LAUTERBACH A

Controlling TRACES2
via Python 3

Controlling TRACE32 via Python 3

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
T r—~
Controlling TRACE32 via Python 3 ... s s s 1

L 1= (o 3
About this ManUal ... s 4
LT o 11T 7T o 4
PYRCL versus TRACE32 Legacy APProachcccccccccmriissemmmmmninsmsnmmssssssssssssssssssssssssnnes 5
lauterbach.trace32.rCl (PYRCL)oiiiiiiccccccceeecccrmnr s resssssss s ssmssme s e s s s s e s s s s ssmmmnmns s s s s ees snnnnns 6
Versioning 6
Package 7
Documentation 7
TRACE32 Legacy APProachccccccciccmmiimiissmniisssas 8
Establish and Release the Communication to the Debug Device 9
TRACES?2 already Started 9

Start TRACE32 12

Run a PRACTICE Script 14
Result as a Message 14

Result via EVAL Command 17
TRACE32 Functions 18
Monitor a Variable 19
©1989-2024 Lauterbach Controlling TRACE32 via Python 3 2

Controlling TRACE32 via Python 3

Version 06-Jun-2024

History

20-Aug-20 Manual was updated to introduce new lauterbach.trace32.rcl solution. The ctypes solution
became legacy.

23-Dec-16 Initial version.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 3

About this Manual

This document provides information on how Python can be used to control TRACE32.

Please direct questions and feedback to python-support@Ilauterbach.com.

Introduction

TRACE32 PowerView can be controlled by Python via the TRACE32 Remote API “API for Remote
Control and JTAG Access in C” (api_remote_c.pdf).

Python

TRACE32 Remote API

localhost/
Socket Interface ethernet Socket Interface

The following options to use the TRACE32 Remote API via Python can be found in your TRACE32
installation:

i ~~/demo/api/python/rcl contains the Python package lauterbach.trace32.rcl, which will be
abbreviated PYRCL in this document. It's available from the DVD.2020.09 and it is recommended
for new projects.

i ~~/demo/api/python/legacy contains Pythons demos on how to use ctypes to load and
use the Remote API library (DLL) provided by Lauterbach.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 4

PYRCL versus TRACE32 Legacy Approach

lauterbach.trace32.rcl (PYRCL) for Python 3.6+

We recommend using PYRCL for new projects because:

. It requires less implementation effort.
. It is faster, since it is a native implementation of the RCL protocol.
. It is less error-prone since PYRCL is automatically tested and deployed.

TRACES32 legacy aproach for Python 3

As the legacy approach is more a set of examples based on the C implementation of the RCL protocol, it will
continue to work and be supported. In some scenarios, it might makes sense to still use the legacy
approach:

. To extend or modify existing projects.
J The used Python version is not supported by PYRCL.

J Features, which are not supported by PYRCL, are needed.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 5

lauterbach.trace32.rcl (PYRCL)

lauterbach.trace32.rcl is compatible with Python 3.6+.

From DVD 2020.09 Lauterbach provides a Python module called "lauterbach.trace32.rcl". This module
provides a native Python interface to use the TRACE32 Remote API.

PYRCL supports the TRACE32 Remote API (RCL) in TCP and UDP mode. TCP is recommended. The
config.t32 must have one or both of the following blocks:

TCP (recommended):

RCL=NETTCP
PORT=20000

UDP:

RCL=NETASSIST
PACKLEN=1024
PORT=20000

Versioning

PYRCL versions follows [https://www.python.org/dev/peps/pep-0440].

This means:

. PYRCL versions take the form "X.Y.Z". X is the major version, Y is the minor version and Z is the
patch version. Pre-releases are denoted with an additional aN (alpha), bN (beta) or rcN (release
candidate), with N > 0.

J Major versions introduce backwards incompatible changes to the API. A TRACE32 update will be
required and existing scripts might need to get adjusted.

