LAUTERBACH A

ARC Debugger and Trace

ARC Debugger and Trace

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... r—~
Y { O r—
ARC Debugger and TraCecccccccrrrsisssmsrmssssssrimsssssssssssssssssssssssnsssssssssssssssssnnsessnsssnssssesssan 1

L 1= (o 6

Y e Yo 11T £ o) o T 7
Supported ARC Cores 7

Brief Overview of Documents for New Users 7

Demo and Start-up Scripts 9
A= 0 1T ' 10
TroubleShOOtING ... e 11
SYStem.Up Errors 11

O 11

L@ T TG - 12

CPU specific SETUP COMMaANdccccccemmrminssemmmmmnsssssmmnssssssssssssssss s sssssssssssssssssssssnsssnsnas 16
SETUP.DIS Disassembler configuration 16

CPU specific SYStem Commandsccccccciiiimmiininismisssssss s ssssss s ssssssssssasssssnes 17
SYStem.CONFIG.state Display target configuration 17
SYStem.CONFIG Configure debugger according to target topology 19
<parameters> describing the “DebugPort” 21
<parameters> describing the “JTAG” scan chain and signal behavior 25

MultiTap 27
<parameters> configuring a CoreSight Debug Access Port “DAP” 28
<parameters> describing debug and trace “Components” 30
Multicore Examples 35
SYStem.CPU Select CPU type 36
SYStem.JtagClock Select clock for JTAG communication 37
SYStem.LOCK Lock and tristate the debug port 39
SYStem.MemAccess Select run-time memory access method 39
SYStem.Mode Select target reset mode 41
SYStem.Option Set a target-specific option 43
©1989-2024 Lauterbach ARC Debugger and Trace 2

SYStem.Option.AHBHPROT Select AHB-AP HPROT bits 43
SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP 43
SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits 44
SYStem.Option. AXIHPROT Select AXI-AP HPROT bits 45
SYStem.Option.CorePowerDetection Set methods to detect core power 45
SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP 47
SYStem.Option.DAPREMAP Rearrange DAP memory map 48
SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP 48
SYStem.Option.DAPNOIRCHECK No DAP instruction register check 49
SYStem.Option.DCFLUSH Invalidate/flush data-cache for modified memory 49
SYStem.Option.DEBUGPORTOptions Options for debug port handling 49
SYStem.Option.detectOTrace Disable auto-detection of on-chip trace 50
SYStem.Option.Endianness Set the target endianness 51
SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST) 51
SYStem.Option.HotBreakPoints Set breakp. when CPU is running 52
SYStem.Option.ICFLUSH Invalidate instruction-cache for modified memory 52
SYStem.Option.IMASKASM Disable interrupts while single stepping 53
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 53
SYStem.Option.IntelSOC Core is part of Intel® SoC 53
SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs 54
SYStem.Option. MMUSPACES Separate address spaces by space IDs 54
SYStem.Option.OVERLAY Enable overlay support 55
SYStem.Option.RegNames Enable trivial names for core registers 56
SYStem.Option.PowerDetection Choose method to detect the target power 56
SYStem.Option.ResetDetection Choose method to detect a target reset 57
SYStem.Option. TIMEOUT Define maximum time for core response 57
SYStem.Option. TRST Allow debugger to drive TRST 58
SYStem.POWER Control target power 58
SYStem.state Show SYStem settings window 58
On-chip Breakpoints/Actionpointsccccccmmiiiiicccccccecc e e 59
Using On-chip Breakpoints 59
Breakpoints in a ROM Area 59
Limitations 60
TrOnchip.CONVert Allow extension of address range of breakpoint 61
TrOnchip.VarCONVert Convert breakpoints on scalar variables 63
TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger 64
TrOnchip.RESet Set on-chip trigger to default state 65
TrOnchip.state Display on-chip trigger window 65
CPU specific MMU COMMANAScciicmmiiimriiimsmisms s ssssesssssss s sssssssssms s s sasssssasssasssssnsanes 66
MMU.DUMP Page wise display of MMU translation table 66
MMU.List Compact display of MMU translation table 68
MMU.SCAN Load MMU table from CPU 69
MMU.Init Invalidate TLB entries 70
©1989-2024 Lauterbach ARC Debugger and Trace 3

MMU.Set Set an MMU TLB entry 70
CPU specific JTAG.CONFIG ComMaNdSccccciresmmmmmmmmmmmmmsssssssssssmmssnsssssssssssssssssssnmnnes 71
JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals 71
JTAG.CONFIG.DRiVer Set slew rate of JTAG signals 71
JTAG.CONFIG.PowerDownTriState Automatically tristate outputs 72
JTAG.CONFIG.TckRun Free-running TCK mode 72
JTAG.CONFIG.TDOEdge Select TCKedge 72
JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages 73
JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages 73
JTAG.CONFIG.Voltage.REFerence Voltage level of signals send to target 74
Trace specific NEXUS COMMANAScccccuiieimissmmmisssissssmsssss s sssmssssssssssssssssssss sassmssnses 75
NEXUS.AuxTM Enable auxiliary register trace messages 75
NEXUS.BTM Enable program trace messaging 75
NEXUS.CLOCK Clock to calculate time out of cycle count information 76
NEXUS.DataSuppress Suppress data flow on likely FIFO overflow 76
NEXUS.DDR Enable NEXUS double data rate mode 76
NEXUS.DSM Enable core debug status messages 77
NEXUS.DTM Enable data trace messages 77
NEXUS.FILTER Configure the onchip trace filter resources 78
NEXUS.FILTER.ACompLimit Trace address filters used by debugger 78
NEXUS.FILTER.DCompLimit Number of trace data filter used by debugger 78
NEXUS.HISToryTHreshold Control the conditional history threshold 79
NEXUS.OFF Switch the NEXUS trace port off 79
NEXUS.ON Switch the NEXUS trace port on 79
NEXUS.PortMode Set NEXUS trace port frequency 80
NEXUS.Register Display NEXUS trace control registers 80
NEXUS.RegTM Enable core register trace messages 80
NEXUS.RESet Reset NEXUS settings 80
NEXUS.RTTBUILD Define build configuration of used DesignWare trace 81
NEXUS.STALL Stall program execution when FIFO full 81
NEXUS.state Display NEXUS port configuration dialog 81
NEXUS.SyncFrame Control SYNC frame insertion in ATB stream 81
NEXUS.TImeMode Select method of time measurement 82
NEXUS.TimeStampCLOCK Specify frequency of the global timestamp 83
NEXUS.TracelD Set ID for CoreSight ATB stream 84
NEXUS.WTM Enable watchpoint trace messages 84
Debug Connector Type and PinouUt ... sssnas 85
Normal 20-Pin Connector 85
MIP110 / MIPI20 / MIPI34 Connector 87
Converged MIP160-Cv2 Connector 87
XDP Connector 87
Trace Connector Type and PinNOUtccccoiiiimmiismincinninss s s s s sssss s snas 88
©1989-2024 Lauterbach ARC Debugger and Trace | 4

Trace Signals 88
Normal Nexus Auxiliary Port (Mictor 38) 89
Dual Eight-bit Nexus Auxiliary Port (Mictor 38) 90
Out Offload and CoreSight TPIU 90
©1989-2024 Lauterbach ARC Debuggerand Trace | 5

ARC Debugger and Trace

Version 06-Jun-2024

History

16-Jun-23 Chapter 'Legacy MIP160-C Connector' was removed.
17-Jan-23 Added SETUP.DIS command.

20-Jul-22 For the MMU.SCAN ALL command, CLEAR is now possible as an optional second
parameter.

07-Jun-22 New command: JTAG.CONFIG.TckRun.

17-Feb-22 New command SYStem.Option. TRST.

©1989-2024 Lauterbach ARC Debuggerand Trace | 6

Introduction

This document describes the processor-specific settings and features of the ARC in-circuit debugger.

Please keep in mind that only the Processor Architecture Manual (the document you are reading at the
moment) is CPU specific, while all other parts of the online help are generic for all CPUs supported by
Lauterbach. So if there are questions related to the CPU, the Processor Architecture Manual should be your
first choice.

Supported ARC Cores

The following ARC cores from Synopsys, Virage Logic or ARC International are supported:

ARC Vector DSPs : EV7x, EV7XFS, VPX2/VPX3/VPX5, VPX2FS/VPX3FS/VPX5FS

ARC-HS family : HS34, HS36, HS38, HS44, HS45D, HS46, HS46FS, HS47D, HS47DFS, HS48,
HS48FS

ARC-EM family : EM4, EM5D, EM6, EM7D, EM9D, EM11D, EM22FS
ARC 700 core family : ARC710D, ARC725D, ARC750D, ARC770D

ARC 600 core family : ARC601, ARC605, ARC610D, ARC652D, ARC630D,
AS211SFX, AS221BD

ARCtangent-A5 cores
ARCtangent-A4 cores

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACE32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your Debug Cable. To access the manual for your processor
architecture, proceed as follows:

©1989-2024 Lauterbach ARC Debugger and Trace | 7

- Choose Help menu > Processor Architecture Manual.

J “OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating

system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

To get started with the most important manuals, use the Welcome to TRACE32! dialog (WELCOME.view):
£5) Welcome to TRACE32! == 5

TRACES32 PowerView for ARC } PowerDebug USB 3.0

Before you can start debugging. the debug environment needs to be setup.
This setup is usually done by a start-up script. Click "Start with examples” to
search for an example star-up script foryour target.

Example scripts can be modified to fit your exact system setup and configuration.

Related manuals

&3 ARC Debugger

i3 Debugger Basics - Training

i3 Training Script Language PRACTICE

¥ Show this dialog at start | T Help | [#4 Start with examples

©1989-2024 Lauterbach ARC Debuggerand Trace | 8

Demo and Start-up Scripts

Lauterbach provides ready-to-run PRACTICE start-up scripts and examples.

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

. Type at the command line: WELCOME.SCRIPTS

. or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts

(*.cmm) and other demo software.

Search for newest scripts at hitp:ffwwaw lauterbach.com/scripts. html

[ZCONFIG | [& Treeview | 28 LISTCONFIG)
Title

Chip

$1 Search for scripts... EI@
| Search " Selection || Manuals |
arc-em 3% || #3Search | 12 demafiles found.
Filter
@ Mone () Chip) Board

Board

Minimalist GO C Example for ARC

Generic MetaWare C Example for ARC

Generic MetaWare C++ Example for ARC

Code Overlay Demo for ARC Core

Load of Target Program to Access HMemory via memory class USR
Generic HMetaWare C Example rumming on nSIM siwnlator wia SCIT
Generic MetaWare C Example rumning on nSIM siwulator

C Example for ARC EM Starter Kit

MetaWare HostLink Demo for ARC

MetaWare Hello—World demo for ARC

C Example for ARC AXS Software Development Platform

FreeRTOS Demoe for TRACE3Z RTOS Debugger

ARC-24 ARC-A5 ARCH** ARC7**
ARC-A4 ARC-AD ARCO** ARCT**
ARC-A4 ARC-A5 ARCH** ARCT**
ARCEH** ARC7¥* TERax* ASZ2*
ARC-24 ARC-A5 ARCo** ARC7*x [IIEgaI*
ARCH** ARCTH% TIRSE b ARC-HS¥* AS2
BRCH** ARC7*% [li{Rgd e ARC-HS** 432
ARC-EHd

ARCE** ARC7** TRRHIk* ARC-HS** AS2
IR ** ARC-HS** ARCHX* ARCT** AS2
AS221BD ARCH25D ARC770D [THal6 ARC

HRC-EMgy)]

ARC-EM
ARC-EM
ARC-EM

Synopsys nSIM sinm
Synopsys nSIM sinm
ARC EM Starter Kit

ARC EM Starter Kit

You can also manually navigate in the ~~/demo/arc/ subfolder of the system directory of TRACES32.

©1989-2024 Lauterbach

ARC Debugger and Trace

9

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

ARC Debugger and Trace | 10

Troubleshooting

The LAUTERBACH debug module LA-7701 “DEBUG INTERFACE” is not
supported.

You require a Power Debug module (e.g. LA-7702, LA-7704, LA-7705, LA-7707,
LA-7708, LA-7690, LA-7699)

SYStem.Up Errors

The SYStem.UP command is the first command of a debug session where communication with the target is
required. If you receive error messages while executing this command this may have the following reasons.

. The target has no power.

. A FPGA which could hold an ARC Core like an ARCangel, is not loaded yet or does not contain
an ARC Core with a debugging interface.

. There is a problem with the electrical connection between the debugger and the target - check if
the JTAG connector is plugged correctly and if the target is built corresponding to the definition
of the used JTAG connector.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach ARC Debugger and Trace | 11

https://support.lauterbach.com/kb

Quick Start

This chapter should help you to prepare your debugger for ARC. Depending on your application not all steps
might be necessary.

For some applications additional steps might be necessary, that are not described in this Quick Start section.

1. Prepare the Start

Connect the Debug Cable to your target. Check the orientation of the connector. Pin 1 of the debug cable is
marked with a small triangle next to the nose of the target connector.

Power up your TRACE32 system.
Start the TRACES32 Debugger Software.

Power up your Target!

To prevent damage please take care to follow this sequence all the time you are
preparing a start.

2. Select the CPU Type

For example:

SY¥YStem.CPU ARC-HS

If you have a normal ARC core without the need of special configurations (e.g. position inside a JTAG daisy
chain) you can also use the keyword AUTO. E.g.:

SYStem.CPU AUTO

3. Set the speed of the JTAG debug clock

You can select the JTAG clock frequency, which the Debugger uses to communicate with the target. This can
be either done in the JtagClock field in the SYStem window, or by using the command line with the
command SYStem.JtagClock. The maximum clock frequency might depend on the configuration of your
FPGA design. The default clock frequency is 1 MHz.

©1989-2024 Lauterbach ARC Debugger and Trace | 12

4. Configure the JTAG debug accesses

If you have a single ARC core and you use standard JTAG (IEEE 1149.1) there is nothing you have to do in
this step.

Configure a multi-core setup

If you have more than one CPU core connected to the same JTAG port, please tell the debugger how it
should connect to the core you want to debug:

In case of a JTAG daisy chain use command SYStem.DETECT SHOWChain to scan the chain. The result
is shown in a window. Double-click on the desired core to tell the debugger which core you'd like to debug.

To configure the position of your core in the JTAG daisy chain manually use commands
SYStem.CONFIG IRPOST, SYStem.CONFIG IRPRE, SYStem.CONFIG DRPOST and
SYStem.CONFIG DRPRE.

In case your CPU is designed in the mature ARC MADI multicore configuration, please use command
SYStem.CONFIG MADI to specify the core you want to debug.

Configure Compact-JTAG

Some ARC cores must be debugged via a two-wire debug interface called Compact-JTAG, cJTAG or
IEEE 1149.7.

