LAUTERBACH A

MCS08 Debugger

MCS08 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
101 r—
[T LO2T 0T 7T o ¥ o =Y 1
Brief Overview of Documents for NeW USErScccriiemiiismnsssmssssssness s s samssssanes 5
L= o 1 ' 6

LI 1810 (== o T 1T T 7
SYStem.Up Errors 7

O 7

CPU Specific Implementations ... s s sssnes 8
Breakpoints 8
Software Breakpoints 8
On-chip Breakpoints 8

Quick Start of the ICD Debugger for HCIS08cccouinmmriminsmnssinessss s ssssssans 9

1. Prepare the Start 9

2. Select the Clock for the BDM Communication 10

3. Configure the Debugger According to the Needs of the Application 10

4. Map the EPROM Simulator if Available (optional) 10

5. Tell the Debugger Where it should use On-chip Breakpoints (optional) 10

6. Enter Debug Mode 11

7. Load the Program 11

8. Initialize Program Counter and Stackpointer 12

9. View the Source Code 12

CPU specific SYStem Settings and Restrictionsccccciiiiicmnnnnncnnnnnnesnnsceenns 14
Restrictions 14
SYStem.BdmClock Select clock for BDM communication 14
Special Functions 15
SYStem.CONFIG Configure debugger according to target topology 15
SYStem.CPU Select CPU type 16
SYStem.LOCK Lock and tristate the debug port 16
SYStem.MemAccess Select run-time memory access method 17
©1989-2024 Lauterbach MCS08 Debugger 2

SYStem.Mode Select target reset mode 17

SYStem.Option.IMASKASM Disable interrupts while single stepping 19
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 19
Hardware Breakpoints ... ssssssss s ssssssss s sssssssss s sssssssss s snnsnas 20
Program Breakpoints 20
Read and Write Breakpoints 20
Data Breakpoints 21
10 10T 41T o T 070 13T 1 2= T - 22
Onchip.Mode.EventTrace Start recording after trigger event 22
Onchip.Mode.FlowTrace Flow trace mode 22
Onchip.Mode.LoopTrace Inhibit redundant entries 22
QIO e o T o B 00T 1 1 F- T4 o £ 23
TrOnchip.Mode Select trace and trigger mode 23
TrOnchip.state Open the control window for the on-chip trigger resources 24
TrOnchip.RESet Reset the on-chip trigger resources 24
MEMOIY ClaSS@S ...cccirriiirsrrrrissssmrerrissssr s rasssas s e ra s sm s r e e s s raa s n s e s Eeaa s ane e Eaa s am e e e e nnann e e nnannn 25
FLASH EEPROM Managementcccccciiiiemmmmminsmmsimnssssssssssssssssssssss s ssssssssssssssssssssnnssns 26
Secure anNd UNSECUIEccceiiimrrirmsiissssmassssassssssssss sssss s sasss s sasss s sasass sasans sasssssnssnsssssnnanssnns 27
BDM Connector ICD-MCS08ccocmrmmiinmrrrmnssmsrrnsssse s sssssssss s sssssssss s sssssssssesnssas 28

