LAUTERBACH A

C7000 Debugger and Trace

C7000 Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
101 2= r=
C7000 Debugger and TraCEcccccreeerrisssssmssrissssssssisssmssssssssnnssssssssnmsssssssnnssssssssnnssssnsssnnnns 1

L 1= (o 5

Y e Yo 11T £ o) o T 6
Brief Overview of Documents for New Users 6
Demo and Start-up Scripts 6
Converter from GEL 10 PRACTICE ... ssss s s ssmss s s ssmssnnnas 7
A= 0 11 ' 8
DSP specific Implementationsccccviiiciiiiinr e —————— 9
Trigger 9
Breakpoints 9
Software Breakpoints 9
On-chip Breakpoints for Instructions 9
On-chip Breakpoints for Data 9
Access Classes 11

DSP specific SYStem CommaNndsccccoiiiiiiciiiicccccriee s sssssss s s s e s s s s s ssssmmnsnsenes 13
SYStem.CONFIG.state Display target configuration 13
SYStem.CONFIG Configure debugger according to target topology 14
<parameters> describing the “DebugPort” 20
<parameters> describing the “JTAG” scan chain and signal behavior 23
<parameters> describing a system level TAP “MultiTap” 27
<parameters> configuring a CoreSight Debug Access Port “AP” 29
<parameters> describing debug and trace “Components” 35
<parameters> which are “Deprecated” 44
SYStem.CPU Select the used CPU 48
SYStem.ENTERPostMortem Place core into post-mortem state 48
SYStem.JtagClock Define JTAG frequency 49
SYStem.LOCK Tristate the JTAG port 50
SYStem.MemAccess Select run-time memory access method 51

©1989-2024 Lauterbach C7000 Debugger and Trace | 2

SYStem.MemFORCEREADY Unblock memory access in post-mortem state 51
SYStem.Mode Establish the communication with the target 52
SYStem.Option.Address32 Define address format display 53
SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 54
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 54
SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 54
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 55
SYStem.Option.BigEndian Enable big endian mode 55
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 55
SYStem.Option.DAPREMAP Rearrange DAP memory map 56
SYStem.Option.DEBUGPORTOptions Options for debug port handling 56
SYStem.Option.DUALPORT Implicitly use run-time memory access 57
SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 57
SYStem.Option.EnTRST Control TAP reset 58
SYStem.Option.ICFLUSH Invalidate instruction cache before go and step 58
SYStem.Option.IMASKASM Disable interrupts while single stepping 58
SYStem.Option.INTDIS Disable all interrupts 59
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 60
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 60
SYStem.Option.ExecutionMode Sets the CPU execution mode 61
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 61
SYStem.Option.MACHINESPACES Address extension for guest OSes 62
SYStem.Option.PWRDWN Allow power-down mode 62
SYStem.RESetOut Reset target without reset of debug port 63
CPU specific BenchMarkCounter COmmandsccccvvememmmnsssmssmmmissssssmsssssssssssssssssens 64
BMC.<counter>.ATOB Advise counter to count within AB-range 64
CPU specific SETUP COMMANciccoimiiimriniiniismsisssss s ssssssssssssssssss s sssasssssssssassnssnssnes 65
SETUP.DIS Disassembler configuration 65
IO 3 e T o 3027 1T T= 14 e L= 66
TrOnchip.state Display on-chip trigger window 66
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 66
TrOnchip.RESet Set on-chip trigger to default state 66
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 67
I 111 T 68
Controlling the Trace Capture 68
Trace Breakpoints 68
Command reference: TRC ... sssmm s s e s s e e s se s s s s s s nannnas 69
TRC Trace control (TRC) 69
TRC.CLEAR Clear trace settings 69
TRC.CLOCK Set core clock frequency for timing measurements 70
TRC.DataTrace Define broadcast of load/store address tracing 71
TRC.OFF Switch TRC off 71
©1989-2024 Lauterbach C7000 Debugger and Trace 3

TRC.ON Switch TRC on 72

TRC.PCTrace Enable program counter trace 72
TRC.RESet Reset TRC settings 72
TRC.STALL Stall processor to prevent FIFO overflow 72
TRC.StreamBuffer Enable stream buffer trace 73
TRC.SyncPeriod Set synchronization frequency 73
TRC.TImeMode Set timestamp configuration 73
TRC.TimeStampCLOCK Specify frequency of the global timestamp 74
TRC.Trace Enable TRC trace export 74
TRC.TracelD Change the default ID for a TRC trace source 74
TRC.TracePriority Define priority of TRC messages 74
TRC.state Display TRC setup 75
Target Adaptionccccceiiiiicmiiiir s 76
Probe Cables 76
Interface Standards JTAG, Serial Wire Debug, cJTAG 76
Connector Type and Pinout 76
Debug Cable 76
CombiProbe 76
Preprocessor 77
O 77

©1989-2024 Lauterbach C7000 Debugger and Trace | 4

C7000 Debugger and Trace

History

Version 06-Jun-2024

29-Mar-2024
18-Mar-2024
28-Apr-2023

07-Apr-2023

New command SYStem.Option.MACHINESPACES.
New command SYStem.Option.ICFLUSH.

New command SETUP.DIS.

Removed command SYStem.Option.PWRCHECK.

©1989-2024 Lauterbach

C7000 Debugger and Trace

5

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known C7000 based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/c7000/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach C7000 Debuggerand Trace | 6

Converter from GEL to PRACTICE

The General Extension Language (GEL) is an interpretive language similar to C that lets you create
functions to extend Code Composer Studio’s usefulness. The converter allows you to convert GEL language
into PRACTICE scripts (*.cmm), which can be used directly in TRACE32.

For more detailed information on that converter please refer to “Converter from GEL to PRACTICE”
(converter_gel.pdf).

©1989-2024 Lauterbach C7000 Debugger and Trace | 7

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

C7000 Debugger and Trace |

8

DSP specific Implementations

Trigger

A bidirectional trigger system allows the following two events:
J trigger an external system (e.g. logic analyzer) if the program execution is stopped.

. stop the program execution if an external trigger is asserted.

For more information refer to the TrBus command.

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is temporarily patched by a
breakpoint code. There is no restriction in the number of software breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. Those CPU
resources only allow to set single address instruction breakpoints.

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required. In the
DSP notation these breakpoints are called watch points (WP).

Overview
. On-chip breakpoints: Total amount of available on-chip breakpoints.
o Instruction breakpoints: Number of on-chip breakpoints that can be used to set program

breakpoints into ROM/FLASH/EPROM.

J Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

o Data Value breakpoint: Number of on-chip data breakpoints that can be used to stop the
program when a specific data value is written to an address or when a specific data value is read
from an address.

©1989-2024 Lauterbach C7000 Debuggerand Trace | 9

On-chip Instruction Read/Write Data Value
Core breakpoints breakpoints breakpoint breakpoints
C71x 4 up to 4 single 1 single —
address address or
range as bit
mask

©1989-2024 Lauterbach

C7000 Debugger and Trace |

10

Access Classes

This section describes the available ARM access classes and provides background information on how to
create valid access class combinations in order to avoid syntax errors.

For background information, refer to “Access Classes” in TRACE32 Glossary, page 7 (glossary.pdf).

Description of the Individual Access Classes

Access Class Description

A Absolute addressing (physical address)

AHB, AHB2 See DAP.

APB, APB2 See DAP.

AXI, AXI2 See DAP.

ECR Access to C7000 extended configuration registers

D Data Memory

DAP, DAP2, Memory access via bus masters, so named Memory Access Ports (MEM-

AHB, AHB2, AP), provided by a Debug Access Port (DAP).

APB, APB2,

AXI, AXI2 Which bus master (MEM-AP) is used by which access class (e.g. AHB) is
defined by assigning a MEM-AP number to the access class:
SYStem.CONFIG DEBUGACCESSPORT <mem_ap#> -> “DAP”
SYStem.CONFIG AHBACCESSPORT <mem_ap#> -> “AHB”
SYStem.CONFIG APBACCESSPORT <mem_ap#> -> “APB”
SYStem.CONFIG AXIACCESSPORT <mem_ap#> -> “AXI”
You should assign the memory access port connected to an AHB (AHB
MEM-AP) to “AHB” access class, APB MEM-AP to “APB” access class
and AXI MEM-AP to “AXI” access class. “DAP” should get the memory
access port where the debug register can be found which typically is an
APB MEM-AP.
There is a second set of access classes (DAP2, AHB2, APB2, AXI2) and
configuration commands (e.g. SYStem.CONFIG
DAP2AHBACCESSPORT <mem_ap#>) available in case there are two
DAPs which needs to be controlled by the debugger.
Run-time memory access (see SYStem.MemAccess)

G Guest Mode

©1989-2024 Lauterbach

C7000 Debugger and Trace | 11

Access Class Description

I Intermediate address. Available on devices having Virtualization
Extension.

Non-Secure Mode

Program Memory

Supervisor Memory (privileged access)

Root Mode (Hypervisor)

cC| || »W|TV|Z2

User Memory

VM Virtual Memory (memory on the debug system)

Z Secure Mode

©1989-2024 Lauterbach C7000 Debugger and Trace | 12

DSP specific SYStem Commands

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | MultiTap | AccessPorts | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort
(default)

The DebugPort tab informs the debugger about the debug connector
type and the communication protocol it shall use.

For descriptions of the commands on the DebugPort tab, see
DebugPort.

Jtag

The Jtag tab informs the debugger about the position of the Test Access
Ports (TAP) in the JTAG chain which the debugger needs to talk to in
order to access the debug and trace facilities on the chip.

For descriptions of the commands on the Jtag tab, see Jtag.