Use command SYStem.CONFIG DEBUGPORTTYPE CJTAG to enable two wire mode.
Add command SYStem.CONFIG CJTAGFLAGS 0x03 to skip TCA-scanning and to use TRACES32-
pseudo-keeper to workaround problems with the cJTAG implementation of your core.

5. Enter Debug Mode

SYStem.Up ; Connect to ARC core, stop the core and
jump to reset vector

This command resets the CPU, enters debug mode and jumps to the break address of the debugged core.
After this command is executed, it is possible to access memory and registers.

6. Load your Application Program

When the core is prepared the code can be downloaded. This can be done with the command
Data.Load.<file_format> <file>.

Data.Load.Elf <file>.elf ; load application file

©1989-2024 Lauterbach ARC Debugger and Trace | 13

The options of the Data.LOAD command depend on the file format generated by the compiler. A detailed
description of the Data.LOAD command is given in “General Commands Reference”.

7. Initialize Program Counter and Stackpointer (if required)

In a ready-to-run compiled ELF file, these settings are in the start-up code of the ELF file. In this case
nothing has to be done. You can check the contents of Program Counter and Stack Pointer in the Register
window, which provides the contents of all CPU Registers. Use CPU Registers in the CPU menu to open
this window or use the command Register.

The Program Counter and the Stackpointer and all other registers can be set with the commands
Register.Set PC <value> and Register.Set SP <value>. Here is an example of how to use these

commands:
Register.Set PC 0xc000 ; Set the Program Counter to address 0xC000
Register.Set SP Oxbff ; Set the Stack Pointer to address Oxbff
Register.Set PC main ; Set the PC to a label (here: function main)

8. View the Source Code

Use the command Data.List to view the source code at the location of the Program Counter.
Now the quick start is done. If you were successful you can start to debug.

To reach the main() function use command GO main

©1989-2024 Lauterbach ARC Debugger and Trace | 14

10. Create a PRACTICE Script

LAUTERBACH recommends to prepare a PRACTICE script (*.cmm, ASCII file format) to be able to do all
the necessary actions with only one command. Here is a typical start sequence:

WinClear

SYStem.Reset

SYStem.CPU ARC700
System.JtagClock 5.MHz
SYStem.Up

Data.LOAD.E1f demo.elf
Data.List

Register.view

Var .Frame /Args /Locals
Var .Ref %HEX $DECIMAL

Break.Set 0x400

Break.Set main

7

Clear all windows

Set all options in the SYStem window
to default values

Use generic ARC700 core support.

Set JTAG clock speed.

Reset the target and enter debug mode
Load the application

Open disassembly window

Open register window

Show call stack

Auto-watch local variables

Set software breakpoint on address
0x400

Set software breakpoint on address of
main function.

For information about how to build a PRACTICE script file (*.cmm file), refer to “Training Basic
Debugging” (training_debugger.pdf). There you can also find some information on basic actions with the

debugger.

©1989-2024 Lauterbach

ARC Debugger and Trace | 15

CPU specific SETUP Command

SETUP.DIS Disassembler configuration
Format: SETUP.DIS [<fields> [<bar>]] [<constants>] [<keywords>]
<keywords>: [RegNames | Generic]
[AddressOffset.auto | AddressOffset.Signed | AddressOffset.Unsinged]

Sets default values for configuring the disassembler output of newly opened windows. Affected windows
and commands are List.Asm, Register.view, and Register.Set.

The command does not affect existing windows containing disassembler output.

<fields>, <bar>, For a description of the generic arguments, see SETUP.DIS in
<constants> general_ref_s.pdf.

RegNames Use the ABI (application binary interface) naming scheme for the names
(default) of the ARC general purpose registers (e.g. “sp” instead of “r28” for the

stack pointer.).
This setting is equivalent with SYStem.Option.RegNames ON.

Generic Use the register number (x0, x1, ..., x31) naming scheme for the names
of the ARC general purpose registers. (e.g. “r28” instead of “sp” for the
stack pointer.).

This setting is equivalent with SYStem.Option.RegNames OFF.

AddressOffset.auto Automatically choose a probably suitable format for the address offsets in
(default) load and store instructions. E.g.: For LD <dst>, [<reg>, <offset>]
the offset is displayed as a signed number if the offset is smaller +/- 255
of if reg is gp/fp/sp/pcl, or as an unsigned hex-number otherwise.

AddressOff- Force the display of the address offsets in load and store instructions as
set.Signed signed. E.g.: For LD <dst>, [<reg>, <offset>] the offsetis always
displayed as a signed number.

AddressOff- Force the display of the address offsets in load and store instructions as
set.Unsinged unsigned. E.g.: For LD <dst>, [<reg>, <offset>] the offsetis
always displayed as a unsigned hexadecimal number.

©1989-2024 Lauterbach ARC Debugger and Trace | 16

CPU specific SYStem Commands

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort | Jtag | MultiTap | DAP | COmponents

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the

debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

<tab>

Opens the SYStem.CONFIG.state window on the specified tab. For tab
descriptions, see below.

DebugPort

Informs the debugger about the debug connector type and the
communication protocol it shall use.

Jtag

Informs the debugger about the position of the Test Access Ports (TAP) in
the JTAG chain which the debugger needs to talk to in order to access the
debug and trace facilities on the chip.

MultiTap

Informs the debugger about the existence and type of a System/Chip
Level Test Access Port. The debugger might need to control it in order to
reconfigure the JTAG chain or to control power, clock, reset, and security
of different chip components.

For descriptions of the commands on the MultiTap tab, see MultiTap.

DAP

Informs the debugger about an ARM CoreSight Debug Access Port (DAP)
and about how to control the DAP to access chip-internal memory busses
(AHB, APB, AXI) or chip-internal JTAG interfaces.

©1989-2024 Lauterbach

ARC Debugger and Trace | 17

COmponents Informs the debugger about the existence and interconnection of on-chip

CoreSight debug and trace modules and informs the debugger on which

memory bus and at which base address the debugger can find the control
registers of the modules.

This is only relevant in case used ARC core is debugged over a CoreSight
DAP.

For descriptions of the commands on the COmponents tab, see
COmponents in “Arm Debugger” (debugger_arm.pdf).

©1989-2024 Lauterbach ARC Debugger and Trace | 18

SYStem.CONFIG

Configure debugger according to target topology

Format:

<sub_cmd>:
(DebugPort)

<sub_cmd>:
(JTAG)

<sub_cmd>:
(DAP)

<sub_cmd>:
(MultiTap)

SYStem.CONFIG.<sub_cmd> <parameter>
SYStem.MultiCore.<sub_cmd> <parameter> (deprecated)

CONNECTOR [MIPI34 | MIPI20T]

CORE <core> <chip>

CoreNumber <number>

DEBUGPORT [DebugCable0 | DebugCableA | DebugCableB]
DEBUGPORTTYPE [JTAG | SWD | CJTAG]
Slave [ON | OFF]

TriState [ON | OFF]

MADI <id>

CJTAGFLAGS <flags>

CJTAGTCA <value>

SWDP [ON | OFF]

SWDPIdleHigh [ON | OFF]
SWDPTargetSel <value>

DAPDRPOST <bits>
DAPDRPRE <bits>
DAPIRPOST <bits>
DAPIRPRE <bits>
DRPRE <bits>
DRPOST <bits>
IRPRE <bits>
IRPOST <bits>
Slave [ON | OFF]
TriState [ON | OFF]
TAPState <state>
TCKLevel [0 | 1]

AHBACCESSPORT <port>
APBACCESSPORT <port>
AXIACCESSPORT <port>
DEBUGACCESSPORT <port>
COREJTAGPORT <port>
JTAGACCESSPORT <port>

MULTITAP [NONE | PrimaryTAP <args> | JtagSEQuence.<sub_cmd>]

©1989-2024 Lauterbach

ARC Debugger and Trace

19

<parameter>:
(COmponents)

COREDEBUG.Base <address>
COREDEBUG.RESet
COREDEBUG.view

ETB.Base <address>

ETB.Name <string>

ETB.NoFlush [ON | OFF]

ETB.RESet

ETB.Size <size>

ETB.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETB.view

ETF.Base <address>

ETF.Name <string>

ETF.NoFlush [ON | OFF]

ETF.RESet

ETF.Size <size>

ETF.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETF.view

ETR.Base <address>

ETR.CATUBase <address>

ETR.Name <string>

ETR.NoFlush [ON | OFF]

ETR.RESet

ETR.Size <size>

ETR.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETR.view

ETS.ATBSource <source>

ETS.Base <address>

ETS.Name <string>

ETS.NoFlush [ON | OFF]

ETS.RESet

ETS.Size <size>

ETS.STackMode [NotAvailbale | TRGETM | FULLTIDRM | NOTSET | FULL
STOP | FULLCTI]

ETS.view

FUNNEL.Base <address>
FUNNEL.RESet

FUNNEL.Name <string>
FUNNEL.PROGrammable [ON | OFF]
FUNNEL.view

©1989-2024 Lauterbach

ARC Debugger and Trace | 20

<parameter>: REP.ATBSource <source>

(Components REP.Base <address>

cont.) REP.Name <string>
REP.RESet
REP.view

TPIU.Base <address>
TPIU.Name <string>

TPIU.RESet
TPIU.Type [CoreSight | Generic]
TPIU.view
<sub_cmd>: DEBUGTIMESCALE <multiplier>
(misc) ADDRTICYCLES <dr> <ir>

The SYStem.CONFIG commands inform the debugger about the available on-chip debug and trace
components and how to access them.

Some commands need a certain CPU type selection (SYStem.CPU <type>) for Lauterbach debug

hardware to become active.

Ideally you can select with SYStem.CPU the chip you are using which causes all setup you need and you do
not need any further SYStem.CONFIG command.

The SYStem.CONFIG command information shall be provided after the SYStem.CPU command, which
might be a precondition to enter certain SYStem.CONFIG commands, and before you start up the debug

session e.g. by SYStem.Up.

<parameters> describing the “DebugPort”

CJTAGFLAGS <flags>

CJTAGTCA <value>

Activates workarounds for incomplete or buggy cJTAG (IEEE
1149.7) implementations.

Bit 0: Disable scanning of cJTAG ID (TCA-scanning).

Bit 1: Target has no “keeper’. Use TRACE32 pseudo keeper.
Bit 2: Inverted meaning of SREDGE register.

Bit 3: Old command opcodes (cJTAG < 1.14).

Bit 4: APFC unlock required.

Bit 5: OAC required

Default: 0

Selects the TCA (TAP Controller Address) to address a device in a
c¢JTAG (IEEE 1149.7) Star-2 configuration. The Star-2
configuration requires a unique TCA for each device on the debug
port.

©1989-2024 Lauterbach

ARC Debugger and Trace | 21

CONNECTOR
[MIPI34 | MIPI20T]

CORE <core> <chip>

CoreNumber <number>

DEBUGPORT [DebugCa-
bleA | DebugCableB]

DEBUGPORTTYPE
[JTAG | SWD | CJTAG]

Specifies the connector “MIPI34” or “MIPI20T” on the target. This
is mainly needed in order to notify the trace pin location.

This command is only available if the used Lauterbach debug
cable supports different pin-outs. E.g. if a CombiProbe is used with
a MIPI134 whisker.

Default: MIP134.

The command helps to identify cores which have debug and trace
resources which are commonly used by different cores. The
command might be required in a multicore environment if you use
multiple debugger instances (multiple TRACE32 PowerView GUIs)
to simultaneously debug different cores on the same target system
over the same PowerDebug.

All core which share the same debug resources should have the
same <chip>number.

E.g.: If you SoC contains an ARConnect unit for inter-core
communication and cross-triggering, all cores, which arc
connected to the same ARConnect should have the same <chip>
number. (Otherwise truly synchronous start and stop of the cores
wouldn’t work)

This are the default settings of the command:
1st TRACES32 PowerView GUI: <core>=1 <chip>=1
2nd TRACES32 PowerView GUI: <core>=1 <chip>=2

n-th TRACES32 PowerView GUI: <core>=1 <chip>=n
This means that by default the cores are handled as unrelated.

Number of cores to be considered in an SMP (symmetric
multiprocessing) debug session.

In case you're using a Lauterbach CombiProbe with two MIP134
whiskers, this command allows to select the whisker cable, which
should be used by the current TRACES32 PowerView GUI.

It specifies the used debug port type “JTAG”, “SWD”, “CJTAG”,
“CJTAG-SWD?". It assumes the selected type is supported by the
target.

. JTAG: Standard 5- or 4-pin JTAG (IEEE 1149.1)
. CJTAG: Compact 2-wire-JTAG (IEEE 1149.7)

. SWD: ARM Serial Wire Debug (requires that the ARC
debug logic is connected to a CoreSight DAP inside the
target SoC)

. CJTAGSWD: CJTAG in a mixed SWD/cJTAG
configuration.

Default: JTAG

©1989-2024 Lauterbach

ARC Debugger and Trace | 22

SWDP [ON | OFF] With this command you can change from the normal JTAG
communication to Serial Wire Debug. SWD (Serial Wire Debug)
uses just two signals instead of five. It works only if your target
SoC contains a CoreSight DAP and the ARC core debug register
are connected to that DAP (via APB or JTAG-AP)

If SYStem.CONFIG.DEBUGPORTTYPE is set to CJTAGSWD, this
command selects if cJTAG or SWD should be used.

Default: OFF.

Slave [ON | OFF] (default: OFF) If more than one debugger share the same JTAG
port, all except one must have this option active. Only one
debugger - the “master” - is allowed to control the signals nTRST
and nSRST (nRESET).

Default: OFF for the first TRACES32 PowerView GUI connected a
PowerDebug, ON for every further TRACE32 PowerView GUI
connected to the same PowerDebug for AMP multicore debugging.

SWDPIdleHigh Keep SWDIO line high when idle. Only for Serialwire Debug mode.

[ON | OFF] Usually the debugger will pull the SWDIO data line low, when no
operation is in progress, so while the clock on the SWCLK line is
stopped (kept low).

You can configure the debugger to pull the SWDIO data line
high, when no operation is in progress by using
SYStem.CONFIG SWDPIdleHigh ON

Default: OFF.

SWDPTargetSel <value> Device address in case of a multidrop Serial Wire Debug Port.
Default: OFF.

TriState [ON | OFF] TriState has to be set to ON if several debug cables are connected to

a common JTAG port. TAPState and TCKLevel define the TAP state
and TCK level which is selected when the debugger switches to
tristate mode. Please note: nTRST must have a pull-up resistor on the
target, TCK can have a pull-up or pull-down resistor, other trigger
inputs need to be kept in inactive state. (Pull-down resistor on TCK is
strongly recommended!)

Default: OFF.

©1989-2024 Lauterbach ARC Debugger and Trace | 23

MADI Some chips with multiple ARC cores use the so-called Multiple
ARCtangent Processor Debug Interface (MADI). MADI is a
multiplexer which allows you to debug several ARC cores via one
JTAG TAP.

