AUTOSAR

Complex Driver design and integration guideline

AUTOSAR CP R19-11

Document Title Complex Driver design and
Integration guideline

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 622

Document Status published

Part of AUTOSAR Standard Classic Platform

Part of Standard Release R19-11

Document Change History

Date Release |Changed by Change Description

2019-11-28 | R19-11 |AUTOSAR e Add a note in the 7.3.8 chapter
Release e Changed Document Status from
Management Final to published

2018-10-31 44.0 |AUTOSAR e Remove SWS_EcuMfixed in
Release Chapters 4.1 & 7.3.2
Management

2017-12-08 4.3.1 |AUTOSAR e Adapt the 7.3.9 chapter title
Release
Management

2016-11-30 4.3.0 |AUTOSAR e Add chapter to interface with StbM
Release module
Management e Update for Module ID

2015-07-31 4.2.2 |AUTOSAR e Update for Default Error Tracer
Release e Re-entrancy of interfaces
Management

2014-10-31 421 |AUTOSAR e Update for Tcplp
Release
Management

2014-03-31 4.1.3 |AUTOSAR e Update of CDD code files chapter
Administration e Removed chapter(s) on change

documentation
2013-03-15 4.1.1 |AUTOSAR e Initial release

Administration

1of21

Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

Disclaimer

This work (specification and/or software implementation) and the material contained
in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and
the companies that have contributed to it shall not be liable for any use of the work.
The material contained in this work is protected by copyright and other types of
intellectual property rights. The commercial exploitation of the material contained in
this work requires a license to such intellectual property rights.

This work may be utilized or reproduced without any modification, in any form or by
any means, for informational purposes only. For any other purpose, no part of the
work may be utilized or reproduced, in any form or by any means, without permission
in writing from the publisher.

The work has been developed for automotive applications only. It has neither been
developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

2 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

Table of Contents

S Toto o T30 | D To Yo U o 0 T= o | SRRt 4
2 Acronyms and abbreViatioNnsuuueeueiueiiiiiiiiiiiiii 5
2.1 GlOSSAry Of tEIMNS ...ciiiiiiiii e e e e e e e e e e e na s 5

3 ConventioNS t0 DB USE.........iii i 6
4 Related dOCUMENTALION........ccooiiieieieeeeee e 7
ot R [T o101 o [0 Tt U 4 =T o £ PP PPPPPPPP 7
4.2 Related standards and NOMMScovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 8

5 INtroduCtioN 10 CDDccoiiiiiiiiiee e 9
6 CDD design recoOmMmMEeNdatiONS..........coeevuiiiuiiieeeeeeeeeeiies e e e e e e e e eeeare e e e e eeeeenne 10
G0 R B To ol ¥ 41T o] = 10] 1 PP 10
6.1.1 USEr'S Manual.........cccccouiiiiiiiiiiiiieee 10

6.2 IMPIEMENTALION ... 11
6.3 CDD FHlES oo 11
6.3.1 COde fIlE(S)..ceiiiiiiiiiiiiiiiiii e 11
6.3.2 Header file(S) ..uuvurreiii e 11
6.3.3 Recommended files StrUCLUIeccooviiiiiiiiiiiiiiieeeeeee 12
6.3.4 Coherence CheCKSccooviiiiiiiiiie e 13

6.4 Behaviour and Interfaces descCriptioncoooveeeieiiieiee 13
6.5 Parameters configurationccccooviiiiiiiiiiiiiii e 14

7 Interfacing to Other MOAUIESuuiiiiiiiiiiiii e 15
7.1 Interfacing to Rte and SW-C..........ouuiiiiiii e 15
7.2 Interfacing to lIDrariescooe oo 15
7.3 Interfacing to standard BSW modulescccoooiiiiiiiiiiiiiiii e, 15
7.3.1 Interfacing with MCAL MOdUIEScoooviiiiiiiiiiiiiiiieeeeeee 16
7.3.2 Interfacing with BSW Mode Manager & ECU State Manager 16
7.3.3 Interfacing with Memory Stack.........ccccccoviviiiiiiiiiiiiiiieeeeeeeeee 16
7.3.4 Interfacing with Watchdog Stack...............ceeeiiiiiiiiiiiiiciin e, 17
7.3.5 Interfacing with Communication Stackccccccevvvviiiiiiiiiiiiiiiiiiiinnnnn. 17
7.3.6 Interfacing with XCP MOdUle...........ccooiiiiiiiiiiiiei e, 19
7.3.7 Interfacing with Diagnostic Log and Traceccccccvvveviiiiiiiieiiieeeneeenn. 19
7.3.8 Interfacing with Default Error Tracer and Diagnostic Event Manager ... 20
7.3.9 Interfacing With OS........oooiiiiiiii 20
7.3.10 Interfacing with StoM moduleoooiiiiii i, 20

