LAUTERBACH A

AVR8 Debugger

AVR8 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
T - r—
N 2t I 1= o T¥ T o = 1

L 1= (o 4
L= T 11 ' 5

L 0T LU T o o 6

Brief Overview of Documents for New Users 6

Demo and Start-up Scripts 7

Lo o) 1T 11 = 11 [o o R 8
System Overview 8

L@ T TG - 9

Lo 18] o == 0 T To7 £ 3V 11

O 12

AVR Specific Implementations ... ————— 13
Breakpoints 13
Software Breakpoints 13

On-chip Breakpoints for Instructions 13

On-chip Breakpoints for Data 13
Overwriting Fuse and Lock Bits 13
Memory Classes 14
Programming the On-chip FLASH of the megaAVR 15
Special Hints, Restrictions, and Known Problems 15
Restrictions 15

Known Problems 15

CPU specific SYStem Settings ... s s s s snsees 16
SYStem.CONFIG.state Display target configuration 16
SYStem.CONFIG Configure debugger according to target topology 17
SYStem.CONFIG.DEBUGPORTTYPE Select debug port type 20
SYStem.CPU Select the used CPU 21
©1989-2024 Lauterbach AVR8 Debugger 2

SYStem.EraseChip Erases the Flash and the EEprom 21
SYStem.JtagClock Define JTAG clock 21
SYStem.LOCK Lock and tristate the debug port 22
SYStem.MemAccess Select run-time memory access method 22
SYStem.Mode Establish the communication with the target 23
SYStem.Option.IMASKASM Disable interrupts while single stepping 23
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 24
CPU specific TrOnchip Commandscccccceeciciiiicssecccrmmrrirsisssssssssssssssssssssssssssssssssssssnnes 25
TrOnchip.state Display on-chip trigger window 25
TrOnchip.CONVert Adjust range breakpoint in on-chip resource 25
TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource 26
TrOnchip.RESet Set on-chip trigger to default state 26
070 4T 1= o2 o 27
Debug Connector 27
Mechanical Description of the 10-pin Debug Cable 27
Converter 10-pin JTAG to 6-pin SPI for AVR8 27
Converter 10-pin JTAG to 6-pin UPDI for AVR8 28
Converter 10-pin JTAG to 8-pin UPDI for AVR8 28
©1989-2024 Lauterbach AVR8 Debugger | 3

AVRS8 Debugger

Version 06-Jun-2024

History

05-May-22 New command SYStem.EraseChip.

15-Jun-16 Initial version.

©1989-2024 Lauterbach AVR8 Debugger | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the debug cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the debug cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the debug
cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the debug cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the debug cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

AVR8 Debugger |

5

Introduction

This manual serves as a guideline for debugging AVR8 cores and describes all processor-specific
TRACES2 settings and features.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Brief Overview of Documents for New Users

Architecture-independent information:

J “Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACERS2 debugger.
. “T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances

for different configurations of the debugger. T32Start is only available for Windows.

J “General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

. “Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

. To get started with the most important manuals, use the Welcome to TRACE32! dialog
(WELCOME.view):
£5) Welcome to TRACE32! == 5

TRACE32 PowerView for AVR8 [/ PowerDebug-III

Before you can start debugaging, the debug environment needs to be set up.
This setup is usually done by a start-up script.Click "Start with examples” to
search for an example start-up script for your target.

Example scripts can be modified tofit your exact system setup and configuration.

Related manuals

@ AVRS Debugger
@ Debugger Basics - Training
@ Training Script Language PRACTICE

) = -
Show this dialog at start | 2 Heip | [#15tart with examples
Re-open dialog via menu Help -> Welcome to TRACE32

©1989-2024 Lauterbach AVR8 Debugger | 6

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:
. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

[cONFIG| [B Tree view | (28 LISTCONFIG)

Title Chip Board
Example for flash declaration of Aimel ATMEGAXX internal flash.