©1989-2024 Lauterbach MCS08 Debugger | 3

MCS08 Debugger

Version 06-Jun-2024

A =R

File Edit View Var Break Run CPU Misc Trace Perf Cov FLASH Window Help

(M| +ee/ru[ew ol =unacs @il

I B:Register [= &=] (| & eDatalist] == (E=R===
- A 1 5P 83 il [Mstep | ®over [$ned [#Retum | @uUp || »Go || 1 Break |[#mMode | Find cos08.c
Fll[: 1 ﬁ_x Elﬂg :gg gg addr/line code label mnemonic comment
" SI; #1F6 07 B3 P:ABFA3C [2721 beqg @xFBSF -
H ~ {
e e iy
Tsk BMK @ 0118 | A
+hZ F@ !
w3 14 Isla
104 D3 add Hax3
05 8 : sta Bx1,X
ot Fa L 31 k = i + prinz;
107 FA P:@BFBAS |FB add L
193 AE P:BBFBA6 |Z00F bra BxFa57
:gg f",g 34 flags[k] = FALSE;
A8 6 P:0BFBA8 ABOH add H#ox@
SO0 AR BFB4A |57 psha il
a0 32 BFBAB |17 clra L
WA 77 BFBAC |n9a1 adc H#ix1 1
SOF F3 BFBAE |57 psha i
10 E1 P:ABFBAF [BA pulh
111 25 P:@ABFBS8 B3 pulx
112 97 P:@BF@51 |7F clr SR
113 47 k += prinz;
A De e 1.4 -
548 - Y .
« f
" BPER | & |[52 | || &% B:VarWatch %SpatLight flags k primz i [
- - 0
CPU Type MCISBBDZER CPU Hask 1MBSC T (i) | [@rwaich] [ediew]
lags=1¢1,1,1,6,1, 1, 4, 1, 1, 4, 1, &, 4, 1, 1, 4, 4, 1L, D) -
e |-k=1
®Ports A to G . prim; =3
=
Flash |_
Interrupt
System Control
= MPCG_(Multi-Purpose Clock Generator)
= ACHP_(Analog Comparator) i
o M b ‘ [3
[erulate][frigger H devices][frace][Data][Yar][List][PERF][SYStam H Step][Go][Braak][s¥mbal][Frame][other][previous
F:00F052 Yicos08icos08\sieve+0x38 stopped at breakpaint M UP

©1989-2024 Lauterbach MCSO08 Debugger | 4

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

©1989-2024 Lauterbach MCS08 Debugger | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

MCS08 Debugger |

6

Troubleshooting

SYStem.Up Errors

The SYStem.Up command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

FAQ

The target has no power.
The target is in reset - another device may hold the reset line active.
There is a short circuit on at least one of the output lines of the core.

There is a problem with the electrical connection between ICD08 and the target - check if the

BDM connector is plugged correctly and if the target is built corresponding to the definition of the
used BDM connector.

The MC9S08 has no Clock - check the frequency on the EXTAL pin with a scope.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach MCS08 Debugger | 7

https://support.lauterbach.com/kb

CPU Specific Implementations

Breakpoints

There are two types of breakpoints available: Software breakpoints and on-chip breakpoints.

Software Breakpoints

Software breakpoints are the default breakpoints for program breakpoints. A software breakpoint is
implemented by patching a break code into the memory.

There is no restriction in the number of software breakpoints.

On-chip Breakpoints

The resources for the on-chip breakpoints are provided by the CPU.

The following list gives an overview of the supported on-chip breakpoints:

o On-chip breakpoints: Total amount of available on-chip breakpoints.

. Instruction breakpoints: Number of on-chip breakpoints that can be used to set Program
breakpoints into ROM/FLASH/EEPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

J Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an
address.

Onchip Program Read/Write Data Value
Breakpoints Breakpoints Breakpoints Breakpoints
MCS8 2 up to 2 single up to 2 single 1
address address
(reduced to 1 if com-
bined with data)

©1989-2024 Lauterbach MCS08 Debugger | 8

Quick Start of the ICD Debugger for HC9S08

This chapter should help you to prepare your Debugger for HC9S08. Depending on your application not all
steps might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

It is not necessary to connect the Clock Cable for the first start.
Power up your TRACES32 system (This is not necessary on PODPC).
Start the TRACE32 Debugger Software.

Power up your Target!

To prevent damage please take care on this sequence all the time you
are preparing a start.

©1989-2024 Lauterbach MCS08 Debugger | 9

2. Select the Clock for the BDM Communication

The MC9S08 has the capability to do a automatic synchronization between CPU and debugger. This
synchronization is done when you switch the SYStem.Mode to Up, Attach or Go.The resulting
communication clock is shown in the area called BdmClock within the SYStem window.

The selection box for SYStem.BdmClock can remain on the default setting. This option may be helpful to
increase download rate, but this is not important for the first debug session.

3. Configure the Debugger According to the Needs of the Application

Most of the configuration can be done with the SYStem Window which provides all CPU specific settings.
Use System Settings... in the CPU menu to open this window.

The debugger will select t the CPU type automatically if the pull down menu in the field CPU shows AUTO. If
this does not work, please refer to the command: SYStem.CPU <cpu_type>.

SYStem.CPU AUTO

Set the SYStem Options in the option field corresponding to your target configuration and application
program. Generally the SYStem Options can remain at the default values for the first start.

4. Map the EPROM Simulator if Available (optional)

MAP.ROM 0x0--0x1FFFF

This command maps a standard 8 bit wide 27x010 EPROM.