7.4 CDD in MUII-COreS SYSIEIM ... 21
7.5 CDD module of the MCALccoooiieieeeeeeeeeee e 21
3of21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline

- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

1 Scope of Document

The purpose of this document is to:
e Give an overview of Complex Driver (CDD)
e Give recommendations for implementation and integration of a CDD within
AUTOSAR architecture.

This document is aimed at developers and integrators of CDD.

4 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTO SAR Complex Driver design and integration guideline

AUTOSAR CP R19-11

2 Acronyms and abbreviations

Acronyms and abbreviations, which have a local scope and therefore are not
contained in the AUTOSAR glossary, must appear in a local glossary.

Abbreviation / Acronym

Description

CDD

CDD used to be the acronym for Complex Device
Driver or Complex Driver, but is not limited to drivers.

2.1 Glossary of terms

The glossary of terms is available in the document [1] AUTOSAR Glossary.

Term

Definition

<MODULENAME>

This term is defined in the document [4] AUTOSAR
General Requirements on Basic Software Modules

5of 21

Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTO SAR Complex Driver design and integration guideline

AUTOSAR CP R19-11

3 Conventions to be used

e In requirements, the following specific semantics shall be used (based on the
Internet Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as:

6 of 21

SHALL: This word means that the sentence is an absolute requirement
of an AUTOSAR specification. Consequently, designer shall respect the
requirement of the original AUTOSAR specification.

SHALL NOT: This word means that the sentence is an absolute
prohibition of an AUTOSAR specification. Consequently, designer shall
respect the requirement of the original AUTOSAR specification.

MUST: This word means that the sentence is an absolute requirement
of an AUTOSAR specification due to legal issues. Consequently,
designer shall respect the requirement of the original AUTOSAR
specification.

MUST NOT: This phrase means that the sentence is an absolute
prohibition of the specification due to legal constraints. Consequently,
designer shall respect the requirement of the original AUTOSAR
specification.

SHOULD: This word, or the adjective "/RECOMMENDED", mean that
there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and
carefully weighed before choosing a different course.

SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED"
mean that there may exist valid reasons in particular circumstances
when the particular behavior is acceptable or even useful, but the full
implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

MAY:: This word, or the adjective ,OPTIONAL®, means that an item is
truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item. An
implementation, which does not include a particular option, MUST be
prepared to interoperate with another implementation, which does
include the option, though perhaps with reduced functionality. In the
same vein an implementation, which does include a particular option,
MUST be prepared to interoperate with another implementation, which
does not include the option (except, of course, for the feature the option
provides.)

Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

4 Related documentation

4.1 Input documents

General inputs:

[1] AUTOSAR Glossary
AUTOSAR_TR_Glossary.pdf

[2] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[3] AUTOSAR Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[4] AUTOSAR General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[5] General Specification on BSW modules
AUTOSAR_SWS BSWGeneral.pdf

[6] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[7] Specification of Platform Types
AUTOSAR_SWS PlatformTypes.pdf

[8] Specification of Communication Stack Types
AUTOSAR_SWS_CommunicationStackTypes.pdf

Templates specification documents:

[9] Specification of BSW Module Description Template
AUTOSAR_TPS_ BSWModuleDescriptionTemplate.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

Module reference documents

[11] Specification of ECU State Manager
AUTOSAR_SWS_ ECUStateManager.pdf

[12] Specification of Watchdog Manager
AUTOSAR_SWS_ Watchdog Manager.pdf

[13] Specification of Operating System
AUTOSAR_SWS_OS.pdf

7 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

[14] Specification of Default Error Tracer
AUTOSAR_SWS_ DefaultErrorTracer.pdf

[15] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager

[16] Description of the AUTOSAR standard errors
AUTOSAR_EXP_ErrorDescription.pdf

[17] Specification of Rte
AUTOSAR_SWS_RTE.pdf

[18] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[19] Specification of PDU Router
AUTOSAR_SWS_PDURouter.pdf

[20] Specification of Communication
AUTOSAR_SWS_COM.pdf

[21] Specification of Communication Manager
AUTOSAR_SWS_COMManager.pdf

[22] Specification of Network Management Interface
AUTOSAR_SWS_ NetworkManagementinterface.pdf

[23] Specification of TCP/IP Stack
AUTOSAR_SWS_Tcplp.pdf

[24] Specification of Synchronized Time Base Manager
AUTOSAR_SWS_SynchronizedTimeBaseManager.pdf

4.2 Related standards and norms

The standards and norms are detailed in the document [5] General Specification on
BSW modules.