While you select the TAP with IRPRE, IRPOST, DRPRE, DRPOST
the MADI options tells the debugger which core connected to the
MADI-TAP you want to debug.

Setting MADI to OFF means you don’t have a MADI IP between
your TAP and your core.

If your target system does not have MADI, MADI is set
automatically to OFF.

©1989-2024 Lauterbach ARC Debugger and Trace | 24

<parameters> describing the “JTAG” scan chain and signal behavior

With a JTAG interface you can access a Test Access Port controller (TAP) which has implemented a state
machine to provide a mechanism to read and write data to an Instruction Register (IR) and a Data Register
(DR) in the TAP. The JTAG interface will be controlled by 5 signals:

. NTRST (reset)

J TCK (clock)

J TMS (state machine control)
. TDI (data input)

J TDO (data output)

Multiple TAPs can be controlled by one JTAG interface by daisy-chaining the TAPs (serial connection). If you
want to talk to one TAP in the chain, you need to send a BYPASS pattern (all ones) to all other TAPs. For this
case the debugger needs to know the position of the TAP it wants to talk to.

To tell the debugger the exact position of your core’s Test Access Port controller (TAP) within a JTAG daisy-
chain you’ll require the commands IRPRE, IRPOST, DRPRE, and DRPOST.

Most ARC cores are directly connected to JTAG Test Access Port controller (TAP), which is accessible
directly to the debugger via JTAG. However, in case you're ARC core is debugged via a CoreSight DAP you'll
need DAPDRPRE/POST and DAPIRPRE/POST below instead.

DRPRE <bits> (default: 0) <number> of TAPs in the JTAG chain between the
core of interest and the TDO signal of the debugger. If each core
in the system contributes only one TAP to the JTAG chain,
DRPRE is the number of cores between the core of interest and
the TDO signal of the debugger.

DRPOST <bits> (default: 0) <number> of TAPs in the JTAG chain between the
TDI signal of the debugger and the core of interest. If each core
in the system contributes only one TAP to the JTAG chain,
DRPOST is the number of cores between the TDI signal of the
debugger and the core of interest.

IRPRE <bits> (default: 0) <number> of instruction register bits in the JTAG
chain between the core of interest and the TDO signal of the
debugger. This is the sum of the instruction register length of all
TAPs between the core of interest and the TDO signal of the
debugger.

IRPOST <bits> (default: 0) <number> of instruction register bits in the JTAG
chain between the TDI signal and the core of interest. This is the
sum of the instruction register lengths of all TAPs between the
TDI signal of the debugger and the core of interest.

©1989-2024 Lauterbach ARC Debugger and Trace | 25

NOTE: If you are not sure about your settings concerning IRPRE, IRPOST, DRPRE,
and DRPOST, you can try to detect the settings automatically with the
SYStem.DETECT.SHOWChain command.

If you JTAG daisy chain contains a CoreSight DAP and the DAP is accessible via JTAG the DAP’s JTAG Test
Access Port controller (TAP) may also be inside a JTAG daisy-chain. To tell the debugger the exact position
DAP’s TAP within the JTAG daisy-chain you'll require the commands DAPIRPRE, DAPIRPOST,
DAPDRPRE, and DAPDRPOST. These settings are especially important if the CoreSight DAP is not just
used to access memory, but also your ARC cores’s debug registers are also accessed via the DAP.

DAPDRPOST <bits>

DAPDRPRE <bits>

DAPIRPOST <bits>

DAPIRPRE <bits>

Slave [ON | OFF]

TriState [ON | OFF]

(default: 0) <number> of TAPs in the JTAG chain between the
DAP and the TDO signal of the debugger.

(default: 0) <number> of TAPs in the JTAG chain between the
TDI signal of the debugger and the DAP.

(default: 0) <number> of instruction register bits in the JTAG
chain between the DAP and the TDO signal of the debugger.
This is the sum of the instruction register length of all TAPs
between the DAP and the TDO signal of the debugger.

(default: 0) <number> of instruction register bits in the JTAG
chain between the TDI signal and the DAP. This is the sum of the
instruction register lengths of all TAPs between the TDI signal of
the debugger and the DAP.

If more than one debugger share the same JTAG port, all except
one must have this option active. Only one debugger - the
“master” - is allowed to control the signals nTRST and nSRST
(nRESET).

Default: OFF for the first TRACE32 PowerView GUI connected a
PowerDebug, ON for every further TRACE32 PowerView GUI
connected to the same PowerDebug for AMP multicore
debugging.

TriState has to be set to ON if several debug cables are connected
to a common JTAG port. TAPState and TCKLevel define the TAP
state and TCK level which is selected when the debugger switches
to tristate mode. Please note: nTRST must have a pull-up resistor
on the target, TCK can have a pull-up or pull-down resistor, other
trigger inputs need to be kept in inactive state. (Pull-down resistor
on TCK is strongly recommended!)

Default: OFF.

©1989-2024 Lauterbach

ARC Debugger and Trace | 26

TCKLevel <level>

TAPState <state>

MultiTap

Level of TCK signal when all debuggers are tristated. Normally
defined by a pull-up or pull-down resistor on the target. (Pull-
down resistor on TCK is strongly recommended!)

Default: 0.

This is the state of the TAP controller when the debugger
switches to tristate mode. All states of the JTAG TAP controller
are selectable.

0 Exit2-DR

1 Exit1-DR

2 Shift-DR

3 Pause-DR

4 Select-IR-Scan
5 Update-DR

6 Capture-DR

7 Select-DR-Scan
8 Exit2-IR

9 Exit1-IR

10 Shift-IR

11 Pause-IR

12 Run-Test/Idle
13 Update-IR

14 Capture-IR

15 Test-Logic-Reset

Default: 7 = Select-DR-Scan.

MULTITAP [NONE |
PrimaryTAP <args>]

MULTITAP
JtagSEQuence.<sub_cmd>

For command descriptions, see SYStem.CONFIG.MULTITAP.

For command descriptions, see
SYStem.CONFIG.MULTITAP JtagSEQuence.

©1989-2024 Lauterbach

ARC Debugger and Trace |

27

<parameters> configuring a CoreSight Debug Access Port “DAP”

A Debug Access Port (DAP) is a CoreSight module from ARM which provides access via its debug port
(JTAG, cJTAG, SWD) to:

1. Memory busses (AHB, APB, AXI). This is especially important if the on-chip debug register
needs to be accessed this way. You can access the memory buses by using certain access
classes with the debugger commands: “AHB:”, “APB:”, “AXI:. The interface to these buses is
called Memory Access Port (MEM-AP).

The debug registers of some cores are accessible via such a memory bus (mostly APB).

2. Chip-internal JTAG interfaces. This is important if the core you intend to debug is connected to
such an internal JTAG interface. The module controlling these JTAG interfaces is called JTAG
Access Port (JTAG-AP). Each JTAG-AP can control up to 8 internal JTAG interfaces. A port
number between 0 and 7 denotes the JTAG interfaces to be addressed

The following SYStem.CONFIG commands configure the port-number for the memory busses:

AHBACCESSPORT <port> DAP access port number (0-255) which shall be used for “AHB:”
access class. Default: <port>=0.

APBACCESSPORT <port> DAP access port number (0-255) which shall be used for “APB:”
access class. Default: <port>=1.

AXIACCESSPORT <port> DAP access port number (0-255) which shall be used for “AXI:”
access class. Default: port not available

DEBUGACCESSPORT DAP access port number (0-255) where the debug register can

<port> be found (typically on APB). Used for “DAP:” access class.

Default: <port>=1.

The following SYStem.CONFIG commands are required if your ARC core is connected to a chip-internal
JTAG interface, which is controlled via the DAP:.

JTAGACCESSPORT <port> DAP access port number (0-255) of the JTAG Access Port.

COREJTAGPORT <port> JTAG-AP port number (0-7) connected to the core which shall be
debugged.

©1989-2024 Lauterbach ARC Debugger and Trace | 28

Example 1: ARC core debugged via CoreSight APB interface

Chip

a System Memory
<
(2]
=)
m
Debug Access Port (DAP) qEJ — Any core
2 0 < > with CoreSight
%) < APB interface
0> Memory Access Port < ®
(MEM-AP) a
3 ARC
3« » with CoreSight
$ Memory Access Port APB interface
P MEM-AP) "
& Debug Port (
S JTAG or ROM Table
éH JTAGor & v
(] SWD
Any core
0 JTAG with
2 | JTAG Access Port > JTAG interface
(JTAG-AP)
7 JTAG
A
L |
I
1
]
]
AHBACCESSPORT 0

APBACCESSPORT 1
DEBUGACCESSPORT 1

©1989-2024 Lauterbach

ARC Debugger and Trace

29

Example 2: ARC core debugged via chip-internal JTAG interface controlled via the DAP:

Chip @ » System Memory
<
() A
@
Any core
D A P DAP £ y
ebug Access Port {) % m < with CoreSight
2 o APB interface
0, Memory Access Port Py
(MEM-AP) @
(@)
>
o]
[0
a
_ 1) I\:Aeénl\zrx I;Access Port
g Debug Port ("AP)
=) JTAG or < ROM Table
3% Yatagor v v "
o SWD
0 JTAG
A JTAG Access Port ¢ ’
(JTAG-AP) € > ARC
7 JTAG .
with
A 4 JTAG interface
]]
] I
1 I
] I
] I
AHBACCESSPORT 0 COREJTAGPORT 7
APBACCESSPORT 1
JTAGACCESSPORT 2

<parameters> describing debug and trace “Components”

On the COmponents tab of the SYStem.CONFIG.state window, you can comfortably add the debug and
trace components your chip includes and which you intend to use with the debugger’s help.

©1989-2024 Lauterbach ARC Debugger and Trace | 30

Each configuration can be done by a command in a script file as well. Then you do not need to enter
everything again on the next debug session. If you press the button with the three dots you get the
corresponding command in the command line where you can view and maybe copy it into a script file.

... .ATBSource <source>

... .Base <address>

... .Name

Specify for components collecting trace information from where the
trace data are coming from. This way you inform the debugger
about the interconnection of different trace components on a
common trace bus.

You need to specify the “... .Base <address>" or other attributes
that define the amount of existing peripheral modules before you
can describe the interconnection by “... .ATBSource <source>".

A CoreSight trace FUNNEL has eight input ports (port 0-7) to
combine the data of various trace sources to a common trace
stream. Therefore you can enter instead of a single source a list
of sources and input port numbers.

This command informs the debugger about the start address of
the register block of the component. And this way it notifies the
existence of the component. An on-chip debug and trace
component typically provides a control register block which
needs to be accessed by the debugger to control this
component.

The name is a freely configurable identifier to describe how many
instances exists in a target systems chip. TRACE32 PowerView
GUI shares with other opened PowerView GUIs settings and the
state of components identified by the same name and component
type. Components using different names are not shared. Other
attributes as the address or the type are used when no name is
configured.

Example 1: Shared None-Programmable Funnel:
PowerView1:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
PowerView2:

SYStem.CONFIG.FUNNEL.PROGramable OFF
SYStem.CONFIG.FUNNEL.Name "shared-funnel-1"
SYStem.CONFIG.Core 2. 1. ; merge configuration to describe a
target system with one chip containing a single none-
programmable FUNNEL.

©1989-2024 Lauterbach

ARC Debugger and Trace | 31

... .NoFlush [ON | OFF]

... .RESet

... .Size <size>

... .STackMode [NotAvailbale
| TRGETM | FULLTIDRM |
NOTSET | FULLSTOP |
FULLCTI]

... .view

ETR.CATUBase <address>

FUNNEL.Name <string>

Example 2: Cluster ETFs:

1. Configures the ETF base address and access for each core

SYStem.CONFIG.ETF.Base DAP:0x80001000 \
APB:0x80001000 DAP:0x80001000 APB:0x80001000

2. Tells the system the core 1 and 3 share cluster-etf-1 and core

2 and 4 share cluster-etf-2 despite using the same address for all

ETFs

SYStem.CONFIG.ETF.Name "“cluster-etf-1" "cluster-etf-2" \
"cluster-etf-1" "cluster-etf-2"

Deactivates a component flush request at the end of the trace
recording. This is a workaround for a bug on a certain chip. You
will loose trace data at the end of the recording. Don’t use it if not
needed. Default: OFF.

Undo the configuration for this component. This does not cause a
physical reset for the component on the chip.

Specifies the size of the component. The component size can
normally be read out by the debugger. Therefore this command
is only needed if this can not be done for any reason.

Specifies the which method is used to implement the Stack mode
of the on-chip trace.

NotAvailable: stack mode is not available for this on-chip trace.
TRGETM: the trigger delay counter of the onchip-trace is used. It
starts by a trigger signal that must be provided by a trace source.
Usually those events are routed through one or more CTls to the
on-chip trace.

FULLTIDRM: trigger mechanism for Tl devices.

NOTSET: the method is derived by other GUIs or hardware.
detection.

FULLSTOP: on-chip trace stack mode by implementation.
FULLCTI: on-chip trace provides a trigger signal that is routed
back to on-chip trace over a CTI.

Opens a window showing the current configuration of the
component.

Base address of the CoreSight Address Translation Unit (CATU).

It is possible that different funnels have the same address for
their control register block. This assumes they are on different
buses and for different cores. In this case it is needed to give the
funnel different names to differentiate them.

©1989-2024 Lauterbach

ARC Debugger and Trace | 32

FUNNEL.PROGrammable
[ON | OFF]

TPIU.Type [CoreSight |
Generic]

Default is ON. If set to ON the peripheral is controlled by
TRACES2 in order to route ATB trace data through the ATB bus
network. If PROGrammable is configured to value OFF then
TRACES2 will not access the FUNNEL registers and the base
address doesn't need to be configured. This can be useful for
FUNNELSs that don't have registers or when those registers are
read-only. TRACE32 need still be aware of the connected ATB
trace sources and sink in order to know the ATB topology. To
build a complete topology across multiple instances of
PowerView the property Name should be set at all instances to a
chip wide unique identifier.

Selects the type of the Trace Port Interface Unit (TPIU).
CoreSight: Default. CoreSight TPIU. TPIU control register
located at TPIU.Base <address> will be handled by the
debugger.

Generic: Proprietary TPIU. TPIU control register will not be
handled by the debugger.

Components and Available Commands

See the description of the commands above. Please note that there is a common description for
... .ATBSource,Base, ,RESet,TracelD.

COREDEBUG.Base <address>

COREDEBUG.RESet

Core Debug Register - ARM debug register, e.g. on Cortex-A/R
Some cores do not have a fix location for their debug register used to control the core. In this case it is
essential to specify its location before you can connect by e.g. SYStem.Up.

ETB.Base <address>
ETB.Name <string>
ETB.NoFlush [ON | OFF]
ETB.RESet

ETB.Size <size>

Embedded Trace Buffer (ETB) - ARM CoreSight module
Enables trace to be stored in a dedicated SRAM. The trace data will be read out through the debug port after

the capturing has finished.