MultiTap

Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 13

AccessPorts This tab informs the debugger about an Arm CoreSight Access Port (AP)
and about how to control the AP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.
For a descriptions of a corresponding commands, refer to AP.
COmponents The COmponents tab informs the debugger (a) about the existence and
interconnection of on-chip CoreSight debug and trace modules and (b)
informs the debugger on which memory bus and at which base address
the debugger can find the control registers of the modules.
For descriptions of the commands on the COmponents tab, see
COmponents.
SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter>
SYStem.MultiCore <parameter> (deprecated)
<parameter>: CJTAGFLAGS <flags> (C7000 only)
(DebugPort) CONNECTOR [MIPI34 | MIPI20T] (C7000 only)
CORE <core> <chip>
CoreNumber <number>
DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]
SWDP [ON | OFF] (C7000 only)
SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>
TriState [ON | OFF]
<parameter>: DAPDRPOST <bits>
(JTAG cont.) DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
DRPOST <bits>
DRPRE <bits>
ETBDRPOST <bits> (C5000 only)
ETBDRPRE <bits> (C5000 only)
ETBIRPOST <bits> (C5000 only)
ETBIRPRE <bits> (C5000 only)

©1989-2024 Lauterbach

C7000 Debugger and Trace | 14

<parameter>:
(JTAG cont.)

<parameter>:
(MultiTap)

<parameter>:
(AccessPorts

)

IRPOST <bits>
IRPRE <bits>

Slave [ON | OFF]
TAPState <state>
TCKLevel <level>
TriState [ON | OFF]

DAPTAP <tap>

DEBUGTAP <tap>

ETBTAP <tap> (C5000 only)

MULTITAP [NONE | IcepickA | IcepickB | IcepickC | IcepickD | IcepickBB |
IcepickBC | IcepickCC | IcepickDD |
JtagSEQuence <sub_cmd>]

NJCR <tap>

SLAVETAP <tap>

AHBAPN.Base <address>
AHBAPN.HPROT [<value> | <name>]
AHBAPN.Port <port>
AHBAPN.RESet

AHBAPN.view

AHBAPN.XtorName <name>

APBAPN.Base <address>
APBAPN.Port <port>
APBAPN.RESet
APBAPN.view
APBAPN.XtorName <name>

AXIAPn.ACEEnable [ON | OFF]
AXIAPn.Base <address>
AXIAPn.CacheFlags <value>
AXIAPNn.HPROT [<value> | <name>]
AXIAPn.Port <port>
AXIAPn.RESet

AXIAPn.view

AXIAPNn.XtorName <name>

DEBUGAPN.Port <port>
DEBUGAPN.RESet
DEBUGAPN.view
DEBUGAPN.XtorName <name>

JTAGAPN.Base <address>
JTAGAPN.Port <port>
JTAGAPnN.CorePort <port>
JTAGAPN.RESet
JTAGAPN.view
JTAGAPN.XtorName <name>

©1989-2024 Lauterbach

C7000 Debugger and Trace |

15

<parameter>:
(AccessPorts
cont.)

<parameter>:
(COmponents)

<parameter>:
(COmponents
cont.)

MEMORYAPN.HPROT [<value> | <name>]
MEMORYAPN.Port <port>
MEMORYAPN.RESet

MEMORYAPN.view
MEMORYAPN.XtorName <name>

ADTF.Base <address>

ADTF.RESet

ADTF.Type [NONE | ADTF | ADTF2 | GEM]
ADTF.view

AET.Base <address> (C5000, C6000, C7000 only)
AET.RESet (C5000, C6000, C7000 only)
AET.view (C5000, C6000, C7000 only)

CMI.Base <address>
CMI.RESet
CMl.TracelD <id>
CMl.view

COREDEBUG.Base <address> (C7000 only)
COREDEBUG.RESet (C7000 only)
COREDEBUG.view (C7000 only)

CTl.Base <address>

CTI.Config [NONE | ARMV1 | ARMPostinit | OMAP3 | TMS570 | CortexV1 |
QV1]

CTI.RESet

CTl.view

DRM.Base <address>
DRM.RESet
DRM.view

EPM.Base <address>
EPM.RESet
EPM.view

ETB.ATBSource <source>

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL-
STOP | FULLCTI]

ETB.view

©1989-2024 Lauterbach

C7000 Debugger and Trace | 16

<parameter>:
(COmponents
cont.)

<parameter>:
(Components
cont.)

FUNNEL.ATBSource <sourcelist>
FUNNEL.Base <address>
FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.RESet

FUNNEL.view

OCP.Base <address>
OCP.RESet
OCP-TracelD <id>
OCP.view

PMI.Base <address>
PMI.RESet
PMIl.TracelD <id>
PMl.view

REP.ATBSource <source>
REP.Base <address>
REP.Name <string>
REP.RESet

REP.view

SC.Base <address>
SC.RESet
SC.TracelD <id>
SC.view

STM.Base <address>

STM.Mode [None | SDTI | STP | STP64 | STPv2 | STPV2LE]
STM.Name <string>

STM.RESet

STM.Type [None | GenericARM | SDTI | TI]

STM.view

TBR.ATBSource <source>
TBR.Base <address>
TBR.Name <string>
TBR.NoFlush [ON | OFF]
TBR.RESet

TBR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL-

STOP | FULLCTI]
TBR.view

TPIU.ATBSource <source>
TPIU.Base <address>
TPIU.Name <string>
TPIU.RESet

TPIU.Type [CoreSight | Generic]
TPIU.view

©1989-2024 Lauterbach

C7000 Debugger and Trace

17

<parameter>:
(Components
cont.)

<parameter>:
(Deprecated)

<parameter>:
(Deprecated cont.)

TRACEPORT.Name
TRACEPORT.RESet
TRACEPORT.TraceSource
TRACEPORT.Type
TRACEPORT.view

TRC.Base <address> (C7000 only)
TRC.RESet (C7000 only)
TRC.view (C7000 only)

COREBASE <address>
CTIBASE <address>
DEBUGBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>

FUNNEL2BASE <address>
FUNNELBASE <address>
HTMBASE <address>
ITMBASE <address>
RTPBASE <address>
SDTIBASE <address>
STMBASE <address>
TIADTFBASE <address>
TIDRMBASE <address>
TIEPMBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>
TPIUBASE <address>
TPIUFUNNELBASE <address>
TRACEETBFUNNELPORT <port>
TRACEFUNNELPORT<port>
TRACETPIUFUNNELPORT <port>
view

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
COREJTAGPORT <port>
DEBUGACCESSPORT <port>
JTAGACCESSPORT <port>
MEMORYACCESSPORT <port>

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace

components and how to access them.

©1989-2024 Lauterbach

C7000 Debugger and Trace

18

This is a common description of the SYStem.CONFIG command group for the TI C2000, C5000, C6000
and C7000 DSPs. Each debugger will provide only a subset of these commands. Some commands need a
certain CPU type selection (SYStem.CPU <type>) to become active and it might additionally depend on
further settings.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug
session e.g. by SYStem.Up.

©1989-2024 Lauterbach C7000 Debugger and Trace | 19

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags> Activates bug fixes for “cJTAG” implementations.
Bit 0: Disable scanning of cJTAG ID.
Bit 1: Target has no “keeper”.
Bit 2: Inverted meaning of SREDGE register.
Bit 3: Old command opcodes.
Bit 4: Unlock cJTAG via APFC register.

Default: 0
CONNECTOR Specifies the connector “MIPI34” or “MIPI20T” on the target. This
[MIPI34 | MIPI20T] is mainly needed in order to notify the trace pin location.

Default: MIPI34 if CombiProbe is used, MIPI20T if yTrace
(MicroTrace) is used.

CORE <core> <chip> The command helps to identify debug and trace resources which
are commonly used by different cores. The command might be
required in a multicore environment if you use multiple debugger
instances (multiple TRACE32 PowerView GUIs) to simultaneously
debug different cores on the same target system.

Because of the default setting of this command

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=1 <chip>=2

each debugger instance assumes that all notified debug and trace
resources can exclusively be used.

But some target systems have shared resources for different
cores, for example a common trace port. The default setting
causes that each debugger instance controls the same trace port.
Sometimes it does not hurt if such a module is controlled twice.
But sometimes it is a must to tell the debugger that these cores
share resources on the same <chip>. Whereby the “chip” does not
need to be identical with the device on your target board:

debugger#1: <core>=1 <chip>=1
debugger#2: <core>=2 <chip>=1

©1989-2024 Lauterbach C7000 Debugger and Trace | 20

CORE <core> <chip>

(cont.)

CoreNumber <number>

DEBUGPORT
[DebugCable0 | DebugCa-
bleA | DebugCableB]

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

Slave [ON | OFF]

For cores on the same <chip>, the debugger assumes that the
cores share the same resource if the control registers of the
resource have the same address.

Default:

<core> depends on CPU selection, usually 1.

<chip> derived from CORE= parameter in the configuration file
(config.t32), usually 1. If you start multiple debugger instances with
the help of t32start.exe, you will get ascending values (1, 2, 3,...).

Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session. There are core types which can
be used as a single core processor or as a scalable multicore
processor of the same type. If you intend to debug more than one
such core in an SMP debug session you need to specify the
number of cores you intend to debug.

Default: 1.

It specifies which probe cable shall be used e.g. “DebugCableA” or
“DebugCableB”. At the moment only the CombiProbe allows to
connect more than one probe cable.

Default: depends on detection.

It specifies the used debug port type “UTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD”. It assumes the selected type is supported by the
target.

Default: JTAG.
What is NIDnT?

NIDNT is an acronym for “Narrow Interface for Debug and Test”.
NIDNT is a standard from the MIPI Alliance, which defines how to
reuse the pins of an existing interface (like for example a microSD
card interface) as a debug and test interface.

To support the NIDnT standard in different implementations,
TRACE32 has several special options:

If several debuggers share the same debug port, all except one
must have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the
signals nTRST and nSRST (nRESET). The other debuggers need
to have the setting Slave ON.

Default: OFF.
Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).

©1989-2024 Lauterbach

C7000 Debugger and Trace | 21

SWDP [ON | OFF] With this command you can change from the normal JTAG
interface to the serial wire debug mode. SWDP (Serial Wire Debug
Port) uses just two signals instead of five. It is required that the
target and the debugger hard- and software supports this

interface.

Default: OFF.
SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.
[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no

operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.
SWDPTargetSel <value> Device address in case of a multidrop serial wire debug port.
Default: none set (any address accepted).

TriState [ON | OFF] TriState has to be used if several debug cables are connected to a
common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode.

