
MANUAL

Hexagon Debugger

Hexagon Debugger

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 Hexagon ... 

 Hexagon Debugger .. 1

 History .. 5

 Introduction ... 6

 Brief Overview of Documents for New Users 6

 Demo and Start-up Scripts 6

 Warning .. 7

 Quick Start of the ICD Debugger for Hexagon ... 8

 1. Hexagon Conceptual Basics 8

 2. Prepare the Start 9

 3. Select the Clock for the JTAG Communication 9

 4. Configure the Debugger According to the Needs of the Application 9

 5. Enter Debug Mode 10

 6. Load the Application 10

 7. View the Source Code 10

 8. Write a Start-up Script 10

 Debugger Basics ... 12

 Memory Classes and Memory Access 12

 Stack Display 12

 Hexagon Security 12

 Virtual Hardware Threads 13

 Thread Compounds 13

 Thread States 13

 On-chip Breakpoints 14

 Program Breakpoints 15

 Read and Write Breakpoints 15

 Data Breakpoints 15

 Restrictions 15

 Troubleshooting .. 16
Hexagon Debugger | 2©1989-2024 Lauterbach

 SYStem.Up Errors 16

 FAQ ... 16

 CPU specific SYStem Settings ... 17

 SYStem.CONFIG.state Display target configuration 17

 SYStem.CONFIG Configure debugger according to target topology 19

 <parameters> describing the “DebugPort” 23

 <parameters> describing the “JTAG” scan chain and signal behavior 25

 <parameters> describing a system level TAP “MultiTap” 27

 <parameters> configuring a CoreSight Debug Access Port “AP” 28

 <parameters> describing debug and trace “Components” 34

 <parameters> which are “Deprecated” 43

 SYStem.CONFIG.MSA Enable translation by system MMU 46

 SYStem.CPU Select CPU type 46

 SYStem.JtagClock Select clock for JTAG communication 47

 SYStem.LOCK Tristate the JTAG port 47

 SYStem.MemAccess Select run-time memory access method 48

 SYStem.Option.MMUSPACES Separate address spaces by space IDs 48

 SYStem.Option.MACHINESPACES Address extension for guest OSes 49

 SYStem.Mode Select target reset mode 51

 SYStem.Option CPU specific commands 52

 SYStem.Option.BUGFIX Workaround for single-stepping an RTE instruction 52

 SYStem.Option.DCFREEZE Do not invalidate cache 52

 SYStem.Option.CLADE Enable debugger support for CLADE 53

 SYStem.Option.CLADEDICT Load CLADE dictionary from file 53

 SYStem.Option.CLADEPARAM Define the CLADE address parameters 54

 SYStem.Option.CLADEREAD Use hardware for reading compressed RAM 54

 SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step” 54

 SYStem.Option.IMASKASM Disable interrupts while single stepping 55

 SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 55

 SYStem.Option.ISDBSoftBreakFix Workaround for prefetch issue 56

 SYStem.Option.PC PC parking position 56

 SYStem.RESetOut Reset target without reset of debug port 57

 SYStem.Option.REVision Define default value for REV register 57

 SYStem.Option.SRST Reset via SRST line 57

 SYStem.StuffInstruction.Assemble Execute assembly stuff instruction 58

 SYStem.StuffInstruction.Opcode Execute opcode stuff instruction 58

 SYStem.Option.TCMBase Base address of the TCM 58

 SYStem.Option.TLBINV Invalidate TLB while MMU is off 59

 SYStem.state Display SYStem.state window 59

 CPU specific MMU Commands .. 60

 MMU.DUMP Page wise display of MMU translation table 60

 MMU.List Compact display of MMU translation table 62
Hexagon Debugger | 3©1989-2024 Lauterbach

 MMU.MAP Translations from ELF file memory load map 63

 MMU.MAP.dump Display addresses from ELF file memory load map 63

 MMU.MAP.SCAN Load MMU table from ELF file 63

 MMU.SCAN Load MMU table from CPU 64

 MMU.Set Write to MMU on processor 66

 MMU.TLB Scan or dump MMU TLB entries 66

 MMU.VTLB Scan or dump VTLB entries 67

 CPU specific BenchMarkCounter Commands .. 68

 BMC.COUNTER<n> Specify event count 68

 BMC.CyclePeriod Specify export rate 69

 BMC.OFF Disable benchmark counters 69

 BMC.ON Enable benchmark counters 69

 BMC.SELect Select counter for statistic analysis 69

 BMC.SPDM Specify profiler control 70

 BMC.SPLIT Specify export rate 71

 TrOnchip Commands .. 72

 TrOnchip.ContextID Extend on-chip breakpoint/trace filter by TID 72

 TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID 72

 TrOnchip.RESet Reset “TrOnchip” settings 73

 TrOnchip.StepException Single stepping of exceptions and interrupts 73

 TrOnchip.state Display on-chip trigger window 73

 JTAG Connector .. 74

 Mechanical Description of the 20-pin Debug Cable 74

 Electrical Description of the 20-pin Debug Cable 75
Hexagon Debugger | 4©1989-2024 Lauterbach

Hexagon Debugger

Version 06-Jun-2024

History

29-Mar-2024 New command SYStem.Option.MACHINESPACES.

20-Jul-2022 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

Sep-2021 New commands SYStem.StuffInstruction.Assemble and SYStem.StuffInstruction.Opcode.
Hexagon Debugger | 5©1989-2024 Lauterbach

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

• “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

• “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

• “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

• “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

• “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Hexagon based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

• Type at the command line: WELCOME.SCRIPTS

• or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/hexagon/ subfolder of the system directory of TRACE32.
Hexagon Debugger | 6©1989-2024 Lauterbach

Warning

WARNING: To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1. Disconnect the Debug Cable from the target while the target power is
off.

2. Connect the host system, the TRACE32 hardware and the Debug
Cable.

3. Power ON the TRACE32 hardware.

4. Start the TRACE32 software to load the debugger firmware.

5. Connect the Debug Cable to the target.

6. Switch the target power ON.

7. Configure your debugger e.g. via a start-up script.

Power down:

1. Switch off the target power.

2. Disconnect the Debug Cable from the target.

3. Close the TRACE32 software.

4. Power OFF the TRACE32 hardware.
Hexagon Debugger | 7©1989-2024 Lauterbach

Quick Start of the ICD Debugger for Hexagon

This chapter should help you to prepare your Debugger for Hexagon. Depending on your application not all
steps might be necessary. For some applications additional steps might be required that are not described in
this Quick Start section.

1. Hexagon Conceptual Basics

Especially when starting to get familiar with the Hexagon architecture these points are of exceptional
importance:

• Hexagon is a secure platform: by default, debugging is prohibited. Whether the user can debug a
specific application or not is configured by the application which is executed.

If you write your own application, please consult the Hexagon documentation on how to enable
debugging. If you are using a third-party application please contact the vendor of this application
for a debug-enabled version.

• Beside from “debugging not allowed” there are two debugging levels:

- Untrusted debugging requires a debug monitor running under the control of the application
and RTOS.

- Trusted debugging allows full control over the Hexagon core. See also Hexagon Security for
more information on the Hexagon debug modes.

• Because the debugger does not have any access to the core by default, Hexagon needs to be
configured via some external “instance”. Normally an Arm core is responsible for configuration
and loading at least an initial application for enabling debugging. Please see the chipset’s
documentation on how to do this.

So before being able to establish a debug communication, e.g. by a SYStem.Mode Up command, the
following steps have to be performed:

1. Prepare an application that has debugging enabled (trusted mode debugging)

2. Configure the Hexagon core via the Arm core or debugger and load the application to the DSP.

3. After configuration, release the Hexagon core from reset (via Arm core) so the application can
enable debugging.

4. Establish debug connection via the Hexagon debugger.
Hexagon Debugger | 8©1989-2024 Lauterbach

2. Prepare the Start

1. Connect the debug cable to your target. Check the orientation of the connector. Pin 1 of the
debug cable is marked with a small triangle next to the nose of the target connector.

