LAUTERBACH A

78KOR/RL78 Debugger

78K0OR/RL78 Debugger

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ICD IN-Circuit DEDUQGQETcccieciiiiiimririnsmms s sissssmss s ssms s ssms s s s smms s s mms s s e mms e s ea s smmne s ensnmmnns r—~
Processor Architecture Manuals ... s r—~
71 SR r=
78KOR/RL78 DEDUQGUENiccueiriimeriismriisessssss s sssssssssss s ssas s sas s s sas s s ssm s s s s s sams s sams sasams anssmneas 1
Brief Overview of Documents for New USErsccccoiiiiiceeceriesssmeessssssceesesssmse s esnssnnes 4
Demo and Start-up SCHPLS ...cccccciiiiiiciriiirr s ————————— 4

R = L 410 T 5
General Notes/Target Designh Requirements/Recommendationscccceeiiiiccnnnnns 6
General 6

Target Design Requirements 6
Limitations 6

L@ T T Q3 - ' R 7

QLo 18] o == 0 T To7 £ 3V 9
Communication between Debugger and Processor can not be established 9

o 9
78KO0OR/RL78 Specific Implementations ... 10
Breakpoints 10
Software Breakpoints 10

On-chip Breakpoints 10
Breakpoints on Data Addresses and Data Values 11

Example for Standard Breakpoints 11

Runtime Measurement 12
Memory Classes 12

CPU specific SYStem Commandsccccuiivemmrmnnnssmssmmissssmss s s ssssssssssssssssssssnas 13
SYStem.CONFIG.state Display target configuration 13
SYStem.CONFIG Configure debugger according to target topology 14
SYStem.CPU Select the used CPU 14
SYStem.DebugClock Set debug clock frequency 15
SYStem.LOCK Lock and tristate the debug port 15
SYStem.MemAccess Select run-time memory access method 16
©1989-2024 Lauterbach 78KOR/RL78 Debugger 2

SYStem.Mode Establish the communication with the target 17
SYStem.state Display SYStem.state window 17
78KOR/RL78 specific SYStem Commandscccccceiiiemmmnsmsinsmsmsssss s s sssssssssssssssss 18
SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping 18
SYStem.Option.KEYCODE Define 10 byte on-chip security ID 18
SYStem.Option.ResetMASK Disable internal reset 18
SYStem.Option.SerialFreeze Stops serial transmissions during break 19
SYStem.Option.TimerFreeze Stops all internal timers during break 19
CPU specific TrOnchip COmMmandscccuciimiismminsssiimsmsssssssssssss s sssssssssssssssssasanes 20
19 1= o1 Lo I 0o g] T o £ T o 21
©1989-2024 Lauterbach 78KOR/RL78 Debugger | 3

78K0OR/RL78 Debugger

Version 06-Jun-2024

Brief Overview of Documents for New Users

Architecture-independent information:

“Training Basic Debugging” (training_debugger.pdf): Get familiar with the basic features of a
TRACER32 debugger.

“T32Start” (app_t32start.pdf): T32Start assists you in starting TRACE32 PowerView instances
for different configurations of the debugger. T32Start is only available for Windows.

“General Commands” (general_ref_<x>.pdf): Alphabetic list of debug commands.

Architecture-specific information:

“Processor Architecture Manuals”: These manuals describe commands that are specific for the
processor architecture supported by your debug cable. To access the manual for your processor
architecture, proceed as follows:

- Choose Help menu > Processor Architecture Manual.

“OS Awareness Manuals” (rtos_<os>.pdf): TRACE32 PowerView can be extended for operating
system-aware debugging. The appropriate OS Awareness manual informs you how to enable the
OS-aware debugging.

Demo and Start-up Scripts

To search for PRACTICE scripts, do one of the following in TRACE32 PowerView:

Type at the command line: WELCOME.SCRIPTS

or choose File menu > Search for Script.

You can now search the demo folder and its subdirectories for PRACTICE start-up scripts
(*.cmm) and other demo software.