PV example compile with the GNU compaler - -
LVt example compile with the GNU compiler - -

$1 Search for scripts.. IEI@
| Search " Selection " Manuals
File: atmegaxae. cmm Title: Example for flash declaration of Atmel ATMEGAXX internal flash. » View/Start
Chip: ATMEGA* Script arguments:
D0 atmegaxxx [PREPAREONLY] di
Board: - PREPAREONLY only declares flash but does not execute flash programming
N Example:
Refated Documentation: 0 ~/demo/avr8/flash/atmegaxxx PREPAREONLY mo;en Fokder

You can also manually navigate in the ~~/demo/avr8/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach AVR8 Debugger

7

Configuration

System Overview

Example configuration for an AVR8 debugger.

PC or
Workstation

usB Oma 2
Cable [

POWER DEBUG USB INTERFACE / USB 3
LAUTERBACH

T

POWER DEBUG INTERFACE / USB 3

Wall Mount
L
Power Supply

Debug Cable

Debug
Connector

Target

©1989-2024 Lauterbach

AVR8 Debugger

8

Quick Start

Starting up the debugger is done as follows:
1. Select the device prompt B (BDM debugger) and reset TRACE32.

183 3

RESet

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: : to set the correct device prompt. The RESet command is only necessary if you do
not start directly after booting the TRACE32 development tool.

2. Set your connection type.

SYStem.CONFIG.DEBUGPORTTYPE JTAG|SPI |UPDI

This command selects one of the two possible connections: JTAG or SPI.

3. Specify the CPU specific settings.

SYStem.CPU ATMEGA1280

This command selects the CPU type.

NOTE: For a multicore target it is most likely necessary to configure the multicore
settings using SYStem.CONFIG before continuing.

4. Inform the debugger about the cashable address range (FLASH/EEPROM).

MAP.UpdateOnce p:0x8000--0xffff

This is important to speed up the TRACE32 PowerView GUI responsiveness. The specified address
range will be accessed only once after a break, thus avoiding unnecessary memory accesses.

5. Reset the target and enter debug mode.

SYStem.Mode Up

This command resets the CPU on the target, enables On-Chip-Debug Mode and issues a breakpoint
right after the reset interrupt routine.The CPU stops executing any instruction, and the user is able to
download and test the code. After this command is executed, it is possible to access memory and
registers.

©1989-2024 Lauterbach AVR8 Debugger | 9

6. Load the program into the flash..

DO ~~/demo/avr8/flash/atmegaxxx.cmm

A typical start sequence of the AVR8 is shown below. This sequence can be written to a PRACTICE script
file (*.cmm, ASCII format) and executed with the command DO <file>.

B3 g
RESet

SYStem.CONFIG.DEBUGPORTTYPE
JTAG

MAP.UpdateOnce p:0x80000--
Oxfffff

WinCLEAR
SYStem.Up

DO
~~/demo/avr8/flash/atmegaxxx.
cmm

PER.view

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var.Watch %$SpotLight flags ast

Break.Set 0x1000 /Program

Break.Set 0x101000 /Program

; Select the ICD device prompt
; Reset the TRACE32 software

; Select the connection type JTAG or SPI
or UPDI

; Specify the address range for caching

; Clear all windows
; Reset the target and enter debug mode

; Load the target application

; Set the stack pointer to address 8000

; Show clearly arranged peripherals

; in window %)
; Open source code window)
; Open register window *)

; Open the stack frame with
; local variables *)

; Open watch window for variables *)

; Set software breakpoint to address
; 1000 (address 1000 is within RAM
; address range)

; Set on-chip breakpoint
; to address 101000 (address 101000 is
; within Flash address range)

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

AVR8 Debugger | 10

Troubleshooting

Error Message Event Reason
Target power fail SYStem.Mode.Up See below.
Target processor in SYStem.Down See below.

reset

Target not connected or
JTAG chain not
configured correctly:
Returned IR[1:0] != “01”

SYStem.Mode.Up
SYStem.Mode.Go

The debugger expects to receive the
bit sequence “01” for every command
that is sent over JTAG. If this is not the
case, an error message is displayed.
Check the JTAG connections.