2. Power up your TRACE32 system.

3. Start the TRACE32 Debugger Software for Hexagon.

4. Power up your target.

On some target systems, Hexagon and its JTAG port may have to be enabled by the Arm core first. Please
refer to the documentation of your target system and/or contact the manufacturer to obtain information on
how this has to be done.

3. Select the Clock for the JTAG Communication

You can select the JTAG clock frequency which the Debugger uses to communicate with the target. This can
be either done in the JtagClock field in the SYStem window, or by using the command line with the
command SYStem.JtagClock. The maximum clock frequency depends on your target board design. The
default clock frequency is 1 MHz.

Examples:

4. Configure the Debugger According to the Needs of the Application

Most of the available settings can be configured with the SYStem window. Set the SYStem options in this
window according to application program. The default values should be fine for most cases.

To prevent damage please take care to follow this sequence all the time you are
preparing a start.

SYStem.JtagClock 3.0MHz ; Use 3 MHz as debug clock.

SYStem.JtagClock RTCK ; Use the return clock for
; adjusting the debug clock.

SYStem.Option.PC 0x0 ; Park PC at a save location
; while thread is in debug mode.
Hexagon Debugger | 9©1989-2024 Lauterbach

5. Enter Debug Mode

This command asserts a reset to the Hexagon core. After the reset is deasserted, the DSP will enter debug
mode and start executing. When there is valid startup code which enables debugging, the core will stop at
an built-in software breakpoint.

6. Load the Application

To load an image to the target, use command Data.Load.<file_format> <file>. The debugger supports
various file formats:

On Hexagon platforms, the Hexagon code is normally loaded via an Arm core and not via the Hexagon
debugger, so you will also need the following load options to load only the symbol information (see
Data.Load for details):

7. View the Source Code

Use the command Data.List to view the source code at the location of the program counter.

8. Write a Start-up Script

Now the quick start is done. If you were successful you can start to debug. LAUTERBACH recommends that
you prepare a start-up script (a PRACTICE file) to be able to do all the necessary actions with only one
command. Here is a typical start sequence:

SYStem.Up ; Enter debug mode.

Data.Load.ELF <file> /Verify ; Load application file in ELF format.

/NoCODE ; Do not load any code or data.

/NoReg ; Do not set registers.

B:: ; Select the ICD device prompt.

WinCLEAR ; Clear all windows.

SYStem.Reset ; Set all options in the SYStem
; window to default values.

SYStem.Up ; Reset the target and enter
; debug mode.
Hexagon Debugger | 10©1989-2024 Lauterbach

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

For information about how to build a start-up script (*.cmm file), refer to “Training Basic Debugging”
(training_debugger.pdf). There you can also find some information on basic actions with the debugger.

Data.LOAD.ELF application.elf ; Load application from
; object file (ELF file).

PER.view ; Show clearly arranged peripherals
; in window *)

Data.List ; Open disassembly window. *)

Register.view /SpotLight ; Open register window. *)

Var.Local ; Open window with local
; variables. *)

Frame.view /Locals /Caller ; Open the stack frame with
; local variables *)

Var.Watch %Spotlight flags ast ; Open watch window for variables *)

Break.Set main ; Set software breakpoint to
; address of symbol main.

Please keep in mind that only the Processor Architecture Manual (the document
you are reading at the moment) is CPU specific, while all other parts of the online
help are generic for all CPUs. So if there are questions related to the CPU the
Processor Architecture Manual should be your first choice.
Hexagon Debugger | 11©1989-2024 Lauterbach

Debugger Basics

This chapter provides an introduction into the Hexagon specific debugger basics.

Memory Classes and Memory Access

Prefixing an E as attribute to the memory class will make memory accesses possible even when the CPU is
running. See SYStem.MemAccess and SYStem.CpuAccess for more information.

Stack Display

Hexagon has a stack which is displayed at the right side of the register window. When SP points to
D:0x00000000 nothing is displayed.

Hexagon Security

Hexagon has three debug modes:

1. No debugging allowed.

2. Untrusted debug.

The debugger communicates with a debug monitor integrated in the kernel. This allows debugging of
only a few resources, e.g. some dedicated user applications or tasks.

3. Trusted debug.

The debugger has full access and control over Hexagon.

TRACE32 only supports trusted debug.

The application running on the target selects the debug mode in its startup code. After this is done, a hard-
coded software breakpoint will halt the DSP.

Memory Class Description

P: Program memory.

D: Data memory.

SD: Data memory using on-chip System MMU.

REG: Pseudo memory class for CPU Register set. No real-time access while
CPU is running.
Hexagon Debugger | 12©1989-2024 Lauterbach

Virtual Hardware Threads

The debugger supportsup to the eight virtual hardware threads, the real number of threads is decided after
CPU selection or based onthe value of REVID register. The PowerView GUI only shows one thread at a
time. Threads can be switched with the CORE command:

Currently all breakpoints take effect on all running threads: if only one thread breaks all other threads will
also break. When a breakpoint is hit, PowerView will automatically switch to the thread responsible for the
break. If more than one thread hits a breakpoint at the same time, it will switch to the thread with the lowest
thread number. While single stepping no automatic thread switch is performed, even when a breakpoint is
hit.

Thread Compounds

Threads can be assigned to a thread compound. If any of the Go, Step or Break command is executed to
virtual hardware thread, the command is applied to all the threads in this compound simultaneously.

By default, all virtual hardware threads are assigned to the same thread compound. Only in very few and
special cases it may be necessary to remove or add a thread to the thread compound by using the CORE
command group.

Note that breakpoints - especially software breakpoints are always assigned to all virtual hardware threads,
no matter whether a thread is assigned to a thread compound or not.

Thread States

The debugger displays the Hexagon’s current state in the status bar. Beside from the global states, e.g.
Power Down or Reset, which are the same for all threads, each one can have its own state independently
form the other states:

A thread may be in a special state where it can not be debugged. These states are special implementations
of the running state. In these states a thread can not be debugged, also a Break command does not have
any effect. Other threads or an SoC event may release the thread from its state.

CORE 2 ; switch to hardware thread 2.

stopped The thread is stopped for debug. The debugger can access memory,
registers and peripherals.

running The thread is currently executing code. Memory, registers and
peripherals can not be accessed. Program execution can be
interrupted.
Hexagon Debugger | 13©1989-2024 Lauterbach

All these states are read from core- or thread internal status registers and not from any hardware signals.
The SoC is basically available: in case of a core status the entire Hexagon is not enabled, in power down or
reset by another SoC component. In case of a thread status only the specific thread is affected.

Refer to the Hexagon Architecture Documentation for more information on the modes and transitions.

On-chip Breakpoints

The Hexagon core supports two on-chip program breakpoints.

The Hexagon ETM supports up to 8 read-, write- or read/write (access) breakpoints on single addresses or
4 on ranges with the following restriction:

Hexagon ETM has 4 trigger units which can implement either one address range or up to two single
addresses. Each range or single address can be programmed as read- or write breakpoint or combined
read/write (access) breakpoint. An optional data condition (data breakpoint) can be added.

running(reset) The core reported to be in reset state.

running(pwr_down) The core (and register ISDBCST) is unreachable so we assume a
power down mode.

running(no power) JTAG-AP of DAP controller not responding, we assume power down
as reason

running(res/pwr_down) The core reported via ISDBCST register to be in reset or power
collapse mode.

running(off) The thread is currently in OFF mode. This reflects the E-bit of the
MODECTL register.

running(waiting) The thread is in WAIT mode, waiting to be resumed. This reflects the
W-bit of the MODECTL register.

running(all_wait) All threads are in WAIT mode. The core may perform special power
saving functions.

running(no_access) The debugger is unable to access the core or thread.
Hexagon Debugger | 14©1989-2024 Lauterbach

Program Breakpoints

By default the In-Circuit Debugger for Hexagon uses software breakpoints to implement program
breakpoints. Software breakpoint means that the code at the desired memory location is modified by the
debugger to make the CPU break when the program counter hits this address. After a break the original
contents of the memory location are restored.

Read and Write Breakpoints

Read or write breakpoints are set up as follows:

Data Breakpoints

Data breakpoints are set up as follows. Note that a data breakpoint always has to be combined with a read-,
write or read/write breakpoint.