Please note:

J NTRST must have a pull-up resistor on the target.

J TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.

Default: OFF.

©1989-2024 Lauterbach C7000 Debugger and Trace | 22

<parameters> describing the “JTAG” scan chain and signal behavior

With the JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

NTRST (reset)

TCK (clock)

TMS (state machine control)
TDI (data input)

TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to. The TAP position can be defined
with the first four commands in the table below.

... DRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TDI signal and the TAP you are describing. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... DRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of TAPs in the
JTAG chain between the TAP you are describing and the TDO signal. In
BYPASS mode, each TAP contributes one data register bit. See possible
TAP types and example below.

Default: 0.

... IRPOST <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between TDI signal and
the TAP you are describing. See possible TAP types and example below.

Default: 0.

... IRPRE <bits> Defines the TAP position in a JTAG scan chain. Number of Instruction
Register (IR) bits of all TAPs in the JTAG chain between the TAP you are
describing and the TDO signal. See possible TAP types and example
below.

Default: 0.

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.DaisyChain command.

©1989-2024 Lauterbach C7000 Debugger and Trace | 23

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]

If several debuggers share the same debug port, all except one must
have this option active.

JTAG: Only one debugger - the “master” - is allowed to control the signals
NTRST and nSRST (nNRESET). The other debuggers need to have the
setting Slave OFF.

Default: OFF.

Default: ON if CORE=... >1 in the configuration file (e.g. config.t32).
For CortexM: Please check also
SYStem.Option.DISableSOFTRES [ON | OFF]

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

Level of TCK signal when all debuggers are tristated. Normally defined
by a pull-up or pull-down resistor on the target.

Default: 0.

TriState has to be used if several debug cables are connected to a common
JTAG port. TAPState and TCKLevel define the TAP state and TCK level
which is selected when the debugger switches to tristate mode.

Please note:

] NTRST must have a pull-up resistor on the target.

] TCK can have a pull-up or pull-down resistor.

. Other trigger inputs need to be kept in inactive state.
Default: OFF.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 24

TAP types:

Core TAP providing access to the debug register of the core you intend to debug.
-> DRPOST, DRPRE, IRPOST, IRPRE.

DAP (Debug Access Port) TAP providing access to the debug register of the core you intend to debug. It
might be needed additionally to a Core TAP if the DAP is only used to access memory and not to access the
core debug register.

-> DAPDRPOST, DAPDRPRE, DAPIRPOST, DAPIRPRE.

DAP2 (Debug Access Port) TAP in case you need to access a second DAP to reach other memory
locations.
-> DAP2DRPOST, DAP2DRPRE, DAP2IRPOST, DAP2IRPRE.

ETB (Embedded Trace Buffer) TAP if the ETB has its own TAP to access its control register (typical with
ARM11 cores).
-> ETBDRPOST, ETBDRPRE, ETBIRPOST, ETBIRPRE.

NEXT: If a memory access changes the JTAG chain and the core TAP position then you can specify the new
values with the NEXT... parameter. After the access for example the parameter NEXTIRPRE will replace the
IRPRE value and NEXTIRPRE becomes 0. Available only on ARM11 debugger.

-> NEXTDRPOST, NEXTDRPRE, NEXTIRPOST, NEXTIRPRE.

RTP (RAM Trace Port) TAP if the RTP has its own TAP to access its control register.
-> RTPDRPOST, RTPDRPRE, RTPIRPOST, RTPIRPRE.

CHIP: Definition of a TAP or TAP sequence in a scan chain that needs a different Instruction Register
(IR) and Data Register (DR) pattern than the default BYPASS (1...1) pattern.
-> CHIPDRPOST, CHIPDRPRE, CHIPIRPOST, CHIPIRPRE.

Example:

ARM11 TAP ETB TAP OfNolnterest TAP DAP TAP
TDI - - - p DO
IR: 5bit IR: 4bit IR: 7Dbit IR: 4bit

SYStem.CONFIG IRPRE 15.
SYStem.CONFIG DRPRE 3.
SYStem.CONFIG DAPIRPOST 16.

SYStem.CONFIG DAPDRPOST 3.
SYStem.CONFIG ETBIRPOST 5.
SYStem.CONFIG ETBDRPOST 1.

SYStem.CONFIG ETBIRPRE 11.
SYStem.CONFIG ETBDRPRE 2.

©1989-2024 Lauterbach C7000 Debugger and Trace | 25

[pebugport | 17A6 | muttitap || paP || components |

TDI b

TDI b

TDI b

~ IRPOST —— — IRPRE ——
] 15.

- DRPOST —{»»| core1 |»b- DRPRE ——

Wb |

— DAPIRPOST — — DAPIRPRE —
16.]

- DAPORPOST — bb| DAP |- DAPDRPRE
£

— ETBIRPOST —— — ETBIRPRE —
5. 11.

- ETBRPOST — »»| ETB |»b

— ETBDRPRE
2.

* TDO

* TDO

* TDO

©1989-2024 Lauterbach

C7000 Debugger and Trace

26

<parameters> describing a system level TAP “MultiTap”

A “Multitap” is a system level or chip level test access port (TAP) in a JTAG scan chain. It can for example
provide functions to re-configure the JTAG chain or view and control power, clock, reset and security of
different chip components.

At the moment the debugger supports three types and its different versions:
Icepickx, STCLTAPx, MSMTAP:

Example:
JTAG
1
|
TDI — Multitap ARM11 DAP ETB
- I “IcepickC” TAP TAP TAP
|
|
TDO]
|
™S | MULTITAP IcepickC
- I DEBUGTAP 1
DAPTAP 4
TCK
= : ETBTAB 5
nTRST__ |
o
|

DAPTAP <tap> Specifies the TAP number which needs to be activated to get the
DAP TAP in the JTAG chain.

Used if MULTITAP=Icepickx.

DEBUGTAP <tap> Specifies the TAP number which needs to be activated to get the
core TAP in the JTAG chain. E.g. ARM11 TAP if you intend to
debug an ARM11.

Used if MULTITAP=Icepickx.
ETBTAP <tap> Specifies the TAP number which needs to be activated to get the

ETB TAP in the JTAG chain.

©1989-2024 Lauterbach C7000 Debugger and Trace | 27

MULTITAP Selects the type and version of the MULTITAP.
[NONE | IcepickA | IcepickB

| IcepickC | IcepickD | In case of MSMTAP you need to add parameters which specify
IcepickM | which IR pattern and DR pattern needed to be shifted by the
IcepickBB | IcepickBC | debugger to initialize the MSMTAP. Please note some of these
IcepickCC |IcepickDD | parameters need a decimal input (dot at the end).

JtagSEQuence <sub_cmd>]
IcepickXY means that there is an Icepick version “X” which
includes a subsystem with an Icepick of version “Y”.

For a description of the JtagSEQuence subcommands, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

NJCR <tap> Number of a Non-JTAG Control Register (NJCR) which shall be
used by the debugger.

Used if MULTITAP=Icepickx.

SLAVETAP <tap> Specifies the TAP number to get the Icepick of the sub-system in
the JTAG scan chain.

Used if MULTITAP=IcepickXY (two Icepicks).

©1989-2024 Lauterbach C7000 Debugger and Trace | 28

<parameters> configuring a CoreSight Debug Access Port “AP”

An Access Port (AP) is a CoreSight module from Arm which provides access via its debug link (JTAG,
cJTAG, SWD, SWD, USB, UDP/TCP-IP, GTL, PCle...) to:

1.

Different memory busses (AHB, APB, AXI). This is especially important if the on-chip debug
register needs to be accessed this way. You can access the memory buses by using certain
access classes with the debugger commands: “AHB:”, “APB:”, “AXI:, “DAP”, “E:”. The interface to
these buses is called Memory Access Port (MEM-AP).

Other, chip-internal JTAG interfaces. This is especially important if the core you intend to debug
is connected to such an internal JTAG interface. The module controlling these JTAG interfaces is
called JTAG Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces.
A port number between 0 and 7 denotes the JTAG interfaces to be addressed.

A transactor name for virtual connections to AMBA bus level transactors can be configured by
the property SYStem.CONFIG.*APn.XtorName <name>. A JTAG or SWD transactor must be
configured for virtual connections to use the property “Port” or “Base” (with “DP:” access) in case
XtorName remains empty.

Example 1: SoC-400

ROM table

Memory
Access Port
(MEM-AP) CoreSight

Component

ROM table
Access Port
(MEM-AP)
CoreSight
Component
JTAG

Access Port
(JTAG-AP)

DAP

©1989-2024 Lauterbach C7000 Debugger and Trace | 29

Example 2: SoC-600

SoC-600

Debug

link(s) ROM table

I
NO-9/ZE E

| | CoreSight
. Component

ROM table
Memory System 2

* | CoreSight
CoreSight - Component
Component
ROM table
ROM tabl expected

(va-v9/2¢€) da

H9-v9/Ce

Memory System 1

. Component

; C%%;?)iiﬁ;:;t (possible) Memory System 3

AHBAPN.HPROT [<value> | Default: 0.

<name>] Selects the value used for the HPROT bits in the Control Status
SYStem.Option.AHBH- Word (CSW) of a CoreSight AHB Access Port, when using the AHB:
PROT [<value> | <name>] memory class.

(deprecated)

AXIAPNn.HPROT [<value> | Default: 0.

<name>) This option selects the value used for the HPROT bits in the Control
SYStem.Option.AXIHPROT Status Word (CSW) of a CoreSight AXI Access Port, when using
[<value> | <name>] the AXIl: memory class.

(deprecated)

MEMORYAPN.HPROT Default: 0.

[<value> | <name>] This option selects the value used for the HPROT bits in the Control

Status Word (CSW) of a CoreSight Memory Access Port, when
using the E: memory class.

©1989-2024 Lauterbach C7000 Debugger and Trace | 30

AXIAPn.ACEEnable [ON |
OFF]
SYStem.Option.AXIACEEn-
able [ON | OFF]
(deprecated)

AXIAPn.CacheFlags
<value>
SYStem.Option.AXI-
CACHEFLAGS <value>
(deprecated)

Default: OFF.