ETF.Base <address>
ETF.Name <string>
ETF.RESet

Embedded Trace FIFO (ETF) - ARM CoreSight module
On-chip trace buffer used to lower the trace bandwidth peaks.

ETR.Base <address>
ETR.Name <string>
ETR.RESet

Embedded Trace Router (ETR) - ARM CoreSight module
Enables trace to be routed over an AXI bus to system memory or to any other AXI slave.

©1989-2024 Lauterbach

ARC Debugger and Trace | 33

ETS.ATBSource <source>

ETS.Base <address>

ETS.Name <string>

ETS.RESet

Embedded Trace Streamer (ETS) - ARM CoreSight module

FUNNEL.Base <address>

FUNNEL.Name <string>

FUNNEL.PROGrammable [ON | OFF]

FUNNEL.RESet

CoreSight Trace Funnel (CSTF) - ARM CoreSight module

Combines multiple trace sources onto a single trace bus (ATB = AMBA Trace Bus)

REP.ATBSource <sourcelist>

REP.Base <address>

REP.Name <string>

REP.RESet

CoreSight Replicator - ARM CoreSight module

This command group is used to configure ARM Coresight Replicators with programming interface. After the
Replicator(s) have been defined by the base address and optional names the ATB sources REPlicatorA and
REPIlicatorB can be used from other ATB sinks to connect to output A or B to the Replicator.

TPIU.Base <address>

TPIU.Name <string>

TPIU.RESet

Trace Port Interface Unit (TPIU) - ARM CoreSight module

Trace sink sending the trace off-chip on a parallel trace port (chip pins).

©1989-2024 Lauterbach ARC Debugger and Trace | 34

Multicore Examples

Multicore with JTAG Daisy Chain

Instruction register length of
. Core A: 3 bit
. Core B: 5 bit
. Core D: 6 bit

SYStem.CONFIG.IRPRE 6 ; IR Core D
SYStem.CONFIG.IRPOST 8 ; IR Core A + B
SYStem.CONFIG.DRPRE 1 ; DR Core D
SYStem.CONFIG.DRPOST 2 ; DR Core A + B
SYStem.CONFIG.CORE 1. 2. ; Core 1 in Chip 2
SYStem.Up

SMP multicore debugging of a quad-core ARC-HS

Setup for a ARC-HS quad core, which should debugged in SMP mode, which means that all 4 core are
debugged via the same TRACES32 PowerView GUI. SMP is the right mode if all cores share the same
memory and task. E.g. when Linux is running on the ARC quad core cluster.

In this example all ARC cores of the quad-core cluster have a separate JTAG-TAP, which is the most
common configuration.

SYStem.CPU ARC-HS
SYStem.CONFIG CoreNumber 4

SYStem.CONFIG IRPRE 12. 8. 4. 0.
SYStem.CONFIG DRPRE 3. 2. 1. 0.
SYStem.CONFIG IRPOST 0. 8. 4. 12.
SYStem.CONFIG DRPOST 0. 1. 2. 3.

CORE.ASSIGN 1 2 3 4
SYStem.Up

©1989-2024 Lauterbach ARC Debugger and Trace | 35

Multicore with Multiple ARCtangent Processor Debug Interface (MIADI)

TDI --|---> MADI ---|--> TDO
Fommm /= =\t
/TN
/ | \

/ | \

CoreA CoreB ARCtangent

SYStem.CONFIG MADI 2 ; Debug 3rd core attached to MADI
SYStem.Up

SYStem.CPU Select CPU type
Format: SYStem.CPU <cpu>
<cpu>: AUTO |

ARCtangent-A4 |

ARCtangent-A5 |

ARC600 | ARC601

ARC700

ARC-EM | ARC-EM-1r0 |

ARC-HS |

ARC-EV6x | ARC-EV7x | ARC-VPXS5 |

Default: AUTO.
Selects the processor type.

AUTO reads out the IDENTITY auxiliary register after a SYStem.Up or SYStem.Mode Attach, and sets the
system CPU to the detected core accordingly.

©1989-2024 Lauterbach ARC Debugger and Trace | 36

SYStem.JtagClock

Select clock for JTAG communication

Format:

<clockmode>:

<frequency>:

SYStem.JtagClock [<clockmode>] <frequency>

RTCK | ARTCK | CTCK | CRTCK
(<clockmode> only available if an ARM debug cable (e.g. LA-3750) is used.)

6 kHz ... 80 MHz
1250000. | 2500000. | 5000000. | 10000000. (on obsolete ICD hardware)
(<frequency> is optional if <clockmode> is set to RTCK)

Default frequency: 10 MHz.

Selects the JTAG port frequency (TCK) used by the debugger to communicate with the processor. The

frequency affects e.g. the download speed. It could be required to reduce the JTAG frequency if there are

buffers, additional loads or high capacities on the JTAG lines or if VTREF is very low. A very high frequency

will not work on all systems and will result in an erroneous data transfer. Therefore we recommend to use

the default setting if possible.

<frequency>

RTCK

The debugger cannot select all frequencies accurately. It chooses the

next possible frequency and displays the real value in the SYStem.state

window.
Besides a decimal number like “100000.” short forms like “10kHz” or
“15MHz” can also be used. The short forms imply a decimal value,

“w

although no “ is used.

The JTAG clock is controlled by the RTCK signal (Returned TCK).
On some processor derivatives there is the need to synchronize the

processor clock and the JTAG clock. In this case RTCK shall be selected.
Synchronization is maintained, because the debugger does not progress

to the next TCK edge until after an RTCK edge is received.
In case you have a processor derivative requiring a synchronization of

the processor clock and the JTAG clock, but your target does not provide

an RTCK signal, you need to select a fix JTAG clock below 2/3 of the
processor clock.

When RTCK is selected, the frequency depends on the processor clock

and on the propagation delays. The maximum reachable frequency is
about 16 MHz.
Example: system.JtagClock RTCK

©1989-2024 Lauterbach

ARC Debugger and Trace |

37

ARTCK

CTCK

CRTCK

Accelerated method to control the JTAG clock by the RTCK signal
(Accelerated Returned TCK).

Theoretically RTCK mode allows frequencies up to 2/3 of the processor
clock.

For designs using a very low processor clock we offer a different mode
(ARTCK) which might not work on all target systems. In ARTCK mode
the debugger uses a fixed JTAG frequency for TCK, independent of the
RTCK signal. TDI and TMS will be delayed by 1/2 TCK clock cycle. TDO
will be sampled with RTCK

With this option higher JTAG speeds can be reached.

The TDO signal will be sampled by a signal which derives from TCK, but
which is timely compensated regarding the debugger-internal driver
propagation delays (Compensation by TCK). This feature can be used
with a debug cable versions 3b or newer. If it is selected, although the
debug cable is not suitable, a fix JTAG clock will be selected instead
(minimum of 10 MHz and selected clock).

With this option higher JTAG speeds can be reached, if your target
provides RTCK.

The TDO signal will be sampled by the RTCK signal. This compensates
the debugger-internal driver propagation delays, the delays on the cable
and on the target (Compensation by RTCK). This feature requires that
the target provides an RTCK signal. In contrast to the RTCK option, the
TCK is always output with the selected, fixed frequency.

The modes RTCK, ARTCK, CRTCK can only be used if the target provides an
RTCK signal.

Furthermore the modes are only available with the 20-pin Debug Cable
LA-3750 (or LA-3750A in an ARM Debug Cable).

©1989-2024 Lauterbach

ARC Debugger and Trace | 38

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

The process can also be automated, see SYStem.CONFIG TriState.

It must be ensured that the state of the JTAG state machine remains unchanged while the system is locked.
To ensure correct hand-over, the options SYStem.CONFIG TAPState and SYStem.CONFIG TCKLevel
must be set properly. They define the TAP state and TCK level which is selected when the debugger
switches to tristate mode. Please note: nTRST must have a pull-up resistor on the target.

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess Enable | Denied | StopAndGo | <cpu_specific>
SYStem.ACCESS (deprecated)

Enable Memory access during program execution to target is enabled.
CPU (deprecated)

Denied Memory access during program execution to target is disabled.

StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop
takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.

For more information, see below.

This option declares if an non-intrusive memory access can take place while the CPU is executing code.
Although the CPU is not halted, run-time memory access creates an additional load on the processor’s
internal data bus.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

©1989-2024 Lauterbach ARC Debugger and Trace | 39

If specific windows that display memory or variables should be updated while the program is running, select
the memory class prefix E: or the format option %E.

Data.dump ED:0x100
Data.List EP:main

Var.View %E first

©1989-2024 Lauterbach ARC Debugger and Trace | 40

SYStem.Mode

Select target reset mode

Format:

<mode>:

SYStem.Mode <mode>

SYStem.Attach (alias for SYStem.Mode Attach)
SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

Down
NoDebug
Attach
Up

Go
Prepare

Down

NoDebug

Attach

Up

Go

The debug adapter gets tristated.
The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

If SYStem.Option.EnReset.ON is set to ON and SYStem.CONFIG.Slave
is set to OFF the debugger will drive a low-active reset pulse on the
nNRESET (nSRST) on the JTAG connector.

The debug adapter gets tristated.
The state of the CPU remains unchanged. Debug mode is not active.
In this mode the target behaves as if the debugger is not connected.

Initializes the debug interface and connects to core while program
remains running.

After this command the user program can be stopped with the break
command or by any other break condition (e.g a breakpoints).

Initializes the debug interface, enters debug mode, stops the core and
initializes several registers to their reset value. The debugger sets the
program counter to the reset address of the core.

If SYStem.Option.EnReset.ON is set to ON and SYStem.CONFIG.Slave
is set to OFF the debugger will drive a low-active reset pulse on the
nRESET (nSRST) on the JTAG connector.

Start code execution from reset vector.
Actually the debugger performs the same actions than on
SYStem.Mode.Up followed by Go.direct.

©1989-2024 Lauterbach

ARC Debugger and Trace | 41

Prepare Allow memory access without checking the go-stated of the core.

On SoCs with CoreSight DAP the debugger connects to the DAP and
allows accesses to the APB, AHB and/or AXI bus - without
communicating with the ARC core.

On SoCs with direct JTAG connection to the ARC core, memory can be
accessed via the ARC core in prepare-mode.

StandBy Not available for ARC.
(This mode is used to start debugging from power-on. The debugger will
wait until power-on is detected, then initialize the debug interface and
connect to core.)

NOTE: SYStem.Down is an abbreviation for SYStem.Mode Down.
SYStem.Up is an abbreviation for SYStem.Mode Up.
SYStem.Attach is an abbreviation for SYStem.Mode Attach.

©1989-2024 Lauterbach ARC Debugger and Trace | 42

SYStem.Option Set a target-specific option

Format: SYStem.Option <option> <value>

Set target-specific options, e.g. SYStem.Option.Endianness or SYStem.Option.IMASKHLL.
See the description of the available options below.

SYStem.Option. AHBHPROT Select AHB-AP HPROT bits
Format: SYStem.Option.AHBHPROT <value>
Default: 0

Selects the value used for the HPROT bits in the Control Status Word (CSW) of an AHB Access Port of a
DAP, when using the AHB: memory class.

This option is only meaningful, if the chip contains a CoreSight DAP.

SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
Format: SYStem.Option.AXIACEEnable [ON | OFF]
Default: OFF.

Enables ACE transactions on the DAP AXI-AP, including barriers. This does only work if the debug logic of
the target CPU implements coherent AXI accesses. Otherwise this option will be without effect.

This option is only meaningful, if the chip contains a CoreSight DAP.

©1989-2024 Lauterbach ARC Debugger and Trace | 43

SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits

Format: SYStem.Option.AXICACHEFLAGS <value>
<value>: DeviceSYStem
NonCacheableSYStem

ReadAllocateNonShareable
ReadAllocatelnnerShareable
ReadAllocateOuterShareable
WriteAllocateNonShareable
WriteAllocatelnnerShareable
WriteAllocateOuterShareable
ReadWriteAllocateNonShareable
ReadWriteAllocatelnnerShareable
ReadWriteAllocateOuterShareable

Default: DeviceSYStem (=0x30: Domain=0x3, Cache=0x0)

This option configures the value used for the Cache and Domain bits in the Control Status Word
(CSW[27:24]->Cache, CSW[14:13]->Domain) of an AXI Access Port of a DAP, when using the AXI: memory
class.

The below offered selection options are all non-bufferable. Alternatively you can enter a <value>, where
value[5:4] determines the Domain bits and value[3:0] the Cache bits.

DeviceSYStem =0x30: Domain=0x3, Cache=0x0
NonCacheableSYStem =0x32: Domain=0x3, Cache=0x2
ReadAllocateNonShareable =0x06: Domain=0x0, Cache=0x6
ReadAllocatelnnerShareable =0x16: Domain=0x1, Cache=0x6
ReadAllocateOuterShareable =0x26: Domain=0x2, Cache=0x6
WriteAllocateNonShareable =0x0A: Domain=0x0, Cache=0xA
WriteAllocatelnnerShareable =0x1A: Domain=0x1, Cache=0xA
WriteAllocateOuterShareable =0x2A: Domain=0x2, Cache=0xA
ReadWriteAllocateNonShareable =0x0E: Domain=0x0, Cache=0xE
ReadWriteAllocatelnnerShareable =0x1E: Domain=0x1, Cache=0xE
ReadWriteAllocateOuterShareable =0x2E: Domain=0x2, Cache=0xE

This option is only meaningful, if the chip contains a CoreSight DAP.

©1989-2024 Lauterbach ARC Debugger and Trace | 44

SYStem.Option.AXIHPROT Select AXI-AP HPROT bits

Format: SYStem.Option.AXIHPROT <value>

Default: 0

This option selects the value used for the HPROT bits in the Control Status Word (CSW) of an AXI Access
Port of a DAP, when using the AXI: memory class.

This option is only meaningful, if the chip contains a CoreSight DAP.

SYStem.Option.CorePowerDetection Set methods to detect core power
Format: SYStem.Option.CorePowerDetection <method>
<method>: JtagSEQuence <seq_name> | none

Sets and configures methods to detect the power of a core.

The core power is detected when SYStem.Mode Up is active or is entered. If a core is not powered, the
debugger stays in system mode “Up” but displays the state “running (no power)” in the TRACE32 state line.

At the moment only the method JtagSEQuence is available.

JtagSEQuence Enables the detection of the core power via a specified JTAG sequence.
<seq_name> The specified JTAG sequence is periodically executed by the debug
driver.
You can create a JTAG sequence with the command
JTAG.SEQuence.Create.

The debug driver assumes that the core is powered when the JTAG
sequence returns zero in the variable Result0.

In case of an SMP system, use the environment variable Physical CORE
within your JTAG sequence.

JtagSequence none Disables the detection of the core power via a JTAG sequence.

