LAUTERBACH A

CEVA-Oak/Teak/TeakLite
Debugger and Trace

CEVA-Oak/Teak/TeakLite Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
CEVA-Oak/Teak/TeaKLiteccccciiiiiisssmmmmmnnnrinisssssssssssmmssnssssssssssssssssnssmmsssssssssssssssssssnnnmmssnssnns r=
CEVA-Oak/Teak/TeakLite Debugger and TraCecccceemssssmsssmsmssssssissssmsssssssssssssssassnns 1
Brief Overview of Documents for NeW USErsScccciieminnsmissmssssssnsss s sssamsssssnes 4
L= T 1 ' 5

L@ T T Q3 - i 6

Lo 18] o == 0 T To £ 3V 8

O 8

CPU Specific Implementationsccccocccmmiiiiiicccccccecc e 9
Breakpoints 9
Software Breakpoints 9
On-chip Breakpoints 9

CPU specific SYStem Settingscccccvrmmiininimiinsr s ssmssnnnas 10
SYStem.CONFIG.state Display target configuration 10
SYStem.CONFIG Configure debugger according to target topology 11
<parameters> describing the “DebugPort” 16
<parameters> describing the “JTAG” scan chain and signal behavior 18
<parameters> configuring a CoreSight Debug Access Port “AP” 21
<parameters> describing debug and trace “Components” 27
<parameters> which are “Deprecated” 34
SYStem.CPU Select the used CPU 36
SYStem.JtagClock Define JTAG clock 36
SYStem.LOCK Lock and tristate the debug port 37
SYStem.MemAccess Select run-time memory access method 37
SYStem.Mode Establish the communication with the target 38
SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 38
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 39
SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 39
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 39
SYStem.Option.BackPC Keep core running except for debugger access 40
©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace 2

SYStem.Option.BASE Setup MAILBOX or MMIO base address 40
SYStem.Option.BigEndian Enable big endian mode 40
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 11
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 41
SYStem.Option.DAPREMAP Rearrange DAP memory map 42
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 42
SYStem.Option.DEBUGPORTOptions Options for debug port handling 43
SYStem.Option.EnReset Allow the debugger to reset the processor 44
SYStem.Option.EXTDBGTRAP Writing debug trap in external memory 44
SYStem.Option.IMASKASM Disable interrupts while single stepping 44
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 44
SYStem.Option.MonBase Set up monitor base address 45
General Restrictions 45
SYStem.Option.MONITOR Define user-specific debug monitor 45
SYStem.Option.PALLADIUM Extend debugger timeout 45
SYStem.Option.RisingTDO Target outputs TDO on rising edge 46
SYStem.Option.RomMon Disable download of monitor routine 46
SYStem.Option. TKLMON Use TeakLite monitor for TeakLite-ll 46
L 1T 00 4 13 T3 T [47
ETM.AGU32 Data trace mode for AGU 47
ETM.AGU64 Data trace mode for AGU 47
ETM.ISTACK Interrupt stack operation trace 47
ETM.RWM Read-write-modify 47
ETM.WrapperFilter Global breakpoint enable 48
ETM.WrapperSTALL Enable/disable wrapper stall 48
QIO T e o 1T 0T 00T 1 1 F- T4 o E= 49
TrOnchip.RESet Set on-chip trigger to default state 49
TrOnchip.Set Set on-chip trigger 49
TrOnchip.Set.BKRE Trigger on block repeat loop 49
TrOnchip.Set.BRE Trigger on jump 49
TrOnchip.Set.EXTRE Trigger on external register read 50
TrOnchip.Set. EXTWE Trigger on external register write 50
TrOnchip.Set.ILLE Trigger on illegal instruction access 50
TrOnchip.Set.INTE Trigger on interrupt 50
TrOnchip.Set. TBFE Trigger on trace buffer full 50
TrOnchip.state Display “Trigger-Onchip” dialog 51
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 51
BN 7Y€ I 0o T 1= o o 52
L= 4 oL YA 0 o o T Y 53

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 3

CEVA-Oak/Teak/TeakLite Debugger and Trace

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
J “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

U “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace |

5

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

198 g

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>
SYStem.Option.BASE <base>

SYStem.Option.MonBase <base>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set the JTAG frequency

SYStem.JtagClock <frequency>

The default value is 1.0 MHz.

4. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip <range>

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects.

5. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 6

6. Load the program.

Data.LOAD.COFF program.a

; COFF specifies the format, program.a
; 1s the file name)

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General

Commands Reference”.

A typical start sequence for the TeakLiteDev-C is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences

can be found in the ~~/demoy/... directory.

B2 g

WinClear

SYS.CPU TeakLiteDev-C
SYS.JC 10MHz
SYStem.Up

Data.LOAD.COFF demo.a

Register.Set PC start
List.Mix

Go main

Register.view /SpotLight

Var .Local

Select the ICD device prompt

Clear all windows

Select CPU

Choose JTAG frequency

Reset the target and enter debug mode

Load the application with option large
memory model and verify the process

Set program counter

Open source code window %))
Run and break at main()

Open register window *)

Open window with local variables *)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 7

Troubleshooting

No information available

FAQ

Please refer to hitps://support.lauterbach.com/kb.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 8

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

) Onchip Program Read/Write Data Value
Family Breakpoints Breakpoints Breakpoints Breakpoints
OAK 3 instruction 3 single address 1 single address 1
TeakLite 1 read/write or
TeakLite Il range as bit mask
Teak
TeakLite llI 2 instruction 2 single address 2 single address or | 1
1 read/write 1 range

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

9

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | AccessPorts | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort The DebugPort tab informs the debugger about the debug connector type
(default) and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 10

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.
SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)
<parameter>: CJTAGFLAGS <flags>
(DebugPort) CJTAGTCA <value>
CORE <core> <chip>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]
<parameter>: DRPOST <bits>
(JTAG) DRPRE <bits>

IRPOST <bits>
IRPRE <bits>

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DAP2DRPOST <bits>
DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

11

<parameter>:
(AccessPorts

)

<parameter>:
(COmponents)

AHBAPN.Base <address>
AHBAPN.HPROT [<value> | <name>]
AHBAPnN.Port <port>
AHBAPN.RESet

AHBAPN.view

AHBAPN.XtorName <name>

APBAPN.Base <address>
APBAPN.Port <port>
APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPNn.CacheFlags <value>
AXIAPNn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPNn.RESet

AXIAPNn.view

AXIAPNn.XtorName <name>

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPnN.CorePort <port>
JTAGAPN.RESet
JTAGAPN.view
JTAGAPN.XtorName <name>

MEMORYAPN.HPROT [<value> | <name>]
MEMORYAPN.Port <port>
MEMORYAPN.RESet

MEMORYAPN.view
MEMORYAPN.XtorName <name>

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTIl.Base <address>
CTI.Config <config>
CTI.RESet

CTl.view

ETB.ATBSource <source>
ETB.Base <address>

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

12

<parameter>:
(COmponents
cont.)

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETB.view

ETF.ATBSource <source>

ETF.Base <address>

ETF.Name <string>

ETF.NoFlush [ON | OFF]

ETF.RESet

ETF.Size <size>

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>

ETR.Base <address>

ETR.CATUBase <address>

ETR.Name <string>

ETR.NoFlush [ON | OFF]

ETR.RESet

ETR.Size <size>

ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETR.view

ETS.ATBSource <source>

ETS.Base <address>

ETS.Name <string>

ETS.NoFlush [ON | OFF]

ETS.RESet

ETS.Size <size>

ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet

FUNNEL.view

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 13

<parameter>:
(COmponents
cont.)

<parameter>:
(Deprecated)

<parameter>:
(Deprecated cont.)