8 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

5 Introduction to CDD

A Complex Driver is a software entity not standardized by AUTOSAR that can access
or be accessed via AUTOSAR Interfaces and/or Basic Software Modules APIs.

According to the document [3] Layered Software Architecture, a CDD is a specific
module located in the Complex Drivers Layer of the Basic SoftWare which interacts
with standard BSW modules or Rte.

e A CDD may need to interface to modules of the layered software architecture
e A module of the layered software architecture may need to interface to a CDD
e A CDD may need to interface SW-Cs via Rte

RTE

CDD
O 0O
=. O
o =
ECU Abstraction Layer T '%
— X

s
Microcontroller Abstraction Layer Lol

Microcontroller Abstraction Layer

Figure 4.2-1: CDD in Layered Software Architecture

The main goal of the CDD is to implement complex sensor evaluation and actuator
control with direct access to the microcontroller using specific interrupts and/or
complex microcontroller peripherals, external devices (communication transceivers,
ASIC...) to fulfill the special functional and timing requirements.

In addition it might be used to implement enhanced services / protocols or encapsulates
legacy functionality of a non-AUTOSAR system.

CDD Implementation might be application, uC and ECU dependent.

Finally, the CDD can serve as mechanism of migration to introduce existing or new
concepts into the AUTOSAR Software Architecture.

9 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

6 CDD design recommendations

To interface and ease CDD integration in AUTOSAR architecture, the Designer shall
take into consideration the following points.

6.1 Documentations

6.1.1 User's Manual

CDD designer shall provide a User's Manual to ease the integration and provide
information to customers:

e CDD introduction and overview

e Description of the functional operations (initialisation, normal, shutdown, fault
operation...)

e Description of the relationship with and need from other BSW Modules, SchM
and Rte; e.g. memory blocks from NvM, critical sections to configure.

e Files structure and dependencies
e Description of the interfaces (including services): name, description, re-
entrancy, parameters (names, types, ranges, values), return value (name,

type, range, values), configuration class.

e Description of the non-functional requirements: timing and behaviour
requirements, resource usage, behaviour with other BSW modules or SW-C...

e Description of the Dem errors, optionally Det errors, debug variables

e Description of the configuration parameters (names, types, ranges, values).
e Description of the memory mapping needs (Flash, RAM)

e Usage limitations and open issues

¢ Integration constraints and requirements to other modules

e Examples

6.1.1.1 Module ID

The module ID for CDD is described in the document [2] List of Basic Software
Modules.

10 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

6.2 Implementation

There are few constraints coming from AUTOSAR regarding CDD implementation. At
least:

e CDD shall respect the input specifications [3], [4], [5], [6], [7], [8], [9], [10].

e CDD shall protect its critical resources defining critical sections which can be
handled by SchM or OS mechanisms.

e CDD mode may be manageable by EcuM and BswM modules.

e CDD may handle its memory sections using the memory mapping
mechanisms.

e CDD may report its errors using Det or Dem modules.

6.3 CDD Files
This section is only a recommendation and does not completely define the module
files structure.

6.3.1 Code file(s)

The code file structure of the CDD module is not fixed, beside the requirements in the
document [4] AUTOSAR General Requirements on Basic Software Modules and the
document [5] General Specification on BSW modules.
At least, a CDD_<MODULENAME>.c shall be provided.
Interrupt functions may be placed in a CDD_<MODULENAME>_Irq.c.
Callout functions may be placed in a CDD_<MODULENAME>_Callout.c.

Depending of the need, C objects generated at Link time from configuration may be
placed in CDD_<MODULENAME>_Lcfg.c file.

Depending of the need, C objects generated at Post Build time from configuration
may be placed in CDD_<MODULENAME>_PBcfg.c file.

If an implementation of the CDD module requires additional code files, it is free to
include them.