5. Tell the Debugger Where it should use On-chip Breakpoints (optional)

By default the In Circuit Debugger for 68HC12 (ICD12) modifies the code to realize a program breakpoint.
This will not work for ROM or FLASH memory locations. To provide breakpoints in ROM/FLASH areas the
CPU’ s on-chip breakpoints can be used. With the command MAP.BOnchip <range> you can specify where
the debugger has to use the on-chip breakpoints.

MAP.BOnchip 0x1000--0x0ffff ; activates the on-chip breakpoints
; within the range from 0x1000 to Oxffff

©1989-2024 Lauterbach MCS08 Debugger | 10

6. Enter Debug Mode

SYStem.Up

This command triggers a reset for the CPU and drives the line BKGD to GND. So the CPU will enter the
“special” variant of operating mode defined by the pins MODA and MODB, which have to be configured by
the target.

LAUTERBACH recommends to use Single Chip Mode for starting from reset. In this case the CPU will enter
Special Single Chip Mode without executing any code. So all registers will contain reset values. In all other
cases the CPU will try to execute code after reset, until the debugger gets control on it. So some registers
may already be in use.

Some derivatives need a Power On Reset to enter debug mode out of reset without executing code.
Dependent from their actual memory contents these derivatives might stuck in a reset loop. When you enter
SYStem.Up the debugger tries to get the CPU out of such a loop, but if the time between two resets is too
small this attempt might fail. Use SYStem.Mode StandBy in this case, remove power from the target and
switch it on again.

7. Load the Program

Generally HC9S08 code will be located to internal FLASH memory. With help of the CPU specific menu
“FLASH” you can erase the CPU’s FLASH memory and prepare it for code loading. For details please refer
to the chapter FLASH EEPROM Management.

When the CPU is prepared the code can be loaded. This can be done with the command
Data.Load.<file_format> <file>. Applications can be loaded by various file formats. The format depends
from the compiler. Here are some typical load commands for HC9S08 applications:

Data.Load.COSMIC <file>.cosl2 ; load application file generated
; with a COSMIC compiler

Data.Load.Elf <file>.abs /verify ; load application file generated
; with a Metrowerks compiler and
; verify if it is written correct to
; memory

©1989-2024 Lauterbach MCS08 Debugger | 11

8. Initialize Program Counter and Stackpointer

Many compilers add these settings in the start-up code to the user program automatically. In this case no
action is necessary. You can check the contents of Program Counter and Stack Pointer in the Register
Window which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open

this window.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these

commands:

Register.Set PC 0c000

Register.Set SP 0bff

Register.Set PC main

9. View the Source Code

Set the Program Counter to address
$C000

Set the Stack Pointer to address
Sbff

Set the PC to a label (here: function

main)

Use the command Data.List to view the source code at the location of the Program Counter.

Now the quick start is done. If you were successful you can start to debug. Lauterbach recommends to
prepare a PRACTICE script file (*.cmm, ASCII format) to be able to do all the necessary actions with only

one command. Here is a typical start sequence:

B3 g
WinClear

SYStem.Reset

MAP.BOnchip 0x01080--0x0ffff

SYStem.Up

Data.LOAD.E1f hic.abs

Register.Set PC main
Register.Set SP OxXFFF
List.Mix

Register.view

Select the ICD device prompt
Clear all windows

Bring all settings in the SYStem window
to default value

Select on-chip breakpoints for the
FLASH EEPROM area

Reset the target and enter special mode

Load the application - here an absolute
file in ELF/DWARF format

Set the PC to function main
Set the stack pointer to address SOXFFF
Open disassembly window @)

Open register window 2

©1989-2024 Lauterbach

MCSO08 Debugger | 12

Frame.view /Locals /Caller

Break.Set 0x400 /p

Break.0xSet 0x8024 /p

Open the stack frame with
local variables %)

Set software breakpoint to address 100
(address 0x400 is outside the range,

; where on-chip breakpoints are used)

Set on-chip program breakpoint to
address 0x8024 (address 0x8024 is

; within the range, where on-chip
; breakpoints are used)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

You can find suggestions for such PRACTICE script files (*.cmm) in the TRACE32 demo folder

~~/demo/m68hc08/compiler.

For information about how to create a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the

debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading in at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs. So if there are
questions related to the CPU, the Processor Architecture Manual should be your first choice.

