
MANUAL

Application Note C++ Debugging

Application Note C++ Debugging

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 Source Level Debugging .. 

 Application Note C++ Debugging ... 1

 Sample Code used by This Application Note ... 3

 Gathering Information of Objects .. 4

 Display Options Dedicated to Objects 4

 Most Derived Class 6

 Lifetime of the “this” Pointer 6

 Class Conversions 7

 Gathering Information of Classes .. 8

 C++ Overloading and Symbol Mangling ... 9

 Demangling 9

 Ambiguous Symbols 9

 Other Command Line Hints 10

 ELF Loader Options .. 11

 Debugging in C++ Code .. 12

 Target Order / Source Order 12

 Breakpoints 13
Application Note C++ Debugging | 2©1989-2024 Lauterbach

Application Note C++ Debugging

Version 06-Jun-2024

This application note describes dedicated TRACE32 PowerView commands and approaches that can be
helpful when C++ applications are analyzed.

Sample Code used by This Application Note

Further chapters will contain pictures, commands and source code that are based to a
small sample. This sample code implements two classes A and B, where B is derived
from A.

Class A

Class B

class A {
 public:
 int na1;
 int na2;
 A(){na1 = 1; na2 = 2;}
 A(int a1, int a2){na1 = a1; na2 = a2;}
 virtual int Sum() {
 return na1 + na2;
 }
 virtual ~A(){;}
};

class B: public A {
 public:
 int nb1;
 int nb2;
 B(){nb1 = 3; nb2 = 4;}
 virtual int Sum() {
 return A::Sum()+nb1+nb2;
 }
 virtual ~B(){;}
};

A
n a 1 : i n t
n a 1 : i n t

A ()
A (a 1 : i n t , a 2 : i n t)
S u m () : i n t
~ A ()

B
n b 1 : i n t
n b 2 : i n t

B ()
S u m () : i n t
~ B ()

UML Class
Diagram
Application Note C++ Debugging | 3©1989-2024 Lauterbach

Gathering Information of Objects

Display Options Dedicated to Objects

The Var.Watch or Var.View command can show the content of instances of structures or classes. The
command SETUP.Var or the context menu entry Format will open a dialog with various display settings.

The Inherited check box controls whether anything is displayed from the base classes.

To show all known methods of the class, the Methods check box must be turned on. The integer number
after a method indicates the index of that method within the Virtual Function Table.
Application Note C++ Debugging | 4©1989-2024 Lauterbach

The Hidden check box controls whether artificially created symbols are visible.

By the context menu commands “Indirect Dump” and “Indirect List” it is possible to navigate to the virtual
function in order to check if the values match the debug information.

V-Table
Application Note C++ Debugging | 5©1989-2024 Lauterbach

Most Derived Class

Generic algorithms use the polymorphic nature of classes they work with. These algorithms will handle
pointers to objects that fulfill an interface or are derived from a certain parent class. The Most Derived Class
is the class type that was used to create a particular instance. By default, the Var.Watch window will treat
these pointers with the type that is used in the current context. The Derived option can be turned on for a
certain entry of the Var.Watch window by double-clicking the tree node icon or using the context menu.

To automate the Most Derived Class feature, the [] operator can be used in PRACTICE:

Lifetime of the “this” Pointer

When a none-static method of a class is called, the object instance is transferred by the call, too. Within the
method a symbol named this will be valid once the stack frame start code has finished. When a method is
implemented into a single line of source code, it is necessary to do assembler steps until this is alive
before any other class member can be observed correctly. The this symbol can be used to show the
members of the instance:

void TestMostDerivedClass() {
 B* pB = new B();
 A* pA = pB;
 //view content of pA here...
 pA = NULL;
 delete pB;
};

; set nb1 to 1
Var.Set (*[pA]).nb1 = 1

; display most derived class of pA
Var.View *[pA]

Var.View this

or

Double click
here

Context
menu
Application Note C++ Debugging | 6©1989-2024 Lauterbach

Class Conversions

The () operator can be used to cast an object to another class.

;cast this pointer to class B and display it
Var.View (B*)this

;cast object at address 0x00114710 to class B and display it
Var.View (B*)0x00114710
Application Note C++ Debugging | 7©1989-2024 Lauterbach

Gathering Information of Classes

There are two ways to gather information about classes: the class browser and the symbol browser.

The class browser lists all known classes in the type column. Righ-clicking a class opens a context menu.

The context menu, for example, provides access to the class hierarchy diagram (Select the View Class
Hierarchy option).

Via the context menu, it is also possible to view the details of a class (Select the View Details option).

