LAUTERBACH A

MicroBlaze Debugger and Trace

MicroBlaze Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 Documentscccccceiiiiiemmniinssesmsninssesss s ssssssssssssnnns
ICD In-Circuit Debuggercccoiiiremmninnsmmnnnnsmesssssenenns
Processor Architecture Manualsccceomriiiimnniniinanes
MicroBlazecccccccmimiiremmrmnnnn s s
MicroBlaze Debugger and Tracecccccoeiiiiummennnnns
1= (o

General Note ..o

Introductioncceiiiiiiiie e ————

Brief Overview of Documents for New Users
Demo and Start-up Scripts

MicroBlaze Debug and Trace Features Supported by TRACE32cccooccmrrnivnrnrnnnanes

ESD Protectionccriiiiiiiiiissesecc e
Quick Start of the Debuggerccoccvvemicerriinsinnns

Quick-Start of the Real-Time Tracecccccccceveveeenns

Compiling Software with Debug Information

Troubleshootingcccccrivimninin e

SYStem.Up Errors

Displaying MicroBlaze Core Configuration

CPU specific Implementationscccceeermrrininnn.

Memory Accesses Causing Bus Errors
Breakpoints

Software Breakpoints

On-chip Breakpoints

Breakpoints in ROM

Example for Breakpoints
SYStem.Option.AHBHPROT
SYStem.Option.AXIACEEnable
SYStem.Option. AXICACHEFLAGS
SYStem.Option.AXIHPROT

Select AHB-AP HPROT bits
ACE enable flag of the AXI-AP
Configure AXI-AP cache bits
Select AXI-AP HPROT bits

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace

SYStem.Option.BrkHandler Control writing of software break handler 21
SYStem.Option.BrkVector Configures an alternative breakvector 22
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 23
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 23
SYStem.Option.DAPREMAP Rearrange DAP memory map 24
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 24
SYStem.Option.DEBUGPORTOptions Options for debug port handling 25
SYStem.Option.IMASKASM Interrupt disable on ASM 26
SYStem.Option.IMASKHLL Interrupt disable on HLL 26
SYStem.Option.LittleEndian Select little endian mode 26
SYStem.Option. MMUSPACES Separate address spaces by space IDs 26
SYStem.Option.ResetMode Select the reset mode 27
SYStem.Option.DUALPORT Use real-time access by default 28
SYStem.Option. MDMSINGLELMB Use MDM LMB master 0 for all cores 28
TERM.METHOD.MDMUART Terminal configuration 28
Memory Classes 30
Register Names 30
CPU specific SYStem Commandscccccccemmimiiiiiiiiiisssssccsssrs e s ssssssssssssssssssssssessesssssssnnnas 31
SYStem.CPU Select the used CPU 31
SYStem.JtagClock Selects the frequency for the debug interface 32
SYStem.LOCK Lock and tristate the debug port 32
SYStem.MemAccess Select run-time memory access method 33
SYStem.Mode Select operation mode 34
SYStem.CONFIG Configure debugger according to target topology 35
Daisy-Chain Example 38
TapStates 39
<parameters> configuring a CoreSight Debug Access Port “AP” 40
SYStem.CONFIG.CORE Assign core to TRACE32 instance 46
SYStem.CONFIG.state Display target configuration 47
SYStem.CONFIG.MDM.Base Select MDM base address 47
SYStem.CONFIG.MDM.DebugPort Set core to debug 47
SYStem.CONFIG.MDM.RESet Reset MDM configuration 48
SYStem.CONFIG.MDM.view Display MDM configuration 48
SYStem.CONFIG.MDM.UserlInst Set default user BSCAN port 48
TrONChip COMMANMScoiiiiiiiiiiier s san s e s s a s e eaan s e an s e annmnnnaan 49
TrOnchip.state Display on-chip trigger window 49
TrOnchip.RESet Set on-chip trigger to default state 49
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 49
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 50
CPU specific MMU COMMANAScoviiimmmrmmissnssrrmnssssssmnsssnsssnsnas 51
MMU.DUMP Page wise display of MMU translation table 51
MMU.List Compact display of MMU translation table 52
©1989-2024 Lauterbach MicroBlaze Debugger and Trace 3

MMU.SCAN Load MMU table from CPU 54

REAI-TIME TrACE ...cccccecccceerrrrisisssssssssssmmnenrsssressssssssssmmsmns s s s s eesasssssssnsnmmssnssnssesssssssnsssnnmmnnnnnnns 56
SYStem.Option.DTM Control data trace messages 56
SYStem.Option.QUICKSTOP Control trace of software breakpoints 56
Configuring your FPGA ... ssssms s s s s sas e smn s s mnansnns 57

0817 € R 0T T T 7= o o 58
Mechanical Description 58

JTAG Connector for Xilinx Microblaze 58

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 4

MicroBlaze Debugger and Trace

Version 06-Jun-2024

History

20-Jul-2022 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

Dec-2021 Added description for the command SYStem.CONFIG.MDM.Base.

Dec-2021 Added Arm CoreSight support:
New chapter “<parameters> configuring a CoreSight Debug Access Port “AP”.

Dec-2021 Added descriptions for commands SY Stem.Option.AHBHPROT,
SYStem.Option.AXIACEEnable, SYStem.Option.AXICACHEFLAGS, and
SYStem.Option.AXIHPROT.

