LAUTERBACH A

Application Note C++ Debugging



Application Note C++ Debugging

TRACE32 Online Help
TRACE32 Directory
TRACE32 Index

TRACE32 DOCUMENTES  ....cceecciimrinniiisissssssssssmmmsssssss s ssssssssssssnsmmsssssnssessasssssssnsnmmsesssnssessssssssssnnnmmnnnnnnns =
ST TUT o738 IV =T 9 T=T o T T e | 4T R r—~
Application Note C++ DebUGQING ....cccceceiiiemmrisemmiiimsiisms s s s s sms s sms s msssssms s sms snssmnnas 1
Sample Code used by This Application Note .........cccccecmiiiiiissmn e 3
Gathering Information of ObJEcts ..o ——— 4
Display Options Dedicated to Objects 4

Most Derived Class 6
Lifetime of the “this” Pointer 6

Class Conversions 7
Gathering Information of ClasSes ........ccccrecmriiiiimmminnrms s 8

C++ Overloading and Symbol Mangling .......ccccccccmmmiiimmmmmimsrrsss s s sssssns 9
Demangling 9
Ambiguous Symbols 9

Other Command Line Hints 10

I ol I T T =T @ o) o3 = 11

(D 1Y o TU T o 11 4 Vo T O e 0o Y [ 12
Target Order / Source Order 12
Breakpoints 13
©1989-2024 Lauterbach Application Note C++ Debugging | 2



Application Note C++ Debugging

Version 06-Jun-2024

This application note describes dedicated TRACE32 PowerView commands and approaches that can be
helpful when C++ applications are analyzed.

Sample Code used by This Application Note

Further chapters will contain pictures, commands and source code that are based to a
small sample. This sample code implements two classes A and B, where B is derived ~ UML Class

from A. Diagram
A
Class A onat :mt
onﬂ cint
@A ()
class A { @A (a1 it a2 int)
public: HSum ():int
int nal; A
int na2;
A(){nal = 1; na2 = 2;}
A(int al, int a2){nal = al; na2 = a2;} B
virtual int Sum() { ool int
return nal + na2; ghot it
} %8 ()
i ~ . @Sum () int
virtual ~A() {;} o5 (|
iy
Class B

class B: public A {

public:
int nbl;
int nb2;
B(){nbl = 3; nb2 = 4;}
virtual int Sum() {

return A::Sum()+nbl+nb2;

}
virtual ~B() {;}

©1989-2024 Lauterbach Application Note C++ Debugging | 3



Gathering Information of Objects

Display Options Dedicated to Objects

The Var.Watch or Var.View command can show the content of instances of structures or classes. The
command SETUP.Var or the context menu entry Format will open a dialog with various display settings.

The Inherited check box controls whether anything is displayed from the base classes.

28 Change Variable Format I?“E“?i ﬁj Buw.v this i?”?“?i

radix format pointer

[ pecimal [¥] compact [ string

[T Hex [ Fixed [CIwideString

[C]BINary [¥] TREE [C]s¥mbol

[ Asci [CIpoumP

[Coump Open Recursive

WIscaed | || =)| | [oEE =

display other

[ ndex []sPaces

[CIType [T H1dden )=

[JLocation  [[]MEthods [T spotLight

[¥] Name

(ok ] [ Aoy ] [ cancel ] - .

To show all known methods of the class, the Methods check box must be turned on. The integer number
after a method indicates the index of that method within the Virtual Function Table.

&8 Change Variable Format I?“E“?i &af Brvy this I?“E|i?|
= format T = t.h:1§1==0300114?10 — -
[C] Decimal [¥ compact | | [[]String . nb2 =0,

[ Hex [ Fixed [ idestring 500 =1,

[CBMNary [¥] TREE [CsYmbol EB()O =2,

[ Ascii [CIpouMP operator=())

[Coump Open Recursive
Wscate | || »)| |[orr. =
display other
[[index [C]Nherited []sPaces
[C] Type [T Hidden e
[T Location [T spatLight
[¥] Name
([ ok ] [ aAppy ] [ cancel | - .

©1989-2024 Lauterbach Application Note C++ Debugging | 4



The Hidden check box controls whether artificially created symbols are visible.

