LAUTERBACH A

Beyond Debugger and Trace

Beyond Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
1 Vo 3 T r=
Beyond Debugger and TraCeccccciiiimiiiiiiiiissmmmnnrsnrs s sssssssss s ssssmmssss s s ns snsssas 1

L 1= (o 4

Y e Yo 11T £ o) o T 5

Brief Overview of Documents for New Users 5

Demo and Start-up Scripts 5
L= T 11 ' 6
Limitations ..ooociciiiie e s s 7
Quick Start of the JTAG DebUgQQerccciiiiiimmmiinnsinrmnssssssnssss s s sssss s 8
TroubleSROOtING ...ccccciiiiir e 10
Communication between Debugger and Processor can not be established 10

£ 10
Beyond Specific Implementations ... —— 11
Breakpoints 1
Software Breakpoints 11

On-chip Breakpoints for Instructions 11

On-chip Breakpoints for Data 12
Example for Standard Breakpoints 13

Runtime Measurement 14
Memory Classes 15
Beyond specific SYStem Commands ..o ssssssssssssnsas 16
SYStem.CONFIG Configure debugger according to target topology 16
SYStem.CONFIG.DebugProtocol Implemented debug protocol of the CPU 19
SYStem.CONFIG.MemAccessModule Select memory access module 19
SYStem.CPU Select the used CPU 20
SYStem.JtagClock Define JTAG frequency 21
SYStem.LOCK Tristate the JTAG port 22
SYStem.MemAccess Select run-time memory access method 23
©1989-2024 Lauterbach Beyond Debugger and Trace 2

SYStem.Mode Establish the communication with the target 23
SYStem.Option.DBGRQ Assert DBGRAQ line while reset 24
SYStem.Option.FLOWTRACE Debug support while FLOWTRACE 24
SYStem.Option.IMASKASM Disable interrupts while single stepping 25
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 25
SYStem.Option.LittleEnd CPU endianness for memory access 26
SYStem.Option.LPMDebug Polling for low-power-mode 26
SYStem.Option. MMUSPACES Separate address spaces by space IDs 26
SYStem.Option.ResetDURation Reset assertion time 27
SYStem.Option.TURBO Speed up memory access 28
SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset 28
SYStem.state Display SYStem.state window 28
CPU specific MMU COMMANAS coviiimmmrmiisnnssrmisssssmnssssssssssssssss s s sssssssssssssssssssssssssssnas 29
MMU.DUMP Page wise display of MMU translation table 29
MMU.List Compact display of MMU translation table 31
MMU.SCAN Load MMU table from CPU 32
Beyond Specific TrOnchip COmMmMandscccccceeriiiimnnssmnnsninssssss s s sassssssses 34
TrOnchip.RESet Reset on-chip trigger settings 34
TrOnchip.StepVector Halt on exception entry when single-stepping 34
TrOnchip.state Display on-chip trigger window 34
TrOnchip.Set Trigger on exception 35
Beyond Specific TERM COMMAaNAScccceermmirsmmmrmnisssssrmsssas 37
TERM.METHOD.BufferQUICK Intrusive buffer based virtual terminal 37
B0 17X € 0o T3 1= 1o o 38
L= Lo L= 01T 4 V=Y o2 4 T) o 39
©1989-2024 Lauterbach Beyond Debugger and Trace | 3

Beyond Debugger and Trace

Version 06-Jun-2024

History

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

©1989-2024 Lauterbach Beyond Debugger and Trace | 4

Introduction

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

. “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

. “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

Lauterbach provides ready-to-run start-up scripts for known Beyond based hardware.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.
You can also manually navigate in the ~~/demo /beyond/ subfolder of the system directory of TRACE32.

©1989-2024 Lauterbach Beyond Debugger and Trace | 5

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

Beyond Debugger and Trace |

6

Limitations

o Beyond processors of the BA1x family are not supported.

©1989-2024 Lauterbach Beyond Debugger and Trace | 7

Quick Start of the JTAG Debugger

Starting up the debugger is done as follows:

1. Select the device prompt for the ICD Debugger and reset the system.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Specify the CPU specific settings.