Dec-2021 Added descriptions for commands SY Stem.Option.DAPDBGPWRUPREQ,

SYStem.Option.DAPNOIRCHECK, SY Stem.Option.DAPREMAP,
SYStem.Option.DAPSYSPWRUPREQ, and SY Stem.Option.DEBUGPORTOptions.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 5

General Note

Before starting please be sure to have up to date debugger software by getting an update from the
LAUTERBACH website. Note that the downloads on the website are stable releases but not necessarily the
latest versions. Therefore in case of problems please contact LAUTERBACH support at
support@lauterbach. com for getting the latest software update.

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Please note that multicore configuration will be required in most cases, even when there is only a single

Microblaze processor in the target. For information about setting up multicore-configuration see the
application note “Connecting to MicroBlaze Targets for Debug and Trace” (app_microblaze.pdf).

©1989-2024 Lauterbach MicroBlaze Debugger and Trace

6

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known MicroBlaze based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo /microblaze/ subfolder of the system directory of
TRACE32.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 7

MicroBlaze Debug and Trace Features Supported by TRACE32

TRACE32 for MicroBlaze supports the following features:

J Basic debugging (stop, go, software breakpoints, ...).

. Debugging Linux kernel code and user applications.

J MMU translation.

J Onchip breakpoints (program breakpoints, data write and read breakpoints).

. Off-chip program and data trace are supported via the MicroBlaze Debug Module (MDM).

. Use the Xilinx Vivado Design Suite for hardware analysis and the Lauterbach TRACE32
infrastructure for software debugging - over a single (shared) connection to the target board via
Lauterbach hardware. For more details, see “Integration for Xilinx Vivado” (int_vivado.pdf).

NOTE:] As onchip breakpoints require additional FPGA resources and may slow
down the maximum frequency of a MicroBlaze design, it is necessary to
explicitly configure them in the FPGA design.

. Trace via the MicroBlaze Debug Module requires at least Vivado 2018.3
or Vivado 2018.2 with a special patch, see Xilinx application note
AR71422.

. There is a deprecated MicroBlaze trace IP (Xilinx MicroBlaze Trace Core,

XMTC). Support for this IP has ended with Xilinx EDK 12.4. This trace is
no longer supported with TRACE32.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 8

ESD Protection

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace |

9

Quick Start of the Debugger

Multicore configuration will be required in most cases, even when there is only a
single Microblaze processor in the target. For information about setting up
multicore-configuration see the application note “Connecting to MicroBlaze
Targets for Debug and Trace” (app_microblaze.pdf).

For getting started with debugging, the installation DVD contains sample bit streams and scripts for ML310,
ML403, Spartan3EStarter, Spartan3ADSP1800Starter boards. You find them in the TRACE32 demo folder:

~~/demo/microblaze/hardware

The following example uses ML403. Configure the target with the bit stream
~~/demo/microblaze/hardware/memecfxl12lc/stopandgo/download.bit

The FPGA configuration can be done using Xilinx Vivado (or its predecessor Xilinx iIMPACT) or the
TRACE32 command JTAG.PROGRAM (or the old version of the command, JTAG.LOADBIT).

After starting the TRACES32 software enter the following commands for connecting to the target and load a
sample file:

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 10

1. Select the correct endianness of your core:

SYStem.Option.LittleEnd ON

2. Configure multicore settings for telling the debugger where the MicroBlaze core is located in the
JTAG scan chain. If in doubt, you can use the command SYStem.DETECT.SHOWChain to get a
list of all JTAG TAPs. The correct TAP to use is the one of the Xilinx FPGA. For example, for the
Xilinx EVB ML403 use the following settings:.

SYStem.CONFIG.IRPOST 28. ; Note the “.’ indicating
SYStem.CONFIG.IRPRE 8. ; decimal numbers.
SYStem.CONFIG.DRPOST 2.

SYStem.CONFIG.DRPRE 1.

3. If your FPGA design contains multiple MicroBlaze processors, select which one you want to
debug:

Setting "Specifies the JTAG user-defined register used" in the
; Vivado MDM configuration dialog or configuration C_JTAG_CHAIN
SYStem.CONFIG.MDM UserInst USER2

; Which MDM debug port your core is connected to, valid range

; 0.--31.

SYStem.CONFIG.MDM DebugPort 0.

I

4. Attach to the target and enter debug mode, using the multicore settings from above:

SYStem.Up

This command resets the CPU and enters debug mode. After executing this command, memory and
registers can be accessed.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 11

5. Load a sample program..

CD ~~/demo/microblaze/hardware/ml1403/mb.v710d.xmtc.100b.noddrram
Data.LOAD.E1f sieve_00000000.elf /CYGDRIVE

Note the option /CYGDRIVE. As the Xilinx MicroBlaze compiler is executed within a Cygwin
environment it creates debug symbols with paths beginning with \cygdrive\c\. By using the
option /CYGDRIVE TRACES32 internally converts this prefix to the correct syntax e.g. to ¢ : \ on
windows hosts. Refer for more information to Data.LOAD.EIf.

6. Open the disassembly and register windows:
Data.List ; Open disassembly window
Register ; Open register window

7. You are now ready to debug your program.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 12

Quick-Start of the Real-Time Trace

To use real-time trace, you first have to correctly configure the block design in Vivado. Also note that you
need at least Vivado 2018.3 or Vivado 2018.2 with a special patch from Xilinx answer record AR71422.