-

-

2% Change Variable Format EI@
— radix format —— — pointer
[ pecimal Compact [T string
[CIHex [T Fixed [Tl wideString
[C]BINary TREE [C]s¥mbol
[T Ascii [CIpoumP
[ oump Open — Recursive —
SCALED | || =)| | [orEx
— display — other
[[Index ["] INherited [l spaces
[ Type )=
[JLocation  [C]MEthods [C] spatLight
Name
([ ok J [ appy | [ cancel |

By the context menu commands “Indirect Dump” and “Indirect List” it is possible to navigate to the virtual

L= [==]

| Brsvov this

=l this = 0x0011A4A710 —%
[E_bA=(nal =1 naz =2,

wptr = Ox0010060

nh

nbl = 0,

2 =0

|E|_thr‘ = 0x00100608 — \\test\G'Iuba'I\_T_:LE”

\

V-Table

4

1

function in order to check if the values match the debug information.

-

.
ﬁj Buw.v this EI@ fﬁj B::Data.dump v.address("*(*(this)).__vptr") /DIALOG EI@
this = Ox00114710 —
Ao G — o) _wpte =~ | || SD:oxt00608  (F3Find...) [Modfy...] | [Lona +] [IE [
nbl = 0, 0 4 01234567 T
nbz = 0, 5D: 00100608 [+00000000 001 DT, o o
Bl _vptr =|0x00100608 [+ ‘\test\Globa SD:00100610 | 00000000 m‘{ AT .
) 5D:00100618 | 00000000 00100514 1ETi7es B
= 1.1 5D:00100620 | 00000000 00000000 ™%HHHHYY =
SD:00100628 | 001002ZAC 00000000 %5 34%%HY
B(), SD:00100630 | 001002E0 FFFFO000 %2575 -
operator=_)) SD:00100638 | 00000000 00000000 HNENENES
- 5D:00100640 | 00000000 00103670 %4%HYI6p -
4 n 3 4 3
-
iE] BuList d.I(SD:0:100614) [o=]=]
[ M step |[ M over | $ Nex‘t |(¢ Return|[ @ up |[ P Go |[ NN Break |[ B¥] Mode | Find: test.cop
addr/1ine |code mnemonic |comment
virtual int Sum() N
SP:001004C8 |9421FFF0  B::Sum: stwu rl,-0x10(r1)
%ﬁi: 7COBO2AG mF1r ro
SP:001004D0 |93C10008 stw r30,0x8(r1)
SP:001004D4 |93E1000C stw r31,000C (r1) K
SP:001004D8 |90010014 stw r0, 0x14(rl)
SP:001004DC |7C7F1ETS : mr r3i,r3
30 return A::Sum()+nbl+nb2;
SP:001004E0 |7FE3FETS mr r3,r3i
SP:001004E4 |4EFFFEEL b1 0x100394 -
< | i1 3

©1989-2024 Lauterbach

Application Note C++ Debugging

5



Most Derived Class

Generic algorithms use the polymorphic nature of classes they work with. These algorithms will handle
pointers to objects that fulfill an interface or are derived from a certain parent class. The Most Derived Class
is the class type that was used to create a particular instance. By default, the Var.Watch window will treat
these pointers with the type that is used in the current context. The Derived option can be turned on for a
certain entry of the Var.Watch window by double-clicking the tree node icon or using the context menu.

void TestMostDerivedClass () {
B* pB = new B();
A* pA = pB;
//view content of pA here...
pA = NULL;
delete pB;

7 Bzvar.Watch 7 Bzvar.Watch
-3 = ;I =1 =75 -
End = NxNN114710 — B:: — — = pd = 0x00114710 — B:: — [
or |TCOntent = fimnal =1,
= Aina? = 2,
Content Line = nbh1 =3,
a String H oz 1 4
= First 5
First 100 C t t
ontex
H Durmp
Double click
; menu
here Decimal
Hex
Ascii

To automate the Most Derived Class feature, the [1 operator can be used in PRACTICE:

; set nbl to 1
Var.Set (*[pA]).nbl =1

; display most derived class of pA
Var.View *[pA]

Lifetime of the “this” Pointer

When a none-static method of a class is called, the object instance is transferred by the call, too. Within the
method a symbol named this will be valid once the stack frame start code has finished. When a method is
implemented into a single line of source code, it is necessary to do assembler steps until this is alive
before any other class member can be observed correctly. The this symbol can be used to show the
members of the instance:

Var.View this

©1989-2024 Lauterbach Application Note C++ Debugging | 6



Class Conversions

The () operator can be used to cast an object to another class.