The number of
<number> accessed
bytes in memory is not a
multiple of the access
size <size> bytes.

No special event

Internal error, please consult your
Lauterbach representative.

Memory address
<address>is not aligned
to access size <size>.

No special event

Internal error, please consult your
Lauterbach representative.

Invalid memory access
size: <size> bytes (@
address <address>)

No special event

Internal error, please consult your
Lauterbach representative.

Memory access timeout:
Reading from address
<address>

No special event

Corrupted JTAG connection. Check
JTAG hardware and settings.

©1989-2024 Lauterbach

AVR8 Debugger | 11

Typically the SYStem.Up command is the first command of a debug session where communication with
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message.

FAQ

Open the AREA.view window to display all error messages.

If the target has no power or the debug cable is not connected to the target, this results in the
error message “target power fail”.

Did you select the correct core type with SYStem.CPU <cpu>?

There is an issue with the JTAG interface. Maybe there is the need to set jumpers on the target to
connect the correct signals to the JTAG connector. The debugger will not work, for example, if
nTRST signal is directly connected to ground on target side.

The target is in an unrecoverable state. Re-power your target and try again.

The default JTAG clock speed is too fast. In this case try SYStem.JtagClock 50kHz and optimize
the speed when you got it working.

The core is used in a multicore system and the appropriate multicore settings for the debugger
are missing. See for example SYStem.CONFIG IRPRE. This is the case if you get a value.

The core has no clock.
The core is kept in reset.

There is a watchdog which needs to be deactivated.

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach AVR8 Debugger | 12

https://support.lauterbach.com/kb

AVR Specific Implementations

Breakpoints

Software Breakpoints

The Microchip megaAVR architecture does not support the software breakpoints.

On-chip Breakpoints for Instructions

The megaAVR MCUs support a total of four on-chip breakpoint registers which can be used as program
breakpoints to stop and debug the program which executes always in the Flash.

On-chip Breakpoints for Data

Data breakpoints are used to analyze the read and write accesses to global variables. The data breakpoints
can be triggered with respect to the data address or access type, i.e. read, write or both, or the data value.
The two instruction breakpoints of megaAVR MCUs can be used as data breakpoints

In case of an on-chip data breakpoint, every load and store instruction is checked with respect to the
breakpoint address, access type and the value. The data breakpoints are especially useful to find out when
a global variable is written with a certain value. It is not possible to implement a similar breakpoint in software
without affecting the real-time behavior of the system. Since the load and store instructions work on RAM,
data breakpoints always point to addresses on RAM.

Overwriting Fuse and Lock Bits

There are two options when overwriting the Fuse or Lock Bits. The preferred way is to use the periphery
window (i.e. PER command), where you can manually check and overwrite single bits using the standard
right-click and select method.

Optionally, you can modify the Fuse and Lock Bits with the PER.Set.simple command as given below:

SYStem.RESet
SYStem.Up

;Setting the LockBits
PER.Set.simple EE:0x200000 %Byte <8_bit_lock_bit_setting>

;Setting the FuseBits
PER.Set.simple EE:0x100000 %Long <24_bit_fuse_ bit_setting>

SYStem.Down

©1989-2024 Lauterbach AVR8 Debugger | 13

Memory Classes

The following memory access classes are available:

Access Class Description
D Data

P Program

EE EEprom

To access a memory class, write the class in front of the address. For example, use D to access the data

memory:

Data.dump D:0x00

The memory class EE is used to denote the EEprom memory.

Data.dump EE:0x00

The following examples return different results, since the megaAVR architecture uses the Harvard

Architecture.

Data.dump D:0x100

Data.dump P:0x100

©1989-2024 Lauterbach

AVR8 Debugger

14

Programming the On-chip FLASH of the megaAVR

The PRACTICE script for programming of the on-chip FLASH of the megaAVR can be found in the
TRACE32 demo folder ~~/demo/avr8/flash/atmegaxxx.cmm.