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet

REP.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet

TPIU.Type [CoreSight | Generic]
TPIU.view

CTIBASE <address>
CTICONFIG <config>

DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>

ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>

FUNNEL2BASE <address>
FUNNELBASE <address>

HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>

TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

14

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Some commands need a certain CPU type selection (SYStem.CPU <type>) to become active and might
additionally depend on further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 15

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags>

CJTAGTCA <value>

CORE <core> <chip>

CORE <core> <chip>

(cont.)

Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.

Bit 1: Target has no “keeper”.

Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes.

Bit 4: Unlock cJTAG via APFC register.

Default: 0

Selects the TCA (TAP Controller Address) to address a device in a
c¢JTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 16

DEBUGPORT It specifies which probe cable shall be used e.g. “DebugCableA” or
[DebugCable0 | DebugCa- “DebugCableB”. At the moment only the CombiProbe allows to
bleA | DebugCableB] connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
[JTAG | SWD | CJTAG] “CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

DAP2SWDPTargetSel Device address of the second CoreSight DAP (DAP2) in case of a
<value> multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

. nTRST must have a pull-up resistor on the target.

. TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 17

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

... DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

... IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 18

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

J nTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 19

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 20

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from ARM which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

Memory ROM table
Access Port
(MEM-AP)

CoreSight

Component

JTAG
Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 21

Example 2: SoC-600

SoC-600

Debug

ROM table

{| CoreSight
. Component

Memory System 2

CoreSight
Component

Memory System 1

MING))

I
NO-9/ZE E

CoreSight
. Component

ROM table
(0] VREVIEM (expected) * [CoreSight

(va-v9/2¢€) da

H9-v9/Ce

. Component
CoreSight : Memory System 3

AHBAPN.HPROT [<value> | Default: 0.
<name>) Selects the value used for the HPROT bits in the Control Status
SYStem.Option.AHBH- Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
PROT [<value> | <name>] memory class.
(deprecated)
AXIAPNn.HPROT [<value> | Default: 0.
<name>) This option selects the value used for the HPROT bits in the Control
SYStem.Option.AXIHPROT Status Word (CSW) of a CoreSight AXI Access Port, when using
[<value> | <name>] (depre- the AXIl: memory class.
cated)
MEMORYAPN.HPROT Default: 0.
[<value> | <name>] This option selects the value used for the HPROT bits in the Control
SYStem.Option.MEMO- Status Word (CSW) of a CoreSight Memory Access Port, when
RYHPROT [<value> | using the E: memory class.

<name>] (deprecated)

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 22

AXIAPn.ACEEnable [ON |

OFF]

AXIAPn.CacheFlags

<value>

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain

bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-

>Domain) of an Access Port, when using the AXI: memory class.

value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>

DeviceSYStem

NonCacheableSYStem
ReadAllocateNonShareable
ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable

WriteAllocateOuterShareable

Description

=0x30:
=0x32:
=0x06:
=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:

ReadWriteAllocateNonShareable =0x0E:

ReadWriteAllocatelnnerShareable =0x1E:

ReadWriteAllocateOuterShareable =0x2E:

AHBAPN.XtorName

<name>

APBAPN.XtorName <name>

Domain=0x3, Cache=0x0
Domain=0x3, Cache=0x2
Domain=0x0, Cache=0x6
Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

APB bus transactor name that shall be used for “APBn:” access
class.

AHB bus transactor name that shall be used for “AHBN:” access
class.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

23

AXIAPn.XtorName <name>

DEBUGAPN.XtorName
<name>

MEMORYAPN.XtorName
<name>

... .RESet

. View

AXI bus transactor name that shall be used for “AXIn:” access
class.

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

Undo the configuration for this access port. This does not cause

a physical reset for the access port on the chip.

Opens a window showing the current configuration of the access

port.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace |

24

S0C-400 Specific Commands

AHBAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AHBACCESSPORT <port> used for “AHBnN:” access class. Default: <port>=0.

(deprecated)

APBAPnN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
APBACCESSPORT <port> used for “APBnN:” access class. Default: <port>=1.