1.

In the configuration dialog of the core, select “Advanced” at the top, Navigate to the tab “Debug”
and select “External Trace” and set “Trace Buffer Size” to “8kB”.

In the configuration dialog of the MicroBlaze Debug Module, set “Select External Trace Output
Interface” to “EXTERNAL” and set “External Trace Data Width” to twice the desired trace port
width (number of data pins connected from the FPGA to the off-chip trace connector).

In the “Block Properties” of the MDM, set “CONFIG.C_TRACE_PROTOCOL’ to 1. Alternatively,
use the following command in the TCL console, assuming your MDM has the default instance
name “mdm_0":

set_property CONFIG.C_TRACE_PROTOCOL 1 [get_bd _cells /mdm_ 0]

Connect an appropriate clock signal to the TRACE. TRACE_CLOCK port and export the
TRACE.TRACE_DATA signal. Also export the that feeds TRACE.TRACE_CLOCK. Leave
TRACE.TRACE_CLK_OUT and TRACE.TRACE_CTL unconnected.

Use ODDR buffers to create DDR (double data rate) signalling on the external trace port. Refer
to ~~/demo/microblaze/etc/hdl/mdm_parallel_trace_adapter.vhd in your TRACE32 installation
directory for an example module you can instantiate in your block design.

After you have programmed your modified design to the FPGA, connect for debugging as usual. To
configure and enable trace, use the following commands:

Trace.METHOD Analyzer ; Tell TRACE32 that we wish to use off-chip trace.
Trace.PortSize 16. ; Configure the number of connected data pins
Trace.AutoFocus ; Execute a test program to detect the best

; electrical parameters for sampling.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 13

Compiling Software with Debug Information

For debugging, the target programs need to contain debug information. It is recommended to compile
MicroBlaze software with the GCC option -g3. The option -g creates debug info that does not work well

with TRACES2. Also keep in mind that using code optimization can cause problems with debugging.

NOTE: It is recommended to compile MicroBlaze software with the GCC option -g3.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 14

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is used to establish a debug connection to the target. If you receive error
messages while executing this command this may have one reasons listed below.

All

The target has no power.

All

The multicore settings are incorrect. For information how to calculate the
multicore settings see “Connecting to MicroBlaze Targets for Debug and
Trace” (app_microblaze.pdf)

All

The debugger software is out of date. The Microblaze architecture evolves
rapidly and therefore regular updates of the debugger software are necessary.
Note that the software downloads on the LAUTERBACH website represent
stable releases but are not necessarily the latest versions. If the problems persist
after updating from the website, please contact LAUTERBACH support.

All

The target FPGA is not configured correctly. The FPGA configuration (e.g. via
ACE files) can be disturbed, if the debug cable is attached to the target but the
debugger is powered down. Try to detach the debug cable and attach it after
FPGA configuration.

All

The target is in reset:
The debugger controls the processor reset and use the RESET line to reset the
CPU on every SYStem.Up.

All

You used a wrong JTAG connector on the target. In particular on ML310 always
use the 14pin JTAG connector J9 for debugging Microblaze.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 15

https://support.lauterbach.com/kb

Displaying MicroBlaze Core Configuration

As the Microblaze core is configurable the available debug features depend on the current core.

The configuration of the core can be displayed using the command per . When pointing the mouse at an
entry, the debugger displays an explanation in the status line.

=10l x|

File Edit Yiew WYar Break Run CPU Misc Trace Perf Cov Window Help

Mk 3ee|rnE 2R D

'.-'.'.-II,-,!I B::per, ™M™
B Microblaze Core Configuration =
configWord O021E1116
Versionl 352E3030
35 5”7
2E 1.0
30 ‘07
30 07
VYersionH 2E620000
2E , % ’
62 b~
Ul] rﬁf
DU IEII
NOPCB 00000001
NORADW 00000001
NOWADW 00000001
ICS 00000001 ICS on
ICBA 00000000
ICHA 3FFFFFFF
DCsS 00000001
DCBA 00000000
DCHA 3FFFFFFF
ES 00000000 ES off
FPUS 00000000 FRUS off
HDS 00000000 HDS off
HMS 00000001 HMS on
- BSS off
MSRCSIS On .
CIS On
-
K 4

ernlate W‘g|m'ﬁ|;iu|nata|VaIPEHF|umer|pmim|
| C:00000044 MSR cli/set Instruction Support |lsystem ready [| [MIx jup

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 16

CPU specific Implementations

This section gives information about design decision regarding the implementation of some special features.

Memory Accesses Causing Bus Errors

Bus errors can be caused by pointers to invalid address regions or memory that is not mapped by the MMU
(e.g. when using an operating system). Normally bus errors are detected by the debugger and displayed as

However, due to a core limitation detecting bus errors while the core is inside an exception handler would
alter the system state in a way preventing correct continuation of the program. Therefore inside an exception
handler (MSR.EIP=1), the debugger uses a different memory access method that preserves the correct
system state but does not detect bus errors. In this case the contents of invalid memory regions will show
random data.

