program

Break.Set 0x101000 /Program

Select the ICD device prompt
Delete all windows

Specify where’s FLASH/ROM
Select the processor type

Reset the target and enter debug
mode

Load the application

Set the PC to function main

Open disassembly window 2
Open register window 2

Open the stack frame with
local variables @)

Open watch window for variables *)

Open window with peripheral
register *)

Set breakpoint to function sieve

Set software breakpoint to address
1000 (address 1000 is in RAM)

Set on-chip breakpoint to address
101000 (address 101000 is in ROM)
For the PPC603e refer to the
restrictions in On-chip Breakpoints.

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 10

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

All The target has no power.

All The pull-up resistor between the JTAG/COP[VCCS] pin and the target VCC
is too large.

All The target is in reset:
The debugger controls the processor reset and use the RESET line to reset
the CPU on every SYStem.Up.

All There is logic added to the JTAG/COP state machine:
The debugger supports only one processor on one JTAG chain. Only the
debugged processor has to be between TDI and TDO in the scan chain. No
further devices or processors are allowed.

All There are additional loads or capacities on the JTAG lines.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 11

https://support.lauterbach.com/kb

Configuration

System Overview

— PODBUS Cable B
PODPC
PODPAR Debug EPROM
PODETH Interface Simulator .o
(optional)
—Debug Cable
° 1
CPU CLK ¢—RESET
e—INT
Target Connector (600
EPROM only)
[]
Target TS4 (400 only)
Basic configuration for the BDM Interface
NOTE: Together with the debug interface you get a small black wire to connect the CPU
clock to the plug on the debug module. This way you can use the divided CPU
clock as clock for the debug interface.
NOTE: If you use the PPC400 family you get a second wire to connect the TS4 signal.
This is only necessary if you want to use the TrBus.Out command.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace |

12

ICD Trace Extension for PPC400 (ICT)

General Fact for PPC403 RiscTrace Use

The PPC403 supports BDM debug features and FlowTrace features. Both uses the 403 debug logic on the
chip. During normal BDM debugging any debug event will stop the processor. When using the Trace mode
any debug event will start tracing. Therefore there are some restrictions to use both at the same time.

Debugging and Trace Mode

In the FlowTrace mode the SW-breakpoints normally cannot be used. This means also HLL steps, step over
or functions like “go <addr/label>" are not working. The user is responsible that all breakpoints are cleared
(see Break.List). If the trap exception handler can be used and modified be the Trace Extension, then SW-
Breakpoint will be available and also Debugging and Trace Mode at the same time will be possible with
some restrictions (See Trace Extension for the PPC403).

What does the PPC403 Trace Mode provide?

The Trace Extension supports all features that are offered from the PPC403 Real-Time Trace functionality.
With the Trace Extension you are able to trace from the current instruction on, till the analyzer stack is full
(Stack Mode) or the break button is pushed (Fifo Mode). The trace feature allows to follow the source code.
There are five cases where the Trace Extension needs additional information from the trace signals to follow
the source code:

1. Exceptions

2 Branch to Link Instruction

3. Branch to Count Instruction

4 Return from Interrupt Instruction

5 Return from Critical Interrupt Instruction

To allow tracing the processor will broadcast the following:

. Count Register contents after Move to Count has occurred

J Instruction address after an exception has occurred

J Instruction address after a return from interrupt or return from critical interrupt(RFI,RFCI)
. Link Register contents after Move to Link has occurred

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 13

If a Trace Start events has occurred (depend on DBCR Register configuration) then the first RiscTrace
program flow synchronization take place after one of the five cases explained before are executed. This
means that the program should be traced, must consist one of the five special cases. Source code parts
which do not consist of one of the five cases, which start the FlowTrace broadcast, cannot be traced in the
fifo mode.

Used Options for RiscTrace

. SYStem.OPTION.FlowTrace ON /OFF

. SYStem.OPTION.CLOCKX2 ON /OFF

. SYStem.OPTION.HOOK <address>

. IOCR Register [RMD,2CX] (Peripheral Window)
U DBCR Register (Peripheral Window)

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 14

CPU specific Implementations

General Restrictions

PPC400 Make sure, that you don't increase the debug clock without decreasing the
internal waitstates, when the TURBO option is enabled. If external waitstates
are used it is recommended to switch TURBO mode off. The BDM driver may
not work with older PPC403GA-JA25 samples.

Breakpoints

There are two types of breakpoints available: Software breakpoints (SW-BP) and on-chip breakpoints (HW-
BP).

Software Breakpoints

Software breakpoints are the default breakpoints. They can only be used in RAM areas.There is no
restriction in the number of software breakpoints. Please consider that increasing the number of software
breakpoints will reduce the debug speed.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 15

On-chip Breakpoints

The following list gives an overview of the usage of the on-chip breakpoints by
TRACE32-ICD:

CPU family

On-chip breakpoints: Total amount of available on-chip breakpoints.