(deprecated)

AXIAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AXIACCESSPORT <port> used for “AXIn;” access class. Default: port not available.
(deprecated)

DEBUGAPN.Port <port> AP access port number (0-255) of a SoC-400 system where the
DEBUGACCESSPORT debug register can be found (typically on APB). Used for “DAP:”
<port> (deprecated) access class. Default: <port>=1.

JTAGAPN.CorePort <port> JTAG-AP port number (0-7) connected to the core which shall be

COREJTAGPORT <port> debugged.

(deprecated)

JTAGAPN.Port <port> Access port number (0-255) of a SoC-400 system of the JTAG
JTAGACCESSPORT <port> Access Port.

(deprecated)

MEMORYAPN.Port <port> AP access port number (0-255) of a SoC-400 system where
MEMORYACCESSPORT system memory can be accessed even during runtime (typically
<port> (deprecated) an AHB). Used for “E:” access class while running, assuming

“SYStem.MemAccess DAP”. Default: <port>=0.

S0C-600 Specific Commands

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 25

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 26

<parameters> describing debug and trace “Components”

Each configuration can be done by a command in a script file as well. Then you do not need to enter

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

| DebugPort ” Jtag ” DAP " COmponent5|

’— Select components to display - v]
- CTI
Base 10:0x300 [.) confia [cROSSBREAK -

[Debugport ” 1TAG [Multitap ” DAP] Components

- New ent -

- Mew Component -
CcMI1

COREDEBUG

CTI

DRM

}". VStern.CONFI o onents .]
[Debugport ” 1TAG [Multitap ” DAP] Components

’— Mew Component - v]

—ETM

Base E]
S —————————

everything again on the next debug session. If you press the button with the three dots you get the

corresponding command in the command line where you can view and maybe copy it into a script file.

B: :|SYS. CONFIG.ETM. Base

ddress: DAP : 00000000

[

[okl | [<address> | [<values ||

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

27

You can have several of the following components: ETB, ETF, ETR, FUNNEL.
Example: FUNNEL1, FUNNEL2, FUNNELS,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which

is “EDAP:” in most cases.

... .ATBSource <source>

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example: Four cores with ETM modules.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.22 ETM.3 3

"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2

The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELSs.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 28

... .BASE <address>

... .Name

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETM, ETR
a list of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 29

... .NoFlush [ON | OFF]

... .RESet

... .Size <size>

.... .STackMode [NotAvail-
bale | TRGETM | FULLTIDRM
| NOTSET | FULLSTORP |
FULLCTI]

... .view

Example 2: Cluster ETFs:

1. Configures the ETF base address and access for each core

SYStem.CONFIG.ETF.Base DAP:0x80001000 \
APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs

SYStem.CONFIG.ETF.Name "“cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

Deactivates an ETB flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for Tl devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 30

... .TracelD <id>

CTl.Config <type>

ETR.CATUBase <address>

FUNNEL.Name <string>

Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TracelD <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TracelD <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostlnit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

Base address of the CoreSight Address Translation Unit (CATU).

It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 31

FUNNEL.PROGrammable Default is ON. If set to ON the peripheral is controlled by

[ON | OFF] TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the ARM CoreSight
manuals. WPT is a NXP proprietary trace module.

TPIU.Type [CoreSight | Selects the type of the Trace Port Interface Unit (TPIU).
Generic]
CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

COREDEBUG.Base <address>

COREDEBUG.RESet

Core Debug Register - ARM debug register

Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTl.Base <address>

CTl.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 | QV1]

CTI.RESet

Cross Trigger Interface (CTI) - ARM CoreSight module

If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>

ETB.Base <address>

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 32

ETF.ATBSource <source>

ETF.Base <address>

ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>

ETM.RESet

Embedded Trace Macrocell (ETM) - ARM CoreSight module

Program Trace Macrocell (PTM) - ARM CoreSight module

Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>

ETR.CATUBase <address>

ETR.Base <address>

ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module

Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.ATBSource <sourcelist>

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HTM.Base <address>

HTM.RESet

HTM.Type [CoreSight | WPT]

AMBA AHB Trace Macrocell (HTM) - ARM CoreSight module
Trace source delivering trace data of access to an AHB bus.