Under Linux the most common case for this problem is when a system call branches to the hardware
exception vector on 0x20. In this case the core switches to real mode (MSR . VM=0) but the stack pointer R1
still points to an address in (now unmapped) virtual memory, until it is adapted a few instructions later. If
there is an open register window, the stack area will consequently show random data for a few cycles
(instead of indicating a bus error). Once the stack pointer is set up correctly inside the exception handler, the
stack area is displayed correctly.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 17

Breakpoints

There are two types of breakpoints available:

J Software breakpoints (SW-BP) and

. Onchip breakpoints.

Software Breakpoints

Software breakpoints are implemented via a breakpoint instruction. These are the default breakpoints and
are usually used in RAM areas. Utilizing advanced TRACE32 mechanisms, in software breakpoints can
also be used in FLASH areas.There is no restriction in the number of software breakpoints.

For using SW breakpoints with ucLinux or other operating systems, setting the option
SYStem.Option.BrkVector may be required.

On-chip Breakpoints

Onchip breakpoints (Lauterbach terminology) allow to stop the core in specific conditions. As this is
implemented via hardware-resources, they are also referred to as “hardware breakpoints” in non-
Lauterbach terminology.

The following list gives an overview of the usage of the on-chip breakpoints by TRACE32-ICD:

. Instruction breakpoints stop the core when it reaches a certain program location.
J Read/Write address breakpoints can stop the core upon read or write data accesses.
. Data breakpoints stop the program when a specific data value is written to an address or when

a specific data value is read from an address.

NOTE:

The number of available onchip breakpoints depends on the configuration of the
MicroBlaze core defined in the FPGA design.

Breakpoints in ROM

With the command MAP.BOnchip <address_range>, TRACE32 is configured to use onchip breakpoints in
the specified address range. Therefore the command Break.Set will set an onchip breakpoint in this range

and the parameter /Onchip can be omitted. Typically this feature is used with ROM or FLASH memories

that prevent the use of software breakpoints.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace |

18

Example for Breakpoints

Assume you have a target with FLASH from 0 to 0xFFFFF and RAM from 0x100000 to 0x11FFFFE. The
command to configure TRACES32 correctly for this configuration is:

Map .BOnchip 0x0--0xOFFFFF

The following breakpoint combinations are possible.

Software breakpoints:

Break.Set 0x100000 /Program ; Software Breakpoint 1
Break.Set 0x101000 /Program ; Software Breakpoint 2
Break.Set 0Oxx /Program ; Software Breakpoint 3

On-chip breakpoints:

Break.Set 0x100 /Program ; On-chip Breakpoint 1

Break.Set 0x0ff00 /Program ; On-chip Breakpoint 2

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 19

SYStem.Option. AHBHPROT Select AHB-AP HPROT bits

Format: SYStem.Option. AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPNn.HPROT instead.

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory

class.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 20

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

SYStem.Option.BrkHandler Control writing of software break handler

Format: SYStem.Option.BrkHandler [AUTO | ON | OFF]

Default: AUTO

The option controls whether the debugger writes a handler for software breakpoints to the target memory.
The address can be configured via SYStem.Option.BrkVector.

The option AUTO detects if the software breakpoint handler is required by the current core.

This can be overridden by the options ON or OFF for special cases. The breakpoint handler should be

switched OFF when
J using Linux because it utilizes a breakpoint handler created by the kernel
J if the vector table resides in ROM or “fetch-only” memory areas. In this case the vector table pre-

loaded with the memory image must contain a breakpoint handler.

If all program memory is read-only consider the use of OnChip breaks as alternative.

NOTE: A software breakpoint handler is required for using software breakpoints on
MicroBlaze cores with versions < 7.20.A.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 21

SYStem.Option.BrkVector Configures an alternative breakvector

Format: SYStem.Option.BrkVector <vector>

<vectors: 0 ... OxFFFC, 32-bit aligned

Use this option to set an alternative address for the software breakpoint handler created by the debugger.
Changing the default address is necessary when the vector 0x18 is occupied e.g. by interrupt handlers.

The option must be set before attaching to the target to have an effect.
The vector should be 32bit-aligned. Do not use 0x0 as break vector.
For ucLinux it is recommended to set the handler address to 0x70.

When changing the breakpoint vector, the debugger automatically uses a matching opcode for software
breakpoints.

NOTE: For additional information see SYStem.Option.BrkHandler .

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 22

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 23

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to contain
an address range followed by a single address.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

This option is for target processors having a Debug Access Port (DAP) e.g., Cortex-A or Cortex-R.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 24

SYStem.Option.DEBUGPORTOptions Options for debug port handling

Format: SYStem.Option.DEBUGPORTOptions <option>

<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 25

SYStem.Option.IMASKASM Interrupt disable on ASM

Format: SYStem.Option.IMASKASM [ON | OFF]

Mask interrupts during assembler single steps. Useful to prevent interrupt disturbance during assembler

single stepping.
SYStem.Option.IMASKHLL Interrupt disable on HLL
Format: SYStem.Option.IMASKHLL [ON | OFF]

Mask interrupts during HLL single steps. Useful to prevent interrupt disturbance during HLL single stepping.

SYStem.Option.LittleEndian Select little endian mode

Format: SYStem.Option.LittleEndian [ON | OFF]

Selects endianness.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 26

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.ResetMode Select the reset mode
Format: SYStem.Option.ResetMode <mode>
<mode>: CORE | SYSTEM

Use this option to select the reset mode. CORE will only reset the MicroBlaze core while SYSTEM will also
reset the peripherals.