Instruction breakpoints: Number of on-chip breakpoints that can be used for program and spot

breakpoints

Read/Write breakpoints: Number of on-chip breakpoints that can be used as read or write

breakpoints.

Data breakpoints: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an

address.
CPU Family On-chip Instruction Read/Write Data
Breakpoints Breakpoints Breakpoints Breakpoints
PPC401/403 2 Instruction 2 2 —
2 Read/Write
PPC405 4 Instruction 4 2 2

2 Read/Write

Breakpoint Restrictions

You can check your currently set breakpoints with the command Break.List

Breakpoint in ROM

With the command MAP.BOnchip <range> it is possible to inform the debugger where you have ROM
(FLASH,EPROM) on the target. If a breakpoint is set within the specified address range the debugger uses

automatically the available on-chip breakpoints.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 16

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFFE. The

command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

1. Software breakpoints:

Break.Set 0x100000 /Program
Break.Set 0x101000 /Program

Break.Set Oxx /Program

2. On-chip breakpoints:

Break.Set 0x100 /Program

Break.Set 0x0ff00 /Program

Software Breakpoint 1

Software Breakpoint 2

Software Breakpoint 3

On-chip Breakpoint 1

On-chip Breakpoint 2

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace

17

Memory Classes

The following memory classes are available:

Memory Class Description

P Program

D Data

SPR Special Purpose Register

DCR Device Control Register (PPC40x only)
IC Instruction Cache

DC Data Cache

NC No Cache (only physically memory)

If caching is disabled via the appropriate hardware registers (DCCR/ICCR for PPC400 series, HIDO for
PPC603 series), memory accesses to the memory classes IC or DC are realized by TRACE32-ICD as
reads and writes to physical memory.

Memory Coherency

Memory coherency on access to the following memory classes. If data will be set to DC, IC, NC, D or P the

D-Cache, I-Cache or physical memory will be updated.

D-Cache [-Cache Physical Memory
DC: Yes No Yes
IC: No Yes Yes
NC: No No Yes
D: Yes Yes Yes
Yes Yes Yes

See also SYStem.Option

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 18

CPU specific SYStem Commands

SYStem.BdmClock Set JTAG clock frequency
Format: SYStem.BdmClock <rate>
<rate>: EXT/2 | EXT/4 | <fixed>
<fixed>: 1000. ... 5000000. | 10 000 000. (Default 1 MHz)

Selects the frequency for the debug interface. A fixed frequency or a divided external clock can be used.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpus: 403GA | 403GB | 403GC | 403GCX | 405CR | 405GP | 440GP
SYStem.LOCK Lock and tristate the debug port
Format: SYStem.LOCK [ON | OFF]
Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 19

SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess Denied | <cpu_specific>
SYStem.ACCESS (deprecated)
Denied Memory access during program execution to target is disabled.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.
SYStem.Mode Select operation mode
Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Attach
Up

Select target reset mode.

Down

NoDebug

Go

Disables the Debugger. The state of the CPU remains unchanged.

Resets the target with debug mode disabled (for the PPC400 family the
same as Go). In this mode no debugging is possible. The CPU state
keeps in the state of NoDebug.

Resets the target with debug mode enabled and prepares the CPU for
debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 20

Up Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

Attach This command works similar to Up command. The difference is that the
target CPU is not reset. The BDM/JTAG/COP interface will be
synchronized and the CPU state will be read out. After this command the
CPU is in the SYStem.Up mode and can be stopped for debugging.

StandBy Not available PPC400/PPC440.

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort

Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag

Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 21

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

<parameter>: CORE <core>
<parameter>: DRPRE <bits>
(JTAG): DRPOST <bits>

IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel </evel>
TriState [ON | OFF]
Slave [ON | OFF]

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

g
CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.
Further information can be found in SYStem.CONFIG.CORE.
DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of

interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 22

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nNRESET).

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 23

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 24

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 25

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 26

CPU specific SYStem Commands

SYStem.Option.CLOCKX2 Selects the clock for the real-time trace

Available on: MPC403

Format: SYStem.Option.CLOCKX2 [ON | OFF]

This option select the clock for the Real-Time Trace. (Required for the TRACES32-ICD Risc Trace Modul).If
the 403GCX works with internal double clock (IOCR [2XC]), this option must be on before starting to record
with the trace.

If the source code being traced change the IOCR[2XC] register by its own
during the trace, the RiscTrace doesn’t works properly.