. Minor versions introduce backwards compatible features to the API. A TRACE32 update is
recommended.

. Patch versions introduce backwards compatible bug fixes.

o Version 1.0.0 was released with the DVD 2020.09.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 6

https://www.python.org/dev/peps/pep-0440

Package

The package is located in your TRACES32 installation under ~~/demo/api/python/rcl.

The package consists of:

i ~~/demo/api/python/rcl/dist contains the source and wheel of the package.
i ~~/demo/api/python/rcl/doc contains the package documentation including examples.
Documentation

The package is documented in the package itself in the form of docstrings.

Additionally, a HTML documentation is generated which can be found in
~~/demo/api/python/rcl/doc/html/index.html.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 7

TRACE32 Legacy Approach

Compatible with Python 3.

Before DVD 2020.09 the only way to use the Remote APl was using the Python module ctypes. "ctypes is a
foreign function library for Python. It provides C compatible data types, and allows calling functions in DLLs
or shared libraries. It can be used to wrap these libraries in pure Python."
[https://docs.python.org/3/library/ctypes.html].

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 8

https://docs.python.org/3/library/ctypes.html

Establish and Release the Communication to the Debug Device

TRACE32 already Started

The Python script below shows a typical command sequence

That establishes the communication between Python and a debug device.

That releases the communication between Python and a debug device.

The example assumes the following:

You are working on a 64-bit Windows system.
You are using a TRACE32 debugger or a TRACES32 Instruction Set Simulator as debug device.

The TRACE32 PowerView GUI for the debug device is already running on the same host and is

accessible via API port 20000.

The TRACE32 config file for the debug device contains the following lines:

RCL=NETASSIST
PACKLEN=1024
PORT=20000

Alternatively the API Port in T32Start has to be configured accordingly for the debug device.

b T325tart [F=5 Eol 5
4 -] Configuration Tree
7] Settings Slall
--f3] Example Configuration Add.
4 {ff] TRACE32 Instruction Set Simulator for Cortex-M
a4k 1: Simulator Delete
i@ Target ARMXScaled anus
4 -7 Advanced Settings Up
2] Paths
a3 Interfaces
: EI AP Part Instances...
i Usze Port: pes
Usze Auto Increment Port: pes Information...
@ Port Start Value: 20000
@ Paort ' alue: 20000 Save and Exit
@ tax UDP Packet Size: 1024
1 Intercom Port Save
7] GDE Port
-2 Display kg
-2 StartupScript
----- Interface: SIk

10: //Configuration2

No error handling is done to keep the script simple.

©1989-2024 Lauterbach

Controlling TRACE32 via Python 3

9

import ctypes # module for C data types
import enum # module for enumeration support

Load TRACE32 Remote API DLL
t32api = ctypes.cdll.LoadLibrary('t32api6d.dll")

TRACE32 Debugger or TRACE32 Instruction Set Simulator as debug device
T32_DEV = 1

Configure communication channel to the TRACE32 device
use b for byte encoding of strings
t32api.T32_Config(b"NODE=",b"localhost")
t32api.T32_Config (b"PORT=",b"20000")

t32api.T32_Config (b"PACKLEN=",b"1024")

Establish communication channel
rc = t32api.T32_TInit ()

rc = t32api.T32_Attach(T32_DEV)
rc = t32api.T32_Ping/()

TRACE32 control commands

Release communication channel
rc = t32api.T32_Exit ()

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 10

The Python script is using the following TRACE32 Remote API functions:

configure the communication channel to the TRACE32 device
int T32_Config (const char *string1, const char *string2);

initialize the communication channel
int T32_Init (void);

connect to the debug device
int T32_Attach (int dev);

ping the debug device
int T32_Ping (void);

disconnect from the debug device
int T32_EXxit (void);

The following message is displayed in the TRACE32 Message Area when the Python script pings the
debug device:

B:AREA EI@

remote PING received -
4 10 2

©1989-2024 Lauterbach Controlling TRACE32 via Python 3 | 11

Start TRACE32

The Python script below shows a typical command sequence

That establishes the communication between Python and a debug device.