Please be aware that this is just an example script. The scripts has to be adapted to your memory layout,
specifically the flash and EEprom sector size must be checked.

Special Hints, Restrictions, and Known Problems

Restrictions

o JTAG: Runtime counter causes about 6 ms mismatch.

Known Problems

o JTAG: Help system not available yet.

NOTE: All problems will be fixed in one of the next SW versions without notice!

©1989-2024 Lauterbach AVR8 Debugger | 15

CPU specific SYStem Settings

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab> Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

©1989-2024 Lauterbach AVR8 Debugger | 16

SYStem.CONFIG Configure debugger according to target topology
Format: SYStem.CONFIG <parameter>
<parameter>: IRPRE <bits>

IRPOST <bits>

DRPRE <bits>

DRPOST <bits>

IRLength <bits>
MultiCoreLocal [ON | OFF]
CoreNumber <number>
TriState [ON | OFF]

Slave [ON | OFF]
TAPState <state>
TCKLevel </evel>

If there is more than one TAP controller in the JTAG chain, the chain must be defined to be able to access

the right TAP controller.

The four parameters IRPRE, IRPOST, DRPRE, DRPOST are required to inform the debugger of the TAP
controller position in the JTAG chain if there is more than one core in the JTAG chain. The information is
required before the debugger can be activated, e.g., by a SYStem.Up.

TriState has to be used if several debuggers are connected to a common JTAG port at the same time.
TAPState and TCKLevel define the TAP state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor on the target, TCK can have a pull-up or
pull-down resistor, other trigger inputs need to be kept in inactive state.

DRPRE

DRPOST

IRPRE

IRPOST

(default: 0) <number> of TAPs in the JTAG chain between the core of
interest and the TDO signal of the debugger. If each core in the system
contributes only one TAP to the JTAG chain, DRPRE is the number of
cores between the core of interest and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the TDI signal
of the debugger and the core of interest. If each core in the system
contributes only one TAP to the JTAG chain, DRPOST is the number of
cores between the TDI signal of the debugger and the core of interest.

(default: 0) <number> of instruction register bits in the JTAG chain
between the core of interest and the TDO signal of the debugger. This is
the sum of the instruction register length of all TAPs between the core of
interest and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG chain
between the TDI signal and the core of interest. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of the
debugger and the core of interest.

See also Daisy-Chain Example.

©1989-2024 Lauterbach

AVR8 Debugger | 17

CoreNumber

TriState [ON | OFF]

Slave [ON | OFF]

TAPState

TCKLevel [0 | 1]

<number> of cores in a shared-memory or local-memory multicore
system. (default: 1)

The debugger switches to tristate mode after each debug port access. If
several debuggers share the same debug port, this option is required.
Then other debuggers can access the port. (default: OFF)

Defines the master in a multicore chip. Only one core can be the master
of the chip reset, the TAP reset and the chip initialization features. All
other cores are slave cores. (default: OFF)

This is the state of the TAP controller when the debugger switches to
tristate mode. All states of the JTAG TAP controller are selectable.
(default: 7 = Select-DR-Scan)

Level of TCK signal when all debuggers are tristated. (default: 0)

©1989-2024 Lauterbach

AVR8 Debugger | 18

Daisy-Chain Example

IRPOST IRPRE
I 1 I 1
TAP1 TAP2 TAP3 TAP4
. R | 4 IR | 3 IR | 5 Core R | 6 .
DR/ 1 DR/ 1 DR | 1 DR | 1
L I | I
DRPOST DRPRE

IR: Instruction register length DR: Data register length Core: The core you want to debug

Daisy chains can be configured using a PRACTICE script (*.cmm) or the SYStem.CONFIG.state window.

&2 B::SYStem.CONFIG state /Jtag =n| Wl <
DebugPort Jtag MultiTap DAP | COmponents
IRPOST IRPRE
12, 6.
TDI kk — DRPOST M| core | M- DRPRE ke TDO
3. P] [S 1.

Example: This script explains how to obtain the individual IR and DR values for the above daisy chain.