SYStem.Option.DCFREEZE Freeze contents of cache while debugging

Format: SYStem.Option.DCFREEZE [ON | OFF]

If this feature is enabled the status of the data caches is preserved while debugging. This feature should be
used in combination with SYStem.Option.DCREAD in order to read data as seen by the core. Otherwise all

memory accesses are as for access class NC.
If disabled, the debugger might modify the caches contents with each data access e.g. a Data.dump

window.

For caches that use hardware coherency (e.g. MESI protocol), the DCFREEZE feature is not supported.
This respects multicore architectures that use non-shared caches.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 27

SYStem.Option.DCREAD Read from data cache

Format: SYStem.Option.DCREAD [ON | OFF]

Data.dump windows for memory class D: displays the memory value from the d-cache if valid. If d-cache is
not valid the physical memory will be read.

If caching is disabled via the appropriate hardware registers (DCCR/ICCR for
PPC400 Series) or cache is invalid, read and writes from/to memory will directly
reflect to contents of physical memory even if a cache memory class is

selected.
SYStem.Option.DMALOW Switch DMA to low priority
Format: SYStem.Option.DMALOW [ON | OFF]

All DMA transfers continue in debug mode. If DMALOW is enabled all DMA activities are switched to low

priority.
SYStem.Option.DataTrace Enable data trace via branch table method
Format: SYStem.Option.DataTrace [ON | OFF]

Enables data trace support via branch table method. See examples in demo\powerpc\etc\tracedxx

SYStem.Option.FREEZERUN Stop timer in user mode

Format: SYStem.Option.FREEZERUN [ON | OFF]

Controls the internal CPU timer. If FREEZERUN is enabled, the timer will be stopped whenever the CPU
enters the user mode.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 28

SYStem.Option.FREEZE Stop timer in debug mode

Format: SYStem.Option.FREEZE [ON | OFF]

Controls the internal CPU timer. If FREEZE is enabled, the timer will be stopped whenever the CPU enters
the debug mode.

SYStem.Option.FlowTrace Prepare CPU for real-time trace
Available on: MPC403

Format: SYStem.Option.FlowTrace [ON | OFF]

Prepare the CPU for real-time trace. (Required for the TRACE32-ICD RISC Trace Module). If switched on,

on every step or go the DBCR[EDM,IDM] bits are switched off and the IOCR[RDM] bits are switched to
Trace Mode automatically.

SYStem.Option.FOLDING Execute more instructions per cycle

Format: SYStem.Option.FOLDING [ON | OFF]

The PPC400 CPUs can execute more than one instruction per cycle. If FOLDING is disabled, exactly one
instruction is executed per cycle.

SYStem.Option.HOOK Compare PC to hook address

Format: SYStem.Option.HOOK <address> | <address_range>

The command defines the hook address. After program break the hook address is compared against the
program counter value.

If the values are equal, it is supposed that a hook function was executed. This information is used to
determine the right break address by the debugger.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 29

This option make it possible to use breakpoints in the Real-Time Trace Mode. (Required for the TRACE32-
ICD RISC Trace Module) This assume that the trap exception handler can be modified for the RiscTrace.

After any synchronize break (using breakpoints) the IP will be compared with the Hook value. If true than the
last exception of will be canceled.

For example. Do use breakpoints, the trap exception handler must be prepared with some instructions.
P:FFFO00700 lis r3,0

If the CPU runs the instruction P:FFFO070C mtxxx, it stops. The IP will be compared to the Hook value. If the

Hook value is also OxFFF0070C the exception will be canceled and the CPU register reconstructed to the
last breakpoint.

If you start again after a break with a breakpoint the IP is on the breakpoint.
This means that in the HLL mode a step are executed before the processor put
into run mode.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 30

SYStem.Option.ICFLUSH Invalidate instruction cache

Format: SYStem.Option.ICFLUSH [ON | OFF]

Invalidates the instruction cache and flush the data cache before starting the target program (Step or Go).
This is required when the ICACHESs are enabled and software breakpoints are set to a cached location.

SYStem.Option.ICREAD Read from instruction cache

Format: SYStem.Option.ICREAD [ON | OFF]

Data.List window and Data.dump window for memory class P: displays the memory value from the I-cache if
valid. If I-cache is not valid the physical memory will be read.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 31

SYStem.Option.ISOCM Configure first address of ISOCM

Format: SYStem.Option.ISOCM <base_address>

On Virtex4FX, Virtex5FX the ISOCM memory can be read using a special access mechanism. Configure
the first address of the ISOCM using the command SYStem.Option.ISOCM. The default value is
OxFFFF.FFFF, indicating that the system under debug does not have ISOCM memory.

For a design with ISOCM memory from OxFFFF.8000--OxFFFF.FFFF you should therefore use:

SYStem.Option.ISOCM OxFFFF8000

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 32

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.NoDebugStop Disable JTAG stop on debug events
Format: SYStem.Option.NoDebugStop [ON | OFF]
Default: OFF.