©1989-2024 Lauterbach

MCS08 Debugger | 13

CPU specific SYStem Settings and Restrictions

Restrictions
External watchdog With the debugger in break mode an external watchdog will not be
triggered and so it will do its job and drive the system to reset. External
watchdogs must be disabled.
SYStem.BdmClock Select clock for BDM communication
Format: SYStem.BdmClock BusClock | Fixed

The MC9S08 offers two clock sources for the communication between debugger an CPU: BusClock and

Fixed.
BusClock Time base for BDM communication is the bus frequency of the CPU. This
allows a faster download if the data rate is increased by activating the
PLL. On the other hand moving the communication frequency can cause
problems, because the debugger has to synchronize again after each
change of frequency.
Fixed The fixed internal clock of the CPU is time base for BDM communication.

The bus frequency can be modified without impact to the BDM. This
selection requires no resynchronization on bus clock changes.

This command tells the debugger how to configure the CPU when you start your debug session. In general
“Fixed” is the selection of choice. If you have to download big files you can use “BusClock” and activate the
CPU’s PLL to get the highest available bus frequency and as a result the highest download performance.
LAUTERBACH recommends to drive the debugger to reset again after download and to start the following
debug session with the selection “Fixed”.

©1989-2024 Lauterbach MCS08 Debugger | 14

Special Functions

TRIMSO8FLL(<frequency._in_KHz>)

TRIMSO08FLL() sets the registers ICSSC and ICSTRM (ICS_C3 and ICS_C4) to achieve the requested
frequency and returns the reached frequency in KHz. The debugger does this job using the SYNC
command of the background debug controller (BDC). So the frequency you request is compared to
ICSBDCCLK (BdmClock) while CLKSW is set to zero (use alternate BDC clock source).

NOTE: The alternate BDC clock is often connected to the FLL through a divider by two.
So if you use the following commands, as shown in the PRACTICE code
shippet below, you will trim the FLL to 20 MHz:

LOCAL &freqg
&freg=trims08£11(10000.)

SYStem.CONFIG Configure debugger according to target topology

The SYSTem.CONFIG command group is not supported.

©1989-2024 Lauterbach MCS08 Debugger | 15

SYStem.CPU Select CPU type

Format: SYStem.CPU <type>

<type>: AUTO
MC9S08GB32 | MC9S08GB60 | MC9S08GT32 | MC9S08GT60

With this command the processor type is selected. The MC9S08 has internal device and mask specific
registers which allow the debugger to select the CPU type automatically. This is done for all known versions
if the pull down menu in the field CPU shows AUTO. For new mask revisions or devices you can select the
CPU manually with this command.

NOTE: If you type SYStem.CPU to the command line followed by blank, the softkeys
(below the TRACE32 command line) provide you with all supported derivatives.

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach MCS08 Debugger | 16

SYStem.MemAccess Select run-time memory access method
Format: SYStem.MemAccess Enable | StopAndGo | Denied
SYStem.ACCESS (deprecated)
Enable Memory access during program execution to target is enabled.

CPU (deprecated)

Denied (default)

Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

SYStem.Mode Select target reset mode
Format: SYStem.Mode <mode>
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Attach
StandBy
Up

Down Drives a pulse to the reset line and disables the Debugger.

NoDebug Disables the Debugger. The state of the CPU remains unchanged.

Go Resets the target with debug mode enabled and prepares the CPU for

debug mode entry. After this command the CPU is in the system.up
mode and running. Now, the processor can be stopped with the break
command or until any break condition occurs.

©1989-2024 Lauterbach

MCS08 Debugger | 17

Attach

StandBy

Up

This command works similar to the SYStem.Mode Up command. The
difference is that the target CPU is not reset. The BDM/JTAG/COP
interface will be synchronized and the CPU state will be read out. After
this command the CPU is in the system.up mode and can be stopped
and debugged.

The debugger drives the BKGD line to GND and waits for power up. The
debugger connects to the CPU when target voltage is sensed and reset
is released. This sequence is repeated again if power returns after a
power fail.

Different to other debuggers SYStem.Mode StandBy is used here to have
a save way to get control on the CPU before it can execute any code.

Resets the target and sets the CPU to debug mode. After execution of
this command the CPU is stopped and prepared for debugging. All
register are set to the default value.

©1989-2024 Lauterbach

MCS08 Debugger | 18

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

©1989-2024 Lauterbach MCS08 Debugger | 19

Hardware Breakpoints

Most MC9S08 derivatives have three Hardware breakpoints, one in the BDM module (only address
compare) and two in the debug module. Refer to the Technical Summary of your derivative to check if
Hardware Breakpoints are available.