Enables ACE transactions on the AXI-AP, including barriers. This
does only work if the debug logic of the target CPU implements
coherent accesses. Otherwise this option will be without effect.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).
This option configures the value used for the Cache and Domain
bits in the Control Status Word (CSW[27:24]->Cache, CSW[14:13]
>Domain) of an Access Port, when using the AXI: memory class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

<name>
DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable

Description

=0x30: Domain=0x3, Cache=0x0
=0x32: Domain=0x3, Cache=0x2
=0x06: Domain=0x0, Cache=0x6

ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable

ReadWriteAllocateOuterShareable

=0x16:
=0x26:
=0x0A:
=0x1A:
=0x2A:
=0xOE:
=0x1E:
=0x2E:

Domain=0x1, Cache=0x6
Domain=0x2, Cache=0x6
Domain=0x0, Cache=0xA
Domain=0x1, Cache=0xA
Domain=0x2, Cache=0xA
Domain=0x0, Cache=0xE
Domain=0x1, Cache=0xE

Domain=0x2, Cache=0xE

©1989-2024 Lauterbach

C7000 Debugger and Trace

31

AHBAPN.XtorName AHB bus transactor name that shall be used for “AHBN:” access
<name> class.

APBAPN.XtorName <name> APB bus transactor name that shall be used for “APBn:” access
class.

AXIAPn.XtorName <name> AXI bus transactor name that shall be used for “AXIn:” access

class.
DEBUGAPN.XtorName APB bus transactor name identifying the bus where the debug
<name> register can be found. Used for “DAP:” access class.
MEMORYAPN.XtorName AHB bus transactor name identifying the bus where system
<hame> memory can be accessed even during runtime. Used for “E:”
access class while running, assuming “SYStem.MemAccess
DAP”.
... .RESet Undo the configuration for this access port. This does not cause

a physical reset for the access port on the chip.

... .view Opens a window showing the current configuration of the access
port.

©1989-2024 Lauterbach C7000 Debugger and Trace | 32

S0C-400 Specific Commands

AHBAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AHBACCESSPORT <port> used for “AHBnN:” access class. Default: <port>=0.

(deprecated)

APBAPnN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
APBACCESSPORT <port> used for “APBnN:” access class. Default: <port>=1.

(deprecated)

AXIAPN.Port <port> Access Port Number (0-255) of a SoC-400 system which shall be
AXIACCESSPORT <port> used for “AXIn;” access class. Default: port not available.
(deprecated)

DEBUGAPN.Port <port> AP access port number (0-255) of a SoC-400 system where the
DEBUGACCESSPORT debug register can be found (typically on APB). Used for “DAP:”
<port> (deprecated) access class. Default: <port>=1.

JTAGAPN.CorePort <port> JTAG-AP port number (0-7) connected to the core which shall be

COREJTAGPORT <port> debugged.

(deprecated)

JTAGAPN.Port <port> Access port number (0-255) of a SoC-400 system of the JTAG
JTAGACCESSPORT <port> Access Port.

(deprecated)

MEMORYAPN.Port <port> AP access port number (0-255) of a SoC-400 system where
MEMORYACCESSPORT system memory can be accessed even during runtime (typically
<port> (deprecated) an AHB). Used for “E:” access class while running, assuming

“SYStem.MemAccess DAP”. Default: <port>=0.

S0C-600 Specific Commands

©1989-2024 Lauterbach C7000 Debugger and Trace | 33

AHBAPN.Base <address>

APBAPN.Base <address>

AXIAPn.Base <address>

JTAGAPN.Base <address>

This command informs the debugger about the start address of
the register block of the “AHBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AHBAP1.Base DP:0x80002000
Meaning: The control register block of the AHB access ports
starts at address 0x80002000.

This command informs the debugger about the start address of
the register block of the “APBAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.APBAP1.Base DP:0x80003000
Meaning: The control register block of the APB access ports
starts at address 0x80003000.

This command informs the debugger about the start address of
the register block of the “AXIAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.AXIAP1.Base DP:0x80004000
Meaning: The control register block of the AXI access ports
starts at address 0x80004000.

This command informs the debugger about the start address of
the register block of the “JTAGAPN:” access port. And this way it
notifies the existence of the access port. An access port typically
provides a control register block which needs to be accessed by
the debugger to read/write from/to the bus connected to the
access port.

Example: SYStem.CONFIG.JTAGAP1.Base DP:0x80005000
Meaning: The control register block of the JTAG access ports
starts at address 0x80005000.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 34

<parameters> describing debug and trace “Components”

On the Components tab in the SYStem.CONFIG.state window, you can comfortably add the debug and

trace components your chip includes and which you intend to use with the debugger’s help.

& B::5YStem, CONFIG.state /COmponents

| DebugPort ” Jtag ” DAP " COmponent5|

(=[O sl

’- Select components to display -

’)

CTIL
Base 10:0x300

E] Config

CROSSBREAK =

B B::S¥Stem.CONFIG state /COmponents

Debugport | ITAG Multitap DAP

(=[O sl

Components

l— Mew Component -

- Mew Component -
CcMI1
COREDEBUG
CTI

DRM

DTM

DWT

EPM

ETB1
ETB2AXI
ETF1

ETR1
FUNNEL1L
HTM
ICE
1™
ocp
PMI
RTP
sC
STM1
TPIU

B B::S¥Stem.CONFIG state /COmponents

Debugport | ITAG Multitap DAP

(=[O sl

Components

’— Mew Component -

ETM

Base E]

Each configuration can be done by a command in a script file as well. Then you do not need to enter

everything again on the next debug session. If you press the button with the three dots you get the

corresponding command in the command line where you can view and maybe copy it into a script file.

B::|5Y5.CONFIG.ETM. Base

ddress:

DAP : 00000000

[rokl

] [<address>] [<valus=>]

©1989-2024 Lauterbach

C7000 Debugger and Trace

35

You can have several of the following components: CMI, ETB, ETF, ETR, FUNNEL, STM.
Example: FUNNEL1, FUNNEL2, FUNNELS,...

The <address> parameter can be just an address (e.g. 0x80001000) or you can add the access class in
front (e.g. AHB:0x80001000). Without access class it gets the command specific default access class which
is “EDAP:” in most cases.

Example:

SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.
SYStem.

Core —— B

Core |— B

CONFIG

CONFIG

CONFIG

CONFIG

ETM

ETM
0
1 FUNNEL

STM

FUNNEL TPIU

.COREDEBUG.Base 0x80010000 0x80012000
CONFIG.
CONFIG.

BMC.Base 0x80011000 0x80013000
ETM.Base 0x8001c000 0x8001d4000

.STM1.Base EAHB:0x20008000
CONFIG.
CONFIG.
.FUNNEL1 .Base 0x80004000
CONFIG.
CONFIG.

STM1 .Type ARM
STM1 .Mode STPv2

FUNNEL2 .Base 0x80005000
TPIU.Base 0x80003000

.FUNNEL1.ATBSource ETM.0 0 ETM.1 1
CONFIG.
CONFIG.

FUNNEL2 .ATBSource FUNNEL1 0 STM1 7
TPIU.ATBSource FUNNEL2

©1989-2024 Lauterbach

C7000 Debugger and Trace | 36

& B::5YStem, CONFIG.state /COmponents

Debugport | ITAG Multitap DAP

Components

(=[O sl

|— Mew Component -

4

COREDEBUG

Base(s) DAP:0x80010000 DAP:0x80012000
BMC

Base(s) DAP:0x80011000 DAP:0x80013000
ETM

Base(s) DAP:0x8001C000 DAP:0x8001D000
STM1

Base EAHB:0x20008000 [...] Type
Mode STPv2 -/

FUNNEL1

Base DAP:0XB0004000 [

ATBSource ETM
FUNMEL2

Base DAP:0x80005000 [wud]
ATBSource FUNNELL 0 STM1 7
TPIU

Base DAP:0x80003000

[] ATBSource FUNNELZ

B8 B

@)

B B

... .ATBSource <source>

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

Example:
SYStem.CONFIG FUNNEL.ATBSource ETM 0 HTM 1 STM 7

Meaning: The funnel gets trace data from ETM on port 0, from
HTM on port 1 and from STM on port 7.

In an SMP (Symmetric MultiProcessing) debug session where
you used a list of base addresses to specify one component per
core you need to indicate which component in the list is meant:

©1989-2024 Lauterbach

C7000 Debugger and Trace | 37

Example: Four cores with ETM modules.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG FUNNEL1.ATBSource ETM.0 0 ETM.1 1
ETM.22 ETM.3 3

"...2" of "ETM.2" indicates it is the third ETM module which has
the base address 0x3000. The indices of a list are 0, 1, 2, 3,...
If the numbering is accelerating, starting from 0, without gaps,
like the example above then you can shorten it to
SYStem.CONFIG FUNNEL1.ATBSource ETM

Example: Four cores, each having an ETM module and an ETB
module.

SYStem.CONFIG ETM.Base 0x1000 0x2000 0x3000 0x4000
SYStem.CONFIG ETB.Base 0x5000 0x6000 0x7000 0x8000
SYStem.CONFIG ETB.ATBSource ETM.2 2

The third "ETM.2" module is connected to the third ETB. The last
"2" in the command above is the index for the ETB. It is not a port
number which exists only for FUNNELSs.

For a list of possible components including a short description
see Components and Available Commands.

... .BASE <address> This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, COREBEBUG, CTlI, ETB, ETF,
ETM, ETR a list of base addresses to specify one component per
core.

Example assuming four cores: SYStem.CONFIG
COREDEBUG.Base 0x80001000 0x80003000 0x80005000
0x80007000

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach C7000 Debugger and Trace | 38

... .Name

... .NoFlush [ON | OFF]

... .RESet

... .view

... .TracelD <id>

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example: Shared None-Programmable Funnel:

PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

Deactivates an ETB flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

For a list of possible components including a short description
see Components and Available Commands.

Opens a window showing the current configuration of the
component.

For a list of possible components including a short description
see Components and Available Commands.

Identifies from which component the trace packet is coming from.
Components which produce trace information (trace sources) for a
common trace stream have a selectable “.TracelD <id>”.