On-chip debug events Breakpoint (instruction/data address), single step and branch trace can be configured
to cause one of two actions. If a JTAG debugger is used, the CPU is configured to stop for JTAG upon these
debug events.

If this option is set to ON, the CPU will be configured to not stop for JTAG, but to enter the breakpoint/trace
interrupt, like it does when no JTAG debugger is used.

Enable this option if the CPU should not stop for JTAG on debug events, in order to allow a target application
to use debug events. Typical usages for this option are run-mode debugging (e.g. with gdbserver) or setting
up the system for a branch trace via LOGGER (trace data in target RAM) or INTEGRATOR.

SYStem.Option.NodJtagHalit Disable HALT line
Format: SYStem.Option.NodJdtagHalt [ON | OFF]
Default: OFF.

The JTAG connection for an PowerPC 4xx type CPU features an HALT- signal which will stop the CPU. The
HALT- line enables to stop an core independently from the BDM/JTAG clock. As the HALT- line is a shared
signal for all cores & chips in a JTAG chain all cores & chips stop if the HALT- line is asserted.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 33

By disabling the HALT- line it is possible to debug only specific cores in the chain without interference with
other PowerPC 4xx cores/chips (AMP). A side effect of this option is that the SYStem.Up behavior will
change as the core will then not be prevented from executing code after an reset. Thus if this option is
enabled the CPU will have executed some code after SYStem.Up and the system might be no longer in
reset status.

SYStem.Option.NOTRAP Use alternative instruction to enter debug mode

Format: SYStem.Option.NOTRAP [ON | OFF]

If the user software uses the TRAP command, the CPU performs a BREAK in debug mode and does not
jump to the interrupt handler of the TRAP command.

SYStem.Option.OVERLAY Enable overlay support
Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACES32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON
Data.List 0x2:0x1l1lc4 ; Data.List <overlay id>:<address>

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 34

SYStem.Option.ResetMode Selects the reset mode

Format: SYStem.Option.ResetMode [SYSTEM | CHIP | CORE]

Use this option to select the type of reset at SYStem.Up. There are three types of resets:
J SYSTEM will reset the peripherals and the core.

« CHIP

J CORE will only reset the core.

Note that a reset of the core does not reset the register.

SYStem.Option.SLOWRESET Activate SLOWRESET

Format: SYStem.Option.SLOWRESET [ON | OFF]

After the debugger resets the CPU (e.g. via SYStem.Up), the debugger senses HRESET for 2 ... 3 s before
an error message is displayed.

SYStem.Option.STEPSOFT Use alternative method for ASM single step

Format: SYStem.Option.STEPSOFT [ON | OFF]

This method uses software breakpoints to perform an assembler single step instead of the processor’s built-
in single step feature. Works only for software in RAM. Do not turn ON unless advised by Lauterbach.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 35

SYStem.Option.TURBO Skip additional checks/waits

Format: SYStem.Option.TURBO [ON | OFF]

If there are buffers, additional loads or high capacities on the JTAG/COP lines,
reduce the debug speed.

Enables Turbo debugging. If Turbo is disabled, the CPU checks after each memory access in debug mode if
the CPU is ready. This check will decrease debug speed (30-40%).

If Turbo is enabled, the CPU will make no checks. The internal waitstates for a memory access must be
decremented before increasing the debug frequency. With the default debug frequency of 1 MHz Turbo can
always be enabled.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 36

CPU specific TrOnchip Commands

The features supported by the TrOnchip command for TRACES32-ICD vary for
the different PowerPC families.

TrOnchip.state

Setup window

Format:

TrOnchip.state

Control panel to configure the on-chip breakpoint registers (here MPC860).

r
B::w.to
—tronchipym —A.Data—] —A.Lbus— —B.Data—] [—B.Lbus— —G.Value—
RESet N OFF \ OFF \ OFF N OFF 00000000
v coNvert G A G A
BRKNOMSK H B H B —G.Size—
GORH c GORH c Byte
Set— GANDH GANDH Word
CHSTPE —A.Ibus— —B.Ibus— |V Long
MCEE —A.CYcle— |V OFF —B.CYcle— |V OFF
DSEE Read A Read A —G.Match—
ISEE Write B Write B v OFF
EXTIE \/ Access (o] \/ Access (o] EQ
ALEE NE
\ PREE —A.Count— —B.Count— LE
FPUVEE 1. 1. GE
DECEE LT
SYSEE GT
FPASEE SIGNED
SEEE

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace |

37

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF]

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.DISable Disable NEXUS trace register control

Format: TrOnchip.DISable

Disables NEXUS register control by the debugger. By executing this command, the debugger will not write or
modify any registers of the NEXUS block. This option can be used to manually set up the NEXUS trace
registers. The NEXUS memory access is not affected by this command. To re-enable NEXUS register
control, use command TrOnchip.ENable. Per default, NEXUS register control is enabled.