SYStem.CPU <cpu_type>

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Inform the debugger about read-only address ranges (ROM, FLASH).

MAP.BOnchip O0xF0000000++0x01ffffff

The B(reak)Onchip information is necessary to decide where on-chip breakpoints must be used. On-
chip breakpoints are necessary to set program breakpoints to FLASH/ROM.

4. Select JTAG interface (ORIGINAL or FAST interface is available for some devices like BA22)

SYStem.CONFIG.DebugProtocol (ORIGINAL |FAST)

Note: This settings preselects also the most suitable Memory Access Module. For more
information please check SYStem.CONFIG.MemoryAccessModule.

5. Set endianness to match your targets endianness

SYStem.Option.LittleEnd (ON|OFF)

6. Enter debug mode.

SYStem.Up

This command resets the CPU and enters debug mode. After this command is executed, it is possible
to access memory and registers.

©1989-2024 Lauterbach Beyond Debugger and Trace | 8

7. Load the program.

Data.LOAD.ELF sieve.elf ; .ELF specifies the format
; sieve.elf is the file name

The format of the Data.LOAD command depends on the file format generated by the compiler.

A detailed description of the Data.LOAD command and all available options is given in the “General
Reference Guide”.

In case your program should be loaded to flash please read section about flash programming first.

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>. Addresses and address ranges are only
examples and not guaranteed to work. See also ~~/demo/beyond/hardware/ba22/custom/ fora
template script.

WinCLEAR ; Clear all windows

SYStem.CPU BA22 ; Select the core type
SYStem.CONFIG.DebugProtocol ; Select fast JTAG interface (the
FAST ; target must support this!)
SYStem.Option.LittleEnd OFF ; Select big endian mode for target
MAP.BOnchip ; Specify where FLASH/ROM is

0xf0000000++0x01ffffff

SYStem.Up ; Reset the target and enter debug mode
Data.LOAD.ELF sieve.elf ; Load the application
Register.Set pc main ; Set the PC to function main
List.Mix ; Open source code window *)
Register.view /SpotLight ; Open register window *)
Var.Frame /Locals /Caller ; Open the stack frame with local
; variables *)
Var .Watch ast ; Add variable ast to watch window %)
Break.Set 0x00001000 /p ; Set software breakpoint to address
; 00001000 (address outside of BOnchip
; range)
Break.Set 0xf0040000 /p ; Set on-chip breakpoint to address

; £0040000 (Within BOnchip range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS
command.

©1989-2024 Lauterbach Beyond Debugger and Trace | 9

Troubleshooting

Communication between Debugger and Processor can not be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command this may have the reasons below. “target processor in reset” is just a follow-up error message.
Open the AREA.view window to see all error messages.

FAQ

The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

You did not select the correct core type SYStem.CPU <type> or a wrong system option
(endianness, jtag interface type etc.).

There is an issue with the JTAG interface. See the manuals or schematic of your target to check
the physical and electrical interface. Maybe there is the need to set jumpers on the target to
connect the correct signals to the JTAG connector.

There is the need to enable (jumper) the debug features on the target. It will for example not work
if NnTRST signal is directly connected to ground on target side.

The target is in an unrecoverable state. Re-power your target and try again.

The target can not communicate with the debugger while in reset. Try SYStem.Mode Attach
followed by Break instead of SYStem.Up.

The default JTAG clock speed is too fast, especially if you emulate your core or if you use an
FPGA-based target. In this case try SYStem.JtagClock 50kHz and optimize the speed when you
got it working.

The core is used in a multicore system and the appropriate settings for the debugger are missing.
See for example SYStem.CONFIG IRPRE. This is the case if you get a value IR_Width > 4 when
you enter “DIAG 16001” and “AREA”. If you get IR_Width = 4, then you have just your core and
you do not need to set these options. If the value can not be detected, then you might have a
JTAG interface issue.

The core has no clock.
The core is kept in reset.

Your target needs special debugger settings. Check the directory ~~/demo/beyond/ if there is an
suitable script file *.cmm for your target.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach Beyond Debugger and Trace | 10

https://support.lauterbach.com/kb

Beyond Specific Implementations

Breakpoints

Software Breakpoints

If a software breakpoint is used, the original code at the breakpoint location is patched by a breakpoint code.