;cast this pointer to class B and display it
Var.View (B*)this

;cast object at address 0x00114710 to class B and display it
Var.View (B*)0x00114710

©1989-2024 Lauterbach Application Note C++ Debugging | 7



Gathering Information of Classes

There are two ways to gather information about classes: the class browser and the symbol browser.

The class browser lists all known classes in the type column. Righ-clicking a class opens a context menu.

& Bus¥mbol Browse.Class

(o (O e

Classes

linfo

A class(12 bytes, pubTic:

S |
int nal, int naZz, ( .

Type
& View Details

7 View Class Hierarchy

& View Type Hierarchy

& Browse Symbols of this type

& Browse Class S5ymbols
& Browse Class Methods

ﬁﬁ View Static Class Members

plic: 1nt nb

The context menu, for example, provides access to the class hierarchy diagram (Select the View Class

Hierarchy option).

& Bus¥mbol.Class B

[E=NECH|

Parent

==l

Via the context menu, it is also possible to view the details of a class (Select the View Details option).

&f| B:Var TYPE

%a %em %l %ehi %asp B

[E=N Hoh/)

B B class(20 bytes
pubTic/

0] pub'l'lc A

: class(12 bytes, public: [0] int nal (signed 32 bits .

. : [0] A _b_A class(12 bytes, public: [0] int nal (signed 32
S|Ze T public: int nbl (signed 32 bits),
int nb2 (signed 32 b'lts),
1c;h1dden [8] vmd (vmd =)() _vptr (pointer to void (void::=)(),
(vf tr‘ = B::__wptr
| public: ( Tt 1BFv BBl Mangled
v‘lr‘tua'l int () Sum() J{Sum__ 1BFV,B::Sum),
Offset/_/ virtual void () ~80) Ilﬁt—rm-—l i~B) Name
B() (__ct__1EFRC1E,B::E),

4 I

[1 B & Q)
i

& () operator=() (_as_lBFRClB B:

:operator=))

The symbol browser can show things that are dedicated to one class by using its capabilities to filter names.

& Bus¥mbol Browse EI@
A (] (3] Type: Symbols | [*]Source

lsymbol type address |
Ai:A A E () P:001002F5--00100393 "
CHY P:001002F8--00100393

LY A& ( P:0010026C--001002F7

WA P:0010026C--001002F7

Ao~y void P:001003C8--00100427

Aoy P:001003C8--00100427

n::_ wtbl (struct [41) D: 001005 ES--00100607

a2 :5um Gint () P :00100394--001003C7

A2 i5um P:00100394--001003C7

J 4 I3

©1989-2024 Lauterbach

Application Note C++ Debugging | 8



C++ Overloading and Symbol Mangling

Demangling

In contrast to C, multiple functions can have the same name by using the overloading technique. The
functions must then differ in their parameter signatures. In C++ object files, therefore an exported symbol is
encoded using function name and parameter signature into one mangled name. The mangling can be
different for different compilers. TRACE32 demangles the names controlled by sYmbol.DEMangle. The first
parameter set whether the Demangler is turned on. The second parameter controls if the parameter
signature is concatenated to the symbol name.

Symbol of A::A(int,int)
sYmbol.DEMangle OFF Demangler switched off _ct__1AFIT1
sYmbol.DEMangle ON ON Demangler switched on AzzA(int,int)

sYmbol.DEMangle ON OFF = Demangler switched on, but does AzA
not concatenate parameters

Ambiguous Symbols

Due to the overloading technique of C++, the debug information contains ambiguous short symbol names.
Resolving these symbols will result in an error message:

This behavior can be controlled by the sYmbol.MATCH setting:

sYmbol.MATCH Exact Release error message when ambiguous symbol is resolved
sYmbol.MATCH Best Take the first matching symbol
sYmbol.MATCH Choose Open a symbol browser to select the right symbol

©1989-2024 Lauterbach Application Note C++ Debugging | 9



Other Command Line Hints

C++ symbols are often very long. Therefore use the TAB key to select and automatically complete the input
of a symbol.

2:b.s A::A
| *A::Atint,int)* | *A:AOY | A:A |
[ok] | s | coctdess | | [

Symbols containing brackets must be enclosed in apostrophes to distinguish them from other parser
functions that use brackets.

The symbol browser opens and the symbol matching the passed pattern can be chosen when an input
symbol contains an asterisk character.