©1989-2024 Lauterbach ARC Debugger and Trace | 45

Example:

SYStem.RESet ; resets SYStem settings (unlocks all used JTAG sequences)
SYStem.CPU ARC-HS

; create JTAG sequence for power detection

JTAG.SEQuence.Delete myCorePowerCheck ; delete old sequence
JTAG.SEQuence.Create myCorePowerCheck ; Create new sequence
JTAG.SEQuence.Add , PrePostRelative +4. -4. +1. -1.
JTAG.SEQuence.Add , RawShift 4. 0x03 0x00
JTAG.SEQuence.Add , ShiftIrAndExit 4. 0x07
JTAG.SEQuence.Add , RawShift 4. 0x03 0x00
JTAG.SEQuence.Add , ShiftDrAndExit 16. 0x00 ResultO
JTAG.SEQuence.Add , RawShift 2. 0x01 0x00
JTAG.SEQuence.Add , ASSIGN Result0 = ~ ResultO & 0x0001

; use the new JTAG sequence for detecting the core power
SYStem.Option.CorePowerDetection.JtagSEQuence myCorePowerCheck

; connect to all cores of the chip
SYStem.Mode Attach

©1989-2024 Lauterbach ARC Debugger and Trace | 46

SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP

Format: SYStem.Option.DAPDBGPWRUPREQ [ON | AlwaysON | OFF]

Default: ON.

This option controls the DBGPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
before and after the debug session. Debug power will always be requested by the debugger on a debug
session start because debug power is mandatory for debugger operation.

ON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is released at the end of the debug session, and the
control bit is set to 0.

AlwaysON Debug power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The debug power is not released at the end of the debug session, and the
control bit is set to 0.

OFF Only for test purposes: Debug power is not requested and not checked by
the debugger. The control bit is set to 0.

Use case:

Imagine an AMP session consisting of at least of two TRACE32 PowerView GUIs, where one GUI is the
master and all other GUIs are slaves. If the master GUI is closed first, it releases the debug power. As a
result, a debug port fail error may be displayed in the remaining slave GUIs because they cannot access the
debug interface anymore.

To keep the debug interface active, it is recommended that SYStem.Option.DAPDBGPWRUPREQ is set to
AlwaysON.

This option is only meaningful, if the chip contains a CoreSight DAP.

©1989-2024 Lauterbach ARC Debugger and Trace | 47

SYStem.Option.DAPREMAP Rearrange DAP memory map

Format: SYStem.Option.DAPREMAP {<address_range> <address>}

The Debug Access Port (DAP) can be used for memory access during runtime. If the mapping on the DAP is
different than the processor view, then this re-mapping command can be used

NOTE: Up to 16 <address_range>/<address> pairs are possible. Each pair has to
contain an address range followed by a single address.

This option is only meaningful, if the chip contains a CoreSight DAP.

SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
Format: SYStem.Option.DAPSYSPWRUPREQ [AlwaysON | ON | OFF]
Default: ON.

This option controls the SYSPWRUPREQ bit of the CTRL/STAT register of the Debug Access Port (DAP)
during and after the debug session

AlwaysON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is not released at the end of the debug session, and the
control bit remains at 1.

ON System power is requested by the debugger on a debug session start, and
the control bit is set to 1.
The system power is released at the end of the debug session, and the
control bit is set to 0.

OFF System power is not requested by the debugger on a debug session start,
and the control bit is set to 0.

This option is only meaningful, if the chip contains a CoreSight DAP.

©1989-2024 Lauterbach ARC Debugger and Trace | 48

SYStem.Option.DAPNOIRCHECK No DAP instruction register check

Format: SYStem.Option.DAPNOIRCHECK [ON | OFF]

Default: OFF.

Bug fix for derivatives which do not return the correct pattern on a DAP (Arm CoreSight Debug Access Port)
instruction register (IR) scan. When activated, the returned pattern will not be checked by the debugger.

This option is only meaningful, if the chip contains a CoreSight DAP.

SYStem.Option.DCFLUSH Invalidate/flush data-cache for modified memory

Format: SYStem.Option.DCFLUSH [ON | OFF]

Default: ON.

If the target memory is modified via the debugger, this option ensures that the data cache (and the 2nd level
cache (SLC) if available) gets invalidated before the target CPU is restarted. Furthermore, the data cache
gets flushed when the CPU stops.

If the option is disabled, the debugger checks for every target memory access if the data is cached. If so the
debugger reads the data from the cache on a read access or writes the data separately to both target
memory and the cache on a write access.

The disabled option allows to do small modifications in the target memory without loosing the content of the
cache, while the enabled option ensures that the physical memory contains the latest changes by the CPU

after it stops, allows faster memory accesses by the debugger, and guarantees that there are no artifacts left
in the cache when re-starting the core.

SYStem.Option.DEBUGPORTOptions Options for debug port handling
Format: SYStem.Option.DEBUGPORTOptions <option>
<option>: SWITCHTOSWD.[TryAll | None | JtagToSwd | LuminaryJtagToSwd | Dor-
mantToSwd | JtagToDormantToSwd]
SWDTRSTKEEP.[DEFault | LOW | HIGH]

Default: SWITCHTOSWD.TryAll, SWDTRSTKEEP.DEFault.

©1989-2024 Lauterbach ARC Debugger and Trace | 49

See Arm CoreSight manuals to understand the used terms and abbreviations and what is going on here.

SWITCHTOSWD tells the debugger what to do in order to switch the debug port to serial wire mode:

TryAll Try all switching methods in the order they are listed below. This is
the default. Normally it does not hurt to try improper switching
sequences. Therefore this succeeds in most cases.

None There is no switching sequence required. The SW-DP is ready
after power-up. The debug port of this device can only be used as
SW-DP.

JtagToSwd Switching procedure as it is required on SWJ-DP without a

dormant state. The device is in JTAG mode after power-up.

LuminaryJtagToSwd Switching procedure as it is required on devices from
LuminaryMicro. The device is in JTAG mode after power-up.

DormantToSwd Switching procedure which is required if the device starts up in
dormant state. The device has a dormant state but does not
support JTAG.

JtagToDormantToSwd Switching procedure as it is required on SWJ-DP with a dormant

state. The device is in JTAG mode after power-up.

SWDTRSTKEERP tells the debugger what to do with the nTRST signal on the debug connector during serial
wire operation. This signal is not required for the serial wire mode but might have effect on some target
boards, so that it needs to have a certain signal level.

DEFault Use nTRST the same way as in JTAG mode which is typically a low-pulse
on debugger start-up followed by keeping it high.

LOwW Keep nTRST low during serial wire operation.

HIGH Keep nTRST high during serial wire operation

This option is only meaningful, if the chip contains a CoreSight DAP.

SYStem.Option.detectOTrace Disable auto-detection of on-chip trace
Format: SYStem.Option.detectOTrace [ON | OFF]
Default: OFF.

©1989-2024 Lauterbach ARC Debugger and Trace | 50

When connecting the debugger to the ARC core via commands SYStem.Mode Attach or

SYStem.Mode Up the debugger tries to detect if the ARC on-chip trace (SmaRT) by reading auxiliary
register 255 (AUX:0xFF).

For some reason some rare core implementations without SmaRT seem to have a fatal side-effect on
AUX:0xFF. For these cores use this option to avoid the read of AUX:0xFF during SYStem.Mode Attach or
SYStem.Mode Up.

SYStem.Option.Endianness Set the target endianness

Format: SYStem.Option.Endianness [Big | Little | AUTO]

Default: AUTO.

This option selects the target byte ordering mechanism (endianness). It effects the way data is read from or
written to the target CPU.

In AUTO mode the debugger sets the endianness corresponding to the “ARC Build Registers”, when the
debugger is attached to the target. AUTO mode is not available for ARCtangent-A4 cores.

Consider that the compiler, the ARC core and the debugger should all use the same endianness.

SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
Format: SYStem.Option.EnReset [ON | OFF]
Default: OFF.

If this option is set to ON, the debugger will drive a low-active reset pulse on the nRESET (nSRST) line on
the JTAG connector on SYStem.Up and SYStem.Down.

From the view of the core, it is not necessary that nRESET (nSRST) becomes active at the start of a debug
session (SYStem.Up), but there may be other logic on the target which requires a reset.

If SYStem.CONFIG.Slave or SYStem.Opiton.IntelSOC is set to ON, the debugger will never drive the
nRESET (nSRST), independently from SYStem.Option.EnReset.

©1989-2024 Lauterbach ARC Debugger and Trace | 51

SYStem.Option.HotBreakPoints Set breakp. when CPU is running

Format: SYStem.Option.HotBreakPoints [AUTO | ON | OFF]

Default: AUTO.

This option controls how software breakpoints are set to a running ARC core:

ON The debugger tries to set a software breakpoint while the CPU is running, if
SYStem.MemAccess is set to CPU.

OFF To set a software breakpoint, the debugger tries to stop the CPU temporarily, if
SYStem.CpuAccess is set to ENABLED.

AUTO To set a software breakpoint, the debugger stops the CPU temporarily if the CPU
has an Instruction Cache (requires SYStem.CpuAccess set to ENABLED)
otherwise the debugger tries to set a software breakpoint while the CPU is running
(requires SYStem.MemAccess set to CPU).

SYStem.Option.ICFLUSH Invalidate instruction-cache for modified memory

Format: SYStem.Option.ICFLUSH [ON | OFF]

Default: ON.

If the target memory is modified via the debugger, this option ensures that the instruction cache (and the 2nd
level cache (SLC) if available) gets invalidated before the target CPU is restarted.

If the option is disabled, the debugger tries to write any modification on the target memory also separately to
the instruction cache.

The disabled option allows to do small modifications in the target memory without loosing the content of the
cache, while the enabled option allows faster memory and guarantees that there are no artiffacts left in the
cache when re-starting the CPU.

©1989-2024 Lauterbach ARC Debugger and Trace | 52

SYStem.Option.IMASKASM Disable interrupts while single stepping

Format: SYStem.Option.IMASKASM [ON | OFF]

Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, when single stepping assembler
instructions. No hardware interrupt will be executed during single-step operations. When you execute a Go
command, the hardware interrupts will be enabled again, according to the system control registers.

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the debug core will disable all interrupts for the CPU, during HLL single-step operations. When
you execute a Go command, the hardware interrupts will be enabled again, according to the system control
registers. This option should be used in conjunction with IMASKASM.

SYStem.Option.IntelSOC Core is part of Intel® SoC
Format: SYStem.Option.IntelSOC [ON | OFF] [<soc_id>]
Default: OFF.

Informs the debugger that the ARC core is part of an Intel® SoC. When enabled, all IR and DR pre/post
settings are handled automatically, no manual configuration is necessary.

Requires that the ARC debugger is slave in a multicore setup. The master of the multicore setup must be
“TRACE32 for x86” with SYStem.Option.CLTAPOnly enabled.

<soc_id> An integer ID used by TRACE32 to identify a specific core in an SOC if
there is more than one core of the same type. This ID is platform specific.
For more details, see “Slave Core Debugging” in Intel® x86/x64
Debugger, page 34 (debugger_x86.pdf).
Default: 0.

©1989-2024 Lauterbach ARC Debugger and Trace | 53

SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs

Format: SYStem.Option.LimmBreakPoints [ON | OFF]

Default: OFF.

Any ARC instruction set allows instructions with so-called Long Immediate Data (LIMM). These instructions
have a total length of 6 or 8 bytes. When setting a software breakpoint the instruction at the address of the
software breakpoints gets replaced by a BRK or BRK_S instruction. The BRK instruction has a length of 4
byte and the BRK_S has a length of 2 bytes. When SYStem.Option.LimmBreakPoints is set to ON the
remaining 2 or 4 bytes of a LIMM instruction are overwritten with NOP_S instructions when setting a
software breakpoint on them.

This option helps to workaround a buggy implementation of an ARC core.

SYStem.Option.MMUSPACES Separate address spaces by space IDs

Format: SYStem.Option.MMUSPACES [ON | OFF]
SYStem.Option.MMUspaces [ON | OFF] (deprecated)
SYStem.Option.MMU [ON | OFF] (deprecated)

Default: OFF.
Enables the use of space IDs for logical addresses to support multiple address spaces.

For an explanation of the TRACES32 concept of address spaces (zone spaces, MMU spaces, and machine
spaces), see “TRACE32 Concepts” (trace32_concepts.pdf).

NOTE: SYStem.Option.MMUSPACES should not be set to ON if only one translation
table is used on the target.

If a debug session requires space IDs, you must observe the following
sequence of steps:

1. Activate SYStem.Option.MMUSPACES.
2. Load the symbols with Data.LOAD.

Otherwise, the internal symbol database of TRACE32 may become
inconsistent.

©1989-2024 Lauterbach ARC Debugger and Trace | 54

Examples:

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x012A:
Data.dump D:0x012A:0xC00208A

;Dump logical address 0xC00208A belonging to memory space with
;space ID 0x0203:
Data.dump D:0x0203:0xC00208A

SYStem.Option.OVERLAY Enable overlay support
Format: SYStem.Option.OVERLAY [ON | OFF | WithOVS]
Default: OFF.
ON Activates the overlay extension and extends the address scheme of the

debugger with a 16 bit virtual overlay ID. Addresses therefore have the
format <overlay_id>:<address>. This enables the debugger to handle
overlaid program memory.

OFF Disables support for code overlays.

WithOVS Like option ON, but also enables support for software breakpoints. This
means that TRACE32 writes software breakpoint opcodes to both, the
execution area (for active overlays) and the storage area. This way, it is
possible to set breakpoints into inactive overlays. Upon activation of the
overlay, the target’s runtime mechanisms copies the breakpoint opcodes to
the execution area. For using this option, the storage area must be readable
and writable for the debugger.

Example:

SYStem.Option.OVERLAY ON
Data.List 0x2:0xl1llc4d ; Data.List <overlay_ id>:<address>

©1989-2024 Lauterbach ARC Debugger and Trace | 55

SYStem.Option.RegNames Enable trivial names for core registers

Format: SYStem.Option.RegNames [ON | OFF]

Default: ON.

This option just effects the way core registers are displayed e.g. in the Register.view window or in
disassembled memory. If the option is enabled some core registers are displayed by their trivial names
describing the registers function e.g. “blink” for core register 31. When disabled the systematic name is used
corresponding tho the register number e.g. “r31” for core register 31.

SYStem.Option.PowerDetection = Choose method to detect the target power

Format: SYStem.Option.PowerDetection <method>
<method>: VTREF
PowerGood

Default: VTREF.

Selects the method how the debugger detects if the target system is powered.

VTREF The debugger uses the VTREF line on the debug connector to check if the
target system is powered.

PowerGood The debugger uses the PWRGOOD line on the debug connector to check if
the target system is powered.
This setting is only available if the used debug probe supports the PowerGood
signal.

©1989-2024 Lauterbach ARC Debugger and Trace | 56

SYStem.Option.ResetDetection Choose method to detect a target reset

Format:

<method>:

SYStem.Option.ResetDetection <method>

Sem0 | Sem1 | Sem2 | Sem3
RADbit

nSRST

None

Default: Sem1.

Selects the method how an external target reset can be detected by the debugger.