You can also manually navigate in the ~~/demo/78k0r/ and ~~/demo/r178/subfolders of the system
directory of TRACE32.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 4

Warning

WARNING:

To prevent debugger and target from damage it is recommended to connect or
disconnect the Debug Cable only while the target power is OFF.

Recommendation for the software start:

1.

N o o A~

Disconnect the Debug Cable from the target while the target power is
off.

Connect the host system, the TRACES32 hardware and the Debug
Cable.

Power ON the TRACE32 hardware.

Start the TRACE32 software to load the debugger firmware.
Connect the Debug Cable to the target.

Switch the target power ON.

Configure your debugger e.g. via a start-up script.

Power down:

1.

2
3.
4

Switch off the target power.

Disconnect the Debug Cable from the target.
Close the TRACES32 software.

Power OFF the TRACES32 hardware.

©1989-2024 Lauterbach

78KOR/RL78 Debugger |

5

General Notes/Target Design Requirements/Recommendations

General

. The Lauterbach TRACES32 debugger for 7BKOR/RL78 is an on-chip debugging tool (OCD). It
uses the debug function implemented in the target CPU via a serial communication link (no
JTAG).

J Debug functionality uses a monitor program in flash memory. Due to that some resources are
used by the debugger exclusively (see limitations). Depending on the compiler besides the
activation of debug option some setting have to be done (refer the compiler manual).

Target Design Requirements

J Locate the debug connector as close as possible to the processor to minimize the capacitive
influence and cross coupling of noise onto the signals. Do not put any capacitors (or RC
combinations) on the TOOLO/TOOL1 lines.

J Reduce the cable length between CPU and Lauterbach connector to a minimum. Best results will
be provided, if a adequate connector will be foreseen directly on the target board.

. A Pull-up resistor of about 1,5 kOhm has to adapted between TOOLO and VDD. This could be
done on the target board or via an adaptation in the debug cable.

Limitations

J The last block of internal flash memory is blocked for writing. For a block size of 1 kB (Fx3) and
256 kB of total code flash memory (78F1845) the address range 0x3FC00--Ox3FFFF has to be
declared as “NOP”.

. Debug monitor consumes 6 bytes of stack area, right before stack pointer SP. For example for a
SP value of OxFEO0O, the memory range OxFFDFA--OxFFDFF will be written by the debug monitor
before the transition RUN to BREAK.

For accurate debugging SP must always be 6 byte higher than the start address of RAM area. To
avoid impacts from debugger to user data, designated stack area should be least 6 bytes bigger than
nominally necessary.

. The first 4 bytes (0x00000--0x00003) of program memory are reserved for debugging issues
and must not be changed.

. 21 bytes of program memory space (0x000C3--0x000D7) is reserved for debug purposes
(refer the target CPU manual for any details).

At 0xO00CE the user reset vector is placed. User program will start from 0x000D8 or at higher
address.

J The Pins of TOOLO and TOOL1 (Port 4) are not usable during debugging.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 6

Quick Start

Starting up the debugger is done by the following steps:

1. Select the device prompt B: for the TRACE32 ICD-Debugger, if the device prompt is not active
after starting the TRACES32 software.,

198 g

The device prompt B: : is normally already selected in the TRACE32 command line. If this is not the
case, enter B: to set the correct device prompt. A RESet command is useful if you do not start
directly after booting the TRACES32 development tool.

2. Select the CPU derivate to load the specific settings.

SYStem.CPU 78F1845

The default value for SYStem.CPU is “78KO0R”, which is not a real existing derivate. This means that
the debugger tries an automatic detection of the connected derivate.

The default values of all other options are set in such a way that it should be possible to work without
modification. Please consider that this is probably not the best configuration for your target.

3. Enter debug mode.

SYStem.Up

4. Declare size and type of FLASH memory is recommended doing via script.

DO ~~/demo/78k0r/flash/78k0r_*.cmm

Select the adequate PRACTICE script for the connected target. It will set up the flash memory to
allow writing and setting of software-breakpoints.