Restrictions

Break.Set P:0x00000012 ; Set a Software breakpoint.

Break.Set P:0x00000212 /Onchip ; Set an on-chip breakpoint.

Break.Set <symbol> ; Set a breakpoint to <symbol>.

Break.Set D:0x00000010 /Read ; Set a breakpoint on a read access
; for a data address.

Break.Set D:0x00000212 /ReadWrite ; Set a breakpoint on a read or
; write access for a data address.

Break.Set DA:0x00000010 /Read
/DATA.Word 0xCAFE

; Set a Breakpoint on a 16 bit
; data read access of 0xCAFE on
; data address 0x00000010:

Break.Set myVariable /Write
/DATA.auto 0xAFFE

; Set a breakpoint on any write
; access 0xAFFE to myVariable.
; Length information is taken
; from object file.

On-chip
Breakpoints

For Hexagon there are only two on-chip breakpoint available. If more on-
chip breakpoints are used the debugger will report an invalid breakpoint
configuration. The on-chip breakpoint can only be set on code and not on
data.
Hexagon Debugger | 15©1989-2024 Lauterbach

Troubleshooting

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons:

• The target has no power.

• There is a short-circuit on at least one output line of the CPU.

• There is a problem with the electrical connection between the debug module and the target -
check if the debug cable is plugged correctly and if the target is built corresponding to the
definition of the used JTAG connector.

FAQ

Please refer to https://support.lauterbach.com/kb.
Hexagon Debugger | 16©1989-2024 Lauterbach

https://support.lauterbach.com/kb

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are not included in the SYStem.CONFIG.state window.

Format: SYStem.CONFIG.state [/<tab>]

<tab>: DebugPort | Jtag | MultiTap | AccessPorts | COmponents

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.
Hexagon Debugger | 17©1989-2024 Lauterbach

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

For a descriptions of a corresponding commands, refer to AP.

COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.

For descriptions of the commands on the COmponents tab, see
COmponents.
Hexagon Debugger | 18©1989-2024 Lauterbach

SYStem.CONFIG Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)

<parameter>:
(DebugPort)

CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDPIDLEHIGH [ON | OFF]
SWDPTargetSel <value>
DAP2SWDPTargetSel <value>
TriState [ON | OFF]

<parameter>:
(JTAG)

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
DRPOST <bits>
DRPRE <bits>
IRPOST<bits>
IRPRE <bits>
Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

<parameter>:
(MultiTap)

MULTITAP [NONE | MSMTAP <irlength> <irvalue> <drlength> <drvalue>
 | JtagSEQuence <sub_cmd>]

<parameter>:
(AccessPorts
)

AHBAPn.Base <address>
AHBAPn.HPROT [<value> | <name>]
AHBAPn.Port <port>
AHBAPn.RESet
AHBAPn.view
AHBAPn.XtorName <name>

APBAPn.Base <address>
APBAPn.Port <port>
APBAPn.RESet
APBAPn.view
APBAPn.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPn.HPROT [<value> | <name>]
Hexagon Debugger | 19©1989-2024 Lauterbach

<parameter>:
(AccessPorts
cont.)

AXIAPn.Port <port>
AXIAPn.RESet
AXIAPn.view
AXIAPn.XtorName <name>

DEBUGAPn.Port <port>
DEBUGAPn.RESet
DEBUGAPn.view
DEBUGAPn.XtorName <name>

JTAGAPn.Base <address>
JTAGAPn.Port <port>
JTAGAPn.CorePort <port>
JTAGAPn.RESet
JTAGAPn.view
JTAGAPn.XtorName <name>

MEMORYAPn.HPROT [<value> | <name>]
MEMORYAPn.Port <port>
MEMORYAPn.RESet
MEMORYAPn.view
MEMORYAPn.XtorName <name>

<parameter>:
(COmponents)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
CTI.RESet
CTI.view

ETB.ATBSource <source>
ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet
ETB.Size <size>
ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETB.view

ETF.ATBSource <source>
ETF.Base <address>
ETF.Name <string>
ETF.NoFlush [ON | OFF]
ETF.RESet
ETF.Size <size>
Hexagon Debugger | 20©1989-2024 Lauterbach

<parameter>:
(COmponents
cont.)

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETM.Base <address>
ETM.RESet

ETR.ATBSource <source>
ETR.Base <address>
ETR.CATUBase <address>
ETR.Name <string>
ETR.NoFlush [ON | OFF]
ETR.RESet
ETR.Size <size>
ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETR.view

ETS.ATBSource <source>
ETS.Base <address>
ETS.Name <string>
ETS.NoFlush [ON | OFF]
ETS.RESet
ETS.Size <size>
ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL

STOP | FULLCTI]
ETS.view

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.view
FUNNEL.RESet

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet
REP.view

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
STM.Type [None | GenericARM | SDTI | TI]

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view
Hexagon Debugger | 21©1989-2024 Lauterbach

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

<parameter>:
(Deprecated)

COREBASE <address>
CTIBASE <address>
CTICONFIG [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 |
 QV1]
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>

<parameter>:
(Deprecated cont.)

FUNNEL2BASE <address>
FUNNELBASE <address>
STMETBFUNNELPORT<port>
STMFUNNEL2PORT<port>
STMFUNNELPORT<port>
STMTPIUFUNNELPORT<port>
TPIUBASE <address>
TPIUFUNNELBASE <address>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>
Hexagon Debugger | 22©1989-2024 Lauterbach

<parameters> describing the “DebugPort”

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2
...

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

CORE <core> <chip>

(cont.)

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:
<core> depends on CPU selection, usually 1.
<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

CoreNumber <number> Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session.

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.
Hexagon Debugger | 23©1989-2024 Lauterbach

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.

Slave [ON | OFF] If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

SWDPIdleHigh
[ON | OFF]

Keep SWDIO line high when idle. Only for Serialwire Debug mode.
Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.

Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Hexagon Debugger | 24©1989-2024 Lauterbach

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

• nTRST (reset)

• TCK (clock)

• TMS (state machine control)

• TDI (data input)

• TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

… DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

… IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

… IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.
Hexagon Debugger | 25©1989-2024 Lauterbach

Slave [ON | OFF] If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
nTRST and nSRST (nRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
For CortexM: Please check also
SYStem.Option.DISableSOFTRES [ON | OFF]

TAPState <state> This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR
1 Exit1-DR
2 Shift-DR
3 Pause-DR
4 Select-IR-Scan
5 Update-DR
6 Capture-DR
7 Select-DR-Scan
8 Exit2-IR
9 Exit1-IR
10 Shift-IR
11 Pause-IR
12 Run-Test/Idle
13 Update-IR
14 Capture-IR
15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

TCKLevel <level> Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.
Please note:
• nTRST must have a pull-up resistor on the target.
• TCK can have a pull-up or pull-down resistor.
• Other trigger inputs need to be kept in inactive state.

Default: OFF.
Hexagon Debugger | 26©1989-2024 Lauterbach

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.
-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

MULTITAP
[NONE | MSMTAP <irlength>
<irvalue> <drlength>
<drvalue>
| JtagSEQuence
<sub_cmd>]

Selects the type and version of the MULTITAP.

In case of MSMTAP you need to add parameters which specify
which IR pattern and DR pattern needed to be shifted by the
debugger to initialize the MSMTAP. Please note some of these
parameters need a decimal input (dot at the end).

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.
Hexagon Debugger | 27©1989-2024 Lauterbach

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, USB, UDP/TCP-IP, GTL, PCIe...) to:

1. Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

2. Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

3. A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

SoC-400

Memory
Access Port
(MEM-AP)

Debug
Port
(DP)

Memory
Access Port
(MEM-AP)

JTAG
Access Port
(JTAG-AP)

CoreSight
Component

ROM table

ROM table

CoreSight
Component

DAP
Hexagon Debugger | 28©1989-2024 Lauterbach

Example 2: SoC-600

AHBAPn.HPROT [<value> |
<name>]

Default: 0.
Selects the value used for the HPROT bits in the Control Status
Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
memory class.

AXIAPn.HPROT [<value> |
<name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight AXI Access Port, when using
the AXI: memory class.