6.3.2 Header file(s)

The following figure contains the defined AUTOSAR header file hierarchy of the CDD
module.

11 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

Guest

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

CDD module shall provide a header file structure, so that users of the CDD module
needs only to include the CDD_<MODULENAME>.h file.

CDD module may provide a CDD_<MODULENAME>_Cbk.h header file if some
callback functions has to be handled by other BSW modules.

Depending of the need, C objects declarations generated from configuration may be
placed in CDD_<MODULENAME>_Cfg.h, CDD_<MODULENAME>_PBcfg.h,
CDD_<MODULENAME>_Lcfg.h files.

If an implementation of the CDD module requires additional header files, it is free to
include them. The header files are self contained, that means they will include all
other header files which are required by them.

CDD module may include Det.h and/or Dem.h header files to report errors.

CDD module may include <Mip>_MemMap.h header file if some memory mapping
area have to be defined where <Mip> is the Module Implementation Prefix.

CDD module may include Rte_CDD_<MODULENAME>.h header file if interfaces to
the Rte are configured.

6.3.3 Recommended files structure

The following figure describes the basic defined AUTOSAR header files hierarchy of
a CDD module.

« source » Include » « source » « Include » « source »
CDD_ R CDD_<MODULENAME>h f-===-=-=----- P Std_Types.h
<MODULENAME>
_Cfg.h A 7 N
I « Include »’ \ «Include
! ’ \
« In¢lude » ’ \
: ¥ .
! « source » « source »
« source » « Include » « source » Compiler.h Ptlatfgsrmh_
<Mip>_ === ====--1 CDD_<MODULENAME>.c vpes.
MemMap.h
-1~ 7 T
«Ingudé » A T—* t
« source » - Pid ,7 :
Det.h nl . . \
«Inetide » 7 [
//’ R4 « Include »
«source » < « Inchide » I
Dem.h o /M :
l, [}
4
x v
« source » « source » « source »
Rte_CDD_<MODULENAME>.h <MODULENAME>.h CCD_<MODULENAME>_Cbk.h

Figure 6.3-1: Header File Structure for CDD

12 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

6.3.4 Coherence checks

The CDD module shall avoid the integration of incompatible (.c or .h) files as defined
in the document [5] General Specification on BSW modules.

6.4 Behaviour and Interfaces description

Some CDD not only have interfaces to other BSW modules or clusters, but have also
more abstract interfaces accessed from application SW-Cs via the Rte.

In these cases a CDD SW-C type is needed to interface the Rte and CDD shall
respect the requirements of the document [9] Specification of BSW Module
Description Template
This description file should contain:

e Description of the CDD services

e Types and ports interfaces

e Description of internal behaviour and runnable Entities

e Description of the required triggered events of runnable Entities

e Description of exclusive Areas for shared resources protection

e Memory mapping
The more abstract interfaces required here are called AUTOSAR Interfaces which are
described by means of the Software Component Template (SWCT), they consist of ports,

port interfaces and their further detailing.

The root classes of the SWCT used to describe these elements for CDD are
complexDeviceDriverSwComponentType.

The function calls from the Rte into these CDD shall be modelled as RunnableEntities which
are also contained in the SWCT. The root class of the

SWCT used to describe the RunnableEntities (and a few other things) is called
SweclinternalBehavior.

Hints: CDD runnables should be designed to reduce Rte overhead, e.g.
e Server runnables is prefered to be re-entrant: can be invoked concurently =

TRUE.
e Runnables signature to be: void or StdReturnType RunnableName(void or
parameters)
13 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline

- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

6.5 Parameters configuration

If parameters has to be configured using an AUTOSAR GCE, CDD shall respect the
requirements of the document [10] Specification of ECU Configuration.

At Least:

AUTOSAR and Software versions of the modules shall be identified by the
configuration file.

Det should not be included for production phase, so a parameter is needed in
the configuration to deactivate the error report.

14 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

7 Interfacing to other modules

This section describes the relations to other modules within the basic software.

7.1 Interfacing to Rte and SW-C

CDD may need to interface to SW-Cs through the Rte:
e Required ports and interfaces shall be specified and implemented according to
AUTOSAR (AUTOSAR interface).
e In some cases, CDD has to use some port specific parameters defined by Rte.

Refer to previous chapter §86.4.

7.2 Interfacing to libraries

CDD can use AUTOSAR libraries.