If not loaded a program during the execution of the flash script, this can be done as follows:

5. Load the program.

Data.LOAD sieve.dbg ; sieve.dbg is the file name

The format of the Data.LOAD command depends on the file format generated by the compiler.
Without any specific format (like in this example), TRACE32 tries to detected the correct format
available for 78KOR-debugger depending on the specified file.

A detailed description of the Data.LOAD command and all available options is given in the”General
Reference Guide”.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 7

A typical start sequence is shown below. This sequence can be written to a PRACTICE script file (*.cmm,
ASCII format) and executed with the command DO <file>.

B::

WinCLEAR
SYStem.CPU 78F1845
SYStem.Up

Data.LOAD.UBROF sieve.d26

Register.Set PC main

Register.Set SP 0xfe20

PER.view

List.Mix
Register.view /SpotLight

Frame.view /Locals /Caller

Var .Watch varl var2
Var .Local

Break.Set 0xffc00 /Program

Break.Set 0x100 /Onchip

’

Select the ICD-Debugger device prompt

Clear all windows

Select the CPU derivate type

Reset the target and enter debug mode

Load the application (here IAR-
Compiler)

Set the PC to function main

Set the stack pointer to address
0xfe20

Open a window for the special
function registers and peripherals

Open source code window
Open register window

Open the stack frame with
local variables

Open watch window for wvariables
Open window with local wvariables

Set software breakpoint to address
0xffc00 (address in RAM)

Set on-chip BP to address 0x100

*) These commands open windows on the screen. The window position can be specified with the WinPOS

command.

©1989-2024 Lauterbach

78KOR/RL78 Debugger

8

Troubleshooting

Communication between Debugger and Processor can not be established

Typically the SYStem.Up command is the first command of a debug session where communication with the
target is required. If you receive error messages like “debug port fail” or “debug port time out” while executing
this command, this may have the reasons below. “target processor in reset” is just a follow-up error
message. Open the AREA.view window to see all error messages.

J The target has no power or the debug cable is not connected to the target. This results in the
error message “target power fail”.

. You did not select the correct core type SYStem.CPU <type>.
. The target is in an unrecoverable state. Re-power your target and try again.

. The default debug clock speed is too fast, especially if the target is connect to debugger by a long
cable. Reduce the communication speed with SYStem.DebugClock command and optimize the
speed when you got it working.

. The CPU has no clock.
. The CPU is kept in reset.
U There is a watchdog which needs to be deactivated.

J Your target needs special debugger settings. Check the directory \demo\78k0r if there is an
suitable script file *.cmm for your target.

FAQ

Please refer to https://support.lauterbach.com/kb.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 9

https://support.lauterbach.com/kb

78KO0R/RL78 Specific Implementations

Breakpoints

Two types of breakpoints are available for 78KOR/RL78 architecture: Software breakpoints and one on-chip
breakpoint.

Software Breakpoints

To set a software breakpoint, before resuming the CPU, the debugger replaces the instruction at the
breakpoint address with a breakpoint code instruction.

There is no restriction in the number of software breakpoints. But it must be considered that by the usage of
software breakpoint flash memory will be change, if program is run in flash memory.

On-chip Breakpoints

If on-chip breakpoints are used, the resources to set the breakpoints are provided by the CPU. To set
breakpoints on code in read-only memory, only the on-chip instruction address breakpoints are available.
With the command MAP.BOnchip <range> it is possible to declare memory address ranges for use with on-
chip breakpoints to the debugger.

Besides the restricted number of on-chip breakpoint, the biggest disadvantage of 78KOR/RL78 architecture
is that the breakpoints is effected after execution. It means that not only the corresponding opcode will be
executed, instead the whole instruction pipeline will be executed eventually.

On-chip breakpoints: Total amount of available on-chip breakpoints.

Instruction breakpoints: Number of on-chip breakpoints that can be used to set program

breakpoints into ROM/FLASH/EPROM.

Read/Write breakpoints: Number of on-chip breakpoints that can be used as Read or Write

breakpoints.

