
MANUAL

CEVA-Oak/Teak/TeakLite
Debugger and Trace

CEVA-Oak/Teak/TeakLite Debugger and Trace

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 CEVA-Oak/Teak/TeakLite .. 

 CEVA-Oak/Teak/TeakLite Debugger and Trace ... 1

 Brief Overview of Documents for New Users ... 4

 Warning .. 5

 Quick Start ... 6

 Troubleshooting .. 8

 FAQ ... 8

 CPU Specific Implementations .. 9

 Breakpoints 9

 Software Breakpoints 9

 On-chip Breakpoints 9

 CPU specific SYStem Settings ... 10

 SYStem.CONFIG.state Display target configuration 10

 SYStem.CONFIG Configure debugger according to target topology 11

 <parameters> describing the “DebugPort” 16

 <parameters> describing the “JTAG” scan chain and signal behavior 18

 <parameters> configuring a CoreSight Debug Access Port “AP” 21

 <parameters> describing debug and trace “Components” 27

 <parameters> which are “Deprecated” 34

 SYStem.CPU Select the used CPU 36

 SYStem.JtagClock Define JTAG clock 36

 SYStem.LOCK Lock and tristate the debug port 37

 SYStem.MemAccess Select run-time memory access method 37

 SYStem.Mode Establish the communication with the target 38

 SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 38

 SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 39

 SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 39

 SYStem.Option.AXIHPROT Select AXI-AP HPROT bits 39

 SYStem.Option.BackPC Keep core running except for debugger access 40
CEVA-Oak/Teak/TeakLite Debugger and Trace | 2©1989-2024 Lauterbach

 SYStem.Option.BASE Setup MAILBOX or MMIO base address 40

 SYStem.Option.BigEndian Enable big endian mode 40

 SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 41

 SYStem.Option.DAPNOIRCHECK No DAP instruction register check 41

 SYStem.Option.DAPREMAP Rearrange DAP memory map 42

 SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 42

 SYStem.Option.DEBUGPORTOptions Options for debug port handling 43

 SYStem.Option.EnReset Allow the debugger to reset the processor 44

 SYStem.Option.EXTDBGTRAP Writing debug trap in external memory 44

 SYStem.Option.IMASKASM Disable interrupts while single stepping 44

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 44

 SYStem.Option.MonBase Set up monitor base address 45

 General Restrictions 45

 SYStem.Option.MONITOR Define user-specific debug monitor 45

 SYStem.Option.PALLADIUM Extend debugger timeout 45

 SYStem.Option.RisingTDO Target outputs TDO on rising edge 46

 SYStem.Option.RomMon Disable download of monitor routine 46

 SYStem.Option.TKLMON Use TeakLite monitor for TeakLite-II 46

 ETM Commands .. 47

 ETM.AGU32 Data trace mode for AGU 47

 ETM.AGU64 Data trace mode for AGU 47

 ETM.ISTACK Interrupt stack operation trace 47

 ETM.RWM Read-write-modify 47

 ETM.WrapperFilter Global breakpoint enable 48

 ETM.WrapperSTALL Enable/disable wrapper stall 48

 TrOnchip Commands .. 49

 TrOnchip.RESet Set on-chip trigger to default state 49

 TrOnchip.Set Set on-chip trigger 49

 TrOnchip.Set.BKRE Trigger on block repeat loop 49

 TrOnchip.Set.BRE Trigger on jump 49

 TrOnchip.Set.EXTRE Trigger on external register read 50

 TrOnchip.Set.EXTWE Trigger on external register write 50

 TrOnchip.Set.ILLE Trigger on illegal instruction access 50

 TrOnchip.Set.INTE Trigger on interrupt 50

 TrOnchip.Set.TBFE Trigger on trace buffer full 50

 TrOnchip.state Display “Trigger-Onchip” dialog 51

 TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 51

 JTAG Connector .. 52

 Memory Classes .. 53
CEVA-Oak/Teak/TeakLite Debugger and Trace | 3©1989-2024 Lauterbach

CEVA-Oak/Teak/TeakLite Debugger and Trace

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 4©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 5©1989-2024 Lauterbach

Quick Start

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

The device prompt B:: is normally already selected in the TRACE32 command line. If this is not the
case, enter B:: to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Set the JTAG frequency

The default value is 1.0 MHz.