There is no restriction in the number of software breakpoints. Simple Breakpoints can be software
breakpoint. Complex breakpoints (e.g. range, read/write etc.) are realized as onchip breakpoints.

On-chip Breakpoints for Instructions

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. On-chip
breakpoints are usually needed for instructions in FLASH/ROM.

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip one on-chip breakpoint will be used.

©1989-2024 Lauterbach Beyond Debugger and Trace | 11

On-chip Breakpoints for Data

To stop the CPU after a read or write access to a memory location on-chip breakpoints are required.
Overview:

On-chip breakpoints: Total amount of available on-chip breakpoints.

Instruction breakpoints: Number of on-chip breakpoints that can be used to set program
breakpoints into ROM/FLASH/EPROM.

Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write
breakpoints.

Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an

address
Core On-chip Instruction Read/Write Data Breakpoint
Breakpoints Breakpoints Breakpoints
BA22 up to 8 upto 8 upto 8 up to 4
JN5148 up to 4 up to 4 up to 4 up to 2
JN5168 up to 4 up to 4 up to 4 up to 2

The number of available Breakpoints depends on the CPU configuration, i.e.

and on the complexity of a set breakpoint (ranges etc.).

available resources,

©1989-2024 Lauterbach

Beyond Debugger and Trace | 12

Example for Standard Breakpoints

Assume you have a target with
° FLASH from 0xf0000000--0xf1ffffff

. SDRAM from 0xc0000000--0xcO0fffff
The command to configure TRACES32 correctly for this configuration is:

Map.BOnchip 0xf0000000--Oxfl1ffffff

The following standard breakpoint combinations are possible.

©1989-2024 Lauterbach Beyond Debugger and Trace | 13

1. Unlimited breakpoints in RAM and up to eight breakpoints in ROM/FLASH

Break. Set

Break. Set

Break. Set

Break. Set

0xc0000000 /Program
0xc0001000 /Program
sram_addr /Program

0xf0000100 /Program

Software breakpoint
Software breakpoint
Software breakpoint

On-chip breakpoint

2. Unlimited breakpoints in RAM and one breakpoint in RAM on a read or write access

Break. Set

Break. Set

Break. Set

Break. Set

0xc0000000 /Program
0xc0001000 /Program
sram_addr /Program

0xc0002000 /Write

3. Two breakpoints in ROM/FLASH

Break. Set

Break. Set

0x£f0000100 /Program

0xf0000200 /Program

4. Two breakpoints on a read or write access

Break. Set

Break. Set

0xc0008000 /Write

0xc0008010 /Read

Software breakpoint
Software breakpoint
Software breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

On-chip breakpoint

5. One breakpoint in ROM/FLASH and one breakpoint on a read or write access

Break. Set

Break. Set

0xf0000100 /Program

0xc0008010 /Read

Runtime Measurement

On-chip breakpoint

On-chip breakpoint

The command RunTime allows run time measurement based on polling the CPU run status by software.

Therefore the result will be about few milliseconds higher than the real value.

©1989-2024 Lauterbach

Beyond Debugger and Trace

Memory Classes

The following Beyond specific memory classes are available.

Memory Class Description
P Program Memory
D Data Memory
S Supervisor Memory (privileged access)
U User Memory (non-privileged access)
If supported by core.
J Java code, currently not applicable for beyond
A Absolute addressing (physical address) without MMU
ANC Physical access without cache and MMU
DC Data Memory as seen through Data Cache
NC Memory seen with cache switched off
SPR System Registers (addressing see below)
VM Virtual Memory (memory on the debug system)
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

©1989-2024 Lauterbach

Beyond Debugger and Trace

15

Beyond specific SYStem Commands

SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter>
<parameters: state
(General) IRPRE <bits>

IRPOST <bits>

DRPRE <bits>

DRPOST <bits>

Slave [ON | OFF]

TAPState <state>

TCKLevel <level>

TriState [ON | OFF]
<parameters: ReSeTException <address>
(vectors) BUSErrorException <address>

DataPageFaultException <address>
InstrPageFaultException <address>
TickTimerException <address>
AlignmentException <address>
lllegalinstrException <address>
INTerruptException <address>
DtibMissException <address>
IltibMissException <address>
RangeException <address>
SystemCallException <address>
FloatingPointException <address>
TrapException <address>

If there is more than one TAP controller in the JTAG chain, the chain must be defined to be able to access

the correct TAP controller.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. The information is

required before the debugger can be activated, e.g. via SYStem.Mode.Attach.