Data breakpoint: Number of on-chip data breakpoints that can be used to stop the program
when a specific data value is written to an address or when a specific data value is read from an

address.
Core type: On-chip Instruction Data Address Data Value
Breakpoints Address Breakpoints Breakpoints
Breakpoints
78KOR/RL78 1 Instruction or 1 breakpoint 1 single 1 single value
1 Read/Write address above -- Of --
0xF0000 1 value mask
©1989-2024 Lauterbach 78KOR/RL78 Debugger | 10

You can check your currently set breakpoints with the command Break.List.

If no more on-chip breakpoints are available you will get an error message on trying to set a new on-chip
breakpoint.

Breakpoints on Data Addresses and Data Values

Breakpoints on data addresses are bound to several conditions:

1. The source of the data access (read and/or write) must be the CPU, as the data address
breakpoints are part of the CPU. Any other accesses from on-chip or off-chip peripherals (DMA
etc.) will not be recognized by the data address breakpoints.

2. The data being targeted must be qualified by an address in memory in the range 0xF000--
OxFFFFF. It is not possible to set a data address breakpoint to GPR, SPR etc.

3. The CPU stops the application execution only if the address and the access width in the field
DATA of the Break.Set window match. An empty access width is equal to standard width, which is
Word.

4, Per default the break will be done independently of the value (empty DATA field of Break.Set
window).

Example for Standard Breakpoints

Assume you have a target (78F1845) with:
J Code flash memory from 0x00000--0x3ffff

. RAM from O0xfbf00--0xffedf

The following standard breakpoint combinations are possible without activated auto flash mode:

1. Unlimited breakpoints in RAM and one breakpoint in ROM/FLASH

Break.Set 0xfcf00 /Program ; Software breakpoint 1
Break.Set 0xfd000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x100 /Program ; On-chip breakpoint
2. Unlimited breakpoints in RAM and one breakpoint on a read or write access
Break.Set 0Oxfcf00 /Program ; Software breakpoint 1
Break.Set 0xfd000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set Oxfefd4d7 /Write ; On-chip breakpoint

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 11

With activated auto flash mode even in code flash memory unlimited breakpoints are allowed:

1. Unlimited breakpoints in ROM/FLASH

Break.Set 0x00200 /Program ; Software breakpoint 1
Break.Set 0x01000 /Program ; Software breakpoint 2
Break.Set addr /Program ; Software breakpoint 3
Break.Set 0x00100 /Program ; On-chip breakpoint

Runtime Measurement

The command RunTime allows run time measurement based on polling the CPU run status by software.
Therefore the result will be about few milliseconds higher than the real value.

If the signal DBGACK on the JTAG connector is available, the measurement will automatically be based on
this hardware signal which delivers very exact results.

Memory Classes

Even if the 78KOR/RL78 as Von Neumann architecture has a linear memory space. The following
78KO0R/RL78 specific memory classes are available:

Memory Class Description
P Program Memory
D Data Memory
VM Virtual Memory (memory on the debug system)
E Run-time memory access
(see SYStem.CpuAccess and SYStem.MemAccess)

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 12

CPU specific SYStem Commands

SYStem.CONFIG.state Display target configuration
Format: SYStem.CONFIG.state [/<tab>]
<tab>: DebugPort

Opens the SYStem.CONFIG.state window, where you can view and modify most of the target
configuration settings. The configuration settings tell the debugger how to communicate with the chip on
the target board and how to access the on-chip debug and trace facilities in order to accomplish the
debugger’s operations.

Alternatively, you can modify the target configuration settings via the TRACE32 command line with the
SYStem.CONFIG commands. Note that the command line provides additional SYStem.CONFIG
commands for settings that are notincluded in the SYStem.CONFIG.state window.

DebugPort Informs the debugger about the debug connector type and the
communication protocol it shall use.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 13

SYStem.CONFIG

Configure debugger according to target topology

Format: SYStem.CONFIG <parameter>

<parameters: DEBUGPORT [DebugCabile0 | ...]
DEBUGPORTTYPE [TOOLO | TOOLO0+1]
TriState [ON | OFF]

DEBUGPORT Specifies which probe cable shall be used.