. That releases the communication between Python and a debug device.

The example assumes the following:

. You are working on a 64-bit Windows system.

. You are using a TRACES32 debugger or a TRACES2 Instruction Set Simulator as debug device.

J The TRACE32 config file for the debug device you want to start contains the following lines:

RCL=NETASSIST
PACKLEN=1024
PORT=20000

Alternatively the API Port in T32Start has to be configured accordingly for the debug device.

b T325tart [F=5 Eol 5
4 -] Configuration Tree
7] Settings Sl
--f3] Example Configuration Add.
4 {ff] TRACE32 Instruction Set Simulator for Cortex-M
a4k 1: Simulator Delete
-----] Target: ARM S caled)anus
4 -7 Advanced Settings Up
2] Paths
_A--fj Interfaces
‘EI APl Port Instances...
Usze Port: pes
Usze Auto Increment Port: pes Information...
Part Start Value: 20000
Port Value: 20000 Save and Exit
b tax UDP Packet Size: 1024
2] Intercom Port Save
i -0 GDB Port
-2 Display Help
-2 StartupScript
----- Interface: SIk
ID: //Configuration2
J No error handling is done to keep the script simple.

©1989-2024 Lauterbach

Controlling TRACES2 via Python 3

12

module for C data types

module for C data types

module for paths and directories
module to create an additional process
time module

import ctypes
import enum
import os

import subprocess
import time

H H H FH H*

TRACE32 Debugger or TRACE32 Instruction Set Simulator
T32 DEV = 1

Start TRACE32 instance
t32_exe = os.path.join('C:' + os.sep, 'T32_DVD_2_2016"',

'bin', 'windows64', 't32marm.exe’)
config file = os.path.join('C:' + os.sep, 'T32_DVD_2_2016', 'config.t32')
start_up = os.path.join('C:' + os.sep, 'T32_DVD_2_2016', 'demo', 'arm',
'compiler', 'arm', 'cortexm.cmm')

#command = ["C:\T32\bin\windows64\t32marm.exe",

'-¢c', "C:\T32\config.t32",
'-s', "C:\T32\demo\arm\compiler\arm\cortexm.cmm"]
command = [t32_exe, '-c', config_file, '-s', start_upl]

subprocess.Popen (command)

process

Wait until the TRACE32 instance is started
time.sleep(5)

Load TRACE32 Remote API
t32api = ctypes.cdll.LoadLibrary('t32api6d.dll"')

Configure communication channel
t32api.T32_Config(b"NODE=",b"localhost")
t32api.T32_Config(b"PORT=",b"20000")
t32api.T32_Config(b"PACKLEN=",b"1024")

Establish communication channel

rc = t32api.T32_TInit()

rc = t32api.T32_Attach(T32Device.T32_DEV_ICD)
rc = t32api.T32_Ping()

TRACE32 control commands

Release communication channel
rc = t32api.T32_Exit ()

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 13

Run a PRACTICE Script

Result as a Message

For the following example the PRACTICE script ends with a PRINT <message> command. The Python
script can read this message and evaluate it as the script’s result.

- ; last lines of PRACTICE script
PRINT "Target setup successful" ; cortexm.cmm
ENDDO

class PracticeInterpreterState (enum.IntEnum) :
UNKNOWN = -1

NOT_RUNNING = 0
RUNNING = 1
DIALOG_OPEN = 2

class MessageLineState (enum.IntEnum) :
ERROR = 2
ERROR_INFO = 16

Start PRACTICE script
t32api.T32_Cmd(b"CD.DO ~~/demo/arm/compiler/arm/cortexm.cmm")