TPIU.ATBSource <source>

TPIU.Base <address>

TPIU.RESet

TPIU.Type [CoreSight | Generic]

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 33

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

... BASE <address>

... PORT <port>

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components CORE, CTl, ETB, ETF, ETM, ETR a list of
base addresses to specify one component per core.

For a list of possible components including a short description
see Components and Available Commands.

Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 34

CTICONFIG <type>

view

Deprecated and New Commands

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS3: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>:
(Deprecated)

CTIBASE <address>
CTICONFIG <type>
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FUNNEL2BASE <address>

<parameter>:
(New)

CTl.Base <address>

CTl.Config <type>
COREDEBUG.Base <address>
ETB1.Base <address>
FUNNEL4.Base <address>
ETM.Base <address>
FUNNEL4.ATBSource ETM <port> (1)
FUNNEL2.ATBSource ETM <port> (1)
FUNNEL1.ATBSource ETM <port> (1)
FUNNEL3.ATBSource ETM <port> (1)
FUNNEL2.Base <address>

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 35

FUNNELBASE <address> FUNNEL1.Base <address>

HTMBASE <address> HTM.Base <address>
HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)
HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)
HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)
HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)
TPIUBASE <address> TPIU.Base <address>
TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state

(1) Further “<component>.ATBSource <source>" commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: OAK | PMB8870P | PMB8870S (OAK cores)

TeakLiteDev-A | TeakLiteDev-B | TeakLiteDev-C | PMB8875 | 88i6523
(TeakLite cores)

TEAK-REVA | TEAK-RTL2_0 | TEAK_REVB | XPERTTEAK (Teak cores)

Selects the processor type. If your ASIC is not listed, select the type of the integrated core.

SYStem.JtagClock

Define JTAG clock

Format:

SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

Default: 1 MHz

Selects the frequency for the debug interface.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 36

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.
If the system is locked, no access to the debug port will be performed by the debugger. While locked, the

debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | StopAndGo | Denied | DAP
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

DAP Memory access is done via CoreSight Debug Access Port (DAP).

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 37

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>
SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up
Attach
Go
NoDebug

Down Disables the debugger (default). The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug The debugger gets tristated. The state of the CPU remains unchanged. Debug
mode is not active. In this mode the target behaves as if the debugger is not
connected.

Up Resets the target, sets the CPU to debug mode and stops the CPU.

Attach No reset happens, the mode of the core (running or halted) does not change.
The debug port will be initialized. After this command, the user program can be
stopped e.g. with the Break command.

Go Resets the target, sets the CPU to debug mode and starts the program
execution. After this command, the user program can be stopped e.g. with the
Break command.

StandBy Not available for CEVA-Oak/Teak/TeakLite.

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
Format: SYStem.Option.AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPN.HPROT instead.
Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 38

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSWI[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory

class.
SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.
Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 39

SYStem.Option.BackPC Keep core running except for debugger access

Format: SYStem.Option.BackPC <address>

Default: 0x0 which equals OFF.

If enabled, the core is hold in running state when debugger does not access the core. This option is only
needed for multi core debugging of some special cases. <address> has to be a RAM address the debugger

can use for the idle loop.

SYStem.Option.BASE Setup MAILBOX or MMIO base address

Format: SYStem.Option.BASE <base>

Default: 0x4000.

The base address specifies the Mailbox address for TeakLite Rev A/B or Teak Rev A cores. For newer
revisions like TeakLite Rev C or Teak Rev B cores this is the MMIO base address.

SYStem.Option.BigEndian Enable big endian mode
Format: SYStem.Option.BigEndian [ON | OFF]
Default: OFF.