DEBUGPORTTYPE Specifies the used debug port type.
. TOOLO: 1-wire mode, mandatory for RL78
. TOOLO+1: 2-wire mode, recommended for 78KOR

TriState TriState does not hold the target in reset state during SYStem.Down
state. This allows to execute the flash program of the target without any
debugger control and without the necessity to disconnect the target from
the debugger electrically.
On a SYStem.Up the target will be reset.
Default: OFF.

SYStem.CPU Select the used CPU
Format: SYStem.CPU <cpu>
<cpu>: AUTO | 78KO0R | RL78 | 78F <xxxx> | ... | RSF1<xxxx>

Selects the processor type. If your chip is not listed, try the default value or contact technical support.

AUTO (default)
78KOR

RL78

Automatic detection of the CPU (78KO0R and RL78)
Automatic detection of a 78 KOR-CPU

Automatic detection of a RL78-CPU

©1989-2024 Lauterbach

78KOR/RL78 Debugger | 14

78F <xxxx> Sets the parameters (RAM size, Flash size, PER file, ...) defined by the
selected CPU (78KO0R derivates)

R5F1 <xxxx> Sets the parameters (RAM size, Flash size, PER file, ...) defined by the
selected CPU (RL78 derivates)

SYStem.DebugClock Set debug clock frequency
Format: SYStem.DebugClock <rate>
<rate>: 1/4 ... 1/256

Selects the frequency for the debug interface. The value represents the quotient of the division: Debug
communication frequency divided by the frequency of TOOL1 (half of CPU frequency). As long as no
problems occur it is recommend not change the default value.

In the case of unstable debug connection between debugger and target, lower values (towards 1/256) could
help. Higher values (towards 1/4) effect in a faster debug communication, but the higher frequencies on the
TOOLO cable could lead to unstable debug connection.

Default value: 1/16

Example: Target frequency is 4 MHz, DebugClock is 1/16, transmission rate (nominal) is:
0.5*4 MHz /16 = 125 kHz = 125 kbit/s

SYStem.LOCK Lock and tristate the debug port

Format: SYStem.LOCK [ON | OFF]

Default: OFF.

If the system is locked, no access to the debug port will be performed by the debugger. While locked, the
debug connector of the debugger is tristated. The main intention of the SYStem.LOCK command is to give
debug access to another tool.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 15

SYStem.MemAccess Select run-time memory access method

Format: SYStem.MemAccess <mode>
SYStem.ACCESS (deprecated)

<mode>: Enable
StopAndGo
Denied

Default: Denied.

If SYStem.MemAccess is not Denied, it is possible to read from memory, to write to memory and to set
software breakpoints while the CPU is executing the program.

Enable A run-time memory access is made without CPU intervention while the
CPU (deprecated) program is running. This is only possible on the instruction set simulator.
StopAndGo Temporarily halts the core(s) to perform the memory access. Each stop

takes some time depending on the speed of the JTAG port, the number of
the assigned cores, and the operations that should be performed.
For more information, see below.

Denied No memory access is possible while the CPU is executing the program.

If specific windows that display memory or variables should be updated while the program is running, select
the memory class E: or the format option %E.

Data.dump E:0x100

Var.View %E first

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 16

SYStem.Mode Establish the communication with the target

Format: SYStem.Mode <mode>

SYStem.Down (alias for SYStem.Mode Down)
SYStem.Up (alias for SYStem.Mode Up)

<mode>: Down | Attach | NoDebug | Go | Up

Select target reset mode.

Down Disables the debugger. The state of the CPU remains unchanged.

NoDebug Resets the target with debug mode disabled. In this mode no debugging is
possible. The CPU state keeps in the state of NoDebug.

Go Resets the target with debug mode enabled and prepares the CPU for debug
mode entry. After this command the CPU is in the SYStem.Up mode and
running. Now, the processor can be stopped with the break command or any
break condition.

Up Resets the target and sets the CPU to debug mode. After execution of this
command the CPU is stopped and prepared for debugging. All register are set
to the default value.