MEMORYAPn.HPROT
[<value> | <name>]

Default: 0.
This option selects the value used for the HPROT bits in the Control
Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

SoC-600

Debug
link(s)

Memory System 3

ROM table

ROM table

CoreSight
Component

CoreSight
Component

Memory System 2

ROM table

CoreSight
Component

CoreSight
ComponentMEM-AP

Memory System 1

ROM table

CoreSight
Component

MEM-AP

MEM-AP

D
P (32/64-bit)

32/64-bit

32/64-bit

(expected)

(possible)
Hexagon Debugger | 29©1989-2024 Lauterbach

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

AXIAPn.ACEEnable [ON |
OFF]

Default: OFF.
Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

AXIAPn.CacheFlags
<value>

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]-
>Domain) of an Access Port, when using the AXI: memory class.

<name> Description

DeviceSYStem =0x30: Domain=0x3, Cache=0x0

NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2

ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6

ReadAllocateInnerShareable =0x16: Domain=0x1, Cache=0x6

ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6

WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA

WriteAllocateInnerShareable =0x1A: Domain=0x1, Cache=0xA

WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA

ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE

ReadWriteAllocateInnerShareable =0x1E: Domain=0x1, Cache=0xE

ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE
Hexagon Debugger | 30©1989-2024 Lauterbach

AHBAPn.XtorName
<name>

AHB bus transactor name that shall be used for “AHBn:” access
class.

APBAPn.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access
class.

DEBUGAPn.XtorName
<name>

APB bus transactor name identifying the bus where the debug
register can be found. Used for “DAP:” access class.

MEMORYAPn.XtorName
<name>

AHB bus transactor name identifying the bus where system
memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.

... .RESet Undo the configuration for this access port. This does not cause
a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.
Hexagon Debugger | 31©1989-2024 Lauterbach

SoC-400 Specific Commands

AHBAPn.Port <port>
AHBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AHBn:” access class. Default: <port>=0.

APBAPn.Port <port>
APBACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “APBn:” access class. Default: <port>=1.

AXIAPn.Port <port>
AXIACCESSPORT <port>
(deprecated)

Access Port Number (0-255) of a SoC-400 system which shall be
used for “AXIn:” access class. Default: port not available.

DEBUGAPn.Port <port>
DEBUGACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where the
debug register can be found (typically on APB). Used for “DAP:”
access class. Default: <port>=1.

JTAGAPn.CorePort <port>
COREJTAGPORT <port>
(deprecated)

JTAG-AP port number (0-7) connected to the core which shall be
debugged.

JTAGAPn.Port <port>
JTAGACCESSPORT <port>
(deprecated)

Access port number (0-255) of a SoC-400 system of the JTAG
Access Port.

MEMORYAPn.Port <port>
MEMORYACCESSPORT
<port> (deprecated)

AP access port number (0-255) of a SoC-400 system where
system memory can be accessed even during runtime (typically
an AHB). Used for “E:” access class while running, assuming
“SYStem.MemAccess DAP”. Default: <port>=0.
Hexagon Debugger | 32©1989-2024 Lauterbach

SoC-600 Specific Commands

AHBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AHBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

APBAPn.Base <address> This command informs the debugger about the start address of
the register block of the “APBAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

AXIAPn.Base <address> This command informs the debugger about the start address of
the register block of the “AXIAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

JTAGAPn.Base <address> This command informs the debugger about the start address of
the register block of the “JTAGAPn:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.
Hexagon Debugger | 33©1989-2024 Lauterbach

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.
Hexagon Debugger | 34©1989-2024 Lauterbach

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNEL3,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

Example:

SYStem.CONFIG.COREDEBUG.Base 0x80010000 0x80012000
SYStem.CONFIG.BMC.Base 0x80011000 0x80013000
SYStem.CONFIG.ETM.Base 0x8001c000 0x8001d000
SYStem.CONFIG.STM1.Base EAHB:0x20008000
SYStem.CONFIG.STM1.Type ARM
SYStem.CONFIG.STM1.Mode STPv2
SYStem.CONFIG.FUNNEL1.Base 0x80004000
SYStem.CONFIG.FUNNEL2.Base 0x80005000
SYStem.CONFIG.TPIU.Base 0x80003000
SYStem.CONFIG.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
SYStem.CONFIG.FUNNEL2.ATBSource FUNNEL1 0 STM1 7
SYStem.CONFIG.TPIU.ATBSource FUNNEL2

ETM

ETM

STM

Core

Core

FUNNEL

TPIUFUNNEL

0

1
0

7

Hexagon Debugger | 35©1989-2024 Lauterbach

… .ATBSource <source> Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>” or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>”.

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example: Four cores with ETM modules.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.2 2 ETM.3 3
"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM
Hexagon Debugger | 36©1989-2024 Lauterbach

Example: Four cores, each having an ETM module and an ETB
module.
SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2
The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELs.

For a list of possible components including a short description
see Components and Available Commands.

… .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components COREBEBUG, CTI, ETB, ETF, ETM, ETR
a list of base addresses to specify one component per core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

... .Name The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.
Hexagon Debugger | 37©1989-2024 Lauterbach

Example 1: Shared None-Programmable Funnel:
PowerView1:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:
SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Example 2: Cluster ETFs:
1. Configures the ETF base address and access for each core
SYStem.CONFIG.ETF.Base DAP:0x80001000 \

APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core
2 and 4 share cluster-etf-2 despite using the same address for all
ETFs
SYStem.CONFIG.ETF.Name "cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

… .NoFlush [ON | OFF] Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

… .RESet Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

… .Size <size> Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

… .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

Specifies the which method is used to implement the Stack mode
of the on-chip trace.
NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTIs to the
on-chip trace.
FULLTIDRM: trigger mechanism for TI devices.
NOTSET: the method is derived by other GUIs or hardware.
detection.
FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.
Hexagon Debugger | 38©1989-2024 Lauterbach

… .view Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

… .TraceID <id> Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TraceID <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TraceID <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.

CTI.Config <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

CTICH01: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8 only.
CTICH23: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTIs. Armv8 only.
ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. Armv8 only.

ETR.CATUBase <address> Base address of the CoreSight Address Translation Unit (CATU).
Hexagon Debugger | 39©1989-2024 Lauterbach

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
ATBSource,Base, ,RESet,TraceID.

COREDEBUG.Base <address>
COREDEBUG.RESet
Core Debug Register - Arm debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

CTI.Base <address>
CTI.Config [NONE | ARMV1 | ARMPostInit | OMAP3 | TMS570 | CortexV1 | QV1]
CTI.RESet
Cross Trigger Interface (CTI) - Arm CoreSight module
If notified the debugger uses it to synchronously halt (and sometimes also to start) multiple cores.

FUNNEL.Name <string> It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

FUNNEL.PROGrammable
[ON | OFF]

Default is ON. If set to ON the peripheral is controlled by
TRACE32 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACE32 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

Selects the protocol type used by the System Trace Module (STM).

STM.Type [None | Generic |
ARM | SDTI | TI]

Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

TPIU.Type [CoreSight |
Generic]

Selects the type of the Trace Port Interface Unit (TPIU).

CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.
Hexagon Debugger | 40©1989-2024 Lauterbach

ETB.ATBSource <source>
ETB.Base <address>
ETB.RESet
ETB.Size <size>
Embedded Trace Buffer (ETB) - Arm CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

ETF.ATBSource <source>
ETF.Base <address>
ETF.RESet
Embedded Trace FIFO (ETF) - Arm CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETM.Base <address>
ETM.RESet
Embedded Trace Macrocell (ETM) - Arm CoreSight module
Program Trace Macrocell (PTM) - Arm CoreSight module
Trace source providing information about program flow and data accesses of a core.
The ETM commands will be used even for PTM.