Switches the endianness of memory access to Big Endian.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 40

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 41

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 42

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace | 43

SYStem.Option.EnReset Allow the debugger to reset the processor

Format: SYStem.Option.EnReset [ON | OFF]

Default: ON.

If this option is disabled, the debugger will never reset the processor when establishing a debug connection.
This is only needed for the XGOLD213 ES1.

SYStem.Option.EXTDBGTRAP Writing debug trap in external memory

Format: SYStem.Option.EXTDBGTRAP [ON | OFF]

When this option is set to OFF, the debug trap is not written in external program memory. Debug trap will
only be written in internal memory.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping
and stepping from software breakpoints.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 44

SYStem.Option.MonBase Set up monitor base address

Format: SYStem.Option.MonBase <base>

Default: 0x2100.

The base address specifies the monitor base address where the monitor has to be loaded to. This option is
not required for core implementations with ROM monitor.

General Restrictions

Setting the In cases where the program counter consists of the PC register and program
PC page extension bits, the program counter can be set by the register PP.

SYStem.Option.MONITOR Define user-specific debug monitor
Format: SYStem.Option.MONITOR <file>

This option allows to define a user-specific debug monitor. Only needed for very special cases.

SYStem.Option.PALLADIUM Extend debugger timeout

Format: SYStem.Option.PALLADIUM [ON | OFF] (deprecated)
Use SYStem.CONFIG.DEBUGTIMESCALE instead.

Default: OFF.

The debugger uses longer timeouts as might be needed when used on a chip emulation system like the
Palladium from Cadence.

This option will only extend some timeouts by a fixed factor. It is recommended to extend all timeouts. This
can be done with SYStem.CONFIG.DEBUGTIMESCALE.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 45

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Format: SYStem.Option.RisingTDO [ON | OFF]

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

SYStem.Option.RomMon Disable download of monitor routine

Format: SYStem.Option.RomMon [ON | OFF]

Disables the download of the monitor routine into the RAM of the chip.

Default: OFF
ON If the monitor routine used for communicating with the debugger is in the ROM
of the chip, then set the command to ON.
OFF If there is no on-chip monitor routine, then set the command to OFF to load the
monitor routine into the RAM of the chip.
SYStem.Option.TKLMON Use TeakLite monitor for TeakLite-Il
Format: SYStem.Option.TKLMON [ON | OFF]
Default: OFF.

This option allows to use the TeakLite monitor for TeakLite-Il.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 46

ETM Commands

ETM.AGU32 Data trace mode for AGU

Format: ETM.AGU32 [ON | OFF]

Data trace mode for AGU. For details see Ceva ETM specifications.

TeakLite only.

ETM.AGU64 Data trace mode for AGU

Format: ETM.AGU64 [ON | OFF]

Data trace mode for AGU. For details see Ceva ETM specifications.

TeakLite only.

ETM.ISTACK Interrupt stack operation trace

Format: ETM.ISTACK [ON | OFF]

Traces push/pop from interrupt entry and return.

ETM.RWM Read-write-modify

Format: ETM.ISTACK [ON | OFF]

If set to ON, trace only write path of read-write-modify sequence.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 47

ETM.WrapperFilter Global breakpoint enable

Format: ETM.WrapperFilter [ON | OFF]

Disables or enabled all data and program breakpoints at once.

Default: ON.
ETM.WrapperSTALL Enable/disable wrapper stall
Format: ETM.WrapperSTALL [ON | OFF]
Default: ON.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 48

TrOnchip Commands

The OCEM registers can be used to break on several conditions.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set Set on-chip trigger
Format: TrOnchip.Set

TrOnchip.Set.BKRE Trigger on block repeat loop
Format: TrOnchip.Set.BKRE [ON | OFF]

When enabled indicates the breakpoint upon returning to the beginning of the block repeat loop.