4. Inform the debugger about read-only address ranges (ROM, FLASH).

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM. The sections of FLASH
and ROM depend on the specific CPU and its chip selects.

5. Enter debug mode.

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

b::

RESet

SYStem.CPU <cpu_type>

SYStem.Option.BASE <base>

SYStem.Option.MonBase <base>

SYStem.JtagClock <frequency>

MAP.BOnchip <range>

SYStem.Up
CEVA-Oak/Teak/TeakLite Debugger and Trace | 6©1989-2024 Lauterbach

6. Load the program.

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Commands Reference”.

A typical start sequence for the TeakLiteDev-C is shown below. This sequence can be written to a
PRACTICE script file (*.cmm, ASCII format) and executed with the command DO <file>. Other sequences
can be found in the ~~/demo/... directory.

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

Data.LOAD.COFF program.a ; COFF specifies the format, program.a
; is the file name)

B:: ; Select the ICD device prompt

WinClear ; Clear all windows

SYS.CPU TeakLiteDev-C ; Select CPU

SYS.JC 10MHz ; Choose JTAG frequency

SYStem.Up ; Reset the target and enter debug mode

Data.LOAD.COFF demo.a ; Load the application with option large
; memory model and verify the process

Register.Set PC start ; Set program counter

List.Mix ; Open source code window *)

Go main ; Run and break at main()

Register.view /SpotLight ; Open register window *)

Var.Local ; Open window with local variables *)
CEVA-Oak/Teak/TeakLite Debugger and Trace | 7©1989-2024 Lauterbach

Troubleshooting

No information available

FAQ

Please refer to https://support.lauterbach.com/kb.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 8©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

• On-chip breakpoints: Total amount of available on-chip breakpoints.

• Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

• Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

• Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

Family
Onchip
Breakpoints

Program
Breakpoints

Read/Write
Breakpoints

Data Value
Breakpoints

OAK
TeakLite
TeakLite II
Teak

3 instruction
1 read/write

3 single address 1 single address
or
range as bit mask

1

TeakLite III 2 instruction
1 read/write

2 single address 2 single address or
1 range

1

CEVA-Oak/Teak/TeakLite Debugger and Trace | 9©1989-2024 Lauterbach

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | AccessPorts | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector type
and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in order
to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 10©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CJTAGFLAGS <flags>
CJTAGTCA <value>
CORE <core> <chip>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

DRPOST <bits>
DRPRE <bits>
IRPOST<bits>
IRPRE <bits>

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>

DAP2DRPOST <bits>
DAP2DRPRE <bits>
DAP2IRPOST <bits>
DAP2IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 11©1989-2024 Lauterbach

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XtorName <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config <config>
CTI.RESet
CTI.view

ETB.ATBSource <source>
ETB.Base <address>
CEVA-Oak/Teak/TeakLite Debugger and Trace | 12©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETF.view

ETM.Base <address>
ETM.RESet
ETM.view

ETR.ATBSource <source>
ETR.Base <address>
ETR.CATUBase <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
FUNNEL.view
CEVA-Oak/Teak/TeakLite Debugger and Trace | 13©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet
REP.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view

<parameter>:
(Deprecated)

CTIBASE <address>
CTICONFIG <config>

<parameter>:
(Deprecated cont.)

DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>

ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>

FUNNEL2BASE <address>
FUNNELBASE <address>

HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>

TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
CEVA-Oak/Teak/TeakLite Debugger and Trace | 14©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Some commands need a certain CPU type selection (SYStem.CPU <type>) to become active and might
additionally depend on further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 15©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0

CJTAGTCA <value> Selects the TCA (TAP Controller Address) to address a device in a
cJTAG Star-2 configuration. The Star-2 configuration requires a
unique TCA for each device on the debug port.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).
CEVA-Oak/Teak/TeakLite Debugger and Trace | 16©1989-2024 Lauterbach

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

DAP2SWDPTargetSel
<value>

Device address of the second CoreSight DAP (DAP2) in case of a
multidrop serial wire debug port (SWD).

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 17©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 18©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 19©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 20©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from ARM which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
CEVA-Oak/Teak/TeakLite Debugger and Trace | 21©1989-2024 Lauterbach

Example 2: SoC-600

AHBAPn.HPROT [<value> |
<name>]
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAPn.HPROT [<value> |
<name>]
SYStem.Option.AXIHPROT
[<value> | <name>] (depre-
cated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

MEMORYAPn.HPROT
[<value> | <name>]
SYStem.Option.MEMO-
RYHPROT [<value> |
<name>] (deprecated)

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
CEVA-Oak/Teak/TeakLite Debugger and Trace | 22©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AXIAPn.ACEEnable [ON |
OFF]

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

AHBAPn.XtorName
<name>

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 23©1989-2024 Lauterbach

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 24©1989-2024 Lauterbach

SoC-400 Specific Commands

SoC-600 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 25©1989-2024 Lauterbach

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 26©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 27©1989-2024 Lauterbach

You can have several of the following components: ETB, ETF, ETR, FUNNEL.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 28©1989-2024 Lauterbach

… .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETM, ETR
a list of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 29©1989-2024 Lauterbach

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

... .NoFlush [ON | OFF] Deactivates an ETB flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

... .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

.... .STackMode [NotAvail-
bale | TRGETM | FULLTIDRM
| NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 30©1989-2024 Lauterbach

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 31©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - ARM debug register
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 | QV1]
CTI.RESet
Cross Trigger Interface (CTI) - ARM CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - ARM CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

HTM.Type [CoreSight | WPT] Selects the type of the AMBA AHB Trace Macrocell (HTM).
CoreSight is the type as described in the ARM CoreSight
manuals. WPT is a NXP proprietary trace module.

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 32©1989-2024 Lauterbach

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - ARM CoreSight module
Program Trace Macrocell (PTM) - ARM CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>
ETR.CATUBase <address>
ETR.Base <address>
ETR.RESet
Embedded Trace Router (ETR) - ARM CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - ARM CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - ARM CoreSight module
This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

HTM.Base <address>
HTM.RESet
HTM.Type [CoreSight | WPT]
AMBA AHB Trace Macrocell (HTM) - ARM CoreSight module
Trace source delivering trace data of access to an AHB bus.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - ARM CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
CEVA-Oak/Teak/TeakLite Debugger and Trace | 33©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components CORE, CTI, ETB, ETF, ETM, ETR a list of
base addresses to specify one component per core.

For a list of possible components including a short description
see Components and Available Commands.

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

For a list of possible components including a short description
see Components and Available Commands.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 34©1989-2024 Lauterbach

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

<parameter>:
(Deprecated)

<parameter>:
(New)

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FUNNEL2BASE <address> FUNNEL2.Base <address>
CEVA-Oak/Teak/TeakLite Debugger and Trace | 35©1989-2024 Lauterbach

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.CPU Select the used CPU

Selects the processor type. If your ASIC is not listed, select the type of the integrated core.

SYStem.JtagClock Define JTAG clock

Default: 1 MHz

Selects the frequency for the debug interface.