SYStem.CONFIG.state /Jtag ; optional: open the window

SYStem.CONFIG IRPRE 6. ; IRPRE: There is only one TAP.
; So type just the IR bits of TAP4, i.e. 6.

SYStem.CONFIG IRPOST 12. ; IRPOST: Add up the IR bits of TAPl, TAP2
; and TAP3, i.e. 4. + 3. + 5. = 12.
SYStem.CONFIG DRPRE 1. ; DRPRE: There is only one TAP which is

; 1in BYPASS mode.
; So type just the DR of TAP4, i.e. 1.

SYStem.CONFIG DRPOST 3. ; DRPOST: Add up one DR bit per TAP which
; 1s in BYPASS mode, i.e. 1. + 1. + 1. = 3.
; This completes the configuration.

NOTE: In many cases, the number of TAPs equals the number of cores. But in many
other cases, additional TAPs have to be taken into account; for example, the
TAP of an FPGA or the TAP for boundary scan.

©1989-2024 Lauterbach AVR8 Debugger | 19

TapStates

© 00 N o o0~ W N =

—_ - e e o
a A WO MDD =+ O

Exit2-DR
Exit1-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2-IR
Exit1-IR

Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR
Test-Logic-Reset

SYStem.CONFIG.DEBUGPORTTYPE

Select debug port type

Format:

<type>:

SYStem.CONFIG.DEBUGPORTTYPE [<fype>]

JTAG | SPI | UPDI

Specifies the used debug port type “JTAG” or “SPI”. It assumes the selected type is supported by the

target.

©1989-2024 Lauterbach

AVR8 Debugger

20

SYStem.CPU Select the used CPU

Format: SYStem.CPU <cpu>

<cpu>: ATMEGA1284 | ATMEGA64 | ATMEGA32 | ...

Default: UC3XXX.

Selects the processor type. All of the ATMEGA MCU cores with JTAG port are supported.

SYStem.EraseChip Erases the Flash and the EEprom

Format: SYStem.EraseChip

Erases the Flash memory. It is available to the user only in the SYStem.Down mode.

SYStem.JtagClock Define JTAG clock

Format: SYStem.JtagClock <frequency>
SYStem.BdmClock <frequency> (deprecated)

<frequency>: 4kHz...100 MHz
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)

Default frequency: 1 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The
frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are
buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency
will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use
the default setting if possible.

<frequency> The debugger cannot select all frequencies accurately. It chooses the next
possible frequency (i.e. 109 KHz will be converted to 125 KHz).

Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHZz” can also be used. The short forms imply a decimal value, although

no “” is used.

©1989-2024 Lauterbach AVR8 Debugger | 21

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.
If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give

debug access to another tool.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | Denied | StopAndGo

Default: Denied.

Enable This option is not available at the moment.
CPU (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

©1989-2024 Lauterbach AVR8 Debugger | 22

SYStem.Mode Establish the communication with the target
Format: SYStem.Mode <mode>
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)
<mode>: Down
NoDebug
Go
Up

Default: Down.

Down

NoDebug

Go
Up

Attach
StandBy

Disables the debugger. The state of the CPU remains unchanged.

The debug adapter gets tristated.
The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

Resets the target and starts execution.

Resets the target and stops the CPU at the reset vector.

Not available for AVRS.

SYStem.Option.IMASKASM

Disable interrupts while single stepping

Format:

SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during assembler single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step. It is
turned on to make sure that no interrupt routine is serviced between Break and Go states.

©1989-2024 Lauterbach

AVR8 Debugger | 23

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

Format: SYStem.Option.IMASKHLL [ON | OFF]

Default: OFF.

If enabled, the interrupt enable flag of the EFLAGS register will be cleared during HLL single-step
operations. After the single step, the interrupt enable flag is restored to the value it had before the step.

©1989-2024 Lauterbach AVR8 Debugger | 24

CPU specific TrOnchip Commands

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

TrOnchip.CONVert Adjust range breakpoint in on-chip resource

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

The on-chip breakpoints can only cover specific ranges. If a range cannot be programmed into the
breakpoint, it will automatically be converted into a single address breakpoint when this option is active. This
is the default. Otherwise an error message is generated.