If you miss this SYStem.CONFIG command for a certain trace
source (e.g. ETM) then there is a dedicated command group for
this component where you can select the ID (ETM.TracelD <id>).

The default setting is typically fine because the debugger uses
different default trace IDs for different components.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 39

CTl.Config <type>

ETB.Size <size>

ETB.STackMode [NotAvail-
bale | TRGETM | FULLTIDRM
| NOTSET | FULLSTOP |
FULLCTI]

FUNNEL.Name <string>

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostinit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS3: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

ARMV8V1: Channel 0 and 1 of the CTM are used to distribute
start/stop events from and to the CTIs. ARMv8 only.

ARMV8V2: Channel 2 and 3 of the CTM are used to distribute
start/stop events from and to the CTls. ARMv8 only.

ARMV8V3: Channel 0, 1 and 2 of the CTM are used to distribute
start/stop events. Implemented on request. ARMv8 only.

Specifies the size of the Embedded Trace Buffer. The ETB size
can normally be read out by the debugger. Therefore this
command is only needed if this can not be done for any reason.

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for Tl devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 40

FUNNEL.PROGrammable
[ON | OFF]

OCP.Type <type>

RTP.PerBase <address>

RTP.RamBase <address>

STM.Mode [NONE | XTIv2 |
SDTI | STP | STP64 | STPv2]

STM.Type [None | Generic |
ARM | SDTI | TI]

TPIU.Type [CoreSight |
Generic]

Default is ON. If set to ON the peripheral is controlled by
TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES2 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

Specifies the type of the OCP module. The <type> is just a
number which you need to figure out in the chip documentation.

PERBASE specifies the base address of the core peripheral
registers which accesses shall be traced. PERBASE is needed
for the RAM Trace Port (RTP) which is available on some
derivatives from Texas Instruments. The trace packages include
only relative addresses to PERBASE and RAMBASE.

RAMBASE is the start address of RAM which accesses shall be
traced. RAMBASE is needed for the RAM Trace Port (RTP)
which is available on some derivatives from Texas Instruments.
The trace packages include only relative addresses to PERBASE
and RAMBASE.

Selects the protocol type used by the System Trace Module (STM).
Selects the type of the System Trace Module (STM). Some types
allow to work with different protocols (see STM.Mode).

Selects the type of the Trace Port Interface Unit (TPIU).
CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the

debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

ADTF.Base <address>
ADTF.RESet

ADTF.Type [None | ADTF | ADTF2 | GEM]

©1989-2024 Lauterbach

C7000 Debugger and Trace | 41

AMBA trace bus DSP Trace Formatter (ADTF) - Texas Instruments
Module of a TMS320C5x or TMS320C6x core converting program and data trace information in ARM
CoreSight compliant format.

CMI.Base <address>

CMI.RESet

CMI.TracelD <id>

Clock Management Instrumentation (CMI) - Texas Instruments

Trace source delivering information about clock status and events to a system trace module.

DRM.Base <address>

DRM.RESet

Debug Resource Manager (DRM) - Texas Instruments
It will be used to prepare chip pins for trace output.

EPM.Base <address>

EPM.RESet

Emulation Pin Manager (EPM) - Texas Instruments
It will be used to prepare chip pins for trace output.

ETB.ATBSource <source>

ETB.Base <address>

ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module

Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after
the capturing has finished.

FUNNEL.ATBSource <sourcelist>

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus).

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

OCP.Base <address>

OCP.RESet

OCP.TracelD <id>

OCP.Type <type>

Open Core Protocol watchpoint unit (OCP) - Texas Instruments

Trace source module delivering bus trace information to a system trace module.

©1989-2024 Lauterbach C7000 Debugger and Trace | 42

PMI.Base <address>

PMI.RESet

PMl.TracelD <id>

Power Management Instrumentation (PMI) - Texas Instruments

Trace source reporting power management events to a system trace module.

SC.Base <address>

SC.RESet

SC.TracelD <id>

Statistic Collector (SC) - Texas Instruments

Trace source delivering statistic data about bus traffic to a system trace module.

STM.Base <address>

STM.Mode [NONE | XTIv2 | SDTI | STP | STP64 | STPv2]

STM.RESet

STM.Type [None | Generic | ARM | SDTI | TI]

System Trace Macrocell (STM) - MIPI, ARM CoreSight, others

Trace source delivering system trace information e.g. sent by software in printf() style.

TPIU.ATBSource <source>

TPIU.Base <address>

TPIU.RESet

TPIU.Type [CoreSight | Generic]

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

©1989-2024 Lauterbach C7000 Debugger and Trace | 43

<parameters> which are “Deprecated”

In the last years the chips and its debug and trace architecture became much more complex. Especially the
CoreSight trace components and their interconnection on a common trace bus required a reform of our
commands. The new commands can deal even with complex structures.

... BASE <address>

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

Example: SYStem.CONFIG ETMBASE APB:0x8011c000

Meaning: The control register block of the Embedded Trace
Macrocell (ETM) starts at address 0x8011c000 and is accessible
via APB bus.

In an SMP (Symmetric MultiProcessing) debug session you can
enter for the components BMC, CORE, CTI, ETB, ETF, ETM, ETR a
list of base addresses to specify one component per core.

Example assuming four cores: “SYStem.CONFIG COREBASE
0x80001000 0x80003000 0x80005000 0x80007000".

COREBASE (old syntax: DEBUGBASE): Some cores e.g. Cortex-
A or Cortex-R do not have a fix location for their debug register
which are used for example to halt and start the core. In this case it
is essential to specify its location before you can connect by e.g.
SYStem.Up.

PERBASE and RAMBASE are needed for the RAM Trace Port
(RTP) which is available on some derivatives from Texas
Instruments. PERBASE specifies the base address of the core
peripheral registers which accesses shall be traced, RAMBASE
is the start address of RAM which accesses shall be traced. The
trace packages include only relative addresses to PERBASE and
RAMBASE.

For a list of possible components including a short description
see Components and Available Commands.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 44

... PORT <port>

CTICONFIG <type>

TIOCPTYPE <type>

view

Informs the debugger about which trace source is connected to
which input port of which funnel. A CoreSight trace funnel
provides 8 input ports (port 0-7) to combine the data of various
trace sources to a common trace stream.

Example: SYStem.CONFIG STMFUNNEL2PORT 3

Meaning: The System Trace Module (STM) is connected to input
port #3 on FUNNEL2.

On an SMP debug session some of these commands can have a
list of <port>parameter.

In case there are dedicated funnels for the ETB and the TPIU
their base addresses are specified by ETBFUNNELBASE,
TPIUFUNNELBASE respectively. And the funnel port number for
the ETM are declared by ETMETBFUNNELPORT,
ETMTPIUFUNNELPORT respectively.

TRACE... stands for the ADTF trace source module.

For a list of possible components including a short description
see Components and Available Commands.

Informs about the interconnection of the core Cross Trigger
Interfaces (CTI). Certain ways of interconnection are common
and these are supported by the debugger e.g. to cause a
synchronous halt of multiple cores.

NONE: The CTl is not used by the debugger.

ARMV1: This mode is used for ARM7/9/11 cores which support
synchronous halt, only.

ARMPostlnit: Like ARMV1 but the CTI connection differs from the
ARM recommendation.

OMAPS: This mode is not yet used.

TMS570: Used for a certain CTI connection used on a TMS570
derivative.

CortexV1: The CTI will be configured for synchronous start and
stop via CTI. It assumes the connection of DBGRQ, DBGACK,
DBGRESTART signals to CTl are done as recommended by
ARM. The CTIBASE must be notified. “CortexV1” is the default
value if a Cortex-A/R core is selected and the CTIBASE is
notified.

QV1: This mode is not yet used.

Specifies the type of the OCP module from Texas Instruments
(TI).

Opens a window showing most of the SYStem.CONFIG settings
and allows to modify them.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 45

Deprecated and New Commands

In the following you find the list of deprecated commands which can still be used for compatibility reasons

and the corresponding new command.

SYStem.CONFIG <parameter>

<parameter>:
(Deprecated)

BMCBASE <address>
BYPASS <seq>

COREBASE <address>
CTIBASE <address>
DEBUGBASE <address>
DTMCONFIG [ON | OFF]
DTMETBFUNNELPORT <port>
DTMFUNNEL2PORT <port>
DTMFUNNELPORT <port>
DTMTPIUFUNNELPORT <port>
DWTBASE <address>
ETB2AXIBASE <address>
ETBBASE <address>
ETBFUNNELBASE <address>
ETFBASE <address>
ETMBASE <address>
ETMETBFUNNELPORT <port>
ETMFUNNEL2PORT <port>
ETMFUNNELPORT <port>
ETMTPIUFUNNELPORT <port>
FILLDRZERO [ON | OFF]

FUNNEL2BASE <address>
FUNNELBASE <address>
HSMBASE <address>

<parameter>:
(New)

BMC.Base <address>

CHIPIRPRE <bits>
CHIPIRLENGTH <bits>
CHIPIRPATTERN.Alternate <pattern>

COREDEBUG.Base <address>
CTl.Base <address>
COREDEBUG.Base <address>
DTM.Type.Generic
FUNNEL4.ATBSource DTM <port> (1
FUNNEL2.ATBSource DTM <port> (1
FUNNEL1.ATBSource DTM <port> (1
FUNNEL3.ATBSource DTM <port> (1
DWT.Base <address>
ETB2AXI.Base <address>
ETB1.Base <address>
FUNNEL4.Base <address>

(1)
(1)
(1)
(1)

ETF1.Base <address>
ETM.Base <address>
FUNNEL4.ATBSource ETM <port> (1)
FUNNEL2.ATBSource ETM <port> (1)
FUNNEL1.ATBSource ETM <port> (1)
FUNNEL3.ATBSource ETM <port> (1)