Note that a reset of the MicroBlaze core does not reset the register R1-R31, caches and UTLB.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 27

SYStem.Option.DUALPORT Use real-time access by default

Format: SYStem.Option.DUALPORT [ON | OFF]

If this option is enabled all memory access use real-time access if possible. This has the same effect as
using the “E:” access class modifier.

SYStem.Option.MDMSINGLELMB Use MDM LMB master 0 for all cores

Format: SYStem.Option.MDMSINGLELMB [ON | OFF]

If multiple cores are connected to a single MDM with master ports enabled, there are two options to
implement run-time memory access:

OFF Use a separate LMB master for each core.
This is the default setting. In this mode, the debugger will always use the
LMB master corresponding to the core. If the core at debug port x is
debugged, the debugger uses LMB master x. Use this mode if different
LMB slaves are mapped to the same address on different cores,

ON Use a single LMB master for all cores.

In this mode, the debugger always uses LMB master 0. Use this mode if
the cores have a common address map.

TERM.METHOD.MDMUART Terminal configuration

Format: TERM.METHOD.MDMUART

Configures the TRACE32 terminal functionality to access the UART controller of the MDM core. Use this
option when your design handles STDIO via MDM UART.

Sample script for opening term window attached to MDM UART core:

TERM.RESet ; be sure to reset term functionality
TERM.METHOD . MDMUART ; configure MDM UART for stdio
TERM.SIZE 110. 1000. ; cosmetics

TERM.GATE ; make T32 poll the target for data

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 28

To confirm if the MDM UART is enabled in your design, open the peripheral window via the PER command
and look for the section “MDM UART Configuration”.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 29

Memory Classes

The following memory classes are available:

Memory Class

Description

P

Program memory

D

Data memory

Register Names

In TRACES2, the general purpose registers (R0-R31) and special purpose registers (e.g. MSR - machine
state register, SLR - Stack low register etc.) are named according to the convention in the MicroBlaze

Processor Reference Guide and shown accordingly in the Register.view window.

These names are also used in the disassembly views and the Data.Assemble command. This is in
deviation from the Xilinx suggestions to use rmsr, rslr, efc. in the context of assembly language.

Data.Assemble 0x1000 mfs rO,
Data.Assemble 0x1004 mts SLR,

MSR
r3

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace

30

CPU specific SYStem Commands

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: MicroBlaze | ZYNQ-ULTRASCALE+-PMU

MicroBlazeO | MicroBlaze1 | MicroBlaze2 |
MicroBlaze3 (deprecated)

This command selects the CPU that shall be debugged.

For softcores instaniated in an FPGA design, select “MicroBlaze”. For the special case of the PMU in a Zynq
UltraScale+ MPSOC, select “ZYNQ-ULTRASCALE+-PMU”.

The deprecated options were used for selecting one of multiple cores in an FPGA design. Instead of using
the deprecated options, the following sequence is recommended to attach to a specific core in an FPGA
design:

SYStem.CONFIG MDM UserInst USER2
SYStem.CONFIG MDM DebugPort <core_to_use> ; port numbers start with 0

SYStem.Up

Note that all the cores inside an FPGA share identical multicore settings (PRE, POST values) because
they are accessed via the same TAP controller implemented in the Xilinx MDM IP block.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 31

SYStem.JtagClock Selects the frequency for the debug interface

Format: SYStem.JtagClock <rate>
SYStem.BdmClock <rate> (deprecated)

<fixed>: 1000 000...25 000 000

Selects the JTAG clock frequency for the debug interface.

For fast setup of the clock speed pre-configured buttons can be used to select commonly used frequencies.
The default frequency is 1.0 MHz.

NOTE: Buffers, additional loads or high capacities on the JTAG lines reduce the
maximum operation frequency of the JTAG clock and should be avoided.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 32

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: Denied

Enable

StopAndGo

Run-time memory access is possible for Microblaze cores via the optional master ports of the MDM. These
have to first be enabled and connected in Vivado.

Denied No memory access is possible while the CPU is executing the program.
Enable Accesses are performed via the MicroBlaze Debug Module.

CPU (depre-

cated)

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop takes

some time depending on the speed of the JTAG port, the number of the
assigned cores, and the operations that should be performed.
For more information, see below.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 33

SYStem.Mode

Select operation mode

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug
Go
Attach
Up

Select target reset mode.

Down

NoDebug

Go

Up

Attach

StandBy

Disables the Debugger. The state of the CPU remains unchanged.

Resets the target with debug mode disabled (for the PPC400 family the same
as Go). In this mode no debugging is possible. The CPU state keeps in the
state of NoDebug

Resets the target with debug mode enabled and prepares the CPU for debug
mode entry. After this command the CPU is in the system.up mode and running.
Now, the processor can be stopped with the break command or until any break
condition occurs.

Resets the target and sets the CPU to debug mode. After execution of this
command the CPU is stopped and prepared for debugging. All register are set
to the default value.

This command works similar to Up command. The difference is that the target
CPU is not reset. The BDM/JTAG/COP interface will be synchronized and the
CPU state will be read out. After this command the CPU is in the SYStem.Up
mode and can be stopped for debugging.