Wait until PRACTICE script is done

state = ctypes.c_int (PracticelInterpreterState.UNKNOWN)

el = (0]

while rc==0 and not state.value==PracticelnterpreterState.NOT_ RUNNING:
rc = t32apili.T32_GetPracticeState (ctypes.byref (state))

Get confirmation that everything worked

status = ctypes.c_uintl6(-1)

message = ctypes.create_string buffer (256)

rc = t32apil.T32_GetMessage (ctypes.byref (message), ctypes.byref (status))

if rc == 0
and not status.value == MessageLineState.ERROR
and not status.value == MessageLineState.ERROR_INFO:

print (message.value)

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 14

The script is using the following TRACE32 Remote API functions:

execute a TRACE32 command
int T32_Cmd (const char *command);

T32_Cmd is blocking. The TRACE32 Remote API provides the return value after the command execution is
completed. There is no time-out.

If you are using the DO command to start a PRACTICE script you have to be aware that TRACES2 provides
the return value as soon as the script is successfully started!!!

You have to use the following function to check if the processing of the script is completed.

check if started PRACTICE script is still running
the function returns 0 if no PRACTICE script is running
int T32_GetPracticeState (int *pstate);

The call of the function t32api.T32_GetPracticeState illustrates how C compatible data types are used in
Python.

state = ctypes.c_int (PracticeInterpreterState.UNKNOWN)

e = 0

while rc==0 and not state.value==PracticelnterpreterState.NOT_ RUNNING:
rc = t32api.T32_GetPracticeState (ctypes.byref (state))

Finally you may want to know, if the PRACTICE script was executed without errors. The following command
allows you to read the message text printed to the TRACE32 Message Line.

get content of the TRACE32 Message Line
int T32_GetMessage (char message[256], uint16_t *status);

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 15

The script on the previous page does not contain any error handling. Here an example for an error handling
for the following three error types:

error 1 Communication error with TRACE32 Remote API.

t32api.T32_Cmd (b"<command>") return value < 0.

error 2 Error in command execution e.g. specified script not found.

t32api.T32_Cmd(b"<command>") return value ==0

and

t32api.T32_GetMessage (ctypes.byref (message) ,
ctypes.byref (status))

has set status.value == 2 or 16

error 3 Command is unknown or locked e.g. command is unknown due to
typo in command name.
t32api.T32_Cmd(b"<command>") return value > 0.

rc=t32api.T32_Cmd (b"<command>")

error 1
if rc < 0:
rc = t32api.T32_Exit ()
raise ConnectionError ("TRACE32 Remote API communication error")

else:
status = ctypes.c_uintlé6(-1)
message = ctypes.create_string_buffer (256)
mrc = t32api.T32_GetMessage (ctypes.byref (message), ctypes.byref (status))
if mrc != O:
rc = t32api.T32_Exit()
raise ConnectionError ("TRACE32 Remote API communication error")
error 2
elif rc == 0 and ((status.value == 2) or (status.value == 16)):
print ("TRACE32 error message: " + message.value.decode("utf-8"))
t32api.T32_Cmd (b"PRINT")
error 3
elif rc > 0:
print ("TRACE32 error message: " + message.value.decode("utf-8"))
t32api.T32_Cmd (b"PRINT")

Since the function T32_GetMessage reads the message text, but does not reset it, you have to send an
empty PRINT command to delete the message text.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 16

Result via EVAL Command

For the following example the PRACTICE script ends with a EVAL <expression>command. The Python
script can read the command result and evaluate it as the script’s result.