FUNNELBASE <address> FUNNEL1.Base <address>

HTMBASE <address> HTM.Base <address>

HTMETBFUNNELPORT <port> FUNNEL4.ATBSource HTM <port> (1)

HTMFUNNEL2PORT <port> FUNNEL2.ATBSource HTM <port> (1)

HTMFUNNELPORT <port> FUNNEL1.ATBSource HTM <port> (1)

HTMTPIUFUNNELPORT <port> FUNNEL3.ATBSource HTM <port> (1)

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state

Format: SYStem.CPU <cpu>

<cpu>: OAK | PMB8870P | PMB8870S (OAK cores)

TeakLiteDev-A | TeakLiteDev-B | TeakLiteDev-C | PMB8875 | 88i6523
(TeakLite cores)

TEAK-REVA | TEAK-RTL2_0 | TEAK_REVB | XPERTTEAK (Teak cores)

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)
CEVA-Oak/Teak/TeakLite Debugger and Trace | 36©1989-2024 Lauterbach

SYStem.LOCK Lock and tristate the debug port

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

SYStem.MemAccess Select run-time memory access method
.

Format: SYStem.LOCK [ON | OFF]

Format: SYStem.MemAccess Enable | StopAndGo | Denied | DAP
SYStem.ACCESS (deprecated)

Enable
CPU (deprecated)

Memory access during program execution to target is enabled.

Denied (default) Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

DAP Memory access is done via CoreSight Debug Access Port (DAP).
CEVA-Oak/Teak/TeakLite Debugger and Trace | 37©1989-2024 Lauterbach

SYStem.Mode Establish the communication with the target

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
Up
Attach
Go
NoDebug

Down Disables the debugger (default). The state of the CPU remains unchanged. The
JTAG port is tristated.

NoDebug The debugger gets tristated. The state of the CPU remains unchanged. Debug
mode is not active. In this mode the target behaves as if the debugger is not
connected.

Up Resets the target, sets the CPU to debug mode and stops the CPU.

Attach No reset happens, the mode of the core (running or halted) does not change.
The debug port will be initialized. After this command, the user program can be
stopped e.g. with the Break command.

Go Resets the target, sets the CPU to debug mode and starts the program
execution. After this command, the user program can be stopped e.g. with the
Break command.

StandBy Not available for CEVA-Oak/Teak/TeakLite.

Format: SYStem.Option.AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPn.HPROT instead.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 38©1989-2024 Lauterbach

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory
class.

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 39©1989-2024 Lauterbach

SYStem.Option.BackPC Keep core running except for debugger access

Default: 0x0 which equals OFF.

If enabled, the core is hold in running state when debugger does not access the core. This option is only
needed for multi core debugging of some special cases. <address> has to be a RAM address the debugger
can use for the idle loop.

SYStem.Option.BASE Setup MAILBOX or MMIO base address

Default: 0x4000.

The base address specifies the Mailbox address for TeakLite Rev A/B or Teak Rev A cores. For newer
revisions like TeakLite Rev C or Teak Rev B cores this is the MMIO base address.

SYStem.Option.BigEndian Enable big endian mode

Default: OFF.

Switches the endianness of memory access to Big Endian.

Format: SYStem.Option.BackPC <address>

Format: SYStem.Option.BASE <base>

Format: SYStem.Option.BigEndian [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 40©1989-2024 Lauterbach

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 41©1989-2024 Lauterbach

SYStem.Option.DAPREMAP Rearrange DAP memory map

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP

Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 42©1989-2024 Lauterbach

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

SWDTRSTKEEP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation
CEVA-Oak/Teak/TeakLite Debugger and Trace | 43©1989-2024 Lauterbach

SYStem.Option.EnReset Allow the debugger to reset the processor

Default: ON.

If this option is disabled, the debugger will never reset the processor when establishing a debug connection.
This is only needed for the XGOLD213 ES1.

SYStem.Option.EXTDBGTRAP Writing debug trap in external memory

When this option is set to OFF, the debug trap is not written in external program memory. Debug trap will
only be written in internal memory.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step. For 56800E processors IMASKASM ON is necessary for HLL stepping
and stepping from software breakpoints.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

Format: SYStem.Option.EnReset [ON | OFF]

Format: SYStem.Option.EXTDBGTRAP [ON | OFF]

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 44©1989-2024 Lauterbach

SYStem.Option.MonBase Set up monitor base address

Default: 0x2100.