ETR.ATBSource <source>
ETR.Base <address>
ETR.CATUBase <address>
ETR.RESet
Embedded Trace Router (ETR) - Arm CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

ETS.ATBSource <source>
ETS.Base <address>
ETS.RESet
Embedded Trace Streamer (ETS) - Arm CoreSight module

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet
CoreSight Trace Funnel (CSTF) - Arm CoreSight module
Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>
REP.Base <address>
REP.Name <string>
REP.RESet
CoreSight Replicator - Arm CoreSight module
This command group is used to configure Arm Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

STM.Base <address>
STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]
STM.RESet
Hexagon Debugger | 41©1989-2024 Lauterbach

STM.Type [None | Generic | ARM | SDTI | TI]
System Trace Macrocell (STM) - MIPI, Arm CoreSight, others
Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.RESet
TPIU.Type [CoreSight | Generic]
Trace Port Interface Unit (TPIU) - Arm CoreSight module
Trace sink sending the trace off-chip on a parallel trace port (chip pins).
Hexagon Debugger | 42©1989-2024 Lauterbach

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

… BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components CORE, CTI, ETB, ETF, ETM, ETR a list of
base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000”.

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.
Hexagon Debugger | 43©1989-2024 Lauterbach

… PORT <port> Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port> parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

For a list of possible components including a short description
see Components and Available Commands.

CTICONFIG <type> Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTI is not used by the debugger.
ARMV1: This mode is used for Arm7/9/11 cores which support
synchronous halt, only.
ARMPostInit: Like ARMV1 but the CTI connection differs from the
Arm recommendation.
OMAP3: This mode is not yet used.
TMS570: Used for a certain CTI connection used on a TMS570
derivative.
CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTI are done as recommended by
Arm. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.
QV1: This mode is not yet used.

view Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.
Hexagon Debugger | 44©1989-2024 Lauterbach

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons
and the corresponding new command.

SYStem.CONFIG <parameter>

(1) Further “<component>.ATBSource <source>” commands might be needed to describe the full trace data
path from trace source to trace sink.

<parameter>:
(Deprecated)

<parameter>:
(New)

COREBASE <address> COREDEBUG.Base <address>

CTIBASE <address> CTI.Base <address>

CTICONFIG <type> CTI.Config <type>

DEBUGBASE <address> COREDEBUG.Base <address>

ETBBASE <address> ETB1.Base <address>

ETBFUNNELBASE <address> FUNNEL4.Base <address>

ETFBASE <address> ETF1.Base <address>

ETMBASE <address> ETM.Base <address>

ETMETBFUNNELPORT <port> FUNNEL4.ATBSource ETM <port> (1)

ETMFUNNEL2PORT <port> FUNNEL2.ATBSource ETM <port> (1)

ETMFUNNELPORT <port> FUNNEL1.ATBSource ETM <port> (1)

ETMTPIUFUNNELPORT <port> FUNNEL3.ATBSource ETM <port> (1)

FUNNEL2BASE <address> FUNNEL2.Base <address>

FUNNELBASE <address> FUNNEL1.Base <address>

STMETBFUNNELPORT <port> FUNNEL4.ATBSource STM1 <port> (1)

STMFUNNEL2PORT <port> FUNNEL2.ATBSource STM1 <port> (1)

STMFUNNELPORT <port> FUNNEL1.ATBSource STM1 <port> (1)

STMTPIUFUNNELPORT <port> FUNNEL3.ATBSource STM1 <port> (1)

TPIUBASE <address> TPIU.Base <address>

TPIUFUNNELBASE <address> FUNNEL3.Base <address>

view state
Hexagon Debugger | 45©1989-2024 Lauterbach

SYStem.CONFIG.MSA Enable translation by system MMU

Default: 0xffffffff (disabled).

Only available for HexagonV5 and later.

When specifying the MSA register address, L2-address translation by the on-chip system-level MMU is
enabled. See your SoC documentation for the MSA register address.

The debugger knows from the TLB or page table entry whether a resolved address is to be translated once
more by the System MMU. In case the debugger or OS Awareness cannot resolve this second translation
the SoC can be instructed to do it by setting bit 2 in this register.

The user can manually trigger this translation using memory class SD:. This assumes that the core MMU
translation has already been performed.

SYStem.CPU Select CPU type

Default: HexagonV2.

Select your CPU.

Format: SYStem.CONFIG.MSA <address>

Format: SYStem.CPU <cpu>

<cpu>: HexagonV2 |
HexagonV3 | HexagonV3L | HexagonV3M | HexagonV3C |
HexagonV4 | HexagonV4L | HexagonV4M | HexagonV4C |
HexagonV5 | HexagonV55 | HexagonV56 |
HexagonV60
Hexagon Debugger | 46©1989-2024 Lauterbach

SYStem.JtagClock Select clock for JTAG communication

Default: 10.0 MHz.

This command selects the frequency of the JTAG clock, which is used to communicate with the Hexagon
core. The maximum reachable frequency is target dependent, the default should be fine. If no unit is
specified, Hz is assumed.
The frequency modes RTCK, ARTCK, CTCK and CRTCK are not supported by Hexagon.

SYStem.LOCK Tristate the JTAG port

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Hexagon JTAG state machine remains unchanged while the system
is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target,
EDBGRQ must have a pull-down resistor.

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock (deprecated)

<frequency>: 1.0 kHz…80.0 MHz

Format: SYStem.LOCK [ON | OFF]

There is a single cable contact on the casing of the debug cable which
can be used to detect if the JTAG connector of the debugger is
tristated. If tristated also this signal is tristated, otherwise it is pulled
low.
Hexagon Debugger | 47©1989-2024 Lauterbach

SYStem.MemAccess Select run-time memory access method

Default: Enable.

This option declares if and how a non-intrusive memory access can take place while the CPU is executing
code. Although the CPU is not halted, run-time memory access creates an additional load on the
processor’s internal data bus. Default access mode is CPU. The currently selected run-time memory access
mode is printed in the state line.

The run-time memory access has to be activated for each window by using the memory class E: (e.g.
Data.dump ED:0x000000) or by using the format option %E (e.g. Var.View %E var1).

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable | Denied | DAP | StopAndGo

Enable
CPU (deprecated)

The debugger performs memory accesses via a dedicated CPU
interface. Hexagon has no such CPU interface.

Denied Non-intrusive memory access is disabled while the CPU is executing
code. Instead intrusive accesses can be configured with
SYStem.CpuAccess.

DAP A run-time memory access is done via the Debug Access Port (DAP).
This is only possible if a DAP is available on the SoC and if the memory
bus is connected to it.
Not possible on the instruction set simulator.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)
Hexagon Debugger | 48©1989-2024 Lauterbach

For an explanation of the TRACE32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

Examples:

SYStem.Option.MACHINESPACES Address extension for guest OSes

Default: OFF

Enables the TRACE32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.

2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

Format: SYStem.Option.MACHINESPACES [ON | OFF]
Hexagon Debugger | 49©1989-2024 Lauterbach

If SYStem.Option.MACHINESPACES is set to ON:

• Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACE32 currently supports machine IDs up to 30.

• The debugger address translation (MMU and TRANSlation command groups) can be individually
configured for each virtual machine.

• Individual symbol sets can be loaded for each virtual machine.
Hexagon Debugger | 50©1989-2024 Lauterbach

SYStem.Mode Select target reset mode

Default: Down.

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down
NoDebug
Go
Attach
StandBy
Up

Down Stops the JTAG communication to the core.

NoDebug Releases the core from reset without establishing a JTAG connection to the
core. The debug connector is tristated and behaves as if it was not connected.
The core will start running.

Go Establishes a JTAG connection, initializes the debug interface. The core is reset
and will start running from the reset vector.

Attach User program remains running (no reset) and the debug interface is initialized.
After this command the user program can be stopped with the break command
or if a break condition occurs.

StandBy The target processor waits for target power and clock. When both are active it
starts as fast as possible. This functionality is not available on all targets.

Up Establishes a JTAG connection, initializes the debug interface. The core is reset
and will start running from the reset vector. If the application has enabled
debugging, the DSP will halt at the initial software breakpoint, if set by the
application.
Hexagon Debugger | 51©1989-2024 Lauterbach

When debugging is prohibited or the Hexagon core is not correctly configured, establishing the debug
connection fails and the debugger will revert into the Down state. One of the following error messages will be
printed, and the AREA window shows some additional information. See Hexagon Security for more
information on the Hexagon debug modes.