Example: CDD can use EZ2E library mechanism to transmit the communication
protections against a corruption or a loss of data.

7.3 Interfacing to standard BSW modules
CDD may need to interface to other modules in the layered software architecture, or
modules in the layered software architecture may need to interface to a CDD. If this

is the case, the following recommendations apply:

Interfacing from modules of the layered software architecture to CDD:

CDD shall offer interface(s) which can be generically configured by the accessing
AUTOSAR module.

A typical example is the PDU Router: a CDD may implement the interface module of
a new bus system. This is already taken care of within the configuration of the PDU
Router.

Interfacing from a CDD to modules of the layered software architecture:

This is only allowed if the respective modules of the layered software architecture
offer the interfaces, and are prepared to be accessed by a CDD. Usually this means
that
e CDD shall take care of re-entrancy of interfaces. For non-re-entrant interfaces
only one caller can access the interface. For conditionally re-entrant interfaces
several callers may access the interface concurrently if they use different ids.
¢ If call back routines are used, the names are configurable
¢ No upper module exists which does a management of states of the module
(parallel access would change states without being noticed by the upper
module)

15 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

CDD shall provide all configuration parameters which are necessary to satisfy other
AUTOSAR modules which rely on the information, e.g. if Dem is called to report
production errors, the Dem error codes must be defined and referenced inside the
CDD configuration in line with the configuration standard for Dem error code
definition.

In case of multi core architectures, refer to chapter §87.4.

In general, it is possible to access the following modules:

7.3.1 Interfacing with MCAL modules

CDD may directly access to microcontroller resources (e.g. a hardware timer). CDD
should use the MCAL if the needed resource is managed by a MCAL module and if
there are no specific constraints (e.g. real time need). This is highly recommended to
avoid conflicts (e.g. Parallel access to the same group/channel/etc. is mostly not
allowed because DIO services are not re-entrant).

In this case, CDD shall use the standard API of the MCAL modules to access MCAL
modules.

7.3.2 Interfacing with BSW Mode Manager & ECU State Manager

The EcuM and the BSW Mode Manager shall be the exclusive access points to the
mode management in case the ECU State Manager is used.

ECU State Manager should be used for:
e Init and De-Init functions shall be exclusively called by the EcuM and/or the
BswM modules.
e |f a CDD handles a wakeup source, it must follow the protocol for handling
wakeup events specified in the document [11] Specification of ECU State
Manager.

BSW Mode Manager should be used for:
e CDD modes changed management
e The BswM (which is on the master core) ascertains that the ECU should be
shutdown and distributes an appropriate mode switch to each core. The CDD
on the slave cores must catch this mode switch, de-initialize appropriately and
send appropriate signals to the BswM to indicate their readiness.

7.3.3 Interfacing with Memory Stack

Direct access outside NVRAM manager is possible if it is exclusively managed by
CDD. If CDD uses the standard memory stack, the NVRAM Manager is the exclusive
access point to the memory stack: CDD shall use the NVM's API to access memory.

16 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

7.3.4 Interfacing with Watchdog Stack

The Watchdog manager may supervise the execution of one or more runnables of a
CDD as supervised entities. The watchdog manager shall be configured and CDD
runnable shall call Watchdog API as described in the document [12] Watchdog
Manager.

The Watchdog Manager is the exclusive access point to the watchdog stack.

CDD should not interact directly with the watchdog manager but through the Rte
defined ports.

Usually, the Rte is responsible for propagating Checkpoint information from
Supervised Entities in CDD to the Watchdog Manager module. The Watchdog
Manager module uses the services of the Runtime Environment to inform CDD about
changes in the supervision status.

To control the state-dependent behavior of CDD, the Rte provides the mechanism of
mode ports. A mode manager can switch between different modes that are defined in
the mode port. The CDD that connects to the mode port can use the mode
information in two ways:
e The CDD can query the current mode via the mode port.
e The CDD can declare Runnables that are started or stopped by the Rte
because of mode changes.

In case of failure, the Watchdog Manager may inform the CDD Supervised Entity
about supervision failures via the Rte Mode mechanism. The CDD Supervised Entity
may then take its actions to recover from that failure.

7.3.5 Interfacing with Communication Stack

Several access points are possible:

It is possible to interface to the PDU Router module to handle IPDU.

It is possible to interface to the <Bus> Interface.

It is possible to interface to the NM module.

It is possible to interface the Tcplp module.

It is possible to directly interface to Com module as it is possible to have signal
interface.