Sem0O ... Sem3

RADbit

nSRST

None

Detects a reset if corresponding semaphore bit in the SEMAPHORE auxiliary
register (AUX:0x01) is set to zero. This option is not available on ARC700 and
ARC-EM cores, since these cores do not have a SEMAPHORE register.
(This method detects “core resets”.)

Detects a reset by checking the RA-bit in the JTAG status register or DEBUG
auxiliary Register (AUX:0x05). This option is only available for ARC cores with
JTAG version 2 or higher. (This detects core resets.)

(This method detects “core resets”.)

Detects a reset if nNSRTS line on the debug connector is pulled low.

(This method detects a “chip resets” or a complete “target resets”.)
Furthermore by enabling this option the debugger will actively pull down the
nSRST line while in system-down state and when going to system-up state
and.

Detection of external resets is disabled.

SYStem.Option.TIMEOUT Define maximum time for core response

Format:

SYStem.Option.TIMEOUT <time>

Default: 1000.ms

After each JTAG transaction the debugger has to wait until the ARC core acknowledges the successful

transaction.

With this option you can specify how long the debugger waits until the debugger has to assume that the core
does no longer respond. You have to use this option only if you what to debug a unusual slow core.

©1989-2024 Lauterbach

ARC Debugger and Trace | 57

SYStem.Option.TRST Allow debugger to drive TRST

[SYStem.state window > TRST]

Format: SYStem.Option.TRST [ON | OFF]

Default: ON.

If this option is disabled, the nTRST line is never driven by the debugger (permanent high). Instead five
consecutive TCK pulses with TMS high are asserted to reset the TAP controller which have the same effect.

SYStem.POWER Control target power

Format: SYStem.POWER [ON | OFF | CYCLE]

This command requires a MIPI60 debug probe (e.g. CombiProbe with MIP160 whisker).

If supported by the target and the used debug probe, this command turns the target power ON (if off) or OFF
(if on), or does a power CYCLE (if on) via the PowerGood signal (pin#42 on MIPI60 connector).

SYStem.state Show SYStem settings window

Format: SYStem.state

Opens a window which enables you to view and modify CPU specific system settings.

©1989-2024 Lauterbach ARC Debugger and Trace | 58

On-chip Breakpoints/Actionpoints

“On-chip Breakpoints” and “Actionpoints” are two names for the same thing: A mechanism provided by the
on-chip debug logic to stop the core when an instruction is fetched form a specific address or data is read
from or written to a specific memory location. This enables you to set breakpoints even if your not able to
modify the code on the fly e.g. in a Read Only Memory.

“Actionpoints” is the name used by Synopsys in the ARC manuals, while “On-chip Breakpoints” is the
generic name used by Lauterbach. In the rest of the documentation we’ll speak only about “On-chip
Breakpoints”.

An ARC core can have 2, 4, 8 or none on-chip breakpoints. The debugger detects the number of available
breakpoints after you’ve connected to your target CPU with SYStem.Up or SYStem.Mode Attach. To find
out how many on-chip breakpoints are available execute PER.view, "Build" and check the value at
“AP_BUILD".

Using On-chip Breakpoints

See chapters Break and On-chip Breakpoints in the “General Commands Reference Guide B”. .

When a read or write breakpoint triggers, any ARC CPU stops with an
additional delay after the instructions, which causes the trigger.

The delay is 1 cycle for ARC700 and 3 cycles for ARC600. For memory reads
there is an extra delay corresponding to the memory latency.

(However program breakpoints always stop before executing the instruction.)

On ARCB600 you can set on-chip breakpoints only when the core is stopped. You can set
SYStem.CpuAccess to Enable to allow the debugger to stop and restart the core to set on-chip
breakpoints.

On ARC700 you can set on-chip breakpoints also while the core is running, when you've set
SYStem.MemAccess to CPU.

Breakpoints in a ROM Area

With the command MAP.BOnchip <range> it is possible to tell the debugger where you have ROM / FLASH
on the target. If a breakpoint is set into a location mapped as BOnchip, it gets automatically implemented as
an on-chip breakpoint.

©1989-2024 Lauterbach ARC Debugger and Trace | 59

Limitations

Due to limitations in the ARC core logic, some common features for on-chip breakpoint are not available.

ARC600 and ARC700 cores do not provide resources to set on-chip breakpoints for arbitrary
address or data ranges. Instead they use bit masks. If a given range can’t be programmed with a
bit mask, the next larger range will be used, if TrOnchip.CONVert is active.

You can check the address ranges actually set by the debugger inside the Break.List /Onchip
window.

While normal read breakpoints are available, which stop the core on the read of a given address,
so-called “read data breakpoints” area not available. So you can’t stop the core, when specific
data is read from a given address.

(“Write data breakpoints” are available.)

On ARC700 you can use “Write data breakpoints” together with address ranges only for 32-bit
wide data.

For ARC600 using on-chip program breakpoints together with instruction data is not supported,
since the on-chip logic of an ARC600 does not align the fetched instruction before comparing it to
the value, which make this feature useless.

On ARC600 you can’t set on-chip breakpoints, while the core is running.

©1989-2024 Lauterbach ARC Debugger and Trace | 60

TrOnchip.CONVert Allow extension of address range of breakpoint

Format: TrOnchip.CONVert [ON | OFF] (deprecated)
Use Break.CONFIG.InexactAddress instead

Controls for all on-chip read/write breakpoints whether the debugger is allowed to change the user-defined
address range of a breakpoint (see Break.Set <address_range> in the figure below).

e unmodified range >

Range fits
Break.Set <addr_range> to debug
logic?
Program
debug logic
o modified range >
TrOnchip.
CONVert
Error
The debug logic of a processor may be implemented in one of the following three ways:
1. The debug logic does not allow to set range breakpoints, but only single address breakpoints.

Consequently the debugger cannot set range breakpoints and returns an error message.

2. The debugger can set any user-defined range breakpoint because the debug logic accepts this
range breakpoint.

3. The debug logic accepts only certain range breakpoints. The debugger calculates the range that
comes closest to the user-defined breakpoint range (see “modified range” in the figure above).

©1989-2024 Lauterbach ARC Debugger and Trace | 61

The TrOnchip.CONVert command covers case 3. For case 3) the user may decide whether the debugger is
allowed to change the user-defined address range of a breakpoint or not by setting TrOnchip.CONVert to

ON or OFF.
ON If TrOnchip.Convert is set to ON and a breakpoint is set to a range which
(default) cannot be exactly implemented, this range is automatically extended to

the next possible range. In most cases, the breakpoint now marks a wider
address range (see “modified range” in the figure above).

OFF If TrOnchip.Convert is set to OFF, the debugger will only accept
breakpoints which exactly fit to the debug logic (see “unmodified range”
in the figure above).

If the user enters an address range that does not fit to the debug logic, an
error will be returned by the debugger.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

©1989-2024 Lauterbach ARC Debugger and Trace | 62

TrOnchip.VarCONVert Convert breakpoints on scalar variables

Format: TrOnchip.VarCONVert [ON | OFF] (deprecated)
Use Break.CONFIG.VarConvert instead

Controls for all scalar variables whether the debugger sets an HLL breakpoint with Var.Break.Set only on
the start address of the scalar variable or on the entire address range covered by this scalar variable.

o single address >

TrOnchip.
Var.Break.Set <scalar> > VarCONVert

Program

debug logic
< unmodified range > it

addr range
©)
')

Range fits
to debug
logic?

o modified range >

TrOnchip.
CONVert

Error

©1989-2024 Lauterbach ARC Debugger and Trace | 63

ON If TrOnchip.VarCONVert is set to ON and a breakpoint is set to a scalar
variable (int, float, double), then the breakpoint is set only to the start
address of the scalar variable.

] Allocates only one single on-chip breakpoint resource.

] Program will not stop on accesses to the variable’s address space.
OFF If TrOnchip.VarCONVert is set to OFF and a breakpoint is set to a scalar
(default) variable (int, float, double), then the breakpoint is set to the entire

address range that stores the scalar variable value.

. The program execution stops also on any unintentional accesses

to the variable’s address space.
. Allocates up to two on-chip breakpoint resources for a single

range breakpoint.
NOTE: The address range of the scalar variable may not fit to the debug
logic and has to be converted by the debugger, see TrOnchip.CONVert.

In the Break.List window, you can view the requested address range for all breakpoints, whereas in the
Break.List /Onchip window you can view the actual address range used for the on-chip breakpoints.

TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger

Format: TrOnchip.OnchipBP [<number> | AUTO]

Default: AUTO.

An ARC core has between 0 and 8 on-chip breakpoint resources (Called “Actionpoints” in the ARC core
documentation). These resources are normally completely controlled by the debugger and are modified e.g.
when you set on-chip breakpoints e.g. via Break.Set <address>/Onchip /Write.

Sometimes you might want to control the breakpoint resources (AUX:0x220--0x237) or parts of it by you
own. With TrOnchip.OnchipBP you can tell the debugger how many on-chip breakpoint registers the
debugger may control, leaving the rest of them untouched.

E.g.: If you have an ARC core with 4 on-chip breakpoints but you want control one breakpoint by your own,
set TrOnchip.OnchipBP to 3. The registers you can control then by your own are those of the fourth
breakpoint (AUX:0x229--0x22b).

NOTE: This option is only for advanced users which have a good knowledge of the
Actionpoint Auxiliary Registers described in the ARC600 Ancillary Components
Reference or the ARC700 System Components Reference.

©1989-2024 Lauterbach ARC Debugger and Trace | 64

TrOnchip.RESet Set on-chip trigger to default state

Format: TrOnchip.RESet

Sets the TrOnchip settings and trigger module to the default settings.

TrOnchip.state Display on-chip trigger window

Format: TrOnchip.state

Opens the TrOnchip.state window.

©1989-2024 Lauterbach ARC Debugger and Trace | 65

CPU specific MMU Commands

MMU.DUMP Page wise display of MMU translation table
Format: MMU.DUMP <table> [<range> | <address> | <range> <root> |
<address> <root>]
MMU. <table>.dump (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
<cpu_specific_tables>

Displays the contents of the CPU specific MMU translation table.

. If called without parameters, the complete table will be displayed.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root>

The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range>
<address>

Limit the address range displayed to either an address range
or to addresses larger or equal to <address>.

For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable

Displays the entries of an MMU translation table.

. if <range> or <address> have a space ID: displays the translation
table of the specified process

. else, this command displays the table the CPU currently uses for
MMU translation.

©1989-2024 Lauterbach

ARC Debugger and Trace | 66

KernelPageTable

Displays the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and displays its table entries.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Displays the MMU translation table entries of the given process. Specify
one of the TaskPageTable arguments to choose the process you want.
In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and displays its table entries.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

CPU specific Tables in MMU.DUMP <table>

ITLB Displays the contents of the Instruction Translation Lookaside Buffer.
DTLB Displays the contents of the Data Translation Lookaside Buffer.

TLB Displays the contents of the Translation Lookaside Buffer.

TLBO Displays the contents of the Translation Lookaside Buffer 0.

STLB Displays the contents of the STLB.

©1989-2024 Lauterbach

ARC Debugger and Trace |

67

MMU.List Compact display of MMU translation table
Format: MMU.List <table> [<range> | <address> | <range> <root> | <address> <root>]
MMU.<table>.List (deprecated)
<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0

Lists the address translation of the CPU-specific MMU table.

J If called without address or range parameters, the complete table will be displayed.

J If called without a table specifier, this command shows the debugger-internal translation table.
See TRANSIation.List.

o If the command is called with either an address range or an explicit address, table entries will
only be displayed if their logical address matches with the given parameter.

<root> The <root> argument can be used to specify a page table base address
deviating from the default page table base address. This allows to display a
page table located anywhere in memory.

<range> Limit the address range displayed to either an address range

<address> or to addresses larger or equal to <address>.
For most table types, the arguments <range> or <address> can also be
used to select the translation table of a specific process if a space ID is
given.

PageTable Lists the entries of an MMU translation table.

. if <range> or <address> have a space ID: list the translation table
of the specified process

o else, this command lists the table the CPU currently uses for MMU
translation.

KernelPageTable

Lists the MMU translation table of the kernel.
If specified with the MMU.FORMAT command, this command reads the
MMU translation table of the kernel and lists its address translation.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Lists the MMU translation of the given process. Specify one of the
TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and lists its address translation.

. For information about the first three parameters, see “What to
know about the Task Parameters” (general_ref_t.pdf).
. See also the appropriate OS Awareness Manuals.

©1989-2024 Lauterbach

ARC Debugger and Trace | 68

MMU.SCAN Load MMU table from CPU

Format: MMU.SCAN <table> [<range> <address>]
MMU. <table>.SCAN (deprecated)

<table>: PageTable
KernelPageTable
TaskPageTable <task_magic> | <task_id> | <task_name> | <space_id>:0x0
ALL [Clear]
<cpu_specific_tables>

Loads the CPU-specific MMU translation table from the CPU to the debugger-internal static translation table.

. If called without parameters, the complete page table will be loaded. The list of static address
translations can be viewed with TRANSIation.List.

J If the command is called with either an address range or an explicit address, page table entries
will only be loaded if their logical address matches with the given parameter.

Use this command to make the translation information available for the debugger even when the program
execution is running and the debugger has no access to the page tables and TLBs. This is required for the
real-time memory access. Use the command TRANSIation.ON to enable the debugger-internal MMU table.

PageTable Loads the entries of an MMU translation table and copies the address
translation into the debugger-internal static translation table.
J if <range> or <address> have a space ID: loads the translation table
of the specified process
. else, this command loads the table the CPU currently uses for MMU
translation.

©1989-2024 Lauterbach ARC Debugger and Trace | 69

KernelPageTable

Loads the MMU translation table of the kernel.

If specified with the MMU.FORMAT command, this command reads the table
of the kernel and copies its address translation into the debugger-internal
static translation table.

TaskPageTable
<task_magic> |
<task_id> |
<task_name> |
<space_id>:0x0

Loads the MMU address translation of the given process. Specify one of
the TaskPageTable arguments to choose the process you want.

In MMU-based operating systems, each process uses its own MMU
translation table. This command reads the table of the specified process,
and copies its address translation into the debugger-internal static translation
table.

o For information about the first three parameters, see “What to know
about the Task Parameters” (general_ref_t.pdf).
J See also the appropriate OS Awareness Manual.
ALL [Clear] Loads all known MMU address translations.

This command reads the OS kernel MMU table and the MMU tables of all
processes and copies the complete address translation into the debugger-
internal static translation table.
See also the appropriate OS Awareness Manual.
Clear: This option allows to clear the static translations list before reading
it from all page translation tables.

MMU.Init Invalidate TLB entries

Format: MMU.Init TLB | STLB

Invalidates all entries of the given TLB.

MMU.Set Set an MMU TLB entry
Format: MMU.Set <tlb> <index> <pd0> <pd1>
<tlb> TLB | STLB

Sets the specified MMU TLB entry.