NOTE: The system modes Attach and StandBy are not available for this architecture.
SYStem.state Display SYStem.state window
Format: SYStem.state

Displays the SYStem.state window of the 78KOR/RL78 debugger.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 17

78KO0R/RL78 specific SYStem Commands

SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
Format: SYStem.Option.IMASKHLL [ON | OFF]
Default: OFF.

If enabled, the interrupt mask bits of the cpu will be set during HLL single-step operations. The interrupt
routine is not executed during single-step operations. After single step the interrupt mask bits are restored to
the value before the step.

SYStem.Option.KEYCODE Define 10 byte on-chip security ID

Format: SYStem.Option.KEYCODE <sec_id>

The default value for a plain CPU is set during SYStem.Up. If flash contains already a program with
activated security ID the correct ID has to be insert before the SYStem.Up command, otherwise it is
impossible to establish a debug connection.

The key code will automatically updated if a program will be loaded with activated security ID option.

<sec_id> Any ID code of 10 bytes (20 hexadecimals).
SYStem.Option.ResetMASK Disable internal reset
Format: SYStem.Option.RESETMASK [ON | OFF]
Default: OFF.

If enabled, all internal resets are masked out and do not take any effects. This is for example useful when
internal watch dog is activated.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 18

SYStem.Option.SerialFreeze Stops serial transmissions during break

Format: SYStem.Option.SerialFreeze [ON | OFF]

Default: OFF.

If activated serial transmission will be stopped if the target is stopped.

SYStem.Option.TimerFreeze Stops all internal timers during break
Format: SYStem.Option.TimerFreeze [ON | OFF]
Default: OFF.

If activated the counting operations all internal timers will be stopped if the target is stopped.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 19

CPU specific TrOnchip Commands

The TrOnchip command group is not available for the 78KOR/RL78 debugger.

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 20

Debug Connection

Pinout of the 16-pin Debug Cable:

Signal Pin Pin Signal
VSS 1 2 RESET-

TOOLO 3 4 VDD
N/C 5 6 N/C
N/C 7 8 N/C
N/C 9 10 N/C
N/C 11 12 N/C
N/C 13 14 FLMDO

TRESET- 15 16 TOOLA1

For details on logical functionality, physical connector, alternative connectors, electrical characteristics,
timing behavior and printing circuit design hints refer to the application note “Arm Debug and Trace
Interface Specification” (app_arm_target_interface.pdf).

©1989-2024 Lauterbach 78KOR/RL78 Debugger | 21

	78K0R/RL78 Debugger
	Brief Overview of Documents for New Users
	Demo and Start-up Scripts
	Warning
	General Notes/Target Design Requirements/Recommendations
	General
	Target Design Requirements
	Limitations

	Quick Start
	Troubleshooting
	Communication between Debugger and Processor can not be established

	FAQ
	78K0R/RL78 Specific Implementations
	Breakpoints
	Software Breakpoints
	On-chip Breakpoints
	Breakpoints on Data Addresses and Data Values
	Example for Standard Breakpoints

	Runtime Measurement
	Memory Classes

	CPU specific SYStem Commands
	SYStem.CONFIG.state Display target configuration
	SYStem.CONFIG Configure debugger according to target topology
	SYStem.CPU Select the used CPU
	SYStem.DebugClock Set debug clock frequency
	SYStem.LOCK Lock and tristate the debug port
	SYStem.MemAccess Select run-time memory access method
	SYStem.Mode Establish the communication with the target
	SYStem.state Display SYStem.state window

	78K0R/RL78 specific SYStem Commands
	SYStem.Option.IMASKHLL Disable interrupts while HLL single stepping
	SYStem.Option.KEYCODE Define 10 byte on-chip security ID
	SYStem.Option.ResetMASK Disable internal reset
	SYStem.Option.SerialFreeze Stops serial transmissions during break
	SYStem.Option.TimerFreeze Stops all internal timers during break

	CPU specific TrOnchip Commands
	Debug Connection