The base address specifies the monitor base address where the monitor has to be loaded to. This option is
not required for core implementations with ROM monitor.

General Restrictions

SYStem.Option.MONITOR Define user-specific debug monitor

This option allows to define a user-specific debug monitor. Only needed for very special cases.

SYStem.Option.PALLADIUM Extend debugger timeout

Default: OFF.

The debugger uses longer timeouts as might be needed when used on a chip emulation system like the
Palladium from Cadence.

This option will only extend some timeouts by a fixed factor. It is recommended to extend all timeouts. This
can be done with SYStem.CONFIG.DEBUGTIMESCALE.

Format: SYStem.Option.MonBase <base>

Setting the
PC

In cases where the program counter consists of the PC register and program
page extension bits, the program counter can be set by the register PP.

Format: SYStem.Option.MONITOR <file>

Format: SYStem.Option.PALLADIUM [ON | OFF] (deprecated)
Use SYStem.CONFIG.DEBUGTIMESCALE instead.
CEVA-Oak/Teak/TeakLite Debugger and Trace | 45©1989-2024 Lauterbach

SYStem.Option.RisingTDO Target outputs TDO on rising edge

Default: OFF.

Bug fix for chips which output the TDO on the rising edge instead of on the falling.

SYStem.Option.RomMon Disable download of monitor routine

Disables the download of the monitor routine into the RAM of the chip.

Default: OFF

SYStem.Option.TKLMON Use TeakLite monitor for TeakLite-II

Default: OFF.

This option allows to use the TeakLite monitor for TeakLite-II.

Format: SYStem.Option.RisingTDO [ON | OFF]

Format: SYStem.Option.RomMon [ON | OFF]

ON If the monitor routine used for communicating with the debugger is in the ROM
of the chip, then set the command to ON.

OFF If there is no on-chip monitor routine, then set the command to OFF to load the
monitor routine into the RAM of the chip.

Format: SYStem.Option.TKLMON [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 46©1989-2024 Lauterbach

ETM Commands

ETM.AGU32 Data trace mode for AGU

Data trace mode for AGU. For details see Ceva ETM specifications.

TeakLite only.

ETM.AGU64 Data trace mode for AGU

Data trace mode for AGU. For details see Ceva ETM specifications.

TeakLite only.

ETM.ISTACK Interrupt stack operation trace

Traces push/pop from interrupt entry and return.

ETM.RWM Read-write-modify

If set to ON, trace only write path of read-write-modify sequence.

Format: ETM.AGU32 [ON | OFF]

Format: ETM.AGU64 [ON | OFF]

Format: ETM.ISTACK [ON | OFF]

Format: ETM.ISTACK [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 47©1989-2024 Lauterbach

ETM.WrapperFilter Global breakpoint enable

Disables or enabled all data and program breakpoints at once.

Default: ON.

ETM.WrapperSTALL Enable/disable wrapper stall

Default: ON.

Format: ETM.WrapperFilter [ON | OFF]

Format: ETM.WrapperSTALL [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 48©1989-2024 Lauterbach

TrOnchip Commands

The OCEM registers can be used to break on several conditions.

TrOnchip.RESet Set on-chip trigger to default state

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.Set Set on-chip trigger

TrOnchip.Set.BKRE Trigger on block repeat loop

When enabled indicates the breakpoint upon returning to the beginning of the block repeat loop.

TrOnchip.Set.BRE Trigger on jump

When enabled, indicates the breakpoint each time the program jumps instead of executing the next
sequential address.

Format: TrOnchip.RESet

Format: TrOnchip.Set

Format: TrOnchip.Set.BKRE [ON | OFF]

Format: TrOnchip.Set.BRE [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 49©1989-2024 Lauterbach

TrOnchip.Set.EXTRE Trigger on external register read

When enabled, enables the breakpoint as a result of external register read transaction.