©1989-2024 Lauterbach

Beyond Debugger and Trace

16

General - CONFIG Sub-Commands

state

DRPRE <bits>

DRPOST <bits>

IRPRE <bits>

IRPOST <bits>

Slave [ON | OFF]

TAPState <state>

TCKLevel [0 | 1]

TriState [ON | OFF]

Show SYStem.CONFIG settings window.

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the
system contributes only one TAP to the JTAG chain, DRPRE is the
number of cores between the core of interest and the TDO signal of
the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI
signal of the debugger and the core of interest. If each core in the
system contributes only one TAP to the JTAG chain, DRPOST is the
number of cores between the TDI signal of the debugger and the core
of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This
is the sum of the instruction register length of all TAPs between the
core of interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

(default: OFF) If more than one debugger share the same JTAG port,
all except one must have this option active. Only one debugger - the
“master” - is allowed to control the signals nTRST and nSRST
(nRESET).

(default: 7 = Select-DR-Scan) This is the state of the TAP controller
when the debugger switches to tristate mode. All states of the JTAG
TAP controller are selectable.

(default: 0) Level of TCK signal when all debuggers are tristated (e.g.
pull-down => TCKLevel=0.).

(default: OFF) If more than one debugger share the same JTAG port,
this option is required. The debugger switches to tristate mode after
each JTAG access. Then other debuggers can access the port.

Vectors - Core-specific Sub-Commands

The BA2x Architecture features configurable exception vectors while synthesis time. The following list of
SYStem.CONFIG commands allows to configure the exception vector base addresses for your system.

©1989-2024 Lauterbach

Beyond Debugger and Trace | 17

ReSeTException
<address>

BUSErrorException
<address>

DataPageFaultExcep-
tion <address>

InstrPageFaultExcep-
tion <address>

TickTimerException
<address>

AlignmentException
<address>

lllegallnstrException
<address>

INTerruptException
<address>

DtibMissException
<address>

ItibMissException
<address>

RangeException
<address>

SystemCallException
<address>

FloatingPointExcep-
tion <address>

TrapException
<address>

The short form of the subcommands is equal to the TrOnchip.view window and commands

Exception Vector for Reset Exception.

Exception Vector for Bus Error Exception.

Exception Vector for Data Page Fault Exception.

Exception Vector for Instruction Page Fault Exception.

Exception Vector for Tick Timer Exception.

Exception Vector for Alignment Exception.

Exception Vector for lllegal Instruction Exception.

Exception Vector for external Interrupt.

Exception Vector for Data TLB Miss Exception.

Exception Vector for Instruction TLB Miss Exception.

Exception Vector for Range Exception.

Exception Vector for System Call Exception.

Exception Vector for Floating Point Exception.

Exception Vector for Trap Event Exception.

©1989-2024 Lauterbach

Beyond Debugger and Trace

18

SYStem.CONFIG.DebugProtocol Implemented debug protocol of the CPU

Format: SYStem.CONFIG.DebugProtocol [ORIGINAL | FAST]
SYStem.Option.FASTJTAG [ON | OFF] (obsolete)

This option allows to select the implemented Debug Protocol of the CPU. If option FAST is selected the 34
bit interface is used. If option ORIGINAL is selected the 80 bit interface is used. Which protocol is supported
by the target is core implementation specific.

For supported derivatives of Beyond BA2x architecture which are selectable in the cpu list the suitable
protocol is preselected as e.g. for IN5148 and JN5168.

ORIGINAL JTAG Protocol “ORIGINAL” (80bit) is used
FAST JTAG Protocol “FAST” (34bit) is used
SYStem.CONFIG.MemAccessModule Select memory access module
Format: SYStem.CONFIG.MemAccessModule [WISHBONE | CPU]

This option allows to select the between the implemented Memory Access Modules of the Beyond BA2x
Architecture.