©1989-2024 Lauterbach

ARC Debuggerand Trace | 70

CPU specific JTAG.CONFIG Commands

JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals

Using the JTAG.CONFIG command group, you can change electrical characteristics of MIPI-60 debug
signals to account for target irregularities.

Availability of these commands is dependent on the used Lauterbach debug probe (e.g. available with a
CombiProbe with MIP160-Cv2 whisker).

JTAG.CONFIG.DRiVer Set slew rate of JTAG signals
Format: JTAG.CONFIG.DRiVer.<signal> Fast | Slow [/<whisker>]
<signal>: all | TCK | TCKO | TCK1 | TMS | TDI | nTRST | nPREQ
<whiskers: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Selects whether to use a series inductor to slow the slew rate of output signals.

all Set rate for all relevant signals.

TCK Set rate only for selected signal.

TCKO

TCKA1

TMS

TDI

nTRST

nPREQ

FAST Use direct drive of selected signals.

SLOW Insert inductor on drive of selected signals to limit voltage change rate.

NOTE: With a CombiProbe and MIP160-Cv2 whisker only WhiskerA is available.
With a CombiProbe and MIP160-C(v1) whisker this configuration command is not
available.

©1989-2024 Lauterbach ARC Debugger and Trace | 71

JTAG.CONFIG.PowerDownTriState Automatically tristate outputs

Format: JTAG.CONFIG.PowerDownTriState ON | OFF [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD
Default: ON.

Enables or disables the automatic setting of all signals to tristate when a power down state of the target is

detected.
JTAG.CONFIG.TckRun Free-running TCK mode
[build 143356 - DVD 09/2022]
Format: command.subcommand OFF | TCKO | TCK1 [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD
Default: OFF.

Enables free-running TCK mode for the respective TCK signal.

JTAG.CONFIG.TDOEdge Select TCK edge
Format: JTAG.CONFIG.TDOEdge Rising | Falling [/<whisker>]
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: RISING

Selects which edge of TCK signal is used for reading TDO.

©1989-2024 Lauterbach ARC Debugger and Trace | 72

JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages

Format: JTAG.CONFIG.Voltage.HooKTHreshold.<signal> <voltage> [[<whisker>]
<signal>: all | HookO | Hook6 | Hook8 | Hook9
<whiskers: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: JTAG.CONFIG.Voltage.HooKTHreshold.all 0.6.

Sets voltage threshold to use for determining active state for selected Hook signals.

all Set threshold for all Hook input signals.

HookO Set threshold for selected Hook input signal only.

Hook6 (Not available for MIPI60-C(v1) whisker.)

Hook8

Hook9

<voltage> Float value in volts to use as threshold.

NOTE: With a CombiProbe and any MIPI60 whisker only WhiskerA is available.
With a CombiProbe and MIP160-C(v1) whisker only the signal all is possible

JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages
Format: JTAG.CONFIG.Voltage.THreshold.<signal> <level> [/<whisker>]
<signal>: all | TDO | PRDY
<level>: <voltage> | AUTO
<whisker>: WhiskerA | WhiskerB | WhiskerC | WhiskerD

Default: JTAG.CONFIG.Voltage. THreshold.all AUTO.

Set voltage threshold to use for determining active state for selected JTAG signals.

©1989-2024 Lauterbach ARC Debugger and Trace | 73

all Set threshold for TDO and PRDY.
(Sets also voltage threshold for VTREF on a MIPI60-C(v1) whisker.)
TDO Set threshold for only selected signal.
PRDY (Not available for MIPI160-C(v1) whisker.)
AUTO Use threshold derived from reference voltage.
<voltage> Value in volts to use as threshold.
NOTE: With a CombiProbe and any MIPI60 whisker only WhiskerA is available.
With a CombiProbe and MIP160-C(v1) whisker only signal all is possible

JTAG.CONFIG.Voltage.REFerence Voltage level of signals send to target

Format:

JTAG.CONFIG.Voltage.REFerence <voltage> | AUTO

Default: JTAG.CONFIG.Voltage.REFerence AUTO.

Selects voltage level with which all signals from the debug probe to the target system are driven.

Setting a too high voltage level may damage you target hardware!
Don’t use this command unless you know, which voltage levels can be handled
by your CPU device.

<voltage> Use specified value in volts as reference voltage.
AUTO Output voltage set by measuring reference voltage supplied from target
system.
NOTE: With a CombiProbe and MIP160-Cv2 whisker only WhiskerA is available.
With a CombiProbe and MIPI60-C(v1) whisker this command is not available.

©1989-2024 Lauterbach

ARC Debugger and Trace | 74

Trace specific NEXUS Commands

NEXUS.AuxTM Enable auxiliary register trace messages

Format: NEXUS.AuxTM [OFF | Read | Write | ReadWrite]

Globally enables data trace for accesses to the core’s auxiliary register.

This feature is only available for DesignWare ARC Trace with producer-type “full”.

OFF No data trace for auxiliary register (default).

Read Data trace messages for read accesses on auxiliary registers (load
instructions).

Write Data trace messages for write accesses on auxiliary registers (store

instructions).

ReadWrite Data trace messages for read or write accesses on auxiliary registers
(load and store instructions).

NEXUS.BTM Enable program trace messaging

Format: NEXUS.BTM [ON | OFF]

Control for NEXUS program trace messaging.

ON (default) Program trace messaging enabled.

OFF Program trace messaging disabled.

©1989-2024 Lauterbach ARC Debugger and Trace | 75

NEXUS.CLOCK Clock to calculate time out of cycle count information

Format: NEXUS.CLOCK <frequency>
NEXUS.CLOCK <frequencyO><frequency1>... (SMP tracing only)

Sets core clock to calculate elapsed time based on the cycle count information, which is emitted when
NEXUS.TImeMode is set to a mode using “NexusTimeStamps”.

This command is an alias to command Trace.CLOCK.

NEXUS.DataSuppress Suppress data flow on likely FIFO overflow
Format: NEXUS.DataSuppress [ON | OFF]
Default: OFF.

Allows DesignWare ARC Trace to suppress any data trace if a chip internal FIFO overflow is likely to
happen.

This feature is only available when DesignWare ARC Trace was build with a CoreSight compatible (ATB)
offload interface.

NEXUS.DDR Enable NEXUS double data rate mode

Format: NEXUS.DDR [ON | OFF]

Default: OFF.

Sets trace port and NEXUS adapter to operate in DDR (double data rate) mode, which means that trace
data is emitted on the Nexus auxiliary port on both rising and falling edge of the trace clock.

This feature is only available when DesignWare ARC Trace was build with a Nexus auxiliary port (Nexus
offchip-trace).

©1989-2024 Lauterbach ARC Debugger and Trace | 76

NEXUS.DSM Enable core debug status messages

Format: NEXUS.DSM [ON | OFF]

Enables debug status messages, which get admitted when the trace starts and stops.

ON Debug status messages enabled (default & recommended).
OFF Debug status messages disabled.

NEXUS.DTM Enable data trace messages
Format: NEXUS.DTM [OFF | Read | Write | ReadWrite]

Globally enables data trace for memory accesses performed by the core.

This feature is not available for DesignWare ARC Trace with producer-type “small”.

OFF No data trace for memory accesses (default).

Read Data trace messages for read accesses on the memory (load
instructions).

Write Data trace messages for write accesses on the memory(store
instructions).

ReadWrite Data trace messages for read or write accesses on the memory (load

and store instructions).

©1989-2024 Lauterbach ARC Debugger and Trace | 77

NEXUS.FILTER Configure the onchip trace filter resources

NEXUS.FILTER.ACompLimit Trace address filters used by debugger

Format: NEXUS.FILTER.ACompLimit <number>| AUTO

Default: AUTO.

Depending on its build configuration DesignWare ARC Trace has between 0 and 8 on-chip address filter
resources. These resources are normally completely controlled by the debugger and are modified when you
configure a trace filter via the Break.Set commands.

Example:

Break.Set <address-range> / TraceEnable

Sometimes you might want to control the address filter resources (or parts of it) by yourself.

With NEXUS.FILTER.AComplimit you can tell the debugger how many address filter the debugger may
control, leaving the rest of them untouched.

Setting AUTO means, that the debugger may use all available address filters.

This is an advanced feature for users which have a very good knowledge of DesignWare ARC Trace.

NEXUS.FILTER.DCompLimit Number of trace data filter used by debugger

Format: NEXUS.FILTER.DCompLimit <number>| AUTO

Default: AUTO.

Depending on its build configuration DesignWare ARC Trace has between 0 and 2 on-chip data filter
resources. These resources are normally completely controlled by the debugger and are modified when you
configure a trace filter via the Break.Set commands.

Example:

Break.Set D:0x0--0Oxffffffff /TraceData /DATA.Long 0x42

Sometimes you might want to control the data filter resources (or parts of it) by yourself.

©1989-2024 Lauterbach ARC Debugger and Trace | 78

With NEXUS.FILTER.DCompLimit you can tell the debugger how many data filter the debugger may
control, leaving the rest of them untouched.

Setting AUTO means, that the debugger may use all available data filters.

This is an advanced feature for users which have a very good knowledge of DesignWare ARC Trace.

NEXUS.HISToryTHreshold Control the conditional history threshold

Format: NEXUS.HISToryTHreshold [<number>]

Default: 0 (RFM is generated every 29th or 28th branches).

Advanced option to configure the Conditional History Threshold of the DesignWare ARC Trace, which
specifies how often a Resource Full Message is emitted.

For more details look in the “DesignWare ARC Trace Databook” for the CHTH field of the DSEN register.
This feature is only available for DesignWare ARC Trace version 5 and higher.

This is an advanced feature for users which have a very good knowledge of DesignWare ARC Trace.

NEXUS.OFF Switch the NEXUS trace port off

Format: NEXUS.OFF

Disables the usage of DesignWare ARC Trace.

NEXUS.ON Switch the NEXUS trace port on

Format: NEXUS.ON

Enables the usages of DesignWare ARC Trace. All trace registers are configured by debugger.

©1989-2024 Lauterbach ARC Debugger and Trace | 79

NEXUS.PortMode Set NEXUS trace port frequency

Format: NEXUS.PortMode 1/111/211/411/8

Sets the NEXUS trace port frequency. For parallel NEXUS, the setting is the system clock divider. For Aurora
NEXUS, the setting is a fixed bit clock which is independent of the system frequency.

NEXUS.Register Display NEXUS trace control registers

Format: NEXUS.Register

Opens a window which shows all registers related to DesignWare ARC Trace.

The registers are usually controlled by debugger and thus, manual changes get overwritten without
notification.

NEXUS.RegTM Enable core register trace messages

Format: NEXUS.RegTM [OFF | Write]

Enables data trace for write accesses to core register.

This feature is only available for DesignWare ARC Trace with producer-type “full”.

OFF No data trace for auxiliary register (default).

Write Data trace messages for write accesses on auxiliary registers (store
instructions).

NEXUS.RESet Reset NEXUS settings

Format: NEXUS.RESet

Resets all settings of the NEXUS command group to its default values.

©1989-2024 Lauterbach ARC Debugger and Trace | 80

NEXUS.RTTBUILD Define build configuration of used DesignWare trace

Format: NEXUS.RTTBUILD <rtt_bcr>

Advanced option to define the build configuration of the used DesignWare ARC Trace when decoding trace
in the TRACES32 Instruction Set Simulator. The command is locked when the debugger is connected to the
ARC core (SYStem.Up()==TRUE()).

For the meaning to the 32-bit value "rtt_bcr" look in the "DesignWare ARC Trace Databook" for the Build
Configuration Register (RTT_BCR).

This is an advanced feature which is only required for belated trace decoding.

NEXUS.STALL Stall program execution when FIFO full

Format: NEXUS.STALL [ON | OFF]

Default: OFF.
Stalls the DesignWare ARC processor core when the output FIFO of the DesignWare ARC Trace is full.

If enabled, gaps in the program trace recording are avoided at the cost of a strong negative impact on the
core performance.

NEXUS.state Display NEXUS port configuration dialog

Format: NEXUS.state

Displays a dialog window to configure the DesignWare ARC Trace.

NEXUS.SyncFrame Control SYNC frame insertion in ATB stream

Format: NEXUS.SyncFrame <number>

Default: 1024.

©1989-2024 Lauterbach ARC Debugger and Trace | 81

Advanced option to configure the amount of SYNC frames inserted in the CoreSight ATB stream. SYNC
frames are required to extract the Nexus beats from the byte oriented ATB stream.

For more details look in the “DesignWare ARC Trace Databook” for the SYNCFR register.

This feature is only available when DesignWare ARC Trace was build a CoreSight compatible (ATB) offload
interface.

This is an advanced feature for users which have a very good knowledge of DesignWare ARC Trace.

NEXUS.TImeMode Select method of time measurement
Format: NEXUS.TImeMode <mode>
mode>: OFF | External | TimeStamps | NexusTimeStamps |
NexusTimeStamps+External | NexusTimeStamps+ExternalTrack |
NexusTimeStamps+TimeStamps

The command NEXUS.TImeMode allows to choose the method, which is used to determine the elapsed
time in the trace recording.

OFF No time measurement.

External Time measurement based on external timestamps added by the
PowerTrace hardware. Only available with offchip-trace.
Pro: No extra bandwith is required for the timestamp. Allows timing
correlation among cores simultaneously traced with offchip-trace.
Con: Timestamp might be imprecise due to delays caused by the
trace infrastructure of the chip and due to dalays caused by the
TRACES2 recording technology.

TimeStamps Time measurement based on separate timestamp messages fed by
a global timestamp counter inside the chip. Command
NEXUS.TimeStampCLOCK needs to be used to notify the debugger
about the frequency of the global timestamp counter.
Pro: Better accuracy than mode "External”. Allows timing correlation
among cores sharing the same global timestamp.
Con: Requires some additional bandwidth on the trace
port. Timestamp packets are not generated too often. Requires trace
version 4 or higher.

©1989-2024 Lauterbach ARC Debugger and Trace | 82

NexusTimeStamps Time measurement based on elapsed core clock cycles, which get
emitted with every Nexus message. Command NEXUS.CLOCK
needs to be used to notify the debugger about the frequency of the
core clock.

Pro: Provides accurate core clock cycle information.

Con: Requires a lot more bandwidth on the trace port. Not suitable
when core clock frequency changes dynamically. No timing
correlation between cores.

NexusTimeStamps+Ext Time measurement based on elapsed core clock cycles and

ernal external timestamps. Recommended if the core clock changes
occasionally or if you can't determine the core clock frequency.
Pro: Better accuracy than mode "External”. Allows timing correlation
among cores simultaneously traced with offchip-trace.
Con: Requires a lot more bandwidth on the trace port.

NexusTimeStamp+Exter Time measurement based on elapsed core clock cycles and
nalTrack external timestamps. Recommended if the core clock changes
frequently.
Pro: Better accuracy than mode "External”. Allows timing correlation
among cores simultaneously traced with offchip-trace.
Con: Requires a lot more bandwidth on the trace port. Less
accurate if the core clock frequency does not change.