TrOnchip.Set.EXTWE Trigger on external register write

When enabled, enables the breakpoint as a result of external register write transaction.

TrOnchip.Set.ILLE Trigger on illegal instruction access

When enabled (default), the on-chip breakpoint for illegal instruction access is activated.

TrOnchip.Set.INTE Trigger on interrupt

When enabled, indicates the breakpoint upon detection of the interrupt service routine execution.

TrOnchip.Set.TBFE Trigger on trace buffer full

When set, indicates the breakpoint as a result of the program flow trace buffer being filled.

Format: TrOnchip.Set.EXTRE [ON | OFF]

Format: TrOnchip.Set.EXTWE [ON | OFF]

Format: TrOnchip.Set.ILLE [ON | OFF]

Format: TrOnchip.Set.INTE [ON | OFF]

Format: TrOnchip.Set.TBFE [ON | OFF]
CEVA-Oak/Teak/TeakLite Debugger and Trace | 50©1989-2024 Lauterbach

TrOnchip.state Display “Trigger-Onchip” dialog

Control panel to configure the on-chip breakpoint registers.

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

Format: TrOnchip.state

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead
CEVA-Oak/Teak/TeakLite Debugger and Trace | 51©1989-2024 Lauterbach

JTAG Connector

This connector is defined by ARM and also used by our OAK/TeakLite/Teak debuggers La-7774 and LA-
7789 for easy support of multi-core processors with ARMx and OAK/TeakLite/Teak core. It is planned to
make an additional adapter to 9 pin and 10 pin CEVA connectors.

Pins 11, 17 and 19 are not used.

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization
(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of
the debugger.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
CEVA-Oak/Teak/TeakLite Debugger and Trace | 52©1989-2024 Lauterbach

Memory Classes

Memory Class Description

D Data memory

P Program memory
CEVA-Oak/Teak/TeakLite Debugger and Trace | 53©1989-2024 Lauterbach

	CEVA-Oak/Teak/TeakLite Debugger and Trace
	Brief Overview of Documents for New Users
	Warning
	Quick Start
	Troubleshooting
	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.BackPC Keep core running except for debugger access
	SYStem.Option.BASE Setup MAILBOX or MMIO base address
	SYStem.Option.BigEndian Enable big endian mode
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.EnReset Allow the debugger to reset the processor
	SYStem.Option.EXTDBGTRAP Writing debug trap in external memory
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MonBase Set up monitor base address
	General Restrictions
	SYStem.Option.MONITOR Define user-specific debug monitor
	SYStem.Option.PALLADIUM Extend debugger timeout
	SYStem.Option.RisingTDO Target outputs TDO on rising edge
	SYStem.Option.RomMon Disable download of monitor routine
	SYStem.Option.TKLMON Use TeakLite monitor for TeakLite-II

	ETM Commands
	ETM.AGU32 Data trace mode for AGU
	ETM.AGU64 Data trace mode for AGU
	ETM.ISTACK Interrupt stack operation trace
	ETM.RWM Read-write-modify
	ETM.WrapperFilter Global breakpoint enable
	ETM.WrapperSTALL Enable/disable wrapper stall

	TrOnchip Commands
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.Set Set on-chip trigger
	TrOnchip.Set.BKRE Trigger on block repeat loop
	TrOnchip.Set.BRE Trigger on jump
	TrOnchip.Set.EXTRE Trigger on external register read
	TrOnchip.Set.EXTWE Trigger on external register write
	TrOnchip.Set.ILLE Trigger on illegal instruction access
	TrOnchip.Set.INTE Trigger on interrupt
	TrOnchip.Set.TBFE Trigger on trace buffer full
	TrOnchip.state Display “Trigger-Onchip” dialog
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	JTAG Connector
	Memory Classes