TrOnchip.Set.BRE Trigger on jump

Format: TrOnchip.Set.BRE [ON | OFF]

When enabled, indicates the breakpoint each time the program jumps instead of executing the next
sequential address.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 49

TrOnchip.Set.EXTRE Trigger on external register read

Format: TrOnchip.Set.EXTRE [ON | OFF]

When enabled, enables the breakpoint as a result of external register read transaction.

TrOnchip.Set. EXTWE Trigger on external register write

Format: TrOnchip.Set.EXTWE [ON | OFF]

When enabled, enables the breakpoint as a result of external register write transaction.

TrOnchip.Set.ILLE Trigger on illegal instruction access

Format: TrOnchip.Set.ILLE [ON | OFF]

When enabled (default), the on-chip breakpoint for illegal instruction access is activated.

TrOnchip.Set.INTE Trigger on interrupt

Format: TrOnchip.Set.INTE [ON | OFF]

When enabled, indicates the breakpoint upon detection of the interrupt service routine execution.

TrOnchip.Set.TBFE Trigger on trace buffer full

Format: TrOnchip.Set.TBFE [ON | OFF]

When set, indicates the breakpoint as a result of the program flow trace buffer being filled.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 50

TrOnchip.state Display “Trigger-Onchip” dialog

Format: TrOnchip.state

Control panel to configure the on-chip breakpoint registers.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 51

JTAG Connector

This connector is defined by ARM and also used by our OAK/TeakLite/Teak debuggers La-7774 and LA-
7789 for easy support of multi-core processors with ARMx and OAK/TeakLite/Teak core. It is planned to

make an additional adapter to 9 pin and 10 pin CEVA connectors.

Signal
VREF-DEBUG
TRST-

TDI
TMSITMSCISWDIO
TCKITCKCISWCLK
RTCK

TDOI-ISWO
RESET-

DBGRQ

DBGACK

Pins 11, 17 and 19 are not used.

Pin Pin Signal
1 2 VSUPPLY (not used)
3 4 GND
5 6 GND
7 8 GND
9 10 GND
11 12 GND
13 14 GND
15 16 GND
17 18 GND
19 20 GND

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization

(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of

the debugger.

©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

52

Memory Classes

Memory Class Description
D Data memory
P Program memory

©1989-2024 Lauterbach CEVA-Oak/Teak/TeakLite Debugger and Trace | 53

	CEVA-Oak/Teak/TeakLite Debugger and Trace
	Brief Overview of Documents for New Users
	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.BackPC Keep core running except for debugger access
	SYStem.Option.BASE Setup MAILBOX or MMIO base address
	SYStem.Option.BigEndian Enable big endian mode
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.EnReset Allow the debugger to reset the processor
	SYStem.Option.EXTDBGTRAP Writing debug trap in external memory
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MonBase Set up monitor base address
	General Restrictions
	SYStem.Option.MONITOR Define user-specific debug monitor
	SYStem.Option.PALLADIUM Extend debugger timeout
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.RomMon Disable download of monitor routine
	SYStem.Option.TKLMON Use TeakLite monitor for TeakLite-II

	ETM Commands
	ETM.AGU32 Data trace mode for AGU
	ETM.AGU64 Data trace mode for AGU
	ETM.ISTACK Interrupt stack operation trace
	ETM.RWM Read-write-modify
	ETM.WrapperFilter Global breakpoint enable
	ETM.WrapperSTALL Enable/disable wrapper stall

	TrOnchip Commands
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Set on-chip trigger
	TrOnchip.Set.BKRE Trigger on block repeat loop
	TrOnchip.Set.BRE Trigger on jump
	TrOnchip.Set.EXTRE Trigger on external register read
	TrOnchip.Set.EXTWE Trigger on external register write
	TrOnchip.Set.ILLE Trigger on illegal instruction access
	TrOnchip.Set.INTE Trigger on interrupt
	TrOnchip.Set.TBFE Trigger on trace buffer full
	TrOnchip.state Display “Trigger-Onchip” dialog
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	JTAG Connector
	Memory Classes