NexusTimeStamps+Tim Time measurement based on elapsed core clock cycles and global
eStamps onchip timestamps.
Pro: Better accuracy than mode "TimeStamps". Allows timing
correlation among cores sharing the same global timestamp.
Con: Requires a lot more bandwidth on the trace port.

NEXUS.TimeStampCLOCK Specify frequency of the global timestamp

Format: NEXUS.TimeStampCLOCK <frequency>

If the trace infrastructure contains a global timestamp, TRACES32 needs to know its frequency, if the global
timestamp is used to determine the elapsed time during the trace recoeding. This command only has an
effect if NEXUS.TImeMode was set to “Timestamps” or “NexusTimeStamps+TimeStamps”.

This feature is only available for DesignWare ARC Trace version 4 and higher.

©1989-2024 Lauterbach ARC Debugger and Trace | 83

NEXUS.TracelD Set ID for CoreSight ATB stream

Format: NEXUS.TracelD AUTO | <number>

Default: AUTO.

The command NEXUS.TracelD sets the ATB-ID used by the DesignWare ARC Trace when emitting the
trace stream to the CoreSight ATB.

Every trace stream must have a different ID inside the same CoreSight ATB network. It is especially
important with AMP multicore configurations to ensure that every trace producer uses a different ID.

In SMP multicore configurations this command sets the ID of the first core, while the ID is incremented for
each consecutive core in the same SMP cluster.

This feature is only available when DesignWare ARC Trace was build with a CoreSight compatible (ATB)
offload interface.

NEXUS.WTM Enable watchpoint trace messages

Format: NEXUS.WTM [ON | OFF]

Enables the generation of Watchpoint Trace Messages, which are emitted when an actionpoint (onchip
breakpont) triggers. Watchpoint Trace Messages are ignored by TRACE32.

ON Debug status messages enabled.

OFF Debug status messages disabled (default & recommended).

©1989-2024 Lauterbach ARC Debugger and Trace | 84

Debug Connector Type and Pinout

Normal 20-Pin Connector

The 20-pin connector is the typical connector used with ARC CPUs but also with quite a lot of other CPU
families (like e.g. ARM Cortex). The Lauterbach debug cable LA-3750 is designed for this pin-out. The
following drawing shows the top view to the male connector on the target board.

Signal Pin Pin Signal

VTREF 1 2 VSUPPLY (not used)
TRST- (optional) 3 4 GND
TDI 5 6 GND
TMSITMSC 7 8 GND
TCKITCKC 9 10 GND
RTCK (optional) 11 12 GND
TDO 13 14 GND
SRST- (optional) 15 16 GND
EVTI (optional) 17 18 GND
EVTO (leave open) 19 20 GND

The meaning of the signals is as follows:

TCK I TCKC | to CPU

JTAG Clock
It is recommended to put a pull-DOWN to GND on this signal.

TMS to CPU Standard JTAG TMS
It is recommended to put a pull-UP to VTREF on this signal for
standard 4-pin JTAG.
TMSC to/from CPU Compact JTAG TMSC
Your chip should have a bus-hold on this line for compact JTAG.
TDI to CPU JTAG TDI
It is recommended to put a pull-UP to VTREF on this signal.
Only required for standard 4-pin JTAG / Optional for compact JTAG.
TDO from CPU JTAG TDO (No pull-up or pull-down is required.)
Only required for standard 4-pin JTAG / Optional for compact JTAG.
TRST- to CPU JTAG Testport Reset (Optional signal)
No pull-up or pull-down is required.
RTCK from CPU JTAG Return Clock (Optional signal)
No pull-up or pull-down is required.
VTREF from CPU Reference voltage

This voltage should indicate the nominal HIGH level for the JTAG
and trace pins. So for example, if your signals have a voltage swing
from 0 ... 3.3 V, the VTREF pin should be connected to 3.3 V.

©1989-2024 Lauterbach

ARC Debugger and Trace | 85

SRST-

to/from CPU

System Reset Signal. (Optional signal)

If your board has a low active CPU reset signal, you can connect
this low active reset signal to this pin. This enables the debugger to
detect a CPU reset (see SYStem.Option.ResetDetection.nSRST).
Furthermore the debugger can drive this pin to GND to reset the
CPU (see SYStem.Option.EnReset). The debugger drives this pin
as open-drain, so a pull-up is mandatory.

EVTI to CPU Nexus Event In. (optional), only used with DesignWare ARC Trace
to force a Nexus Synchronization Message.
EVTO from CPU Nexus Event Out (optional).

This pin is not used by ARC processors.
(Leave open (N/C) if not used)

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to “Arm Debug and Trace Interface Specification”

(app_arm_target_interface.pdf).

©1989-2024 Lauterbach

ARC Debugger and Trace | 86

MIPI10 / MIPI20 / MIPI34 Connector

For the pin-out of the MIP110, MIPI20, or MIPI134 connector see
https://www.lauterbach.com/adarmcombi.html.

You can connect to the MIPI10, MIPI120, or MIPI34 connector by either using a converter for the normal 20-

pin debug cable, or by using a CombiProbe with a standard MIPI34 whisker (which is suitable for MIPI10,
MIPI20 and MIPI134)

Converged MIPI60-Cv2 Connector

For the converged MIPIB0 target pinout specified by Inte/®see
“MIPI60-Cv2 Connector” (debugger_x86.pdf)

or https://www.lauterbach.com/adcobintelx86.html

To use this connector you usually need a Lauterbach CombiProbe with MIPI60-Cv2 whisker plus a separate
ARC debug license. (LA-4590 + LA3750A)

XDP Connector

For the 60-pin XDP connector specified by Intel® see
“JTAG Connector” (debugger_x86.pdf)
or https://www.lauterbach.com/adatom.html

Do not use the 60-pin XDP connector for new designs.

Instead use the “Converged MIPI60-Cv2 Connector”, page 87.

The Lauterbach debug cable LA-3752 is designed for the 60-pin XDP pin-out. It has been out of production
since 2017.

©1989-2024 Lauterbach ARC Debugger and Trace | 87

https://www.lauterbach.com/adarmcombi.html
https://www.lauterbach.com/adcobintelx86.html
https://www.lauterbach.com/adatom.html

Trace Connector Type and Pinout

Trace Signals

Pin

Direction

Description

MKCO

from CPU

Nexus Message Clock-out (trace clock). This pin is mandatory and
has to be on its dedicated position.

MSEOx

from CPU

Nexus Message Start/End Out. These signals are controlling the
transitions between the state in the Nexus state machine. The signals
are mandatory. With TRACE32 command Analyzer.REMAP you can
move them to the location of any MSEO or MDO pin.

MDOx

from CPU

Depending on the build configuration of the ARC trace block, you
need 4, 8, or 16 MDO lines. With TRACE32 command
Analyzer.REMAP you can move them to the location of any MSEO
or MDOQ pin.

VREF-
TRACE

from CPU

This voltage should indicate the nominal HIGH level for the trace pins.
So for example, if your signals have a voltage swingfromQ0V ... 3.3V,
the VREF-TRACE pin should be connected to 3.3 V. This pin is
mandatory and have to be on its dedicated position.

©1989-2024 Lauterbach

ARC Debugger and Trace | 88

Normal Nexus Auxiliary Port (Mictor 38)

Connector "TRACE A" only.

Signal

N/C

N/C

N/C

EVTI (opt.)
SRST- (opt.)
TDO

RTCK (opt.)
TCK | TCKC
TMS | TMSC
TDI

TRST- (opt.)
MDO15
MDO14
MDO13
MDO12
MDO11
MDO10
MDO9
MDO8

Signal

N/C

N/C

MCKO
EVTO (opt.)
N/C
VREF-TRACE
VREF-JTAG
MDO7
MDOG6
MDO5
MDO4
MDO3
MDO2
MDO1
MDOO
GND

GND
MSEO1
MSEOO

©1989-2024 Lauterbach

ARC Debugger and Trace

89

Dual Eight-bit Nexus Auxiliary Port (Mictor 38)

Connector "TRACE A" only.

Signal

N/C

N/C

N/C

EVTI (opt.)
SRST- (opt.)
TDO

RTCK (opt.)
TCK | TCKC
TMS | TMSC
TDI

TRST- (opt.)
MDO7_B
MDO6_B
MDO5_B
MDO4_B
MDO3_B
MDO2_B
MDO1_B
MDOO_B

Out Offload and CoreSight TPIU

Signal

N/C

N/C

MCKO
EVTO (opt.)
N/C
VREF-TRACE
VREF-JTAG
MDO7_A
MDO6_A
MDO5_A
MDO4_A
MDO3_A
MDO2_A
MDO1_A
MDOO_A
MSEO1_B
MSEOO_B
MSEO1_A
MSEOO_A

For details please refer to “ARM-ETM Trace” (trace_arm_etm.pdf).

©1989-2024 Lauterbach

ARC Debugger and Trace

90

	ARC Debugger and Trace
	History
	Introduction
	Supported ARC Cores
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts

	Warning
	Troubleshooting
	SYStem.Up Errors

	FAQ
	Quick Start
	CPU specific SETUP Command
	SETUP.DIS Disassembler configuration

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	<parameters> describing the “DebugPort”
	<parameters> describing the “JTAG” scan chain and signal behavior
	MultiTap
	<parameters> configuring a CoreSight Debug Access Port “DAP”
	<parameters> describing debug and trace “Components”
	Multicore Examples

	SYStem.CPU Select CPU type
	SYStem.JtagClock Select clock for JTAG communication
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Select target reset mode
	SYStem.Option Set a target-specific option
	SYStem.Option.AHBHPROT Select AHB-AP HPROT bits
	SYStem.Option.AXIACEEnable ACE enable flag of the AXI-AP
	SYStem.Option.AXICACHEFLAGS Configure AXI-AP cache bits
	SYStem.Option.AXIHPROT Select AXI-AP HPROT bits
	SYStem.Option.CorePowerDetection Set methods to detect core power
	SYStem.Option.DAPDBGPWRUPREQ Force debug power in DAP
	SYStem.Option.DAPREMAP Rearrange DAP memory map
	SYStem.Option.DAPSYSPWRUPREQ Force system power in DAP
	SYStem.Option.DAPNOIRCHECK No DAP instruction register check
	SYStem.Option.DCFLUSH Invalidate/flush data-cache for modified memory
	SYStem.Option.DEBUGPORTOptions Options for debug port handling
	SYStem.Option.detectOTrace Disable auto-detection of on-chip trace
	SYStem.Option.Endianness Set the target endianness
	SYStem.Option.EnReset Allow the debugger to drive nRESET (nSRST)
	SYStem.Option.HotBreakPoints Set breakp. when CPU is running
	SYStem.Option.ICFLUSH Invalidate instruction-cache for modified memory
	SYStem.Option.IMASKASM Disable interrupts while single stepping
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.IntelSOC Core is part of Intel® SoC
	SYStem.Option.LimmBreakPoints Software breakpoints with extra NOPs
	SYStem.Option.MMUSPACES Separate address spaces by space IDs
	SYStem.Option.OVERLAY Enable overlay support
	SYStem.Option.RegNames Enable trivial names for core registers
	SYStem.Option.PowerDetection Choose method to detect the target power
	SYStem.Option.ResetDetection Choose method to detect a target reset
	SYStem.Option.TIMEOUT Define maximum time for core response
	SYStem.Option.TRST Allow debugger to drive TRST
	SYStem.POWER Control target power
	SYStem.state Show SYStem settings window

	On-chip Breakpoints/Actionpoints
	Using On-chip Breakpoints
	Breakpoints in a ROM Area
	Limitations
	TrOnchip.CONVert Allow extension of address range of breakpoint
	TrOnchip.VarCONVert Convert breakpoints on scalar variables
	TrOnchip.OnchipBP Number of on-chip breakpoints used by debugger
	TrOnchip.RESet Set on-chip trigger to default state
	TrOnchip.state Display on-chip trigger window

	CPU specific MMU Commands
	MMU.DUMP Page wise display of MMU translation table
	MMU.List Compact display of MMU translation table
	MMU.SCAN Load MMU table from CPU
	MMU.Init Invalidate TLB entries
	MMU.Set Set an MMU TLB entry

	CPU specific JTAG.CONFIG Commands
	JTAG.CONFIG Electrical characteristics of MIPI-60 debug signals
	JTAG.CONFIG.DRiVer Set slew rate of JTAG signals
	JTAG.CONFIG.PowerDownTriState Automatically tristate outputs
	JTAG.CONFIG.TckRun Free-running TCK mode
	JTAG.CONFIG.TDOEdge Select TCK edge
	JTAG.CONFIG.Voltage.HooKTHreshold Set hook threshold voltages
	JTAG.CONFIG.Voltage.THreshold Set JTAG threshold voltages
	JTAG.CONFIG.Voltage.REFerence Voltage level of signals send to target

	Trace specific NEXUS Commands
	NEXUS.AuxTM Enable auxiliary register trace messages
	NEXUS.BTM Enable program trace messaging
	NEXUS.CLOCK Clock to calculate time out of cycle count information
	NEXUS.DataSuppress Suppress data flow on likely FIFO overflow
	NEXUS.DDR Enable NEXUS double data rate mode
	NEXUS.DSM Enable core debug status messages
	NEXUS.DTM Enable data trace messages
	NEXUS.FILTER Configure the onchip trace filter resources
	NEXUS.FILTER.ACompLimit Trace address filters used by debugger
	NEXUS.FILTER.DCompLimit Number of trace data filter used by debugger
	NEXUS.HISToryTHreshold Control the conditional history threshold
	NEXUS.OFF Switch the NEXUS trace port off
	NEXUS.ON Switch the NEXUS trace port on
	NEXUS.PortMode Set NEXUS trace port frequency
	NEXUS.Register Display NEXUS trace control registers
	NEXUS.RegTM Enable core register trace messages
	NEXUS.RESet Reset NEXUS settings
	NEXUS.RTTBUILD Define build configuration of used DesignWare trace
	NEXUS.STALL Stall program execution when FIFO full
	NEXUS.state Display NEXUS port configuration dialog
	NEXUS.SyncFrame Control SYNC frame insertion in ATB stream
	NEXUS.TImeMode Select method of time measurement
	NEXUS.TimeStampCLOCK Specify frequency of the global timestamp
	NEXUS.TraceID Set ID for CoreSight ATB stream
	NEXUS.WTM Enable watchpoint trace messages

	Debug Connector Type and Pinout
	Normal 20-Pin Connector
	MIPI10 / MIPI20 / MIPI34 Connector
	Converged MIPI60-Cv2 Connector
	XDP Connector

	Trace Connector Type and Pinout
	Trace Signals
	Normal Nexus Auxiliary Port (Mictor 38)
	Dual Eight-bit Nexus Auxiliary Port (Mictor 38)
	Out Offload and CoreSight TPIU