TrOnchip.ENable Use CPU internal trigger logic

Format: TrOnchip.ENable <jtem> [ON | OFF]

If TrOnchip.Enable is ON (by default) the CPU internal trigger/trace/debug feature like IACx (Instruction
Address Compare Register) and DACx (Data Address Compare Register) will be used by the debugger. If
TrOnchip.Enable is OFF, the registers can be manually programmed by user or application.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 38

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set Trigger sources
Format: TrOnchip.Set <item> [ON | OFF]
<item>: BRANCH
eXception

Enables various trigger events. Detailed description of the trigger events can be found in the processor

manuals.
eXception Debug mode is entered if an exception occurs.
BRANCH Debug mode is entered if a branch is taken.
TrOnchip.TEnable Set filter for the trace
Format: TrOnchip.TEnable <par> (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TOFF Switch the sampling to the trace to OFF

Format: TrOnchip.TOFF (deprecated)

Refer to the Break.Set command to set trace filters.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 39

TrOnchip.TON Switch the sampling to the trace to 'ON’

Format: TrOnchip.TON EXT | Break (deprecated)

Refer to the Break.Set command to set trace filters.

TrOnchip.TTrigger Set a trigger for the trace

Format: TrOnchip.TTrigger <par> (deprecated)

Refer to the Break.Set command to set a trigger for the trace.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF]

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is on the breakpoint will automatically be converted into a
single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.SYNCHRONOUS Switches mode for data breakpoints
Format: TrOnchip.SYNCHRONOUS [ON | OFF]
Default: OFF.

Switches the mode of the DAC (Data Address Compare Register) for debug events on PPC44x/PPC46x
cores. This mode setting is only effective if read/write breakpoints are used.

If the DAC works in synchronous mode the processor enters the stop state when reaching load/store
instructions and ceases the processing of instructions. This means the CPU will stop on a load/store
instruction without executing the read/write cycle. The disadvantage is that the core performance for
load/store instructions will be reduced in synchronous mode. Switch the synchronous mode OFF in order
to maintain normal processor performance .

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 40

In asynchronous DAC mode the processor enters stop state on load/store instructions either before or after
the completion of the instruction. This means the CPU will execute the read/write cycle and stop some
instructions later for the most cases.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 41

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 42

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace |

43

CPU specific Tables in MMU.DUMP <table>

TLB Displays the contents of the Translation Lookaside Buffer.
MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]

MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.
. If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range
<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

. else, this command lists the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 44

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable Lists the MMU translation of the given process. Specify one of the
<task_magic> | TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and lists its address translation.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables in MMU.List <table>

TLB Displays the contents of the Translation Lookaside Buffer.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 45

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 46

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific Tables in MMU.SCAN <table>

TLB

Loads the translation table from the CPU to the debugger-internal translation
table.

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 47

MMU.FORMAT Define MMU table structure

Format: MMU.FORMAT <format> [<effective_range> <real_base>]

<format>: LINUX
LINUX26
LINUXEXT
LINUXE5
LYNXOS
LYNXOSPHYS
QNX
QNXBIG
DEOS
DEOS64

Defines the structure of the MMU table and optionally the base for the kernel space table.

LINUX Standard Page-Table format for PPC405 running Linux

LINUXEXT Standard Page-Table format for PPC44x/46x running Linux

If you require support for a particular operating system, please contact support@Ilauterbach.com.

See also MMU.FORMAT in general_ref_m.pdf.

MMU.Set. TLB Create a TLB entry on the TARGET
Format 1: MMU.Set.TLB <index> <hi> <lo>
PPC 40x MMU.TLBSET (deprecated)
Format 2: MMU.Set. TLB <index> <ws0> <ws1> <ws2>
PPC 44x/46x MMU.TLBSET (deprecated)
Format 3: MMU.Set.TLB <index> <way> <ws0> <ws1> <ws2> [/Bolted <index>]
PPC 47x MMU.TLBSET (deprecated)

Creates/modifies an TLB entry addressed by index (optional: way) in the target CPU. The provided settings
match the format of the tlbwe instruction of the target CPU and is thus CPU/Architecture specific. For the
exact meaning of the Bits provided below please refer to the CPUs/Architecture User-Guide.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 48

Common arguments:

<index>

<way>

PowerPC 405 specific arguments:

The line/index of the corresponding TLB entry

The way of the corresponding TLB entry

<lo> EPN Siz Vv E uo TID

Bit [0:21] [22:24] [25] [26] [27] [28:35]

<hi> RPN SXwW ZSEL WIMG

Bit [0:21] [22:23] [24:27] [28:31]
Examples:

; Create TLB Entry,
; TID: 0x0, Permissions:
MMU.TLBSET O.