 The “Emulate” LED on the debug module is ON when the debug mode is active and the CPU is running.

SYStem.Option CPU specific commands

The SYStem.Options are a class of Architecture and CPU specific commands.

SYStem.Option.BUGFIX Workaround for single-stepping an RTE instruction

Default: OFF (Hexagon v1: ON).

Workaround for single-stepping an RTE instruction on Hexagon v1. Do not enable on other Hexagon
variants.

SYStem.Option.DCFREEZE Do not invalidate cache

Default: ON.

Emulator debug port
secured

Debugging is either permitted by the application or untrusted
debugging has been selected (not supported by TRACE32).

Emulator debug port
locked

The Hexagon core was not enabled or configured by the Arm core.
Either it is still in power down mode (all Hexagon versions) or in reset
(Hexagon v4 and newer).

Emulator debug port fail Setting the debug mode by the application failed. The debugger can
communicate with the debug system but gets no further access.

When SYStem.Option.SRST is OFF, only a Hexagon internal reset is performed.
The reset has no impact on other cores in the same chip (depending on the
design). This internal reset is also performed when SYStem.CONFIG.Slave is
enabled.

Format: SYStem.Option.BUGFIX [ON | OFF]

Format: SYStem.Option.DCFREEZE [ON | OFF]
Hexagon Debugger | 52©1989-2024 Lauterbach

Instruct the debugger whether to provide data cache coherency on a memory access or not. The behavior is
different for the various Hexagon variants:

Hexagon v1, v2 and v3 behave as follows when performing a memory access via memory classes D:,
DC: and L2:

• If enabled and L1 data cache is enabled, the debugger will disable L1 caches. This assures
cache coherency for L1 cache state and content.

• If disabled, all accesses are performed via caches as far as they are enabled. This usually
allocates new lines in the cache and so alters the cache states.

In case of any issues with cache content, try to disable DCFREEZE for Hexagon v1, v2 and v3.

Hexagon v4 behaves as follows when performing a memory access via memory classes P:, IC:, D:, DC:
and L2:

• If enabled, the debugger will perform a non-destructive read access regarding the L1 data cache
by using the memw_phys() instruction.

• If disabled, the debugger will perform a destructive read access which will result in newly
allocated cache lines in L1 data cache.

For Hexagon v4, enabling DCFREEZE is recommended.

SYStem.Option.CLADE Enable debugger support for CLADE

Default: OFF.

When enabled, TRACE32 will handle RAM regions compressed using CLADE.

SYStem.Option.CLADEDICT Load CLADE dictionary from file

Loads the clade dictionary from a file.

Format: SYStem.Option.CLADE [ON | OFF]

Format: SYStem.Option.CLADEDICT <file>
Hexagon Debugger | 53©1989-2024 Lauterbach

SYStem.Option.CLADEPARAM Define the CLADE address parameters

Inform TRACE32 about the location of the compressed memory regions in memory.

SYStem.Option.CLADEREAD Use hardware for reading compressed RAM

Default: ON.

When enabled, TRACE32 will read compressed memory using CLADE hardware. When disabled,
TRACE32 will use the built-in CLADE library.

SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step”

Default: ON.

Format: SYStem.Option.CLADEPARAM <high> <low> <main> <excp_high>
<excp_low> <excp_low_small> […]

Format: SYStem.Option.CLADEREAD [ON | OFF]

Format: SYStem.Option.ICFLUSH [ON | OFF]
Hexagon Debugger | 54©1989-2024 Lauterbach

In case the instruction memory is modified, Instruction Cache(s) have to be kept coherent with RAM,
otherwise modifications (e.g. Software Breakpoints) may not take effect. There are two strategies how the
invalidation is performed:

• If ICFLUSH is enabled, the entire L1 instruction cache is unconditionally invalidated before
program execution is resumed (executing a Go or Step command). The entire L2 cache is also
invalidated in the following cases:

Hexagon v2: in case L2 cache is configured.

Hexagon v3: in case L2 cache is configured and in write-through mode

Hexagon v4: never

In case L2 cache is configured but can not be invalidated completely, e.g. because it is in copy-
back mode or in case of Hexagon v4, L2 cache coherence is maintained as for the ICFLUSH
disabled case.

• If ICFLUSH is disabled, the affected lines in L1 instruction cache are invalidated in the instant of
the memory modification. The affected L2 cache lines are also invalidated, but note that this is
performed by invalidation of the corresponding L1 data cache lines.

SYStem.Option.IMASKASM Disable interrupts while single stepping

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU when single stepping assembler instructions.
No hardware interrupt will be executed during single-step operations. When you execute a Go command,
the hardware interrupts will be enabled again, according to the system control registers.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Default: OFF.

In case ICFLUSH is disabled, the instruction cache is only invalidated when
writing via memory class P: or IC:.

Note that Hexagon v1 has no L2 cache implemented.

Format: SYStem.Option.IMASKASM [ON | OFF]

Format: SYStem.Option.IMASKHLL [ON | OFF]
Hexagon Debugger | 55©1989-2024 Lauterbach

If enabled, the debug core will disable all interrupts for the CPU during HLL single-step operations. When
you execute a Go command, the hardware interrupts will be enabled again, according to the system control
registers. This option should be used in conjunction with SYStem.Option.IMASKASM.

SYStem.Option.ISDBSoftBreakFix Workaround for prefetch issue

Default: OFF.

A bug in the prefetcher causes ISDB to lock when a breakpoint is hit. The debugger is then not able to
communicate with Hexagon any more. This bug affects onchip and software breakpoints.

The debugger’s workaround is to write an ISYNC instruction right after the breakpoint instruction. This has
the following restrictions:

• Setting onchip breakpoints is not possible. Use software breakpoints instead.

• Setting software breakpoints at consecutive addresses is not possible.

• The instruction followed by the software breakpoint must not be the target of a jump. The user
has to ensure this when setting the breakpoint.

SYStem.Option.PC PC parking position

Default: 0xffffffff

If <base> is programmed to a different value than 0xffffffff, the PC will parked at the given address
while the thread is breaked. This is a recommended workaround for several silicon issues.

Select a valid physical address which has no jump or call instruction. It is recommended not to park in the
middle of a multi-instruction packet.

Format: SYStem.Option.ISDBSoftBreakFix [ON | OFF]

NOTE: This workaround is only for early HexagonV60 devices only used by Qualcomm
internally. Only enable this option when your device is affected by this issue.

Format: SYStem.Option.PC <base>
Hexagon Debugger | 56©1989-2024 Lauterbach

SYStem.RESetOut Reset target without reset of debug port

This command resets the DSP via the debug registers in ISDB. Only the DSP will reset, not the debug port
or the target system. This function only works when the CPU is in SYStem.Mode Up.

SYStem.Option.REVision Define default value for REV register

Default: 0x00000000

Allows to specify a default value for the REV register. Applications evaluate this register to get information
about the Hexagon version and implemented features.

This command is available in the TRACE32 simulator only. The command becomes effective after the next
SYStem.Mode Up or Register.Init and will be permanent. Use the Register.Set REV to change the REV
register temporary and immediately.

SYStem.Option.SRST Reset via SRST line

Default: OFF.

When enabled (ON), the debugger also resets the core via the nSRST line of the JTAG connector. It also
holds the core in reset while in SYStem.Mode Down. When disabled, only Hexagon specific resets will be
generated if possible.

On some evaluation boards where the nSRST line is also connected to other cores and chips a reset via
nSRST will have unwanted effects.

Format: SYStem.RESetOut

Format: SYStem.Option.REVision <value>

Format: SYStem.Option.SRST [ON | OFF]
Hexagon Debugger | 57©1989-2024 Lauterbach

SYStem.StuffInstruction.Assemble Execute assembly stuff instruction
[build 139867 - DVD 02/2022]

Execute a stuff instruction (given in assembly) without modifying the instruction memory. The instruction will
be executed in the thread’s current mode. The instruction may not assemble to more bytes than the stuff
instruction register can hold. The address is a hint to the assembler that is required for address relative
operations (e.g., jump). For Hexagon, this can always be “r(pc)” to enable relative jumps. For operations that
require no base address, this can be set to 0. Note that instructions are truncated if the assembled opcode is
longer than the stuff instruction register.