Which Memory Access Module is supported by the target is core implementation specific. For supported
derivatives of the Beyond BA2x architecture which are selectable in the cpu list the suitable module is

preselected.
WISHBONE Use the Wishbone (Module 0) module to access physical memory.
Standard for SYStem.CONFIG.DebugProtocol ORIGINAL.
CPU Use the CPU (SPR Method) to access memory via Cache & MMU.

Standard for SYStem.CONFIG.DebugProtocol FAST.

©1989-2024 Lauterbach Beyond Debugger and Trace | 19

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: BA22 | BA25 | JN5148 | JN5168

Selects the processor type. If your chip is not listed, contact technical support.

Default selection: BA22

©1989-2024 Lauterbach Beyond Debugger and Trace | 20

SYStem.JtagClock Define JTAG frequency

Format: SYStem.JtagClock [<frequency> | CTCK <frequency>]
SYStem.BdmClock <frequency> (obsolete)

<frequency>: 4 kHz...100 MHz

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency> The debugger cannot select all frequencies accurately. It chooses the next
possible frequency and displays the real value in the SYStem.state window.

Besides a decimal number like “100000.” short forms like “100kHz” or
“15MHz” can also be used. The short forms imply a decimal value, although

no “’ is used.

CTCK With this option higher JTAG speeds can be reached. The TDO signal will be
sampled by a signal which derives from TCK, but which is timely
compensated regarding the debugger-internal driver propagation delays
(Compensation by TCK). The debugger sets CTCK by default.

©1989-2024 Lauterbach Beyond Debugger and Trace | 21

SYStem.LOCK Tristate the JTAG port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the JTAG port will be performed by the debugger. While locked the
JTAG connector of the debugger is tristated. The intention of the SYStem.LOCK command is, for example,
to give JTAG access to another tool. The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the Beyond JTAG state machine remains unchanged while the system is
locked. To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG
TCKLevel must be set properly. They define the TAP state and TCK level which is selected when the
debugger switches to tristate mode.

Please note: NnTRST must have a pull-up resistor on the target.

©1989-2024 Lauterbach Beyond Debugger and Trace | 22

SYStem.MemAccess Select run-time memory access method

Format:

<mode>:

SYStem.MemAccess <mode>

Denied | StopAndGo

Default: Denied.

There’s no possibility to access memory while CPU is running. So only Denied or StopAndGo can be used.
The debugger can access memory only if the CPU is stopped.

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)

SYStem.Down (alias for SYStem.Mode Down)

SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down

NoDebug

Go

Attach

Up

Down Disables the debugger (default). The state of the CPU remains
unchanged. The JTAG port is tristated.

NoDebug Resets the CPU and disables the debugger. The CPU can start without
any interference of the debug interface. Debug Mode can be enabled with
the use of an “Attach”. The JTAG port is tristated.

Go Resets the target, enables the debugger and starts the program
execution. Program execution can be stopped by the break command or
external trigger.

Attach User program remains running (no reset) and the debug mode is

activated. After this command the user program can be stopped with the
break command or if any break condition occurs.

©1989-2024 Lauterbach

Beyond Debugger and Trace | 23

StandBy You need to be in DOWN state when switching to this mode. It resets and
starts the program when power is detected. Halt the program execution
and set all the breakpoints and trace conditions you need, then re-start
the program. Now you can even debug a power cycle, because debug
register (breakpoints and trace control) will be restored on power up. This
mode is not yet available.

Up Resets the target, sets the CPU to debug mode and stops the CPU. After
the execution of this command the CPU is stopped and all register are
set to the default level.

SYStem.Option.DBGRQ Assert DBGRQ line while reset

Format: SYStem.Option.DBGRQ [ON | OFF]

This option allows to assert the DBGRQ line on the JTAG connector while SYStem.Up is executed. This is
useful to signal e.g. an ROM Bootloader that an external Debug Request is pending (e.g. JN516x).