; Create TLB Entry,

Write

A:0x90000000++0xFFF <-> SD:0x0++0xFFF

A:0x08800000++0x3FFFFF <-> SD:0x08800000++0x3FFFFF
eXecute,
0x0880034000 0x08800300

; TID: 0x0, Permissions: Write, Cache: Inhibit, Guarded
MMU.TLBSET 1. 0x000000C000 0x90000105
$4 B:MMU.DUMP.TLE =n| Wl <
logical |[physical 1dx | pagesize | pagef lags |
C:08800000--08BFFFFF A:08800000--08BFFFFF | 00 | 00400000 | E:0 UO:0 EX:1 WR:1 W:0 I:0 M:0 G:0 Z5EL:00
C: 00000000--00000FFF A:90000000--90000FFF | O1 | Q0001000 | E:O0 UQ:0 EX:0 WR:1l W:0 I:1 M:0 G:1 ZSEL:00
Fl 10 2
£ BaMMU [E=5EoR 5
S UTLE Array o
:.W MMU. TLE
UTLE-index[0]
TLEHI 08300340 EFN 08800000 V ON E big U 0 SIZE 4 MB I0 00
TLELD 08800300 RPN 08800000 EX 1 WR 1 ZSEL ZO EX 1 W:0 I:0M:0 G:0
UTLE-index[0x1]
TLEHI ©0OO00D0DDCO EFN 0ODDOODODD V ON E big Uo 0 SIZE 4 KB ID 00
TLELD 90000105 RPN 90000000 EX O WR 1 ZSEL ZO EX 0 W:d I:1 M:0 G:1
4 m 3
PowerPC 44x/46x specific arguments:
<ws0> EPN Vv TS SIZE - TID
Bit [0:21] [22] [23] [24:27] [28:31] [32:39]

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace

49

<wsi> RPN - ERPN

Bit [0:21] [20:21] [22:31]

<ws2> - FAR,WLA1 IL1ID2ID U WIMGE UXWRSXWR

Bit [0:9] [10:11] [12:15] [16:19] [20:24] [26:31]
Examples:

; Create TLB Entry,
; TID: 0x0, Permissions:
MMU.TLBSET O.

; Create TLB Entry,

A:0xE: 0x0OxFFFF8000++0x3FFF <-> SD:0xE0000000++0x3FFF
User XWR, Supervisor XWR, Cache:
0xE000022000 OxXFFFF800E 0x000F043F

Inhibit (L1&L2)

A:0x0:0x0++0x0FFFFFFF <-> SD:0xC0000000++0x0FFFFFFF

; TID: 0x0, Permissions: User ---, Supervisor XWR, Bolted: 0x1,
; Coherency: Enabled => WL1=1
MMU.TLBSET 1. 0xC000029000 0x00000000 0x00100207
4 B:MMU.List TLE =n| Wl <
logical |[physical s 1d 1dx | pagesize | ERPN | WIMGE L1WIT L2II uo1z3 UXWR | SXWR
C:EQOO0000--EQOO3FFF | A:OE:FFFF3000--FFFFEFFF | 00 | 00004000 0OE | -I--- =77 0000 UXWR SXWR .
C:CO000000--CFFFFFFF | A:00:00000000--0FFFFFFF | O 01 | 10000000 00| -?M-- W-- |—— 0000 U--- SXWR
4 L 3
£ BaMmu =0 E=R
S TLBL Array i
HOOOCCO0] _MMULTLE
-:EEOOOZZO EFN EOQOOOOOO WV ON T3 0 SIZE 16 KB TID 00
FFFFS00E RPN FFFFS000 EF3 :0E
000F043F WLl:cp-back U0:0 ULl:0 UZ:0 U3:0 M:0 G:0 E:big Ux:1 Uw:1l UR:1 5X:1 SW:1 SR:1
::(L2=cp—back L1=wL1) TI:1 (IL1I:1 ILlE 1 IL2T:1 IL2 B 1)
TLEl nd ex[0x1]
COO00290 EPN COOOOOOO0 vV ON TS 0 SIZE 256 MB TID 00
00000000 RPN 00000000 EF3 00
TLEl_;_ 00100207 Ll wr—thr U0:0 Ul:0 UZ:0 U3:0 M:1 G:0 E:big UX:0 Uw:0 UR:0 5X:1 SW:1l SR:1
s (L2=cp- back L1=WL1) TI:-x=I ILlI 0 ILlE 0 IL2I:0 IL2 B 0)
PowerPC 47x specific arguments:
<ws0> EPN \' TS DSIz - TID
Bit [0:19] [20] [21] [22:27] [28:31] [32:39]
<ws1> RPN - ERPN
Bit [0:19] [20:21] [22:31]