SYStem.StuffInstruction.Opcode Execute opcode stuff instruction
[build 139867 - DVD 02/2022]

Execute a stuff instruction (given as opcode) without modifying the instruction memory. The instruction will
be executed in the thread’s current mode.

SYStem.Option.TCMBase Base address of the TCM

Default: 0x00000000 (disabled)

Only required for Hexagon v2 and v3, ignored for all other Hexagon versions.

The location of the Tightly Coupled Memory (TCM) depends on the device. As the L2 cache is implemented
in the TCM, the debugger needs to know where to look for it. Disabling the TCM (setting the base address to
0x00000000) disables the L2 cache support of TRACE32.

Format: SYStem.StuffInstruction.Assemble 0x0 <address> <assembly>

Format: SYStem.StuffInstruction.Opcode <opcode>

Format: SYStem.Option.TCMBase <address>
Hexagon Debugger | 58©1989-2024 Lauterbach

SYStem.Option.TLBINV Invalidate TLB while MMU is off

Default: OFF

This is a workaround necessary for some early Hexagon v5 devices. When the debugger accesses memory
while the MMU is OFF, the TLB might get corrupted. Enabling this option ensures that the debugger
invalidates all TLB entries when disabling the MMU. When enabling again, all entries are restored.

SYStem.state Display SYStem.state window

Displays the SYStem.state window for Hexagon.

Format: SYStem.Option.TLBINV [ON | OFF]

Format: SYStem.state
Hexagon Debugger | 59©1989-2024 Lauterbach

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table

Displays the contents of the CPU specific MMU translation table.

• If called without parameters, the complete table will be displayed.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
 <address> <root>]
MMU.<table>.dump (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Displays the entries of an MMU translation table.
• if <range> or <address> have a space ID: displays the translation

table of the specified process
• else, this command displays the table the CPU currently uses for

MMU translation.
Hexagon Debugger | 60©1989-2024 Lauterbach

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.
Hexagon Debugger | 61©1989-2024 Lauterbach

CPU specific tables in MMU.DUMP <table>

MMU.List Compact display of MMU translation table

Lists the address translation of the CPU-specific MMU table.

• If called without address or range parameters, the complete table will be displayed.

• If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSlation.List.

• If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

TLB Displays the contents of the Translation Lookaside Buffer.

MAP Displays the contents of the MAP table.

VTLB Displays the contents of a virtual TLB (VTLB) translation table.
If SYStem.Option.MMUSPACES is set to OFF, the list of VTLB entries is
sorted ascending by address only.
If SYStem.Option.MMUSPACES is set to ON, the list of VTLB entries is
sorted by the ASID first and then by the address.

Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.
Hexagon Debugger | 62©1989-2024 Lauterbach

MMU.MAP Translations from ELF file memory load map

MMU.MAP.dump Display addresses from ELF file memory load map

Shows the logical and associated physical addresses of the program sections loaded from an ELF file.
This command is an alias for sYmbol.List.MAP.

MMU.MAP.SCAN Load MMU table from ELF file

Loads the logical and associated physical addresses of the program sections loaded from an ELF file to the
debugger-internal translation table.The loaded address translation can be viewed with TRANSlation.List.

See also MMU.MAP.dump.

PageTable Lists the entries of an MMU translation table.
• if <range> or <address> have a space ID: list the translation table

of the specified process
• else, this command lists the table the CPU currently uses for MMU

translation.

KernelPageTable Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.
• For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manuals.

Format: MMU.MAP.dump

Format: MMU.MAP.SCAN
Hexagon Debugger | 63©1989-2024 Lauterbach

MMU.SCAN Load MMU table from CPU

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

• If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSlation.List.

• If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSlation.ON to enable the debugger-internal MMU table.

Format: MMU.SCAN <table> [<range> <address>]
MMU.<table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]

TLB | VTLB | MAP

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
• if <range> or <address> have a space ID: loads the translation table

of the specified process
• else, this command loads the table the CPU currently uses for MMU

translation.
Hexagon Debugger | 64©1989-2024 Lauterbach

CPU specific tables in MMU.SCAN <table>

KernelPageTable Loads the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.
• For information about the first three parameters, see “What to know

about the Task Parameters” (general_ref_t.pdf).
• See also the appropriate OS Awareness Manual.

ALL [Clear] Loads all known MMU address translations.
This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

TLB Loads the translation table from the CPU to the debugger-internal translation
table.

MAP Loads the logical and associated physical addresses of the program
sections loaded from an ELF file to the debugger-internal translation table.

VTLB Loads the translations from a virtual TLB (VTLB) translation table to the
debugger-internal translation table.
If SYStem.Option.MMUSPACES is set to OFF, the VTLB entries will be
scanned, disregarding their ASID field.
If SYStem.Option.MMUSPACES is set to ON, the list of VTLB entries will
be scanned and their ASID field will be copied to the space ID of the new
static translation entry.
Hexagon Debugger | 65©1989-2024 Lauterbach

MMU.Set Write to MMU on processor

MMU.TLB Scan or dump MMU TLB entries

Format: MMU.Set [TLB [<index> [<tlb0> [<tlb1>]]]]

TLB Writes data to the processor’s TLB.

index Index (entry) in TLB table

tlb0
tlb1

Data of the TLB entries

Format: MMU.TLB.<sub_cmd>

<sub_cmd>: dump | SCAN

dump Displays a table of all entries from the CPU TLB table.

SCAN Loads the TLB table entries from the CPU to the debugger-internal MMU
table.
Hexagon Debugger | 66©1989-2024 Lauterbach

MMU.VTLB Scan or dump VTLB entries

Format: MMU.VTLB.<sub_cmd>

<sub_cmd>: dump | SCAN

dump Displays the entries of a virtual TLB (VTLB) translation table.
See MMU.DUMP.VTLB.

SCAN Loads the translations from a virtual TLB (VTLB) translation table to the
debugger-internal translation table.
See MMU.SCAN.VTLB.
Hexagon Debugger | 67©1989-2024 Lauterbach

CPU specific BenchMarkCounter Commands

The Hexagon-ETM contains six counters which can record various events related to DSP performance.

The benchmark counters can be read at run-time. The counter values are periodically packed into so-called
profiling packets and sent out through the trace port.

For information about architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC commands, see command descriptions below.

BMC.COUNTER<n> Specify event count

Specifies which event is counted by an event counter.

Format: BMC.COUNTER<n> <event>

<event>: DCMISS | DCCCONFLICT | ICMISS | ICSTALL | ITLBMISS | DTLBMISS |
STALLS

DCMISS data cache misses

DCCONFLICT data cache conflicts

ICMISS instruction cache misses

ICSTALL instruction cache stall-cycles

ITLBMISS itlb misses

DTLBMISS dtlb misses

STALLS all stall cycles

BMC.COUNTER1 ICSTALL
Hexagon Debugger | 68©1989-2024 Lauterbach

BMC.CyclePeriod Specify export rate

Specifies the number of clock cycles for which an event is counted before it is sent out through the trace port.

BMC.OFF Disable benchmark counters

Disable TRACE32 BMC functionality.

BMC.ON Enable benchmark counters

Enable TRACE32 BMC functionality.

BMC.SELect Select counter for statistic analysis

The exported event counter values can be combined with the exported instruction flow in order to get a
clearer understanding of the program behavior. The command BMC.SELect allows to specify which counter
is combined with the instruction flow to get a statistical evaluation.

Format: BMC.CyclePeriod <cycles>

BMC.CyclePeriod 500. ; count the specified events for
; 500 clock cycles,
; pack the result in a profiling
; packet and sent it out

Format: BMC.OFF

Format: BMC.ON

Format: BMC.SELect <counter>

<counter>: COUNTER0 | COUNTER1 | …
Hexagon Debugger | 69©1989-2024 Lauterbach

BMC.SPDM Specify profiler control

BMC.COUNTER0 STALL ; counter0 counts all stall cycles

…

BMC.SELect COUNTER0 ; counter0 is selected for the
; combination with the instruction
; flow

BMC.STATistic.sYmbol ; assign the stall cycles to the
; executed functions/symbol
; regions

Format: BMC.SPDM [ON | OFF]

OFF
(default)

The ETM region counter controls the accumulation/packet
generation.