Not supported.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 34

SYStem.CONFIG

Configure debugger according to target topology

Format:

<parameter>:

<parameter>:
(JTAG)

<parameter>:
(AccessPorts

)

SYStem.CONFIG <parameter> <number_or_address>
SYStem.MultiCore <parameter> <number_or_address> (deprecated)

CORE <core>
SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>

DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]
Slave [ON | OFF]

AHBAPN.Base <address>
AHBAPN.HPROT [<value> | <name>]
AHBAPN.Port <port>
AHBAPN.RESet

AHBAPN.view

AHBAPN.XtorName <name>

APBAPnN.Base <address>
APBAPN.Port <port>
APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPNn.HPROT [<value> | <name>]
AXIAPN.Port <port>
AXIAPn.RESet

AXIAPN.view

AXIAPNn.XtorName <name>

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPN.CorePort <port>
JTAGAPN.RESet

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 35

<parameter>: JTAGAPN.view

(AccessPorts JTAGAPnN.XtorName <name>

cont.)
MEMORYAPN.HPROT [<value> | <name>]
MEMORYAPN.Port <port>
MEMORYAPN.RESet
MEMORYAPN.view
MEMORYAPN.XtorName <name>

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger about the
TAP controller position in the JTAG chain, if there is more than one core in the JTAG chain (e.g. Arm + DSP).
The information is required before the debugger can be activated e.g. by a SYStem.Up. See Daisy-chain
Example.

For some CPU selections (SYStem.CPU) the above setting might be automatically included, since the
required system configuration of these CPUs is known.

TriState has to be used if several debuggers (“via separate cables”) are connected to a common JTAG port
at the same time in order to ensure that always only one debugger drives the signal lines. TAPState and
TCKLevel define the TAP state and TCK level which is selected when the debugger switches to tristate
mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or pull-down
resistor, other trigger inputs need to be kept in inactive state.

Multicore debugging is not supported for the DEBUG INTERFACE (LA-7701).

CORE For multicore debugging one TRACE32 PowerView GUI has to be started
per core. To bundle several cores in one processor as required by the
system this command has to be used to define core and processor
coordinates within the system topology.

Further information can be found in SYStem.CONFIG.CORE.

SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is stopped
(kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel Device address in case of a multidrop serial wire debug port.
<value>
Default: none set (any address accepted).

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 36

DRPRE (default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

DRPOST (default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

IRPRE (default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

IRPOST (default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

TAPState (default: 7 = Select-DR-Scan) This is the state of the TAP controller when
the debugger switches to tristate mode. All states of the JTAG TAP
controller are selectable.

TCKLevel (default: 0) Level of TCK signal when all debuggers are tristated.

TriState (default: OFF) If several debuggers share the same debug port, this
option is required. The debugger switches to tristate mode after each
debug port access. Then other debuggers can access the port. JTAG:
This option must be used, if the JTAG line of multiple debug boxes are
connected by a JTAG joiner adapter to access a single JTAG chain.

Slave (default: OFF) If more than one debugger share the same debug port, all
except one must have this option active.
JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET).

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 37

Daisy-Chain Example

TDl——-® Core A —Core B p Core C—» Core D +—» TDO

Chip 0 Chip 1

Below, configuration for core C.

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6. ; IR Core D

SYStem.CONFIG.IRPOST 8. ; IR Core A + B
SYStem.CONFIG.DRPRE 1. ; DR Core D

SYStem.CONFIG.DRPOST 2. ; DR Core A + B

SYStem.CONFIG.CORE 0. 1. ; Target Core C i1s Core 0 in Chip 1

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 38

TapStates

0 Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR

© 00 N o 0o~ W N =

—_ - e e —d
a A~ WO N = O

Test-Logic-Reset

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 39

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory buses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:”, “DP:”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

ROM table
Access Port
(MEM-AP)
CoreSight
Component
JTAG

Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 40

Example 2: SoC-600

SoC-600

Debug
MING))

(va-v9/2¢€) da

AHBAPN.HPROT [<value> |
<name>)
SYStem.Option.AHBH-
PROT [<value> | <name>]
(deprecated)

AXIAPNn.HPROT [<value> |
<name>)
SYStem.Option.AXIHPROT
[<value> | <name>] (depre-
cated)

MEMORYAPN.HPROT
[<value> | <name>]
SYStem.Option.MEMO-
RYHPROT [<value> |
<name>] (deprecated)

I
NO-9/ZE E

CoreSight
Component

2{0)\VRET|EIN (expected)
I CoreSight .

ROM table

{| CoreSight
. Component

CoreSight
. Component

ROM table

CoreSight

Memory System 2

H9-v9/Ce

Memory System 1

. Component

Memory System 3

Default: 0.

Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXIl: memory class.

Default: 0.

This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 41

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF] (deprecated)

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]
>Domain) of an Access Port, when using the AXI: memory class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>
DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable

Description

=0x30: Domain=0x3, Cache=0x0
=0x32: Domain=0x3, Cache=0x2
=0x06: Domain=0x0, Cache=0x6

ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable

ReadWriteAllocateOuterShareable

=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:
=0xOE:
=0x1E:
=0x2E:

Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace

42

AHBAPN.XtorName AHB bus transactor name that shall be used for “AHBN:” access
<name> class.