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace | 50

<ws2> - IL1ID U WIMGE - UXWRSXWR

Bit [0:12] | [14:15] | [16:19] | [20:24] [25] [26:31]

Examples:

; Create TLB Entry, A:0x2F:0x2000++0xFFF <-> SD:0x80801000++0XFFF
; TID: 0x0, Permissions: User ---, Supervisor XWR, Cache: Inhibit
; EA=0x80801000, DSIZ=0x0 => Index=0x1

MMU.TLBSET 0x1 0x0 0x8080180000 0x0000202F 0x00004007

; Create TLB Entry, A:0x0:0x0++0x3FFFFFFF <-> SD:0x0++0x3FFFFFFF
; TID: 0x0, Permissions: User ---, Supervisor XWR, Bolted: 0x1,
; Coherency: Enabled

; EA=0x00000000, DSIZ=0x3F => Index=0xC0, Bolted => Way=0x0
MMU.TLBSET 0x0 0x0 O0xCOOOOBF000 0x00000000 0x00002007 /Bolted 1.

£3 B:MMU.List. TLB =nEoh <
logical |[physical ts pid | 1dx | pagesize | ERPN | WIMGE L1WIT L2IT | UQ123 UXWR | SXWR [Bolt | 1dx way set
C:00000000--3FFFFFFF | A:00:00000000--3FFFFFFF | 1 0 [40000000 [D000 [-I--b =77 77 oooo U--- SXWR B oo0 o 00,
C:80801000--80801FFF | A:2F:00002000--00002FFF | O 00001000 | D02F | W?--b - 1-= oooo U--- SXWR - ool o o
10 2
[E=5EoR 5
-
Wo=0 Wo=1 Wo=2 V T5 D5IZ | PID EPN ERPN:RPN WIMGE IL1T IL1D SXWR UXWR UD1Z3

00000BFO00 Q0000000 00002007 ON O 3F 00 00000000 0000 :00000000 -I--B -
8080180000 0000Z0ZF 00004007 ON O oo 00 80801000 00ZF:00002000 | W---B -
L 1 [0] 0000000000 00000000 00000000 -- O oo 00 00000000 0000 :00000000 ----B - 5 U
4 m b

MMU.TLBINIT Reset TLB

Format: MMU.TLBINIT

Resets TLB. This command is an alias for MMU.TLBRESET.

MMU.TLBRESET Reset TLB

Format: MMU.TLBRESET

Resets TLB. This command is an alias for MMU.TLBINIT.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 51

Debug Connector

Mechanical Description

JTAG Connector PPC401/403/405 and I0P480

It is recommended to connect all N/C Pins to GND (if you work with LAUTERBACH tools only).

Signal Pin Pin Signal
TDO 1 2 N/C
TDI 3 4 TRST- (¥)
N/C 5 6 VCCS
TCK 7 8 N/C
TMS e] 10 N/C
HALT- 11 12 N/C
N/C 13 - KEY
N/C 15 16 GND

This is a standard 16 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

Mictor Connector PPC440

The mictor connector can also be used for debugging. For a description of the pinout please refer to “Trace
Connectors”.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 52

Trace Connectors

Mictor Connector 38 pin (Version B) for PPC440

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK
HALT- 7 8 N/C
N/C 9 10 N/C
TDO 11 12 VTREF
N/C 13 |14 N/C
TCK 15 |16 N/C
TMS 17 |18 N/C
TDI 19 |20 N/C
TRST- 21 |22 N/C
N/C 23 |24 ES4
BSO 25 |26 TS0
BS1 27 |28 TS
BS2 29 (30 TS2
ESO 31 [32 TS3
ES1 33 [34 TS4
ES2 35 |36 TS5
ES3 37 |38 TS6

Connect Pin 39,40,41,42 and 43 to GND.

©1989-2024 Lauterbach PPC400/PPC440 Debugger and Trace | 53

Mictor Connector 38 pin (Version B) for PPC405

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK

HALT 7 8 N/C
N/C 9 10 N/C
TDO 11 12 VTREF
N/C 13 14 N/C
TCK 15 16 N/C
TMS 17 18 N/C
TDI 19 20 N/C

ITRST 21 22 N/C

N/C 23 24 TS10
GND 25 26 TS20
GND 27 28 TS1E
GND 29 30 TS2E
GND 31 32 TS3
GND 33 34 TS4
GND 35 36 TS5
GND 37 38 TS6

Connect Pin 39,40,41,42 and 43 to GND.
Connector 20 pin (Version A) for PPC405 (obsolete)

Signal Pin Pin Signal
N/C 1 2 N/C
CLK 3 4 N/C
N/C 5 6 N/C
N/C 7 8 N/C
N/C 9 10 N/C
N/C 11 12 TS10