ON The SPDM controls the profiler accumulation/packet generation.
Hexagon Debugger | 70©1989-2024 Lauterbach

BMC.SPLIT Specify export rate

Format: BMC.SPLIT [ON | OFF]

OFF
(default)

The specified events are counted for all hardware thread.

ON A single event is counted separately each hardware thread.
Hexagon Debugger | 71©1989-2024 Lauterbach

TrOnchip Commands

TrOnchip.ContextID Extend on-chip breakpoint/trace filter by TID

TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID

Format: TrOnchip.ContextID [ON | OFF]

OFF
(default)

Stop the program execution at on-chip breakpoint if the address
matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if the address and
the TID matches.
Trace filters and triggers become active if the address and the TID
matches.

Precondition is that the RTOS operates the TID.

Format: TrOnchip.MatchASID [ON | OFF] (deprecated)
TrOnchip.ASID [ON | OFF] (deprecated)
Use Break.CONFIG.MatchASID instead

OFF
(default)

Stop the program execution at on-chip breakpoint if the address matches.
Trace filters and triggers become active if the address matches.

ON Stop the program execution at on-chip breakpoint if both the address and
the ASID match.
Trace filters and triggers become active if both the address and the ASID
match.
Hexagon Debugger | 72©1989-2024 Lauterbach

TrOnchip.RESet Reset “TrOnchip” settings

Reset TrOnchip settings to default.

TrOnchip.StepException Single stepping of exceptions and interrupts

TrOnchip.state Display on-chip trigger window

Opens the TrOnchip.state window.

Format: TrOnchip.RESet

Format: TrOnchip.StepException [ON | OFF]

OFF
(default)

Execute exception in real-time while single stepping.

Execute interrupts in real-time while single stepping (only if
SYStem.Option.IMASKASM is OFF).

ON Enable single stepping for exceptions and interrupts (only if
SYStem.Option.IMASKASM is OFF).

Format: TrOnchip.state
Hexagon Debugger | 73©1989-2024 Lauterbach

JTAG Connector

Mechanical Description of the 20-pin Debug Cable

The connector for Hexagon is identical to the connector for Arm cores as defined by Arm:

This is a standard 20 pin double row connector (pin-to-pin spacing: 0.100 in.).

We strongly recommend to use a connector on your target with housing and having a center polarization
(e.g. AMP: 2-827745-0). A connection the other way around indeed causes damage to the output driver of
the debugger.

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND

TMS|TMSC|SWDIO 7 8 GND
TCK|TCKC|SWCLK 9 10 GND

RTCK 11 12 GND
TDO|-|SWO 13 14 GND

RESET- 15 16 GND
DBGRQ 17 18 GND

DBGACK 19 20 GND
Hexagon Debugger | 74©1989-2024 Lauterbach

Electrical Description of the 20-pin Debug Cable

• The input and output signals are connected to a supply translating transceiver. Therefore the ICD
can work in a voltage range of 0.4 … 5.0 V (5.25 V).

• VTREF is used as a sense line for the target voltage.

• nTRST, TDI, TMS, TCK are driven by the supply translating transceiver. In normal operation
mode this driver is enabled, but it can be disabled to give another tool access to the JTAG port. In
environments where multiple tools can access the JTAG port, it is required that there is a pull-up
or pull-down resistor at TCK. This is to ensure that TCK maintains its level during a handover
between different tools.

• RTCK is the return test clock signal from the target JTAG port. This signal can be used to
synchronize JTAG clock with the processor clock (see SYStem.JtagClock). Hexagon does not
support RTCK.

• TDO is an ICD input. It is connected to the supply translating transceiver.

• nSRST (=nRESET) is used by the debugger to reset the target CPU or to detect a reset on the
target. It is driven by an open collector buffer. A pull-up resistor is included in the ICD connector.
The debugger will only assert a pulse on nSRST when the SYStem.UP, the SYStem.Mode Go or
the SYStem.RESetOUT command is executed.

• EDBGRQ is driven by the supply translating transceiver. This line is optional. It allows to halt the
program execution by an external trigger signal.

• DBGACK is an ICD input. It is connected to the supply translating transceiver. A pull-down
resistor is included in the ICD connector. This line is optional. It allows exact runtime
measurement and exact triggering of other devices on a program execution halt.

• N/C (= Vsupply) is not connected in the ICD. This pin is used by debuggers of other
manufacturers for supply voltage input. The ICD is self-powered.

There is an additional plug in the connector on the debug cable to the debug interface. This signal is tristated
if the JTAG connector is tristated by the debugger and it is pulled low otherwise. This signal is normally not
required, but can be used to detect the tristate state if more than one debug tools are connected to the same
JTAG port.
Hexagon Debugger | 75©1989-2024 Lauterbach

	Hexagon Debugger
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Quick Start of the ICD Debugger for Hexagon
	1. Hexagon Conceptual Basics
	2. Prepare the Start
	3. Select the Clock for the JTAG Communication
	4. Configure the Debugger According to the Needs of the Application
	5. Enter Debug Mode
	6. Load the Application
	7. View the Source Code
	8. Write a Start-up Script

	Debugger Basics
	Memory Classes and Memory Access
	Stack Display
	Hexagon Security
	Virtual Hardware Threads
	Thread Compounds
	Thread States

	On-chip Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints

	Restrictions

	Troubleshooting
	SYStem.Up Errors

	FAQ
	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CONFIG.MSA Enable translation by system MMU
	SYStem.CPU Select CPU type
	SYStem.JtagClock Select clock for JTAG communication
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Mode Select target reset mode
	SYStem.Option CPU specific commands
	SYStem.Option.BUGFIX Workaround for single-stepping an RTE instruction
	SYStem.Option.DCFREEZE Do not invalidate cache
	SYStem.Option.CLADE Enable debugger support for CLADE
	SYStem.Option.CLADEDICT Load CLADE dictionary from file
	SYStem.Option.CLADEPARAM Define the CLADE address parameters
	SYStem.Option.CLADEREAD Use hardware for reading compressed RAM
	SYStem.Option.ICFLUSH Flush instruction cache at “Go” or “Step”
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.ISDBSoftBreakFix Workaround for prefetch issue
	SYStem.Option.PC PC parking position
	SYStem.RESetOut Reset target without reset of debug port
	SYStem.Option.REVision Define default value for REV register
	SYStem.Option.SRST Reset via SRST line
	SYStem.StuffInstruction.Assemble Execute assembly stuff instruction
	SYStem.StuffInstruction.Opcode Execute opcode stuff instruction
	SYStem.Option.TCMBase Base address of the TCM
	SYStem.Option.TLBINV Invalidate TLB while MMU is off
	SYStem.state Display SYStem.state window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.MAP Translations from ELF file memory load map
	MMU.MAP.dump Display addresses from ELF file memory load map
	MMU.MAP.SCAN Load MMU table from ELF file
	MMU.SCAN Load MMU table from CPU
	MMU.Set Write to MMU on processor
	MMU.TLB Scan or dump MMU TLB entries
	MMU.VTLB Scan or dump VTLB entries

	CPU specific BenchMarkCounter Commands
	BMC.COUNTER<n> Specify event count
	BMC.CyclePeriod Specify export rate
	BMC.OFF Disable benchmark counters
	BMC.ON Enable benchmark counters
	BMC.SELect Select counter for statistic analysis
	BMC.SPDM Specify profiler control
	BMC.SPLIT Specify export rate

	TrOnchip Commands
	TrOnchip.ContextID Extend on-chip breakpoint/trace filter by TID
	TrOnchip.MatchASID Extend on-chip breakpoint/trace filter by ASID
	TrOnchip.RESet Reset “TrOnchip” settings
	TrOnchip.StepException Single stepping of exceptions and interrupts
	TrOnchip.state Display on-chip trigger window

	JTAG Connector
	Mechanical Description of the 20-pin Debug Cable
	Electrical Description of the 20-pin Debug Cable