CHIPDRPRE 0

CHIPDRPOST 0

CHIPDRLENGTH <bits_of _complete_dr_path>
CHIPDRPATTERN.Alternate 0

FUNNEL2.Base <address>
FUNNEL1.Base <address>

HSM.Base <address>

©1989-2024 Lauterbach

C7000 Debugger and Trace |

46

HTMBASE <address>
HTMETBFUNNELPORT <port>
HTMFUNNEL2PORT <port>
HTMFUNNELPORT <port>
HTMTPIUFUNNELPORT <port>
ITMBASE <address>
ITMETBFUNNELPORT <port>
ITMFUNNEL2PORT <port>
ITMFUNNELPORT <port>
ITMTPIUFUNNELPORT <port>
PERBASE <address>
RAMBASE <address>
RTPBASE <address>
SDTIBASE <address>

STMBASE <address>

STMETBFUNNELPORT <port>
STMFUNNEL2PORT <port>
STMFUNNELPORT <port>
STMTPIUFUNNELPORT <port>
TIADTFBASE <address>
TIDRMBASE <address>
TIEPMBASE <address>
TIICEBASE <address>
TIOCPBASE <address>
TIOCPTYPE <type>
TIPMIBASE <address>
TISCBASE <address>
TISTMBASE <address>

TPIUBASE <address>
TPIUFUNNELBASE <address>
TRACEETBFUNNELPORT <port>

HTM.Base <address>
FUNNEL4.ATBSource HTM <port> (1
FUNNEL2.ATBSource HTM <port> (1
FUNNEL1.ATBSource HTM <port> (1
FUNNEL3.ATBSource HTM <port> (1
ITM.Base <address>

FUNNEL4.ATBSource ITM <port> (1
FUNNEL2.ATBSource ITM <port> (1
FUNNEL1.ATBSource ITM <port> (1
FUNNELS3.ATBSource ITM <port> (1

RTP.PerBase <address>

(1)
(1)
(1)
(1)

(1)
(1)
(1)
(1)

RTP.RamBase <address>
RTP.Base <address>

STM1.Base <address>
STM1.Mode SDTI
STM1.Type SDTI

STM1.Base <address>
STM1.Mode STPV2
STM1.Type ARM

FUNNELA4.ATBSource STM1 <port> (1
FUNNEL2.ATBSource STM1 <port> (1
FUNNEL1.ATBSource STM1 <port> (1
FUNNEL3.ATBSource STM1 <port> (1
ADTF.Base <address>

DRM.Base <address>

(1)
(1)
(1)
(1)

EPM.Base <address>
ICE.Base <address>
OCP.Base <address>
OCP.Type <type>
PMI.Base <address>
SC.Base <address>

STM1.Base <address>
STM1.Mode STP
STM1.Type TI

TPIU.Base <address>
FUNNEL3.Base <address>
FUNNEL4.ATBSource ADTF <port> (1)

©1989-2024 Lauterbach

C7000 Debugger and Trace

47

TRACEFUNNELPORT <port> FUNNEL1.ATBSource ADTF <port> (1)
TRACETPIUFUNNELPORT <port> FUNNEL3.ATBSource ADTF <port> (1)
view state

(1) Further “<component>.ATBSource <source>" commands might be needed to describe the full trace data
path from trace source to trace sink.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: C7X, C71X ...

Default selection: C7X.

Selects the processor type. If your ASIC is not listed, select the type of the integrated DSP core.

SYStem.ENTERPostMortem Place core into post-mortem state

Format: SYStem.ENTERPostMortem

The post-mortem state can be used for hang recovery, when the CPU is hanging in “running” state and no
CPU registers can be read. Executing this command will force the CPU into a halted state where all CPU
and ECR registers can be read.

Warning: Performing “Go” in post-mortem state results in undefined behavior.

©1989-2024 Lauterbach C7000 Debugger and Trace | 48

SYStem.JtagClock Define JTAG frequency
Format: SYStem.JtagClock [<frequency> | CRTCK | RTCK | RTCK <frequency>] |
ARTCK <frequency>]

SYStem.BdmClock (deprecated)

<frequency>: 10000. ... 40000000.

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use

the default setting if possible.

<frequency>

CRTCK

RTCK

The debugger cannot select all frequencies accurately. It chooses the
next possible frequency and displays the real value in the SYStem.state
window.

Besides a decimal number like “100000.” short forms like “10 kHz” or
“15 MHZz’ can also be used. The short forms imply a decimal value,

wn

although no “” is used.

With this option higher JTAG speeds can be reached. The TDO signal
will be sampled by the RTCK signal. This compensates the debugger-
internal driver propagation delays, the delays on the cable and on the
target (Compensation by RTCK). This feature requires that the target
provides an RTCK signal. In contrast to the RTCK option, the TCK is
always output with the selected, fixed frequency.

The JTAG clock is controlled by the RTCK signal (Returned TCK).

On some processor derivatives including an ARM core (e.g. OMAP)
there is the need to synchronize the processor clock and the JTAG clock.
In this case RTCK shall be selected. Synchronization is maintained,
because the debugger does not progress to the next TCK edge until after
an RTCK edge is received.

When RTCK is selected, the maximum reachable frequency is limited to
10 MHz. This limit can be changed by adding the frequency parameter. A
limitation is required that the JTAG clock speed can not become higher
than the physical interface can manage.

Example: syStem.JtagClock RTCK 20MHz

©1989-2024 Lauterbach

C7000 Debugger and Trace | 49

ARTCK

CTCK

SYStem.LOCK

Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK). RTCK mode allows theoretical frequencies up
to 1/6 of the processor clock. For designs using a very low processor clock
we offer a different mode (ARTCK) which does not work as recommended
by ARM and might not work on all target systems. In ARTCK mode the
debugger uses a fixed JTAG frequency for TCK, independent of the RTCK
signal. This frequency must be specified by the user and has to be below 1/2
of the processor clock speed. The signal RTCK clocks TDI and TMS and
controls the sampling of TDO.

With this option higher debug port speeds can be reached. The
TDO/SWDIO signal will be sampled by a signal which derives from
TCK/SWCLK, but which is timely compensated regarding the debugger-
internal driver propagation delays (Compensation by TCK). This feature
can be used with a debug cable version 3 or newer. If it is selected,
although the debug cable is not suitable, a fixed frequency will be
selected instead (minimum of 10 MHz and selected clock).

Tristate the JTAG port

Format:

SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the TI DSP core JTAG state machine remains unchanged while the
system is locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and
SYStem.CONFIG TCKLevel must be set properly. They define the TAP state and TCK level which is
selected when the debugger switches to tristate mode. Please note: nTRST must have a pull-up resistor on

the target.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 50

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
<mode>: Enable

Denied

StopAndGo

Default: Denied.

Allows to select a method for memory access while the CPU is running. If SYStem.MemAccess is not
Denied, it is possible to read from memory, to write to memory and to set software breakpoints while the
CPU is executing the program. For more information, see SYStem.CpuBreak and SYStem.CpuSpot.

Denied No memory access is possible while the CPU is executing the program.
Enable Used to activate the memory access while the CPU is running on the
CPU (deprecated) TRACE32 Instruction Set Simulator and on debuggers which do not have

a fixed name for the memory access method.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

SYStem.MemFORCEREADY Unblock memory access in post-mortem state

Format: SYStem.MemFORCEREADY

If the CPU has been placed in post-mortem state with SYStem.ENTERPostMortem this command allows
to unblock memory accesses which are currently blocked by the memory system. If a subsequent memory
access leads to a blocking state, the command has to be used again.

©1989-2024 Lauterbach C7000 Debugger and Trace | 51

SYStem.Mode

Establish the communication with the target

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug
Prepare
Go
Attach
StandBy
Up

Default: Down.

Configures how the debugger connects to the target and how the target is handled.

Down

NoDebug

Prepare

Go

Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

Disables the debugger. The state of the CPU remains unchanged. The
JTAG port is tristated.

The debugger initializes the debug port (JTAG, SWD, cJTAG) and
CoreSight DAP interface, but does not connect to the CPU.

This debug mode is used if the CPU shall not be debugged or bypassed,
i.e. the debugger can access the memory busses, such as AXI, AHB and
APB, directly through the memory access ports of the CoreSight DAP.

Typical use cases:

J The debugger accesses (physical) memory and bypasses the CPU
if a mapping exists. Memory might require initialization before it can
be accessed.

. The debugger accesses peripherals, e.g. for configuring registers
prior to stopping the CPU in debug mode. Peripherals might need to
be clocked and powered before they can be accessed.

. Third-party software or proprietary debuggers use the TRACE32
API (application programming interface) to access the debug port
and DAP via the TRACE32 debugger hardware.

Resets the target via the reset line, initializes the debug port (JTAG, SWD,
c¢JTAG), and starts the program execution. For a reset, the reset line has to
be connected to the debug connector.

Program execution can, for example, be stopped by the Break command.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 52

Attach

StandBy

Up

No reset happens, the mode of the core (running or halted) does not
change. The debug port (JTAG, SWD, cJTAG) will be initialized.
After this command has been executed, the user program can, for
example, be stopped with the Break command.

Keeps the target in reset via the reset line and waits until power is
detected. For a reset, the reset line has to be connected to the debug
connector.

Once power has been detected, the debugger restores as many debug
registers as possible (e.g. on-chip breakpoints, vector catch events, trace
control) and releases the CPU from reset to start the program execution.

When a CPU power-down is detected, the debugger switches
automatically back to the StandBy mode. This allows debugging of a
power cycle because debug registers will be restored on power-up.

NOTE: Usually only on-chip breakpoints and vector catch events can be
set while the CPU is running. To set a software breakpoint, the CPU has to
be stopped.

Resets the target via the reset line, initializes the debug port (JTAG, SWD,
c¢JTAG), stops the CPU, and enters debug mode.

For a reset, the reset line has to be connected to the debug connector.
The current state of all registers is read from the CPU.

SYStem.Option.Address32 Define address format display

Format:

SYStem.Option.Address32 [ON | OFF | AUTO | NARROW]

Default: AUTO.

Selects the number of displayed address digits in various windows, e.g. List.auto or Data.dump.

ON

OFF

AUTO

NARROW

Display all addresses as 32-bit values. 64-bit addresses are truncated.
Display all addresses as 64-bit values.
Number of displayed digits depends on address size.