- ; last lines of PRACTICE script
EVAL O. ; cortexm.cmm
ENDDO

Start PRACTICE script
t32api.T32_Cmd(b"CD.DO ~~/demo/arm/compiler/arm/cortexm.cmm")

Wait until PRACTICE script is done

state = ctypes.c_int (PracticelInterpreterState.UNKNOWN)

rc =0

while rc == 0
and not state.value == PracticelInterpreterState.NOT_RUNNING :
rc = t32apili.T32_GetPracticeState (ctypes.byref (state))

Get confirmation that everything worked
eval = ctypes.c_uintl6(-1)
rc = t32api.T32_EvalGet (ctypes.byref (eval))

if rc == 0 and eval.value ==
print ("Target setup completed")

The script is using the following new TRACE32 Remote API functions:

get result of EVAL command
int T32_EvalGet (uint32_t *pEvalResult);

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 17

TRACE32 Functions

The following two TRACE32 Remote API functions can also be used to work with TRACES32 functions.

execute a TRACE32 command
int T32_Cmd (const char *command);

get result of EVAL command
int T32_EvalGet (uint32_t *pEvalResult);

rc == t32api.T32_Cmd(b"EVAL hardware.POWERDEBUG () ")

eval = ctypes.c_uintl6(-1)
rc = t32api.T32_EvalGet (ctypes.byref (eval))

The TRACE32 function hardware.POWERDEBUG() returns true if the connected TRACE32 tool includes a
PowerDebug Module.

If the TRACES32 function returns a string the following TRACE32 Remote API function has to be used:

get result of EVAL command if it is a string
int T32_EvalGetString (char* EvalString);

rc == t32api.T32_Cmd(b"EVAL SOFTWARE.VERSION()")

eval_string = ctypes.create_string buffer (256)
rc = t32api.T32_EvalGetString(ctypes.byref (eval_string))

The TRACE32 function SOFTWARE.VERSION() returns the current version of the TRACE32 software as a
string.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 18

Monitor a Variable

Get details for symbol flags[3]

vname = b"flags[3]"

vaddr = ctypes.c_int32(0)

vsize = ctypes.c_int32(0)

vaccess = ctypes.c_int32(0)

rc = t32api.T32_GetSymbol (vname, ctypes.byref (vaddr) , ctypes.byref (vsize),
ctypes.byref (vaccess))

0
0

Set a write breakpoint to flags[3]
t32api.T32_WriteBreakpoint (vaddr.value,0,16,vsize.value)

Start program

t32api.T32_Go ()

Wait for breakpoint hit

pstate = ctypes.c_uintl6(-1)

while rc == 0 and not pstate.value == 2:
rc=t32api.T32_GetState(ctypes.byref (pstate))

Read variable

vvalue = ctypes.c_int32(0)
vvalueh = ctypes.c_int32(0)

rc = t32api.T32_ReadVariableValue (vname, ctypes.byref (vvalue),
ctypes.byref (vvalueh))
print("flags[3]= " + str(vvalue.value))

The script is using the following TRACE32 Remote API functions:

get details about the specified symbol

int T32_GetSymbol (const char *symbol,
uint32_t *address,
uint32_t *size,
uint32_t *access);

The symbol address and the symbol size is needed to set the breakpoint. The access class can be ignored.

set breakpoint

int T32_WriteBreakpoint (uint32_t address,
int access,
int breakpoint,
int size);

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 19

start the program execution
int T32_Go (void);

check debug state
int T32_GetState (int *pstate);

Debug state is 2 when the program execution is stopped.

read variable

int T32_ReadVariableValue (const char *symbol,
uint32_t *value,
uint32_t *hvalue);

The example above works if the program execution is stopped after the write access to the variable (break-
after-make). If the program execution is stopped just before the write access (break-before-make) a single
step has to be performed before the variable value is read.

©1989-2024 Lauterbach Controlling TRACE32 via Python3 | 20

	Controlling TRACE32 via Python 3
	History
	About this Manual
	Introduction
	PYRCL versus TRACE32 Legacy Approach
	lauterbach.trace32.rcl (PYRCL)
	Versioning
	Package
	Documentation

	TRACE32 Legacy Approach
	Establish and Release the Communication to the Debug Device
	TRACE32 already Started
	Start TRACE32

	Run a PRACTICE Script
	Result as a Message
	Result via EVAL Command

	TRACE32 Functions
	Monitor a Variable