The symbol browser can show things that are dedicated to one class by using its capabilities to filter names.

Parent

Size

Offset

Mangled
Name
Application Note C++ Debugging | 8©1989-2024 Lauterbach

C++ Overloading and Symbol Mangling

Demangling

In contrast to C, multiple functions can have the same name by using the overloading technique. The
functions must then differ in their parameter signatures. In C++ object files, therefore an exported symbol is
encoded using function name and parameter signature into one mangled name. The mangling can be
different for different compilers. TRACE32 demangles the names controlled by sYmbol.DEMangle. The first
parameter set whether the Demangler is turned on. The second parameter controls if the parameter
signature is concatenated to the symbol name.

Ambiguous Symbols

Due to the overloading technique of C++, the debug information contains ambiguous short symbol names.
Resolving these symbols will result in an error message:

This behavior can be controlled by the sYmbol.MATCH setting:

Symbol of A::A(int,int)

sYmbol.DEMangle OFF Demangler switched off __ct__1AFiT1

sYmbol.DEMangle ON ON Demangler switched on A::A(int,int)

sYmbol.DEMangle ON OFF Demangler switched on, but does
not concatenate parameters

A::A

sYmbol.MATCH Exact Release error message when ambiguous symbol is resolved

sYmbol.MATCH Best Take the first matching symbol

sYmbol.MATCH Choose Open a symbol browser to select the right symbol
Application Note C++ Debugging | 9©1989-2024 Lauterbach

Other Command Line Hints

C++ symbols are often very long. Therefore use the TAB key to select and automatically complete the input
of a symbol.

Symbols containing brackets must be enclosed in apostrophes to distinguish them from other parser
functions that use brackets.

The symbol browser opens and the symbol matching the passed pattern can be chosen when an input
symbol contains an asterisk character.
Application Note C++ Debugging | 10©1989-2024 Lauterbach

ELF Loader Options

The Data.LOAD.Elf command has additional parameters to tune the loader for formats or circumstances it
cannot detect correctly.

Option Behavior

/CPP Used for ELF/STABS format if symbols are loaded correctly.

/CFRONT Load additional symbol information for CFront based compilers
that translate C++ code to C code.

/NoInclude Ignore debug information that is related to code in header files.

/SingleLine One source line is assigned to multiple target code parts.
Therefore the source lines are multiplied, too. In the Source Order
view of the Data.List window, these lines are merged behind a “+”
symbol. When this option is passed, the debugger doesn’t multiply
the source lines. The source line is assigned to the first code part.

/SingleLineAdjacent The option is similar to /SingleLine, but only takes effect if the code
parts are concatenated.
Application Note C++ Debugging | 11©1989-2024 Lauterbach

Debugging in C++ Code

Target Order / Source Order

Due to the usage of inline code, one source line can match multiple code sections. When a memory section
is displayed, it can be source order or target order.

Source Order

Source order mixes the code sections to the order inside the source file:

Target Order mode is active for HLL debugging by default. Both calls of the inline function “malloc2” will
create one code piece each. Due to source order these code pieces are displayed above the
“MultiLineTest2” function. When the function is executed by Step.Over commands, the windows selected
source line will jump to the matching code lines. This can be confusing some times.

Target Order

Target Order displays the code in the order of ascending addresses of the code behind:

In this case it is more obvious that the compile has inlined the code from the “malloc2” template. The
execution of the routine by Step.Over will work without any confusing jump to other source lines. Target
Order display is the default in Mixed mode debugging.
Application Note C++ Debugging | 12©1989-2024 Lauterbach

Breakpoints

Sometimes it is necessary to break at a method for a certain object. This can be achieved by a breakpoint
containing a condition that checks the passed this pointer of the instance. For example, the this pointer
is passed by register R3 and the object has the address 0x0114710 the breakpoint for the function
A::Sum would be set by:

sYmbol.ForEach Sets breakpoints to every function and symbol.

sYmbol.ForEach "Break.Set *" A::*

Break.Set A::Sum /CONDition Register(R3)==0114710
Application Note C++ Debugging | 13©1989-2024 Lauterbach

	Application Note C++ Debugging
	Sample Code used by This Application Note
	Gathering Information of Objects
	Display Options Dedicated to Objects
	Most Derived Class
	Lifetime of the “this” Pointer
	Class Conversions

	Gathering Information of Classes
	C++ Overloading and Symbol Mangling
	Demangling
	Ambiguous Symbols
	Other Command Line Hints

	ELF Loader Options
	Debugging in C++ Code
	Target Order / Source Order
	Breakpoints