Program Breakpoints

Generally the In Circuit Debugger for MC9S08 uses Software Breakpoints to realize Program Breakpoints.
Software Breakpoint means that the code at the desired memory location is modified by the debugger to
make the CPU break when the program counter meets this address. After this the original contents of this
memory location is restored.

This mechanism can not work in Read Only Memory. To provide breakpoints in ROM areas the CPU’ s
Hardware Breakpoints can be used. The memory ranges. where Hardware Breakpoints should be used
must be defined with the command MAP.BOnchip.

MAP.BOnchip0x1080--0x0ffff

With the command Break.List the actual breakpoint configuration can be checked.

Read and Write Breakpoints

Read and Write Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined
with MAP.BOnchip.

Read and Write Breakpoints can be set with the command Break.Set...

Break.Set 0x4738 /w ; The CPU will be stopped if there is a
; write access to address $4738

b.s 0x0b223 /r ; The CPU will be stopped if there is a
; read access to address $B223

©1989-2024 Lauterbach MCS08 Debugger | 20

Data Breakpoints

Data Breakpoints always use the CPU’ s Hardware Breakpoints regardless off the ranges defined with
MAP.BOnchip. To provide a Breakpoint on address, data and cycle type match and data match two 16 bit
registers are needed. So there is only one breakpoint of this type available. Use the command Break.Set or
the “Set...” entry in the Break menu to open the control window for the Breakpoints.

Break.Set 0x421 /READ /Data.Byte Emulation will be stopped if the

Oy11x10001 CPU does a read access to
address $421, while this memory
location contains the value 0xD1
or OxF1.

©1989-2024 Lauterbach MCSO08 Debugger | 21

Onchip Commands

Onchip.Mode.EventTrace Start recording after trigger event

Format: Onchip.Mode.EventTrace

Recording starts after trigger event.

Onchip.Mode.FlowTrace Flow trace mode

Format: Onchip.Mode.FlowTrace

Flow trace mode.

Onchip.Mode.LoopTrace Inhibit redundant entries

Format: Onchip.Mode.LoopTrace

Flow trace inhibiting redundant entries to capture memory.

©1989-2024 Lauterbach MCS08 Debugger | 22

TrOnchip Commands

TrOnchip.Mode Select trace and trigger mode
Format: TrOnchio.Mode <mode>
<mode>: BreakAORB
BreakATHENB
TraceAORB
TraceATHENB
OFF
BreakAORB Real-time execution is stopped if one of the two Comparators A or B
matches.
BreakATHENB Real-time execution is stopped if as a first step the comparators A

matzohs and then as a second step the comparator B matches.

TraceAORB Recording cycles to the on-chip trace is stopped if one of the two
Comparators A or B matches.

TraceATHENB Recording cycles to the on-chip trace is stopped if as a first step the
comparators A matzohs and then as a second step the comparator B
matches.

OFF Complex on-chip debug features are disabled.

The 9S08 has an on-chip debug module which offers some complex trigger features and a small on-chip
trace. Please refer to your CPU’ s manual for details. These debug features are based on two address
comparators which can be specified in the following way:

Break.Set 0x8000 /Alpha /Read ; Set the Debug Comparator A to match on
; a read access from the address 0x8000.

Break.Set 0x8010 /Beta /Write ; Set the Debug Comparator B to match on
; a write access from the address
; 0x8100.

Note that it is a must to specify whether the access is read or write.

©1989-2024 Lauterbach MCS08 Debugger | 23

TrOnchip.state Open the control window for the on-chip trigger resources

Format: TrOnchip.state

Opens the control window for the on-chip trigger resources.

TrOnchip.RESet Reset the on-chip trigger resources

Format: TrOnchip.RESet

Sets all controls in the trigger on-chip window to default settings.

©1989-2024 Lauterbach MCS08 Debugger | 24

Memory Classes

Memory Description

P: Program

D: Data

E: Hidden access to CPU memory while foreground emulation is active
(“Emulation memory access” is the original of this name)

The 951208 does not separate program and data memory, so “P:” and “D:” share the same memory. “E:” is

used to access any memory access, even internal special function registers, while the CPU is executing

user’s program.

©1989-2024 Lauterbach

MCS08 Debugger

25

FLASH EEPROM Management

Flash programming on the HC9S08 is based on a mechanism called “Target Controlled Flash
Programming”. The file ~~/demo/m68hc08/flash/byte/mcs08.bin contains the programming code. It is
loaded and executed within the internal RAM of the CPU when you enter FLASH commands. Several
settings are necessary to do the link between TRACE32 software and mcs08.bin.