SYStem.Option.FLOWTRACE Debug support while FLOWTRACE

Format: SYStem.Option.FLOWTRACE [ON | OFF]

This option enables/disables support for debugging while a Off-Chip-Trace/Flowtrace is used. It changes the
debuggers behavior in such a way that the Single-Step/Go/Breakpoint/User-Break information is added into
the trace buffer. This option automatically enables SETUP.StepBeforeGo.

©1989-2024 Lauterbach Beyond Debugger and Trace | 24

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]
Default: OFF.
ON The Global Interrupt Enable Bits will be cleared during assembler single-step

operations. The interrupt routine is not executed during single-step
operations. After single step the Global Interrupt Enable bits will be restored
to the value before the step.

OFF A pending interrupt will be executed on a single-step, but it does not halt
there. The specific interrupt handler is completely executed even if single
steps are done, i.e. step over is forced per default. If the core should halt in
the interrupt routine, use TrOnchip.StepVector ON.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the Global Interrupt Enable Bit s(SR.IEE and SR.TEE) will be cleared during high-level-language
single-step operations. The interrupt routine is not executed during single-step operations. After single step
the Global Interrupt Enable bit will be restored to the value before the step.

If disabled, a pending interrupt will be executed on a single-step, but it does not halt there i.e. the interrupt
handler is always over stepped. If you want to halt in the interrupt routine, use TrOnchip.StepVector ON.

©1989-2024 Lauterbach Beyond Debugger and Trace | 25

SYStem.Option.LittleEnd CPU endianness for memory access

Format: SYStem.Option.LittleEnd [ON | OFF]

Default: OFF.

If enabled, the accesses to memory are performed in Little-Endian (low-byte first) mode. Which mode is
used by the CPU is Beyond Ba2x implementation specific.

Please note that the SPR: (Special Purpose Register) access-class is not affected by this setting as SPRs
are always in Big-Endian notation.

SYStem.Option.LPMDebug Polling for low-power-mode
Format: SYStem.Option.LPMDebug [ON | OFF]
Default: OFF.

If enabled the debugger tries to continuously poll the device whether it is responding or not. A device which
is in Low-Power-Mode/Sleep mode does not respond and is shown as “running (not responding)” in the
status bar. Debugging is not possible in this status.

Further this option causes an continuous initialization of the debug registers which will improve the software
breakpoint behavior after wake-up. Unfortunately some core types clear their ONCHIP-Breakpoint registers
while Low-Power-Mode. So the target software must ensure that the ONCHIP-Breakpoints are
reconstructed after wake-up.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.

Enables the use of space IDs for logical addresses to support multiple address spaces.

©1989-2024 Lauterbach Beyond Debugger and Trace | 26

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC002082A belonging to memory space with

;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.ResetDURation Reset assertion time

Format: SYStem.Option.ResetDURation [AUTO | <time>]

Default: AUTO.

Specifies the nRESET assertion time. Use this option if a reset pulse of more than 1ms is required.

©1989-2024 Lauterbach Beyond Debugger and Trace | 27

SYStem.Option.TURBO Speed up memory access

Format: SYStem.Option.TURBO [ON | OFF]

Default: OFF.

If TURBO is disabled the CPU checks after each system memory access in debug mode if the CPU has
finished the corresponding cycle. This check will significantly reduce the down- and upload speed (30-40%).

If TURBO is enabled the CPU will make no checks. This may result in unpredictable errors if the memory
interface is slow. Therefore it is recommended to use this option only for a program download and in case
you know that the memory interface is fast enough to take the data with the speed it is provided by the
debugger.

SYStem.Option.WaitReset = Wait with JTAG activities after deasserting reset

Format: SYStem.Option.WaitReset [AUTO | <time>] [/Poll]

Default: AUTO.

AUTO The debugger will try to autodetect if the JTAG daisy-chain works while
nNRESET is asserted. If yes, it will try to STOP the CPU while nRESET is
asserted and then release nRESET. As a fallback, it will simply deassert
nRESET, wait and then connect.

<time> The debugger will NOT try to autodetect the most appropriate mode and
simply use a deassert nRESET, wait <time> and then connect sequence.