Generally, it is not suitable to mix the access points, i.e. use PduR access at the
same time as Com access or <Bus> Interface.

CDD which handles communication and may trigger transmission of PDUs should
provide an API to enable/disable transmission. This will e.g. enable the Dcm to
disable the whole communication in a corresponding diagnostic request. These
functions provided by the CDD may be called in the configured action list which is
linked to this function. For example to these functions, refer to similar API within the
communication stack.

17 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

7.3.5.1 Interfacing with PDU Router

The PduR is the exclusive bus and protocol independent access point to the
communication stack for IPDU.

CDD shall use standard APIs of the PduR module to access IPDU.

When CDD Interacts with the PduR, one container per CDD shall be configured
within the PduR.

Refer to the document [19] Specification of PDU Router to get more details.

7.3.5.2 Interfacing <Bus> Interfaces modules

The <Bus> Interfaces modules are the exclusive bus specific access point to the
communication stack.

CDD shall use standard APIs of the <Bus> Interfaces modules to access IPDU.

When CDD interacts with <Bus> Interface, CDD uses the access functions defined
for <Bus> Interface and <Bus> Interface callbacks shall be configured according to
CDD needs. <Bus> Interface shall be configured to include
CDD_<MODULENAME>_Cbk.h header file.

Refer to <BUS> Interface specifications and user’'s manual for details.

7.3.5.3 Interfacing with Com Module

If CDD handles Com signals, CDD shall use standard APIs of the Com module or Rte
define to access signals.

Refer to the document [20] Specification of Communication to get more details.

7.3.5.4 Interfacing with Com Manager

If CDD uses Com signals, CDD shall use standard APIs of the Com Manager to
request a “Communication Mode”.

If CDD handles a <Bus> which is not AUTOSAR Standard, <Bus> States should be
handled by ComM to coordinate bus communication stack.

Refer to the document [21] Specification of Communication Manager to get more
details.
7.3.5.5 Interfacing with Network Management Interface module

If CDD handle a <Bus> which is not AUTOSAR Standard, <Bus> States should be
handled by a <Bus>Nm_CDD module.

18 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

The <Bus>Nm_CDD should provide services to the Network Manager to manage
<Bus> States.

Refer to the document [22] Specification of Network Management Interface to get
more detalils.

7.3.5.6 Interfacing with Tcplp module

The Tcplp module is the exclusive socket-based access point to the communication
stack.

CDD shall use standard APIs of the Tcplp module to access sockets.

Refer to the document [23] Specification of TCP/IP Stack to get more details.

7.3.6 Interfacing with XCP module

If CDD handle a <Bus> which is not AUTOSAR Standard, XCP can interface
<Bus>_CDD to forward the data.

The XCP module offers configurable interfaces to be used by CDD:
e <Cdd_Transmit> Requests the sending of a PDU via CDD
e <Xcp_CddTxConfirmation> API confirming the successful transmission of the
PDU
e <Xcp_CddRxIndication> This API service called by the CDD indicates a
successful reception of a LPDU.

The XCP module shall be configured to allow CDD functionalities:
XcpOnCddEnabled parameter shall be activated.

If needed, CDD may call callback function Xcp_<module>RxIndication.

7.3.7 Interfacing with Diagnostic Log and Trace

If CDD handle a <Bus> which is not AUTOSAR Standard, DIt can interface
<Bus>_CDD to forward the data.

The DIt forwards the data to the Dcm or a CDD which uses a serial interface for
example.

DIt does not define a specific communication interface. The DIt specification defines
an API to an internal DIt communication module. It is up to the implementer, how this
communication module is implemented and how it communicates with a possible
CDD (e.g. Serial or USB).

19 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

7.3.8 Interfacing with Default Error Tracer and Diagnostic Event
Manager

CDD shall report errors using Det, Dem as described in the document [16]
Description of the AUTOSAR standard errors.

CDD shall use standard APIs of the Det & Dem modules.
CDD shall react as any BSW modules. Error ID shall be defined locally in the CDD
module. CDD is responsible for initiating an internal recovery.

Note: For calls to the Det the instance id parameter can be used to distinguish
between different CDDs.

7.3.9 Interfacing with OS

Usually, only the BSW Scheduler and the Rte shall use OS objects or OS services.
Therefore, the CDD should only access to GetCounterValue and
GetElapsedCounterValue services of the OS.