£ BudlAz® [==]=]
WA t.| ["3 ] Type: symbols ~ | [[]Source

symbol type address |
A::A A& ()) P:001002F8--00100393 -
AzA P:001002F8--00100393

AzA A& P:0010026C--001002F7

AzA P:0010026C--001002F7

Az i~A oid P:001003C8--00100427

Az i~A P:001003C8--00100427

LY vtbl struct [4 D:001005E8--00100607

Az iSum int P:001003594--001003C7

Az iSum P:001003594--001003C7

J * 2

B::d. 1 A::¥

©1989-2024 Lauterbach Application Note C++ Debugging | 10



ELF Loader Options

The Data.LOAD.EIf command has additional parameters to tune the loader for formats or circumstances it

cannot detect correctly.

Option Behavior

/CPP Used for ELF/STABS format if symbols are loaded correcily.

/ICFRONT Load additional symbol information for CFront based compilers
that translate C++ code to C code.

/Noinclude Ignore debug information that is related to code in header files.

/SingleLine One source line is assigned to multiple target code parts.

Therefore the source lines are multiplied, too. In the Source Order
view of the Data.List window, these lines are merged behind a “+”
symbol. When this option is passed, the debugger doesn’t multiply
the source lines. The source line is assigned to the first code part.

/SingleLineAdjacent

The option is similar to /SingleLine, but only takes effect if the code
parts are concatenated.

©1989-2024 Lauterbach

Application Note C++ Debugging | 11



Debugging in C++ Code

Target Order / Source Order

Due to the usage of inline code, one source line can match multiple code sections. When a memory section

is displayed, it can be source order or target order.

Source Order

Source order mixes the code sections to the order inside the source file:

[B::Data.List /SOrder]

| M step || M over || 4 Next || Return||
addr/Tine |source

=0 E=H =
& up | P Go [ IN Break |[ %] Mod
I

template<class _t,int _size> inline
_t* malloc2() { return (_t*)malloc(sizeof(_t)*_size); }
_t* malloc2() { return (_t*)malloc(sizeof(_t)*_size); }

5

=)

void MultilineTest2()
i

60

62
63 |1

-

m

Target Order mode is active for HLL debugging by default. Both calls of the inline function “malloc2” will
create one code piece each. Due to source order these code pieces are displayed above the
“MultiLineTest2” function. When the function is executed by Step.Over commands, the windows selected
source line will jump to the matching code lines. This can be confusing some times.

Target Order

Target Order displays the code in the order of ascending addresses of the code behind:

addr/line |source

EY [B::Data.List /TOrder] o || ==
[ M Step || ® Over |[ & Next |[¢ Retumn][ & up || P Go |[ B Break |[ 2] Mo

57||void MultilineTest2()

template<class _t,int _size> inline
55 [_t* malloc2() { return (_t*Imalloc(sizeof(_t)*_size); 1}

int* a = mallocZ<int,10=0);

60 free(a);

template<class _t,int _size> inline

55 [_t* malloc2() { return (_t*Imalloc(sizeof(_t)*_size); 1}
bool* b = mallocZ<bool,20=0);

62 free(h);

53 |1

i

J 4 1

-~

m

In this case it is more obvious that the compile has inlined the code from the “malloc2” template. The
execution of the routine by Step.Over will work without any confusing jump to other source lines. Target

Order display is the default in Mixed mode debugging.

©1989-2024 Lauterbach

Application Note C++ Debugging | 12



Breakpoints

I sYmbol.ForEach Sets breakpoints to every function and symbol.

*

sYmbol .ForEach "Break.Set *" A::

Sometimes it is necessary to break at a method for a certain object. This can be achieved by a breakpoint
containing a condition that checks the passed this pointer of the instance. For example, the this pointer
is passed by register R3 and the object has the address 0x0114710 the breakpoint for the function

: : Sum would be set by:

Break.Set A::Sum /CONDition Register (R3)==0114710

©1989-2024 Lauterbach Application Note C++ Debugging | 13



	Application Note C++ Debugging
	Sample Code used by This Application Note
	Gathering Information of Objects
	Display Options Dedicated to Objects
	Most Derived Class
	Lifetime of the “this” Pointer
	Class Conversions

	Gathering Information of Classes
	C++ Overloading and Symbol Mangling
	Demangling
	Ambiguous Symbols
	Other Command Line Hints

	ELF Loader Options
	Debugging in C++ Code
	Target Order / Source Order
	Breakpoints