APBAPN.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access

class.
DEBUGAPN.XtorName APB bus transactor name identifying the bus where the debug
<name> register can be found. Used for “DAP:” access class.
MEMORYAPN.XtorName AHB bus transactor name identifying the bus where system
<hame> memory can be accessed even during runtime. Used for “E:”

access class while running.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 43

S0C-400 Specific Commands

AHBAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBN:” access class. Default: <port>=0.

APBAPnN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DEBUGAPN.Port <port> AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPnN.CorePort <port> JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPN.Port <port> Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPN.Port <port> AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running. Default:
<port>=0.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 44

S0C-600 Specific Commands

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPNn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 45

SYStem.CONFIG.CORE Assign core to TRACE32 instance

Format: SYStem.CONFIG.CORE <core_index> <chip_index>
SYStem.MultiCore.CORE <core_index> <chip_index> (deprecated)

<chip_index>: 1.0

<core_index>: 1...k

Default core_index: depends on the CPU, usually 1. for generic chips

Default chip_index: derived from CORE= parameter of the configuration file (config.t32). The CORE
parameter is defined according to the start order of the GUI in T32Start with ascending values.

To provide proper interaction between different parts of the debugger, the systems topology must be
mapped to the debugger’s topology model. The debugger model abstracts chips and sub cores of these
chips. Every GUI must be connect to one unused core entry in the debugger topology model. Once the
SYStem.CPU is selected, a generic chip or non-generic chip is created at the default chip_index.

Non-generic Chips
Non-generic chips have a fixed number of sub cores, each with a fixed CPU type.

Initially, all GUIs are configured with different chip_index values. Therefore, you have to assign the
core_index and the chip_index for every core. Usually, the debugger does not need further information to
access cores in non-generic chips, once the setup is correct.

Generic Chips

Generic chips can accommodate an arbitrary amount of sub-cores. The debugger still needs information
how to connect to the individual cores e.g. by setting the JTAG chain coordinates.

Start-up Process

The debug system must not have an invalid state where a GUI is connected to a wrong core type of a non-
generic chip, two GUIs are connected to the same coordinate or a GUI is not connected to a core. The initial
state of the system is valid since every new GUI uses a new chip_index according to its CORE= parameter
of the configuration file (config.t32). If the system contains fewer chips than initially assumed, the chips must
be merged by calling SYStem.CONFIG.CORE.

For MicroBlaze specific information please refer to “Connecting to MicroBlaze Targets for Debug and
Trace” (app_microblaze.pdf).

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 46

SYStem.CONFIG.state Display target configuration

Format: SYStem.CONFIG.state

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

SYStem.CONFIG.MDM.Base Select MDM base address

[build 142333 - DVD 02/2022]

Format: SYStem.CONFIG.MDM.Base <address>

Defines the base address of the MDM.

SYStem.CONFIG.MDM.DebugPort Set core to debug
Format: SYStem.CONFIG.MDM.DebugPort <core>
<core> 0...31.1
NONE (deprecated)

This command selects which of the core(s) attached to a MicroBlaze Debug Module (MDM) is to be
debugged by the current GUI.

The first core connected to the MDM is always numbered 0. Connecting to the core will fail if the selected
number exceeds the number of debug ports of the MDM.

If the command is not used or if the special value NONE is used, the core index is determined by the
CORE.ASSIGN and SYStem.CONFIG CORE commands. This method is deprecated, do not use it in new
scripts.

NOTE: If your design has multiple MDMs, use the command SYStem.CONFIG.MDM
DebugPort to make sure the debugger connects to the correct MDM instance.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 47

SYStem.CONFIG.MDM.RESet Reset MDM configuration

Format: SYStem.CONFIG.MDM.RESet

Resets MDM settings.

SYStem.CONFIG.MDM.view Display MDM configuration

Format: SYStem.CONFIG.MDM.view

Displays MDM settings.

SYStem.CONFIG.MDM.UserlInst Set default user BSCAN port

Format: SYStem.CONFIG.MDM.UserlInst <inst>
SYStem.Option.UserBSCAN <...> (deprecated)

<inst> USER1 | USER2 | USER3 | USER4

Default: USER2 (same as the default when instantiating a MicroBlaze Debug Module (MDM) in the Vivado
block design editor).

This command selects the JTAG instruction used for communicating with the FPGA. Xilinx FPGAs offer four
different instructions, which can be used by different IP inside the FPGA.

If connection to the MDM via the specified instruction fails, the debugger will try the other instructions.
Therefore, it is only required that you set the correct instruction if you either

. have multiple MDM instances in your FPGA design and wish to select a specific one, or

. have other IP in your FPGA design (e. g. an Integrated Logic Analyzer (ILA)) that uses a JTAG
user instructions and want to avoid disturbing that IP with the debugger’s attempt to connect to
the MDM.

NOTE: Usually, a design with multiple MicroBlaze cores will use a single MDM shared
by all cores. In that case, you need to use the command SYStem.CONFIG.MDM
DebugPort to select the desired core.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 48

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range
Break.Set 0x1000--0x17ff /Write ; 1000--17ff
Break.Set 0x1001--0x17ff /Write ; gives an error message

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 49

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 50

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 51

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

. If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

. If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace |

52

PageTable

Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

. else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace |

53

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 54

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 55

Real-Time Trace

This sections list CPU specific options for the real-time trace.