<time> /Poll The connection sequence will try to deassert nRESET and then to
continuously poll/stop the target for <time> seconds. The option Poll
might decrease the time between CPU start and debugger stop on some
platforms.

SYStem.state Display SYStem.state window

Format: SYStem.state

Displays the SYStem.state window for system settings that configure debugger and target behavior.

©1989-2024 Lauterbach Beyond Debugger and Trace | 28

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

Beyond Debugger and Trace | 29

KernelPageTable Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable Displays the MMU translation table entries of the given process. Specify
<task_magic> | one of the TaskPageTable arguments to choose the process you want.
<task_id> | In MMU-based operating systems, each process uses its own MMU
<task_name> | translation table. This command reads the table of the specified process,
<space_id>:0x0 and displays its table entries.

. For information about the first three parameters, see “What to

know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.

DTLB Displays the contents of the Data Translation Lookaside Buffer.

©1989-2024 Lauterbach Beyond Debugger and Trace | 30

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

Beyond Debugger and Trace | 31

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach Beyond Debugger and Trace | 32

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.

ALL [Clear]

Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.

See also the appropriate OS Awareness Manual.

Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

CPU specific Table in MMU.SCAN <table>

ITLB

Loads the current contents of the Instruction Translation Lookaside Buffer.

DTLB

Loads the current contents of the Data Translation Lookaside Buffer.

©1989-2024 Lauterbach

Beyond Debugger and Trace | 33

Beyond Specific TrOnchip Commands

The TrOnchip command provides low-level access to the on-chip debug register.

TrOnchip.RESet Reset on-chip trigger settings

Format: TrOnchip.RESet

Reset all TrOnchip settings to their default values.

TrOnchip.StepVector Halt on exception entry when single-stepping
Format: TrOnchip.StepVector [ON | OFF]
Default: OFF.

If StepVector is activated the debugger handles the entry into the exception handler. Therefore the debugger
manipulates the exception registers (SPR: EPCR, ESR, EEAR) as well as the supervision register (SR).
Finally the exception entry is forced by modifying the program counter (PC) to the respective exception
vector.

This is useful for designs which deactivate the debug features while exceptions and allows to single step
these handlers. Please select the relevant exception with the TrOnchip.Set feature.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach Beyond Debugger and Trace | 34

TrOnchip.Set

Trigger on exception

Format:

<event>.

TrOnchip.Set <event>[ON | OFF]

RE
BUSEE
DPFE
IPFE
TTE
AE
lIE
INTE
DME
IME
RE
SCE
FPE

Default: RSTE ON and IIE ON.

The TrOnchip.Set feature allows to trigger on specific exception events. The activation of a trigger causes the

CPU to stop when the trigger event occurs (for example illegal instruction exception (lIE)). If activated the

trigger will act similar to a breakpoint. In conjunction with the TrOnchip.StepVector feature it is possible to
force single-stepping into exceptions.

RSTE

BUSEE

DPFE

IPFE

TTE

AE

lIE

INTE

DME

Stop on reset exception.

Stop on bus error exception.
e.g. caused attempt to access an invalid physical address

Stop on data page fault exception.
e.g. caused by page protection violation for load/store

Stop on instruction page fault exception.
e.g. caused by page protection violation for instruction fetch

Stop on tick timer exception.

Stop on alignment exception.
e.g. load/store to wrong aligned address

Stop on illegal instruction exception.
e.g. instruction could not be decoded

Stop on external interrupt exception.

Stop on D-TLB miss exception.
e.g. no valid TLB entry found for access

©1989-2024 Lauterbach

Beyond Debugger and Trace

35

IME Stop on I-TLB miss exception.
e.g. no valid TLB entry found for access

RE Stop on range exception.

SCE Stop on system call exception.
e.g. caused by invocation of b. sys instruction

FPE Stop on floating point exception.

©1989-2024 Lauterbach Beyond Debugger and Trace | 36

Beyond Specific TERM Commands

The TERM command provides various methods for ASCII character based communication with the target,

see TERM.
TERM.METHOD.BufferQUICK Intrusive buffer based virtual terminal
Format: TERM.METHOD BufferQUICK <trap_address> <buffer_out> <buffer_in>

<cap_out> <cap_in>

The BufferQUICK terminal is similar to the TERM.METHOD BufferS but shifts the functionality from the GUI
to the debug box. It allows much lower latencies compared to BufferS. A demo how to use the BufferQUICK
terminal is included in ~~/demo/beyond/etc/virtual_terminal

<trap_address> Address of the b.trap instruction the CPU stops at in case communication
is requested.