32-bit display with extendible address field.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 53

SYStem.Option. AHBHPROT Select AHB-AP HPROT bits

Format: SYStem.Option. AHBHPROT <value> (deprecated)
Use SYStem.CONFIG.AHBAPNn.HPROT instead.

Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AHB Access
Port, when using the AHB: memory class.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP

Format: SYStem.Option.AXIACEEnable [ON | OFF] (deprecated)
Use SYStem.CONFIG.AXIAPn.ACEEnable instead.

Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.CacheFlags instead.

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0).

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory

class.

©1989-2024 Lauterbach C7000 Debugger and Trace | 54

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Format: SYStem.Option.AXIHPROT <value> (deprecated)
Use SYStem.CONFIG.AXIAPn.HPROT instead.

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of a CoreSight AXI
Access Port, when using the AXI: memory class.

SYStem.Option.BigEndian Enable big endian mode

Format: SYStem.Option.BigEndian [ON | OFF]

Switches endianness of memory access to Big Endian

ON Switches endianness to Big Endian
OFF (default) Switches endianness to Little Endian
SYStem.Option.DAPNOIRCHECK No DAP instruction register check
Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]
Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

©1989-2024 Lauterbach C7000 Debugger and Trace | 55

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

SYStem.Option.DEBUGPORTOptions Options for debug port handling
Format: SYStem.Option.DEBUGPORTOptions <option>
<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll

Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None

There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd

Switching procedure as it is required on SWJ-DP without a
dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd

Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 56

DormantToSwd

Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd

Switching procedure as it is required on SWJ-DP with a dormant
state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.
LOwW Keep nTRST low during serial wire operation.
HIGH Keep nTRST high during serial wire operation
SYStem.Option.DUALPORT Implicitly use run-time memory access
Format: SYStem.Option.DUALPORT [ON | OFF]

All TRACE32 windows that display memory are updated while the processor is executing code (e.g.
Data.dump, Data.List, PER.view, Var.View). This setting has no effect if SYStem.MemAccess is disabled.

If only selected memory windows should update their content during runtime, leave
SYStem.Option.DUALPORT OFF and use the access class prefix E or the format option %E for the

specific windows.

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
[SYStem.state window> EnReset]
Format: SYStem.Option.EnReset [ON | OFF]
Default: ON.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 57

If this option is disabled the debugger will never drive the nRESET (nSRST) line on the JTAG connector. This
is necessary if NRESET (nSRST) is no open collector or tristate signal.

From the view of the core, it is not necessary that NRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

SYStem.Option.EnTRST Control TAP reset
Format: SYStem.Option.EnTRST [ON | OFF]
Default: ON.

To set the debug interface in a defined state the TAP is reset by driving the TRST pin low and additionally
holding TMS low for five 5 TCKs. By setting the EnTRST option to OFF only the TMS method is used. The
reason for introducing this command was that in some target systems several chips were connected to the
TRST line, which must not be reset together with the debug TAP.

SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
[build 167635 - DVD 09/2024]
Format: SYStem.Option.ICFLUSH [ON | OFF]
Default: OFF.

Invalidates the instruction cache before starting the target program (Step or Go).
If this option is disabled, the debugger will not automatically invalidate the instruction cache before any
debug command.

SYStem.Option.IMASKASM Disable interrupts while single stepping
Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the CPU will be set during assembler single-step operations. The
interrupt routine is not executed during single-step operations. After single step the interrupt mask bits are
restored to the value before the step.

©1989-2024 Lauterbach C7000 Debugger and Trace | 58

SYStem.Option.INTDIS Disable all interrupts

Format: SYStem.Option.INTDIS [ON | OFF]

Default: OFF.

If this option is ON, all interrupts on the Arm core are disabled.

©1989-2024 Lauterbach C7000 Debugger and Trace | 59

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The debug power is not released at the end of the debug session, and
the control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked
by the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to

AlwaysON.
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

©1989-2024 Lauterbach C7000 Debugger and Trace | 60

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is not released at the end of the debug session, and
the control bit remains at 1.

ON System power is requested by the debugger on a debug session start,
and the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session
start, and the control bit is set to 0.

SYStem.Option.ExecutionMode Sets the CPU execution mode

Format: SYStem.Option.ExecutionMode [StopMode | Real-Time]

Default: StopMode.

The option controls the behavior of code execution and debug communication during debug events.

StopMode The CPU can be halted at any point and only resumes execution after a
Go command.

Real-Time The CPU is not halted during real-time interrupts. If the CPU is in halted
state and a real-time interrupt occurs, the CPU may leave the halted state
to service the interrupt. The CPU then continues execution until all real-
time interrupts have completed.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach C7000 Debugger and Trace | 61

If enabled, the interrupt mask bits of the CPU will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.MACHINESPACES Address extension for guest OSes
Format: SYStem.Option.MACHINESPACES [ON | OFF]
Default: OFF

Enables the TRACES32 support for debugging virtualized systems. Virtualized systems are systems running
under the control of a hypervisor.

After loading a Hypervisor Awareness, TRACE32 is able to access the context of each guest machine. Both
currently active and currently inactive guest machines can be debugged.

If SYStem.Option.MACHINESPACES is set to ON:

. Addresses are extended with an identifier called machine ID. The machine ID clearly specifies to
which host or guest machine the address belongs.

The host machine always uses machine ID 0. Guests have a machine ID larger than 0.
TRACES2 currently supports machine IDs up to 30.

J The debugger address translation (MMU and TRANSIation command groups) can be individually
configured for each virtual machine.

. Individual symbol sets can be loaded for each virtual machine.

SYStem.Option.PWRDWN Allow power-down mode

Format: SYStem.Option.PWRDWN [ON | OFF]

Default: OFF.

If this option is OFF, the debugger forces the chip to keep clock and keep power on OMAPxxxx devices.

©1989-2024 Lauterbach C7000 Debugger and Trace | 62

SYStem.RESetOut Reset target without reset of debug port

Format: SYStem.RESetOut

If possible (NnRESET is open collector), this command asserts the nRESET line on the debug connector.
This will reset the target including the CPU but not the debug port. The function only works when the system
is in SYStem.Mode.Up.

©1989-2024 Lauterbach C7000 Debugger and Trace | 63

CPU specific BenchMarkCounter Commands

The benchmark counters can be read at run-time.
For information about the architecture-independent BMC commands, refer to “BMC” (general_ref_b.pdf).

For information about architecture-specific BMC command(s), see command description(s) below.

BMC.<counter>.ATOB Advise counter to count within AB-range

Format: BMC.<counter>.ATOB [ON | OFF]

Advise the counter to count the specified event only in AB-range. Alpha and Beta markers are used to
specify the AB-range.

Example to measure the time used by the function sieve:

BMC.<counter> ClockCylces
BMC.CLOCK 450.Mhz

Break.Set sieve /Alpha

Break.Set V.END(sieve)-1 /Beta

BMC.<counter>.ATOB ON

<counter> counts clock cycles
core i1s running at 450.MHz

set a marker Alpha to the entry
of the function sieve

set a marker Beta to the exit
of the function sieve

advise <counter> to count only
in AB-range

©1989-2024 Lauterbach

C7000 Debugger and Trace |

CPU specific SETUP Command

SETUP.DIS Disassembler configuration
[build 157242 - DVD 09/2023]
Format: SETUP.DIS [<fields>] [<bar>] [<constants>]
<constants>: [LowerCase | UpperCase] [<other_constants>]

Sets default values for configuring the disassembler output of newly opened windows.

The command does not affect existing windows containing disassembler output.

<fields>, <bar>, For a description of the generic arguments, see SETUP.DIS in
<other_constants> general_ref_s.pdf.
LowerCase Default.

Sets the mnemonics to lower case.

UpperCase Sets the mnemonics to upper case. This format is closer to the Tl
disassembler.

©1989-2024 Lauterbach C7000 Debugger and Trace | 65

TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range

Break.Set 0x1000--0x17ff /Write ; 1000--17ff

Break.Set 0x1001--0x17ff /Write ; gives an error message
TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach C7000 Debugger and Trace | 66

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

©1989-2024 Lauterbach C7000 Debugger and Trace | 67

Tracing

The processor trace for C7000 is based on the ARM Coresight architecture. The trace can either be stored
in trace buffers on the chip (e.g. ETB) or sent out through an external trace port (TPIU). For further

information about Coresight component configuration please refer to “Setup of the Debugger for a
CoreSight System” (app_arm_coresight.pdf).

Controlling the Trace Capture

On the C7x core the trace capture is controlled by the TRC and AET command groups. The TRC

commands control trace export and stream selection, whereas the AET commands control triggers and
events.

Trace Breakpoints

The following breakpoints use TRC and AET resources:

; Broadcast only the execution of the specified instructions
Break.Set <address> | <range> /Program /TraceEnable

; Broadcast only the instructions that perform the specified data access

Break.Set <address> | <range>/ReadWrite | /Read | /Write /TraceData
Broadcast only the execution of the instruction at address 0x4dd84.

Break.Set 0x1234ABCD/Program/TraceEnable

Trace.List ; display the result

Break.Delete ; delete breakpoint

©1989-2024 Lauterbach C7000 Debugger and Trace | 68

Command reference: TRC

TRC Trace control (TRC)

The TRC command group implements the trace specific functions for the C7000 debugger.

For configuration, use the TRACE32 command line, a PRACTICE script (*.cmm), or the TRC.state

window.
@ BuTRC. state EI@
TRC trace SyncPeriod
(O OFF Trace
®on CIsTALL TracelD
commands TImeMode TracePriority
RESet External
@ CLEAR DataTrace CLOCK
& Trace OFF v
@539 TPIU streams
£ List PCTrace resources
(| SreamBuffer Version: 1.0.0

The following TRACE32 commands are available to configure the C7x trace.

TRC.CLEAR Clear trace settings

Format: TRC.CLEAR

Switches the TRC ON, clears the trace and clears all settings.

©1989-2024 Lauterbach C7000 Debugger and Trace | 69

TRC.CLOCK Set core clock frequency for timing measurements

Format: TRC.CLOCK <frequency>
(alias for <trace>.CLOCK)

Tells the debugger the core clock frequency of the traced DSP core.

o If the timing information is based on external timestamps with TRC.TImeMode set to External,
this setting is used to calculate the elapsed clock cycles from the elapsed time in seconds.