TS20 13 14 TS1E

TS2E 15 16 TS3
TS4 17 18 TS5
TS6 19 20 GND

This is a standard 20 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace

54

Mictor Connector 38 pin (Version B) for PPC403

Signal Pin Pin Signal
N/C 1 2 N/C
N/C 3 4 N/C
N/C 5 6 TRACECLK
HALT 7 8 N/C
N/C 9 10 N/C
TDO 11 12 VTREF
N/C 13 14 N/C
TCK 15 16 N/C
TMS 17 18 N/C
TDI 19 20 N/C
N/C 21 22 N/C
N/C 23 24 GND
GND 25 26 TSO
GND 27 28 TS1
GND 29 30 TS2
GND 31 32 TS3
GND 33 34 TS4
GND 35 36 TS5
GND 37 38 TS6
Connect Pin 39,40,41,42 and 43 to GND.
Connector 20 pin (Version A) for PPC403
Signal Pin Pin Signal
N/C 1 2 N/C
CLK 3 4 N/C
N/C 5 6 N/C
N/C 7 8 N/C
N/C 9 10 N/C
N/C 11 12 N/C
TSO 13 14 TS1
TS2 15 |16 TS3
TS4 17 |18 TS5
TS6 19 |20 GND

This is a standard 20 pin double row (two rows of eight pins) connector (pin-to-pin spacing: 0.100 in.).

©1989-2024 Lauterbach

PPC400/PPC440 Debugger and Trace

55

	PPC400/PPC440 Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Target Design Requirement/Recommendations
	General

	Quick Start JTAG
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Configuration
	System Overview

	ICD Trace Extension for PPC400 (ICT)
	General Fact for PPC403 RiscTrace Use
	Debugging and Trace Mode
	What does the PPC403 Trace Mode provide?
	Used Options for RiscTrace

	CPU specific Implementations
	General Restrictions
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoint Restrictions
	Breakpoint in ROM
	Example for Breakpoints

	Memory Classes
	Memory Coherency

	CPU specific SYStem Commands
	SYStem.BdmClock Set JTAG clock frequency
	SYStem.CPU Select the used CPU
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates

	SYStem.CONFIG.CORE Assign core to TRACE32 instance

	CPU specific SYStem Commands
	SYStem.Option.CLOCKX2 Selects the clock for the real-time trace
	SYStem.Option.DCFREEZE Freeze contents of cache while debugging
	SYStem.Option.DCREAD Read from data cache
	SYStem.Option.DMALOW Switch DMA to low priority
	SYStem.Option.DataTrace Enable data trace via branch table method
	SYStem.Option.FREEZERUN Stop timer in user mode
	SYStem.Option.FREEZE Stop timer in debug mode
	SYStem.Option.FlowTrace Prepare CPU for real-time trace
	SYStem.Option.FOLDING Execute more instructions per cycle
	SYStem.Option.HOOK Compare PC to hook address
	SYStem.Option.ICFLUSH Invalidate instruction cache
	SYStem.Option.ICREAD Read from instruction cache
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.ISOCM Configure first address of ISOCM
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.NoDebugStop Disable JTAG stop on debug events
	SYStem.Option.NoJtagHalt Disable HALT line
	SYStem.Option.NOTRAP Use alternative instruction to enter debug mode
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.ResetMode Selects the reset mode
	SYStem.Option.SLOWRESET Activate SLOWRESET
	SYStem.Option.STEPSOFT Use alternative method for ASM single step
	SYStem.Option.TURBO Skip additional checks/waits

	CPU specific TrOnchip Commands
	TrOnchip.state Setup window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.DISable Disable NEXUS trace register control
	TrOnchip.ENable Use CPU internal trigger logic
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Trigger sources
	TrOnchip.TEnable Set filter for the trace
	TrOnchip.TOFF Switch the sampling to the trace to OFF
	TrOnchip.TON Switch the sampling to the trace to ’ON’
	TrOnchip.TTrigger Set a trigger for the trace
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.SYNCHRONOUS Switches mode for data breakpoints

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.FORMAT Define MMU table structure
	MMU.Set.TLB Create a TLB entry on the TARGET
	MMU.TLBINIT Reset TLB
	MMU.TLBRESET Reset TLB

	Debug Connector
	Mechanical Description
	JTAG Connector PPC401/403/405 and IOP480
	Mictor Connector PPC440

	Trace Connectors
	Mictor Connector 38 pin (Version B) for PPC440
	Mictor Connector 38 pin (Version B) for PPC405
	Connector 20 pin (Version A) for PPC405 (obsolete)
	Mictor Connector 38 pin (Version B) for PPC403
	Connector 20 pin (Version A) for PPC403