For convenience all this is can be done with the PRACTICE script file
~~/demo/m68hc08/flash/flashs08.cmm. This PRACTICE script file can be called with several parameters:

Parameter Description

prepare Creates all entries to make the FLASH commands deal with mcs08.bin.

erase Prepare FLASH and erase all FLASH cells.

prog Prepare FLASH, activate FLASH programming, open a window to select
a file and load it down to the CPU.

eraprog Prepare FLASH, erase all FLASH cells, activate FLASH programming,
open a window to select a file and load it down to the CPU.

secure Open a dialog to specify security level and secure the CPU.

unsecure Erase all FLASH cells and unsecure CPU. Before the erase a warning

has to be accepted.

With help of the menu FLASH you can call flashs08.cmm with each of these parameters by mouse. If you
can not find the menu FLASH, check for the file mens08.men in your TRACES32 directory. If it is there use
menu.rp mens08.men to add it.

LAUTERBACH recommends to call flashs08.cmm with the needed parameters if you want to do FLASH
programming from your own PRACTICE file. The benefit of doing so is that you can keep your script file
when changes relating the flash programming have to be done, because these changes will be done by
updating flashs08.cmm. The file ~~/demo/m68hc08/flash/flashexamples08.cmm is an example for FLASH
programming by means of a PRACTICE script file (*.cmm).

To be able to debug within FLASH EEPROM areas the CPU’ s Hardware Breakpoints must be activated.
Refer to chapter Using Hardware Breakpoints.

©1989-2024 Lauterbach MCS08 Debugger | 26

Secure and Unsecure

To avoid illegal copies of code he MC9S08 offers a security feature. Please refer to the CPU’s technical
summary for the technical background. There are three cases where this feature is important at debug
sessions.

1. Development reached a level where a prototype is given out. In this case you can secure the chip
with help of the item Secure CPU in the FLASH menu. Follow the dialog to do the necessary
configuration. You can specify a back door key to get access to the secured chip. To use this back
door key your application code has to contain code to open the chip. This can not be done by the
debugger. However you can use the debugger to make your code opening the chip. An idea is to
specify a variable for the key and another one to start the opening routine. Enter the key to this
variable by the debugger, set the start variable and execute your code.

It is not possible to unsecure a chip without erasing the whole FLASH
with help of the debugger.

2. You receive a secured chip and want to start debugging with this. If the code on the chip does not
support back door key, you have to erase all FLASH cells and to reprogram the chip. Use the
item Unsecure CPU in the FLASH menu.

©1989-2024 Lauterbach MCS08 Debugger | 27

BDM Connector ICD-MCS08

BKGD GND
N/C /RESET
N/C vCcC

This image shows the top view to the male connector on the target board.

©1989-2024 Lauterbach MCSO08 Debugger | 28

	MCS08 Debugger
	Brief Overview of Documents for New Users
	Warning
	Troubleshooting
	SYStem.Up Errors

	FAQ
	CPU Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints

	Quick Start of the ICD Debugger for HC9S08
	1. Prepare the Start
	2. Select the Clock for the BDM Communication
	3. Configure the Debugger According to the Needs of the Application
	4. Map the EPROM Simulator if Available (optional)
	5. Tell the Debugger Where it should use On-chip Breakpoints (optional)
	6. Enter Debug Mode
	7. Load the Program
	8. Initialize Program Counter and Stackpointer
	9. View the Source Code

	CPU specific SYStem Settings and Restrictions
	Restrictions
	SYStem.BdmClock Select clock for BDM communication
	Special Functions
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select CPU type
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	Hardware Breakpoints
	Program Breakpoints
	Read and Write Breakpoints
	Data Breakpoints

	Onchip Commands
	Onchip.Mode.EventTrace Start recording after trigger event
	Onchip.Mode.FlowTrace Flow trace mode
	Onchip.Mode.LoopTrace Inhibit redundant entries

	TrOnchip Commands
	TrOnchip.Mode Select trace and trigger mode
	TrOnchip.state Open the control window for the on-chip trigger resources
	TrOnchip.RESet Reset the on-chip trigger resources

	Memory Classes
	FLASH EEPROM Management
	Secure and Unsecure
	BDM Connector ICD-MCS08