. If the timing information is based on asynchronous internal timestamps (TRC.TImeMode
AsyncTimeStamp), this setting is used to calculate the elapsed clock cycles from the elapsed
time in seconds.

. For timing modes which combine timestamps with cycle count information, this setting is not
required.

©1989-2024 Lauterbach C7000 Debugger and Trace | 70

TRC.DataTrace

Define broadcast of load/store address tracing

Format:

<def>:

TRC.DataTrace <def>

OFF
ReadAddress
WriteAddress
Address
ReadData
WriteData
Data

Read

Write

Only

ON

Defines which data access information is included in the trace.

TRC.DataTrace Trace Trace Trace Addresses of | Trace Addresses of
Data Values of Read| Data Values of Read Accesses Write Accesses
Accesses Write Accesses
OFF
ReadAddress []
WriteAddress
Address u u
ReadData []
WriteData []
Data | [|
Read | []
Write | []
ON [| [|
TRC.OFF Switch TRC off
Format: TRC.OFF

Disables TRC functionality.

©1989-2024 Lauterbach

C7000 Debugger and Trace | 71

There is no need to disable the TRC functionality. In case of general problems with a new processor or if a
TRC power-down should be enforced it can be reasonable.

TRC.ON Switch TRC on

Format: TRC.ON

Enables TRC functionality.

TRC.PCTrace Enable program counter trace
Format: TRC.PCTrace [ON | OFF]
ON The TRC exports the program counter trace stream (default).
OFF The TRC does not export the program counter trace stream.
TRC.RESet Reset TRC settings
Format: TRC.RESet

Reset the TRC settings and clear the TRC (see also TRC.Clear)

TRC.STALL Stall processor to prevent FIFO overflow

Format: TRC.STALL [ON | OFF]

Allows the TRC to stall the processor to prevent an output FIFO overflow. If enabled, the trace will be no
longer real time.

©1989-2024 Lauterbach C7000 Debugger and Trace | 72

TRC.StreamBuffer Enable stream buffer trace

Format: TRC.StreamBuffer [ON | OFF]

ON The TRC exports the stream buffer trace stream (default).

OFF The TRC does not export the stream buffer trace stream.
TRC.SyncPeriod Set synchronization frequency

Format: TRC.SyncPeriod [<period>]

Sets the period in bytes for synchronisation packets in the trace stream. The default frequency is 1024 bytes.

TRC.TImeMode Set timestamp configuration
Format: TRC.TiImeMode <mode>
<mode>: OFF | External | AsyncTimeStamps

Defines which timing information is included in the trace stream.

External The timestamps are generated in the debug hardware (default)
OFF No timestamp information is included in the trace
AsyncTimeStamps The timestamps are generated by the TRC unit

©1989-2024 Lauterbach C7000 Debugger and Trace | 73

TRC.TimeStampCLOCK Specify frequency of the global timestamp

Format: TRC.TimeStampClock <frequency>

If the trace infrastructure of the SoC provides a global timestamp and if the clock of the global timestamp is
different from the core clock, TRACE32 needs to know the frequency of this timestamp.

TRC.Trace Enable TRC trace export
Format: TRC.Trace [ON | OFF]
ON The TRC exports trace information (default).
OFF The TRC is not exporting trace information.

TRC.TracelD Change the default ID for a TRC trace source
Format: TRC.TracelD <id>

By default TRACES32 automatically assigns a trace source ID to all cores with a CoreSight trace source. The
command TRC.TracelD allows to assign an ID to a trace source, overriding the defaults.

TRC.TracePriority Define priority of TRC messages

Format: TRC.TracePriority <priority>

The CoreSight Trace Funnel combines 2 to 8 ATB input ports to a single ATB output. An arbiter determines
the priority of the ATB input port. A priority value of 0 defines the hightest priority and 7 the lowest.

The command TRC.TracePriority allows to change the default priority of an ATB input port.

©1989-2024 Lauterbach C7000 Debugger and Trace | 74

TRC.state

Display TRC setup

Format:

TRC.state

Shows the TRC configuration window.

@ B TRC state

TRC
O oFF
®on

commands
RESet
& CLEAR

@9 Trace
22 TPIU

] List

trace

Trace
CISTALL

TImeMode
External -
DataTrace
OFF w
streams
PCTrace
(] SreamBuffer

E=N o <=
SyncPeriod

1024,
TracelD

II

TracePriority

CLOCK

H

resources
Version: 1.0.0

A For descriptions of the commands in the TRC.state window, please refer to the TRC.* commands

in this chapter. Example: For information about ON, see TRC.ON.

Exceptions:
The Trace button opens the main trace control window (Trace.state).
The TPIU button opens the TPIU.state window.
The List button opens the main trace list window (Trace.List).

©1989-2024 Lauterbach

C7000 Debugger and Trace

75

Target Adaption

Probe Cables

For debugging two kind of probe cable can be used to connect the debugger to the target:
“Debug Cable” and “CombiProbe”

For off-chip program and data trace an additional trace probe cable “Preprocessor” is needed.

Interface Standards JTAG, Serial Wire Debug, cJTAG

Debug Cable and CombiProbe support JTAG (IEEE 1149.1), Serial Wire Debug (CoreSight ARM), and
Compact JTAG (IEEE 1149.7, cJTAG) interface standards. The different modes are supported by the same
connector. Only some signals get a different function. The mode can be selected by debugger commands.
This assumes of course that your target supports this interface standard.

Serial Wire Debug is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [SWD | JTAG]. In a
multidrop configuration you need to specify the address of your debug client by SYStem.CONFIG
SWDPTARGETSEL.

cJTAG is activated/deactivated by SYStem.CONFIG DEBUGPORTTYPE [CJTAG | JTAG]. Your system
might need bug fixes which can be activated by SYStem.CONFIG CJTAGFLAGS.

Serial Wire Debug (SWD) and Compact JTAG (cJTAG) require a Debug Cable version V4 or newer
(delivered since 2008) or a CombiProbe (any version) and one of the newer base modules (Power Debug
Pro, Power Debug Interface USB 2.0/USB 3.0, Power Debug Ethernet, PowerTrace or Power Debug II).

Connector Type and Pinout

Debug Cable

Adaptation for ARM Debug Cable: See https://www.lauterbach.com/adarmdbg.html.

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to “Arm Debug and Trace Interface Specification”
(app_arm_target_interface.pdf).

CombiProbe

Adaptation for ARM CombiProbe: See https://www.lauterbach.com/adarmcombi.html.

©1989-2024 Lauterbach C7000 Debugger and Trace | 76

https://www.lauterbach.com/adarmdbg.html
https://www.lauterbach.com/adarmcombi.html

The CombiProbe will always be delivered with 10-pin, 20-pin, 34-pin connectors. The CombiProbe can not
detect which one is used. If you use the trace of the CombiProbe you need to inform about the used
connector because the trace signals can be at different locations: SYStem.CONFIG CONNECTOR [MIPI34
| MIPI20T].

If you use more than one CombiProbe cable (twin cable is no standard delivery) you need to specify which
one you want to use by SYStem.CONFIG DEBUGPORT [DebugCableA | DebugCableB]. The
CombiProbe can detect the location of the cable if only one is connected.

Preprocessor

Adaptation for ARM ETM Preprocessor Mictor: See https://www.lauterbach.com/adetmmictor.htmi.

Adaptation for ARM ETM Preprocessor MIPI-60: See https://www.lauterbach.com/adetmmipi60.html

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach C7000 Debugger and Trace | 77

https://www.lauterbach.com/adetmmictor.html
https://www.lauterbach.com/adetmmipi60.html
https://support.lauterbach.com/kb

	C7000 Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Converter from GEL to PRACTICE
	Warning
	DSP specific Implementations
	Trigger
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data

	Access Classes

	DSP specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	<parameters> describing a system level TAP “MultiTap”
	<parameters> configuring a CoreSight Debug Access Port “AP”
	<parameters> describing debug and trace “Components”
	<parameters> which are “Deprecated”

	SYStem.CPU Select the used CPU
	SYStem.ENTERPostMortem Place core into post-mortem state
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.MemFORCEREADY Unblock memory access in post-mortem state
	SYStem.Mode Establish the communication with the target
	SYStem.Option.Address32 Define address format display
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.BigEndian Enable big endian mode
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.DUALPORT Implicitly use run-time memory access
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.EnTRST Control TAP reset
	SYStem.Option.ICFLUSH Invalidate instruction cache before go and step
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.INTDIS Disable all interrupts
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.ExecutionMode Sets the CPU execution mode
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.MACHINESPACES Address extension for guest OSes
	SYStem.Option.PWRDWN Allow power-down mode
	SYStem.RESetOut Reset target without reset of debug port

	CPU specific BenchMarkCounter Commands
	BMC.<counter>.ATOB Advise counter to count within AB-range

	CPU specific SETUP Command
	SETUP.DIS Disassembler configuration

	TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

	Tracing
	Controlling the Trace Capture
	Trace Breakpoints

	Command reference: TRC
	TRC Trace control (TRC)
	TRC.CLEAR Clear trace settings
	TRC.CLOCK Set core clock frequency for timing measurements
	TRC.DataTrace Define broadcast of load/store address tracing
	TRC.OFF Switch TRC off
	TRC.ON Switch TRC on
	TRC.PCTrace Enable program counter trace
	TRC.RESet Reset TRC settings
	TRC.STALL Stall processor to prevent FIFO overflow
	TRC.StreamBuffer Enable stream buffer trace
	TRC.SyncPeriod Set synchronization frequency
	TRC.TImeMode Set timestamp configuration
	TRC.TimeStampCLOCK Specify frequency of the global timestamp
	TRC.Trace Enable TRC trace export
	TRC.TraceID Change the default ID for a TRC trace source
	TRC.TracePriority Define priority of TRC messages
	TRC.state Display TRC setup

	Target Adaption
	Probe Cables
	Interface Standards JTAG, Serial Wire Debug, cJTAG
	Connector Type and Pinout
	Debug Cable
	CombiProbe
	Preprocessor

	FAQ