TrOnchip.CONVert ON

Break.Set 0x1000--0x17ff /Write ; sets breakpoint at range

Break.Set 0x1001--0x17ff /Write ; 1000--17ff sets single breakpoint
; at address 1001

TrOnchip.CONVert OFF ; sets breakpoint at range
Break.Set 0x1000--0x17ff /Write ; 1000--17ff
Break.Set 0x1001--0x17ff /Write ; gives an error message

©1989-2024 Lauterbach AVR8 Debugger | 25

TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

The on-chip breakpoints can only cover specific ranges. If you want to set a marker or breakpoint to a
complex variable, the on-chip break resources of the CPU may be not powerful enough to cover the whole
structure. If the option TrOnchip.VarCONVert is set to ON, the breakpoint will automatically be converted
into a single address breakpoint. This is the default setting. Otherwise an error message is generated.

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

©1989-2024 Lauterbach AVR8 Debugger | 26

Connectors

Debug Connector

Mechanical Description of the 10-pin Debug Cable

This connector is defined by Atmel, and we recommend this connector for all future designs.

Converter 10-pin JTAG to 6-pin SPI for AVR8

Signal
TCK
TDO
TMS

N/C
TDI

Pin

Pin

2

4

6

8

O N O W =

10

Signal
GND
VCC
RST-
N/C
GND

The converter supports the Serial Peripheral Interface (SPI) as used by Microchip AVR128 devices.

Signal Pin Pin Signal
TDO 1 2 VTREF
TCK 3 4 TDI
RESET- 5 6 GND
Order-Code Description
LA-2732 Converter 10-pin JTAG to 6-pin SPI for AVR8

©1989-2024 Lauterbach

AVR8 Debugger

27

Converter 10-pin JTAG to 6-pin UPDI for AVR8

The converter supports the Unified Program and Debug Interface (UPDI) as used by Microchip AVR128

devices.

Pin Signal
UPDI
VCC
N/C
N/C
N/C
GND

O O B W[N[=

Order-Code

Description

LA-2733

Converter 10-pin JTAG to 6-pin UPDI for AVR8

Converter 10-pin JTAG to 8-pin UPDI for AVR8

The converter supports the Unified Program and Debug Interface (UPDI) as used by Microchip AVR128

devices.

3
5

Signal
N/C
VCC
GND
UPDI
N/C
N/C
N/C
N/C

00| N| O] O A W] N| =

Order-Code

Description

LA-2736

Converter 10-pin JTAG to 8-pin UPDI for AVR8

©1989-2024 Lauterbach

AVR8 Debugger |

28

	AVR8 Debugger
	History
	Warning
	Introduction
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Configuration
	System Overview

	Quick Start
	Troubleshooting
	FAQ
	AVR Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints for Instructions
	On-chip Breakpoints for Data

	Overwriting Fuse and Lock Bits
	Memory Classes
	Programming the On-chip FLASH of the megaAVR
	Special Hints, Restrictions, and Known Problems
	Restrictions
	Known Problems

	CPU specific SYStem Settings
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CONFIG.DEBUGPORTTYPE Select debug port type
	SYStem.CPU Select the used CPU
	SYStem.EraseChip Erases the Flash and the EEprom
	SYStem.JtagClock Define JTAG clock
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping

	CPU specific TrOnchip Commands
	TrOnchip.state Display on-chip trigger window
	TrOnchip.CONVert Adjust range breakpoint in on-chip resource
	TrOnchip.VarCONVert Adjust complex breakpoint in on-chip resource
	TrOnchip.RESet Set on-chip trigger to default state

	Connectors
	Debug Connector
	Mechanical Description of the 10-pin Debug Cable

	Converter 10-pin JTAG to 6-pin SPI for AVR8
	Converter 10-pin JTAG to 6-pin UPDI for AVR8
	Converter 10-pin JTAG to 8-pin UPDI for AVR8