SYStem.Option.DTM Control data trace messages
Format: SYStem.Option.DTM [ON | OFF]
Default: OFF.

Enable this system option in order to record data trace messages of the target program. Note that
MicroBlaze XMTC only supports tracing of data load messages. Data write messages can not be triggered.

The option needs to be enabled before connecting the debugger to the target.

NOTE: To see data trace messages in the <trace>.List window, it is necessary to increase
the level of displayed details by clicking the more button.

SYStem.Option.QUICKSTOP Control trace of software breakpoints
Format: SYStem.Option.QUICKSTOP [ON | OFF] (deprecated)
Default: OFF.

Enable this system option in order to optimize tracing of software breakpoints.

When hitting a software break, earlier versions of MicroBlaze jump to a software break handler and loop
there until the debugger detects the break. As this can last some milliseconds, the trace buffer will contain
irrelevant trace data.

By enabling the option is enabled, the debugger sets an on-chip breakpoint onto the software break handler
and thus stops the core immediately.

©1989-2024 Lauterbach MicroBlaze Debugger and Trace | 56

Configuring your FPGA

Before debugging, the FPGA needs to be configured with a design containing a MicroBlaze core enabled for
JTAG debugging. The configuration is done via the command JTAG.PROGRAM or its predecessor
Java.JTAG.LOADBIT. .

Be sure to have correct multicore settings before configuring the FPGA,
otherwise the configuration will fail. These settings are identical with those used
for debugging a MicroBlaze core.

Also ensure that the debugger is in SYStem.down mode, before configuring
your FPGA. Configuring the FPGA will break the communication link between
the debugger and the MicroBlaze core, if your debugger is in SYStem.up mode.

Configuration using compressed bitstreams is supported.

It is recommended to configure the target with the configuration option “JTAG
dedicated” i.e. not using a mode where JTAG overrides other configurations
like MSI, SPI etc. In the latter case configuration via TRACE32 may fail silently
(no error message), though configuration via Xilinx Impact works.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 57

JTAG Connector

Mechanical Description

JTAG Connector for Xilinx Microblaze

It is recommended to connect all N/C Pins to GND (if you work with LAUTERBACH tools only).

The following chart details the pinout of the16 pin PPC400 debug cable, that is also used for debugging

Microblaze cores.

Signal Pin Pin Signal
TDO 1 2 N/C
TDI 3 4 TRST- (*)
N/C 5 6 VCCS
TCK 7 8 N/C
TMS 9 10 N/C
HALT- 11 12 N/C
N/C 13 14 KEY
N/C 15 16 GND

Pinout of PPC400 debug cable

The debugger includes the adapter (LA-3731) that converts the PPC400 pinout to that of the 14 pin Xilinx
JTAG connector which is listed below:

Signal Pin Pin Signal
GND 1 2 VREF
GND 3 4 TMS
GND 5 6 TCK
GND 7 8 TDO
GND 9 10 TDI
GND 11 12 NC
GND 13 14 NC

Pinout of Xilinx JTAG connector

NOTE:

The HALT- and TRST- signals are irrelevant for debugging MicroBlaze designs.They
are only used for debugging the boot process of PPC cores. See the PowerPC
debugger user guide for details.

©1989-2024 Lauterbach

MicroBlaze Debugger and Trace | 58

	MicroBlaze Debugger and Trace
	History
	General Note
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	MicroBlaze Debug and Trace Features Supported by TRACE32
	ESD Protection
	Quick Start of the Debugger
	Quick-Start of the Real-Time Trace
	Compiling Software with Debug Information
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Displaying MicroBlaze Core Configuration
	CPU specific Implementations
	Memory Accesses Causing Bus Errors
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints in ROM
	Example for Breakpoints

	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.BrkHandler Control writing of software break handler
	SYStem.Option.BrkVector Configures an alternative breakvector
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.IMASKASM Interrupt disable on ASM
	SYStem.Option.IMASKHLL Interrupt disable on HLL
	SYStem.Option.LittleEndian Select little endian mode
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.ResetMode Select the reset mode
	SYStem.Option.DUALPORT Use real-time access by default
	SYStem.Option.MDMSINGLELMB Use MDM LMB master 0 for all cores
	TERM.METHOD.MDMUART Terminal configuration
	Memory Classes
	Register Names

	CPU specific SYStem Commands
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Selects the frequency for the debug interface
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select operation mode
	SYStem.CONFIG Configure debugger according to target topology
	Daisy-Chain Example
	TapStates
	<parameters> configuring a CoreSight Debug Access Port “AP”

	SYStem.CONFIG.CORE Assign core to TRACE32 instance
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG.MDM.Base Select MDM base address
	SYStem.CONFIG.MDM.DebugPort Set core to debug
	SYStem.CONFIG.MDM.RESet Reset MDM configuration
	SYStem.CONFIG.MDM.view Display MDM configuration
	SYStem.CONFIG.MDM.UserInst Set default user BSCAN port

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	Real-Time Trace
	SYStem.Option.DTM Control data trace messages
	SYStem.Option.QUICKSTOP Control trace of software breakpoints

	Configuring your FPGA
	JTAG Connector
	Mechanical Description
	JTAG Connector for Xilinx Microblaze