The OS can be accessed by CDD as long as the used OS objects are not used by
another BSW module, e.g. CDD could create an OS alarm and use it.

OS can notify CDD by OsRestartTask that an OS-Application has been terminated
and restarted. The CDD will then have to take appropriate clean-up actions.

Refer to the document [13] Specification of Operating System to get more details.

7.3.10 Interfacing with StbM module

If a CDD module implements a user defined Timebase Provider, i.e., if it handles
Global Time Synchronization messages, the CDD module shall use the StbM module
API:

. StbM GetCurrentTime to read latest time base value from StbM

. StbM GetCurrentTimeRaw, StbM GetCurrentTimeDiff to calculate
time base value updates

. StbM BusSetGlobalTime to forward time base values received on the bus
to StbM

This interface is currently limited to Timebase Providers without HW time stamping.
Refer to the document [24] Specification of Synchronized Time Base Manager for
details about the API.

Relevant details of the configuration of the CDD module for Global Time
Synchronization are specified by the container CddGlobalTimeContribution in
the CDD’s module definition. Refer to the document [10] Specification of the ECU
Configuration.

20 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

AUTOSAR Complex Driver design and integration guideline
AUTOSAR CP R19-11

7.4 CDD in multi-cores system

CDD can be used in multi-cores architecture.

In case of multi core architectures, CDD can reside on any core(s) respecting the
following rules:

e Crossing partition and core boundaries is permitted for module
internal communication only, using a master/satellite implementation.

e Consequently, if the CDD needs to access standardized interfaces of the
BSW, it needs to reside on the same core.

e In case a CDD resides on a different core, it can use the normal port
mechanism to access AUTOSAR interfaces and standardized AUTOSAR
interfaces. This invokes the Rte, which uses the IOC mechanism of the
operating system to transfer requests to the other core.

e However, if the CDD needs to access standardized interfaces of the BSW
and does not reside on the same core,

o either a satellite providing the standardized interface can run on the
core where the CDD resides and forward the call to the other core

o or a stub part of the CDD needs to be implemented on the other
core, and communication needs to be organized CDD-local using
the IOC mechanism of the operating system similar to what the Rte
does.

e Additionally, in the latter case the initialization part of the CDD also needs
to reside in the stub part on the different core.

7.5 CDD module of the MCAL

CDD for microcontroller driver can be performed but it cannot access to other
standard module as it is in the lower layer except Det, Dem, SchM...

In general, if some limitations are applied to a specific layer, it applies also to CDD.

21 of 21 Document ID 622: AUTOSAR_EXP_CDDDesignAndIntegrationGuideline
- AUTOSAR confidential -

	1 Scope of Document
	2 Acronyms and abbreviations
	2.1 Glossary of terms

	3 Conventions to be used
	4 Related documentation
	4.1 Input documents
	4.2 Related standards and norms

	5 Introduction to CDD
	6 CDD design recommendations
	6.1 Documentations
	6.1.1 User's Manual
	6.1.1.1 Module ID

	6.2 Implementation
	6.3 CDD Files
	6.3.1 Code file(s)
	6.3.2 Header file(s)
	6.3.3 Recommended files structure
	6.3.4 Coherence checks

	6.4 Behaviour and Interfaces description
	6.5 Parameters configuration

	7 Interfacing to other modules
	7.1 Interfacing to Rte and SW-C
	7.2 Interfacing to libraries
	7.3 Interfacing to standard BSW modules
	7.3.1 Interfacing with MCAL modules
	7.3.2 Interfacing with BSW Mode Manager & ECU State Manager
	7.3.3 Interfacing with Memory Stack
	7.3.4 Interfacing with Watchdog Stack
	7.3.5 Interfacing with Communication Stack
	7.3.5.1 Interfacing with PDU Router
	7.3.5.2 Interfacing <Bus> Interfaces modules
	7.3.5.3 Interfacing with Com Module
	7.3.5.4 Interfacing with Com Manager
	7.3.5.5 Interfacing with Network Management Interface module
	7.3.5.6 Interfacing with TcpIp module

	7.3.6 Interfacing with XCP module
	7.3.7 Interfacing with Diagnostic Log and Trace
	7.3.8 Interfacing with Default Error Tracer and Diagnostic Event Manager
	7.3.9 Interfacing with OS
	7.3.10 Interfacing with StbM module

	7.4 CDD in multi-cores system
	7.5 CDD module of the MCAL