<buffer_out> Address of the Data-Buffer used for TARGET to GUI communication.
<buffer_in> Address of the Data-Buffer used for GUI to TARGET communication.
<cap_out> Capacity of the <buffer_out> buffer. Default: 256 bytes

<cap_in> Capacity of the <buffer_in> buffer. Default: 256 bytes

Syntax examples:

; The following examples are highly code dependent.
; In this example we use

; bufferout = 0x1000 , length 0x100 bytes

; bufferin = 0x1200 , length 0x100 bytes

; trapaddress = 0x4002

; Printf & Scanf or Out/In Terminal
TERM.RESet
TERM.Method BufferQUICK 0x4002 0x1000 0x1200

; Printf or Out Terminal only
TERM.RESet
TERM.Method BufferQUICK 0x4002 0x1000

; Printf or Out Terminal only, bufferout is 0x20 bytes long
TERM.RESet
TERM.Method BufferQUICK 0x4002 0x1000, , 0x20

©1989-2024 Lauterbach Beyond Debugger and Trace | 37

JTAG Connection

Pinout of the 20-pin Debug Cable:

Signal Pin Pin Signal
VREF-DEBUG 1 2 VSUPPLY (not used)

TRST- 3 4 GND
TDI 5 6 GND
TMS 7 8 GND
TCK 9 10 GND
N/C 11 12 GND
TDO 13 14 GND
RESET- 15 16 GND
DBGRQ 17 18 GND
N/C 19 20 GND

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to the application note “Arm Debug and Trace
Interface Specification” (app_arm_target_interface.pdf). It describes a debug cable which is technically
the same as the Beyond debug cable.

©1989-2024 Lauterbach Beyond Debugger and Trace | 38

Trace Connection

Pinout of the Mictor Trace connector:

Signal
N/C
N/C
N/C
N/C

SRST-

TDO
N/C
TCK
TMS
TDI

TRST-
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C

Pin Pin
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38

Signal

N/C

N/C

CLK (TRACE)
N/C

N/C
VREF-TRACE
VREF-DEBUG
DATAO

DATA1

DATA2

DATA3

DATA4

DATA5

DATAG
DATA7-CHUNK
N/C

N/C

N/C

VALID

©1989-2024 Lauterbach

Beyond Debugger and Trace

39

	Beyond Debugger and Trace
	History
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Limitations
	Quick Start of the JTAG Debugger
	Troubleshooting
	Communication between Debugger and Processor can not be established

	FAQ
	Beyond Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data
	Example for Standard Breakpoints

	Runtime Measurement
	Memory Classes

	Beyond specific SYStem Commands
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.DebugProtocol Implemented debug protocol of the CPU
	SYStem.CONFIG.MemAccessModule Select memory access module
	SYStem.CPU Select the used CPU
	SYStem.JtagClock Define JTAG frequency
	SYStem.LOCK Tristate the JTAG port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.DBGRQ Assert DBGRQ line while reset
	SYStem.Option.FLOWTRACE Debug support while FLOWTRACE
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.LittleEnd CPU endianness for memory access
	SYStem.Option.LPMDebug Polling for low-power-mode
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.ResetDURation Reset assertion time
	SYStem.Option.TURBO Speed up memory access
	SYStem.Option.WaitReset Wait with JTAG activities after deasserting reset
	SYStem.state Display SYStem.state window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU

	Beyond Specific TrOnchip Commands
	TrOnchip.RESet Reset on-chip trigger settings
	TrOnchip.StepVector Halt on exception entry when single-stepping
	TrOnchip.state Display on-chip trigger window
	TrOnchip.Set Trigger on exception

	Beyond Specific TERM Commands
	TERM.METHOD.BufferQUICK Intrusive buffer based virtual terminal

	JTAG Connection
	Trace Connection

